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Abstract—In this paper, we concentrate on the robust multi-
objective optimization (MOO) for the tradeoff between energy
efficiency (EE) and spectral efficiency (SE) in device-to-device
(D2D) communications underlaying heterogeneous networks
(HetNets). Different from traditional resource optimization, we
focus on finding robust Pareto optimal solutions for spectrum
allocation and power coordination in D2D communications un-
derlaying HetNets with the consideration of interference channel
uncertainties. The problem is formulated as an uncertain MOO
problem to maximize EE and SE of cellular users (CUs) simul-
taneously while guaranteeing the minimum rate requirements of
both CUs and D2D pairs. With the aid ofε-constraint method and
strict robustness, we propose a general framework to transform
the uncertain MOO problem into a deterministic single-objective
optimization problem. As exponential computational complexity
is required to solve this highly non-convex problem, the power
coordination and the spectrum allocation problems are solved
separately, and an effective two-stage iterative algorithm is
developed. Finally, simulation results validate that our proposed
robust scheme converges fast and significantly outperformsthe
non-robust scheme in terms of the effective EE-SE tradeoff and
the quality of service satisfying probability of D2D pairs.

Index Terms—D2D communications, energy efficiency, Het-
Nets, power coordination, robust multi-objective optimization,
spectral efficiency, spectrum allocation.

I. I NTRODUCTION

W ITH the proliferation of smart mobile services and
the intrinsic spectrum scarceness, improving spectral

efficiency (SE) has been widely treated as an essential target
for the next decade [1]. At the same time, green com-
munications have caught considerable attention, because of
explosively rising energy consumption of mobile networks
and corresponding environmental concerns [2]. Therefore,the
enhancement of energy efficiency (EE) is another key objective
for the future fifth-generation (5G) networks [3]. To tackle
these difficulties, there is a general consensus that dense
network deployment will play an important role, such as
multi-tier heterogeneous networks (HetNets) and device-to-
device (D2D) communications, especially when employed in
combination [4].

D2D communications enable wireless point-to-point ser-
vices directly between two mobile devices as well as offload
the traffic of cellular base stations (BSs), which contribute
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to the improvement of the network EE and SE due to high
spectral utilization and the physical proximity between D2D
pairs [5], [6]. On the other hand, the multi-tier HetNet has
been identified as a promising network architecture for 5G
to drastically improve EE and SE [7]–[9], as multiple small
cells share the same spectrum with each macro cell which
promotes the dense spectrum reuse. Based on the above ob-
servation, the study on the D2D communications underlaying
HetNets is indeed of vital importance because of the expected
heterogeneous nature of the future 5G networks. For multi-tier
HetNets operating with universal frequency reuse, cross-tier
and co-tier interference are the main challenges [10], and extra
interference is imposed when underlaid D2D communications
are admitted. As a consequence, in D2D communications
underlaying HetNets, spectrum allocation and power coor-
dination mechanisms are more complicated in comparison
with those in traditional homogeneous cellular networks, and
they are essential to achieve the potential benefits from D2D
communications and multi-tier HetNets.

A. Related Work

There have been numerous studies about the energy efficient
resource allocation for D2D communications [11]–[20]. In
[11], the authors focus on optimizing the energy consump-
tion of the BS in D2D communications underlying cellular
networks by optimally coordinating users to redistribute the
traffic, where the authors in [12] investigate the performance
of various power control strategies for D2D communications
in LTE networks. Furthermore, considering the simple system
with one D2D link and one cellular user (CU), the work
in [13] proposes an extended binary power control method
to maximize the utility which balances SE and power. The
authors in [14] also consider the scenario with single D2D
link and single CU, where the D2D user’s EE is optimized
under the minimum rate constraints of both CU and D2D
users. Similarly, in [15], the resource allocation problemfor
underlay or overlay D2D communications and cognitive radio
systems is formulated as the maximization of the secondary
energy efficiency subject to a minimum rate requirement for
the primary user, where a sequential optimization method
is proposed. Recently, the authors in [16] investigate the
problem of minimizing the transmission energy consumption
while satisfying a traffic requirement for D2D communications
in a single-cell network. In [17], the authors consider the
joint resource allocation and power control problem which
aims at maximizing the EE of all D2D links. Instead, the
work in [18] focuses on maximizing the minimum weighted
EE of D2D pairs under the minimum rate requirements of
cellular users, while the authors in [19] formulate the energy-
efficient resource sharing problem in D2D communications
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underlaying cellular networks as a nontransferable coalition
formation game. Besides, the authors in [20] investigate energy
efficient power control in D2D communications underlaying
cellular networks, where both the system EE and individual
EE optimization problems are considered.

Nevertheless, the above studies [11]–[20] consider D2D
communications underlaying or overlaying single-tier net-
works, and the research on resource allocation in D2D com-
munications underlaying HetNets is still limited. In [21],
the authors consider the channel and power level selection
problem for D2D pairs in HetNets under two scenarios where
D2D pairs operate over the dedicated frequency band and
the shared cellular channels, which is formulated as a non-
cooperative game among D2D pairs. Besides, the work in [22]
investigates the resource allocation problem to maximize the
system secure capacity for D2D communications underlaying
HetNets where each subcarrier can be allocated to at most
one user of the same type. On the contrary, the authors
in [23] focus on the power allocation problem in multi-tier
HetNets by employing a non-cooperative scheme to optimize
the individual EE of each small cell BS and each D2D pair.

However, either EE or SE is neglected in the aforementioned
work [11]–[23]. There have been studies about the joint
optimization of EE and SE for D2D communications in single-
cell networks [24], [25] and for HetNets [26]. As EE and
SE potentially conflict with each other such that available
resource cannot be optimized to improve both EE and SE
simultaneously, it is indispensable to investigate the tradeoff
between EE and SE for D2D communications underlaying
HetNets, which can provide decision makers with the entire
performance envelop of EE and SE. More importantly, in all
the previous studies [11]–[26], it is assumed that perfect chan-
nel state information (CSI) is available, while this assumption
cannot be achieved in practical scenarios. Due to the random
nature of wireless channels, limited capacity and transmission
delay of backhaul channels, and inaccurate channel estimation,
the CSI inevitably contains errors, which may substantially
deteriorate the system performance. Particularly, for D2D
communications underlaying HetNets, the QoS requirements
of cellular users (CUs) and D2D pairs cannot be strictly
satisfied when channel uncertainties exist.

To address the uncertainties of CSI, robust optimization
has been studied in wireless communications [27]–[29]. In
[27], two robust resource allocation schemes for cognitive
radio networks are developed to maximize the system goodput
while satisfying the interference constraints of primary user
for probabilistic and bounded channel uncertainty model,
respectively. The authors in [28] propose centralized and
distributed power control algorithms for D2D underlay cellular
networks where the CSI includes estimation errors. Similarly,
considering interference channel uncertainties, the workin
[29] focuses on the uplink resource allocation algorithm in
relay-aided D2D communications with the help of worst case
optimization method. However, all the studies in [27]–[29]
focus on robust single-objective optimization problem (RSOP),
and the effect of channel uncertainties on the multi-objective
optimization problem is still unknown.

B. Contributions

As far as we know, there is no existing study about the
EE-SE tradeoff in D2D communications underlaying Het-
Nets with universal frequency reuse among macro BSs, pico
BSs and D2D pairs. Also, considering channel uncertainties,
the research on robust multi-objective optimization problem
(RMOP) is still missing. Inspired by these facts, in this paper,
we investigate the RMOP for D2D communications under-
laying HetNets. To mitigate the negative effects of underlaid
D2D communications on the primary HetNets while strictly
ensuring the minimum rate requirements of D2D pairs, the
RMOP is formulated as maximizing the EE and SE of CUs
while strictly ensuring the minimum rate requirements of both
CUs and D2D pairs, where the spectrum allocation and power
coordination of CUs and D2D users are jointly optimized.
Specifically, the main contributions are given as follows:

• This is the first work which models the robust multi-
objective optimization problem to investigate the tradeoff
between EE and SE in D2D communications underlaying
HetNets while considering interference channel uncer-
tainties. Specifically, the problem is formulated as an
uncertain MOO problem which maximizes the sum rate
of all CUs and minimizes the corresponding total power
consumption simultaneously while strictly ensuring the
minimum rate requirements of both CUs and D2D pairs.

