Robust Multi-Objective Optimization for EE-SE Tradeoff in D2D
Communications Underlaying Heterogeneous Networks

Yuanyuan Hao, Qiang NiSenior Member, IEEEHai Li, Member, IEEEand Shujuan Hou

Abstract—In this paper, we concentrate on the robust multi- to the improvement of the network EE and SE due to high
objective optimization (MOO) for the tradeoff between enegy spectral utilization and the physical proximity betweenD2
efficiency (EE) and spectral efficiency (SE) in device-to-deéce pairs [5], [6]. On the other hand, the multi-tier HetNet has

(D2D) communications underlaying heterogeneous networks . o . .
(HetNets). Different from traditional resource optimization, we been identified as a promising network architecture for 5G

focus on finding robust Pareto optimal solutions for spectrum 0 drastically improve EE and SE [7]-[9], as multiple small
allocation and power coordination in D2D communications un  cells share the same spectrum with each macro cell which
derlaying HetNets with the consideration of interference bannel  promotes the dense spectrum reuse. Based on the above ob-
;P;;gﬂ”:ée;az‘;igéogégéz fgrEm(‘)‘f'aCtgﬁui}; ":‘Jrs‘e“rgc(eéﬁ‘;r)‘ glulr%l servation, the study on the D2D communications underlaying
taneously while guaranteeing the minimum rate requiremens of HetNets is indeed of vital importance because of the e_xrit?cte
both CUs and D2D pairs. With the aid ofe-constraint method and ~ heterogeneous nature of the future 5G networks. For mefti-t
strict robustness, we propose a general framework to trangim  HetNets operating with universal frequency reuse, cress-t
the uncertain MOO problem into a deterministic single-objective  and co-tier interference are the main challenges [10], atrd e
optimization problem. As exponential computational Compéxity  jntarference is imposed when underlaid D2D communications

is required to solve this highly non-convex problem, the powr dmitted. A in D2D icati
coordination and the spectrum allocation problems are soled are admilied. AS a consequence, In communications

separately, and an effective two-stage iterative algoritm is ~underlaying HetNets, spectrum allocation and power coor-
developed. Finally, simulation results validate that our poposed dination mechanisms are more complicated in comparison
robust scheme converges fast and significantly outperformtghe  with those in traditional homogeneous cellular networkg] a

non-robust scheme in terms of the effective EE-SE tradeoffre ey are essential to achieve the potential benefits from D2D
the quality of service satisfying probability of D2D pairs. L S
communications and multi-tier HetNets.

Index Terms—D2D communications, energy efficiency, Het-
Nets, power coordination, robust multi-objective optimization, A. Related Work

spectral efficiency, spectrum allocation. . o
P ¥ SP There have been numerous studies about the energy efficient

resource allocation for D2D communications [11]-[20]. In
. INTRODUCTION [11], the authors focus on optimizing the energy consump-
ITH the proliferation of smart mobile services andion of the BS in D2D communications underlying cellular
the intrinsic spectrum scarceness, improving spectragtworks by optimally coordinating users to redistribute t
efficiency (SE) has been widely treated as an essentialttargeffic, where the authors in [12] investigate the perforosn
for the next decade [1]. At the same time, green conof various power control strategies for D2D communications
munications have caught considerable attention, becaliseinoL.TE networks. Furthermore, considering the simple syste
explosively rising energy consumption of mobile network@&ith one D2D link and one cellular user (CU), the work
and corresponding environmental concerns [2]. Theretbee, in [13] proposes an extended binary power control method
enhancement of energy efficiency (EE) is another key objectito maximize the utility which balances SE and power. The
for the future fifth-generation (5G) networks [3]. To tackleauthors in [14] also consider the scenario with single D2D
these difficulties, there is a general consensus that defisg and single CU, where the D2D user's EE is optimized
network deployment will play an important role, such aander the minimum rate constraints of both CU and D2D
multi-tier heterogeneous networks (HetNets) and dewee-tusers. Similarly, in [15], the resource allocation problém
device (D2D) communications, especially when employed imderlay or overlay D2D communications and cognitive radio
combination [4]. systems is formulated as the maximization of the secondary
D2D communications enable wireless point-to-point seenergy efficiency subject to a minimum rate requirement for
vices directly between two mobile devices as well as offloade primary user, where a sequential optimization method
the traffic of cellular base stations (BSs), which contrébuis proposed. Recently, the authors in [16] investigate the

. . . problem of minimizing the transmission energy consumption
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underlaying cellular networks as a nontransferable doalit B. Contributions
formation game. Besides, the authors in [20] investigaggn
efficient power control in D2D communications underlayin%
cellular networks, where both the system EE and individu
EE optimization problems are considered.

