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Abstract: Successful development of a marine WEC strongly relies on development of the 

power generation device, which needs to be efficient and cost-effective. An innovative multi-

input approach based on the CNN is investigated to predict the power generation of a WEC 

system using a double-buoy OBD. The results from the experimental data show that the 

proposed multi-input CNN performs much better predicting results compared with the 

conventional artificial network and regression models. Through the power generation 

analysis of this double-buoy OBD, it shows that the power output has a positive correlation 

with the wave height when it is higher than 0.2 m, which becomes even stronger if the wave 

height is higher than 0.6 m. Furthermore, the proposed approach associated with the CNN 

algorithm in this study can potentially detect the changes that could be due to presence of 

anomalies and therefore be used for condition monitoring and fault diagnosis of the marine 

energy converters. The results are also able to facilitate controlling of the electricity balance 

among energy conversion, wave power produced and storage. 
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Abbreviations and Notations 

WEC wave energy converter RNN recurrent neural network 

OBD oscillating body device 1D 1-dimension 

CNN Convolutional Neural Network 2D 2-dimension 

MCNN Multi-input Convolutional Neural 

Network 

AM autoregressive models 

AI artificial intelligence LDS Linear Dynamical Systems 

TRL technology readiness level HMM Hidden Markov Model 

OWC oscillating water column ReLU Rectified Linear Unit 

PTO power take-off BP back propagation 

SCADA supervisory control and data 

acquisition 

SGD stochastic gradient descent 

ML machine learning RMSE root mean square error 

ECMWF European Centre for Medium-Range 

Weather Forecast 

MAE mean absolute error 

GDAS Global Data Assimilation Scheme R2 coefficient of determination 

ANN artificial neural network LR Linear Regression 

PV photovoltaic RT regression tree 

LS least-square RLR Robust Linear Regression 

SVM support vector machine MT medium tree 
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NN neural network BT boosted tree 

LSTM long short term memory WT wavelet transform 

DBN Deep Brief Net 
  

1. Introduction 

Increases in energy demand and recent concerns regarding climate change necessitate 

developing reliable and alternative energy technologies in order to make a sustainable 

development of the society. Wave energy, as an enormous potential and inexhaustible source 

of energy, has still remained widely untapped [1]. Until now, a variety of wave energy devices 

have bloomed based on different types of technologies. Most of them absorb energy from the 

wave height and the water depth. The location for a WEC system typically include shoreline, 

near-shore and offshore [2]. With the contribution from the improved technological support, 

various types of concepts/prototypes to extract wave energy from ocean have been emerged in 

recent years. However, the technical level is still in an immature stage [3]. In other words, 

despite the high TRL (level eight) achieved by some devices [4], their commercial readiness still 

needs to be proven. Following the pace of offshore wind energy, it is a priority to understand 

the operation and performance of the WECs in order to demonstrate progressively these 

devices under ocean conditions and increase electricity generation. The performance was 

considered as not only for redesign, but also for operation and maintenance. 

So far, more than 1,000 WECs have been patented worldwide, which can be classified into 

three categories [5]: OWC devices [6], oscillating body systems [7], and overtopping converters 

[8]. Among them, a mechanical interface is required to convert the intermittent multi-direction 

motion into a continuous one-direction motion and the hydraulic motors represent one of the 

most frequently equipped transmissions in the oscillating body systems [10]. The schematic 

diagram of a typical hydraulic oscillating body system is shown in Figure 1. A WEC is typically 

formed by three stages when converting wave energy to electrical energy. This includes (a) a 

front interface, the portion of a device that directly interacts with the incident waves, (b) a PTO 

system used to transform the front-end energy into other forms of energy, like mechanical 

energy, and (c) an electrical energy generation system that takes the responsibility to do the 

final conversion [3]. In the wind energy industry, the SCADA system, which records hundreds 

of variables related to operational parameters, is installed in most modern wind farms [11]. 

Compared with wind turbines, the data available from WECs are not as abundant in quantity 

because of the presently immature ocean wave technologies. However, it is worth mentioning 

that acquiring data from the operating WECs is more difficult than the wind turbines because 

of not only the harsh ocean conditions but also the high cost. 