• To find the optimal solutions of the formulated uncertain
MOO problem, we propose a general framework which
transforms the uncertain MOO problem into a determin-
istic SOO problem, with the help ofε-constraint method
and strict robustness. Crucially, it is demonstrated theoret-
ically that the unique optimal solution of the deterministic
SOO problem isrobust Pareto optimalfor the original
uncertain MOO problem. Consequently, the proposed
framework is guaranteed to find all robust Pareto optimal
solutions of the formulated uncertain MOO problem, i.e.,
robust Pareto frontier is obtained.

• The spectrum allocation for D2D pairs and the power
coordination of CUs and D2D pairs are jointly optimized
in D2D communications underlaying HetNets, which is
a mixed-integer and non-convex problem due to the in-
trinsic integer property of resource block (RB) allocation
and the existence of mutual interference among CUs and
D2D pairs sharing the same RB. Thus, we propose a
computationally-efficient iterative algorithm where primal
decomposition is employed to separate the original prob-
lem into two subproblems. To be more specific, the power
coordination problem is solved via D. C. (difference of
convex functions) programming. On the other hand, we
model the spectrum allocation problem as a many-to-one
matching game, and propose initial matching and swap
matching algorithms.

• The optimality, convergence, and complexity of our pro-
posed methods are presented in detail. Via theoretical
analysis, it is proved that our proposed power coordina-
tion method and spectrum allocation algorithm converge
within a finite number of iterations. Furthermore, the
convergence of the overall two-stage iterative algorithm
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is verified by both theoretical analysis and numerical
results, and its whole computational complexity is also
given in detail. More importantly, it is demonstrated
via numerical results that our proposed robust scheme
significantly outperforms the non-robust scheme in terms
of the effective EE-SE tradeoff and the quality of service
(QoS) satisfying probability of D2D pairs. Particularly,
through numerical results, we find that there exists an
intrinsic tradeoff between the EE-SE performance of
CUs and the minimum rate requirements of D2D pairs.
Besides, it is suggested that the choice of the maximum
number of D2D pairs on each RB should be appropriate
for the compromise between complexity and performance
gain.

C. Paper Organization

The remainder of this paper is organized as below. The
system model and the nominal problem formulation are first
presented in Section II. Then, in Section III, the uncertain
MOO problem is formulated and transformed into a deter-
ministic SOO problem, and we propose effective algorithms
for the joint optimization of power coordination and spectrum
allocation in Section IV. Finally, numerical results and con-
clusions are given in Section V and Section VI, respectively.

II. SYSTEM MODEL AND DETERMINISTIC PROBLEM

FORMULATION

We consider a D2D communications underlaying HetNet,
which is shown in Fig. 1, composed of a macro base station
(MBS), I pico BSs (PBSs),N CUs, andK D2D pairs. Let
C = {1, 2, · · · , N} denote the set of CUs, and the indexes
of D2D pairs are given byk ∈ D = {1, 2, · · · ,K}. We
use i ∈ {0, 1, 2, · · · , I} as the indexes of BSs, wherei = 0
corresponds to the MBS, and the others are PBSs. Besides, we
assume that the spectrum is shared by all BSs, and orthogonal
frequency-division multiple access (OFDMA) is adopted for
CUs associated with the same BS, which is predetermined. Let
M = {1, 2, · · · ,M} denote the set of resource blocks (RBs)
for uplink transmission, andMC

n is used to indicate the set of
RBs which are occupied by then-th CU. We assume that each
RB can be reused by multiple D2D pairs. Consequently, there
exists not only inter-cell interference among CUs associated
with different BSs, but also mutual interference among CUs
and D2D pairs sharing the same RB.

A. Transmission Data Rate

We first introducepCnm to represent the transmit power of
the n-th CU on them-th RB, andpDk denotes the transmit
power of thek-th D2D pair. Then, letρkm describe them-th
RB allocation for thek-th D2D pair, whereρkm = 1 if RB-m
is allocated to thek-th D2D pair,ρkm = 0, otherwise. Thus,
the transmission data rate of CU-n associated with thei-th BS
can be expressed as

RC
n =

∑

m∈MC
n

log2

(

1 +
pCnmhm

ni

ICnm + σ2

)

, (1)

Fig. 1. System model.

wherehm
ni is the channel power gain between then-th CU and

thei-th BS on them-th RB, andICnm =
∑

n′∈Cm,n′ 6=n

pCn′mgmn′i+
∑

k∈D

ρkmpDk g
m
ki denotes the interference experienced by CU-n

on them-th RB.gmn′i andgmki represent the interference channel
power gains from other CUs and D2D pairs sharing them-th
RB. Note thatCm represents the set of CUs who transmit data
on them-th RB. Similarly, the transmission data rate of the
k-th D2D pair can be calculated by

RD
k =

∑

m∈M

ρkmlog2

(

1 +
pDk h

m
k

IDkm + σ2

)

, (2)

wherehm
k denotes the channel power gain of thek-th D2D pair

on them-th RB, andIDkm =
∑

n∈Cm

pCnmgmnk+
∑

j∈D,j 6=k

ρjmpDj g
m
jk

is the interference received by thek-th D2D pair on RB-m.
gmnk and gmjk represent the interference channel power gains
from then-th CU and thej-th D2D pair, respectively.

B. SE and EE

In this paper, we define the system SE (bit/s/Hz) as the sum
transmission rate of all CUs per unit bandwidth, which can be
expressed as

ηSE = Rtot =
∑

n∈C

RC
n . (3)

Furthermore, the system EE (bit/Joule/Hz) is stated as the ratio
of the system SE to the corresponding power consumption,
which is presented as

ηEE =
ηSE

Ptot
=

∑

n∈C

RC
n

1
α

∑

n∈C

∑

m∈MC
n

pCnm +Nps
. (4)

Here α denotes the transmit amplifier efficiency, andps
represents the fixed circuit power consumption of each CU.
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III. ROBUST MULTI -OBJECTIVE OPTIMIZATION FOR

EE-SE TRADEOFF

In this section, we first present the nominal MOO problem
for the EE-SE tradeoff in D2D communication underlaying
HetNets, where perfect CSI is assumed. Then, with the consid-
eration of channel uncertainty, robust MOO problem is further
formulated and transformed into a deterministic SOO problem
to facilitate problem solving.