As far as we know, there is no existing study about the
rE—SE tradeoff in D2D communications underlaying Het-
Nets with universal frequency reuse among macro BSs, pico
] ] BSs and D2D pairs. Also, considering channel uncertainties
Nevertheless, the above studies [11]-{20] consider D2Re research on robust multi-objective optimization peoil
communications underlaying or overlaying single—tier-neERMop) is still missing. Inspired by these facts, in this @ap
works, and the research on resource allocation in D2D cogg investigate the RMOP for D2D communications under-
munications underlaying HetNets is still limited. In [21])aying HetNets. To mitigate the negative effects of underla
the authors consider the channel and power level selectiSbp communications on the primary HetNets while strictly
problem for D2D pairs in HetNets under two scenarios Whe[ﬁ\suring the minimum rate requirements of D2D pairs, the
D2D pairs operate over the dedicated frequency band aRfiop is formulated as maximizing the EE and SE of CUs
the shared cellular channels, which is formulated as a nQpjle strictly ensuring the minimum rate requirements offbo
cooperative game among D2D pairs. Besides, the work in [22])s and D2D pairs, where the spectrum allocation and power
investigates the resource allocation problem to maxintiee Fcoordination of CUs and D2D users are jointly optimized.

system secure capacity for D2D communications underlayiR@ecifically, the main contributions are given as follows:
HetNets where each subcarrier can be allocated to at most

one user of the same type. On the contrary, the authorg ThiS is the first work which models the robust multi-
in [23] focus on the power allocation problem in multi-tier ~ OPi€ctive optimization problem to investigate the tradeof
HetNets by employing a non-cooperative scheme to optimize Petween EE and SE in D2D communications underlaying

the individual EE of each small cell BS and each D2D pair. HetNets while considering interference channel uncer-
) ) ] ) tainties. Specifically, the problem is formulated as an
However, either EE or SE is neglected in the aforementioned | ~artain MOO problem which maximizes the sum rate

work [11]-[23]. There have been studies about the joint ¢ o) cUs and minimizes the corresponding total power
optimization of EE and SE for D2D communications in single- consumption simultaneously while strictly ensuring the
cell networks [24], [25] and for HetNets [26]. As EE and  ninimum rate requirements of both CUs and D2D pairs.
SE potentially conflict with each other such that available | 1 fing the optimal solutions of the formulated uncertain
resource cannot be optimized to improve both EE and SE ;00 problem, we propose a general framework which
simultaneously, it is indispensable to inyesti_gate theleodf . transforms the uncertain MOO problem into a determin-
between EE and SE for D2D communications underlaying istic SO0 problem, with the help af-constraint method
HetNets, which can provide decision makers with the entire 5,4 strict robustness. Crucially, it is demonstrated tieor
performance envelop of EE and SE. More importantly, in all - jcay that the unique optimal solution of the determirdsti

the previous studies [11]-[26], it is assumed that perfeane SOO problem isobust Pareto optimafor the original

nel state information (CSI) is available, while this asstiop uncertain MOO problem. Consequently, the proposed
cannot be achieved in practical scenarios. Due to the random 5 mework is guaranteed to find all robust Pareto optimal
nature of wireless channels, limited capacity and transions solutions of the formulated uncertain MOO problem, i.e.,

delay of backhaul channels, and inaccurate channel egtimat robust Pareto frontier is obtained.
the QSI inevitably contains errors, which may substantiall | The spectrum allocation for D2D pairs and the power
deterlora_te Fhe system p_erformance. Particularly, fpr D2D  gordination of CUs and D2D pairs are jointly optimized
communications underlaying HetNets,_the QoS requwements in D2D communications underlaying HetNets, which is
of cellular users (CUs) and D2D pairs cannot be strictly 5 mixed-integer and non-convex problem due to the in-
satisfied when channel uncertainties exist. trinsic integer property of resource block (RB) allocation
To address the uncertainties of CSI, robust optimization and the existence of mutual interference among CUs and
has been studied in wireless communications [27]-[29]. In D2D pairs sharing the same RB. Thus, we propose a
[27], two robust resource allocation schemes for cognitive computationally-efficientiterative algorithm where péim
radio networks are developed to maximize the system goodput decomposition is employed to separate the original prob-
while satisfying the interference constraints of primasgeu lem into two subproblems. To be more specific, the power
for probabilistic and bounded channel uncertainty model, coordination problem is solved via D. C. (difference of
respectively. The authors in [28] propose centralized and convex functions) programming. On the other hand, we

distributed power control algorithms for D2D underlay o&dr model the spectrum allocation problem as a many-to-one
networks where the CSI includes estimation errors. Siihgjlar matching game, and propose initial matching and swap
considering interference channel uncertainties, the waork matching algorithms.

[29] focuses on the uplink resource allocation algorithm in « The optimality, convergence, and complexity of our pro-
relay-aided D2D communications with the help of worst case posed methods are presented in detail. Via theoretical
optimization method. However, all the studies in [27]-[29] analysis, it is proved that our proposed power coordina-
focus on robust single-objective optimization problem G, tion method and spectrum allocation algorithm converge
and the effect of channel uncertainties on the multi-object within a finite number of iterations. Furthermore, the
optimization problem is still unknown. convergence of the overall two-stage iterative algorithm



is verified by both theoretical analysis and numerical
results, and its whole computational complexity is also

given in detail. More importantly, it is demonstrated @ &) o N
via numerical results that our proposed robust scheme : ) \\\
significantly outperforms the non-robust scheme in terms [5 j,,\’(z U
of the effective EE-SE tradeoff and the quality of service g ( \é )
(QoS) satisfying probability of D2D pairs. Particularly, \_/ ,,/\

through numerical results, we find that there exists an
intrinsic tradeoff between the EE-SE performance of
CUs and the minimum rate requirements of D2D pairs.