In the operation and performance domain, a reliable power forecast plays a crucial role in 

reducing the need of controlling energy, integrating the highly volatile production, planning 

unit commitment, scheduling and dispatching by system operators, and maximizing 

advantage by electricity traders. In addition, the accurate predication of wave loads, motion 

characteristics and power requirements are significantly important for the design of WEC 

converters [12]. For the grid, the accurate prediction of wave energy is considered as a major 

improvement of reliability in large-scale wave power integration and of managing the 

variability of wave generation and the electricity balance on the grid. As a result, monitoring 

and predicting the power output of the WEC system based on sensor data from each part of 

the system become increasingly valuable. The fast growth of ML and deep learning 

technologies associated with statistical analysis give wings to the forecast and evaluation.  
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Figure 1. Schematic diagram of the wave power generation system 

Traditionally, wave height and direction can be forecasted by both statistical techniques 

or physics-based models [13], [14]. There are many examples of the wave forecast system based 

on physical models. For example, the ECMWF and the WAVEWATCH-III organizations have 

performed predictions using wind data from the GDAS, Ocean weather and Gulf of Mexico 

[15]. The statistical approaches such as neural networks and regression-based techniques have 

also made great progresses [16][17]. By contrast, the physics-based wave forecasting models 

are widely used due to the mature technology and adequate historical data. The wave 

prediction can take advantage of opportunities from rapid development in recent years in the 

wind power prediction. Many algorithms, approaches and methods have been developed in 

the domain of statistical models in the renewable energy prediction, such as wind power and 

solar power prediction. So far, ANN methodology has been applied to predict short–mid-term 

solar power for a 750 W solar PV panel [20]. A LS SVM based model was applied for short-term 

forecasting of the atmospheric transmissivity, thus determining the magnitude of solar power 

[21]. The very short-term wind power predictions problems were addressed in the wind power 

industry by developing the NN model and the SVM, boosting tree, random forest, k-nearest 

neighbour algorithms [18], [19]. The data-based models with wind speed, wind generator 

speed, voltage and current in all phases as inputs could achieve an accurate prediction of the 

wind power output [22]. For medium-term and long-term wind power prediction, ANN 

models, adaptive fuzzy logistic and multilayer perceptrons are the most popular kinds of 

methods [23]-[25]. Moreover, as the deep learning algorithms bloom, the CNN, LSTM, DBN 

and RNN modelling have become popular in some renewable energy predictions. A deep RNN 

was modelled to forecast the short-term electricity load at different levels of the power systems. 

Deep multi-layered neural model has been reported to evaluate the electricity generation 

output from a wind farm 1 day in advance. A novel hybrid deep-learning network associated 

with an empirical wavelet transformation and two kinds of RNN was employed to make the 

accurate prediction of the wind speed and wind energy [26]- [28]. 

 The primary intention of this work is to illustrate the power prediction and performance 

of a hydraulic WEC operating in the open sea condition for more than two months based on 

statistical analysis and physical modelling technologies. A multi-input approach based on 

CNN is presented to predict the power output at a particular coastal area. The CNN network 

reaches considerable achievement in terms of image and video recognition as well as language 

processing. One of the novelties is that the algorithms capable of converting the multi-input 

time series data into 2D images play a unique role in the construction of CNN model. The 

performance turns out to be remarkably better than other models, indicating its strong 

feasibility and suitability for power prediction. In addition, the connection between converter, 

hydraulic system, generator, and the grid will be clarified through analysing the wave, 

hydraulic motor pressure, and electrical data.  

For this purpose, this paper is organized as follows: Section 2 gives the details of the device 

and the measurement datasets used in the paper and presents the performance of the WEC. 
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Section 3 describes the methodology of CNN algorithm in details. In Section 4, performance 

and results of the proposed model are presented. Finally, Section 5 summarizes the conclusions 

from the study. 

2. Operation and performance analysis 

2.1 Data acquisition 

Normally, there are three conversion stages to extract wave energy from the ocean. This 

includes (a) capture of the kinetic energy by the power capture system of WEC, (b) conversions 

to the mechanical energy by PTO and then to the electrical power by generators, such as direct-

drive linear generators; (c) storing of the electricity into batteries or transport to grid Error! 

