
Emergent Software Systems

Roberto Rodrigues Filho

BSc. Computer Science, Federal University of Goiás, Brazil (2010)

MSc. Computer Science, Federal University of Goiás, Brazil (2013)

A Thesis presented for the degree of

Doctor of Philosophy

School of Computing and Communications

Lancaster University, UK

January, 2018



With love to Carmen and Roberto



Emergent Software Systems

Roberto Rodrigues Filho

Submitted for the degree of Doctor of Philosophy

January, 2018

Abstract

Contemporary software systems often have millions of lines of code that interact

over complex infrastructures. The development of such systems is very challenging

due to the increasing complexity of services and the high level of dynamism of current

operating environments. In order to support the development and management of

such systems, autonomic computing concepts have gained significant importance.

The majority of autonomic computing approaches show significant levels of ex-

pert dependency in designing adaptive solutions. These approaches usually rely on

human-made models and policies to support and guide software adaptation at run-

time. These approaches mainly suffer from: i) a significant upfront effort demanded

to create such solutions, which adds to the complexity of creating autonomous sys-

tems, and ii) unreliability given the high levels of uncertainty in current operating

environments, leading the system to degraded performance and error states when

subjected to unpredicted operating conditions and unexpected software interactions.

Motivated by the problems and limitations of state-of-the-art autonomic com-

puting solutions, this thesis introduces the concept of Emergent Software Systems.

These systems are autonomously composed at runtime from discovered components,

and are autonomously optimised based on the operating conditions, being able to

build their own understanding of their environment and constituent parts. This the-

sis defines Emergent Software Systems, presenting the challenges of implementing

such approach, and presents a fully functioning emergent systems framework that

demonstrates this concept in real-world, fully functioning datacentre-based software.
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CHAPTER 1

Introduction

1.1 Overview

Contemporary software systems have reached a level of complexity that is beyond

human capacity to fully understand [53]. Besides the innate complexity of software

development [13], which continues to be a problem, systems are becoming larger,

with millions of lines of code, and are deployed on highly dynamic and complex

infrastructures, running on distributed heterogeneous platforms across the globe. In

addition, these systems require high levels of scalability, reliability and security to

deliver services to millions of users worldwide. Building and managing systems to

maintain such properties using classical engineering approaches is becoming ineffi-

cient [19,50,53]. For instance, fluctuations on incoming workload yield unpredictable

resource utilisation demands and complex interactions among software modules.

In classical software engineering approaches, which do not aim at creating self-

management software solutions, the design decisions are made in the design phase

and often become invalid at runtime due to unpredictable fluctuations in the operat-

ing environment. Furthermore, management decisions are made entirely by experts,

who demand time to profile the system and analyse historical workloads to create

models to predict workload changes before manually optimising the system. This

scenario makes classical engineering methods unsuitable as the level of uncertainty

increases in operating environments of contemporary software systems [19,32,50,53].

In this context, a desired property of contemporary systems is the ability to

14



1.1. Overview 15

autonomously change their behaviour to accommodate changes in the environment.

This property is known as self-adaptation [76]. The most relevant idealisation of

autonomous software management and its related challenges were defined by IBM

in 2001 [43, 53]. The authors defined the term Autonomic Computing and moti-

vated subsequent research to tackle the challenges in building systems capable of

self-management. However, equipping software systems with self-adaptive proper-

ties has consequences. The development of autonomic systems is very complex and

they often present undesired emergent properties and behaviours [53,74]. The com-

plexity of creating self-adaptive solutions involves the development of self-adaptive

mechanisms and strategies to guide software adaptation and evolution at runtime.

Current approaches handle these complexity aspects by applying adaptation

mechanisms to only specific parts of the system and using predefined models and

policies to guide online software adaptation. Although, this strategy to handle com-

plexity in designing self-adaptive systems is a first step, it is not sufficient to cope

with the increasing levels of complexity in contemporary systems. The use of policies

and models to guide software adaptation rely on predictions that might not happen,

leading systems to error and malfunctioning states. Furthermore, the dependence

of policies might result in undesired emergent properties due to unforeseen events in

the operating environment and unpredicted effects of software interactions. Finally,

these predefined models and policies require upfront human effort in creating such

systems, which adds to the complexity and cost in creating autonomous solutions.

The existence of undesired behaviours that emerge from unpredicted interactions

among self-adaptive software modules prompted the creation of the organic comput-

ing research field [74, 77]. The goal of this community is to study mechanisms to

control undesired emergent behaviours whilst exploiting the benefits of self-adaptive

software systems. However, this thesis argues against such controlling mechanisms

because they restrict the potential of self-adaptive software, limiting the software’s

ability to autonomously deal with unforeseen situations. Instead, this thesis argues

for the creation of self-adaptive systems with no predefined adaptation rules and the

application of self-adaptive mechanisms not only to specific parts of the system but

rather to the composition process of the entire system.
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Therefore, this thesis defines a new engineering approach where software systems

are composed out of small units of behaviours, which enable the system to actively

experiment with a variety of component variations in order to assemble optimal

software compositions to handle different operating environments. This approach

embraces the emergent properties and behaviour in systems as a way to manage

software complexity, and handles undesired behaviour through a continuous runtime

learning process, where the software itself learns according to high level goals, and

observations of the system health status whether its composition is acceptable.

As a consequence, this approach handles the problem of system complexity by

handling uncertainties in the operating environment and interactions among the

software modules, as well as addressing the complexity aspects of creating self-

adaptive systems by reducing the influence of humans in the design and management

of software systems. This approach is named Emergent Software Systems.

The ‘emergent systems’ term is not precisely defined in the literature and is usu-

ally used as a characteristic of systems with emergence properties. In this thesis,

emergence means: i) to autonomously compose software from small units of be-

haviour, where the resulting combination of software units is greater than the sum

of its parts, ii) to autonomously compose software as a result of operating conditions,

and iii) the possibility of the approach to autonomously find unexpected optimal

compositions. Furthermore, our approach is intended as a method for creating Auto-

nomic Computing systems and to increase their capability of self-management. This

thesis discusses the proposed approach in the context of datacentre-based software.

1.2 Critique of Existing Approaches

Autonomic Computing approaches were the focus of several research in the literature

tackling a variety of challenges and issues to provide self-adaptive mechanisms to

software systems [18, 47, 60, 86]. An analysis of the most relevant research shows

that they share one or more of the following characteristics: i) significant human-

dependency in their design, ii) assurance mechanisms for adaptation, and finally, iii)

adaptation mechanisms are applied to very specific parts of the system.
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The majority of self-adaptive solutions show significant levels of expert depen-

dency in designing adaptive solution. These approaches usually rely on models and

policies to support and guide software adaptation at runtime [48,55]. These design

decisions are made at design time which results in two main problems.

• These systems suffer from high levels of uncertainty in contemporary operating

environments [32];

• These approaches require significant upfront effort to develop [32].

The dynamism in contemporary operating environments leads systems to an

error and malfunctioning state when they are subjected to events not predicted in

the predefined adaptation policies. Also, as systems become larger, the task to define

models to guide software adaptation becomes increasingly complex to a point where

is unwieldy to manually specify all adaptation rules, making such approaches not

scalable, due to increasing upfront effort required to develop such approaches [32].

Assurance mechanisms in self-adaptive systems sound very appealing at first, be-

cause they promise to maintain the system within a safe operating state. However,

there are two main concerns with those mechanisms. The first is that the provision

of assurance to self-adapting systems is very complex. In many systems a combi-

nation of valid behaviours might result in undesired behaviour, and it is difficult

to anticipate such combinations before they happen [18, 32]. The second problem

is the presence of controlling mechanisms to support assurance in self-adaptive sys-

tems. This is because they constrain the systems’ ability to freely explore and find

more suitable compositions to better handle their operating environment, limiting

the benefits of incorporating self-adaptive mechanisms to the system.

Finally, the adaptation mechanisms are usually applied to very specific parts of

the system, for example, to support adaptive mechanisms to control process alloca-

tion on web servers [60], or to enable a self-managing load balancer for memcached

servers [86]. Although this is a safe research strategy because it isolates specific

aspects of software adaptation for better exploration, it requires experts to predict

which parts of the system might need to adapt. This thesis argues that contempo-

rary software requires the application of self-adaptive techniques in the development

process and management of the entire system, independent of its application domain.
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1.3 Research Goals

Classical software engineering methods, which do not consider autonomous software

management, are becoming inadequate as the levels of system complexity increases

[53]. In this context, this thesis explores the application of self-composition concepts

in the software development process, where software systems are the result of their

operating environments, constantly building and optimising their own structure.

More specifically this thesis aims to validate the hypothesis stated below:

The use of fine-grained software components in tandem with

reinforcement learning as a method to develop self-adaptive

software systems is key to address operating environment dy-

namism whilst minimising design complexity.

Component-based technologies [21, 70] have been demonstrated as a suitable

solution to minimize software complexity by maximising software re-usability and

maintainability [52]. These technologies are also the bedrock that seamlessly support

runtime architectural software adaptation and evolution [21]. Complementarily, the

application of reinforcement learning approach [79] allows systems to learn at run-

time how their constituent parts act in diverse environments. In tandem, these two

technologies have the potential to empower systems with the ability to understand

their architecture and choose compositions depending on the operating conditions.

This work presents an engineering approach to software development and man-

agement that transcends the boundaries of current self-adaptive and autonomic

computing approaches. Furthermore, this thesis demonstrates the feasibility of cre-

ating software capable of actively building its own understanding of its architecture

whilst self-optimising according to its goals and operating environment. As these

systems are autonomously composed as a product of their operating environment,

this concept is named Emergent Software Systems.

The validation of the hypothesis consists of i) verifying that, for different operat-

ing environments, different software compositions have different performance opti-

mality, and ii) showing that the system is able to accurately locate optimal available
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composition for the different operating environment with no predefined models or

domain-specific information. This thesis shows the validity of Emergent Software

Systems in both local and distributed instances. The validation steps unfold into

the following research questions:

[RQ 1] Do different software compositions have different performance when subjected

to different operating environments?

[RQ 2] Is it possible to autonomously locate optimal software composition (within a

set of available options) with no predefined nor domain-specific information?

[RQ 3] How can an autonomous system coordinate multiple instances of emergent

software to converge to optimal available global compositions in distributed

settings?

1.4 Methodology

The methodology used to conduct this research is a prototyping, experimental-

driven and iterative approach. This approach was chosen for two main reasons:

i) developing prototypes and designing experiments often forces one to consider

important technical limitations, which otherwise would not be considered, that may

directly affect the validity of the proposed concepts, and ii) an iterative methodology

suits the explorative nature of defining the novel concepts presented in this thesis.

The methodology consists of executing the steps illustrated in Fig.1.1. The first

step is the definition of a concept or idea for investigation (1. Concept Definition

/ Refinement), the proposed concept is then implemented (2. Prototype cre-

ation) and evaluated (3. Prototype Evaluation). The results of the evaluation

are discussed with supervisors and research group and, if considered relevant, are

written in the form of scientific paper and submitted to a high quality conference of

the area (4. Reporting/Discussing Findings). The feedback from the discussion

phase is then analysed (5. Feedback Analysis) and the original idea or concept

is refined, triggering subsequent iteration for further investigation.

This thesis explores the Emergent Software System concept on two scenarios: i)

local software and ii) distributed software. The first scenario explores the fundamen-
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Figure 1.1: Phases of the iterative process.

tal concepts that form the basis of Emergent Software Systems focusing only on the

autonomous composition of a single software instance. The second scenario explores

Emergent Systems consisting of multiple interacting software instances, exploring

learning coordination and emergent behaviour in distributed emergent systems.

The first step of this research was to define datacentre-based software as the case

study. Specifically, web servers were chosen as the primary target to apply Emergent

Software System concepts, due to their timely importance in contemporary systems,

which are in their majority web-based systems and because of the notable difficulty

in manually optimise and configure them [87].

During the exploration of the first scenario, a single instance of an emergent

web server was created, which has the ability to autonomously self-assemble into

a fully functional web server, and to self-optimise according to a variety of oper-

ating conditions, addressing the research questions RQ1 and RQ2 (see Sec. 1.3).

The second scenario explores the autonomous assembling of entire distributed web

platforms, where the roles of the participating machines emerge as a result of the

natural self-composing property of emergent solutions, and hence the explored as-

pects are mainly related to research question RQ3, but also addresses RQ1 and RQ2

in a distributed scenario.
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1.5 Contributions

The main contributions are i) the proposal of the Emergent Software System con-

cept overcoming significant human dependency in creating self-adaptive systems,

and ii) the validation of the concept, showing that different software compositions

have different performances under different operating conditions, and that emergent

systems are able to autonomously converge towards optimal performance. The pro-

posal of the Emergent Software System concept is the result of extensive practical

experiments using real-world datacentre-based software, making it a concept deeply

grounded in reality. In addition, this thesis demonstrates the potential of emergent

systems approach by minimising human efforts in creating autonomous systems,

through a complete automated creation and evolution of systems’ adaptation logic.

More specifically this thesis:

• Presents a list of key challenges in realising Emergent Systems, whilst also

presenting solutions to the most important identified challenges. This the-

sis presents solutions to: i) handling large search spaces resulted from the

combinatorial nature of the autonomous software composition process, ii) on-

line classification of dynamic operating environments, and iii) coordination of

software composition and learning in distributed systems environment.

• Introduces a domain-independent framework to orchestrate Emergent Software

Systems. The framework captures the essence of Emergent Software System

in its main modules that are used to autonomously assemble software systems,

monitor the operating environment and the systems health status, and learn

about the systems operating environment and the systems constituent parts,

with no predefined models or adaptation rules. The framework implementation

is also made available for replication of the main results reported in this thesis,

and can be downloaded at [33], [34], [35] and [36].

• Argues for a paradigm shift in the autonomous software creation process, by

changing the focus from autonomous software adaptation to autonomous soft-

ware composition. Software adaptation becomes a consequence of composition,
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rather than the main focus for creating autonomous solutions. This paradigm

shift is at the core of Emergent Systems, and reduces the up-front effort and

complexity involved in designing autonomous solutions, by pushing design de-

cisions to be made at runtime by the system itself.

• Applies the concept of Emergent Systems to create a complete emergent web

platform. The emergent web platform does not require the classical process of

optimising web platforms, which consists of: expert analysis of historical work-

load, profiling the web platform, the creation of models to predict workload

changes, and a manual tuning of parameters of web servers, load balancers

and web caches. Instead, the emergent web platform self-composes and self-

optimises based on real-time observed workload.

1.6 Thesis Structure

The rest of this thesis is structured in the following manner:

• Chapter 2 discusses the background for this thesis and presents a compre-

hensive analysis of recent and most relevant work in the literature.

• Chapter 3 defines the concept of Emergent Software Systems, describing the

problem space and challenges of implementing the concept.

• Chapter 4 introduces the Emergent Software System framework, detailing the

implementation of each of its modules and presenting the solution for the most

important challenges described in the problem space (listed in Chapter 3).

• Chapter 5 evaluates the framework presented in Chapter 4 applied to a web

platform case study, demonstrating the practicality of Emergent Software Sys-

tems in both local and distributed software instances.

• Chapter 6 concludes the thesis, highlighting the main contributions, and

presenting future challenges to consolidate the Emergent System paradigm.



CHAPTER 2

Background and Related Work

This chapter introduces the main concepts discussed in this thesis, whilst also de-

scribing the most relevant work as application examples of such concepts. Further-

more, this chapter presents the shortcomings of current approaches contrasting with

the concept of emergent software systems, as well as how these approaches comple-

ment and assist emergent software system to be consolidated as a complete method

to develop autonomous solutions.

2.1 Autonomic Computing

This section describes the Autonomic Computing concept and vision, and its impor-

tance for understanding the novelty and contribution of Emergent Software Systems.

This section starts by presenting the IBM vision for Autonomic Computing to tackle

the increasing complexity in managing software systems. The concept of Organic

Computing is also introduced in this section as a complementary research area that

focuses on autonomous system solutions. Organic Computing solutions also aims at

controlling the interaction of multiple autonomic systems to guide emerging solu-

tions whilst restraining the occurrence of undesired behaviours. Finally, the concept

of self-adaptive systems is also introduced as an umbrella term for autonomous sys-

tems, and as a fundamental property to enable different aspects of autonomous

systems (e.g. self-optimising, self-healing, self-protecting, self-configuring).

23
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2.1.1 IBM Vision

Motivated by the increasingly complexity in contemporary systems, IBM introduced

the concept of Autonomic Computing [53] in a manifesto in 2001. Contemporary

systems are characterised by their large size and their interconnectivity with other

large systems. This scenario requires skilled software experts to install, configure,

tune and maintain such systems. In [53], Kephart and Chess argue that these

systems were reaching the limit of human capacity to adequately address managing

tasks and to timely react to unexpected events from the systems. Thus, inspired by

the autonomic nervous system in human beings, the Autonomic Computing vision

aims to enable systems to self-manage based on goals defined by administrators.

The realisation of the concept of Autonomic Computing requires systems to

implement autonomous behaviour towards a specific system aspect (e.g. security,

performance, fault-tolerance, etc.). These systems aim to maintain certain prop-

erties with minimum human interference and are known as a self-* system. The

self-* properties are dimensions of autonomous behaviour that is incorporated in a

system to address a certain system aspect. Autonomous systems may implement

the following self-* properties: self-protecting, self-optimising, self-healing and self-

configuring capabilities. Self-protecting systems (e.g. [85]) are capable of identifying

possible security threats and operating risks for the system well functioning. Fur-

thermore, these systems are able to properly handle and prevent malicious users to

exploit possible security threats by, for example, autonomously changing its inter-

nal structure. Self-optimising systems (e.g. [46]) are systems that are able to change

their structure to autonomously improve some aspect of their performance, for ex-

ample by reducing the systems response time. Self-configuring systems (e.g. [51])

are able to autonomously set up when introduced to a distributed system or change

their configuration to accommodate the insertion of new systems. Self-healing sys-

tems (e.g. [2]) is capable to maintain a level of reliability by discovering faults in the

system’s behaviour and deciding on a course of action to maintain system execution.

The area of autonomic computing brought a variety of scientific and engineering

challenges to be addressed. Many of these challenges were introduced and discussed
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in ‘The Vision of Autonomic Computing’ paper (see [53]). The main challenges in-

volve the life-cycle of autonomous systems which comprehends systems design, test,

management, monitoring and upgrading systems. The management of interactions

among autonomous systems which includes defining services provided and required

by autonomous systems, services discovery and negotiation of providing services

to multiple autonomous entities. Another challenge is the definition and represen-

tation of global system’s goals which represent the interface between humans and

autonomous systems. Also, learning and optimisation techniques exploring and ad-

vancing the state-of-the-art in machine learning techniques and statistical and prob-

abilistic models to support system adaptation. These challenges are still in debate

in the related scientific communities with promising solutions and future directions.

2.1.2 Organic Computing

The Organic Computing research initiative started in Germany with the focus to

address and explore the self-organisation in technical software systems, inspired

by neuroscience and molecular biology concepts and software engineering [77, 82].

Originated around the same time as the Autonomic Computing vision, the Organic

Computing initiative also focused on the problem of having multiple instances of in-

teracting autonomous systems, which may result in conflicts and undesired emergent

behaviour affecting the resulting system [77].

In detail, autonomous systems with multiple goals might spontaneously interact

with other autonomous systems in order to achieve and maintain global systems

goals. The interaction among autonomous system instances is not a futuristic far-

fetched idea. A concrete example given in [77] draws attention to the contemporary

cars and the multiple interacting devices that are required to support the basics cars

functions. In this example, devices requires data from other devices in order to pro-

vide its functionality, and the orchestration of such devices results in the car and all

its available functions. Problems with the interactions among such systems, for ex-

ample, by delaying the deliver of information to devices may lead to miscalculations

and compromise service execution. Not only problems with orchestration and syn-

chronisation may occur in such scenarios, a key problem is the emergent undesired



2.1. Autonomic Computing 26

behaviours resulted from unpredicted interactions among systems devices.

Given this scenario of interacting autonomous systems, several studies were con-

ducted to validate multiple controlling mechanisms that could be used to prevent

undesired emergent behaviour in a variety of scenarios [62,74] as well as to address

further aspects (self-* properties) of autonomous systems [16,40]. These studies are

described in Sec 2.2.5, and later contrasting with the concept of Emergent Systems.

2.1.3 Self-adaptive Systems

The term ‘self-adaptive systems’ are usually used as an umbrella term, by different

research communities, to refer to the systems ability to change its structure to ac-

commodate changes. Whereas in distributed environments the term ‘self-organising

systems’ is frequently used to refer to systems capable of reorganising its distributed

architecture to cope with changes and achieve global system goals. In order to build

systems that are capable of self-organising and self-adapting, the system requires

the definition of an adaptation logic to guide software adaptation, the imple-

mentation of adaptation mechanisms to propagate changes to the actual system

structure, and coordination among the system nodes to ensure a coherent change

and convergence towards global system goals.

The adaptation logic is responsible to capture the knowledge that allows the

system to detect events of interest and decide its next course of actions, which include

the decision to maintain the system in its current state or to adapt to another config-

uration. The adaptation logic can be represented in different forms: the policy-based

approaches, which represent adaptation logic using expertly-crafted rules defined in

the design phase; mode-driven approaches, which apply models representing system

properties, QoS traits, system architectures, system goals and equations that sup-

ports runtime reasoning and adaptation; and bio-inspired algorithms are used to

encode adaptation logic imitating behaviours found in nature, e.g. ant-colony.

The adaptation mechanisms are responsible to propagate changes in the ac-

tual software. These mechanisms are classified either as parametric or architectural

approaches. Parametric approaches consider the system as a black-box, having only

dials buttons to influence the system behaviour. This approach is limited as com-
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pared to architectural, because it can only change the system within a predefined

range of parametric values. The architectural adaptation approach allows the sys-

tem to change its structure by replacing components or changing its architecture

pattern to maintain system properties (e.g. to use a load balancer architecture to

maintain performance or to replicate services to cope with system failures). The

architectural adaptation allows profound changes in the system, making it more

flexible to cope with changes in the operating environment.

In a distributed scenario where multiple autonomous entities, with individual

goals and capable of making their own adaptation decisions, are interacting with

each other, it is important to create mechanisms to ensure that the system achieves

its global goals whilst maintaining non-functional requirements. The coordination

of software adaptation is key to ensure a coherent adaptation of distributed

systems and convergence towards a common global system goal. Many approaches

for coordinating adaptation were investigated in the multi-agent research community

where the autonomous entities (agents) sought cooperation and consensus in order to

make decisions to converge the system towards the global desired behaviour. Some

approaches use voting schemes, action predictions, and other consensus schemes.

Common activities of a self-adaptive and self-organising system involve: mon-

itoring the system in execution, analysing the monitored data, deciding on and

executing the course of action the system needs to take to maintain its desired

properties and performing adaptation to the systems behaviour. The feedback loop

conceptual framework was well-adopted to implement self-adaptive system for cap-

turing these essential activities to equip systems with autonomous adaptation ability.

The most famous feedback loop conceptual framework in self-adaptive systems and

autonomic computing field is the MAPE-K loop (as in [7]), which stands for Monitor-

ing, Analysing, Planning, Executing activities which are guided by the Knowledge

defined by experts at design phase and the results of the previous actions of the

system. In order to give autonomous capabilities for systems, Autonomic Comput-

ing approaches enclose a MAPE-K framework to a system to support monitoring,

analysis, planning and executing of system adaptation.
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2.2 Self-adaptive Approaches and Mechanisms

This section surveys relevant work that illustrates different aspects of developing

self-adaptive solutions. The works described in this section represent a compre-

hensive survey of techniques to support reasoning and planning for self-adaptation

and change propagation throughout the actual software structure and configura-

tion. Moreover, these works are evidence of the shortcomings and limitation of

current approaches, as well as illustrations of the design process of current auto-

nomic computing solutions. Some approaches are complementary and may assist

further development and consolidation of the emergent software paradigm.

The first two subsections are divided to showcase approaches that use i) static

policies and ii) model approaches as different techniques to represent systems adap-

tation logic, which is responsible to support reasoning and decision making in the

adaptation process of the system’s behaviour and structure. These two aspects of

software adaptation is described in Sec. 2.2.1 and Sec. 2.2.2 respectively, along

with a description of the adaptation mechanisms that the presented works apply to

ensure changes in the actual software structure. Furthermore, Sec. 2.2.3 introduces

the concept of reinforcement learning and discusses how this learning paradigm has

been used in self-adaptive systems. Sec. 2.2.4 describes relevant examples of multi-

agent systems, illustrating how agents are used to autonomously organise systems,

and to autonomously coordinate distributed adaptation to achieve global systems

goals. Sec. 2.2.5 presents relevant work implementing assurance and controlling

mechanisms to avoid undesired emergent behaviour. Finally, Sec 2.2.6 describes bi-

ologically inspired approaches that are used to solve a variety of optimising problems,

including problems in the context of self-adaptive systems.

2.2.1 Policy-driven Approaches

The policy-driven approaches implement the simplest and most straight-forward

method to represent the systems adaptation logic. Due to its simplicity these were

the most used methods in designing early self-adaptive systems. The approach

consists of manually writing static rules in the design phase to describe software state
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or operating conditions and make the system aware of what software configuration it

should change to in case those conditions are detected. Some approaches implement

very straightforward and static rules not leaving room for autonomous reasoning and

decision making in the process, as described in [48], and other approaches, such as

in [55], the software engineers describe adaptation rules in terms of logic expressions,

which allow a small level of reasoning in the adaptation process.

The most relevant example of manually crafted rules to guide software adaptation

is described in [48]. The work applies component-based technologies to introduce

the concept of open overlays into middleware architectures. The open overlays con-

cept supports the configuration and reconfiguration of network overlays allowing a

flexible composition of virtual network resources and services at runtime. The pa-

per describe a series of fine-grained software components that are used to compose

overlay-related behaviour in wireless sensor network nodes at runtime, guided by

predefined declarative XML-based expressions. These expressions are used to de-

fine rules that are processed at runtime to determine the most appropriate overlay

behaviour for the system. For instance, a rule can be created for the case where ‘mul-

ticast’ is requested by the application (which represents the system goal), stating

that in those cases when the underlying network infrastructure provides no support

to IP multicast (which represents the software state or environment condition), then

the Tree Building Control Protocol (TBCP) overlay components should be selected

(which represents the desired software configuration). This work is a very relevant

example of a rule-based approach as a way to express the adaptation logic and

guide software adaptation at runtime, and it applies component-based technology

to compose and adapt software as the system executes.