Besides, it is suggested that the choice of the maximum @ vBs py @
number of D2D pairs on each RB should be appropriate = o) SN
i i ' . ¢
for.the compromise between complexity and performance é\ QQH@Q
gain. __— @
C. Paper Organization \ ——> Communication link /
The remainder of this paper is organized as below. The T T Interferencelink

system model and the nominal problem formulation are first
presented in Section Il. Then, in Section lll, the uncertaig. 1. System model.
MOO problem is formulated and transformed into a deter-
ministic SOO problem, and we propose effective algorithms
for the joint optimization of power coordination and speotr whereh!”. is the channel power gain between th¢h CU and
allocation in Section V. Finally, numerical results andneo thei-th BS on then-th RB, andI$,, = > S+
clusions are given in Section V and Section VI, respectively. Do _ 7/ €Cm,n/#n
k;p premPr g5 denotes the interference experienced by ©€U-
II. SYSTEM MODEL AND DETERMINISTIC PROBLEM on them-th RB. g/}, andg;: represent the interference channel
FORMULATION power gains from other CUs and D2D pairs sharingsii¢h
We consider a D2D communications underlaying HetNe'tQB' Note thaC,, re_pr_esents the set Of.CL.JS who transmit data
which is shown in Fia. 1. composed of a macro base Statio’h the m-th RB. Similarly, the transmission data rate of the
9- - P 2%h D2D pair can be calculated by

(MBS), I pico BSs (PBSs)N CUs, andK D2D pairs. Let

C = {1,2,--- N} denote the set of CUs, and the indexes D _ pRhi
of D2D pairs are given byt € D = {1,2,---,K}. We Ry = z/:wpkmlogQ L+ P +o02)° @
usei € {0,1,2,---,I} as the indexes of BSs, whete= 0 me

corresponds to the MBS, and the others are PBSs. Besides Wi#¢re/;" denotes thg channel p%wermgain of théh DZDDP?JV
assume that the spectrum is shared by all BSs, and orthogdhfhem-thRB, andl,; = > pungn+ >.  pimp; 95k

L . . neECm, D,j#k
frequency-division multiple access (OFDMA) is adopted fok the interference recei\,eg by tieth DéeD pJair on RBm.

CUs associated with the same BS, which is prede’[ermined.slg?}€ and g represent the interference channel power gains

M ={1,2,---, M} denote the set of resource blocks (RBSj}om then-th CU and thej-th D2D pair, respectively.
for uplink transmission, and$ is used to indicate the set of

RBs which are occupied by theth CU. We assume that each
RB can be reused by multiple D2D pairs. Consequently, thege sg and EE
exists not only inter-cell interference among CUs assediat
with different BSs, but also mutual interference among CUs In this paper, we define the system SE (bit/s/Hz) as the sum
and D2D pairs sharing the same RB. transmission rate of all CUs per unit bandwidth, which can be
expressed as
NsE = Riot = Z RS- 3
neC
urthermore, the system EE (bit/Joule/Hz) is stated asatti@ r
of the system SE to the corresponding power consumption,
which is presented as

A. Transmission Data Rate

We first introducep,, to represent the transmit power ofe
the n-th CU on them-th RB, andp? denotes the transmit
power of thek-th D2D pair. Then, lepy.,,, describe then-th
RB allocation for thek-th D2D pair, wherepy,,, = 1 if RB-m

is allocated to thé:-th D2D pair, px,, = 0, otherwise. Thus, > RS
the transmission data rate of GtJassociated with theth BS NEE = IZSE = nec 5 . (4)
can be expressed as tot nZE:C mg/lcpnm + Nps
oo 5
RC = Z log, (1+%L]W), (1) Here a denotes the transmit amplifier efficiency, apd
MEMC 1w +0° represents the fixed circuit power consumption of each CU.



[1l. ROBUSTMULTI-OBJECTIVE OPTIMIZATION FOR to fit the extended system where each D2D pair can utilize
EE-SE TRADEOFF multiple RBs and each RB can be occupied by multiple D2D

In this section, we first present the nominal MOO problefR@irs, we introduce the idea of virtual D2D pairs. Specifical
for the EE-SE tradeoff in D2D communication underlayin%ge” the minimum rate requirement of tieth D2D pair
HetNets, where perfect CSl is assumed. Then, with the cons{émin IS large for certain applications and multiple RBs are
eration of channel uncertainty, robust MOO problem is ferth fequired for data transmission, its rate requirement can be
formulated and transformed into a deterministic SOO problesplited into Ramin/vk by introducingvy — 1 virtual D2D
to facilitate problem solving. pairs. With the help of new introduced virtual D2D pairs each

of which occupies one RB, the originatth D2D pair can
A. Problem Formulation: Nominal Multi-Objective Optimiza Utilize multiple RBs simultaneously
tion In contrast to the SOO problem, the MOO problem (5)

It has been widely recognised that EE and SE Conﬂigpnsiders two conflicting objectives simultaneously. Irchsu
ase, there is no single global optimal solution but it is

with each other for a communication system with fixed radig

resources [30], [31]. Hence, the individual maximizatidh Ooften necessary to determine a set of alternatives that all