Reference source not found.. The data used in this study were acquired from a demonstrating 

WEC deployed in open sea condition in a near-shore area. The principle of this WEC contains 

a double-buoy hydraulic OBD with ten kW level capacity with a time duration from February 

to April 2017. As shown in Figure 2, the WEC contains an oscillating buoy system and 

comprises of four main parts, i.e., power capture, hydraulic motor, generator and power 

transmission. The oscillating buoy captures kinetic energy through its up-and-down motions 

of the ocean waves. The hydraulic motor and generator take the responsibility to convert the 

kinetic energy into electricity and transfer to land through sea cable. In the first conversion, the 

wave energy is captured by two oscillating buoys while a hydraulic pressure system is 

deployed in the second conversion. The power capture system uses hydraulic rams installed 

inside of the two oscillating buoys. This 10 kW WEC prototype was invented by a research 

institution in 2016 and made the first sea testing at a testing station in SanYa, Hainan Province, 

China in 2017. The two oscillating buoys were installed on the edge of a dock side by side that 

were fixed together and moved up and down simultaneously along with the wave climate. The 

wave condition in this area changes significantly during seasons. The simulating data from 

numerical model show that the mean wave height reaches 0.7 m in summer with major south 

direction. The wave height in winter is much higher than summer, with 2.0 m maximum height 

and northeast direction [29]. The real wave heights are observed by an optical wave meter and 

recorded every 4 hours from 8:00 to 18:00 daily from February to April 2017. The real data show 

the maximum wave height is approximately 1.1 m during the observation period. 

 
 Figure 2. Schematic diagram of the hydraulic oscillating body system 

Approximately 20 readings for various pressures, speed, voltage and current signals were 

recorded at a one-minute interval. These readings were classified into three groups: resource 

data, hydraulic data and electrical data. In the hydraulic group, the four readings (hydraulic 

flow, hydraulic pressure, motor speed and motor torque) are most significantly associated with 

the power output and will be used in the study. The pre-process of data is necessary to 

eliminate digital and constant signals and filter out those data collected when the WEC is 

inactive or abnormal. There are gaps existed between the data normally because the generator 
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is inactive. These occasions may be caused by the periods of low wave energy and harsh 

condition; some abnormal values within the data caused by disturbing signals and power 

failure also need to remove. Figure 3 shows the measurement data of these four variables after 

pre-processing.  

 
 Figure 3. Examples of pre-processed data measured from the WEC 

2.2 Power curves  

The extraction energy efficiency of wave energy varies wildly with different WECs 

because of the individual extents of technologies. Typically, the extraction energy efficiency 

between wave resource and hydraulic system can be calculated by dividing wave resource with 

powers achieved by the hydraulic system, which depends on the level of maturity of devices. 

The wave resource can be calculated by the equation below: 

 𝑃𝑟𝑒𝑠 =
1

8
𝜌𝑔𝐻2𝐶𝑔 (1) 

where 𝑃𝑟𝑒𝑠 stands for the power input from wave power, 𝜌 stands for the density of sea 

water,  𝑔 stands for the acceleration of gravity, 𝐻 stands for the wave height and 𝐶𝑔 stands 

for the group velocity. The group velocity can be calculated by the equation below: 

 𝐶𝑔 =
1

2
(1 +

2𝑘ℎ

𝑠𝑖𝑛ℎ (2𝑘ℎ)
)

𝐿

𝑇
 (2) 

where h stands for the waver height, L stands for the wave length,  𝑇 stands for the 

wave period and 𝑘 = 2𝜋/𝐿 stands for numbers of wave [30]. 

The input and output power of the hydraulic system can be calculated by the equation 3 

and 4 respectively: 

 𝑃𝑡 = 𝑝𝑟𝑒 × 𝑄 (3) 

where 𝑃𝑡 stands for the input power of the hydraulic system; 𝑝𝑟𝑒 stands for pressure 

and 𝑄 stands for the flow. 

 𝑃 =
𝑀 × 𝑛

9550
 (4) 

where 𝑃 stands for the power output of the hydraulic system; 𝑀 stands for torque and 

𝑛 stands for speed.  

With the wave height, input and output power of the hydraulic system being known, the 

wave-power curves of this device can be draw up, elaborating the relationship between wave 
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height and active power output from the hydraulic system, as illustrated in Figure 4. These 

green dots denote the input power while the blue dots represent the power output. It can be 

observed that both power input and output tend to keep a positive correlation with the wave 

height when it is higher than 0.2 m. The positive correlation diverges from each other when the 

wave height is higher than 0.6 m. In general, these trends coincide with calculations from the 

equation of wave energy ([31]) that varies with the square of wave height. It can also be seen 

that the device is kept inactive when the wave height is below approximately 0.25 m, indicating 

the start wave height of this device is 0.25 m. When compared between these two power curves, 

it is found that the efficiency from wave energy to hydraulic power output have the little 

difference between 0.2 m and 0.6 m. Nevertheless, it increases smoothly with increasing of the 

wave height when higher than 0.6 m; this could reveal the mechanism of input and output 

power efficiency of this particular device. 