A. Problem Formulation: Nominal Multi-Objective Optimiza-
tion

It has been widely recognised that EE and SE conflict
with each other for a communication system with fixed radio
resources [30], [31]. Hence, the individual maximization of
EE or SE cannot always meet the system performance re-
quirement, and it is significant to study the tradeoff between
EE and SE and present the whole performance envelop of EE
and SE. In fact, the EE-SE tradeoff problem is equivalent to
a set of problems of finding the maximum EE with different
fixed SE [25]. Furthermore, as EE is the ratio between SE and
the total power consumption as shown in (4), for the same SE,
the minimization of power is equivalent to the maximization
of EE. Therefore, the joint optimization of EE and SE can be
achieved by maximizing SE and minimizing the total power
consumption simultaneously. Besides, as illustrated in [32],
both the EE maximization and the SE maximization problems
can be captured by the multi-objective optimization problem of
maximizing SE and minimizing the total power consumption
simultaneously. Thus, the joint optimization of power coordi-
nation and spectrum allocation for the tradeoff between EE
and SE in D2D communications underlaying HetNets can be
formulated as a MOO problem, which can be expressed as

min
ρ,pC,pD

f1
(

ρ,pC,pD
)

=−
∑

n∈C

RC
n ,

min
ρ,pC,pD

f2
(

ρ,pC,pD
)

= α
∑

n∈C

∑

m∈MC
n

pCnm +Nps,

s.t. C1 : ρkm ∈ {0, 1} , ∀k ∈ D,m ∈ M,

C2 :
∑

m∈M

ρkm = 1, ∀k ∈ D,

C3 :
∑

k∈D

ρkm ≤ Q, ∀m ∈ M,

C4 :
∑

m∈MC
n

pCnm ≤ pCmax, ∀n ∈ C,

C5 : pDk ≤ pDmax, ∀k ∈ D,

C6 : RC
n ≥ RC

n,min, ∀n ∈ C,
C7 : RD

k ≥ RD
k,min, ∀k ∈ D,

(5)

wherepCmax andpDmax denote the maximum transmit power of
CUs and D2D pairs, respectively. In (5), C1 and C2 denote
that each D2D pair can only use one RB for data transmission.
C3 indicates that at mostQ D2D pairs share the same RB with
one CU. In other words, the quota of each RB is set toQ.
Then, C4 and C5 mean that the transmit power of CUs and
the transmitters of D2D pairs cannot exceed their maximum
limits. C6 and C7 ensure the minimum data rates of CUs and
D2D pairs, respectively.

Remark 1:Virtual D2D pairs for extended systems.As
shown in problem (5), each D2D pair can only use one RB
for data transmission. To generalize the proposed formulation

to fit the extended system where each D2D pair can utilize
multiple RBs and each RB can be occupied by multiple D2D
pairs, we introduce the idea of virtual D2D pairs. Specifically,
when the minimum rate requirement of thek-th D2D pair
RD

k,min is large for certain applications and multiple RBs are
required for data transmission, its rate requirement can be
splited into RD

k,min

/

vk by introducingvk − 1 virtual D2D
pairs. With the help of new introduced virtual D2D pairs each
of which occupies one RB, the originalk-th D2D pair can
utilize multiple RBs simultaneously1.

In contrast to the SOO problem, the MOO problem (5)
considers two conflicting objectives simultaneously. In such
case, there is no single global optimal solution but it is
often necessary to determine a set of alternatives that all
fit a predetermined definition for an optimum, calledPareto
optimality [33].

Definition 1: Pareto optimality.For a multi-objective opti-
mization problem,

min
x

F (x) = [f1 (x) f2 (x) · · · fO (x)]T,

s.t. x ∈ X
(6)

a pointx∗ ∈ X is Pareto optimal if and only if (iff) there does
not exist another pointx ∈ X such thatfu (x) ≤ fu (x

∗), ∀u ∈
{1, 2, · · · , O}, with at least onev ∈ {1, 2, · · · , O} satisfying
fv (x) < fv (x

∗).
Furthermore, we define conesRk

≥ =
{

y ∈ R
k,y ≥ 0

}

, and
F (x∗)−R

O
≥=

{

y ∈ R
O,y ≤ F (x∗)

}

. Thus, we have thatx∗

is Pareto optimal iffF (x∗)−R
O
≥ does not contain anyF (x)

with x ∈ X . Note thatA ≤ B represents thatA is smaller
or equal toB in every component, and smaller in at least one
component.

Remark 2:As mentioned before, optimizing problem (5)
and finding the corresponding SE-power Pareto frontier can
provide decision maker with the entire performance envelope
between EE and SE. Nevertheless, as it is non-trivial to find the
point corresponding to the maximum EE from the entire Pareto
frontier by choosing one appropriate weight, the maximization
of EE should be also conducted through problem (5) like [32]
to characterize the tradeoff between EE and SE.

B. Problem Formulation: Robust Multi-Objective Optimiza-
tion

The formulated problem (5) requires perfect interference
channel state information (CSI), namely, exact values of
gC2B = [gmn′i], gD2B = [gmki], gC2D = [gmnk], and gD2D =
[

gmjk

]

. However, these parameters are subjected to uncertainty,
considering the channel estimation errors and the limited
capacity of backhaul links. Hence, in this paper, it is assumed
that only partial CSI of interference links is available, while
perfect CSI of communication links is obtained. Considering
the bounded uncertainty [27], we assume that the uncertainty
of interference channel gains is bounded and no statistic
knowledge is available. Specifically, the interference channel

1Note that the specific operations about D2D rate requirementsplitting and
virtual D2D pairs are not taken into consideration in the rest of this paper
and set aside for our future work.
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gain can be modelled asy = ŷ+ ζ, where|ζ| ≤ ζmax denotes
the estimation error. Then, the corresponding power gain can
be given by

g = |y|2 = yȳ = (ŷ + ζ)
(

¯̂y + ζ̄
)

= ĝ + δ, (7)

where ĝ = ŷ ¯̂y is the estimated channel power gain, and
δ = ζζ̄ + 2ℜ

(

ŷζ̄
)

is the estimation uncertainty. Hereℜ (x)
represents the real component ofx. As y lies in a bounded
region, the power gaing is in a set of line segment. Here we
consider the worst case, and the uncertain region ofg can be
expressed as

g ∈ R = {ĝ + δ : |δ| ≤ δmax} , (8)

whereδmax = ζmaxζ̄max + 2ℜ
(

ŷζ̄max

)

.

Therefore, the uncertainty region for the inter-cell inter-
ference gain from then′-th CU to thei-th BS on RB-m is
presented as

gmn′i ∈ Gm
n′i =

{

ĝmn′i + δmn′i : |δ
m
n′i| ≤ δmn′i,max, ∀i,m, n′

}

.

(9)
Also, the interference gain between thek-th D2D pair and
BS-i on them-th RB is given by

gmki ∈ Gm
ki =

{

ĝmki + δmki : |δ
m
ki| ≤ δmki,max, ∀k, i,m

}

. (10)

Similarly, the interference gainsgmnk andgmjk can be expressed
as

gmnk ∈ Gm
nk =

{

ĝmnk + δmnk : |δmnk| ≤ δmnk,max, ∀n, k,m
}

,

(11)
gmjk ∈ Gm

jk =
{

ĝmjk + δmjk :
∣

∣δmjk
∣

∣ ≤ δmjk,max, ∀k, j,m
}

. (12)

Taking into account the uncertainties of interference channel
gains, problem (5) turns into the uncertain MOO problem:

min
ρ,pC,pD

f1
(

ρ,pC,pD,gC2B,gD2B
)

,

min
ρ,pC,pD

f2
(

ρ,pC,pD
)

,

s.t. C1− C7, (9), (10), (11), (12).

(13)

Defining G = Gm
n′i × Gm

ki × Gm
nk × Gm

kk′ , we call
(

gC2B,gD2B,gC2D,gD2D
)

is a scenario and problem (13) is
an instance of the uncertain MOO problemP (G). In other
words, problemP (G) is in fact a family of optimization
problems with different scenarios

(

gC2B,gD2B,gC2D,gD2D
)

.

In this paper, we concentrate onmin-max robustness[34],
i.e., strict robustness, whose goal is to optimize the worst-
case scenario ofP (G) over all feasible solutions. Different
from the existing literature [27]–[29] which study uncertain
SOO problems, the uncertain problemP (G) considered in this
paper is an uncertain MOO problem. Under this circumstance,
we cannot evaluate solutions by just taking the worst case over
all scenarios since there is a two-element vector of objective
values for each scenario. Recalling the definition ofPareto
optimality for a nominal MOO problem, we introduce the
definition of robust Pareto optimality, i.e., robust efficiency
[35] for an uncertain MOO problem as follows.