EE or SE cannot always meet the system performance Pé—"’_‘ prc_edetermined definition for an optimum, calledreto
quirement, and it is significant to study the tradeoff benweé)pt'm?“.ty [33]. - S .
EE and SE and present the whole performance envelop of EI’Pef_m't'OH 1: Pareto optimalityFor a multi-objective opti-
and SE. In fact, the EE-SE tradeoff problem is equivalent fgization problem,

a set of problems of finding the maximum EE with different min F (x) = [f1 (x) f2 (x) - fo (X)]T
fixed SE [25]. Furthermore, as EE is the ratio between SE and x
the total power consumption as shown in (4), for the same SE,
the minimization of power is equivalent to the maximizatio® pointx* € X' is Pareto optimal if and only if (iff) there does
of EE. Therefore, the joint optimization of EE and SE can bgot exist another point € X’ such that,, (x) < f, (x*), Vu €
achieved by maximizing SE and minimizing the total powefl,2,---, 0}, with at least onev € {1,2,---, O} satisfying
consumption simultaneously. Besides, as illustrated @],[3 fv (X) < fu (X*).

both the EE maximization and the SE maximization problems Furthermore, we define con&$, = {y € R¥,y > 0}, and
can be captured by the multi-objective optimization prabtef  F (x*) —RY={y € R%,y < F (x*)}. Thus, we have that*
maximizing SE and minimizing the total power consumptiois Pareto optimal ifff (x*) — RY does not contain an¥ (x)
simultaneously. Thus, the joint optimization of power atior with x € X. Note thatA < B represents thaA is smaller
nation and spectrum allocation for the tradeoff between E# equal toB in every component, and smaller in at least one
and SE in D2D communications underlaying HetNets can lsemponent.

formulated as a MOO problem, which can be expressed as Remark 2:As mentioned before, optimizing problem (5)

’ 6
st.xe X ©

. d finding the corresponding SE-power Pareto frontier can
f; (p,pC,pP) =— 3 RS and .. . ;
pé,ncl,lrlp 1 (PP pY) ,EC " provide decision maker with the entire performance envelop
min  f (p,p%.P°)=a > > 5.+ Nps, between EE and SE. Nevertheless, as it is non-trivial to fiad t
/PP n€CmeMy point corresponding to the maximum EE from the entire Pareto
s.t. Cl: pgm € {0,1},Vk € D,m € M, frontier by choosing one appropriate weight, the maxinidrat
C2: ZM prm = 1,Vk € D, of EE should be also conducted through problem (5) like [32]
me .
C3: Y pem <Q,Vm e M, (5) to characterize the tradeoff between EE and SE.
keD
. C < C
o1 mech Pam < Pmax V10 € C, B. Problem Formulation: Robust Multi-Objective Optimiza-
C5:pP <pb . Vk €D, tion
C6: RS > Ry i, Vn €C, The formulated problem (5) requires perfect interference
C7:RD > Rﬁmin,Vk €D, channel state information (CSI), namely, exact values of
C2B m D2B m C2D m D2D
. . = g7 = |91 = [g/], and =
wherepC,. andpP . denote the maximum transmit power of? 93i): & lgiil, & L971] 8

CUs and D2D pairs, respectively. In (5), C1 and C2 deno{gﬂ]' However, these parameters are subjected to uncertainty,
that each D2D pair can only use one RB for data transmissi&®nsidering the channel estimation errors and the limited
C3 indicates that at mos) D2D pairs share the same RB withC&Pacity of backhaul links. Hence, in this paper, it is asstim
one CU. In other words, the quota of each RB is seto that only partial CSI of interference links is available, ilgh
Then, C4 and C5 mean that the transmit power of CUs aR@ffect CSI of communication links is obtained. Considgrin
the transmitters of D2D pairs cannot exceed their maximuif® bounded uncertainty [27], we assume that the unceytaint
limits. C6 and C7 ensure the minimum data rates of CUs affl interference channel gains is bounded and no statistic
D2D pairs, respectively. knowledge is available. Specifically, the interferencencte
Remark 1:Virtual D2D pairs for extended systems.As | " _ R
Note that the specific operations about D2D rate requirersiglitting and

shown in problem (5), each D2D pair can only use one RBal p2p pairs are not taken into consideration in thet msthis paper
for data transmission. To generalize the proposed forrioumat and set aside for our future work.



gain can be modelled as= ¢+ ¢, where|¢| < (max denotes MOO problem with the uncertain parameter vecgor
the estimation error. Then, the corresponding power gain ca .

be given by PR PORES min F (x,€) = [f1 (x,€) 2 (x,€) - fo (x,€)]",
st.xeX €U,

2 — ~ = = ~

g |Zi| W=0+0@+)=g+0 () X € X is robust Pareto optimal for problem (14) iff there does
where j = gj is the estimated channel power gain, anflot existx € X —{x} such thatF, (x) C Fy, (%)~ R where
0 =(C+2R (y{) is the estimation uncertainty. Hefe(z) F, (x) = {F(x,8),¢cU}. B
represents the real componentaaf As y lies in a bounded
region, the power gaig is in a set of line segment. Here weC. Robust Pareto Frontier
consider the worst case, and the uncertain regiogn cdn be
expressed as