Another example of policy-driven approaches is the work described in [55]. This

is an important example that illustrates the use of logic expressions to support

software adaptation. The paper describes the application of temporal requirements

in the system’s adaptation rules. The work is conducted in the context of a Cybercar

concept which is described as a public transport system with ‘automated driving

capabilities’. The vehicle is equipped with different positioning systems devices

such as GPS and WiFi. These devices can be used to support location services in



2.2. Self-adaptive Approaches and Mechanisms 30

different manners, for instance by using GPS, or by using WiFi as a location-aware

device, or using a combination of both GPS+WiFi. The different compositions

have different effects in the non-functional properties of the system, e.g. energy

consumption and accuracy. The approach requires the definition of the systems

configuration and reconfiguration in the design phase. These static policies define

the events and temporal requirements responsible to trigger software adaptation, as

well as the configuration to which the system will adapt. The mechanism used to

propagate changes to the actual software is also realised through a component-based

runtime. The authors apply the Fractal [14] component-based model, a well-known

framework that supports fine-grained and runtime component adaptation.

These policy-driven approaches are very effective when all system state are well

known a prior and the deployment environment are fairly static. For that reason

these approaches were used in early examples of self-adaptive solutions. Due to the

high levels of dynamisms in the operating environment of contemporary applications,

the static policy-driven approach is not adequate to support the required levels of

flexibility in the software adaptation process. In case where the system suffers from

fluctuations in the workload or unexpected failures in the underlying structure,

these systems are not be able to react accordingly and accommodate the changes in

a timely manner, leading the system to malfunctioning or degraded performance.

2.2.2 Model-based Approaches

Model-driven approaches are engineering techniques widely used to tackle software

complexity, specifically in the development and adaptation of large software sys-

tems. These approaches use representations of systems in an abstract and simplified

form, supporting autonomous reasoning of the system state and facilitating runtime

optimisation of large systems. In particular, there are three main situations in which

models are used to tackle software complexity and are briefly introduced.

Firstly, models are used to capture high level goals, for instance in platform

independent models, that will drive system code generation, facilitating and ac-

celerating the software development process. Secondly, models are used as an ab-

stract representation of the system (the entire system or only parts of it). This
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abstract/simplified representation allows runtime reasoning of the system state, sup-

porting decision making that enables system adaptation. Finally, models are used

to guide software adaptation at runtime, through code generation techniques or

command interpretation to change the running system architecture.

The model-driven approaches represent the majority of work that support self-

adaptation. In the literature, there are a variety of models capturing different aspects

of software and domain information used to support autonomous software adapta-

tion. These models, as opposed to expertly-crafted policies, support more elaborate

autonomous reasoning of the software state and its configurations, enabling a wider

range of more complex adaptation possibilities.

This section categorise different model-based approaches considering the con-

tent that is represented by the models. This categorisation method yielded three

categories that capture well the variety of model-based approaches to support self-

adaptive solutions. The first category is ‘domain-specific and system-representative

models’, which considers models that either capture domain-specific information or

the representation of the system itself and are used to support online reasoning

of the system state and adaptation. The second category is ‘predefined analytical

models’ and refers to models that capture in formal manner the adaptation process,

for example by using mathematical equations. Finally, the third category is the

‘autonomously generated analytical models’, representing the leading approaches to

support software adaptation, consists of models that capture the adaptation process

in a formal manner, but require less up-front engineering effort in specifying models.

These categories were designed not only to show the variety of ways to use models

to support adaptation, but also to showcase the progression of how model-based

approaches tackles the challenges of supporting system adaptation.

Domain-specific and System-representative Models

The domain-specific and system-representative models require the definition of mod-

els in the design phase that capture the system state, domain-specific information,

the system goals or QoS traits and models that correlate all these informations.

In the paper [17], the authors describe a model-driven approach to create self-
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adaptive systems. This is built on the core idea that there is no one-to-one mapping

between requirements and solutions, and that alternative solutions to satisfy the

system requirements impact systems properties in different ways. The approach

requires two manually crafted models. One representing the system goals, and

the other representing the architecture design decisions captured in the form of a

decision tree. The goal model captures all systems requirements, both functional

(goals) and non-functional (softgoals) and their correlation. The goals in the model

are connected to tasks which are in turn connected to architecture design choices

capable of carrying out the tasks. One requirement is often connected to multiple

alternative goals, meaning that at least one of the goals must be satisfied in order to

satisfy the requirements. This alternative relation between goals gives the system

the choice of how to satisfy its requirements by selecting the goals it will satisfy.

Considering that each goal is attached to a different task, by selecting a set of new

goals the system is selecting a different architecture configuration responsible to

achieve the new set of goals. The system considers its monitored information to

decide what goals to satisfy and consequently what architectural configuration to

choose in order to maintain system properties and the quality of service provided.

The result is the generation of a incrementally transformed models of the current

running architecture, which can be used to adapt the actual system. This work is a

relevant example of using models to reason about the systems operational profile and

make software adaptation decisions. This paper focuses solely on its goal-oriented

requirement model and architecture design decision model to support adaptation,

not advocating in favour of any mechanism to conduct adaptation in the actual

system. The paper mentions that once the adapted architecture model for the

system is generated, architecture-based management middleware can be used to

propagate changes to the actual system. Component-based models and service-

oriented adaptation techniques are suggested as adaptation mechanisms.

Another relevant example is described in [61]. Malek et al. introduce a frame-

work for Self-architecting Service-oriented Systems (SASSY). This approach rely on

a series of manually-crafted models to compose, adapt, analyse and evaluate service-

oriented systems. Examples of these models capture ‘QoS architectural patterns’
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and software adaptation patterns to compose and evolve service-oriented architec-

tures. The ‘QoS architectural patterns’ model, for instance, correlates QoS metrics

to architectural decision. For example to increase fault-tolerance the system should

replicate services, or the system should opt for a load balancer architecture to in-

crease throughput. The adaptation pattern, on the other hand, is an analytical

model that specifies how an architectural pattern influences QoS metrics of interest,

serving as a bedrock to system online adaptation. This work is an important and rel-

evant example of the upfront effort required to create models to abstract systems to

support online adaptation. This work is classified in model-driven approach, where

static analytical models are defined in the design phase to support and guide adap-

tation at runtime. The approach uses architectural patterns for service composition,

and selection of service providers to compose and adapt system at runtime.

A final example, discussed in this section, to demonstrate the use of domain-

specific models is presented in [67]. This paper describes an end-to-end approach

that allows end-users to change systems configuration using high level/domain-

specific concepts at runtime. This approach does not support any self-adaptive

mechanisms but abstracts the system to facilitate a user-led adaptation process

by using domain-specific models. The approach applies the concept of i-DSVM

(Interpreted Domain-specific Virtual Machine) capable of executing models, in-

stead of translating models into high-level languages (a common approach in mod-

els@runtime community). In order to support model execution, in a cheap and

reusable manner, the authors introduce the idea of a MoE (Model of Execution)

and DSK (Domain-specific Knowledge) as two separate elements. The idea con-

siders the creation of a generic MoE detached from domain-specific concepts, so

that the MoE can be reused in multiple domains when provided access to multiple

DSK. The authors also introduce the concept of Intent Models (IM), a tree-based

model composed of multiple procedures that represent different alternatives to ex-

ecute high level commands. The IM gives flexibility to this approach by allowing

the middleware to find at runtime the most appropriate way to carry out high level

commands, considering the system state, user preferences and a repertoire of proce-

dures. Although this approach provides flexibility to the system in executing high
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level commands, it is still very human-centric. The technical concepts that make

up IMs, for instance, are predefined and manually crafted, in other words, humans

define the range of possible execution paths that the system can choose from at

runtime, there is no online learning and consequently knowledge are not created

and new/unpredictable paths of executions are not encountered. Furthermore, this

approach does not have any embedded autonomous decision making process, relying

solely on domain-specific models to guide software adaptation at runtime.

Predefined Analytical Models

A different type of model used to support software adaptation is the analytical

models. An analytical model can represent the system, the system’s goals or the

system’s domain concepts, however, this section details two examples of models that

mathematically captures the knowledge used to conduct software adaptation.

The first example is the paper [60]. This paper describes a self-adaptive system

using Control-Theory to guarantee service delays in web servers. The work focuses

on connection delays in HTTP 1.1 web servers, which implements persistent con-

nections. These connections are a response to the connection delays occurred in

HTTP 1.0, where every client request were closed after the servers response, forc-

ing the client to (re)open a new connection for each new request. The persistent

connections maintain connections open after the server sends its response, so that

the client can reuse the same connection to make further requests, reducing delays

caused by the ritual of establishing connections. Commonly, servers allocate an

executing thread per client connection from a pool of executing threads. In this

persistent connection concept, for every connection established an executing thread

is dedicated to handling the requests from that connection, keeping the thread occu-

pied even when requests are not being processed. A common strategy to guarantee

delays in this scenario is to allocate threads to classes of requests, so that the server

can reserve a bigger number of threads to classes of requests that require a small

delay tolerance. This work defines controllers to better allocate threads to classes,

by using an adaptive proportional share policy for class-thread allocation deter-

mined by mathematical models for delay guarantees. These models are defined in



2.2. Self-adaptive Approaches and Mechanisms 35

the design phase and are composed of a set of difference equations that capture

the systems adaptation logic, supporting decisions based on monitored information

frequently collected from the system, and acting accordingly to fluctuations of the

workload and predefined desired delays. The adaptation mechanism for the system

is responsible to change the allocation policy of incoming requests, not having to

change structural details of the server (e.g. architectural adaptation) but rather

performing parametric changes to the connection scheduler (component responsible

to allocate incoming connections to executing threads). This work is classified as an

example of applying control-theory in creating a static predefined adaptation logic,

and to use parametric mechanisms for system adaptation.

A more recent example is described in [86]. The paper describes NetKV, a self-

managing load balancer for memcached clusters for web application performance

optimisation. NetKV is a solution for the problem of imbalance requests to mem-

cached clusters which occurs as a result of poor management of popular content.

According to the authors, current approaches apply client-side proxies to redirect

requests to cached content to the memcached cluster. This proxy approach hinders

the development of a proper content distribution policy for the cluster, contributing

to overload servers that store popular content. As a response to that problem, Zhang

et al. present a centralised load balancer that explores Network Function Virtualisa-

tion to quickly forward requests to the cluster, whilst identifying hot content using

stream-analytic techniques and applying a static analytical model to determine con-

tent replication in the clusters. This approach eliminates the need for client-side

proxies by having a centralised load balancer, and optimises the web infrastruc-

ture by popular content replication, distributing a more balanced load across the

servers. The adaptation mechanism implemented by this approach changes the sys-

tem behaviour by (re)placing and replicating content across servers, not requiring

changes in the software implementation or parameters. The models that support

the systems decisions and adaptation are fixed and defined in the design phase, and

it is designed to adapt the system according to variation of popular content. This

approach is classified as static analytical model, using predefined models to guide

systems adaptation. Furthermore, this approach does not implement any adaptation
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mechanism for the system implementation (e.g. replacing architectural components

or changing systems parameters). This approach enables structural system changes

by replicating and placing stored content across different memcached servers.

These predefined analytical models require a deep and complex analysis of the

systems conditions and external environment to define the models. This condition

makes this approach unwieldy to implement, demanding a considerable effort in

deducing models to realise the system.

Autonomously Generated Analytical Models

As a response to the complexity and upfront analytical effort demanded from the

predefined analytical models, which make these approaches highly complex to re-

alise, recent approaches explore the autonomous development of these models, re-

ducing the complexity of realising such approach and facilitating the development

of complex self-adaptive systems.

The work in [39] proposes the use of Control-theory and its formal properties to

support software adaptation. As previously illustrated by [60], control-theory based

approaches involve the definition of complex equations to capture the nuances of

the software adaptation space, which makes such approaches difficult to engineer.

Furthermore, the dynamic nature of operating environment, e.g. with workload

fluctuations, might invalidate previous-defined models. In response to that situation,

this paper is another example of an alternative to manually define the adaptation

logic of self-adaptive systems, and to minimise the up-front effort to develop the

adaptation logic. Software adaptation decisions are made based on quantitative

measurements of the specified non-functional requirements, and the actual software

adaptation is done by adjusting the systems parameters. In order to generate the

controller the system requires the input of tunable parameters of the system and

specified non-functional requirements the system is expected to satisfy. There is

no prior need of information that maps system parameters and the requirements.

A simple example that describes the synthesising process is the web service case,

where the parameters are the number of servers to provide the service and the

response time is the controlled system aspect. The controller synthesising process
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have two phases, the first phase profiles the system and generate a linear model of the

system, it then uses that model to synthesise the system controller, creating a set of

differential equations to control the self-adaptive software. Online model updates are

also considered in this approach, which allows the system to re-synthesis controllers

adjusted to new operating conditions. This approach is classified (for the purpose of

this thesis) as ‘dynamic’, regarding the dynamic synthesis of the adaptation logic,

and as ‘parametric’, considering the adaptation mechanisms.

Another very relevant work in this space is described in [32]. The authors also ar-

gue against the use of manually defined analytical models for the system adaptation

logic to guide online software adaptation. The properties of these analytical models

are defined in the design-phase as an assumption of how the operating environ-

ment will act. As a consequence of the dynamism of current operating environment,

unforeseen events might occur, leading the system to performance degradation or

malfunctioning. In response to this scenario, the authors advocate in favour of a

learning process as an alternative to a fixed analytical model with predefined prop-

erties for the self-adaptive system’s adaptation logic. This learning process consists

of generating mathematical functions that correlate the presence of software features

in the system with the satisfaction levels of the systems goals. These mathematical

functions are autonomously created as a result of offline training by running the

system and exposing it to a set of operating conditions the system is expected to

find in production. After this offline learning process, the system will have gener-

ated an analytical model that will be used to make software adaptation at runtime.

Furthermore, as the system is exposed to new operating conditions, it is capable

of fine-tuning the functions coefficients to incorporate the new operating condition

and maintain a consistent and reliable adaptation logic. The features are captured

in the design phase, and are responsible for providing an abstract representation of

the system that supports software adaptation by defining the parts of the system

that are adaptable. This work is classified as one of the most relevant examples

in the literature presenting a learning approach to autonomously define and evolve

the systems adaptation logic, as opposed to having a predefined manually crafted

analytical model. This work also applies a feature model to define specific adaptable
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parts of the system, and to establish correlations between features and goals.

The ‘analytical model’ approach captures the complexity and nuances required

to guide software adaptation at runtime in dynamic and uncertain environments.

However, creating analytical models requires substantial effort. The presented ‘Au-

tonomously Generated Analytical Models’ is a way to mitigate this problem. This

approach enables automated learning or deduction of analytical models with min-

imum human involvement. This autonomous model generation facilitates the real-

isation of complex self-adaptive software, whilst supporting the evolution of such

models as new operating conditions emerge.

2.2.3 Reinforcement Learning in Self-adaptive Systems

Reinforcement Learning is a learning paradigm in which an agent learns to correlate

a set of actions to reward values [75, 79]. An agent, in this context, can be defined

as a software that is capable of executing actions and collecting rewards as a conse-

quence of the performed actions. This learning paradigm allows software systems to

learn, at runtime, whilst the system interacts with the environment, which actions

and in which order will yield maximum reward values. This characteristic of this

learning paradigm applied to self-adaptive systems enables the system to learn the

adaptation logic as it executes, driving software adaptation at runtime, and evolving

its adaptation logic as the system encounters new, unforeseen situations [4, 54].

Several papers on self-adaptive systems that apply reinforcement learning algo-

rithms in the adaptation process, such as [4], or any machine learning algorithm for

that matter [30, 57, 88], focuses on parametric adaptation. Parametric adaptation

consists of changes in software parameters as if the system were a black box with

dials. In this context, the system is only capable of adapting within a predefined

set of values/actions, limiting the capacity of reinforcement learning algorithms to

learn beyond the actions that was established by experts in the design phase.

This limitation of parametric tuning approaches also affects some architectural-

based approaches such a [32, 54, 61], due to the fact that, in these approaches, the

system can only change its architecture based on a predefined range of architectural

configurations, and that expanding this fixed range of architectural options requires
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the system and the learning algorithm to be re-evaluated and re-defined.

In [54], Kim and Park demonstrate the application of Q-learning, a well-known

and widely used reinforcement learning algorithm, to architectural change in a robot

simulation case study. This is one of the earlier and most representative examples

of the direct application of reinforcement learning to build and evolve adaptation

logic in self-adaptive systems. The paper describes how to create learning tables

with actions and systems states, detailing a method that can be followed to apply

Q-learning to self-adaptive systems. The paper ends with an evaluation of the

application of reinforcement learning to robot simulations, showing that a robot

that applies such approach can successfully learn and evolve its adaptation logic.

The main limitation of applying reinforcement learning to self-adaptive systems

in the literature is the lack of abstraction of actions and state for the machine learn-

ing algorithm. As papers such as [4,54] illustrate, reinforcement learning algorithms

are applied to self-adaptive systems to optimise software in specific domains, with a

predefined set of actions observable in specific case studies. This shows high levels

of human dependency to define, for each application domain, the set of actions and

states on which the learning algorithm will be developed upon, limiting the potential

and generalisation of reinforcement learning approaches in self-adaptive systems.

This thesis argues that in order to fully enable learning and evolution of the

adaptation logic of software systems, it is required to i) apply reinforcement learning

to the composition process of systems, and ii) ‘abstract’/remodel the system to be

easily handled by machine learning algorithms. The proposed Emergent Systems

concept demonstrates how these two points can be realised by unifying component-

based model and reinforcement learning algorithms.

2.2.4 Multi-agent Approaches

Multi-agent systems are a popular approach to build self-organising systems. This

section presents some key work in the literature to illustrate the application of such

systems. Two relevant papers describing an architecture addressing the problem of

supporting coordination of adaptation processes in a self-organising system, and one

paper illustrating the use of agents as programme instructions that has the ability
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to combine themselves to autonomously compose algorithms.

In order to support a coherent adaptation process to achieve a global desired

behaviour in distributed self-organising systems, a key problem is the creation of

coordinating mechanisms of the adaptation process. An easy solution for this prob-

lem is the creation of a centralised decision making entity that has a global view of

the system and thus can provide a better support for a global system adaptation.

However, the centralised coordination approach provides a single-point of failure

and hinders scalability, not being able to support a system with large numbers of

agents. On the other extreme side of the spectrum lies the complete decentralised

decision making process, where each agent adopts an adaptation plan according to

its local conditions and demands. Although this approach is extremely scalable, it

often makes the system converge towards local optimal configuration which might

not satisfy the global system requirements. Moreover, in a competitive scenario,

i.e. where agents might compete for resources or service provision, this type of

solution may lead to agent’s resource starvation and disruption of services. A reli-

able self-organising processes require an intermediate solution that supports agent

coordination in the adaptation process.

In [72], the authors present discusses an approach for structural adaptation of

the coordination process of self-organising systems. The system is designed using

the concept of agents with local goals that interact among themselves to achieve

a global goal. In this context, the system requires orchestration and consensus of

predefined adaptation plans among the agents in order to support the distributed

adaptation process. As a result of the coordination process the system is capable of

performing structural adaptation to maintain systems properties and global desired

behaviour. A decentralised coordination process is often necessary in distributed

systems, as opposed to a centralised decision making process, to avoid single point

of failures and enable scalability. The paper presents a voting scheme as a way to

reach an agreement among agents, deciding which adaptation plan to adopt once

an adaptation condition is identified. The paper presents an entire architecture to

support the dissemination of information among agents to support coordination of

the adaptation process. Other solutions, described in [68] involve predicting the
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actions of an agent’s neighbourhood (a network of agents defined by proximity) by

understanding how they react to certain events, and then use that knowledge to

approximate and converge their interactions.

A key property of multi-agent systems is their ability to implement emergent

behaviour. An important examples of this is in the paper [44], where the authors

present an emergent programming platform supported by multi-agents to enable

emergent software design. The paper proposes a multi-purpose programming lan-

guage where the instruction set is composed of autonomous agents. The instruction-

agent compose fully functioning computer programmes by partnering agents. The

agents link to other agents from which data are received, and to which data are

sent, forming an execution flow as data is received from one instruction-agent and

passed down to another instruction-agent. This approach enables an autonomous

agent-based software design and composition by having the agents try different in-

structions combinations to create the desired behaviour.

2.2.5 Assurance and Controlling Mechanisms

This section describes examples of work that apply controlling or assurance mecha-

nisms to guide software adaptation and avoid undesired emergent behaviour in the

process. A research community that tackles such challenges is Organic Computing,

and thus this section presents a paper that illustrate the concept. Furthermore, this

section also presents mechanisms used to provide assurance in autonomous systems.

A descriptive example of the Organic Computing concepts is described the paper

[74]. The authors propose an architecture to support organic computing. The main

goal of organic computing is to enable the creation and interaction of autonomous

systems whilst minimising and restraining the occurrence of undesired emergent

behaviours. This challenge motivated the authors to propose an observer/controller

theoretical architecture to support this vision. The architecture is composed of

two main elements; the observer and the controller. The observer is responsible

for monitoring the underlying system, collecting information of the system status

and feeding this information to the controller. The observer is also responsible for

predicting and identifying system status. The controller has access to user-provided
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system goals and uses the system status collected from the observer module to

influence the underlying system, in order to maintain it within the system goals. As

an adaptation system, the observer/controller architecture expects that the system is

implemented as a multi-agent system, and changes are done by changing networks

of agents that can influence its ‘neighbourhood’ and have global system impact.

This approach illustrates the goals of the organic computing research community,

and presents a theoretical architecture to support the concept. The architecture

implements a feedback loop to avoid undesired emergent behaviours whilst guiding

systems changes, based on user-provided goals and system representative models.

In the paper [62], the authors present a variety of evolutionary computing (i.e.

genetic algorithms and genetic programming) techniques to mitigate uncertainty in

designing self-adaptive solutions and increase assurance in the adaptation process.

The paper suggests the application of evolutionary computing in different stages of

the software life-cycle to tackle uncertainty. For example, in the development time,

evolutionary computing techniques can be used to assist program development by

evolving algorithms to be more robust when facing diverse operating conditions.

This process is done by having potential algorithms as individuals, and the desired

high level behaviour as the selective filter used to guide the evolutionary process.

This process can be used to generate software variations capable of addressing dif-

ferent operating conditions. The advantage of this method is in its ability to find

solution autonomously for complex problems and optimise them for specific operat-

ing conditions. A disadvantage of this approach is that it requires software engineers

to know details of the operating environment in the design phase.

McKinley el al. [62] also present the exploration of potential operating conditions

that system might encounter after deployment. The described approach generates

operating conditions used to simulate system variations. The results of the simula-

tions are then recorded, showing how the system performed in different conditions.

The recorded data is then captured as an utility function for requirement monitor-

ing after the system deployment. This solution is only effective in cases where the

generated conditions match a high number of real operating conditions.

At runtime, McKinley el al. illustrate the use of evolutionary computing to assess
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runtime monitoring problems. A system with a high frequency monitoring process

provides a more precise picture of the system state, which in turn require more

resources to support the monitoring process. The paper mentions an genetic algo-

rithm approach that balances resource consumption and online monitoring accuracy

to support better decision making in the adaptation process. Finally, the authors

describe the use of evolutionary computing to address the selection of adaptation

paths when the system presents multiple intermediary configurations with different

requirements impact, enabling optimisation considering conflicting requirements.

These approaches demand the involvement of domain experts to define the sys-

tem’s acceptable conditions, limiting the potential of autonomous system to freely

explore and find unexpected optimal configurations for the operating conditions.

Also, in certain scenarios, such as in self-driving vehicles, it is extremely hard to

predict and create the proper assurance mechanisms to avoid undesired behaviour.

2.2.6 Biologically Inspired Approaches

Biologically inspired approaches are often used in optimisation problems. These

approaches encode behaviours found in nature in algorithms to solve optimisation

problems. A very popular example of this approach is the ant-colony where agents

imitate ant behaviour in finding food by leaving a trail of pheromone that other ants

can sense [27]. A great variety of papers explored the application of such methods

in a variety of problems such as the travelling sales [28], vehicle routing [42], graph

colouring [20] and project scheduling [63]. Another popular example of this approach

is evolutionary computing [31]. This concept applies the basic idea of biological

evolution to solve problems. This approach defines a population of individuals, then

randomly insert genetic variations into the population and submit them through a

selective process eliminating some individuals and leaving the fittest according to a

selection function. The remaining individuals are used to build the next generation

of individuals that go through the process again.

Bio-inspired approaches were used to directly provide systems with self-adaptive

capabilities. For example, the paper [26] describes an algorithm that encodes the

behaviour of Neuroendocrine Immune System to support autonomous composition
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and adaptation of web services. Another examples is described in [73] the used of

evolutionary computing to predict in the design phase the operating environment

that the system will be facing and how the diverse available software configurations

would best suit different environment maintaining desired QoS levels.

2.3 Overall Analysis

The proposed Emergent Systems concept unifies component-based models and re-

inforcement learning approach to push design decisions to the software architecture

at runtime. This concept also aims to eliminate human involvement in creating

rules and models to guide software adaptation at runtime. In this sense, this con-

cept provides a framework to support systems to create its own understanding of

its environment and constituent parts. This concept is described in Chapter 3 with

a detailed description of the problem space. This section revisits the presented

approaches and contrast them to the concept of Emergent Systems. Finally, this

section is concluded with a table, summarising the presented approaches, illustrating

the gap in the literature which the concept of Emergent System aims to address.

Policy-driven Approaches

The Emergent Software System paradigm differs from the expertly-crafted policy-

driven approaches by having the system learn its own adaptation rules. As part of

the learning process, the system learns how the available different software compo-

sitions are used in the detected operating conditions as the system executes. The

Emergent Software System approach, as alternative, reduces the engineering effort

and discards expert knowledge to create adaptive systems. The resulting system is

also able to cope with high levels of dynamism in the operating environment.

Autonomously Generated Analytical Models

In the Emergent Software System paradigm, the concept of learning and developing

analytical models to support adaptation lies in the core of the emergent system

approach. The main difference, however, is that the learning process happens at
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runtime, rather than offline training the system. The online learning approach in

tandem with a component-based model is fundamental to enable software to build

its own understanding of its environment and structure, being able to evolve and

cope with high levels of uncertainty and dynamism in the operating environment,

representing a step beyond current approaches.

Reinforcement Learning in Self-adaptive Systems

Reinforcement learning is at the core of the proposed concept of Emergent Soft-

ware Systems. Its role in the proposed concept is to support runtime learning and

evolution of the adaptation logic in autonomous systems, with minimum human

intervention. However, the state-of-the-art application of reinforcement learning al-

gorithms in self-adaptive systems suffers from the lack of an autonomous method to

abstract state and actions necessary to implement these algorithms. This is mainly

because software systems have an infinite set of states and actions, and the ex-

traction of the ones that have the most impact on system’s goals requires domain

specific knowledge. The key difference of the work in the literature and the proposed

approach is to change the paradigm from having human-selected actions to provide

self-adaptation, to defining only one action: deciding if a set of components should

be in or out of the software architectural composition. By changing the paradigm

from self-adaptation to self-composition, this thesis aims to generalise and abstract

autonomous software composition using the reinforcement learning paradigm.