Definition 2: Robust Pareto optimality.Given an uncertain

MOO problem with the uncertain parameter vectorξ,

min
x

F (x, ξ) = [f1 (x, ξ) f2 (x, ξ) · · · fO (x, ξ)]
T
,

s.t. x ∈ X , ξ ∈ U ,
(14)

x ∈ X is robust Pareto optimal for problem (14) iff there does
not existx ∈ X −{x̄} such thatFU (x) ⊆ FU (x)−R

O
≥ where

FU (x) = {F (x, ξ) , ξ ∈ U}.

C. Robust Pareto Frontier

It can be observed from problem (13) that the second
objective is deterministic, which implies that the uncertainty
of the first objective is independent with the second one.
Therefore, the existence of the worst case for the first objective
indicates that the worst-case scenario exists for the uncertain
MOO problem (13), which can be expressed as

max
gC2B,gD2B

[

f1
(

ρ,pC,pD,gC2B,gD2B
)

f2
(

ρ,pC,pD
)

]

=

[

max
gC2B,gD2B

f1
(

ρ,pC,pD,gC2B,gD2B
)

f2
(

ρ,pC,pD
)

] (15)

Furthermore, according to the definition of max-min robust-
ness, the robust solutions of problem (13) should always sat-
isfy all constraints for the given uncertainty region. Therefore,
the robust counterpart of problemP (G) is readily obtained as

min
ρ,pC,pD

max
gC2B,gD2B

f1
(

ρ,pC,pD,gC2B,gD2B
)

,

min
ρ,pC,pD

f2
(

ρ,pC,pD
)

,

s.t. C1− C5,
C6′ : min

gC2B,gD2B
RC

n ≥ RC
n,min, ∀n ∈ C,

C7′ : min
gC2D,gD2D

RD
k ≥ RD

k,min, ∀k ∈ D,

(16)

and the following theorem further clarifies the relationship
between problemP (G) and its robust counterpart (16).

Theorem 1: If max
gC2B,gD2B

f1
(

ρ,pC,pD,gC2B,gD2B
)

,

min
gC2B,gD2B

RC
n , and min

gC2D,gD2D
RD

k exist for all
(

ρ,pC,pD
)

,

we have that
(

ρ∗,pC∗
,pD∗

)

is Pareto optimal for problem

(16) iff
(

ρ∗,pC∗
,pD∗

)

is robust Pareto optimal for problem

P (G).
Proof: See Appendix A. �

According to Theorem 1, to find all the robust Pareto
optimal solutions ofP (G), we can alternatively find all Pareto
optimal solutions of problem (16). Thus, in this paper,ε-
constraint method is employed to transform problem (16)
into a SOO problem, which is guaranteed to find all Pareto
optimal solutions even for non-convex problems [33]. By
minimizing one objective and converting the other objective
into a constraint with an adjustable upper bound, we can
transform problem (16) into

min
ρ,pC,pD

max
gC2B,gD2B

f1
(

ρ,pC,pD,gC2B,gD2B
)

,

s.t. C1− C5,C6′,C7′,
C8 : f2

(

ρ,pC,pD
)

≤ ε,

(17)

whereε can be adjusted to achieve different kinds of tradeoff
between EE and SE.
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Theorem 2: If max
gC2B,gD2B

f1
(

ρ,pC,pD,gC2B,gD2B
)

,

min
gC2B,gD2B

RC
n , and min

gC2D,gD2D
RD

k exist for all
(

ρ,pC,pD
)

,
(

ρ∗,pC∗
,pD∗

)

is robust Pareto optimal for problemP (G)

iff there exists ε such that
(

ρ∗,pC∗
,pD∗

)

is the unique
optimal solution to problem (17).

Proof: See Appendix B. �

Remark 3:From Theorem 2, it can be concluded that the
ε-constraint method is guaranteed to find all robust Pareto
optimal solutions of problemP (G). In other words, the
proposed framework for robust multi-objective optimization
can provide an entirerobust Pareto frontierfor the uncertain
MOO problemP (G), just like the complete Pareto optimal
set for a nominal MOO problem. Note that this framework is
general enough to be applied to other systems with interference
channel uncertainties.

D. Closed-Form Expression

To facilitate further processing, we need to derive the
closed-form expression of problem (17). First of all, to address
the uncertainty shown in the objective, the following results
can be found:

gm∗
n′i = arg max

gm

n′i
∈Gm

n′i

f1
(

ρ,pC,pD,gC2B,gD2B
)

= arg min
gm

n′i
∈Gm

n′i

∑

n∈C

RC
n

= arg min
gm
n′i

∈
{

ĝm
n′i

+δm
n′i

:|δm
n′i

|≤δm
n′i,max

}

rCn∗m

= ĝmn′i + δmn′i,max,

(18)

where

rCn∗m = log2

(

1 +
pCn∗mhm

n∗i

ICn∗m + σ2

)

, (19)

and n∗ denotes the index of the CU which is associated
with the i-BS and occupies them-th RB. Similarly, it can
be obtained that

gm∗
ki = arg max

gm
ki

∈Gm
ki

f1
(

ρ,pC,pD,gC2B,gD2B
)

= ĝmki + δmki,max.
(20)

Then, the constraintsC6′ andC7′ can be re-expressed as

C6′ :
∑

m∈MC
n

log2

(

1 +
pCnmhm

ni

IC∗
nm + σ2

)

≥ RC
n,min, ∀n ∈ C,

(21a)

C7′ :
∑

m∈M

ρkmlog2

(

1 +
pDk h

m
k

ID∗
km + σ2

)

≥ RD
k,min, ∀k ∈ D,

(21b)
whereIC∗

nm =
∑

n′∈Cm,n′ 6=n

pCn′mgm∗
n′i +

∑

k∈D

ρkmpDk g
m∗
ki , ID∗

km =
∑

n∈Cm

pCnmgm∗
nk +

∑

j 6=k,j∈D

ρjmpDj g
m∗
jk , gm∗

nk = ĝmnk + δmnk,max,

and gm∗
jk = ĝmjk + δmjk,max. Thus, the closed-form expression

of problem (17) can be expressed as

min
ρ,pC,pD

f1
(

ρ,pC,pD,gC2B∗,gD2B∗
)

,

s.t. C1− C5,C6′,C7′,C8.
(22)

IV. JOINT SPECTRUM ALLOCATION AND POWER

COORDINATION

The transformed problem (22) factors the tradeoff between
the system EE and SE for CUs as well as strict QoS re-
quirements of all D2D pairs and CUs. However, this problem
is highly non-concave because of the integer variableρkm
and mutual interference not only among CUs and D2D pairs
but also among D2D pairs sharing the same RB, which is
NP-hard to find the global optimal RB allocation and power
coordination solution. Therefore, in this section, we aim at
finding a practical algorithm for the joint optimization of
spectrum allocation and power coordination. With the employ-
ment of primal decomposition [36], the original problem can
be divided into two subproblems, and a two-stage iterative
algorithm is developed which optimizes the RB allocation
and power coordination in turn. With the given RB allocation
variableρ = ρ′ in problem (22), thejoint power coordination
of CUs and D2D pairs problemcan be obtained as

max
pC,pD

Rtot

(

pC,pD
)

=
∑

n∈C

RC
n

(

ρ′,pC,pD,gC2B∗,gD2B∗
)

,

s.t. C4,C5,C6′,C7′,C8.
(23)

Contrarily, by fixingpC = pC′
and pD = pD′

in problem
(22), theRB allocation problemcan be presented as

min
ρ

Rtot (ρ)=
∑

n∈C

RC
n

(

ρ,pC′
,pD′

,gC2B∗,gD2B∗
)

,

s.t. C1− C3,C6′,C7′.
(24)

Note that we have removed constant items in (23) and (24)
for the purpose of simplicity.