 
Figure 4. Comparison of the input and output power of the hydraulic system  

2.3 Energy conversion efficiency  

The efficiency of a PTO system is vital to determine the stability and reliability of the device. 

Of the current WEC concepts developed so far, 42% use hydraulic systems to increase the 

overall efficiency of the converters and the electric performance [32]. For this WEC, the 

efficiencies from three parts, i.e., hydraulic system, electrical generator and electricity storage, 

were evaluated using historical data. The data were averaged every 4 hours for an entire day 

of 24 hours (6 groups’ data each day). The average efficiency of the hydraulic system Ef is 

calculated by P Pt⁄ . Here, P represents the average conversion efficiency from the power input 

while Pt represents the average conversion efficiency from the power generation.  

It can be seen from Figure 5 that the efficiencies from hydraulic system, electrical 

generator and electricity storage show similar tendencies to each other. The hydraulic system 

demonstrates the highest efficiency between 70-80% during the hydraulic conversion. The 

electrical storage is slightly lower than the hydraulic system, between 60% and 75%. The 

electrical generator consumes the large proportion of the energy and remains 30% to 45% of 

the efficiency. Evidently, all the three efficiencies grow rapidly following the peak of wave 

height nearby 10 m at 300 samples. The discrepancy between 300 and 350 samples might be 

due to shortage of the wave direction and data period. It is considered that the high efficiency 

level may be caused by the wave period, which appropriate for the converters. The wave 
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direction also causes variation of the energy efficiency because the geographic terrain and 

conditions can amplify the wave height and concentrate wave energy on a particular position 

[33]. The curves also give the information that the generating conversion has the greatest 

potential for improvement. 

 
Figure 5. The comparison of different conversion efficiencies from the hydraulic system, 

electrical generator and electricity storage 

Finally, the wave height-efficiency curve can be drawn, as shown in Figure 6, which 

successfully shows the correlations between the wave height and the hydraulic power. It is 

observed that the hydraulic conversion efficiency increases sharply as the wave height grows 

up at the beginning. The gradient of change becomes low when the wave height increases to 

between 0.5 m and 0.8 m, and it keeps almost stable after 0.8 m. The curve also illustrates some 

of the most important characteristic of this WEC, such as the start wave height and rated wave 

height. 
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Figure 6. The wave height –hydraulic conversion efficiency curve of this WEC 

3. Methodology 

3.1 Convolutional Neural Networks 

Due to the 1D time series data from WEC may ignore vital information between time 

intervals, we applied a novel CNN algorithm, which convert 1D input data into 2D images. 

Traditionally, AM, LDS, and the popular HMM represent the classic approaches for modelling 

sequential time series data. The parameters to be predicted are used as perceptual judgements 

and features to do the classification [34]. However, deep learning, which is derives from ML is 

able to learn high-level abstractions in data by utilizing hierarchical architectures [35]. As one 

of the deep learning algorithms, CNN method has been considered one of the most appropriate 

methods to address the predicting problems. It has addressed plenty of problems in terms of 

sequential learning and shown its great potential in recent years [36]. The input and output 

data of the network observed in this paper is considered as a multiple data source, showing the 

connections between different parts of the device. The wave represents the original driver of 

the whole generation system, which could not be predicted accurately. This novel CNN 

approach shows advantages on prediction of the physical variables and makes considerable 

improvements in terms of the standard deviation and mean absolute values of the prediction 

performance. It also outperforms ML by a significant forecasting stability and accuracy. 

Different from the linear maps applied by ANNs, CNN considers a particular form of 

convolutional layers (or convolutional filters). Linear functions used by the convolutional 

filters convert the input data into images in a sliding-window fashion [37]. Among the many 

deep neural networks, the CNN demonstrates excellent performance in the field of image 

processing, which comprises convolutional layers, pooling layer, and fully connected layers 

[38]. In addition, there are many advantages to apply CNNs. This is because (a) the connections 

of receptive fields are able to reduce plenty of parameters, (b) the replication of each filter 

shares the same parameters (weight vector and bias) and forms a feature map, and (c) the 

diverse positions along the network are participated to compute features using convolution 

activations statistics [39], [40].  
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3.2 Network Architecture 

This network structure is formed by four hidden layers and the relevant hyper-parameters 

are shown in Figure 7. The values of the hyper-parameters used in the network are listed in 