Multi-agent Systems

Emergent Software System concept shares commonalities with multi-agent system.

Both concepts argue that systems should be built from small units of software to

form systems. In this regard, multi-agent system engineering techniques and frame-

works can be used to realise Emergent Systems, and more specifically, learning tech-

niques and coordination to reach consensus among agents that are investigated in the

multi-agent community can be used in the learning module of Emergent Systems.

On the other hand, emergent software system essentially differs from multi-agent

system when considering the classical agent definition. In emergent software sys-
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tem, components is not seen as agent because they do not hold a particular goal.

The components only perform very specific tasks. The Emergent Software System

concept implements a meta-structure through which software is composed and op-

timised as it runs, maintaining the target software functioning despite its ability to

freely explore among composition variants.

Assurance and Controlling Mechanisms

Assurance and controlling mechanisms are often considered a desired property in

autonomous systems. These techniques require the provision of information pre-

dicted by engineer expert in the design phase, or controlling mechanisms to guide

system to maintain a correct behaviour. This technique often makes the system

vulnerable when unpredicted events emerge, leaving the system in unknown states.

In the Emergent Software System paradigm, however, the system is a product of its

operating environment, being composed as a consequence of the perceived operating

conditions. This characteristic gives emergent systems the ability to learn how to

respond to changes, and how to deal with unexpected situations.

Bio-inspired approaches

The Emergent System concept is different from the bio-inspired approaches for not

incorporating the adaptation logic in the algorithm. Instead, emergent systems

learns as it executes, as a consequence of autonomously experimenting with differ-

ent software compositions which composition works best for the detected executing

environment. Biological inspired approaches, on the other hand, have been suc-

cessfully applied to a variety of optimisation problems. Considering the Emergent

Software System paradigm, the bio-inspired approaches is seen as complementary.

Particularly in assisting autonomous system optimisation as a method to find op-

timal architectural compositions in specific application domains, for example, by

using genetic algorithms to autonomously generate software components.
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Other Related Work

The Autonomic Computing area is vast and multidisciplinary, spreading through

diverse disciplines such as Artificial Intelligence, Software Engineering, Distributed

Systems, and so on. Because of this multidisciplinary characteristic, many research

communities use their own concepts and techniques to propose systems with self-*

properties. Many of these works use different taxonomy to express and describe

their contributions and methods. Although, previous sections already present the

main articles carefully selected to clearly show the gap that this thesis addresses, for

completeness, this section describes other articles that complement this narrative.

On the mechanisms of self-adaptation and propagation of changes in the soft-

ware structure, some work such as [8, 9, 49] use (micro)services to support software

composition and self-adaptation. Works such as [15, 29, 58, 66], as opposed to use

inflexible orchestration, create choreographies that are enacted at runtime to com-

pose and integrate distributed systems. Furthermore, articles such as [10,11,23,81]

describes models, languages used by experts to express goal-oriented self-integration

systems in an autonomous setting. Although, these articles illustrate a different per-

spective (goal-oriented self-integration and composition), they still fall within the

previously defined sections, where autonomous systems rely on rules, and models

mainly defined at design phase to implement their self-* properties.

Another relevant class of work that tackles engineering and management of com-

plex system is described in [12,24,41]. These articles apply the concept of holons to

create a goal-oriented model for engineering autonomous systems. These works are

highly complimentary to the work presented in this thesis, since they provide ways

to express high-level goals to guide system integration and composition that can be

used in the context of Emergent Software System concept proposed.

Finally, projects such as PetaBricks [5,6,25,69], ZettaBricks [3] and more recent

examples such as [84] use machine learning techniques to generate models and user-

defined algorithmic choices at design phase and exploit these models and choices at

runtime to optimise systems. The system optimisation examples brought by these

papers are in the domain of compilers that optimise programs to better explore cores

in a multi-core architecture [64], to reduce temperature levels in datacentres [78] or
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address energy efficiency [84]. These are very relevant and important work that take

advantage of machine learning techniques to be able to keep up with the speed of

changes in CPU architectures, GPU architectures and datacentre infrastructures.

However, the application of machine learning, or languages that define adaptation

options in the design phase have different challenges than applying reinforcement

learning techniques at runtime, specially to learn and evolve adaptation logic of

self-adaptive systems. The problem space of online learning applied to self-adaptive

systems, which is the main focus of this thesis, is fully presented in Chapter 3.

State of the Art and Research Gap

The realisation of self-adaptive solutions require the development of an adaptation

logic, adaptation mechanisms and often a coordination strategy (in distributed con-

texts). Analysing the presented work in this domain with regards to adaptation

logic creation and evolution, a research gap is identified in the literature, which is

illustrated and summarised in Table 2.1. The table shows the lack of work address-

ing the entirely autonomous creation and evolution of adaptation logic, which would

enable the development of solutions capable of addressing the high levels of uncer-

tainty commonly presented in developing adaptive solutions (as described in [19]).

Furthermore, the creation of systems able to autonomously develop their adaptation

logic would reduce the engineering efforts of developing autonomous solutions.

Considering the adaptation logic, the state-of-the-art approaches implement dif-

ferent techniques including policy-driven (e.g. Grace, et al [48]), system represen-

tative models (e.g. SASSY [61]) and analytical models (e.g. Netkv [86]). The

majority of the approaches require the definition of adaptation information in the

design time. Some techniques allow the adaptation logic to evolve as new events

occur in the operating environment, enabling a limited evolution of its adaptation

logic to accommodate new events from operating environment (e.g. FUSION [32]).

This approach, however, can not evolve if new software is added, requiring to rerun

its offline training approach to generate its new adaptation logic. Finally, Georgé et

al. [44], have a complete autonomous multi-agent approach, that is constantly trying

to optimise towards a goal, but never builds nor evolves an adaptation logic. This
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None Manual Hybrid
Automated 

(offline)

Automated 

(online)
None Manual

Partially 

Automated

Completely 

Automated

Grace, et al 

[48]  

SASSY [61]  

Netkv [86]  

FUSION [32]  
Preisler, et al. 

[72]  
Georgé, et al. 

[44]  
Ramirez, et 

al. [73]  
Emergent 

Systems  

Work 
Aspects

Adaptation Logic EvolutionAdaptation Logic Definition

Table 2.1: The table shows a gap in the literature, with a lack of approaches that
enable both autonomous creation and evolution of adaptation logic with no human
involvement.

approach is not able to ‘remember’ optimal solutions for previously seen situations,

having to search for solutions even when previously seen conditions occur.

The Emergent Software System paradigm differentiates itself from all these ap-

proaches by incorporating an online reinforcement learning approach to compose

software systems. This strategy is a step beyond current approaches and reduces

the effort of creating the system, enabling the system to build its own understanding

of its components and operating conditions (i.e. its adaptation logic). Furthermore,

the main focus of Emergent Software solutions is in self-composition instead of

self-adaptation. As a consequence of this change of focus, the Emergent Systems

paradigm is expected to create software solutions capable of handling the increas-

ingly complexity of software systems by postponing decisions that are commonly

made in the systems design phase, pushing software composition and design deci-

sions to be made at runtime whilst the system is exposed to operating conditions.

2.4 Summary

This chapter presented the main approaches to realising autonomous systems so-

lutions. In detail, this chapter described the main concepts in the literature that

support autonomous system adaptation. The most relevant concept is the vision of
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Autonomic Computing and how self-managing systems can tackle the complex-

ity aspects in developing, configuring, optimising and healing systems in a timely

and effective manner. These systems target highly dynamic and volatile operating

environments, and aim at limiting human involvement in high level system tasks,

leaving the system in charge of low level, repetitive and cumbersome managing tasks.

Complementary concepts to support the Autonomic Computing vision were also

described. Organic Computing originated from the necessity of interacting multi

autonomous systems. This approach focuses mainly on adding constraints and as-

surance mechanisms to control software adaptation and avoid undesired emergent

behaviour. Another complementary research area that supports the development

of autonomous systems are Model-driven approaches. These are very popular

techniques to support reasoning of software properties and adaptation decisions at

runtime. Finally, the concept of Multi-agent systems was also discussed as a plat-

form to enable self-organising systems through the definition of autonomous agents

with local goals capable of autonomously compose distributed systems.

Another important concept introduced in this chapter was self-adaptive and

self-organising systems. These are systems capable of changing its behaviour

when facing changes in the operating environment or requirements. This term is

used as umbrella term for autonomous systems and is a feature to realise autonomous

solutions. In order to support any of the self-* properties of Autonomic Computing

(e.g. self-optimising, self-healing) the system has be to able to self-adapt. The self-

adaptive system must implement the adaptation logic of the system, responsible

to guide software adaptation at runtime, the adaptation mechanisms responsible to

propagate changes in the actual software system, and in case of distributed systems,

coordination mechanisms responsible to guarantee a consensus among autonomous

elements of the system on the new global system configuration.

The chapter concludes with a brief analysis of the differences and similarities of

Emergent Software System and state-of-the-art approaches to design autonomous

systems. The Emergent Software System paradigm differs from some principles

described in this chapter, reinforces other principles by incorporating them into the

approach, and use some areas as complement or promising directions to address the
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challenges in developing emergent solutions (discussed in details in Chapter 3).

In particular, Emergent Software Systems reinforce the following ideas:

• Autonomous learning and deducting analytical models to guide software adap-

tation. But distinguishes itself from current approaches by adopting online

learning technique (no offline training), allowing the creation of self-adaptive

systems with no prior domain-specific knowledge, or human interference.

• Application of component-based technologies as a deployment mechanism, and

model to support software (re)composition at runtime, enabling the applica-

tion of reinforcement learning approaches.

Emergent Software Systems differ from the following ideas:

• Manually defining static policies and models (system representation or ana-

lytical models) to guide software adaptation;

• Manually defining a system architectural models or features to support prop-

agation of changes in the actual system;

• Implementing parametric software adaptation mechanisms;

• Implementing assurance and controlling mechanisms that constraints emergent

behaviour;

Emergent Software Systems differ from those ideas because they restrain system

exploration, hindering the system’s ability to autonomously find unexpected optimal

compositions. Furthermore, these ideas also require expert knowledge in the design

phase, increasing the complexity of self-adaptive system design and implementation.



CHAPTER 3

Emergent Software Systems: Concept and

Challenges

This chapter introduces Emergent Software Systems, which is the core concept of

this thesis, presenting the definition of this concept and its problem space. Emer-

gent Software Systems are presented as a complete methodology to support the

entire life-cycle of self-composing systems. In detail, this chapter discusses the main

principles that support the creation of systems capable of self-composition and self-

optimisation with minimum human interference, as well as presenting the challenges

involved in this process. Although this chapter presents the full range of challenges

involved in the implementation of emergent systems in both local and distributed

settings, only the key challenges are explored in this thesis. In particular, this the-

sis addresses the fundamental challenges to demonstrate the feasibility of emergent

software solutions as a means to validate this thesis’ hypothesis. The Emergent Sys-

tems concept and problem space definition described in this chapter was published

in [38], [71] and [37]. Sec. 3.1 defines the concept of Emergent Software System,

presenting an overview of the concept, and its definition. Sec. 3.2 introduces the

challenges based on our practical experience in building Emergent Software solu-

tions. Finally, Sec. 3.3 presents the thesis scope, highlighting the challenges that are

addressed in the remaining chapters.
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3.1 Emergent Software Systems Concept

Emergent Software Systems are systems built from small and reusable units of soft-

ware behaviour, which are capable of self-composition and self-optimisation as a

result of the characteristics of their operating environment. The concept consists

of unifying component-based models and a reinforcement learning approach to en-

able systems to make design decision at runtime, when new conditions emerge.

Component-based technologies allow reinforcement learning algorithms to be used

to experiment with software composition at runtime, and learn by experimenting

with different software compositions the one that has the best performance levels for

the executing operating environment. This section provides an abstract definition

of Emergent Systems. A concrete implementation is presented in Chapter 4.

Problem Definition

The realisation of Emergent Software Systems requires the existence of a system

goal G and a finite set of small software units SU . The goal G defines the main

purpose of the system (comprehending both functional and non-functional require-

ments) and SU is composed of a variety of software units u. For some u ∈ SU , there

exist implementation variations of u, meaning that unit variants provide the same

functionality in different forms. For example, if the functionality is to compress a

stream of bytes, there should exist software units implementing variations of com-

pression algorithms (e.g. gzip, zlib, etc.). The functionalities are defined in a form

of interfaces which define the available functions the software unit offer or require,

as well as the kind of data that can be passed in or out of those functions. The

software units are connected to each other through their interfaces, connecting the

units that require a specific interface to the units that provide the same interface.

This connecting units process is what results in software architectural composition

that form a single instance of software in a single node.

The presence of variations of software units enable a variety of architectural

compositions. Each assembly influences how the nodes interact with each other re-

sulting in the global system architectural composition. In other words, there are no
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predefined specifications of the system topology, protocols or data semantics, these

are determined by local architectural composition. Furthermore, the existence of

unit variants allow the resulting system to be assembled to achieve G in different

ways, enabling the system to maintain required QoS in diverse operating conditions.

Furthermore, some of the software units are required to emit a stream of metrics

and events. Metrics are numeric values that represent the health status (e.g. per-

formance) of the system and are also used as indicators of satisfaction levels of G.

The events, on the other hand, are used to classify the operating environment, rep-

resenting systems inputs and deployment characteristics such as CPU and memory

percentage usage. The classification of the environment is important to permit a

fair comparison among multiple existing compositions metrics, ensuring that the

perception of the system health of a given architecture is fairly compared to another

composition, giving that both were exposed to the same operating condition.

The definition of Emergent Software System consists of autonomously composing

systems from small reusable software components, according to metrics and events

(numbers and labels that represent system’s health status and its operating condi-

tion) and user-provided goals. This process ensures that software is autonomously

composed as a response to external stimuli and desired goals.

Problem Statement

The problem emergent systems have to solve is to find the composition of software

units to best satisfy G at runtime. The system identifies its G satisfaction levels by

analysing the collected metrics, choosing the most suitable composition by analysing

metrics within the same operating condition, which is characterised by the collected

events. The problem is aggravated by the need to involve multiple nodes to accom-

plish G. In a distributed scenario, the system must find the best global composition

to satisfy G coordinating local composition across the available nodes.
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3.2 Emergent Software Systems Challenges

This section describes the challenges of implementing the presented vision of Emer-

gent Software Systems. These challenges are primarily based on attempts to realise

emergent software solutions. These systems are able to self-compose and optimise

its architecture at runtime guided by adversities found in the operating environ-

ment and according to user-provided goals. This section expands on the challenges

of implementing these systems, considering the issues involved in the online learning

process, the innate challenges to realise these systems, and the problems accentuated

when considering distributed system scenarios.

3.2.1 Online Learning Challenges

The definition of the concept of Emergent Software Systems allows a range of pos-

sibilities to implement the details of the learning process to support system self-

composition and optimisation at runtime. A key property of the learning process of

emergent systems is its ability to experiment with the live system and learn about

the operating environment and available components as the system executes. This

section focuses on the challenges of implementing online learning strategy consider-

ing our experience to support software composition at runtime.

The reinforcement learning approach, explored in this thesis, consists of two

parts, the exploration and exploitation phases. In the exploration phase, the system

selects an architectural composition for use, then it waits for a period of time (named

observation window) as the chosen composition is executing. At the end of the

observation window the system collects the generated metrics and events. These

collected metrics and events support the system to understand how well a particular

composition performed under a specific operating condition. This process is repeated

until all compositions are tried at runtime. In the end of the experimentation cycle,

the system compares the performance of the tried compositions and selects the

best performing architecture for the perceived operating environment. Once the

system experiments and locates the appropriate software assembly for a specific

operating environment, it stores that information in its knowledge base, so that
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Figure 3.1: The emergent software online learning problem. The way the environ-
ment changes over time is illustrated on the left. On the right, the data collected at
the end of each observation window is illustrated.

if the system encounters this operating condition again, it automatically changes

its architectural composition to the one it previously learned, without realising the

exploration process again. In the exploitation phase, the system maintains the

located optimal composition running, whilst observing the operating environment.

In case new conditions emerge, the system returns to the exploration phase.

Fig. 3.1 illustrates the learning problem in its abstract form. On the left side of

the figure is the environment representation (event stream) to which the system is

subjected. These events represent the system perception of the environment which

is generally outside the control of the system. The graph is built with a collection of

events periodically generated by components integrating the running architectural

composition. On the right side of Fig. 3.1, the data collected from the components

both events and metrics are displayed. In this example, the system changes its

architecture in each successive observation window. This behaviour is common

during the exploration phase of the online reinforcement learning approach. From

this example a number of challenges are discussed:

• Comparison difficulty: Comparing different architectural compositions is

an essential part of the online learning approach. This comparison process is

difficult because of the dynamism of the operating environment that might

change its conditions at any point of the exploration process. For instance,

changes in operating environment on subsequent observation windows makes
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the compositions experimented before the change incomparable with the ar-

chitectural compositions experimented after the change. This is illustrated in

Fig 3.1 on the right side in architecture (a), (b) and (c) as compared to (d),

(e) and (f) that executes in the operating conditions. Scenarios that present a

constantly changing operating environment present a great challenge to online

learning and an interesting avenue for future work.

• Mid-window changes: Changes in the operating environment also can hap-

pen during an observation window. This is illustrated in architecture (g),

where the graph representing the environment changes to an upward slope.

This is particular difficult to detect depending on the size of the observation

window and the type of collected events. Poorly defined observation window

size or the absence of certain events may hide this transition from the system.

This hinders the system’s ability to properly compare compositions, impacting

the quality of the learning process outcome.

• Self-referentiality: The operating environment is perceived through the

components that compose a certain architecture. This might create a dis-

torted perception of the environment. For example, in the architecture (e)

there is an apparent dip in the environment graph. If the environment is rep-

resented by the number of requests made to the system, at that point it looks

like the system received less requests as compared to architectures (d) and (f).

This can happen if architecture (e) is slower than architecture (d) and (f),

handling less requests in the same period of time. The perceived environment

condition is often influenced by the executing architecture. This concept is

further discussed in Sec. 3.2.2 when describing ‘Dynamic Fitness Landscape’.

• Observing the past: The system perception, in terms of its performance or

in terms of its operating environment, is always observing the past. Because

the metrics and events are only collected after the observation window period

(i.e. the system has already processed them). The online learning approach

considers a reactive strategy making decisions assuming that the system will

continue to behave as it recently did. A prediction strategy, on the other hand,
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might consider the general trend of the operating condition, making decisions

assuming the direction the environment is taking, rather than the information

it has just collected. This thesis explores a reactive approach, but considers

the possibility of exploring both approaches in parallel as future work.

• Hidden trends: The selection of the aspects to characterise the environment

is important in order to have a clear picture of the environment and how it

maps onto the perceived performance of the system. An example of this is

when the system captures only the volume of data the system is handling but

not the type of data. Thus a high increase in the volume of a specific type of

data might not impact on the system performance as much as a low volume

increase of another type of data. Ignoring the data type in this situation makes

the system unable to establish a precise correlation between the environment

and its performance, making the learning process more challenging.

• Multi-dimensionality: The graph in Fig. 3.1 represents only one dimension

of the operating environment. In reality, a proper characterisation of an oper-

ating environment considers multi dimensions, requiring the system to report

multiple event types on different aspects of the environment. This charac-

teristic makes all previous described challenges multi-dimensional in nature,

increasing the difficulty in implementing the learning process.

In summary, the reinforcement learning approach has two main tasks. The first

task consists of the proper characterisation of the operating environment so that

the experimented architectural compositions can be compared in equivalent envi-

ronments. This enables the system to establish correlations between architecture

features (e.g. the presence of a certain component) and operating conditions char-

acteristic (e.g. the volume level of a specific input type). This task is key to ensure

that the system is able to learn what architectural composition is most suitable for

a specific operating environment. The second task, on the other hand, is to ensure

that the learning approach balance the trade-off between exploration and exploita-

tion. The exploration is important to find optimal composition in case of changes in

the operating environment or when new components are added. Exploration is also
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important to increase the system knowledge about the operating environments and

components and possibly find better architecture assemblies. At the same time, it

is desirable that the system exploits the optimal architectures as much as possible.

This balance is essential considering this reinforcement learning happens in the ‘live

system’, having real consequence when the system operates sub-optimally during

exploration. This is a reactive learning approach, where the system learns when

new operating conditions emergent. In parallel the system could use a predictive

approach, having an offline algorithm running separately analysing all information

gathered by the reinforcement learning process.

3.2.2 Local Emergent Systems Challenges

The challenges described in this section are an intrinsic part of the presented defini-

tion of emergent software solutions. These are challenges and properties of emergent

system, and they are: divergent optimality, everything is relative, abstracting the en-

vironment, data quality and perception errors, application to critical systems, search

space complexity, self-referential fitness landscapes, propagating errors as degraded

health and developer interaction.

Divergent optimality

The divergent optimality concept comes from the idea that component variants of

a given functionality will enable the system to perform optimal in diverse environ-

ments. Depending on the components provided, the system might find one optimal

composition commonly applicable to divergent environments, or it might find dif-

ferent optimal assemblies for diverse operating conditions. In either case, emergent

systems autonomously find, through the composition process, the optimal architec-

tural composition available for unexpected environment conditions. It is expected

that the components selected to emit metrics and events have their variants also

emitting the same data, to facilitate the comparison process.
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Everything is Relative

Emergent systems actively build their own understanding of their constituents com-

ponents and operating environment with no expertly provided knowledge. Thus

these systems have to build their own baseline to determine what is ’good’ per-

formance through the reinforcement learning process. Additionally, the concept of

a good architecture may change when a better architecture is found during explo-

ration. This scenario, makes it imperative for the system to explore and experiment

with the available components as much as possible to gain a more comprehensive

knowledge of the system. This learning process has to be balanced with the ex-

ploitation of the discovered optimal architectures to exploit as much as possible the

system findings and maintain a good overall performance. Furthermore, what is

known to be a good performing architecture in one operating environment, might

not be true under a different operating condition. All the information and knowl-

edge produced from the exploration process needs to be stored and accessible to the

system so that it maintains information of the moving performance baseline for each

case, avoiding the constant exploration whenever changes occur.

Abstracting the environment

Abstracting the operating environment is an essential feature of emergent systems.

This process ensures the representation of the operating condition the system is

subjected to. As previously described in ‘Everything is Relative’ property, the iden-

tification of the operating environment is fundamental for the system to create a

performance baseline to compare its compositions under equivalent conditions.

The process of abstracting the environment involves the identification of the im-

portant aspects that will be monitored from the environment. These aspects should

be selected to provide a correlation between performance and the composition com-

ponents. Furthermore, the value ranges of each aspect are unknown for the system,

which aggravates the identification of diverse conditions. The autonomous extrac-

tion of such aspects is a difficult problem for machine learning [45]. In addition, the

ranges that differentiate environments should also avoid overlaps, preventing the

system to oscillate between nearby conditions, triggering unnecessary adaptation.
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Data quality and perception errors

The poor quality of the metrics and events collected from the system’s components

may give the system a false perception of its performance and operating conditions,

misleading the system to accumulate false knowledge which may trigger unnecessary

adaptation or the selection of suboptimal architectures. In addition, as a related

challenge, the absence of an important perception data hides trends in the operating

environment from the system. For example, the system may find its performance de-

grading over time with no apparent change in the operating condition. This scenario

occurs when selected events do not match all important aspects of the environment

that impact on the system’s performance, or when event averages are miscalculated

hiding fluctuations in the environment. This apparent mismatch between how the

system perceives its environment and the actual environment has direct impact on

the emergent system’s ability to locate optimal architectural composition. Ideally,

emergent systems should detect such blind spots so that the appropriate adjustments

can be made to give the system a more precise perception of its environment.

Application to critical systems

The reinforcement learning process may lead the system to temporarily inconsistent

states as the result of exploring faulty architectural compositions at runtime. This is

the consequence of the learning process advocated in the emergent system context.

Considering this fundamental characteristic of emergent systems, it is not advisable

to directly apply this concept to critical applications, i.e. applications where errors

may lead to catastrophic or life-threatening situations. Examples of this type of

application are: self-driving vehicles [83] or applications that assist and perform

surgical procedures [80]. However, note that these applications also suffer from

the dynamism of their operating environment, whilst having minimum tolerance

for errors. Emergent software systems might still be suitable for applications in this

context, specially because they allow software to handle the unexpected. To mitigate

the risk of harmful consequences, however, the system should be extensively trained

under carefully designed situations to accumulate enough knowledge and repertoire
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to make more accurate decisions when facing the unexpected, still allowing a degree

of freedom to react to unknown conditions. The author considers this as a promising

avenue for future research.

Dynamic fitness landscapes

Fitness landscapes, considering the defined concept of emergent systems, are graphs

representing the fitness values of the available architectures executing on an oper-

ating environment. These graphs have an oscillatory shape where the highest peak

represents the architecture with the highest fitness value, meaning that it is the op-

timal architectural composition for the operating environment. As components are

removed or replaced from the architecture with the highest fitness value, other valid

architectural compositions are formed with lower fitness value. In the context of the

emergent software system, as described in the challenge ‘everything is relative’, for

different operating conditions (external stimuli) the fitness landscape of the system

changes, meaning that the fitness values of the available compositions change, in-

cluding the change of the most suitable composition to another composition when

the environment changes. This scenario characterises emergent software systems

as having dynamic fitness landscapes. In [16] Cakar et al defines two types

of dynamic fitness landscapes, the one influenced by external stimuli and the one

influenced by the system’s constituent components. For the changes in the fitness

landscape caused by the system internal elements themselves, Cakar et al refers to

this changes as self-referential fitness landscapes, in this thesis this concept is

simply referred to as self-referentiality (discussed in Sec. 3.2.1).

Emergent software system’s fitness landscapes suffer from both external stimuli

and from the interaction of the components that form the system’s architecture.

The fitness value of a specific architecture is determined by the metrics and events

generated by the system’s components. Thus the perceived conditions are directly

influenced by the executing composition itself. This scenario makes it difficult for the

system to differentiate real changes from a distorted perception of the environment.

The dynamic fitness landscapes of emergent systems in tandem with the distortion

perception problem represent a key challenge to realise emergent systems.
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Propagating errors as degraded health

The provided Emergent Software vision considers components in the repository to

be correct. For that, this thesis assumes that they are subjected to unit tests.

However, unit tests are not sufficient to eliminate or prevent errors in the system,

specially considering the interaction of a great number of components. This scenario

requires emergent systems to be able to detect and handle errors resulted from the

autonomous online composition process. Thus the emergent system’s errors are

propagated as degraded health. In other words, when a component fails to execute a

given function, the components that depend on it also fail to provide their functions.