A. Joint Power Coordination of CUs and D2D Pairs

As mentioned above, the power coordination problem is
non-convex because of existing mutual interference. To ad-
dress this problem, we first re-express the rate function of
CU-n as

RC
n

(

pC,pD
)

= Xn

(

pC,pD
)

− Yn

(

pC,pD
)

(25)

where both functionsXn

(

pC,pD
)

andYn

(

pC,pD
)

are con-
cave and defined as

Xn

(

pC,pD
)

=
∑

m∈MC
n

log2
(

pCnmhm
ni + IC∗

nm + σ2
)

, (26a)

Yn

(

pC,pD
)

=
∑

m∈MC
n

log2
(

IC∗
nm + σ2

)

. (26b)

Thus, the objective of problem (23) is actually the difference
of two concave functions:

Rtot

(

pC,pD
)

=
∑

n∈C

Xn

(

pC,pD
)

−
∑

n∈C

Yn

(

pC,pD
)

. (27)

To find the power coordination solution within afford-
able computational complexity, sequential optimization [37] is
adopt in this paper, which can generate a series of improved
feasible solutions [15], [25]. Specifically, for a given initial
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Algorithm 1 D. C. programming algorithm for joint power
coordination

1. Initialize t = 0, flagpc = 1, φ = 0.01, and find an
initial feasible solution

(

pC,(0),pD,(0)
)

.
2. while flagpc > φ, do
3. t = t+ 1;

4. CalculateỸ (t)
n

(

pC,pD
)

with
(

pC,(t−1),pD,(t−1)
)

;
5. Solve problem (32) and obtain

(

pC(t),pD,(t)
)

;

6. Calculate∆p
C,(t)
nm =

∣

∣

∣

pC,(t)
nm −pC,(t−1)

nm

p
C,(t−1)
nm

∣

∣

∣
,∀n,m;

7. Calculate∆p
D,(t)
k =

∣

∣

∣

∣

p
D,(t)
k

−p
D,(t−1)
k

p
D,(t−1)
k

∣

∣

∣

∣

,∀k;

8. Calculateflagpc = max
n,m,k

{

∆p
C,(t)
nm ,∆p

D,(t)
k

}

.

9. end while

point
(

pC,(0),pD,(0)
)

, at the t-th iteration, the objective of
problem (23) can be approximated as

R̃
(t)
tot

(

pC,pD
)

=
∑

n∈C

Xn

(

pC,pD
)

−
∑

n∈C

Ỹ (t)
n

(

pC,pD
)

,

(28)
whereYn

(

pC,pD
)

is approximated as

Yn

(

pC,pD
)

≤ Ỹ
(t)
n

(

pC,pD
)

= Yn

(

pC,(t−1),pD,(t−1)
)

+
∑

n∈C

∑

m∈MC
n

(

pCnm − p
C,(t−1)
nm

)

∂Yn(pC,pD)
∂pC

nm

∣

∣

∣

∣p
C=p

C,(t−1),

p
D=p

D,(t−1)

+
∑

k∈D

(

pDk − p
D,(t−1)
k

)

∂Yn(pC,pD)
∂pD

k

∣

∣

∣

∣p
C=p

C,(t−1),

p
D=p

D,(t−1)

(29)
Note that the equality of (29) holds when

(

pC,pD
)

=
(

pC,(t−1),pD,(t−1)
)

. In the same way, the constraintC6′ is
near

C6′′ : Xn

(

pC,pD
)

− Ỹ (t)
n

(

pC,pD
)

≥ RC
n,min, ∀n. (30)

In addition, the constraintC7′ is actually a linear constraint,
which can be equivalently transformed into

C7′′ : pDk h
m̂(k)
k −

(

2R
D
k,min − 1

)(

ID∗
km̂(k) + σ2

)

≥ 0, ∀k,

(31)
where m̂ (k) denotes the index of RB allocated to thek-th
D2D pair, i.e.,ρ

′

km̂(k) = 1. Consequently, at thet-th iteration,
(

pC,(t),pD,(t)
)

can be obtained by finding the optimum of the
convex problem

max
pC,pD

R̃
(t)
tot

(

pC,pD
)

,

s.t. C4,C5,C6′′,C7′′,C8,
(32)

which is readily solved via standard algorithms with polyno-
mial complexity [38].

To tighten the approximation in (29) and generate the near-
optimal solution of (23), it is essential to iteratively setnew
power coordination solution

(

pC,(t),pD,(t)
)

and solve prob-
lem (32) until convergence. The above steps are summarized in
Algorithm 1 , and its effectiveness and convergence are proved
as follows.

Theorem 3:Algorithm 1 monotonically increases the value

of Rtot

(

pC,pD
)

with the number of iterations and finally
converges to the point satisfying the KKT conditions of
problem (23).

Proof: See Appendix C. �

Note that for the given thresholdφ > 0, the iterative process
of Algorithm 1 terminates after finite iterations at either

flagpc < φ or

∣

∣

∣

∣

Rtot(pC,(t),pD,(t))−Rtot(pC,(t−1),pD,(t−1))
Rtot(pC,(t−1),pD,(t−1))

∣

∣

∣

∣

< φ.

B. Resource Block Allocation

To solve problem (24), we introduce a two-sided matching
game defined as below, where RBs and D2D pairs are two
opposite sets of agents which aim at maximizing their own
utilities.

Definition 3: The matching game between RBs and D2D
pairs is expressed as a functionM which maps the set of
M∪D to the set ofM∪D such that for them-th RBRBm ∈
M and thek-th D2D pairDPk ∈ D:
(a) M(RBm) ⊆ D;
(b) M(DPk) ∈ M;
(c) |M(RBm)| ≤ Q;
(d) |M(DPk)| ≤ 1;
(e) DPk ∈ M(RBm) ⇔ RBm=M(DPk).
Condition (a) and (c) indicate that each RB is matched with
at mostQ D2D pairs, while condition (b) and (d) represent
that each D2D pair can only match with one RB. Condition
(e) implies that CUs and D2D pairs are matched mutually.
Besides,M(RBm) or M(DPk) can be the empty set if no
D2D pairs or RBs can be matched with them-th RB or the
k-th D2D pair.

Then, to measure the motivation of each agent, we first
define theutility of the m-th RB as the transmission data
rate of all CUs on it, i.e.,

URBm
(M) =

∑

n∈Cm

RC
nm (M), ∀m ∈ M, (33)

and similarly, theutility of the k-th D2D pair can be
expressed as

UDPk
(M) = RD

k (M) , ∀k ∈ D. (34)

With the above definitions, all CUs and D2D pairs can
construct their preference lists with the descending orderof
utilities.

Remark 4:Different from the conventional model of the
two-sided matching where preference lists are fixed during the
matching process, the matching described above is amatching
with externalities, where preference lists will change as the
matching game proceeds due to the mutual interference among
CUs and D2D pairs sharing the same RB. For instance, if the
k-th D2D pair is matched with RB-m, the interference on
the m-th RB will increase, and thus other D2D pairs may
change their preferences since the utility functions vary with
interference. In this case, the preference list of each D2D pair
depends on the choices of other agents. Consequently, the
matching game considered in this paper is more complicated
compared to the traditional case.
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To better illustrate the interdependency of agents’ preference
lists, we introduce the definitions ofswap matchingandswap-
blocking pair in the following.