(14)

It can be observed from problem (13) that the second
objective is deterministic, which implies that the uncertya

GER=1{G+6:10] < Omax}, (8) of the first objective is independent with the second one.
_ = Therefore, the existence of the worst case for the first dilsgec
Wheredimax = GmaxCmax + 28 (§Cmax)- indicates that the worst-case scenario exists for the tainer

Therefore, the uncertainty region for the inter-cell imer'vIOO problem (13), which can be expressed as

ference gain from the/-th CU to thei-th BS on RBm is - fi (p,pY, p°,g“*", gP?B)
presented as gomgnes | f (p,pY, pP (15)
f C C2B D2B
O € Gty = {0+ 6+ ) < O s Vi) _ [ I AL AL
(9) f2 (pv pcva)

Also, the interference gain between theh D2D pair and

: - Furthermore, according to the definition of max-min robust-
BS-i on them-th RB is given by

ness, the robust solutions of problem (13) should always sat
gregn = { Gr 8T o < S k. i m} (10) isfy all constraints for the given uncertainty region. Téfere,
1 1 1 7" 1 — 7, max’? »r ™ : . . .
o . _ ’ the robust counterpart of problef(G) is readily obtained as
Similarly, the interference gaing);, andgy; can be expressed

: Cc D ,C2B ,D2B
as Jmin - max 6 (p,p%, PP, 87", g"?")
R : f Cc D
g € Gl = {4 6T [T < T e Y, km ) Jmin £ (p.p%,p7)
(11) s.t. C1— Cb, (16)
9 € G = {35 + 00+ |07k < 7k s YRy} . (12) C6': min RO >R, VneC,
g '8
o o _ C7': min  RP>RP . VkeD,
Taking into account the uncertainties of interference dean L ’
gains, problem (5) turns into the uncertain MOO problem: and the following theorem further clarifies the relatiopshi
min_ f; (p, pC, pP, g28, gP28) | between problenP (G) and its robust counterpart (16).
p.p°,pP Theorem 1: If max__f; (p,p®, pP,g“B, gP?®),
min _ fo (p, pC7pD) , (13) gC2B gD2B
p,pC,pP RC

P, min C and min / RY exist for all (p, p“, pP),
s.t. C1— C7,(9), (10), (11), (12). gO25 gP2b gC2D gD2D

Defining G — gm. x Gr x Gm x g, we call " have that(p*,pc*,pD*) is Pareto optimal for problem
n’ i n Al

(g9?B,gP?B, gCP gb2D) is a scenario and problem (13) is(16) iff (p*,pc*,pD*) is robust Pareto optimal for problem
an instance of the uncertain MOO problef(g). In other p (g).
words, problemP (G) is in fact a family of optimization  proof: See Appendix A. ]

problems with different scenariqg“?®, gP?B, g2 gb?P), According to Theorem 1, to find all the robust Pareto

In thi . b 4 optimal solutions ofP (G), we can alternatively find all Pareto
n this paper, we concentrate omin-max robustnes4], optimal solutions of problem (16). Thus, in this paper,

i.e., strict ro_bustness, whose goal.is to opt.imize the WOrSt, \traint method is employed to transform problem (16)
case scenario oP (G) over all feasible solutions. Different; .~ 5o problem, which is guaranteed to find all Pareto
from the existing literature [27]-[29] which study uncenta

, ) 7% optimal solutions even for non-convex problems [33]. By
SOO problems, the uncertain probléhig) considered in this minimizing one objective and converting the other objextiv

paper is an uncertain MOO problem. Under this circumstancrﬁto a constraint with an adjustable upper bound, we can
we cannot evaluate solutions by just taking the worst case OYransform problem (16) into

all scenarios since there is a two-element vector of objecti

values for each scenario. Recalling the definitionPafreto mcinD max fy (P,PC,PD,gCQngDQB),

. . . . P;P,PT 8 '8
optimality for a nominal MOO problem, we introduce the s.t. C1—C5,06,C7, (17)
definition of robust Pareto optimalityi.e., robust efficiency C8:fy (p7 pcva) <e,

[35] for an uncertain MOO problem as follows.
wheree can be adjusted to achieve different kinds of tradeoff

Definition 2: Robust Pareto optimalitgsiven an uncertain between EE and SE.



Theorem 2: If max_f; (p,p%, PP, g8, gP?B), IV. JOINT SPECTRUMALLOCATION AND POWER

gCZB7gD2 C
. . . OORDINATION
min _ RY, and min RY exist for all (p,pc,pD),
gC2B7gD2B gC2D7gD2D