Table 1. The input layer is four time series of observations collected from the hydraulic system 

of a WEC. The 1D to 2D conversion layer is used to rearrange one image set by the four series 

of observations mentioned in Section 2.1. The size of input layer is set to 28 × 28 pixels because 

28 pixels are the default value of digital image in traditional CNN. The convolution layer 

performs convolution operations with the kernel size of 5×5 to acquire feature maps of the 

image. The dimension of the first convolution layer is set as 24 × 24 × 25, which convolutes an 

input image size from 28 × 28 pixels (25 layers set by experience). All the convolution layers are 

connected to the ReLU activation functions instead of sigmoid function because ReLU is faster 

and can reduce likelihood of vanishing gradient [41]. We use the max-pooling layer 2 × 2 and 

second convolution layers (5×5 kernel size and 25 layers as well). Finally, the dimension of the 

fully connected layer is set as 40, followed by a predict layer as required. 

Figure 7 The fundamental structure of the CNN  

Table 1. List of the values of hyper-parameters used in this network 

Hyper Parameters Values 

Input variables 4 

CNN Layers 25 

Fully Connected Layer 40 

Predict Layer 1 

Batch size 20 

Number of Epochs 100 

The activation function of the predict layer is a linear function (identity function, i.e., y = 

x) because the values are unbounded in terms of regression. 

The CNN is trained using the least absolute deviations (L1) as the loss function to 

minimize the absolute differences between the jth target value 𝑑0
(𝑗)

 and the jth estimated value 

𝑑𝑡
(𝑗)

 of this network. The loss function L1 is defined as 
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 𝑆 = ∑ |𝑑0
(𝑗)

− 𝑑𝑡
(𝑗)

|

𝑛

𝑗=0

 (5) 

where n denotes the size of the dataset.  

Convolution Layer: 

The convolution layer is comprised from a two-layer feed-forward NN. The NN uses a 

convolution algorithm to extract the feature maps from original image [42]. As mentioned 

above, the neurons in the same layer have no connections. But the neurons in different layers 

are deployed in order to simplify the feed forward process, as well as back propagation. 

Noticeably, the weights and feature map are convolved in the previous layer. An activation 

function is used to generate the current layer and output feature maps. The convolution layer 

is calculated as follows, 

 𝑎𝑖,𝑗 = 𝑓 ( ∑ ∑ 𝑤𝑚,𝑛𝑥𝑖+𝑚,𝑗+𝑛 + 𝑤𝑏

2

𝑛=0

2

𝑚=0

) (6) 

where xi,j denotes a specific element in the input image, wm,n denotes the weight in mth row 

nth column, wb represents bias of the filter, ai,j is the element of the feature map. Notice that the 

ReLU function is chosen as the output activation function f. 

Pooling Layers: 

Pooling layers are typically used immediately after convolution layers to simplify the 

information. Traditionally, convolution layers associate with pooling layers for the sake of 

constructing stable structures and preserving characteristics. Another advantage of applying 

pooling layers is that it is able to save modelling time remarkably. There are many pooling 

methods available such as max pooling and average pooling. We thus focus on average pooling, 

which in fact allows us to see the connection with multi-resolution analysis. Given an input x 

= (x0, x1, … , xn-1)∈Rn, average pooling outputs a vector of a fewer components y =(y0, y1, … , ym-

1)∈Rm as 

 𝑦𝑗 =
1

𝑝
∑ 𝑥𝑝,𝑗+𝑘

𝑝−1

𝑘=0

 (7) 

where p defines the support of pooling and m = n/ p. For example, p = 2 means that we 

reduce the number of outputs to a half of the inputs by taking pair-wise averages. 

Fully connected Layers: 

Usually the fully connected layer is located at the last hidden layer of the CNN. It is a 

linear function and is able to concentrate all representations at the highest order into a single 

vector. 

Specifically, it is easy to change the highest order representations, P ∈ ℝ𝐾ℎ×𝑑×𝑝 for, 

𝑃1
ℎ , … , 𝑃𝐾ℎ

ℎ (𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑃𝑘
ℎ ∈ ℝ𝑑×𝑝) ,  into a vector, then convert it with a dense matrix H ∈

ℝ(𝐾ℎ×𝑑×𝑝)×𝑛and apply non-linear activation: 

 𝑥̂ = 𝛼(𝑝𝑇𝐻) (8) 

where 𝑥̂ ∈ ℝ𝑛can be seen as the final extracted feature vector. The values in matrix H are 

parameters optimized during training. The n denotes a hyper-parameter and the 

representation size of the model [43]. 