This effect is naturally propagated through a chain of components as a consequence

of the error, i.e. the faulty component stops executing returning an error value that

propagates throughout the chain of dependent components. This error propagation

is then captured by a metric-emitting component associating the performance of the

executing architecture to the worst possible metric value. The emergent system can

then learn that for that particular operating condition the executing architecture

have an unacceptable performance, avoiding it in the future. Furthermore, the

system might tag the particular composition to be debugged by human developers.

Developer interaction

The ability to experiment with architectural compositions at runtime and produce

information about the operating environment and the components that compose the

system, makes emergent software system a valuable member of its own development

team, placing the burden to analyse and determine the appropriate software com-

position into the hands of the machine, reducing the complexity of modern software

development. Emergent Software System can be integrated to the software devel-

opment cycle as a platform to assemble software autonomously and test different

architectural compositions at runtime. The knowledge generated by these systems

can be used by developers to implement new component variants to be tested at

runtime and assist the system to better exploit operating conditions. The use of

these systems in the software development process reduces substantially the com-
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plexity involved in developing complex systems, considering that the burden to find

appropriate software architectures is placed in the system itself.

Aggregation functions

The collection of information generated by the system as a result of monitoring its

health status generates a large quantity of data to be stored and handled by the

live system. As a consequence, the use of aggregation functions are often necessary

to timely handle the monitoring data in a way to not interfere with the system’s

performance. Different aggregation functions can be used, and depending on the

application domain, some functions may mask or distort the system data percep-

tion. Furthermore, the perception of the system status may vary from the observer.

The use of an inadequate aggregation function may give the system distorted per-

ception of its performance. For example, depending on the aggregation function,

few clients might perceive the system as ‘very slow’, but the system may perceive its

performance as ‘very fast’. This can be due to some clients (perceiving the system as

‘very fast’) being prioritised over other clients (perceiving the system as ‘very slow’).

This can create variability of results across similar experiments, depending on the

aggregation function selected. Thus, in some application domains, it is important to

consider the appropriate aggregation function other than simple arithmetic average

such as geometric means, harmonic means, confidence intervals, and so on.

3.2.3 Distributed Emergent Systems Challenges

This section expands on the intrinsic challenges presented in the previous section,

focusing on the emergent systems’ challenges and properties that stand out consid-

ering a distributed scenario. These challenges are: the combinatorial explosion in

the search space, the locus and personality control of meta-structures, information

sharing, interference effects and behavioural mismatch.

Combinatorial explosion in search space

The presented Emergent Software vision is fundamentally based on a combinatorial

learning process. These systems are built out of the process of combining smaller
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components into architectures and testing these architectures at runtime. As com-

ponents are added to the repository the number of possible architectural assemblies

increase exponentially. This scenario becomes considerably worse when consider-

ing distributed systems, where the global system architecture is the result of the

combination of a set of micro-architectures. Considering that the addition of one

component to the repository exponentially increases the number of possible micro-

architectures, in the distributed scenario this property has a cascading effect when

considering the quantity of participating nodes in the system. The global system ar-

chitecture is the overall combination of all participating node’s micro-architectures.

To illustrate how quick the search space grows in a distributed scenario, consider

the following example: Two identical web servers with 50 compositions each running

on two distinct nodes, and one load balancer with 10 valid compositions running

on another node. The load balancer is responsible to forward requests to both web

servers. This system has 25,000 valid compositions (50 times 50 times 10). If we add

another web server node with 50 composition, the number of global compositions

increases to 1,250,000 (50 times 50 times 50 times 10). This is a inherent property

of emergent systems and an essential problem to be addressed in order to show the

feasibility and to guarantee the consolidation of the emergent system paradigm.

The combinatorial explosion problem is an open issue, and the author does not

claim to provide the ultimate solution for this problem. However, this thesis shows

how to explore some properties and characteristics of some application domains to

mitigate the combinatorial explosion innate of emergent systems. For more details

on the proposed solutions, please refer to Chapter 4.

Locus and personality of control

The meta-structures of emergent systems is responsible to i) compose system using

software units, ii) collect perception data generated by the components at runtime

and iii) learn about the collected information. These meta-structures can operate

in different locations with different ‘personality’. The meta-structures can operate

controlling arbitrary groups of the nodes in the system. They can control the op-

erating of individual nodes in a complete decentralised fashion, or clusters of two,
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three or four nodes, etc., up to all nodes of the system, maintaining a centralised

system’s control. Additionally to that, meta-structures can adopt different person-

ality by, for example, acting in an entirely selfish manner according to the groups

local interests, ignoring the rest of the system, or by acting in an altruistic way

making local decisions to benefit the global system’s interests.

Interference effects

Interacting nodes in a distributed emergent system might interfere with each other’s

perception of the world, influencing both their metrics and events. Metrics are

influenced from interacting nodes when there is a functionality dependency between

nodes. For instance, when a load balancer running on a node receives a request,

it forwards the request to a web server running on another node to process it. In

this scenario, the load balancer’s response time depends on the time the web server

takes to handle the request. If the web server is in a sub-optimal composition, it

directly affects the load balancer’s response time, even if the load balancer is in

an optimal composition. The same happens to events. For instance, if events are

registering information about the requests (e.g. type of files requested – image,

text, video, etc.), the perception of the operating environment of the web server is

determined by the files the load balancer is forwarding to the web server. In case the

load balancer changes its scheduling policy, the web server perceive a change in the

operating condition. These interference effects, in a large distributed environment,

can compromise the quality of the learning process, making the system less efficient.

Information sharing

Information sharing is essential to reach consensus in a distributed scenario and to

optimise the exploration phase in the learning process. Sharing information among

groups of nodes controlled by meta-structures gives the group an external perceptive

of the system and how the group is effecting the system’s goal. Furthermore, infor-

mation sharing can help optimise the learning process by diving architectural explo-

ration among nodes with similar resources and share the outcome among them. This

mitigates the combinatorial explosion problem by diving the search space among
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equivalent nodes, and can help manage interference effects by enabling exploration

to specific groups whilst their adjacent nodes remains in a fixed architecture. Af-

ter the learning process occurs the knowledge is shared among the neighbourhood

nodes, minimising interference effects. Information sharing occurs in the level of

meta-structures, and the definition of the information to be shared and the related

challenges involved in the sharing process is an issue to be further explored.

Behavioural mismatches

In a distributed system scenario, the micro-architectures in different nodes might

implement behaviours that do not match to other interacting nodes. For examples,

one micro-architecture might encode different schemes of encryption algorithms,

making the nodes incompatible. A trivial solution for this problem is to manually

define rules or impose constraints regarding aspects of the system behaviour. As

discussed before, this solution is against the philosophy of emergent systems due to

its restraining nature, limiting the reinforcement learning process. Emergent systems

should have the freedom to explore and learn autonomously whilst simultaneously

maintaining the system in a globally valid composition.

3.3 Thesis Scope

In this chapter a series of challenges and properties have been presented in both

local and distributed settings of Emergent Software Systems. Although these chal-

lenges are important to realise the concept of these systems, some of them are open

issues and demand further investigation. This thesis focuses on the main challenges

that allow the creation of the basis on which emergent solutions can be built on,

showing the feasibility and the benefits of pushing emergent systems to the real

world. In particular the scope of this thesis is on the challenges of self-assembling

mechanisms, component-monitoring mechanisms and the reinforcement learning al-

gorithm. These three main concerns, discussed in detail in Chapter 4, form the main

challenges that support the implementation of emergent systems. Considering the

specific challenges presented in this chapter, this thesis addresses the following:



3.3. Thesis Scope 68

• Online Learning Challenges (Sec. 3.2.1): Comparison difficulty, self-

referentiality and multi-dimensionality;

• Local Emergent Systems Challenges (Sec. 3.2.2): Divergent optimal-

ity, everything is relative, abstracting the environment and dynamic fitness

landscapes;

• Distributed Emergent Systems Challenges (Sec. 3.2.3): Combinatorial

explosion, locus and personality of control, interference effects and behavioural

mismatches.

This thesis presents a baseline learning algorithm that addresses the compari-

son difficulty, everything is relative, abstracting the environment, dynamic fitness

landscapes and multi-dimensionality challenges and properties of emergent systems.

As an extension of the baseline algorithm, this thesis also presents a feature-based

learning algorithm that focuses on the combinatorial explosion problem. This the-

sis also presents an environment classification algorithm that directly tackles self-

referentiality, multi-dimensionality and dynamic fitness landscapes challenges. Fi-

nally, this thesis explores different coordination algorithms (complete centralised,

complete decentralised and a hybrid approach) for locus and personality of con-

trol in distributed settings. More specifically, this thesis proposes a hierarchical

coordination learning approach (a hybrid approach – i.e. partially decentralised)

to handle combinatorial explosion, interference effects and behavioural mismatches

challenges. Finally, the divergent optimality property, which is essential to realise

emergent systems, is very evident in the selected case study, making it ideal to ex-

plore the concept of emergent software systems. On the other hand, the following

challenges are out of this thesis’ scope:

• Online Learning Challenges (Sec. 3.2.1): Mid-window changes, observing

the past and hidden trends;

• Local Emergent Systems Challenges (Sec. 3.2.2): Data quality and per-

ception errors, application to critical systems, propagating errors as degraded

health and developer interaction;
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• Distributed Emergent Systems Challenges (Sec. 3.2.3): Information

sharing.

These challenges are not explored because i) they are not crucial to this thesis’

research goals, and ii) they require substantial investigation. Particularly, with re-

gards to the ‘observing the past’ challenge, this thesis focuses on a reactive learning

approach, rather than a mixed approach combining offline workload prediction and

online observations of the executing environment, which is an interesting path for

future work. The ‘information sharing’ challenge, for the evaluated scenario, is seen

as an improvement over the learning approach, rather than an essential part of the

solution. Nonetheless, the author recognises the importance of information shar-

ing in distributed learning solutions, and its key role in supporting global optimal

convergence, which is an interesting challenge to explore in the future. The ‘propa-

gating errors as degraded health’ and ‘data quality and perception errors’ challenges

are partially addressed, but further investigation is needed, specially in terms of sce-

narios deliberately designed with high levels of error occurrence. The ‘mid-window

changes’ and ‘hidden trends’ are identified limitations of the proposed environment

classification algorithm and demand further investigation. Finally, the ‘application

to critical systems’ and ‘developer interactions’ challenges are important to further

explore the potential of Emergent Systems, but are not part of the research goals.

3.4 Summary

This chapter has defined Emergent Software Systems. These systems are autonomously

composed from a set of component units according to a goal and influenced by the

operating environment condition. The composition of such systems occurs at run-

time considering the events affecting the system in production. The composition

process is executed through an reinforcement learning approach, where the system

architectural composition is assembled and experimented with at runtime, giving the

system information to determine what the most appropriate architectural design is

for the presented environment. This information is stored and used when previously

seen conditions are encountered in the future. Reinforcement learning approaches
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have to balance the exploration process that allows the system to accumulate knowl-

edge and the exploitation of the most suitable architectural composition. Balancing

between exploration and exploitation is key to maintain a good system performance,

considering that inadequate compositions has real impact and consequences.

This chapter also presented the key properties of such systems and the chal-

lenges to realise the vision of emergent systems. An important challenge is the

implementation of the reinforcement learning process. This process presents chal-

lenging issues such as: the difficulty to compare multiple architectural compositions

on dynamic operating environments with unexpected changes, and the process to

abstract and characterise operating environments. Another key challenge to realise

emergent systems is the combinatorial explosion problem, which is severe in large

distributed systems. This is a key challenge to address considering the combinato-

rial nature of the proposed approach. Other challenges were also described such as:

hidden trends and multi-dimensionality characteristic of the operating environment,

the interference effects in the learning process of adjacent nodes, the mechanisms

to share information among nodes to minimise impact on the system performance

and the application of emergent system concept to critical applications. Although

these challenges were presented in this chapter, it is important to remark that this

thesis only focuses on the challenges that demonstrate the feasibility of emergent

solutions. This involves: the combinatorial explosion problem, the interference ef-

fect and the abstraction of the operating environment. The challenges that are not

investigated in depth in this thesis are presented as promising research directions to

further consolidate the Emergent Software Systems paradigm.



CHAPTER 4

Implementation

This chapter introduces the framework to enable the Emergent Software Systems

concept in both local and distributed environments. The local framework consists of

three modules: Perception, Assembly and Learning, which names the framework

PAL. These modules are the base of the concept of Emergent Systems and support

online software composition, monitoring and learning. The distributed framework is

an extension of the PAL framework, and support the interaction of emergent systems

in distributed settings. The distributed framework modules are: Factory, Registry

and Validator modules. This chapter describes the implementation of each module,

and details their interaction to realise the concept of Emergent Systems. The chap-

ter is divided into the following sections: Sec. 4.1 presents an overview of the local

modules and their interaction to support the Emergent System concept. Sec. 4.2

presents details of the Assembly module and all the concepts and principles behind

autonomous software composition. Sec. 4.3 introduces the Perception module and

the concepts that enable the system to collect information about its health status

and its operating conditions. Sec. 4.4 details the reinforcement learning approach.

Finally, the distributed framework modules are introduced in Sec. 4.5. These mod-

ules enable the expansion of the PAL framework to support Emergent Systems in

distributed environments, realising the concept of Distributed Emergent Systems.

71
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Figure 4.1: PAL framework architecture.

4.1 Local Emergent Systems

The local framework supports the concept of Emergent Software System based on

three modules: Perception, Assembly and Learning, illustrated in Fig 4.1. As

described in Chapter 3, Emergent Systems have the ability to autonomously com-

pose software architectures from small and reusable software components according

to the observed operating environment. The Assembly searches for components in

the repository, creates an in-memory representation of all available architectural

compositions the system can be assembled into, and supports composition changes

at runtime. The Perception module generates and adds proxy components to the

system’s architectures to monitor the system health status and the operating envi-

ronment. Finally, the Learning module leads the entire autonomous software design-

by-composition process through the reinforcement learning approach implemented.

The interaction among the three modules is depicted in Fig. 4.1. The framework

is organised in a multi-tier architecture in which the upper layers use the functions

of the lower-level layers to abstract fine-grained function-calls and provide higher

level functionalities. The multi-tier modular architecture ensures that each of the

participating modules implement a well-defined set of functionalities to the upper-

level. Although the main modules were designed to be generic and applicable to any

application domain, this modular structure allows each module to be replaced by a
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variant, when applicable, to explore specificities of particular domains. This charac-

teristic makes the framework flexible, facilitating, for example, the experimentation

and comparison of a variety of learning algorithms. The following sections focus on

the implementation details and the functionalities provided by the PAL framework.

4.2 Assembly Module

This section provides details on the Assembly module, covering the component-based

model used to enable the concept of Emergent Software System and the provided

functionalities for the upper level layers. The definition of Emergent Software Sys-

tems is based on the composition of fully functioning software architectures from

small components. In order to assemble components into functioning architectures,

the Assembly module searches for components in the repository, gathers information

about them (and their variants) and assemble them into a fully functioning system

with composition options. The Assembly module uses component-based runtime

provided functions to execute component replacement and composition at execution

time, whilst abstracting the processes that support software architectures composi-

tion and (re)composition used by the Learning module to realise the reinforcement

learning process. The following sections describe the role of a component-based

model in the autonomous composition process, enabling architectural adaptation by

component replacement, and the API functions provided by the Assembly module.

4.2.1 Component-based Model

Component-based models are essential to support the concept of Emergent Software.

Mainly because they provide the necessary information about components to realise

autonomous software composition. The information provided supports autonomous

component connections to form functioning software architectures, avoiding ran-

dom component compositions and offline testing to find compositions that work.

Furthermore, since component models allow developers to express features through

interfaces that are explicitly expressed when coding components, the component-

based model eliminates the need to use extra models to label the system code and
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define features. This extra models label code to define what parts of the system are

adaptive and how to adapt them (e.g. what features could be replaced, and how to

replace them). For example, feature models (such as in [32]) are often used to rep-

resent how pieces of code interact with each other, and how they could be replaced

to support adaptation. Using such models, the developers have to code the software

and then describe a model capturing the relationship between different parts of the

code, increasing development effort. The component model, on the other hand, is

a way to abstract that need, integrating fundamental information for component

adaptation in components. This characteristic reduces development efforts during

the system design phase, facilitating the provision of software adaptation throughout

the entire system, rather than to specific parts that was previously modelled.

This work uses the Dana1 component model described in [70]. Dana is a multi-

purpose programming language that inherently provides a component-based model

and runtime support to component adaptation in fine-grained complex modular

structures. Component-based models require the definition of interfaces and com-

ponents. Interfaces define functions signatures (i.e. function names, return types

and the list parameters with their expected data types). Each interface expects at

least one component implementing all functions defined by the interface. Compo-

nents can provide implementation for multiple interfaces and require other interfaces

to support their own implementation. Also, multiple components might implement

the same interface using different approaches, those are often referred to as com-

ponent variants, and by replacing those variants in an executing software is how

the adaptation process occurs. This ‘provide-require’ policy is a central part in a

component-based model, allowing the language runtime to connect different compo-

nents (following the provided-required policy) to create fully functioning software.

Software evolution or adaptation is realised by replacing components in the resulting

software architecture at runtime without interrupting the system services. Besides

changing the implementation detail of a system’s functionality, online component

replacement might also change the system’s architecture by adding a set of new

1Please refer to http://www.projectdana.com for more practical information on the language,
its component-based model and its online adaptation mechanism.
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Figure 4.2: Example of interfaces and components. Note that Multiplication requires
an external interface (Addition) to complete its implementation. The code is written
using the Dana programming language syntax.

components required to support the new component’s implementation.

An example of the Dana language syntax and its component-based model is illus-

trated in Fig. 4.2. The image shows two interfaces (on the left side of the picture):

Addition and Multiplication. Each interface presents the definition of functions

with the function’s name, return type, and a list of parameters with their types. On

the right side of the image, two components providing implementation for aforemen-

tioned interfaces are illustrated. The Multiplication component is a simple example

that illustrates a component implementation depending on another interface. In this

case, the Multiplication component relies on the interface Addition to support its

implementation. Therefore, whenever the Multiplication component is used, any

component providing Addition is required to be connected to it. Considering those

interfaces and components used to create a Calculator program: if there are mul-

tiple components providing Addition interface, the Multiplication component, in

order to work, could be connected to any component providing Addition. Further-

more, we could also assume the existence of a Multiplication component variant

that, for example, does not require the Addition interface, thus implementing the

Multiplication interface in a different form. Therefore, in this example, there exists

a variety of architectural options to realise the Calculator program, each option

implementing the operation Multiplication in a different way, by either connecting
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Multiplication with a variety of Addition components or replacing Multiplication

with a variant that does not require the Addition interface.

The Dana runtime provides basic functions to abstract the online architectural

composition and adaptation process. The abstraction provided by the language

supports, through a single function call, the realisation of software adaptation or

composition, involving: loading new components to memory, pausing old compo-

nent execution, transferring component states (when applicable – i.e. replacing

stateful components) and connecting the new component to the requiring compo-

nent. Dana transparently executes the aforementioned tasks without further actions

of the developer. The Assembly module then interacts and further extends these

low level functions to determine and control the composition and adaptation process

at runtime. A list of functions provided by the Assembly module is detailed below.

4.2.2 Assembly Module API

The Assembly module provides the following functionalities:

• bool setMain(char compName[]): This function is responsible to start the

assembling process of the target system’s architecture. The Assembly module

is capable of assembling an entire system’s architecture and its variations from

a main component. This procedure is detailed later in this section.

• String[] getConfigs(): This function returns a list of the available archi-

tectural descriptions. These descriptions are string representations of architec-

tures, containing a list of components and how these components are connected

in the architecture. Furthermore, these descriptions are used by the Learning

module to reason and learn about architectural compositions.

• bool setConfig(char configDesc[]): This function is used to change the

executing architectural composition to another at runtime. This function re-

ceives as parameter the architectural description of the new composition.

• char[] getConfig(): This function returns the executing software composi-

tion at the moment that this function is invoked.
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• bool removeComp(char compName[]): This function removes a specific com-

ponent from the list of components being used by the Assembly module to

form the available software compositions. As a result, there is a decrease in

the number of available software compositions. This function expects the name

of the component to be removed.

• bool addComp(char compName[]): This function adds a component to the

list of available components. As a result, there is an increase in the number

of possible architectural compositions. This function receives the name of the

component, searches for it in the repository and loads it into the Assembly

module to create more architectural compositions.

The setMain() function sets the procedure to compose the software architecture

and variations of it from a root component. The root component implements the

main function, i.e. the point where the program starts its execution. From that

component, the Assembly module extracts the name of required interfaces, and for

each of the listed required interfaces the Assembly module searches in the repository

for components that provide those interfaces. In case the Assembly module locates

multiple components providing the same interface, it gathers these component vari-

ants (multiple components providing the same interface) and attaches them to the

interface creating an adaptation point, i.e. a point where there are multiple com-

ponents to choose from. These adaptation points are represented in Fig. 4.3 in the

interfaces A, B and C. After loading all components that provide the interfaces

required by the main component, the Assembly module repeats the same steps for

each of the loaded components, and continues with the process of loading compo-

nents and their variants for the required interfaces until the entire architectural tree

is composed with the necessary components to realise at least one working software

composition, i.e. having at least one component providing every required interface.

A working composition consists of the selection of one component in each required

interface on the tree (an example is illustrated in Fig. 4.3). The components marked

in blue, in the image, are part of the executing composition. After the process of

loading components and their variants, the Assembly module selects and runs a
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Figure 4.3: This is an illustration of a generic architecture represented by the Assem-
bly module. This is the result of executing the Assembly module function setMain.

random architectural composition. The illustrated example in Fig. 4.3 presents

a total of 14 available architectural composition. The Assembly module provides

functions to add new components (which were not in the repository when setMain

was first executed), and a function to remove components as candidates to provide

a specific interface, not allowing the removal of components that have no variants.

These two functions influence the number of available architectural composition.

Furthermore, the Assembly module provides functions to return a list of architectural

descriptions of the available architectural compositions, a function to return the

description of the executing composition, and a function to change from one option

to another. These functions work by acting on the information of the available

components, illustrated as a tree in Fig. 4.3, stored in the Assembly module.

The Assembly module provides architectural descriptions to enable external

modules to reason about the running software structure and to interact with the

Assembly module to change the running composition. This is a text-based descrip-

tion that provides information about components integrating a specific composition

and their relationship, i.e. how the components are connected. The architectural

descriptions are useful in the PAL framework for two main reason: i) enable exter-

nal modules to interact with variations of assembly module and ii) enable external

modules to reason and infer information about the architectures. The use of ar-
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chitectural descriptions facilitate the interactions between the framework modules

(mainly Perception and Learning) and the Assembly module. Since the description

contains all details to reassemble any architectural composition, they enable, for ex-

ample, the Learning module to reason about the available architectural composition

to understand the impact of specific components in the architecture. Furthermore,

the descriptions support the creation of different implementation versions of the

Assembly module, enabling them to internally represent compositions in different

forms, whilst maintaining a consistent format to refer to valid software compositions.

For more information on architectural descriptions, refer to Appendix A.

4.3 Perception Module

The Perception module uses the Assembly module functions to enable the system to

monitor its health status and collect information about the operating environment.

Furthermore, the Perception module also provides, through a RESTful API, the

Assembly functions to the modules interacting with Perception, facilitating access

to functions that support the learning process, such as: functions to change to the

software composition, to get a list of possible software compositions, to add new

components or remove components, and to get the executing composition descrip-

tion. This section is divided into two subsections: the first describes the perception

data (events and metrics), which are used to represent the system’s health status

and to classify operating environments. The other subsection describes a special

type of component (proxy) that is autonomously generated and inserted into the

software architecture to collect metrics and events from executing compositions.

4.3.1 Perception Data (Events and Metrics)

The perception data (Event and Metric) are data types through which the system

represents its health status and operating conditions, both essential information

for the system to learn about its internal composition and execution environment.

These data are used by the learning algorithm to classify environments and deter-

mine the level of satisfaction of the system’s goal, serving as the base on which the
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Figure 4.4: Metric and Event data types in the Dana programming language.

system learns and makes design decision choices. The metrics are used to represent

aspects of system health status (e.g. performance, security level, etc.), whilst events

are created to store environment features values (e.g. input patterns, hardware char-

acteristics). In tandem, both events and metrics are used by the Learning module

to realise its reinforcement learning approach. As an important characteristic, both

data types (see Fig. 4.4) were designed to capture information regardless of the ap-

plication domain, enabling the system to learn about any type of system by setting

the appropriate event types and metrics to ensure a satisfying learning outcome.

The metric data type is composed of the name, value and preferHighValue

attributes. The name attribute represent the aspect of the system related to its

performance and health status that is being monitored. This field could be set as

‘response time’ or ‘number of active threads’ or any other string that represents as-

pects of the system that can be quantitatively measured and monitored. The value

attribute stores the correspondent value associated to the metric. For example, for

‘response time’ the system may store time in milliseconds that the system takes to

process incoming requests. Additionally, metrics are not only used to represent sys-

tem status, but also to express system’s goals. The preferHighValue when set to

true tells the system to find the architectural composition that maximises the value

attribute. Contrarily, when preferHighValue is set to false the system searches for

the composition with the lowest value attribute. The name and preferHighValue
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is often manually define by the domain expert, and the system obtains the value

as it executes. Note that it is possible to create multi-goal Emergent Systems using

the concept of metrics. However, the focus of this thesis is to prove the feasibility

of the Emergent System approach, and not to explore autonomous optimisation of

multi-goal systems. Thus, to narrow the focus of the thesis, I focus on single goal

(e.g. performance) optimisation, defining a single metric for the entire system.

Events are used to represent different features of the operating environment.

The event data type represent features with the following attributes: type, name

and value. The type attribute stores the name of the feature, for example, in cases

where it is important to characterise request patterns, a possible event type could

be defined as ‘request type’. The attribute name defines the name of the environment

feature that was perceived. In our request pattern example, the name attribute could

be set to ‘text’ when the system received requests to retrieve text files, or ‘image’

to represent different labels of the same ‘request type’. Finally, the attribute value

quantifies the observed attribute. For example, storing the size (e.g. in bytes) of the

requested files. This allows the system to understand the operating environment it

is running on, in this example, by understanding how differences in the file size of

certain request types affect the system operation. The type values is often manually

defined, but the value and name are collected by the system.