Definition 4: For a given matchingM whereM(DPk) =
RBm, and M(DPj) = RBl, the swap matching is
defined as Mkm

jl = M\ {(DPk, RBm) , (DPj , RBl)} ∪
{(DPk, RBl) , (DPj , RBm)}, which denotes that the two spe-
cific D2D pairs exchange their matched RBs while the other
D2D pairs remain unchanged. Besides, the swap matching
Mkm

jl will be approved only if

1) ∀a ∈ {DPk, DPj , RBm, RBl}, Ua

(

Mkm
jl

)

≥ Ua (M);

2) ∃a ∈ {DPk, DPj , RBm, RBl}, Ua

(

Mkm
jl

)

> Ua (M),

and (DPk, DPj) is called a swap-blocking pair inM.
Note that the above definition indicates that only if the utilities
of all involved players are not reduced and at least one player’s
utility increases, a swap matching will be approved.

Now, we first propose a low-complexity algorithm as an
initial base line, which is summarized inAlgorithm 2 . First of
all, each D2D pair proposes to its most preferred RB, which is
ranked first in its preference list. After receiving the proposal,
each RB will reject its least-preferred D2D pair in its waiting
list repeatedly until the minimum rate requirements of all CUs
are satisfied and at mostQ D2D pairs are accepted. The above
steps will be carried out until all D2D pairs have been matched.

Algorithm 2 Initial Matching Algorithm for Spectrum Allo-
cation

1. for each D2D pairDPk ∈ D
2. CalculateRD

k

∣

∣

M(DPk)=RBm
, ∀RBm ∈ M;

3. Establish the preference listPD
k by sortingRBm

in descending order ofRD
k

∣

∣

M(DPk)=RBm
;

4. end for
5. Initialize the set of the unmatched D2D pairsDu = D;
6. while Du 6= φ

7. for each D2D pairDPk ∈ Du

8. DPk sends a request to its most-preferred RB in
PD
k , e.g.,RBm, by settingρIkm = 1;

9. end for
10. for each RBRBm ∈ M
11. Establish waiting listWRB

m =
{

DPk

∣

∣ρIkm = 1
}

;
12. RemoveWRB

m from Du;
13. while the minimum rate requirements of CUs are

not satisfied or
∣

∣WRB
m

∣

∣ > Q

14. Find the least-preferred D2D pair inWRB
m ,

denoted asDPk′ ;
15. RejectDPk′ by settingρIk′m = 0;
16. AddDPk′ into Du;
17. RemoveRBm from PD

k′ ;
18. end while
19. end for
20. end while
21. Output the initial RB allocation solutionρI.

Furthermore, from Definition 4, it can be observed that
swap operations can help to improve the utilities of agents
and therefore the performance of the spectrum allocation algo-
rithm. Inspired by this observation, the further swap matching

Algorithm 3 Further Swap Matching Algorithm for Spectrum
Allocation

1. Initialize the spectrum allocation solutionρI.
2. for each D2D pairDPk ∈ D
3. DPk searchesDPj or vacanciesOl on RB-l;
4. Check if(DPk, DPj) or (DPk, Ol) is a swap-

blocking pair;
5. If approved,DPk exchanges its RB withDPj or

moves to thel-th RB;
6. Update the matching state;
7. Repeat 3-6 until all swap matchings checked.
8. end for
9. Output the convergent matching stateρ∗.

Algorithm 4 Two-stage iterative algorithm for joint spectrum
allocation and power coordination

1. For any given tradeoff parameterε,
2. Initialize τ = 0, flag = 1, Φ = 0.01;
3. Initialize pCnm = ε−Nps

αN |MC
n | , p

D
k = pDmax;

4. Initialize ρ0 via Algorithm 2;
5. while flag > Φ, do
6. τ = τ + 1;
7. Calculateρτ via Algorithm 3;
8. Calculate

(

pC,(τ),pD,(τ)
)

via Algorithm 1 withρτ ;

9. Calculateflag = max
k,m

∣

∣

∣
ρ
(τ)
km − ρ

(τ−1)
km

∣

∣

∣
.

10. end while

algorithm is developed and summarized inAlgorithm 3 . At
the beginning, each D2D pair will search another D2D pair
or available vacancies in other RBs to check if they can form
a swap-blocking pair. If the swap matching is approved, the
matching will update to the swap matching. The above process
will continue until there does not exist any swap-blocking
pairs.

For the aforementioned matching game with externalities,
the traditional definition for the stability of a matching game
is not guaranteed. Instead, we concentrate on finding thetwo-
sided exchange-stable matching[39] in this paper, which is
defined as below.

Definition 5:A matchingM is called a two-sided exchange-
stable matching if no swap-blocking pair exists.

Then, we have the following theorem for Algorithm 3.
Theorem 4:Algorithm 3 is guaranteed to converge to a two-

sided exchange-stable matching within a limited number of
iterations.

Proof: See Appendix D. �

C. Two-stage Iterative Algorithm and Performance Analysis

Up to now, the solutions of subproblems (23) and (24)
have been obtained via Algorithm 1, and Algorithm 2-3,
respectively. Thus, the original SOO problem (22) can be
readily solved by developing the two-stage iterative algorithm
as organized inAlgorithm 4 , and the following theorem
illustrates itseffectivenessandconvergence.
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TABLE I
SIMULATION PARAMETERS SETTING

Parameters Value
Cell radius 500 m

Maximum distance of D2D pairs 50 m
Number of resource blocks 12

Amplifier’s efficiency 0.38
Fixed power of CUs 1 W

Maximum transmit power of D2D pairs 0.1 W
Maximum transmit power of CUs 0.2 W

Minimum rate requirements of D2D pairs 1 bit/s/Hz
Minimum rate requirements of CUs 2 bit/s/Hz

Quota of each resource block 2
Number of CUs 6

Number of D2D pairs 8
Normalized error bound of interference channels 0.05

Theorem 5:Algorithm 4 monotonically decreases the ob-
jective of problem (22) at each iteration, and finally converges
in a finite amount of iterations for a given thresholdΦ.

Proof: See Appendix E. �

For the spectrum allocation problem, its computational
complexity is mainly up to the swap matching algorithm,
i.e., Algorithm 3. Since there are at most12K (M − 1)Q
potential swap-blocking pairs, the computation complexity of
Algorithm 3 approaches toO (K (M − 1)Q). In addition, the
power coordination problem is highly non-convex because of
mutual interference among D2D pairs and CUs. It is rather
difficult to find its global optimal solution, and thus Algorithm
1 is proposed to solve problem (23), which is guaranteed to
find the local optimum. Specifically, as a standard convex
problem is solved at each iteration, only polynomial com-
putational complexityO ((N +K)

µ
(NM +K)

v
) is required

via the interior point method [18], [20], whereµ and v

are positive constant. Besides, Algorithm 4 converges fastas
verified by simulation results (see Fig. 3). In conclusion, the
total computational complexity of Algorithm 4 for the joint
optimization of spectrum allocation and power coordination
is O (KQ (M − 1) (N +K)

µ
(NM +K)

ν
). In other words,

the proposed algorithm only requires polynomial complexity
to solve problem (22).

V. SIMULATION RESULTS

In this section, numerical results are presented to demon-
strate the performance of our proposed algorithm. It is as-
sumed that there are one macro BS in the cell center, three
pico BSs located at the circle with the radius of 200m, and
randomly distributed D2D pairs as well as CUs. The large-
scale channel gain between two nodes is composed of path
loss and shadow fading, where the path loss is modelled
as 128.1 + 37.6log10d (km), and the standard derivation of
shadow fading is 8 dB. Besides, it is assumed that all channels
undergo Rayleigh fading, and the other related simulation
parameters and their default values are shown in Table I. For
notational brevity, we useδmax to represent the normalized
error bound for all interference channel uncertainty regions,
which is normalized by the corresponding estimate. Please
note that if there are not particular statements, the parameter
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Fig. 2. Energy and spectral efficiency tradeoff for the proposed algorithm
and the exhaustive search.
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Fig. 3. The convergence procedure of Algorithm 4.

values mentioned in Table I are default values used to generate
all the following results.