Predict Layers 

Linear predict layers are used to forecast the final results after obtaining the feature vector 

𝑥̂𝑖𝑟 ,  

 𝑦𝑖𝑟 = [1, 𝑥̂𝑇] ∙ 𝑊 (9) 

The values in vector w will be optimized during training. 

Back propagation algorithm 

The BP algorithm applies with SGD and usually addresses the power prediction issues. 



 

11 
 

The parameter weights and biases are often used in the CNN. The BP is able to minimize the 

residuals 𝐸𝑚  between the prediction and the target using following equation, 

 𝐸𝑚 =
1

𝑚
∑ ∑(ℎ𝑗

𝑖 − 𝑦𝑗
𝑖)

2
𝑑

𝑗=1

𝑚

𝑖=1

 (10) 

where 𝐸𝑚  represents squared-error loss function. The weights W and different biases b, 

β, c can be undated using following rules, 

 𝑊 = 𝑊 − 𝜂 ∙ 𝜕𝐸𝑚/𝜕𝑊 (11) 

 𝑏 = 𝑏 − 𝜂 ∙ 𝜕𝐸𝑚/𝜕𝑏 (12) 

 𝛽 = 𝛽 − 𝜂 ∙ 𝜕𝐸𝑚/𝜕𝛽 (13) 

 𝑐 = 𝑐 − 𝜂 ∙ 𝜕𝐸𝑚/𝜕𝑐 (14) 

here, ∂Em/ ∂W, ∂Em/ ∂b, ∂Em/ ∂β and ∂Em/ ∂c represent the partial derivatives of the 

loss function in terms of W, b, β and c. 

3.3 Model Performance Metrics 

Three mainstream performance metrics are considered here to evaluate the accuracy of 

forecasting, which are RMSE, the MAE and the R2. For the RMSE, it is more sensitive to a large 

deviation between the forecasted values and the actual values. The MAE, on the other side, 

performs the absolute difference value between the forecasts and the actual values. The MAE 

also describes the magnitude of an error from the forecast on average. RMSE and MAE are 

calculated by Equation 15-17.  

 𝑅𝑀𝑆𝐸 =
1

√𝑁
√∑(𝐼(𝑝𝑟𝑒𝑑,𝑖) − 𝐼𝑚𝑒𝑎𝑠,𝑖)

2
𝑁

𝑖=1

 (15) 

 𝑀𝐴𝐸 =
1

𝑁
∑|𝐼(𝑝𝑟𝑒𝑑,𝑖) − 𝐼𝑚𝑒𝑎𝑠,𝑖|

𝑁

𝐼=1

 (16) 

Here the coefficient of determination is employed to optimize the appropriate model 

structure, calculated as follows, 

 𝑅𝑇
2 = 1 −

𝜎𝑒
2

𝜎𝑦
2
 (17) 

where 𝜎𝑒
2 denotes the variance of the residuals between model predict and the actual 

output, also known as sample residuals and 𝜎𝑦
2 denotes the variance of the actual output. It is 

clear that the 𝑅𝑇
2  becomes unity when the residuals turn into low values, meaning the network 

presents a considerable performance of the actual output. By contrast, when the 𝑅𝑇
2  tends to 

zero, it means the variances become similar, thus elaborating an inappropriate fit [44]. 

4. Results and Discussions 

4.1 Dataset 

The dataset used in the model is normally divided into three categories: training set, 

validation set and test set. The model uses the training set as examples for learning, which is to 

calculate the parameters (i.e., bias) of the classifier. The validation set is used to tune the 

parameters of a classifier, for example, to choose the number of hidden units in a neural 

network. The test set is used only to evaluate the achievement of a specified classifier [45]. 

While training a CNN, the parameters are always determined by the validation data. Then the 

test dataset is applied to the network and finally the full error for this test set can be found.  
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The data used in the CNN include four sequential inputs and one output. Four parameters 

(hydraulic pressure, hydraulic flow, motor speed and motor torque) from the hydraulic system 

are taken as the inputs of the CNN and the power generation is the output of the network. Here, 

the total 100,352 samples acquired from February to April 2017 are sequentially separated into 

80,281 as the training dataset (80%), 5,019 as the validation dataset (5%) and 15,052 as the test 

dataset (15%). Firstly, the four time series inputs should be rearranged to a 2D image before 

applying CNN for regression and prediction. Four different conversion methods are attempted 

to achieve a better training accuracy, including (a) results averaged by the individual CNN of 

the four inputs; (b) four inputs sequentially rearranged before training; (c) a single 2D image 

being divided into four sub-images formed by four inputs respectively; (d) an image 

rearranged by four inputs in sequence, as shown in Figure 8.  