(p*,pc*,pD*) is robust Pareto optimal for problefd (G) The transformed problem (22) factors the tradeoff between
. i « D*\ ) the system EE and SE for CUs as well as strict QoS re-
iff there existse such that gp*’pc P ) is the unique g irements of all D2D pairs and CUs. However, this problem
optimal solution to problem (17). is highly non-concave because of the integer varighlg
Proof: See Appendix B. B and mutual interference not only among CUs and D2D pairs
Remark 3:From Theorem 2, it can be concluded that thbut also among D2D pairs sharing the same RB, which is
e-constraint method is guaranteed to find all robust Pardi-hard to find the global optimal RB allocation and power
optimal solutions of problenP (G). In other words, the coordination solution. Therefore, in this section, we aitn a
proposed framework for robust multi-objective optimipati finding a practical algorithm for the joint optimization of
can provide an entireobust Pareto frontierfor the uncertain spectrum allocation and power coordination. With the eypplo
MOO problemP (G), just like the complete Pareto optimalment of primal decomposition [36], the original problem can
set for a nominal MOO problem. Note that this framework ibe divided into two subproblems, and a two-stage iterative
general enough to be applied to other systems with interéere algorithm is developed which optimizes the RB allocation
channel uncertainties. and power coordination in turn. With the given RB allocation
variablep = p’ in problem (22), thgoint power coordination
of CUs and D2D pairs problersan be obtained as

D. Closed-Form Expression max R (PC,p°) = 3 RS (0, pC, pP, g@2B*, gP2B+),
©,pP neC
To facilitate further processing, we need to derive thes.t. C4,C5,C6’,C7’,C8.
closed-form expression of problem (17). First of all, to @ _ N , . (23)
the uncertainty shown in the objective, the following résul Contrarily, by fixingp® = p© and p® = p®" in problem
can be found: (22), theRB allocation problentan be presented as
mx __ C D ,C2B _,D2B X / / " "
gii = arg max i (p,p%, PP, g%k, g"?k) i R (p) = Zc RC (p7 pC’ D’ gC2B+ gD2B )
nti €90t =
=arg min ZC Ry s.t. C1—C3,C6,CT.
—arg " min <. (18) (24)
g € { g 4o |6 §5Zu,,mx} e Note that we have removed constant items in (23) and (24)

for the purpose of simplicity.

= 0nri t007i max:
where

p'rCL:*mh:Ln*i 19 . . . .
T L 2 /> (19) A. Joint Power Coordination of CUs and D2D Pairs

C
Tpxm = 10g2 (1 + JC + o2
n*m

and »* denotes the index of the CU which is associated As mentioned above, the power coordination problem is
with the ¢-BS and occupies then-th RB. Similarly, it can non-convex because of existing mutual interference. To ad-

be obtained that dress this problem, we first re-express the rate function of
g = arg gyégﬂ f, (p, pcjpDng2B’gD2B) 0 CU-n as
gy R C (,C D) _ C D Cc . D
— G O Ry (p,p") = X, (P, ") — Yo (P, P") (25)

Then, the constraint§6’ and C'7’ can be re-expressed as Where both functionsy,, (P, p”) andy;, (p“, p”) are con-
cave and defined as

C m
/. pn'rnhni (@]
C6" : Z 10g2 (1 + IC* + 0_2) Z Rn,mirﬂvn € C’ Xn (pC’ pD) = Z 1Og2 (prCL:’th]; -+ I,S,:L -+ 0'2), (26a)
meM§ nm meM§
5 (21a) "
hin C D\ _ Cx 2
CT' > prmlogy (1+ 275 ) > RP . Vk €D, Y, (p9p°) = > logy (Ign, +0%).  (26b)
Ik >+ o2 ’ meMC
meM m (Zlb) n
) Thus, the objective of problem (23) is actually the differen
Cx __ C max D _mx Dx __
wherel,.;, = n/egn,#npn/mgm * kgp PrmPi 9k Tm = of two concave functions:
C m* D mx m* ~m m
nmInk T imD5 G g = g O maxe C . Dy _ Cc . D c . D
nezcmp Ink #%@Pa Pj 95k s Ink = Ink T Onkma R (PP ) =Y X.(p%p°) =D Y. (p°.0"). (27)
and g73" = gjj + 0} max- THus, the closed-form expression nec nec
of problem (17) can be expressed as To find the power coordination solution within afford-
min £, (p’ pC, p°, gc2B*7gD2B*) , able computational complexity, sequential optimizati8i][is
p,pC.pP (22) adopt in this paper, which can generate a series of improved

s.t. C1—C5,C6',C7', C8. feasible solutions [15], [25]. Specifically, for a given tial



Algorithm 1 D. C. programming algorithm for joint power of R, (p©, pP) with the number of iterations and finally

coordination converges to the point satisfying the KKT conditions of
1. Initialize t = 0, flagpe = 1, ¢ = 0.01, and find an problem (23).
initial feasible SOlution(pC’(O),pD7(0)). Proof: See Appendix C. [ ]

2. while flagy,c > ¢, do

3 i Note that for the given thresholtl > 0, the iterative process
Cot=t+ 1,

of Algorithm 1 terminates after finite iterations at either

4. CalculateV;!” (p©, pP) with (p& (=1 pP-(t=1); Flage. < ¢ or | Bt @S R% )R (oS0 p2 V) |
5. Solve problem (32) and obtaip“®), p®:®); @Gpe Rior (pC-(t=1) pP-(t=1)) '
C, () C,(t—1)
6. CalculateAp$;!) = |Zam —Pu ‘ n,m;
D,(t) _ |y’ BIppe-n ] :
7. CalculateAp, | VE; B. Resource Block Allocation
Py
8. Calculateflag,. = max {Apff;,(f), Apgv(ﬂ}_ To solve problem (24), we introduce a two-sided matching
9. end whil n,m.k game defined as below, where RBs and D2D pairs are two
. end while

opposite sets of agents which aim at maximizing their own
utilities.