1) Optimality and Convergence of the Proposed Algorithm:
We first compare the proposed two-stage iterative algorithm
with the exhaustive search method to verify its optimality.
As the exhaustive search method is achieved with exponential
computational complexity, the small-scale case ofN = 2,
K = 3, M = 4 is presented as an instance in Fig. 2. As shown
in Fig. 2, our proposed algorithm approaches the exhaustive
search algorithm in terms of the tradeoff between EE and SE.
Then, we investigate the convergence of the proposed two-
stage iterative algorithm, and Fig. 3 plots the sum data rate
of all CUs Rtot

(

ρ,pC,pD
)

versus the number of iterations,
whereN = 12, M = 36. From Fig. 3, we can observe that
Rtot

(

ρ,pC,pD
)

increases uniformly and converges to the
peak value after about 6 iterations. Besides, it can be found
that the tradeoff parameterε and the number of D2D pairs
have insignificant influence on the speed of convergence. The
observed results also coincide with Theorem 5 given in Section
IV.

2) Performance Comparisons:Furthermore, numerical re-
sults are presented in Figs. 4-6 to evaluate the performance
of our proposed robust scheme in terms of EE, SE and
D2D pairs QoS satisfying probability compared to the non-
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Fig. 4. The energy efficiency comparison under differentε andδmax.

robust scheme. Note that the non-robust scheme indicates
that channel uncertainties are not taken into consideration and
all the channel estimates are adopted directly as they were
accurate. However, the interference channel uncertainties still
exist in the non-robust scheme. Particularly, the effective EE
and SE are considered in Figs. 4-5, which is set as 0 when
the minimum rate requirements of CUs or D2D pairs are not
satisfied.

Specifically, the performances of EE and SE are presented
with the variation of the tradeoff parameterε and the normal-
ized error boundδmax in Fig. 4 and Fig. 5, respectively. It
can be observed in Fig. 4 that for a givenε, the EE under the
non-robust scheme decreases rapidly with the increase ofδmax

while the EE under the robust scheme declines slightly with
δmax. This is because whenδmax increases, the minimum rate
requirements of CUs and D2D pairs for the non-robust scheme
are more likely to be violated, and the effective EE for non-
robust case is treated as 0 to present the infeasibility of the
constraint C6. In contrast, as the proposed robust scheme is
guaranteed to satisfy the rate requirements of CUs invariably,
the EE under our robust scheme is strictly greater than 0 all
the time. Similarly, we can also observe from Fig. 5 that for
a givenε, a largerδmax leads to a worse SE, and the robust
scheme achieves higher effective SE in comparison with the
non-robust scheme for the sameε andδmax.

On the other hand, by adjusting the tradeoff parameter
ε from 6 to 7.5, Fig. 4 and Fig. 5 also show the tradeoff
performance between EE and SE under robust and non-
robust schemes. Whenδmax is fixed, the effective SE always
increases withε under both schemes as shown in Fig. 5. This is
because largerε indicates more transmit power is available to
improve the transmission rate of CUs. On the contrary, in Fig.
4, the effective EE first increases and then declines with the
growing of ε for both schemes. Whenε is small, the power
consumption for data transmission plays a small part in the
total power consumption compared to the fixed circuit power
consumption. Under this circumstance, SE goes up at a higher
speed than the whole power consumption, and thus EE also
increases withε until reaching the peak point. After that, the
growing of transmit power consumption cannot be neglected,
and the increase of SE is slower owing to the reducing gradient

Fig. 5. The spectral efficiency comparison under differentε andδmax.

Fig. 6. The D2D pairs QoS satisfying probability under differentε andδmax.

of the logarithmic rate-power function. Consequently, EE turns
to decrease withε.

In addition, the QoS satisfying probability of D2D pairs
is plotted againstε and δmax in Fig. 6. It can be easily
found that our proposed robust scheme can always satisfy the
minimum rate requirements of all D2D pairs with the variation
of ε andδmax, and therefore its QoS satisfying probability is
always 1. In contrast, for the non-robust scheme, the QoS
satisfying probability of D2D pairs decreases with bothε and
δmax. Specifically, whenε increases, CUs will transmit data
with higher transmit power to improve the system SE, which
produces more serious interference to D2D pairs sharing the
same RB. Besides, with the increase ofδmax, the deviation
range of the interference to D2D pairs extends gradually,
which also increases the violation probability of the minimum
rate constraint C7.

3) Impact of D2D Minimum Rate Requirement:Fig. 7 and
Fig. 8 show the impact of the minimum rate requirements of
D2D pairsRD

min on the D2D pairs QoS satisfying probability
and the EE-SE tradeoff. It is readily observed in Fig. 7 that
our proposed robust scheme can always satisfy the minimum
rate requirements of D2D pairs, while the D2D pairs QoS
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for robust and non-

robust schemes.
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Fig. 8. Energy efficiencyvs. spectral efficiency with differentRD

min
for the

proposed robust scheme.

satisfying probability for the non-robust scheme declineswith
the increase ofRD

min. Besides, for the non-robust scheme,
the increase ofε also contributes to the deterioration of
QoS satisfying probability for D2D pairs, since higher level
of interference from CUs will be imposed on D2D pairs
sharing the same RBs. Then, in Fig. 8, asε increases from
6 to 7.5, higher rate requirement of D2D pairs means worse
performance in terms of the EE-SE tradeoff. Specifically, for
the same EE, the SE is reduced with higher minimum rate
requirement of D2D pairs. Since D2D pairs need to transmit
with larger power to achieve higher rate, heavier interference
will be introduced to the CUs which share the same RBs.
Therefore, from Fig. 8, we can conclude that there exists a
tradeoff between the rate requirement of D2D pairs and the
EE-SE performance of CUs.

4) Effect of RB Quota:To investigate the impact of the
maximum number of D2D pairs at each RB, the curves for
the tradeoff between EE and SE with differentQ are plotted
in Fig. 9. With the increasing ofε from 6 to 7.5, all the five
curves show the same trend that EE first goes up and then
declines with the growing of SE. As shown at the second half
of curves where EE declines with the increase of SE, higher
SE can be obtained with larger value ofQ for the same EE.
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Fig. 9. Energy efficiencyvs. spectral efficiency with differentQ for the
proposed robust scheme.

With the increase ofQ, more D2D pairs are permitted to share
the same RB, which provides more degrees of freedom in
spectrum allocation and thus contributes to the improvement
of SE. Besides, whenQ increases from 2 to 6, the maximum
EE and its corresponding SE first increases and then remains
stable, which indicates that allowing five or more D2D pairs to
share the same RB cannot obtain extra performance gain. This
is mainly due to the fact that more D2D pairs sharing one RB
will also introduce heavier mutual interference, which reduces
the performance advantage of spectrum sharing to some extent.
Therefore, the maximum EE and corresponding SE cannot be
enhanced by increasing the maximum number of D2D pairs at
each RB. Also, as the computational complexity of Algorithm
3 rises up withQ, the choice ofQ should be appropriate,
which is suggested to be 5 for the given simulation settings.