Figure 8 Dataset conversion methods, top left: four inputs applied to the model respectively, 

top right: four inputs applied to the model sequentially, the bottom ones: four inputs 

rearranged to the image respectively and sequentially 

4.2 Results 

This section introduces the results of evaluation of the wave power generation prediction 

model. Different proposed patterns converted from inputs by various methods are compared 

firstly. Different input image sizes (28×28, 20×20, 14×14, 10×10 pixels) are deployed to discuss 

how image size could affect the forecasting results. Curve fitting plots from each conversion 

method are presented for the sake of revealing fitting details. In order to demonstrate the 

superiority of the methods, the CNN model is employed along with different mainstream 

supervised modelling approaches, such as ANN, SVM, LR and RT. Finally, the RMSE, MAE 

and R2 are used as the metrics to evaluate the prediction performance from multiple criteria 

perspectives. 

For both conversion methods and image sizes, as can be seen in Table 2, the proposed 

networks provide various results in terms of the predicting accuracy. From RMSE and MAE, 

the 3rd and 4th methods demonstrate the much lower values compared with the 1st and 2nd 

methods, implying mean lower residuals and higher accuracy are achieved. All three metrics 

show that the larger the image size and the better performance, and a considerable 

improvement is made by the 4th method (28×28), with the best R2 of 0.96 value being achieved. 

Results also show that a larger image contains more information compared with an input image 

of medium and small size, no matter which conversion method is used. In addition, the 3rd and 
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4th conversion methods obtain lower RMSE and MAE values and a higher R2 value. The forecast 

from the 2nd method represents the poorest fit with these raw data.  

Table 2.Prediction performance of the CNN model through different image sizes and 

methods 

Image 

Size 

1st Conversion 

Method 

2nd Conversion 

Method 

3rd Conversion 

Method 

4th Conversion 

Method 

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 

28×28 10.02 8.05 0.95 23.48 21.19 0.85 3.37 2.23 0.94 3.11 1.92 0.96 

20×20 16.43 8.64 0.91 29.46 23.67 0.77 3.63 1.84 0.94 3.76 2.14 0.93 

12×12 20.48 9.63 0.87 25.21 19.82 0.83 4.45 2.81 0.91 4.25 2.45 0.92 

The four plots shown in Figure 9 demonstrate the result as well. The predicting curves fit 

the real output well in all the four plots except the top right one that represents the 2nd 

conversion method. In the top left subplot, the two curves fit much better in high power level 

than in low level. The bottom subplots perform both remarkable fitting results when 

forecasting these distinctive fluctuations. The results also illustrate that similar characteristics 

are extracted from images created by the different data arrange algorithms. Clearly, the top 

right subplot obtained with the 2nd conversion method, i.e., four inputs applied to the model 

respectively, exhibits poor fitting in both high and low power levels.  

Figure 10 illustrates 2D images of the network input converted from time series 1D inputs. 

The converted image belongs to a grey-scale image and every pixel represents the amount of 

brightness of light [46]. Obviously, the bottom images contain much more features, as can be 

seen from lines and part of rectangles, which can be recognized by Multi-input CNN model. 

By contrast, we cannot find much information from the top images because the features are 

totally disorganized for the model. This phenomenon explains why different arrangement of 

pixels in the input image can lead to quite different results, and the more features captured 

from the inputs, the better results provided from network. 
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Figure 9 The comparison of the prediction results from different conversion methods based 

on 28×28 dimension image, with 1st to 4th conversion method being presented from top left to 

right bottom subplot 

  

Figure 10. The example of 2D images converted from the 1D inputs 
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Table 3. The performance of CNN compared with different supervised modelling approaches 

(28×28 dimension size) 

Approaches RMSE MAE R2 Time(s) 