After the collection of events and metrics from the executing system, other im-

portant attributes can be inferred, for example: the number of times a certain

attributed was perceived (e.g. number of requests for text files). This could be

an important information that assists the system to determine whether an event is

recurrent or not, which might be an important aspect to characterise the operating

environment. Another important information is the time the metrics and events

were collected. Time-stamped data enables the system to establish a time-line with

information on how the system and the operating environment behaves in time pe-

riod. The collection of events and metrics is done by proxies, a special type of

component autonomously generated to collect (and time-stamp) information about

the system. The Perception Proxies are discussed in the next session (Sec. 4.3.2).
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4.3.2 Proxy Components

Proxy components are essential elements in the Perception module. These special

types of components are responsible to extract events and metrics from the system

and operating environment. The proxy component complies with the same policy of

other components in a component-based model, and thus are indistinguishable from

other components to the Assembly module in terms of code structure, syntax and

how to connect to other components. The only difference is that proxy components

are annotated to allow the Assembly module to locate them to extract the collected

metrics and events and to avoid connecting two or more proxy components together.

A special characteristic of all proxies is that they need to provide and require,

at the same time, the interface the proxy is supposed to monitor. By requiring and

providing the same interface, the proxy component can be inserted between two

components; one that requires the interface (e.g. component A) and the another

that provides the interface (e.g. component B). Then the proxy can intercept

function calls from A to component B, and extract information from the interaction

between A and B. Fig. 4.5 illustrates a proxy component inserted in the system.

Figure 4.5: Proxy component inserted in the system’s architecture.
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The Perception module was designed to support a proxy-based monitoring so-

lution, mainly because proxies are non-intrusive, i.e. they do not require code to

be inserted into the component to extract information for the system. Thus it

is possible to separate the code responsible to monitor a specific component from

the component itself, not requiring component developers (human or a machine –

for machine-generated components) to code functions to monitor the component,

avoiding it to be incompatible with the applied learning algorithm. Furthermore,

this separation of concerns (component code and monitoring code) also makes the

component development process more flexible, eliminating the need for a model to

dictate how components should be coded in order to be monitored.

This proxy-based approach implemented by the Perception module also enables

the autonomous generation of proxy components at runtime, according to the ne-

cessity and goals of the Learning module. The proxy generation procedure is further

detailed in the subsequent subsection. Furthermore, considering that a Proxy com-

ponent is generated to monitor target interfaces rather than components, and that

the same interface might be required by multiple components throughout the sys-

tem, a Proxy Expression Language was designed to allow the Learning module to

express exactly what interface to place the proxies in the system structure. The

Proxy Expression Language is also described in detail in a subsequent section.

Proxy Generation Process

The proxy generation process gives the system flexibility by autonomously gen-

erating the appropriate proxy components for the goals of the Learning module,

regardless of the system, the application domain or components to be monitored.

The proxy generation process is triggered by the Learning module, once it obtains

the system goals and the list of available architectural compositions, the Learning

module triggers the proxy component generation process. This generation process

requires as input the target interface, and components responsible to generate the

metrics and events to be collected from the target interface components.

The Perception module provides a range of components that implement the

collection of specific metrics and events and allow the creation of new metric/event-
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collectors type of components. For example, to collect the response time in mil-

liseconds, i.e. the time (in milliseconds) that takes a certain function to execute.

The component ResponseTime offers the code necessary to collect such metric. This

component provides a timer that is triggered right before the function is invoked,

and stopped right after the function finishes processing, returning the calculated

time the function took to execute. The same applies for collecting event informa-

tion. A given example for event is, in the context of a system that handles HTTP

requests, the collection of mime-types from incoming requests. The component

MimeType is also implemented and provided. This component provides a function

that receives the request in a raw-text format and returns the extracted mime-type

of the requested resource. Both described examples of components that generate

(i.e. calculate or collect) metrics and events are provided by the Perception module.

As new components of this kind are implemented, the Perception module makes

them available to be used in the generation of proxy components.

The metrics and events being generated in the proxy are timestamped once they

are created and stored in an object named Container. This object is responsible

to average the metrics and events of the same type, update the a ‘count’ variable

to express the number of a certain event or metric and make them available to

the Perception module to format them into a JSON string as perception data to

send to the Learning module upon request. Note that averaging events and metrics

values is an important process to reduce the amount of data stored in the proxy

component. Considering that each input processed by the systems has the potential

to create metrics and events, storing each individual event and metric generated

(not averaging them) consumes unnecessarily large memory quantities. An example

of a generated proxy component is in Appendix C.

Proxy Expression Language

Proxy components focus on monitoring interfaces, rather than particular compo-

nents. The reason is that a proxy designed to monitor an interface monitors a stan-

dardised feature and thus is able to monitor all component variants that provide such

feature, independent of individual component implementation. Furthermore, in case
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the system adapts its architectural composition from a component that provides the

monitored component to a variant, the Perception module can replace the com-

ponent without replacing the proxy component, reducing the amount of changes

performed by the Assembly module. The main problem of monitoring interfaces

rather than components is that an interface can be required by multiple component

present in the software architecture. As a result of this property, when placing a

proxy to monitor an interface, the Perception module places multiple proxy compo-

nents to monitor every component that requires the interface, adding multiple proxy

components throughout the architecture, impacting the performance of the system.

In order to provide fine-grain control over the process to place proxy components

in the architectural composition, whilst avoiding the Learning module to indicate

what component (instead of interface) to be monitored every time an architectural

change occurs, the concept of the Proxy Expression Language was designed.

The Proxy Expression Language (PEL) is a tool to precisely express where to

place proxy components in the architectural composition. This language is used

by the Learning module to ensure that the generated proxy components are kept

in place, monitoring the intended interface even when the software compositions

are constantly changing. The Perception module is responsible to interpret the

expression and make a list of architectural compositions without proxy components

associating these compositions with their equivalent with proxy components added

to the right place (interface or component) according to the expression created by the

Learning module. Therefore, whenever the Learning module requests the software

composition to be changed, the Perception module compares the new architecture

description with its list and decides: if the new composition matches one of the

compositions in the list, the Perception module changes the software composition

to the corresponding new composition with the proxy component in the right place

as according to the expression. This strategy enables the Learning module to work

with architectural descriptions with no proxy component added, the Perception

module is responsible to apply the PEL expression provided by the Learning module

once (before it starts the experimentation process) and to transparently add proxy

components to the appropriate place in the software architectural composition.
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The language provides levels of control to the Learning module when placing

proxy components in the system, allowing it to place proxies to only one specific

component, or to an interface, or to any level between the two, for example, by

placing a proxy component to monitor an interface but only if that interface is re-

quired by a specific component (as oppose to every component that requires that

interface). The Learning module, using the expression language, is able to create

expressions as generic or as specific as it requires, having the Perception module

to use that expression against the architectural description to determine the place

to add the proxy components in the software architecture. Adding multiple proxy

components to different parts of the software architecture gives a more precise per-

spective of the system status and its operating environment, but adds overhead to

process and collect events and metrics that impacts the system performance. An

important challenge in the process of adding proxies to the software architecture is

to identify the amount of proxy components and their optimal position to reduce the

number of proxies whilst maximising the quality of the collected data. Tests with the

case study (see Chapter 5) shows that for the performance (response time) proxies

the higher in the software architecture these components are placed the better they

capture the overall system performance. Considering that in Emergent System soft-

ware architecture a component calls functions in lower level components (required

components), by placing proxies in the highest level possible the performance proxy

is able to calculate the time a stack of function calls takes to execute. This is not

a general rule, and may vary according to the components part of the architecture.

An exception to this scenario, is when, at some point in the function call stack, a

function is called to be executed in a different thread. Although further research is

required to solve this challenge, this thesis demonstrates that this simple strategy

to place proxy components in the highest part of the architecture tree works well

for the explored application domain and used components.

The Proxy Expression Language is a flexible and precise way to express proxy

components placement in architectural compositions. For the interested reader,

further details of the language, as well as examples, are described in Appendix B.
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4.4 Learning Module

The Learning module is responsible to guide the processes to realise Emergent Sys-

tems. This module, accessing lower level modules (Perception and Assembly), trig-

gers the deployment and composition process, requires Proxy generation by selecting

Metrics and Events generators according to the system goals, and controls the en-

tire active learning process, triggering the exploration and exploitation phases, clas-

sifying the operating environment and identifying the most suitable architectural

composition. This section describes details of the learning process (exploration and

exploitation phases), showing two learning strategies: i) the Brute-Force approach,

and ii) the Feature-based approach. Furthermore, this section also describes the

environment classification algorithm used in this thesis.

The learning process executes with no prior knowledge about the target sys-

tem, nor any information about the operating conditions to which the system will

be exposed. The main task of the Learning module is to understand the correla-

tions between assembled collection of components (i.e. the system’s behaviour), and

the system’s perception of its performance, in each identified operating conditions.

The Learning module executes its main task by requesting the Assembly module

to change the system’s architectural composition to experiment with the identi-

fied operating environment changes and by observing its own performance and the

operating conditions through Perception. Sec. 4.4.1 details the learning process.

4.4.1 Learning Algorithms

The generic approach to realise the reinforcement learning involves three main tasks.

First, it must be able to characterise and classify features in the software’s operating

environment (derived from the stream of events being emitted) so that the perfor-

mance of different compositions can be compared in equivalent environments, and so

that the learning module can ‘remember’ which compositions work best in each envi-

ronment (i.e. to save re-learning each time a recurring environment is encountered).

Second, after finding the most suitable architectural composition to the perceived

environment, the system exploits the optimal composition whilst observing the en-
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vironment and the system performance to detect any changes and trigger learning

again, in case it detect unforeseen changes. Finally, the third task, as in any online

learning system, the learning module must balance the trade-off between exploring

options for which there is insufficient information and exploiting options known to

be good [79]. This third task is important because our emergent software framework

operates on live software, and sub-optimal performance has real consequences.

As discussed in Chapter 3, performing online reinforcement learning is highly

challenging. The software is not in control of its operating environment and so

cannot know in advance when it may be able to reliably compare any two software

compositions against the same operating condition. In addition, there are complex

interactions between the process of exploration itself and the environment, where

selecting a ‘good’ composition may impact on the system performance and change

the perceived environment. The learning approach proposed is inspired by reinforce-

ment learning [79], but tailored for our particular problem space. The two learning

approaches presented in this section continually discovers optimal assemblies by

exploring the search space whilst simultaneously classifying observed operating con-

dition’s features into labelled environments. The Brute-force approach explores all

available compositions before opting for the best performing option. This approach

is presented as a base line to compare with other learning strategies, because it

guarantees (when operating conditions are maintained during exploration) to locate

the global optimal composition. The Feature-based approach, on the other hand,

explores the search space analysing features instead of individual compositions, and

thus it reduces the search space by focusing on representative compositions of avail-

able features. This approach relies on domain specific assumptions and explores

them to be sufficiently scalable to support learning in distributed systems.

Brute-force strategy

The Brute-force algorithm applies a standard ‘exploration activity’ to both char-

acterise the current environment and also identify the best composition for that

environment, shown on lines 3-7. The system triggers exploration whenever it en-

counters high uncertainty in its decision making process – where this uncertainty
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comes either from (i) having no information at all (i.e. system startup); (ii) the cur-

rent environment characteristics deviating outside of expected ranges from existing

experience, or (iii) current system performance deviating beyond its expected range.

Algorithm 1 Experimental Learning Algorithm (brute-force strategy)

1: while running do

2: //perform exploration activity - brute-force approach

3: for each c in assembly.getConfigs() do

4: assembly.selectConfig(c)

5: wait for wt

6: store perception.getPerception() for c

7: end for

8: //select the new composition to use

9: store environment ep as max : min of event types

10: assembly.selectConfig(best known for ep)

11: //wait for conditions to change

12: newExploration = false

13: while newExploration == false do

14: wait until (different environment ep detected) or

15: (performance degrades) for >= wt ∗ 3

16: if different ep and ep is previously known then

17: assembly.selectConfig(best known for ep)

18: else

19: newExploration = true

20: end if

21: end while

22: end while

The exploration activity tries every possible composition for a fixed-length ‘ob-

servation window’ wt, such that the total time spent exploring is:

wt∗ length(getConfigs())

The observation window wt is defined according to the application domain. A rea-

sonable time frame value (wt) for the case study investigated in this thesis is 10

seconds for high quality learning results. The getConfigs() function is provided

by the Assembly module and returns all available software compositions. After try-

ing every composition, the learning module then characterises the data collected

over the entire exploration process to determine the best course of action.
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Specifically, after an exploration activity, the learning module selects the best-

performing composition for use and enters its exploitation state. The selected action

continues to be monitored every wt and analysed for its suitability. A change may

occur if either (i) perceived events during wt show that this is a different event

pattern, or (ii) perceived metrics during wt show degraded performance. To avoid

frequent oscillation, in either case the algorithm waits for wt ∗ 3 of consistently ob-

served behaviour before changing its current course. In case (i), if the detected event

pattern is one that has been previously seen, the matching best composition is sim-

ply selected. In all other cases a new exploration activity is triggered. This process

of exploration / exploitation repeats continually, where the amount of exploration

reduces as fewer new environments are seen. Note that this learning algorithm,

which is based on an exhaustive exploration phase, is not designed to scale up to

large systems with thousands of compositions but rather serves as a proof of concept

and useful baseline against which to compare more sophisticated algorithms.

Feature-based Strategy

The Feature-based learning strategy is an alternative solution for the experimen-

tation learning process. Instead of experimenting with all available architectural

compositions, the system experiments with representative architectures for a specific

feature. A feature is a functionality defined by an interface, and therefore, in this

context, the words feature and interface are used interchangeably. A variety of com-

ponents can be created to provide a single feature (interface) by implementing the

same functionality differently, requiring, for example, other features (sub-features)

in their implementation. The algorithm exploits that property, by choosing the

component variant for a specific feature F considering the sub-features required by

the component variants of F . Furthermore, the algorithm does not try all variants

of all features (interfaces) in the system’s architecture. Instead, it only tries com-

ponent variants for the most suitable features, testing only one component variant

for features that were not suitable for the operating environment. Therefore, this

approach reduces the search space and supports a faster learning process, providing

a more scalable solution. However, this approach relies on the assumption that the
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worst component variant for the best feature is better than the other components

of the other features, which might not be true for every application domain.

The Feature-based strategy maintains the essence of the reinforcement learning

algorithm, i.e. the entire process described in the Brute-force strategy still applies

(including most of Algorithm 1). The only part of the algorithm that the feature-

based strategy changes is the code between lines 3-7. This part of the algorithm

experiments every available composition c provided by the Assembly module. This

feature-based approach, however, navigates through the software architecture from

top-down deciding on the component variants it encounters for each feature (inter-

face) that has multiple component variants. Once it determines the best component

variant for a feature, it transverses down the tree considering only the chosen compo-

nent variant, eliminating the other branches defined by the remaining (not selected)

variants. This process continues until the algorithm decides on every component

variant of every feature it considers relevant, resulting in the optimal discovered ar-

chitecture. The rest of the algorithm, including the environment classification and

the details of the exploitation phase, are the same as in Algorithm 1.

The Feature-based approach is detailed in Algorithm 2. The algorithm considers

a tree-like structure that represents all architectural compositions for the software,

as illustrated in Fig. 4.3 in the Assembly module section (Sec. 4.2). Considering

a tree-like structure representing the available architectural compositions, the algo-

rithm selects the first interface (from the root down) with component variants. Note

that Emergent Systems only have composition options if and only if there exist

component variants for at least one required interface. The system has no option

for required interfaces with only one component implementing their functionalities.

Therefore, the algorithm navigates the tree from top-down defining the best compo-

nent variant for only the required interfaces that has ≥ 2 components implementing

the interface. The algorithm tests all interfaces with component variants that were

required by a selected component in a higher level, ignoring the interfaces with

component variants that are required by components that were not selected at any

level of the tree. The selection of component variants in each required interface is

done by executing architectural compositions containing the component variants,
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Algorithm 2 Feature-based Algorithm (this replaces lines 3-7 in Algorithm 1)

1: tree = assembly.getConfigs() // configs in form of a tree

2: interface = first interface with multiple comp variants from the root of tree

3: config = list of components with no variants from the root to interface

4: while interface != null do

5: for each component in interface do

6: testConfig = config

7: testConfig += component

8: assembly.selectConfig(testConfig)

9: wait for wt

10: store perception.getPerception() for testConfig

11: end for

12: config += component that had the best performance in the loop (line 5)

13: interface = first interface with multiple variants in tree from component

14: if there are more than one interface in the same level then

15: interface = a combination of components of interfaces with variants

16: end if

17: end while//config stores the components of the best performing architecture

and selecting the variant which was in the best performing architecture (lines 5-11

in Algorithm 2). Once a component variant is selected, it becomes part of the ‘opti-

mal’ composition, then the algorithm moves on to the next interface with component

variants following the branch defined by the selected component. This process is

repeated until there are no more interfaces with component variants, making the

composition in config the ‘optimal’ architectural composition.

Fig. 4.6 illustrates the Feature-based strategy in action, considering the generic

architectural compositions defined in Fig. 4.3. The image illustrates the case where

the selected component variant requires two interfaces with multiple component vari-

ants. In those situations, the algorithm combines all components in those interfaces

for experimentation. This situations, where the algorithm combines components of

interfaces, results in the worst case scenario for the feature-based search. As a quick

comparison between the brute-force and feature-based, considering the generic ar-

chitectural compositions in Fig. 4.6, the Brute-force approach takes wt∗14 time (2.3

min for wt = 10 secs) to explore all possible compositions. For the Feature-based

strategy, considering the worst case scenario, the algorithm explores compositions
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Figure 4.6: Feature-based strategy in action, considering the generic architectural
compositions in in Fig. 4.3.

in wt ∗ 11 time (1.8 min for wt = 10 secs). Considering the best case scenario, the

Feature-based approach takes wt ∗ 5 time (50 secs for wt = 10 secs), in case the best

feature is B (component CAa) rather than B + C (component CAb). The average

case, in this example, is when the best feature is C (component CAc), resulting in

an execution of wt ∗ 7 (1.16 min for wt = 10 secs). In this particular example, the

best case scenario for the feature-based approach has a significant advantage over

the brute-force approach. The worst case scenario, however, is not as significant

having a difference of only 30 secs (and not guaranteeing a global optimal), but

considering that for every exploration the brute-force approach always executes in

2.3 secs (considering wt = 10 secs) the feature-based search is still very advanta-

geous. A more expressive scenario based on real systems is described and explored

in Chapter 5, showing the advantages of the Feature-based search approach.

4.4.2 Environment Classification

Environment classification is an important part of the learning process. The Learn-

ing module classifies operating environments for two main reasons: i) to compare

architectural compositions exposed to equivalent external stimuli to guarantee fair

comparisons, and ii) to ‘remember’ the best software composition for previously seen

conditions, to avoid unnecessary re-learning. The process to classify environments,

as described in Chapter 3, is very challenging in the Emergent System concept.

That is mainly because the perceived conditions may be distorted by the executing
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Figure 4.7: Example of classified environments using ranges of collected Event and
Metric values. First environment consists of requests of large size text files with low
variation. Second environment consists of large size image files with low variation.

architectural composition. These distortions create the illusion of changes in the

environment, for example, the workload has increased, when in reality the running

architecture is able to process more requests in less time. This section describes the

environment classification algorithm used in Algorithm 1.

After collecting information about the architectural compositions explored (lines

3-7 in Algorithm 1), the Learning module receives a list of Events and Metrics at-

tached to each composition executed, and based on that information the system

classifies the operating environment. This approach minimises the effects of envi-

ronment distortion by classifying environments with ranges. The algorithm creates

ranges for each Event and Metric collected with a minimum value defined by the

lowest event or metric value perceived and a maximum value defined by the highest

value registered by the compositions as illustrated in Fig. 4.7.

The image (Fig. 4.7) illustrates the classification of two operating environments

obtained from the tests with the case study (see Chapter 5). Considering a Web

Server program and the operating environment as the patterns of request handled

by the server. The first environment consists of large size text files requests with low

variations, i.e. the majority of text file requested were repeated files. The second

environment classified, on the right side of the image, consists of large size image
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file requests with low variation (i.e. large volumes of requests to repeated files)..

During the exploitation phase, the system has already selected the best option

to execute under the perceived operating environment, and only observes metrics

and events collected from the executing architectural composition. If the collected

values are within the ranges established by the environment class, and if there is not

an extra event type and value (e.g. from a pattern of text-only requests, a few video

requests start appearing) then the system understands that the environment has

not changed. On the other hand, if the collected values are outside the range of any

event type or metric (e.g. the system has a significant performance decrease) then

after 3 iterations (the threshold to trigger exploration or architectural changes) the

system compares the values it is perceiving with previously defined environments, in

case these values are within all the ranges established in classified environments, the

system changes to the composition attached to the new environment, otherwise the

system triggers exploration. This process is defined in lines 12-21 of Algorithm 1.

This range-definition classification approach has some limitations. For a more

accurate classification of environments, for instance, this approach works best when

there are no changes in the environment during exploration, as will be demonstrated

in the evaluation chapter (see Chapter 5). Also, it is difficult to ‘remember’ environ-

ments when there are overlaps among their defined ranges, preventing the system to

accurately determine the operating environment based only on data collected from

a single architecture (which is often the case to trigger exploration or composition

changes during exploitation phase). Furthermore, this approach, as any current ma-

chine learning approach, suffers when important features of the environment is not

defined as Event, leaving, for example, two or more distinct environments to be clas-

sified as the same. As previously mentioned in Chapter 3, the implementation of the

reinforcement learning approach is very challenging, having a range of open issues to

be addressed. Therefore, further research is required to better explore and overcome

these issues. One of the main contributions of this thesis is to define the problem

space to realise Emergent Systems, and to show the feasibility of this approach by

presenting solutions (some preliminary) to enable the realisation Emergent Systems.
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4.5 Distributed Emergent Systems

The distributed emergent system concept is an extension of the design-by-composition

process in local machines across a distributed infrastructure. In a distributed en-

vironment, each software instance, running on each node in the distributed infras-

tructure, is composed at runtime through the PAL framework. The PAL framework

implements the necessary elements to learn the best available composition of the

software in local settings, but requires additional modules to allow the autonomous

composition of distributed systems. To maintain the process of composition consis-

tent across multiple instances, it is necessary to transform the process of topology

definition, service discovery, and service negotiation among interacting soft-

ware to locally selecting units of behaviour. Furthermore, the concept of distributed

emergent systems involves not only finding optimal compositions of a program, but

also the definition of the program and its diverse compositions in each system’s

node, which is part of the service negotiation problem. Transforming distributed

design decisions to component replacement in local nodes is the base of the concept

of distributed emergent systems, and is itself a challenge to realise the concept.

The process to autonomously compose distributed systems suffers from two ad-

ditional challenges: ii) scalability due to the fast growth in the search space, and

iii) system failures during exploration. Both of these problems are addressed in

single emergent systems by the PAL framework and are extended to address the

needs of the distributed scenario. The scalability issue is a main concern in emer-

gent solutions and it is addressed in local instances by specifically exploring software

features rather than individual compositions. System failures during exploration is

addressed by the used of component-based models, that serve both as deployment

mechanism and a model to avoid invalid architectural composition (through the

require-provide interface policy defined at design phase). The distributed emergent

system framework modules implement two main concepts that aim to mitigate the

aforementioned issues: the concept of External Reference and the concept of

Hierarchical Coordination, which are realised by the Factory, Registry and

Validator modules and will be described in the following sections.
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Figure 4.8: The External Reference interface code.

4.5.1 External References Concept

The External Reference concept extends the component-based model to allow ex-

ploration of communication patterns and the system topology through component

replacement in the local software instances. The External Reference concept solves

two main problems: i) the inability of component developers, using a component-

based model, to write components that require to interact with external services, and

ii) enabling the Learning module to experiment, through the component-replacement

experimentation learning process, different system’s topologies, for example, by con-

necting the component to the service running in node A and B, or only to node C.

This section details how the development of the External Reference interface in tan-

dem with the Registry and Factory modules realise the External Reference concept.

The ExternalReference interface (Fig. 4.8) is used by components developers

to express a component’s requirement to interact with external systems. The inter-

face provides a function that returns a list of IP addresses and port of executing

emergent systems. This information is dynamically generated after the system’s

deployment, and are used by components to locate and interact with their required

external services. The details of the ExternalReference interface is depicted in

Fig. 4.8, illustrating the single function (ServerInfo[] getServersInfo()) and

the ServerInfo data type. In a component-base model, a component that re-

quires an interface expects to be connected to a component that provides such

interface at runtime. Based on that assumption, the External Reference concept

uses the Registry and Factory modules to generate components that implement
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Figure 4.9: The image shows the Registry information table with data about poten-
tial services provided by nodes A, B and C.

the ExternalReference interface. The generated components are connected to the

component who requires the ExternalReference interface, providing it with infor-

mation about the nodes where the services are running. The component generation

process and the generated components are described later in this section.

The Registry module is a regular naming service that contains the services’

name and the server information running the services (IP address and port number).

Considering that in an Emergent Software System the services are autonomously

assembled at runtime, and that the services provided are changed when the nodes

composition changes, the Registry stores information of the nodes and the potential

services each node might provide. For example, as illustrated in Fig. 4.9, the server

A (IP address : 10.0.0.1) has the potential to either provide a HTTP service on port

80, or provide a SQL service on port 3306. The Registry data illustrated in Fig. 4.9

informs that the node A has the potential to be a HTTP server (i.e. web server,

web cache or a load balance) or a SQL server (i.e. a relational database), depending

on its composition. Based on the information stored in the Registry, the Factory

generates components that provide the ExternalReference interface.

The Factory module provides the function ‘generateExternalRefVariations()’

responsible to generate components that provide the ExternalReference interface.

This function expects a JSON string (char servicesInformation[]) as parameter

with the data to generate the components (e.g. "IPAddr", port, etc.). An example

of data required to generate the ExternalReference components is presented:

[{"name": "HTTP", "IPAddr": "10.0.0.1", "port": "80"},
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{"name": "SQL", "IPAddr": "10.0.0.1", "port": "3306"},

{"name": "HTTP", "IPAddr": "10.0.0.2", "port": "80"}]}

Based on the example of data to generate ExternalReference components, the

Factory module generates component variants to each of the participating nodes.

The example described on the list above illustrates the C node’s (in Fig. 4.9) re-

quest to the Factory module. The C node requires the Factory module to generate

ExternalReference component variations passing as parameters the IPAddr and

port number of all the other nodes in the system (excluding itself) in the Registry.

Based on the information provided, the Factory module generates 7 component vari-

ations (Fig. 4.10). The Factory considers the services information (IPAddr and port

number) passed as parameters as a set. The Factory then generates the power set2,

excluding the empty set, of all the elements it receives. Each ExternalReference

component generated by the Factory is a set of the resulting power set. In this exam-

ple, the Factory generates 7 ExternalReference components, making combinations

of the items 1 by 1, 2 by 2 and 3 by 3. The resulting components produced by the

Factory to C node, considering the presented input example, is shown in Fig. 4.10.