Definition 3: The matching game between RBs and D2D
pairs is expressed as a functidhh which maps the set of
MUD to the set ofM UD such that for then-th RB RB,,, €

point (p&(®, pP(9)), at thet-th iteration, the objective of
problem (23) can be approximated as

(t) (t) M and thek-th D2D pair DP;, € D:
R ( Z X, (p Z v, p k
° nec nelC (a) M (RBm) g D;
(28) (b) M (DP) € M;
whereY,, (p“,pP) is approximated as (€) M (RBn)| < Q;
c D) <« 7® D d) [M(DP)| < 15
Yo (p ’Ic)<t) =¥ (t( pe.P ) (€) DPs € M (RBy,) < RBy=M (DP).
=Y (p ,p° ) . Condition (a) and (c) indicate that each RB is matched with
YT C C.(t-1) 9Yu(p%p") at most@) D2D pairs, while condition (b) and (d) represent
Prm — pnm opC p :pC,(tfl) . h .
neC meMS pP—pD (1) that each D2D pair can only match with one RB. Condition
c D (e) implies that CUs and D2D pairs are matched mutually.
D(t 1)) aYa(p°.p") . ;
+IED( - ) opp N Besides,M (RB,,,) or M (DP;) can be the empty set if no
pP=p™ " 29 D2D pairs or RBs can be matched with theth RB or the
(29) k-th D2D pair.

Note that the equality of (29) holds whefp®,pP®) =
(p& (=1, pP:(¢=D) In the same way, the constraifit’ is
near

Then, to measure the motivation of each agent, we first
define theutility of the m-th RB as the transmission data
rate of all CUs on it, i.e.,

C6" 5 X (% p7) = ¥ (P PP) = By ¥ (30) Urp, (M) = 3 RS, (M), Vme M,  (33)
In addition, the constrainC7’ is actually a linear constraint, neCm
which can be equivalently transformed into and similarly, theutility of the k-th D2D pair can be
o :pllgh;ﬁ(k) _ (QRBH,m _ 1) (Iz?%(k) n 02) > 0,Vk, expressed as
(31) Upp, (M) = RP (M), Vk € D. (34)

h n (k) denotes the ind f RB allocated to theth
wherem (k) denotes the index o afocated 1 With the above definitions, all CUs and D2D pairs can

D2D pair, i.e.,p, . ., = 1. Consequently, at theth iteration, ; : . :
o tp _— Proin(r) _ quentty _ construct their preference lists with the descending oaoder
(p&®, pP-() can be obtained by finding the optimum of the slities

convex problem

Remark 4:Different from the conventional model of the
max R (p°,pP), two-sided matching where preference lists are fixed dutieg t
p,pP (32) matching process, the matching described abovenisiahing

st. C4,C5,C6",C77, C8, with externalities where preference lists will change as the

which is readily solved via standard algorithms with polynamatching game proceeds due to the mutual interference among
mial complexity [38]. CUs and D2D pairs sharing the same RB. For instance, if the

To tighten the approximation in (29) and generate the neadrth D2D pair is matched with RBr, the interference on
optimal solution of (23), it is essential to iteratively sew the m-th RB will increase, and thus other D2D pairs may
power coordination solutiorip®®, pP-(Y)) and solve prob- change their preferences since the utility functions vait w
lem (32) until convergence. The above steps are summarnizedhterference. In this case, the preference list of each D@D p
Algorithm 1, and its effectiveness and convergence are provddpends on the choices of other agents. Consequently, the
as follows. matching game considered in this paper is more complicated

Theorem 3:Algorithm 1 monotonically increases the valuecompared to the traditional case.



To better illustrate the interdependency of agents’ peefee Algorithm 3 Further Swap Matching Algorithm for Spectrum
lists, we introduce the definitions sfvap matchingndswap- Allocation
blocking pairin the following. 1. Initialize the spectrum allocation solutigm.

Definition 4: For a given matchingyl whereM (DPy) = 2. for each D2D pairDP;, € D
RB,,, and M(DP;) = RB;, the swap matching is 3. DP; searched)P; or vacancie<); on RB;
defined as M?{” = M\{(DPy,RB,,),(DP;,RB;)} U 4.  Check if(DPy, DP;) or (DPy,0;) is a swap-
{(DPy,RBy),(DP;, RB,,)}, which denotes that the two spe- blocking pair;
cific D2D pairs exchange their matched RBs while the other 5. If approved,D P, exchanges its RB wittD P; or
D2D pairs remain unchanged. Besides, the swap matching moves to the-th RB;
Mf{” will be approved only if 6. Update the matching state;

7.

1)Va € {DPy, DP;, RB, RB;}, U, Mfzm > U, (M): Repeat 3-6 until all swap matchings checked.

8. end for
2) 3a € {DPy, DP;, RBym, RBi}, Uy (M5 ) > Ua (M), 9. Output the convergent matching stapé .

and(DPy, DP;) is called a swap-blocking pair iNl.
Note _that the above definition indicates that only if theitigi Algorithm 4 Two-stage iterative algorithm for joint spectrum
of all involved players are not reduced and at least one pRye,||gcation and power coordination

utility increases, a swap matching will be approved.