VI. CONCLUSION

In this paper, the robust multi-objective optimization in D2D
communications underlaying HetNets has been investigated,
and the uncertain MOO problem was formulated to optimize
the system EE and SE at the same time under the minimum
rate requirements of all CUs and D2D pairs, where the
uncertainties of all interference channels were taken intocon-
sideration. Then, we proposed an effective two-stage iterative
algorithm for the joint optimization of the spectrum allocation
and power coordination with polynomial complexity, whose
convergence and optimality were demonstrated through theo-
retical derivation. Besides, our proposed algorithm converged
fast as shown in numerical results. Compared to the non-robust
scheme, the proposed robust scheme achieved much higher
effective EE and SE, and always satisfied the minimum rate
requirements of D2D pairs. By investigating the impact of
the D2D pairs’ minimum rate requirements, we found there
existed an intrinsic tradeoff between the EE-SE performance of
CUs and the minimum rate requirements of D2D pairs. Finally,
the effect of the RB quota was studied, which suggested that
the choice of quota should be appropriate for the compromise
between complexity and performance gain.
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APPENDIX A
PROOF OFTHEOREM 1

We first prove the sufficiency, and define that

F
(

x,gC2B,gD2B
)

=
[

f1
(

x,gC2B,gD2B
)

f2 (x)
]T

, (35)

where x =
(

ρ,pC,pD
)

. Assume thatx∗ is robust Pareto
optimal for P (G), and thus there does not existx satisfying
C1− C7 andFG (x)− R

2
≥ ⊆ FG (x∗)− R

2
≥ simultaneously.

Suppose thatx∗ is not Pareto optimal for problem (16),
which indicates that there exists another feasible solution x′

of problem (16) satisfying

F
(

x′,gC2B
max (x

′) ,gD2B
max (x′)

)

∈ F
(

x∗,gC2B
max (x

∗) ,gD2B
max (x∗)

)

− R
2
≥,

(36)

where
(

gC2B
max (x) ,g

D2B
max (x)

)

= arg max
gC2B,gD2B

f1
(

x,gC2B,gD2B
)

.

(37)
Since

F
(

x′,gC2B,gD2B
)

≤ F
(

x′,gC2B
max (x

′) ,gD2B
max (x′)

)

, (38)

∀gC2B ∈ GC2B,gD2B ∈ GD2B, always holds, we have

FG (x′) ⊆ F
(

x∗,gC2B
max (x

∗) ,gD2B
max (x∗)

)

− R
2
≥

⊆ FG (x∗)− R
2
≥,

(39)

which contradicts with the assumption thatx∗ is robust
Pareto optimal forP (G). Therefore,

(

ρ∗,pC∗
,pD∗

)

is Pareto
optimal for problem (16) if it is robust Pareto optimal for
P (G). Conversely, we can prove the necessity in a similar
way, which completes the proof.

APPENDIX B
PROOF OFTHEOREM 2

We first prove the sufficiency. Define that

g1 (x) = max
gC2B,gD2B

f1
(

x,gC2B,gD2B
)

, (40a)

g2 (x)=f2 (x) , (40b)

wherex =
(

ρ,pC,pD
)

. For givenε, assumex∗ is the unique
optimal solution of problem (17), and we haveg1 (x∗) ≤
g1 (x), for all x satisfying C1-C5, C6′, C7′ and C8.

Now we suppose thatx∗ is not Pareto optimal for the MOO
problem (16). Thus, there must exist another solutionx′ of
problem (17) that satisfies

gi (x
′) ≤ gi (x

∗) , ∀ i = 1, 2, (41)

and there is at least onej ∈ {1, 2} such thatgi (x′) < gi (x
∗).

Apparently, this contradicts with the uniqueness assumption.
Therefore, we can conclude thatx∗ is Pareto optimal for the
MOO problem (16). Furthermore, from Theorem 1, it can be
readily obtained thatx∗ is also robust Pareto optimal for the
original uncertain MOO problemP (G).

On the other hand, it is assumed thatx∗ is a robust Pareto
optimal solution for problemP (G) and thus Pareto optimal for
problem (16). Then, letε=g2 (x

∗), and suppose thatx∗ is not
the optimal solution of problem (17). Thus, there must exist
anotherx′ with g1 (x

′)<g1 (x
∗) and g2 (x

′) ≤ ε = g2 (x
∗),

which contradicts with the assumption thatx∗ is Pareto
optimal for problem (16). The necessity is also proved.

APPENDIX C
PROOF OFTHEOREM 3

Assuming that
(

pC,(t),pD,(t)
)

is the obtained optimal solu-
tion at thet-th iteration, we can obtain that

Rtot

(

pC,(t−1),pD,(t−1)
)

a
= R̃

(t)
tot

(

pC,(t−1),pD,(t−1)
)

b
≤ R̃

(t)
tot

(

pC,(t),pD,(t)
)

c
≤Rtot

(

pC,(t),pD,(t)
)

,

(42)

where the equality (a) is becauseYn

(

pC,(t−1),pD,(t−1)
)

=

Ỹ
(t)
n

(

pC,(t−1),pD,(t−1)
)

; the inequality (b) is valid due the
fact that problem (32) is convex and

(

pC,(t),pD,(t)
)

is
its global optimal solution; the inequality (c) holds since
R̃

(t)
tot

(

pC,pD
)

is the lower bound ofRtot

(

pC,pD
)

according
to (29). Therefore,Rtot

(

pC,pD
)

is improved at each itera-
tion.

Besides, as the constraint set is compact and there exists an
upper bound ofRtot

(

pC,pD
)

for the given transmit power
budget, Algorithm 1 must converge. Assume

(

pC∗,pD∗
)

is
the convergent solution. As the objectives and constraintsin
problem (23) and problem (32) have the same values and
derivative values at

(

pC∗,pD∗
)

,
(

pC∗,pD∗
)

must satisfy the
KKT conditions of problem (23).

APPENDIX D
PROOF OFTHEOREM 4

Assume that theτs-th swap operations is forced by the swap-
blocking pair(DPk, DPj), i.e.,M(τs) = M(τs−1)km

jl . From the
definition of swap-blocking pairs, it can be obtained that

Rtot

(

M(τs)
)

−Rtot

(

M(τs−1)
)

=
∑

n∈C

(

RC
n

(

M(τs)
)

−RC
n

(

M(τs−1)
))

=
∑

m′∈M

(

URBm′

(

M(τs)
)

− URBm′

(

M(τs−1)
))

= URBm

(

M(τs)
)

+ URBl

(

M(τs)
)

−URBm

(

M(τs−1)
)

− URBl

(

M(τs−1)
)

≥ 0,

(43)

which indicates that the objective function of problem (24)
will not decrease with the progress of Algorithm 3. Since the
numbers of D2D pairs and RBs are both finite, the number of
potential swap operations is also finite. Hence, the convergence
of Algorithm 3 must occur in a finite amount of iterations.

As depicted in Algorithm 3, when it converges, no D2D pair
can find another D2D pair to constitute a swap-blocking pair.
In other words, the matching at convergence is a two-sided
exchange-stable matching, which completes the proof.
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APPENDIX E
PROOF OFTHEOREM 5

Considering theτ -th iteration of Algorithm 4, we can obtain
the following inequality

Rtot

(

ρ(τ−1),pC,(τ−1),pD,(τ−1)
)

α

≤Rtot

(

ρ(τ),pC,(τ−1),pD,(τ−1)
)

β

≤Rtot

(

ρ(τ),pC,(τ),pD,(τ)
)

.

(44)

Specifically, the first inequalityα has been verified in The-
orem 4 where the sum rate of CUs will not decrease af-
ter Algorithm 3 conducted. Also, Theorem 3 has illustrated
that Rtot

(

pC,pD
)

increases with the number of iterations,
which proves the second inequalityβ. Hence, Algorithm 4
monotonically decreases the objective of problem (22) at
each iteration. Furthermore, with the given spectrum and
power budget, the sum rate of CUsRtot

(

ρ,pC,pD
)

is
upper bounded. Therefore, Algorithm 4 is guaranteed to
converge after finite iterations at eitherflag < Φ or
∣

∣

∣

∣

Rtot(ρ(τ),pC,(τ),pD,(τ))−Rtot(ρ(τ−1),pC,(τ−1),pD,(τ−1))
Rtot(ρ(τ−1),pC,(τ−1),pD,(τ−1))

∣

∣

∣

∣

< Φ.
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