As a result of generating ExternalReference components, the External Ref-

erence concept enables the experimentation of the system’s topology by exploring

ExternalReference components in the local architecture. For example, node C,

depending on the ExternalReference component connected to its architecture, en-

ables the node to communicate to only node A on port 80 (when selecting Ahttp

component in Fig.4.10); or to both A on ports 80 and 3306, and node B on port 80,

when the component AHTTP ASQL BHTTP is connected to the architecture. This

allows the PAL framework, through the experimentation process, to discover the

optimal communication pattern and topology to best satisfy the system goal.

The External Reference concept enables the exploration of communication pat-

terns and system topology by the Learning module, but does not prevent invalid

global compositions resulted from Behavioural Mismatches, e.g. a node sending

HTTP requests to another node running a relational database (see Sec.3.2.3 in Chap-

2A power set is a mathematical concept and is defined as: a set composed of all subsets of a
given set. E.g.: Given set S {0,5}, the power set of S is {{}, {0}, {5}, {0,5}}
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Figure 4.10: Example of resulting External Reference components. All possible
components generated from services information are illustrated on the left part of
the image. An External Reference component code is represented on the right.

ter 3). The next section (Sec. 4.5.2) presents the Validator module responsible to

identify invalid global compositions and prevent system failures during exploration.

4.5.2 Hierarchical Coordination Strategy

The Hierarchical Coordination is a learning coordination strategy that avoids a cen-

tralised element of coordination. Instead, this approach creates multiple points of

coordination exploiting hierarchical structure of systems, mitigating the exponential

growth in the search space in distributed environments. Additionally, this coordi-

nation approach applies the External Reference concept to filter valid compositions

and support a reliable learning process avoiding system failures. This section de-

scribes the Hierarchical Coordination learning strategy, showing how the Validator

module is used to support this learning strategy.

The solution to the Behavioural Mismatch problem enables the system to explore

architectural compositions in different nodes avoiding system failures. The Validator

module solves that problem whilst supporting the Hierarchical Coordination learning

strategy by relying on the following assumptions:

1. The target system is a hierarchical system which has a single Entry Point, i.e.

a machine that receives the systems input;
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Figure 4.11: Hierarchical topology used in the Hierarchical Coordination approach.

2. The target system is built to satisfy a single common system goal, in a coop-

erative environment;

3. Connecting two machines A and B, where A requires a service in B and B is

in a composition that provides such service, will always work;

4. The Registry module information will not change as the system executes (i.e.

external services are not added or removed).

The Validator module, based on the information on the Registry and further in-

formation annotated on the components by developers, generates component groups

to avoid invalid global composition. The generated groups are used by the Learning

module to avoid behavioural mismatches in the system during composition explo-

ration in distributed environments. The groups contain compositions of all nodes

that do not result in behavioural mismatches, enabling a free exploration of composi-

tions. The group formation considers a hierarchical topology, where high level nodes

composition determines available compositions on lower level nodes. The hierarchi-

cal communication pattern is illustrated in Fig. 4.11. The hierarchical topology is

a logical topology based on the communication at the application level determined

by the generated ExternalReference components.

The group formation algorithm starts from the Entry Point node (or root node),

and based on the ExternalReference component selected it determines the set
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Figure 4.12: Example of exploration groups created by the Validator module. The
available External Reference components are represented on the left. The explo-
ration groups resulted from the components is illustrated on the right.

of nodes that are placed in the first level of the hierarchy, then it removes all

ExternalReference components in the first level that allows the first-level machines

to connect to either the Entry Point level or to connect among the machines in the

first level, allowing first-level machines to only connect to machines that have not

yet been placed in any level. The algorithm then analyses the ExternalReference

components in the first level and determines the second level of the hierarchy apply-

ing the same rules to remove ExternalReference components. The aforementioned

process continues until the algorithm determines the machines and components that

are part of the last level of the hierarchical topology, forming a group. The algo-

rithm restarts selecting different ExternalReference components in the root node

and repeating the aforementioned process until it defines all exploration groups.

Fig. 4.12 illustrates the resulting group using an example set of ExternalReference

components. On the left side of the image, there are the available ExternalReference

components generated by the Factory module. The Validator module, with access to

those components and the information that the node A is fixed as the Entry Point,

starts building the tables (on the right side) determining the exploration groups.

This example considers communication among the machines using a unique appli-

cation level protocol: the HTTP protocol. This situation, where all machines use

and offer services on the same communication protocol, might still generate global
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invalid compositions. These undesirable compositions, in this example, occurs due

to circular topologies. For instance, when server A forwards requests to B which,

in turn, forwards to C, which finally forwards the request back to A. The same

situation occurs in real web platforms, where all nodes could be assembled into a

Load Balancer composition, forwarding requests indefinitely.

The algorithm creates different exploration groups (tables on the right side of

the image) based on the ExternalReference component chosen by the Entry Point

(the machine A). The algorithm creates one group containing each of the available

generated ExternalReference components. In the image example, there are 3

ExternalReference components forming 3 groups. The first group is defined by

the selection of the component that allows the node A to directly communicate with

node B, and because of that choice, server B is then placed in the first level of the

hierarchy. The algorithm then analyses the ExternalReference components that

B is able to choose. Following the algorithm rule that eliminates components with

information about itself and information about higher level nodes (to avoid cycles),

the only available option is to allow B (in case it chooses a distributed composition)

to only communicate with node C. The algorithm then applies the same rule to select

the ExternalReference components to be made available to node C. According

the the algorithm rule, node C is only allowed to be in a local composition, i.e. a

composition that does not contain a component that requires external service. This

process repeats for the other two ExternalReference components available to node

A. The other options are to select the component that allows a direct communication

with node C, placing C in the second level, or to simultaneously communicate with

B and C, placing both in the second level, and forcing them to only experiment

with local compositions. Due to the assumption 4 (the Registry information does

not change), the group definition process is executed only once.

After the Validator module divide the components into exploration groups, the

Hierarchical Coordination learning strategy is executed. This hierarchical learning

strategy is partially decentralised, meaning that multiple Learning modules executes

in parallel in multiple nodes when exploring a set of compositions in a specific group.

This parallel learning execution occurs in machines that are on the same hierarchical
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level. The selection of the group being explored, however, is determined by a central

Learning module, the module executing in the Entry Point machine. The Hierarchi-

cal Coordination strategy applies the Feature-based Learning Algorithm described

in Sec. 4.4. The PAL framework running on the Entry Point machine executes as it

normally would in a single instance, having only access to the ExternalReference

component that is part of the first exploration group (the other nodes are also in

the first group). In case where the Entry Point machine decides for a distributed

composition, instead of a local one, the Hierarchical Coordination is started in the

Learning module that triggers learning in the nodes that are part of the second level

which finds the best local composition in parallel. Once the second level machines

fishes learning, they trigger learning in the third level and so one. Once all levels

finish the learning process, the leading Learning module starts the same exploration

procedure but exploring the second group and so on. The decision for the best global

composition, as well as the classification of the operating environment, is done by

the leading Learning module. This module stores the best performing compositions

of each exploration group and compares them to choose the overall best.

4.6 Summary

This chapter presented the implementation details of the modules that supports the

Emergent Software System concept. The modules that compose the local framework

are: the Perception, Assembly and Learning modules. The Assembly module

applies a component-based model to guide an autonomous software composition at

runtime, allowing software composition changes whilst avoiding system failures due

to the process of replacing a component to an incompatible or faulty one. This mod-

ule is at the bottom of the multi-tier architecture and provides an API that abstracts

the component composition and (re)-organisation process. The Perception module

uses the function provided by the Assembly module to provide its main function

responsible to collect metrics and events about the system health status and the

operating environment. The Perception module also provides a RESTful API and

access to the Assembly module indirectly through the Perception module itself. The
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RESTFul API enables the Learning module to control the system composition and

the collection of data about the system remotely (running on a external machine)

to avoid impact on system performance in cases where, for example, the Learning

algorithm is CPU-intensive. The Learning module leads the entire composition, per-

ception data collection and reinforcement learning process, discovering the system

architectural assemblies that are optimal to the classified operating conditions.

This chapter also presented the distributed framework modules and their roles in

supporting autonomous software composition in distributed environments. In order

to enable the application of the PAL framework to autonomously design distributed

software systems, this thesis introduces two concepts: the External References and

the Hierarchical Coordination strategy. These concepts are supported by the dis-

tributed framework modules: the Factory, Registry and Validator modules. In

tandem with the Factory, Registry modules and the ExternalReference interface,

the system is able to extend the local component-based model to allow component

developers to require external services through the External Reference concept. This

concept also enables the system to experiment with different system topology and

communication patterns. The Validator module, based on the information in the

Registry module, creates distinct groups of architectural compositions in the nodes

of the system that are interoperable, avoiding system failures during the reinforce-

ment learning process. Although the Hierarchical Coordination concept relies on

a set of assumptions, the approach shows the feasibility of applying the Emergent

System concept to design distributed systems. The realisation of fully Distributed

Emergent System has open issues and interesting challenges that are part of future

work discussed in Chapter 6.



CHAPTER 5

Case Study and Evaluation

This chapter presents the results of evaluating Emergent Systems. The evaluation

is conducted in a web server case study due to the key role these servers play in sup-

porting contemporary applications, underpinning major systems such as: banking

applications, social media, search engines and so on. Furthermore, web servers are

known to be difficult to optimally configure, particularly when subjected to different

client workloads over time [87]. In addition, current optimisation approaches heavily

rely on manual workload analysis and parametric configuration. The evaluation was

conducted in two phases: i) local and ii) distributed emergent web platforms. Sec. 5.1

describes the local emergent web server scenario and presents the results of applying

the PAL framework to a single software instance, demonstrating that: i) different

compositions for the web server have different performance depending on detected

request patterns (RQ1)1, and ii) the emergent web server is able to detect and con-

verge to optimal solutions in reasonable time with no domain specific knowledge or

offline training (RQ2). Sec. 5.2 introduces the distributed emergent web platform

(composed of web servers, web caches and load balancers) and presents the results of

extending the PAL framework, evaluating different learning coordination strategies

(RQ3). Finally, Sec. 5.3 evaluates additional aspects of online learning, specifically

the environment classification algorithm and the effects of different observation win-

dow sizes in the learning process. The evaluation of these learning aspects unfolds

from RQ2, to test the limits of system convergence in extreme conditions.

1RQ1, RQ2 and RQ3 are research questions defined in Chapter 1.
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5.1 Local Emergent Web Server

This section introduces the local case study scenario and evaluates the emergent

software framework, using the web server as an emergent system example. The

evaluation was conducted with a real implementation of the emergent web server,

and the emergent software framework, running on rackmount servers within Lan-

caster University’s infrastructure. These servers have an Intel Xeon E3-1280 v2

Quad Core 3.60 GHz CPU, 16 GB of RAM, and run Ubuntu 14.04. Similar speci-

fication machines were used as clients to generate workloads; these client machines

were on a different subnet to the servers (in a different building). The experiments

were conducted with a mixture of custom-built workload patterns designed to ex-

plore emergent system’s characteristics, and a real-world trace from NASA [1].

The presented evaluation aims to show that the concept of Emergent Systems

is feasible, and supports autonomous system convergence to optimal software com-

positions with no predefined rules, policies or models to guide software adaptation

in single software instances. First, this section shows that for different workload

patterns a different architectural composition has better performance. This moti-

vates the need for adaptive solutions, whilst presenting the ground truth to validate

and show the convergence accuracy of the proposed learning approach. Second, this

section shows, based on the ground truth, that the system autonomously learns and

converges towards the optimal performance. Finally, this section shows the con-

vergence rate and accuracy of both the brute-force and feature-based algorithms,

addressing research questions regarding search space growth. The results described

in this section was published in [71] and [38]. The code used in the evaluation, along

with instructions on how to repeat all experiments in this section is available at [36].

5.1.1 Case Study: Emergent Web Server

The local scenario consists of evaluating the autonomous composition and opti-

misation of an emergent web server. The Emergent Web Server is a single web

server program autonomously assembled from small reusable components in a repos-

itory. The web server architecture, illustrated in Fig. 5.1 has the following main
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interface that support the realisation of a web server program: RequestHandler,

HTTPHandler, Cache and Compression. Each of these interfaces realise a part of

the web server, and they have component variants (i.e. components that implement

the same functionality in a slightly different manner). The RequestHandler defines

the concurrency model of handling incoming TCP requests, having two compo-

nents providing two different models. The component RequestHandlerTPC creates

a thread per connection received. In contrast, the component RequestHandlerPT

creates a pool of threads and assigns each incoming connection to a thread. In case

all threads are busy, the system places the connections to a queue in the thread.

The threads are kept in a circular list, and the connection is always assigned to the

next thread in the list (i.e. round robin).

The interface HTTPHandler implements the HTTP protocol. This standard im-

plementation is provided by the HTTPHandler component, which fetches requested

files from disk and send them directly back to the client. Slightly different implemen-

tations are provided by HTTPHandlerCH, HTTPHandlerCMP and HTTPHandlerCHCMP

variants which require other interfaces for their implementation. The component

HTTPHandlerCH implements the HTTP protocol, particularly the GET method, by

firstly checking whether the requested content is stored in an in-memory cache; if

the file is cached, the component returns the stored requested file, otherwise the

component fetches the content from the disk and directly returns the file to the

client. After returning the requested file, the component caches the file’s content.

The HTTPHandlerCMP component, on the other hand, fetches the requested file on

the disk and, before sending it back the client, compresses the file content before re-

turning it to the client. Finally, the component HTTPHandlerCHCMP works as a com-

bination of HTTPHandlerCH and HTTPHandlerCMP components. It verifies whether

the requested file is in cache; in case it is not, the component loads the file from

the disk, compresses the file, and sends the compressed file to the client. After the

compressed version of the file is sent, the component stores it in cache.

The Compression and Cache interface support different HTTP implementations,

used specifically by the HTTPHandlerCH, HTTPHandlerCMP and HTTPHandlerCHCMP

components. The components that implement Cache and Compression interfaces
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Figure 5.1: Architectural representation of the web server compositions.

are generic and reusable. The cache component, for example, stores a generic string

of bytes, and each of its variants implements a different item replacement strategy.

The FS component implements a simple First-In-First-Out (FIFO) strategy, where

the first item cached is the first item replaced once the cache is full. The LFU compo-

nent implements the Least Frequently Used strategy, replacing the item that has the

lowest number of access. The MRU component implements the Most Recently Used

strategy, replacing the last accessed item. The LRU component implements the Least

Recently Used replacement strategy, where the item that was first accessed (i.e. the

accessed ‘timestamp’ is the earliest) is replaced. Both MRU and LRU requires a time

stamp or (age bits) to determine when the items were accessed in order to select the



5.1. Local Emergent Web Server 110

most recently accessed or the least recently accessed. The RR component implements

the Random Replacement strategy, where the items selected to be replaced are cho-

sen randomly. The Cache component does not implement any replacement strategy.

Instead it considers an infinite amount of cache space and keeps caching new items

until it runs out of memory. Finally, the Compression interface has two component

variants: the GZ and Deflate components. According to the HTTP 1.1 specification

RFC 2616 (https://tools.ietf.org/html/rfc2616}): the GZ component imple-

ments the gzip compression algorithm (RFC1952), and the Deflate component

uses the zlib format and the deflate compression mechanism (RFC 1950).2

A functional web server software instance is realised by selecting a single compo-

nent in each one of the interfaces defined in the architecture in Fig. 5.1. For example,

by selecting a single component available in the RequestHandler interface, another

component in the HTTPHandler and depending on the component selected in that

interface, it is required to select another component in Cache and/or Compression

interface. The number of compositions possible is calculated by adding 2 (number of

compositions when selecting HTTPHandlerCMP) plus 1 (number of composition when

selecting HTTPHandler component) plus 12 (number of compositions when selecting

HTTPHandlerCHCMP – which is the result of multiplying 2, the number of compression

components, times 6, the number of cache variants) plus 6 (number of compositions

when selecting HTTPHandlerCH component). The result of the addition is 21, con-

sidering that any of those 21 could be composed using either RequestHandlerPT

component or RequestHandlerTPC variant, we multiply 21 times 2, resulting in a

total of 42 unique compositions for the web server.

5.1.2 Evaluating Compositions Under Different Workloads

This section demonstrates that different optimal compositions exist for different

workloads. This result is used to show the emergent web server autonomously

learning such optimal compositions with no predefined information. Four workload

patterns were chosen to illustrate the different performance of compositions when

2For more information on gzip and zlib compression algorithms, please refer to
https://tools.ietf.org/html/rfc1952 and https://tools.ietf.org/html/rfc1950 respectively.
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implementing different behaviour. Three of the four patterns are synthetically made

to explore when caching, compression and the combination of these two features or

the absence of them impacts the system’s performance. These patterns consists of

sequential requests to i) repeated small (∼3KB) text-based html file, ii) repeated

small (∼64KB) image file, and iii) a diverse set of small text-based html files. The

fourth workload is a real-world workload pattern from NASA [1]. The NASA work-

load consists of a log of requests issued to the NASA web site in 1995 and can be

downloaded at [1]. For the purpose of this evaluation, the requested files were recre-

ated from the trace, which contained the size of each of the requested resources and

their types. The fabricated files were generated having the same type and the same

size, but with fake/random content. For example, if a 5KB PDF file named “foo-

bar.pdf” is requested at any point in the NASA trace, a 5KB “foobar.pdf” file with

random content is created and placed in the ‘htdocs’ of the emergent web server.

This workload was chosen due to its accessibility (facilitating results replication),

and because the workload has requests to diverse files with a variety of mime-types

(text, image, video), thus being a relevant representation of real-world workloads.

The results from custom-defined request patterns are shown in Fig. 5.2 and

Fig. 5.3 (a); whilst results from the NASA trace are shown in Fig. 5.3 (b). These

graphs show four specific compositions’ performance, from the 42 available.

Four groups of architectural compositions were chosen to represent the results in

Fig. 5.2 and Fig. 5.3. These compositions are representative of the four main func-

tionalities of the available web server architecture: Cache, Compression, Both (i.e.

when selecting HTTPHandlerCHCMP component in Fig. 5.1) and None (when selecting

HTTPHandler component in Fig. 5.1). For each of the lines in the graphs (Fig. 5.2

and Fig. 5.3) the best performing composition of each group was chosen to repre-

sent the group. For example, the ‘Compression’ line represents the best architectural

composition that has a component implementing a compression algorithm.

Fig. 5.2 shows the average response time of the web server for request patterns in

which the same file is repeatedly requested (low variation). When this is a text file,

Fig. 5.2 (a) shows that compositions with in-memory caching and without compres-

sion have better average response times than compositions with both caching and
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Figure 5.2: Ground truth: (a) small texts (∼3KB) with low variation workload
pattern; (b) small images (∼64KB) with low variation workload pattern.

0

5

10

15

20

25

30

0

8
0

1
6

0

2
4

0

3
2

0

4
0

0

4
8

0

5
6

0

6
4

0

7
2

0

8
0

0

8
8

0

9
6

0

R
e

sp
o

n
se

 T
im

e
 (

m
s)

 

Time (s) 
(a) 

None
Compression
Cache
Both

0

20

40

60

80

100

120

0

8
0

1
6

0

2
4

0

3
2

0

4
0

0

4
8

0

5
6

0

6
4

0

7
2

0

8
0

0

8
8

0

9
6

0

R
e

sp
o

n
se

 T
im

e
 (

m
s)

 

Time (s) 
(b) 

None

Compression

Cache

Both

Figure 5.3: Ground truth: (a) small texts with high variation workload pattern; (b)
NASA workload trace from [1].

compression. However, for image files, Fig. 5.2 (b) shows that the opposite of this

is true, i.e. the compositions that contain both cache and compression components

have better performance when exposed low variation small image workload.

Fig. 5.3 (a) and (b) show the average response time of the web server for request

patterns in which many different files are requested (high variation). In detail,

Fig. 5.3 (a) shows results from a custom request pattern in which each request is for

a different small (∼3KB) text file; whilst Fig. 5.3 (b) shows results from replaying

the NASA trace (which also has a high degree of file requests variations). In both

of these graphs (in Fig. 5.3) the best compositions are the composition that do

not implement cache, i.e. either ‘None’ or ‘Compression’ compositions, which are

different from the low variations workload (Fig. 5.2). The compositions that are

best for low variation are the worst two compositions for high variation workload.

The results demonstrate that different compositions of our web server will per-
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form differently when subjected to different request patterns at runtime. In par-

ticular, request patterns with high variation do not benefit from compositions that

use caching, whereas request patterns with low variation do. Additionally, the per-

formance of compositions that include compression is impacted by the compression

ratio of the files being requested in that pattern. While these results may be intuitive

to experts; the next section evaluates the feasibility of autonomously learning this

information from no prior experience – the basis of emergent software systems whose

design is a product of their environment. Furthermore, this environment includes

the physical hardware platform on which the system is running, a factor which is

automatically accounted for by emergent software systems in continually forming

the most ideal composition of the software over time.

5.1.3 Experimental Learning Analysis

This section evaluates the emergent systems capability of learning optimal compo-

sitions for the previously presented workloads. The learning process, as previously

described (see Chapter 4), continuously and autonomously locates optimal compo-

nent compositions for the target system, by analysing the currently available per-

ception data (perception data – events and metrics) and exploring how the various

available compositions of behaviour affect the perception of metrics across differ-

ent environments. Note that the learning process applies only unsupervised online

learning, with no human input and with no application-specific aids. This section

evaluates two learning strategies. First, this section evaluates the brute-force (base-

line) learning strategy to locate optimal compositions. This strategy samples every

available composition every time the learning process is triggered, and because of

that the strategy guarantees to find the optimal composition available. Finally, this

section presents the results of comparing the feature-based approach against the

brute-force, showing both learning accuracy and convergence rate.

Baseline Learning Strategy

The evaluation of the brute-force learning strategy is depicted in two graphs (Fig. 5.4

and Fig. 5.5). The graphs illustrate the brute-force algorithm converging to the
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optimal architectural composition when exposed to different workload patterns. In

particular, Fig. 5.4 shows a request pattern consisting of sequential requests for

small (∼ 3KB) text files for 700 seconds, followed by sequential requests for small

(∼ 1MB) image files for 1200 seconds, and finally returning to small text files. This

experiment was chosen as it contains two distinct kinds of request patterns for which

different web server compositions are known to be optimal, as shown in Sec. 5.1.2.
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Figure 5.4: Performance comparison between fixed web server architectures and our
emergent platform, using two different request patterns over time.

The graph (in Fig. 5.4) shows the performance of the brute-force learning ap-

proach, exploring available compositions, compared to the performance of two dif-

ferent static web server compositions that are known to be optimal for the different

parts of this request pattern. At the beginning of the experiment, the learning sys-

tem starts with no information and so must go through the entire learning process

to discover the architecture most suited for the currently observed conditions.

In detail, when a new pattern is detected, the learning module performs an

exploration activity to find the best composition for that pattern. This takes 420

seconds (each composition runs for wt = 10 seconds) and is clearly visible on the

graph as two large spikes; each spike shows experimentation with a particularly

poorly-performing composition for this pattern. When learning is complete, the

system converges to the optimal composition. This can be seen at two times, one

at time 250, and the other at time 1200. At time 1900 another request pattern

transition occurs, but (in this case) to a pattern that the learning system has already
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Figure 5.5: Performance comparison between two fixed web server architectures and
the emergent system framework when exposed to the NASA trace [1].

seen. In this scenario, the system does not trigger a further learning phase. Instead,

the system simply picks the best composition from prior experience. Comparing

this against the two static compositions, the emergent system framework maintains

optimal performance for the longest period of time, whilst both static compositions

are optimal when exposed to one of the two tested workloads.

Fig. 5.5 shows an experiment with our learning system using the NASA trace,

which is characterised by having small files (< 20MB) with a high degree of variation,

meaning that the same file is rarely requested consecutively. This trace was chosen

as a representation of a real-world scenario. Starting from no information at the

beginning of the experiment, the learning process maintains the same time of 420

seconds to learn the most suitable composition – again needing to experiment with

each available composition for 10 seconds. The graph (Fig. 5.5) shows the result

of comparing the brute-force strategy to the performance of two fixed architectures

that had the best and the worst performance for this pattern, showing that after 420

seconds the learning system converges to an architecture with an equivalent level

of performance of the best performing architecture. Note that, when compared to

the results in Fig. 5.4, both the learning and static architectures in this case have a

relatively erratic level of performance caused by a relatively high degree of variation

in this request pattern. Furthermore, note that after 420 seconds the emergent

system outperforms the worst composition in an average of 32 ms per request.
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These results demonstrate that, starting with no information at all, the system

can learn and converge to an optimal composition in real-time. As more data is

collected by the learning module, more experience is gained and less learning occurs

– the approach always maintains the ability to detect and react to new conditions.

Feature-based Search Learning Strategy

This section presents the results of comparing the feature-based and the brute-force

learning approach. The comparison is made considering both convergence rate, i.e.

how fast the feature-based learning converges to the optimal composition, and the

learning accuracy, i.e. the capacity to converge to the best performing composition.
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Figure 5.6: Performance comparison between the brute-force algorithm and the
feature-based algorithm when exposed to the small text with low variation workload.

Fig. 5.6 shows both feature-based and the brute-force learning strategies sub-

jected to the small text workload (see Sec. 5.1.2, Fig. 5.2 (a)). The brute-force strat-

egy always takes 420 seconds to explore the available compositions. In this particular

case, however, the last set of compositions experimented by the system coincidently

matched the group of architectures that had optimal performance. Although the

system was still exploring, the system performance had already converged. For the

feature-based approach, the graph demonstrates that even for the worst case sce-

nario (180 seconds for the exploration phase), the featured-based approach converges

faster than the brute-force and also accurately. The 180 seconds for the worst-case

scenario is due to the exploration of the two variants for the RequestHandler inter-
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Figure 5.7: Performance comparison between the brute-force algorithm and the
feature-based algorithm when exposed to the small text with high variation work-
load.

face (see Fig. 5.1), plus the exploration of the four variants for the HTTPHanlder and,

finally, the exploration of the twelve variants for the HTTPHandlerCHCMP component

which combines two compression variants and six cache variants, making a total

of 18 compositions to explore. Given that the observation window is 10 seconds,

the worst-case scenario takes 180 seconds. As opposed to the brute-force approach

that coincidently experimented with the best performing group of architectures, the

feature-based approach is programmed so this phenomenon happens on purpose,

since the system locates the best performing feature and then searches for the best

composition within the group of architectures implementing that feature.

Fig. 5.7 shows the comparison between the two learning strategies subjected to

small text workload with high variation (see Sec. 5.1.2, Fig. 5.3 (a)). The graph

shows the feature-based accurately converging in its best case scenario with an ex-

ploration phase that only takes 60 seconds to complete. The exploration phase in

the brute-force approach, however, always takes 420 seconds, with the observation

window set to 10 seconds. Both graphs show the effectiveness and accuracy of the

feature-based approach applied to the web server domain. In the best case scenario,

the feature-based approach accurately converges 360 seconds before the brute-force

approach. In the worst case scenario, the feature-based approach accurately con-

verges 240 seconds before the brute-force strategy.