ANN 2144.83  11.38  0.83  39.19 

SVM 34.88  27.10  0.69  583 

RLR 35.15  27.30  0.69  4.68 

MT 23.36  12.92  0.86  7.21 

BT 20.83  12.49  0.89  11.26 

CNN 3.11  1.92  0.96  42.85 

4.3 Discussions 

In terms of validation and accuracy, different supervised modelling approaches are 

applied for comparison, and the results are shown in Table 3. This work was implemented 

based on a Xeon E3-1271 CPU with 3.6 GHz and 16 GB RAM workstation. The training time 

for the MCNN was compared with that taken for ML algorithms mentioned above. The SVM 

takes on an average of 583 s, which means the longest time among them. The CNN algorithm 

trains no more than 43 s if using the hyper-parameters in Table 1. The MT and BT got an 

average of 7.21 s and 11.26 s respectively, almost four times faster than the CNN. This indicates 

that the CNN model provides much higher accuracy even a little longer time consumed than 

the ML algorithms.  

Table 3 also provides sufficient evidence that CNN made considerable achievement in 

wave power prediction among these ML algorithms. The indicators of the difference between 

actual and forecast values become quite small if the CNN model is used. SVM and RLR produce 

the worst performance as the MAE value is much higher (more than twice than others) among 

the five models, which mean these performance measures are much bigger and the error can 

be easily expected from the forecast. The R2 values of ANN, MT and BT show general fitting 

results. It is worth mentioning that the training of ANN and CNN take a little longer time (more 

than 43 s in this situation) and the time greatly depends on hidden layers, epochs and break 

time of the network.  

It is known that the form of data modelled in CNN is widely applied in 2D image, which 

includes connection from neighbourhood [47]. The more features captured from the training 

images, the better performance provided by the model. The four patterns of image (data 

arrangement) trained in the different CNN models show the distinctive features contained in 

images. The large size of images contains more features than the small size ones. The prediction 

is affected by not only the current inputs but also the connections in the same input series and 

the adjacent input series in between. In other words, the current inputs combined with adjacent 

pixels could provide more information than a single input. Let’s take the 4th conversion method 

as an example, in time t, the 𝑥2
𝑡  is affected by 𝑥2

𝑡−1, 𝑥2
𝑡+1 and 𝑥1

𝑡, 𝑥3
𝑡 , as shown in Figure 11. 

 Figure 11. The principle of the pixel affected by adjacent pixels 
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In addition, the number of the convolution layers and feature extractor layers also need 

to be discussed. It seems that increasing the number of feature maps and convolution layers 

could improve the accuracy of the model; but actually it works in many conditions. We 

attempted to increase the number of the convolution layer and pooling layer from 1 to 3 and 

the feature map from 10 to 100. The neurons for the fully connected layer also increased from 

10 to 100, and the number of layers increased from 1 to 3. Eventually, the training model 

consumed much more time, though the anticipated results did not appear to be much 

improved compared with the initial architecture. Consequently, we consider the architecture 

used in this article is superior enough for training and predicting such a complex problem. 

Furthermore, the residual between actual and practical values is supposed to be a function 

of the inputs. The result is able to perform an early warning to indicate the possible appearance 

of the anomalies if the residual exceeds a predefined threshold. Thus, this MCNN model could 

perform condition monitoring and fault diagnosis for the ocean energy systems. 

5. Conclusions 

In this paper, the power characteristics of a double-buoy oscillating body WEC is 

presented by analysing the open sea testing data. The wave-power curve and the efficiencies 

of the hydraulic system are investigated to elaborate the connection between wave height and 

instantaneous power output of the WEC. A convolutional neural network with multiple inputs 

has been developed for predicting the power output of the near-shore WEC. It uses four 

hydraulic system parameters as inputs, i.e., hydraulic pressure, hydraulic flow, motor speed 

and motor torque, and the power output as output. The proposed CNN applies 1D to 2D data 

conversion to convert time series data into image data..  

This result shows that the MCNN performs much better predicting results compared with 

other mainstream supervised modelling approaches, such as ANN, SVM, LR and RT, with the 

highest R2 value being achieved 0.96. It can also be found that both the image size and the 

conversion method can affect the results. The intersectional methods for data conversion with 

a larger dataset size can capture more features from the training images, thus providing a better 

performance for the model fitting. The proposed MCNN is therefore feasible enough for 

training and predicting the power output from a complex system such as the WEC studied in 

this paper based on the experimental data. 

Besides the time-domain analysis, time-frequency analysis using wavelet transform has 

also been attempted based on the same data [48], [49], the results were found to be widely 

divergent, and further work will be performed in the near future. Nevertheless, this work 

makes progress on managing the power generation, transformation and storage of a WEC 

system for ocean renewable energy systems. 
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