The results clearly demonstrates that the feature-based approach performs well,
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as long as its assumptions is upheld. The feature-based approach has a shorter

exploration phase time and often converges before the exploration phase finishes,

due to its focus on finding the best feature, and then finding the best composition

that implements such feature. The disadvantage of the feature-based strategy is that

it relies on the assumption that the worst composition of the best performing feature

has to be better than the best of the other features. This assumption works for the

chosen case study domain, but might not be extendible to other domains. Finally,

both strategies work well for the local scenario for the experimented workloads. The

feature-based approach has faster convergence rate, and it is key to demonstrate the

potential of emergent systems in distributed settings, evaluated in the next section.

5.2 Distributed Emergent Web Platform

This section evaluates the feasibility of the Emergent System concept in distributed

settings. In particular, this section evaluates a centralised, decentralised and a

hybrid learning coordination strategy considering the growth of the search space

in distributed systems and the detection and management of invalid compositions.

Similar to Sec. 5.1, all evaluation described in this section was conducted with a

real implementation of the emergent web platform, and the distributed emergent

software framework, running on rackmount servers within Lancaster University’s

infrastructure. These servers have an Intel Xeon E3-1280 v2 Quad Core 3.60 GHz

CPU, 16 GB of RAM, and run Ubuntu 14.04. Similar specification machines were

used as clients to generate workloads; these client machines were on a different

subnet to the servers (in a different building). The following sections provide detail

of the evaluation, describing the emergent web platform case study, and further

details of the distributed emergent web platform evaluation procedure.

5.2.1 Case study: Emergent Web Platform

The evaluation of the distributed framework is in the context of a web platform. The

investigated platform is composed of web servers (Sec. 5.17), load balancers and web

caches. This section introduces the load balancer and the web cache architectures
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Figure 5.8: Architectural representation of the load balancer and web cache compo-
sitions.

and the two contexts on which they are used to evaluate the emergent framework.

Similarly to the emergent web server, the Emergent Load Balancer and

Emergent Web Cache (Fig. 5.8) are single software instances that are autonomously

assembled from small components in the repository. The emergent load balancer is

responsible to receive HTTP requests and forward them to be concurrently processed

in web servers running on different machines, and once the load balancer receives

the response back from the servers, it returns the response back to the appropriate

client. The emergent web cache is a special load balancer composition, and as such

the web cache also forwards requests to other servers but caches their responses lo-

cally, so that subsequent requests to a cached content do not have to be forwarded.

The load balancer and web cache share some of the components used to realise the

emergent web server previously described. The components in the interfaces App,

RequestHandler and Protocol are the same components used in the emergent web

server. Consequently, the components selected to provide those interfaces are also

the same. The difference is in the components providing the HTTPHandler interface.
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In the emergent load balancer architecture, the component that provides the

HTTPHandler interface is the HTTPLoadBalancer component. This component re-

quires the interface Dispatcher responsible to decide how to forward the requests

to the available servers in the systems. The Dispatcher interface has three com-

ponent variations that use the concept of External Reference (see Chapter 4) to

interact with external emergent services (i.e. services running on a different node

in the system). The RoundRobin component forwards requests equally among the

available servers, having the servers in a circular list, and forwarding the incoming

request always to the next server on the list. The CacheBased component variant

remembers the server to which a request for a given file was last sent (if any) and

forwards further requests to that same file to the same server. In cases where the

requests are made to a unseen file, the component applies the round robin strategy.

Finally, the MimeType component variant considers the MIME type of each HTTP

request and builds a mapping of MIME types to servers, such that, for example, all

image requests are forwarded to server A, all text requests to server B, and so on.

The emergent web cache, as a special composition for a load balancer, shares al-

most all interfaces with the load balancer architecture including App, RequestHandler,

Protocol and Dispatcher interface and their component variants. The difference

is in the HTTPHandler interface, particularly the HTTPLoadBalancerCH component

which combines both Cache and Dispatcher interfaces. The HTTPLoadBalancerCH

uses the Dispatcher variants to be able to forward requests, and uses the Cache

variants to check if requested content is locally cached. In cases when the content

is not cached, the HTTPLoadBalancerCH uses one of the Dispatcher variants to for-

ward the request to another server. Once the requested file’s content returns to the

web cache, it gets locally stored by a Cache component variant.

The distributed evaluation scenario is divided into two sub-scenarios to evalu-

ate different aspects of the Learning module. The first sub-scenario evaluates the

Learning module locus and personality of control using three machines. The first

machine, the network entry point, runs both the load balancer and web cache archi-

tectures as illustrated in Fig. 5.8. The remaining machines run the emergent web

server architecture depicted in Fig. 5.1. The second sub-scenario aims to evaluate
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Figure 5.9: Unified architectural of the emergent web platform.

the hierarchical learning coordination in a larger search space scenario with four ma-

chines, one being the entry point. For this scenario, all components that form the

web platform are available for the machines (as in Fig. 5.9). Furthermore, a change

in the system’s composition may also change the software running on a machine

from a program to another (e.g. from a web server to a load balancer).

5.2.2 Locus and Personality Control Analysis

This section presents the results of evaluating the locus and personality control of

the Learning module, using our load balancer / web server system. This gives key

insights into some of the major challenges in building distributed emergent systems.

The main results demonstrated in this section are: (i) different optimal compositions

of our example system exist under different environments; (ii) these optimal com-

positions can be autonomously discovered by our framework; and (iii) coordinated

and decentralised approaches in the learning dimension provide significantly differ-

ent overall behaviours in emergent software systems. The experiments in this first

scenario were performed with two web servers running on two identical rackmount

servers in a typical datacentre environment, the load balancer on a third machine,
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and a client (generating workloads) residing on a fourth machine in a different sub-

net. The results shown in this section was published in [37]. The source code used

in this evaluation, along with instructions to replicate the results is available at [33].

The locus and personality control evaluation was conducted considering three

machines. The entry point machine (referred to as LB) had a subset of the compo-

sitions for the load balancer and web cache in Fig. 5.8, whilst the other machines

(referred to as WS1 and WS2) had a subset of the web server compositions in

Fig. 5.1. The total composition for the load balancer / web cache is 4, in order to

restrict the search space. The 4 compositions is the result of making available only

one variant for the Cache, Dispatcher and ExternalReference interfaces. For the

Cache interface, the RR component is the only one available. For the Dispatcher,

the component available is RoundRobin. Finally, for the ExternalReference the

only component available is the component with information of the two remain-

ing servers (WS1 and WS2). The remaining machines run 4 compositions for

the web server architecture. The 4 compositions results from making available

only one variant for RequestHandler, Cache and Compression interfaces. For the

RequestHandler interface, the only component available is the RequestHandlerPT.

For the Compression interface, the component available is the Gzip. Finally, for

the Cache interface, the component available is RR. The distributed composition is

determined by the combination of the composition in each one of the participating

nodes. Considering that the 3 participating nodes have 4 compositions each, the

total number of global compositions, combining all machines, is 64.

Evaluating Compositions Under Different Workloads

The results shown in Fig. 5.10 and Fig. 5.11 indicate that: i) different global dis-

tributed system compositions behave very differently in the same operating environ-

ment conditions; ii) for two different environments, there are notably different global

system compositions that perform optimally; and iii) there are very clear groups of

compositions with similar performance levels in both environments.

In detail, Fig. 5.10 and Fig. 5.11 show the average response time to client re-

quests, as reported at the entry point (LB) machine, for every possible global dis-
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Figure 5.10: Average response time of every available distributed composition for
the first distributed scenario when using Workload 1.

tributed system composition (i.e. every possible composition of components for

every local node, combined) for two tested environments, characterised by different

workloads (Workload 1 and Workload 2). The Workload 1 consists of small text file

(html) requests with low variation (similar to Fig. 5.2 (a)). The Workload 2, on the

other hand, consists of small text file (html) requests with high variation, meaning

that a different text file is always requested (similar to Fig. 5.3 (a)).

For Workload 1, shown in Fig. 5.10, there is a difference of 193 ms in request

handling latency between the best and worst performing distributed compositions.

Similarly, for Workload 2 shown in Fig. 5.11, the difference in request handling

latency between the best and worst architecture is 126 ms. This clearly shows that

different compositions have significant impact on overall performance (result (i)).

Comparing these two graphs, it is also noticeable that the best performing global

architecture in both scenarios are different (result (ii)). For Workload 1, the best ar-

chitecture is the architecture number 33, which has the following composition: cache

in the LB machine, only compression in WS1, and only compression in WS2 (LB-C,

WS1-GZ, WS2-GZ)3, whilst for Workload 2 the best architectural composition is

the number 49 that has the global composition: LB-RR, WS1-GZ, WS2-GZ.

3A global composition is described as: <Machine-composition> format. LB stands for load
balancer, WS1 stands for web server 1, WS2 stands for web server 2. The compositions are
indicated by their initials: C for Cache, GZ for Compression, CGZ for Cache and Compression
and RR for Round Robin. Therefore, LB-C, WS1-GZ, WS2-GZ, means load balancer with cache,
web server 1 with Compression and web server 2 with Compression.
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Figure 5.11: Average response time of every available distributed composition when
using Workload 2.

Considering that Workload 1 consists of one client repeatedly requesting only

one text-only html file, global architecture number 33 performs best because, in this

composition, the web servers always compress the requested files, and once the file

is returned to the load balancer, it is stored in a small content cache at the load

balancer (i.e. web cache composition). Thereafter, all subsequent requests for the

same file can be retrieved instantly by the entry point machine itself, from its local

cache, avoiding forwarding requests, and thus significantly reducing response time.

On the other hand, for Workload 2, which consists of one client repeatedly re-

questing a different text-only html file for every request, architectures with caching

will not perform well due to the frequency of cache misses. As a result, the best

performing architecture is one which does not use cache at either the entry point

or the web servers. The architecture number 49 defines a round-robin scheduling

algorithm for the load balance, and web servers that return compressed files (from

disk) as responses. As for the load balancer scheduling algorithm (LB-RR), each

incoming request is evenly distributed among to the web servers.

The last notable result here is the equivalent performance of large groups of

architectural compositions (result (iii)). This is easily identified in both workloads,

though is visually more obvious in Fig. 5.10. One clear reason for this is that both

web servers are running on machines with the exact same hardware features and

capacity. Thus, a global distributed composition that sets WS1 to composition
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X and WS2 to composition Y is essentially the same (performance-wise) as having

WS1 set to Y and WS2 to X. Furthermore, whenever requests are limited to a subset

of the system’s nodes, all compositions of the unreachable nodes do not affect the

system’s performance, making those compositions indifferent for the system. This

situation is observed in two cases: the first case happens when the load balancer, due

to its scheduling algorithm, forwards 100% of the incoming requests to only one web

server. This is observed in architectures number 1 to 32 in Workload 1, and from

architectures 1 to 16 in Workload 2. The second case happens when the load balancer

forwards the incoming requests only once to one web server, and all subsequent

requests are handled locally due to the entry point web cache composition. This

happens only in Workload 1 and is observable for architectures number 33 to 48.

Learning Coordination Analysis

The above results provide a ground truth, informing us which distributed system

compositions are the best options for the two workloads. The different locus and

personality strategies is examined using the emergent framework. In both cases

the brute-force learning algorithm is used, examining a single and centralised in-

stance of the Learning module controlling the entire system, and also in a complete

decentralised fashion, where every node runs an instance of the Learning module.

The results are shown in Fig. 5.12 and Fig. 5.13. Both graphs show the learning

process and its convergence to the optimal composition. Additionally, both graphs

show the performance of three different compositions of the system, for comparison:

the learning line is the version running the emergent framework to control the sys-

tem (the orange lines in both Fig. 5.12 and Fig. 5.13), whereas the blue and green

lines are fixed architectural compositions used as reference points (i.e. their compo-

sitions do not change over time). The composition represented by the blue line is

LB-C, WS1-GZ and WS2-GZ, and is the best performing distributed composition

for Workload 1, as shown by the earlier results. The green line then represents the

architectural composition LB-RR, WS1-GZ and WS2-GZ, which is the best perform-

ing composition for Workload 2. At the midpoint of both experiments the workload

is changed from Workload 1 to Workload 2, therefore demonstrating the way in

which the framework learns and reacts to changes in the environment.
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Figure 5.12: Performance of our coordinated learning approach for two different
workloads, compared with static baseline compositions. The spikes at the beginning
of the coordinated learning curve for both workloads represent the exploration phase.

These graphs show that: i) the centralised learning approach, in both workloads,

autonomously identifies the optimal global architectural composition, with no prior

information; ii) the decentralised learning approach, for Workload 1, converges faster

than the coordinated learning approach, but it never converges for Workload 2.

In detail, the centralised (altruistic) learning approach, as shown in Fig. 5.12,

takes 320 seconds (∼5 minutes) to find the optimal composition for each environment

it encounters. This is because the brute-force learning algorithm works by exposing

each of the 64 available compositions and observing them for 5 seconds, after which

it selects the composition that had the lowest average response time. The advantage

of this approach is that it will always find the optimal solution, due to its exhaustive

search. On the other hand, this approach does not scale to larger numbers of

components and/or nodes due to the combinatorial explosion problem.

The decentralised (selfish) learning approach, by comparison, converges 15 times

faster than the centralised approach when exposed to Workload 1, as shown in

Fig. 5.13. The rapid convergence is due to the decentralised learning process,

which at the entry point machine must only iterate through 4 different composi-

tions, quickly identifying the local content cache in the entry point machine as the

best option, this composition suffers little performance impact from the web servers

(as was seen in Fig. 5.10). However, this approach never converges to the optimal



5.2. Distributed Emergent Web Platform 127

0

50

100

150

200

250

300

350

7
.3

6
5

.7

1
2

4
.1

1
8

2
.5

2
4

0
.9

2
9

9
.3

3
4

5

3
8

5

4
2

5

4
6

5

5
0

5

5
4

5

5
8

5

6
4

2
.1

7
0

9
.4

6

7
7

6
.8

2

8
4

4
.1

8

9
1

1
.5

4

9
5

5

9
9

5

1
0

3
5

1
0

7
5

1
1

1
5

1
1

5
5

1
1

9
5

R
e

sp
o

n
se

 T
im

e
 (

m
s)

 

Time (s) 

Decentralised Selfish Learning
LB-C, WS1-GZ, WS2-GZ
LB-RR, WS-GZ, WS2-GZ

Workload 1 Workload 2 

Figure 5.13: Performance of our decentralised learning approach for two different
workloads, compared with static baseline compositions. The spikes at the beginning
of the selfish learning curve for Workload 1 represent the exploration phase.

solution when exposed to Workload 2. In this more complex workload, in which the

‘local content caching’ solution at the entry point machine is not the best option.

This lack of convergence is due to a complex set of interference conditions: first,

because each local emergent system is exploring independently, it is unlikely that all

nodes will simultaneously happen to be in the globally optimal set of compositions

at the same moment; second, the locally optimal solution for the web server nodes

is not necessarily the globally optimal one; and third, the act of exploring different

compositions on different nodes causes constant changes in observed metrics and

observed events at both the load balancer and the web servers. In the more complex

Workload 2, these conditions mean that all nodes are in a constant state of learning.

5.2.3 Hierarchical Coordination Analysis

This section presents the results of evaluating the hierarchical coordination learning

algorithm. This coordination strategy enables the system to learn not only the

composition for each of the participate machines in the system, but also to determine

their role (i.e. the executing program, e.g. a web server, a web cache or a load

balancer) in the system. As the system becomes able to autonomously learn more

system’s aspects, the learning problems (see Chapter 3) become more prominent

and challenging. This section focuses on evaluating the learning approach regarding
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the i) search space growth, ii) interference effects during learning, and iii) invalid

global compositions. The section also describes the scenario on which one of the

feature-based approach assumption is not held, exemplifying the undesirable effects.

The experiment deploys the architectural compositions in Fig. 5.9 in every par-

ticipating node, and uses four machines to realise the system, one of these machines

being the entry point. Note that the MimeType component in that architecture is

not included in the Dispatcher interface, because it breaks the feature-based as-

sumption that the worst composition for the best feature has to be best than any

other composition of other features (see Chapter 4). In total, the number of unique

compositions in Fig. 5.9 is 70. Therefore, considering 4 machines, the total number

of global compositions is 704 = 24, 010, 000, which includes invalid compositions

and only one component available for the ExternalReference interface. The hier-

archical coordination algorithm separates the valid compositions in groups. One of

these valid groups is the case where the entry point machine communicates directly

with the remaining three machines, placing them in the first level of the system’s

hierarchy. This is the case used to evaluate the system learning, having 70 avail-

able compositions in the entry point and 42 compositions in the remaining three

machines resulting a total of 70 ∗ (423) = 5, 186, 160 global compositions.

Evaluating Compositions Under Different Workloads

In the experiment described in Sec. 5.2.2, the role (i.e. the executing program)

of each of the machines in the system was predefined. The entry point machine

was fixed as load balancer / web cache and the remaining two machines were fixed

as web servers. In this experiment, however, the machine’s roles in the system

is also autonomously defined. For that, the entry point machine has to learn in

what situation is advantageous to handle all incoming requests locally, and when to

forward the requests to be handled by other participating nodes.

The graphs show two synthetic workloads that demonstrate (in Fig. 5.14 (a)) the

web server role is more advantageous than load balancer, and (in Fig. 5.14 (b)) the

opposite, i.e. when forwarding requests is better than handling them locally. The

workloads used in those graphs consist of requests to dynamic content, i.e. content
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Figure 5.14: Performance of a web server and load balancer composition exposed to
the Dynamic Workload A (a) and Dynamic Workload B (b).

that is processed and generated upon each request. Dynamic content was preferred

over static content used in previous evaluation, because they clearly differentiate

the need for Web Server or Load Balancer. The Dynamic Workload A (Fig. 5.14

(a)) is composed of sequential cycles of 5 simultaneous requests to dynamic content.

Once the 5 simultaneous requests are handled, the client casts 5 more requests,

and so on. The dynamic content in the Dynamic Workload A takes ∼87 ms to be

processed. Similarly, the Dynamic Workload B (Fig. 5.14 (b)) is composed of cycles

of 10 simultaneous requests to content that takes ∼397 ms to be processed.

The results in the graph show that as the average time to handle dynamic content

increases, forwarding requests to be processed in parallel by other machines becomes

more advantageous. As the processing time decreases, there is no benefit for the

system to forward requests. That is why the dynamic content was chosen to realise

the experiment. The static content workload maintain very low processing time (i.e.

only disk access time), making it less noticeable when to choose one composition

over the other. As the processing time increases, it is more advantageous to spend

time forwarding the requests, whilst saving time in splitting the processing time

among three servers, than processing all requests in one machine. This result is

well-known in distributed systems field, but is not evident for the Learning module,

which executes with no prior information about the workload or the target system.
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Learning Coordination Analysis

This section shows the hierarchical coordination approach and the feature-based

learning algorithm locating optimal distributed compositions. For the Dynamic Work-

load A, the learning system falls in the local case scenario explored in Sec. 5.1, where

the results demonstrate that using either the brute-force and featured-based ap-

proach the system is able to learn the optimal compositions locally. Therefore, this

section focuses on the learning system when exposed to the Dynamic Workload B.
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Figure 5.15: Performance convergence (60s) of the hierarchical coordination when
exposed to the Dynamic Workload B. The number of valid global compositions is
5,186,160. The brute-force learning would theoretically converge in 1.6 years.

As shown in Fig. 5.14 (b), when the system is exposed to Dynamic Workload B

the best performing composition is a distributed composition, which has the entry

point node to forward requests to the remaining servers. Fig. 5.15 shows the learning

system undergoing through the process of locating the optimal composition in the

distributed environment. The ‘Web Server’ and ‘Load Balancer’ line represents the

performance of the best and worst fixed composition (no learning, nor adaptation

happening) for the workload. The ‘Learning’ line (the orange line in the graph),

on the other hand, is the performance of the entry point node running the learning

system throughout the entire experiment. The system starts exploring using the

feature-based algorithm in the entry point machine. Considering the architectural

compositions in the entry point (represented in Fig. 5.9) the feature-based system

first tests two compositions for the RequestHandler interface, and then tests six
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compositions for the HTTPHandler interface, converging to a LoadBalancer compo-

nent at that level. From that part of the exploration phase onwards, the system

has already converged to the optimal performance, given that the 42 web server

compositions running on the remaining servers have similar response time, and thus

they do not affect the system’s performance even during their exploration phase.

The system (from the 80 sec time forward) continues its exploration phase com-

paring the two different component variants for the Dispatcher interface, and decid-

ing for the best between the two available ones. The Dynamic Workload B requests

dynamic content with high variation (each request to a different content) making

the CBS and RoundRobin to forward requests evenly among the remaining servers,

which results in them having similar performance. After locating the optimal com-

position in the entry point node, the system then triggers learning in the remaining

servers concurrently. Since the remaining servers are in the first level of the archi-

tecture (according to the exploration group of the experiment), the learning system

executing in the remaining nodes works just as in the local scenario, locating the

best performing composition among the 42 web server composition. Due to the

experimented workload, the web server compositions have very similar performance

and again they do not affect the global system performance.

This experiment show that the system converges in 60 seconds, but the explo-

ration phase, considering the learning executing in the remaining 3 web servers, may

last (in the worst case scenario) for 360 seconds. That is 180 seconds running the

exploration phase in the entry point node, and 180 seconds concurrently running

the exploration phase in the remaining servers, resulting in a total of 360 seconds.

Therefore, the hierarchical coordination is able to explore larger search spaces in

less time by locating the optimal feature before zooming in on the search to locate

the optimal composition. Furthermore, by diving the exploration phase in groups,

the system avoids invalid global and interference effects in learning. The latter is

avoided by executing the learning process in each level of the hierarchy in different

times. In this case particularly, the learning starts in the entry point machine before

triggering learning in the web servers which are in subsequent level.

Overall, the hierarchy coordination in tandem with the feature-based algorithm
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implement concepts that allow the management of the search space, interference

effects and invalid composition challenges. However, the presented implementation

is not applicable to every domain. For example, the case including the MimeType

component for the Dispatcher interface. In that scenario, for the Dynamic Work-

load B, the system will only forward requests to only one server, since all requests

are considered ‘php’ mime type, thus concentrating the processing in only one ma-

chine, making this composition worst than any web server composition. Therefore,

this composition breaks the assumption of the feature-based search that the worst

composition for the best feature must be better than the best composition of the

other features. In this special case, the feature-based algorithm could coincidently

compare the MimeType component as the representative composition for the load

balancer / web cache against a web server composition, and mistakenly conclude

that being a load balancer is worse than being a web server in that case.

5.3 Additional Learning Aspects

This section evaluates other fundamental aspects of the online learning process. In

detail, this section evaluates the environment classification algorithm and the obser-

vation window size. The environment classification is key to enable the system to

‘remember’ previously seen operating conditions, and also to enable a fair compari-

son between compositions operating under equivalent conditions. The environment

classification algorithm is executed in extreme scenarios to evaluate the situations

on which the algorithm is not suitable. The observation window size, on the other

hand, influences directly the quality of learning, affecting directly the perception

of the operating conditions through the executing compositions. The observation

window size evaluation consists of testing different window sizes to find the one that

supports the best learning process.

5.3.1 Environment Classification

The environment classification algorithm is described in Chapter. 4. The presented

algorithm uses ranges of values for each of the features to classify the operating con-
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Figure 5.16: Classification results: environment ranges detected for each workload.

ditions during the exploration phase, to mitigate the self-referential fitness problem,

particularly the distortions resulted from extracting information of the environment

through different architectural compositions (for more information see Chapter 3).

The evaluation of the classification algorithm is divided into two parts. Firstly,

this section examines the classified ranges that were identified for the workloads

described in Sec. 5.1.2. Secondly, this section evaluates the limitations of the range-

based classification algorithm showing two graphs that explores i) classification of

environments that have overlapping ranges, and ii) mid-exploration workload

changes, which are the factors that most affect the proposed solution.

The classification ranges of the workloads of the local scenario are shown in

Fig. 5.16. The graph demonstrates that the rages-based classification algorithm is

able to detect most of the differences between the tested workloads, but not all.

Specifically, the low-variation text, low-variation image, and NASA workloads all

have different classified environment ranges, allowing their corresponding optimal

architectures to be easily distinguished. By contrast, the low-variation text and

high-variation text workloads have very similar classified ranges, lacking a clear

distinguishing feature; this is because the events that are generated by the web

server do not capture the idea of variation (the ratio of adjacent files in a request

sequence that are different) within a single media type. Developing ways to infer this

kind of attribute from the primary event stream, or otherwise report that additional

event detail would be useful to distinguish ranges, are directions for future work.
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Figure 5.17: Classification experiment using request patterns that are difficult to
distinguish.

The next graphs show the learning process under difficult environment classifi-

cation conditions to further highlight the challenges involved. Fig. 5.17 shows the

possible effects of being unable to distinguish between two environment ranges, as

is the case with high- and low-variation text scenarios. At the beginning of this

experiment, the system is subjected to a low-variation text workload (Workload A)

until the system converges to an optimal composition (a composition using cache).

Then, after converging and switching to exploitation mode, the workload is changed

to high-variation text (Workload B). At this point (time 67) the Learning mod-

ule observes a degradation in performance, indicated by the large spike in response

time, and waits for three consecutive observations in this performance change. The

Learning module then triggers a new exploration activity, which finishes learning at

time 111 and converges to an optimal composition for this workload (a composition

that does not use cache, in this case). At this point (time 113) an undesirable ef-

fect occurs: the system oscillates between two compositions, one of which performs

very poorly and the other which performs very well. This is because, having cho-

sen the non-cache composition, this brings response time back down to a low level,

within the limits of the response time used in the classified range of Workload A.

This triggers the system to assume that the environment is now Workload A, and

so the system selects the best known composition for that environment, which is a

composition that uses cache. However, this composition performs very badly under
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Figure 5.18: Classification experiment using mid-exploration workload changes.

the high variation workload, which in turn pushes response time back into the range

constructed for Workload B. This causes the system to assume that the environment

is now Workload A, and so selects the composition that does not use cache. This

cycle then repeats until the workload changes at time 137.

The inability to appropriately distinguish environment ranges from one another,

combined with the use of response times to help trigger current environment range

checks, in this case causes a continuous cycle of poor decisions that need to be con-

stantly corrected. This demonstrates the critical nature of environment classification

in emergent software, and the challenge in doing this when the environment’s effects

are partially coupled with the performance characteristics of the system itself.

Fig. 5.18 shows the possible effects of the workload changing during an explo-

ration activity. Here the system starts in Workload A, then during the exploration

activity the environment changes to Workload B, then back to A and finally B

again. Once the exploration activity finishes (420 seconds), the environment tran-

sitions back to Workload A. When exploration finishes, the graphs shows that the

system converges to a composition that is not quite as good as the known optimal

composition for Workload A, having been unable to accurately compare all archi-

tectures under the same conditions during exploration. This highlights the need to

better distinguish environment ranges during exploration activities. However, note

that the end result of this experiment does still leave the system relatively close to
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the optimal solution, despite our simple approach to classification, suggesting that

this is not as significant an issue as that highlighted in Fig. 5.17.

5.3.2 Window Size Effects in Online Learning

The common observation window size for most of the results previously shown in

this chapter is 10 seconds. This section investigates alternative window sizes and

their affects on learning behaviour. The evaluation was conducted by running the

entire NASA trace, with each request in the trace delivered in sequence, to the local

emergent web server, using five different observation window sizes, from 1 second up

to 20 seconds. The effects of this are shown in Fig. 5.19 and Fig. 5.20, with further

extracted details shown in Table 5.1. In each experiment the web server is run for

the same portion of the NASA trace. The evaluation shows the total number of

adaptations that occur, and the number of exploration activities that are triggered.

The analysis of the window size illustrated in Fig. 5.19 and Fig. 5.20 are rela-

tively complex, with a set of interacting features. Overall the graphs show that the

experiment using a 10 second observation window size completes the trace fastest,

indicating that it had the best overall response times. There are two different rea-

sons for this. First, the use of smaller observation windows causes over-reaction to

the variations in the workload, and an unnecessarily large number of adaptations.

These adaptations, whilst cheap, do momentarily impact the response time of the

web server, resulting for example in the 5 second experiment having far higher peaks

than the 10 second experiment shown in Fig. 5.20. The data for the 1 and 2 second

window sizes, in Fig. 5.19, show even more volatility as the system attempts to

over-fit to the environment. Second, the use of larger observation windows causes

1sec 2sec 5sec 10sec 20sec

# of classes 7 6 3 2 2

# of 
adaptations

480 
(186)

376 
(124)

141 
(15)

104 
(20)

84 
(0)

Experiment 
duration

1 
hour

1 
hour

50 
min

39 
min

48 
min

Table 5.1: Adaptation details of observation window experiments, showing total
number of adaptations performed, and adaptations performed under exploitation
shown in brackets.
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under-reaction to the variations in the workload. This is exemplified by the 20 sec-

ond observation window experiment, which has two exploration phases, but never

performs any adaptations outside of those phases during exploitation, indicating

that it has classified very broad environment ranges, missing important details.
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Figure 5.19: Observation window experiments of 1 and 2 seconds.
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Figure 5.20: Observation window experiments of 5, 10 and 20 seconds.

This demonstrates that the composition of the optimal observation window size

is itself a challenge, and may have a different ideal setting across different types

of application, different workload characteristics, and different hardware platforms.

Beyond the static observation windows used here, it may also be useful in the future

to explore dynamic observation window sizes.
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5.4 Summary

This chapter presented two main scenarios that were used to evaluate the emergent

system framework described in Chapter 4. The first scenario consists of evaluating

the emergent framework to autonomously assemble and optimise a single instance

of a web server. The second scenario consists of exploring the emergent framework

in distributed settings. Both scenarios aim to evaluate learning strategies in terms

of convergence rate (i.e. how fast it converges) and accuracy (i.e. if the system lo-

cates the optimal composition). Furthermore, this chapter also evaluates additional

aspects of the learning process, such as the environment classification algorithm and

the size of the observation window used during the learning process.

In detail, for the local scenario, this chapter evaluates both the brute-force and

feature-based approach applied to a single instance of the web server. The results

show that the emergent system concept enables the continuous composition and

optimisation of the web server according to the workloads. Furthermore, the results

show that the feature-based approach converges, in the best-case scenario, 7 times

faster than the brute-force, and more than 2 times faster in the worst-case scenario.

In the distributed scenario, the chapter evaluates different coordination strategies

for the learning process. The results show that the centralised altruistic approach

converges to the optimal solution, but this approach is inefficient as the number

of composition grow exponentially in distributed settings. The decentralised selfish

strategy converges faster and accurately in some environments, but suffers from

learning interference effects in other scenarios. Finally, for the coordination analysis,

this chapter show that a hybrid coordination strategy (the hierarchical coordination)

converges faster and accurately considering a larger search space, whilst avoiding

interference effects and invalid global compositions. This approach, however, is only

applicable in domains where the feature-based assumptions are maintained.

Finally, the chapter evaluates the environment classification algorithm, and shows

the results of experimenting with different sizes for the observation window. The re-

sults show that the environment classification suffers from classifications that present

overlapping ranges, mid-exploration workload changes and when some important
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environment feature is not defined as an event (perception data, see Chapter 4).

The overlapping ranges classification confuses the system during exploitation phase,

causing instability in the system performance. The mid-exploration changes ‘de-

ceives’ the system to converge to composition that is not as good as the known

optimal. The observation window size depends on the application domain and on

the system’s workload, so that for different scenarios, different sizes might be better.

The results for the observation window size in the explored scenario and workload

points to the 10 second window as the most appropriate size for a more accurate

learning. However, further investigation on this aspect of the system is necessary,

including an investigation on dynamic size of the observation window.

Although the different aspects of the emergent framework evaluated in this chap-

ter is not applicable to every application domain, nor covers every learning chal-

lenge in Chapter 3, the presented solution implements important concepts that were

demonstrated to be key to realise the paradigm of emergent systems. Furthermore,

the shortcomings of the presented solution establish the next research steps that are

detailed in the next chapter as future work.



CHAPTER 6

Conclusion

Autonomic computing has emerged as an important area to address the increasing

complexity in developing, configuring, and managing software systems. Due to the

uncertainty of highly dynamic operating environments, the development of such

solutions becomes very challenging. As a response to the complexity of creating

autonomous solutions, this thesis has introduced Emergent Software Systems, with

a real-world implementation of the concept and an extensive empirical evaluation.

The main goal of Emergent Systems is to autonomously assemble and optimise

software systems in both local and distributed environments with minimum human

involvement. As a consequence of the presented concept, systems become able to

accommodate changes in their operating environment with no offline training nor

predefined domain information, reducing the engineering effort required to create

autonomous solutions. Furthermore, the ability to freely explore the available design

possibilities, with no restrictions, enable the system to handle unexpected changes.

This chapter revisits previous chapters, highlighting this thesis’ main contribu-

tions and the novelty of the presented approach. Moreover, this chapter revisits the

research questions defined in Chapter 1, addressing the questions with references

to the results presented in Chapter 5, and concepts discussed in both Chapter 3

and Chapter 4. Finally, this chapter describes several avenues for future work, and

concludes the thesis with the final remarks.

140
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6.1 Thesis Summary

Chapter 1 introduced the thesis, contextualising the work and its relevance to the

Autonomous Computing research area. This chapter also described this thesis’ main

objectives and contributions, concluding with a presentation of the thesis’ structure.

Chapter 2 presented the background concept used in this thesis, whilst also pre-

senting relevant related work. This chapter presented a literature analysis, compar-

ing the concept of Emergent Systems with key work in autonomous systems, and

detailing the advantages of Emergent Systems and the gap this concept addresses.

Chapter 3 defined the concept of Emergent Software Systems in terms of au-

tonomously composing software systems from small units of behaviour and online

learning techniques. This chapter also introduced the main challenges in realising

Emergent Systems in both local and distributed scenarios.

Chapter 4 described the framework implementation that supports the concept of

Emergent Systems. This chapter introduced the Perception, Assembly and Learning

(PAL) modules as the core framework to realise Emergent Systems in local settings.

Furthermore, this chapter presented an extension to the PAL framework to support

the concept of Emergent Systems in distributed scenarios.

Chapter 5 evaluated the emergent framework applied to datacentre software.

The results presented in this chapter demonstrate the feasibility and potential of

Emergent Systems. Furthermore, this chapter also analysed the limitations of the

presented solutions, presenting further challenges to be addressed in future work.

6.2 Revisiting the Hypothesis

Hypothesis: The use of fine-grained software components in tandem with rein-

forcement learning as a method to develop self-adaptive software systems is key to

address operating environment dynamism whilst minimising design complexity.
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This thesis presented the concept of Emergent Software System as derived from

the hypothesis. The concept applies component-based modelling and an online

learning process to assemble and optimise systems with no predefined knowledge

of both components implementation and execution environment. The component-

based model is used by the emergent framework to assemble valid software archi-

tectures and enable runtime adaptation, eliminating the need for extra models to

define parts of the software that should be adaptable as well as the process to adapt

those parts (e.g. feature-based models, adaptation policies, etc.). The utilisation

of a component-based model, with the presence of component variants (different

implementations for the same functionality), supports the reinforcement learning

approach. This learning strategy allows the system to experiment with different ar-

chitectural compositions as the system runs in its executing environment and handles

incoming requests. This strategy enables the system to build its own understanding

of its constituent parts when exposed to varying operating conditions, eliminating

the need for experts to create rules / models to support systems adaptation.

The utilisation of component-based models and online learning approach min-

imises the complexity of creating autonomic systems, because they eliminate the

need to create adaptation rules and models, supporting the online learning approach

that pushes design decisions to be made at runtime by the system itself. The eval-

uation (Chapter 5) focused on showing that the component-based model in tandem

with the reinforcement learning approach works, i.e. the system is able to learn un-

der different operating conditions optimal software compositions with no predefined

information. The results show the system autonomously composing real-world data

centre software, and learning optimal compositions in both local and distributed

settings, driven by real-world, relevant workloads. Hence, the author argues that

this thesis demonstrates that the Emergent Software Systems concept enables a

complete autonomous creation and evolution of adaptation logic, minimising the

upfront effort of creating autonomous systems.
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6.3 Revisiting the Research Questions

[RQ 1] Do different software compositions have different performance when subjected

to different operating environments?

This thesis has extensively demonstrated that for different environments, dif-

ferent compositions present different performance. Particularly, Chapter 5 shows

that i) different features of the environment directly affects different software com-

position for incorporating different functionalities, and ii) in a large search space of

software compositions, many distinct compositions have very similar performance

for implementing similar functionalities. For the result (i) this thesis shows that:

• Low variation workloads (i.e. small set of different requested content) benefit

web server compositions with cache components. Contrarily, high variation

workloads (i.e. a large set of different requested content) benefit web server

compositions that do not have cache components. This is shown in Sec. 5.1.2

for a single web server and in Sec. 5.2.2 in a distributed setting.

• Workloads with small files (∼3KB) benefit compositions that have cache but

do not have compression components. Contrarily, workloads with bigger files

(∼64KB) benefit compositions that have cache and compression components.

This is shown in Sec. 5.1.2.

• Workloads with dynamic content requested in sequential cycles of 10 simulta-

neous requests benefit load balancer compositions. Contrarily, workloads with

static or dynamic content requested in sequential cycles of 5 simultaneous

requests benefit web server compositions. This is shown in Sec. 5.2.3.

This thesis shows that in a large search space of software compositions, many dis-

tinct compositions have similar performance (ii). This result is shown in 5.2.3, and it

was used as motivation to propose the feature-based learning algorithm (Chapter 4)

to handle significant growth in the search space, particularly in distributed settings.

This phenomenon of having different software compositions presenting different

performance in different environment is named ‘Divergent Optimality’, and it was
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presented as a property of Emergent Software Systems in Chapter 3. This property

is essential to the concept of Emergent Systems because i) it motivates the creation

of adaptive software, and ii) shows the ground truth that were used to demonstrate

that Emergent Systems are able to accurately converge towards optimal composition.

[RQ 2] Is it possible to autonomously locate optimal software composition (within a

set of available options) with no predefined nor domain-specific information?

This thesis shows that emergent systems accurately converge towards optimal

software compositions with no predefined information in both local (Sec. 5.1) and

distributed settings (Sec. 5.2) when exposed to a variety of workloads in different

contexts, with few exceptions. Particularly, this thesis shows:

• Fig. 5.4 shows the system accurately converging when exposed to distinct

synthetic workloads using the brute-force algorithm. This graph also shows

the system quickly changes its composition when detected a previously seen

workload and takes 420 seconds to learn a newly identified environment.

• Fig. 5.5 shows the system accurately converging when exposed to NASA trace.

• Fig. 5.6 and Fig. 5.7 show the system accurately converging using the featured-

based learning approach, which converges 360 seconds faster than the brute-

force approach in the best-case scenario, and 240 seconds faster than the brute-

force approach in the worst-case scenario.

• Fig. 5.12, Fig. 5.13 (Workload 1) and Fig. 5.15 show the system accurately

converging in distributed settings, with the exception of the decentralised

approach when exposed to high variation of requested files (Workload 2 in

Fig. 5.13).

The results shown in this thesis demonstrate that emergent systems are ca-

pable of autonomously locate optimal compositions of software in both local and

distributed settings, specially using the brute-force (and centralised, in distributed

settings) approach. One of the main problems, however, is the growth of the search

space that directly affects convergence rate. For that problem, this thesis presented
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a featured-based algorithm that are shown to perform significantly better than the

brute-force (baseline) approach. Nonetheless, the featured-based approach relies on

the assumption that the worst software composition of the best located feature has

to be better than any composition of the remaining software features. Further inves-

tigation to propose an approach with no such limitation is required. The exception

cases where emergent systems could not accurately converge are:

• Fig. 5.13 (Workload 2) shows the distributed coordination approach exposed

to high variation of requested files. Due to interference effects from simulta-

neously executing learning modules, the system is unable to converge.

• Fig. 5.17 shows instability during exploration phase when the system are ex-

posed to environments that present overlaps in the classification ranges.

• Fig. 5.18 shows the system converging to a suboptimal composition due to

mid-exploration workload change.

• Fig. 5.19, Fig. 5.20 and Table 5.1 suggests that different observation window

sizes can affect the convergence accuracy of system, showing observation win-

dow of 1 and 2 seconds significantly affecting the system’s overall performance.

For the distributed environment case, where the system suffered from interfer-

ence effect, this thesis presented the hybrid approach (hierarchical coordination,

Sec. 5.2.3, Fig.5.15) as alternative. The hybrid approach relies on a set of assump-

tions to work, thus further investigation is required to enable accurate convergence

in scenarios where those assumptions are not held. Furthermore, the limitations of

the environment classification algorithm and the effects of the observation window

size in the convergence accuracy require further investigation.

[RQ 3] How can an autonomous system coordinate multiple instances of emergent

software to converge to optimal available global compositions in distributed

settings?

The coordination strategy that had the best results in terms of convergence rate

and accuracy was the hybrid approach, which is a coordination approach that is
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between a completely distributed and completely centralised solution. This thesis

explores three coordination approaches: a centralised, a completely distributed and

a hybrid approach. The evaluation (Chapter 5) shows that the centralised learning

always converges, but it is inefficient because it explores every single composition in

every participating node, always converging in the number of available global com-

positions times the observation window size (i.e. getConfigs()∗wt) as described in

Chapter 4 and evaluated in Sec. 5.2.2 from Chapter 5. The decentralise learning,

however, converges faster (15 times faster considering the characteristics of the ex-

periment demonstrated in Sec. 5.2.2 from Chapter 5), because the search space is

divided among the system’s nodes. The disadvantage of this approach is the learn-

ing interference form running multiple learning modules concurrently, which affects

the system’s convergence. Finally, the hierarchical approach (the hybrid approach)

divides the search space by running multiple learning modules, and avoids learning

interference by triggering learning level by level in the hierarchy. This approach was

shown to be the most suitable in terms of convergence rate and learning accuracy,

whilst minimising learning interference effects, being used to not only find optimal

compositions but also to determine the node’s role in the system, as demonstrated

in Sec.5.2.3, particularly in Fig.5.15 from Chapter 5.

6.4 Contributions

The main contributions of the thesis are i) the proposal of the Emergent Software

System concept overcoming significant human dependency in creating self-adaptive

systems, and ii) the validation of the concept, showing that different software com-

positions have different performances under different operating conditions, and that

emergent systems are able to autonomously converge towards optimal performance.

The proposal of the Emergent Software System concept is the result of extensive

practical experiments using real-world datacentre-based software, making it a con-

cept deeply grounded in reality. In addition, this thesis demonstrates the potential

of emergent systems approach by minimising human efforts in creating autonomous

systems, through a complete automated creation and evolution of systems’ adapta-

tion logic. More specifically this thesis:
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• Presented key challenges in the Emergent Software System problem space

(Chapter 3), and addressed the most important challenges to realise emergent

systems, which resulted in the following contributions:

1. An online learning algorithm (Brute-force algorithm in Chapter 4) that

uses runtime adaptation to exhaustively explore alternative system com-

positions in different operating conditions to move towards optimal solu-

tions, with high convergence accuracy (see Chapter 5);

2. An extension of the brute-force algorithm (Featured-based algorithm in

Chapter 4) that addresses the rapidly growth in the search space of

available software compositions. As a consequence, the feature-based

approach is key to realise the Emergent Systems in distributed settings;

3. An environment classification algorithm (described in Chapter 4) based

on perception data ranges, handling distortion effects resulted from the

collection of perception data through different software compositions;

4. The External Reference approach and Hierarchical Coordination algo-

rithm (described in Chapter 4) that support the extension of the local

design-by-composition process to realise distributed emergent systems.

• Introduced a framework to orchestrate Emergent Software Systems. The con-

struction of the framework yielded the following contributions:

1. The PAL framework architecture (Chapter 4) itself which encapsulates

the three main tasks to realise Emergent Systems. The tasks of Percep-

tion (for system monitoring), Assembly (for autonomous system composi-

tion) and Learning (for learning optimal available software compositions);

2. The availability of the framework implementation for results replication.

The framework implements the algorithms and concepts described in this

thesis, and are available for download at [33], [34], [35] and [36].

• Argued for a paradigm shift in the autonomous software creation process, by

changing the focus from autonomous software adaptation to autonomous

software composition. The focus on autonomous software composition is
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one of this thesis’ key contributions. Software adaptation becomes a conse-

quence of composition, rather than the main focus for creating autonomous

solutions. This paradigm shift is at the core of Emergent Systems, and reduces

the up-front effort and complexity involved in designing autonomous solutions,

by pushing design decisions to be made at runtime by the system itself.

• Applied the concept of Emergent Systems to create a complete emergent web

platform. The contribution is the creation of a web platform that does not

require the classical process of optimising web platforms, which consists of:

expert analysis of historical workload, manually profiling the web platform,

creation of models to predict workload changes, and manual parametric tuning

of the web platform. Instead, the emergent web platform continually self-

composes and self-optimises based on real-time observed workload.

6.5 Future Work

The defined Emergent System concept to create autonomous systems contributes to

the Autonomic Computing vision in minimising human involvement, mainly in the

fine-grained software development, composition and optimisation tasks. To further

advance this vision and consolidate the presented Emergent System paradigm, this

section presents a list of avenues for future work.

Distributed Detection of Invalid Distributed compositions: The hierar-

chical coordination algorithm presented in this thesis is a centralised and offline

solution to detect and avoid invalid compositions. Although this approach was

shown to address the problem, further investigation is needed. A decentralised de-

tection of invalid distributed compositions, for instance, would make the detection

and avoidance of invalid compositions more scalable. Furthermore, the learning ap-

proach could benefit from information sharing, and consider problems derived from

system’s errors. A promising area to explore is the multi-agent system’s concept of

Distributed Constrained Optimisation (DCOP) [59]. These problems consist of find-

ing optimal actions when constraints and variables are distributed among agents.

Further investigations on DCOPs might provide new insights to create large-scale

distributed emergent systems.
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High-level Goals for Emergent Systems: Although the concept of Emergent

System considers high-level goals to guide software optimisation, this thesis does

not address any aspects of systems goals. Future research in this area is important,

specially to define the format to express system goals and how these goals should be

used to generate perception data (events and metrics) – which is currently manually

defined. Relevant research with Domain-specific (Modelling) Languages (DSL and

DSML) have been conducted to address the definition of high level systems goals

[22, 56, 67]. The principles discussed in these papers could be complementary and

applicable to further develop the emergent system concept.

Other Application Domains and Platforms: The application of the Emer-

gent System concept to other application domains is important to further validate

and expand the concept. A timely and important scenario is the creation of highly

heterogeneous and volatile distributed infrastructures (e.g. systems running on both

IoT and cloud platforms). The application of emergent systems to underpin such

platforms increases their potential, leveraging the creation of future applications.

Furthermore, emergent systems could be explored in critical systems for allowing

software to handle the unexpected, e.g. in self-driving vehicles [83] or applications

that assist and perform surgical procedures [80]. Finally, Emergent Systems could

be integrated to the software development cycle as a platform to assemble software

autonomously and test different architectural compositions at runtime. The knowl-

edge generated by these systems can then be used by developers to further improve

the system, making software an active member of its own development team.

Range-based Environment Classification Limitations: The environment clas-

sification algorithm presented handles important challenges in realising Emergent

Systems such as perception data distortions, environment abstraction and multi-

dimensionality. However, the presented approach was shown to not handle mid-

exploration changes, and environments with overlapping ranges. Future research

is required to address these limitation. A promising area to explore is Partially

Observable Markov Decision Process (POMDPs) [65] to handle overlapping ranges,

where the system is uncertain about which environment it is executing.
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Mixed (Online / Offline) Learning Approach: The explored online learning

approached consider a reactive strategy, making decisions assuming that the system

will continue to behave as it recently did. A prediction strategy, on the other

hand, might consider the general trend of the operating condition, making decisions

assuming the direction the environment is taking, rather than the information it

has just collected. Also, a pure offline learning approach that uses spare computing

resources, might benefit application domains that are latency-sensitive. Exploring

both approaches in parallel is an interesting perspective for future research.

Different Metrics and Multi-goal Emergents Systems: The definition of

metrics in the Chapter 4 as a set of numeric values related to the systems’ health

opens possibilities to represent a plethora of system’s characteristics. In this thesis,

performance (in terms of response time) was explored, but other metrics as resource

usage or system’s unavailability can create different dimensions for the Learning

module to exploit. Also, as contemporary systems are often multi-goal, a future

research avenue would be to explore multi-goal (multi-metrics) emergent systems.

6.6 Final Remarks

The author argues that the presented concept of Emergent Software Systems is

key to realise the Autonomic Computing vision in minimising human involvement

in fine-grained system’s management tasks. This thesis presented the definition of

such concept and described the challenges of creating such systems. Furthermore,

this thesis presented the first emergent framework applied to realised emergent data

centre software. The results presented in this thesis demonstrate the feasibility and

potential of the concept in both local and distributed systems, whilst also pointing

areas for further investigation. Finally, this thesis has presented the very first fully

functioning emergent web platform capable of self-assembling and self-optimising

with no prior domain-specific information, reducing the up-front effort of optimising

web platforms. The author invites the autonomic research community to further

investigate the potential of emergent systems and to consolidate its concept.
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APPENDIX A

Architectural Descriptions

Figure A.1: Example of architectural description.

Here I introduce the architectural description notation, used by the PAL frame-

work to uniquely describe architectural compositions. This description is used by

the Learning module to interact with the Perception+Assembly modules when col-

lecting a list of available compositions or requesting the Assembly module to change

the software composition to another. An example of an architectural description

is illustrated in Fig A.1. The image has a visual representation of an architectural

composition on top of the image, and at the bottom there is a representation of the

description of the same composition. The architectural description has two parts:
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the first part is a list of the components that are part of the architecture, the sec-

ond part is the relationship among the components. In this example, the relation

determines that a component A is connecting to component B through an interface

I, i.e. A:I:B. These are unique descriptions, meaning that there cannot exist the

same description for two different architectures, since the description itself contains

the necessary information to replicate the actual architecture.



APPENDIX B

Proxy Expression Language

The Proxy Expression Language (PEL) is a tool to precisely express where to place

proxy components in the architectural composition. This language is used by the

Learning module to ensure that the generated proxy components are kept in place,

monitoring the intended interface even when the software compositions are con-

stantly changing. The Perception module is responsible to interpret the expression

and make a list of architectural compositions without proxy components associat-

ing these compositions with their equivalent with proxy components added to the

right place (interface or component) according to the expression created by the

Learning module. Therefore, whenever the Learning module requests the software

composition to be changed, the Perception module compares the new architectural

description with its list and decides: if the new composition matches one of the com-

positions in the list, the Perception module changes the software composition to the

corresponding new composition with the proxy component in the right place as ac-

cording to the expression. This strategy enables the Learning module to work with

architectural descriptions with no proxy component added, the Perception mod-

ule is responsible to apply the PEL expression provided by the Learning module

once (before it starts the experimentation process) and to transparently add proxy

components to the appropriate place in the software architectural composition.

The expression language explores the concept and format of the architectural

description to determine what interface the proxy component must monitor. An

example of PEL is illustrated in Fig. B.1. The image shows two architectures (1
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Figure B.1: Example of PEL expressions.

and 2) with the proxy component placed to monitor two different interfaces. The

expressions are similar to composition descriptions having two parts. The first

part of the expression is a list of components, the second part is the expression

that informs the Perception module where to place the proxy component. The

expression itself is also similar to the ‘relation’ in a composition description, having

a the following format: component:interface:component. The difference in the

expression is the addition of the element [0] after the interface name. This element

indicates that the component in the first position in the list of components (first

part of the expression) must be placed to monitor that specific interface and between

the specific components named on the right and on the left of the expression. The

expression allows the use of the special character ∗ to indicate any component, and

numbers to indicate a specific component on the list of components specified in the

first part of the expression. The first expression places the proxy on the interface

A between components that require and provide A. Contrarily, in architecture 2,

the expression places the proxy on interface C, specifically in the composition with

component CAb requiring interface C connecting to any component providing C.

Furthermore, the expression language also provides logic operators that enable the
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composition of expressions to place different proxy components in different places

in the architecture. The operators are: or (represented by the symbol “;”) and and

(represented by the symbol “&”). Examples of these kind of expressions are:

i) |ProxyA, ProxyC,CAb|(*:A[0]:*) & (2:C[1]:*)|

and

ii) |ProxyB, ProxyC, CAa, CAb|(2:B[0]:*) ; (3:C[1]:*)|

The first expression (i) places the proxy component ProxyA on interface A, and,

at the same time, whenever the component CAb is present in the architecture, the

system also places the ProxyC on interface C. Note that when the architecture

composition has CAc instead of CAb, ProxyC is not used. The second expression

(ii), places ProxyB on interface B in cases when component CAa is in the archi-

tecture , or in cases when component CAb is in the architecture, the system places

ProxyC on interface C.



APPENDIX C

Proxy Components

Figure C.1: Example of a generated proxy component responsible to collect infor-
mation from the HTTPGET interface, generating ResponseT ime as metric and
MimeType as event. This component was used to monitor the Web Platform.
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