Now, we first propose a low-complexity algorithm as an

initial base line, which is summarized Algorithm 2. First of

all, each D2D pair proposes to its most preferred RB, which is
ranked first in its preference list. After receiving the poegl,
each RB will reject its least-preferred D2D pair in its wadfi

list repeatedly until the minimum rate requirements of adllsC 6.

1. For any given tradeoff parameter
2. Initialize 7 = 0, flag =1, ® = 0.01;
3. Initialize pS,, = Syhker, PE = Phax;
4. Initialize p° via Algorithm 2;

5. while flag > ®, do

T=T1+1;

are satisfied and at mo§t D2D pairs are accepted. The above 7. Calculatep” via Algorithm 3; _

steps will be carried out until all D2D pairs have been matche 8. Calculate(p®:(™), pP(7)) via Algorithm 1 with p7;
B culatefiag = mas o7 ol )|

Algorithm 2 Initial Matching Algorithm for Spectrum Allo- 9. Calculatefiag I??ff Prem = Plm

cation 10. end while

1. for each D2D pairDP;, € D
2. CalculateRp|\ p pp  VRBm € M;

3. Establish the preference Ii& by sorting RB,, algorithm is developed and summarizedAigorithm 3. At

in descending order oR?p|
4. end for
5. Initialize the set of the unmatched D2D pélirg = D;
6. while D, # ¢
7. for each D2D pairDP; € D,

M(DP,)=RB,,’

8. D Py, sends a request to its most-preferred RB in

PP, e.9.,RB,y,, by settingpl, = 1;
9. end for
10. for each RBRB,, € M
11.  Establish waiting listWiE = {DP |p}.,, = 1};
12.  RemoveWRE from D,;

13.  while the minimum rate requirements of CUs are

not satisfied ol WEB| > @

14. Find the least-preferred D2D pair WRE,
denoted a9 Py;

15. RejectD Py by settingpl,, . = 0;

16. Add DP, into Dy;

17. RemoveR B,, from Pp;

18. end while

19. end for

20. end while

21. Output the initial RB allocation solutiorp'.

the beginning, each D2D pair will search another D2D pair
or available vacancies in other RBs to check if they can form
a swap-blocking pair. If the swap matching is approved, the
matching will update to the swap matching. The above process
will continue until there does not exist any swap-blocking
pairs.

For the aforementioned matching game with externalities,
the traditional definition for the stability of a matchingmea
is not guaranteed. Instead, we concentrate on findingwbe
sided exchange-stable matchif$] in this paper, which is
defined as below.

Definition 5: A matchingM is called a two-sided exchange-
stable matching if no swap-blocking pair exists.

Then, we have the following theorem for Algorithm 3.
Theorem 4Algorithm 3 is guaranteed to converge to a two-
sided exchange-stable matching within a limited number of

iterations.
Proof: See Appendix D. |

C. Two-stage Iterative Algorithm and Performance Analysis

Up to now, the solutions of subproblems (23) and (24)
have been obtained via Algorithm 1, and Algorithm 2-3,

Furthermore, from Definition 4, it can be observed thaespectively. Thus, the original SOO problem (22) can be
swap operations can help to improve the utilities of agentsadily solved by developing the two-stage iterative dthar
and therefore the performance of the spectrum allocatigoral as organized inAlgorithm 4, and the following theorem
rithm. Inspired by this observation, the further swap miaigh illustrates itseffectivenesand convergence



TABLE | 175
SIMULATION PARAMETERS SETTING ol
Parameters Value % 165k
Cell radius 500 m Eln
Maximum distance of D2D pairs 50 m % 165
Number of resource blocks 12 >
Amplifier's efficiency 0.38 5 1557
Fixed power of CUs 1w £
Maximum transmit power of D2D pairs 01w % B
Maximum transmit power of CUs 0.2W %145
Minimum rate requirements of D2D pairs | 1 bit/s/Hz w —#— Proposed Algorith
Minimum rate requirements of CUs 2 bit/s/Hz 14f —P—Exhaustive Search
Quota of each resource block 2 ‘ ‘ ‘ ‘ ‘ ‘
Number of CUs 6 % 32 34 36 38 40 42 44
Number of D2D pairs 8 Spectral efficiency (bit/s/Hz)
Normalized error bound of interference channgels 0.05

Fig. 2. Energy and spectral efficiency tradeoff for the pssub algorithm
and the exhaustive search.

Theorem 5:Algorithm 4 monotonically decreases the ob-
jective of problem (22) at each iteration, and finally comges
in a finite amount of iterations for a given threshaid

Proof: See Appendix E. [ | 340¥

For the spectrum allocation problem, its computational
complexity is mainly up to the swap matching algorithm,
i.e., Algorithm 3. Since there are at mo$tk (M — 1) Q
potential swap-blocking pairs, the computation complexit
Algorithm 3 approaches t® (K (M — 1) @). In addition, the
power coordination problem is highly non-convex because of
mutual interference among D2D pairs and CUs. It is rather
difficult to find its global optimal solution, and thus AlgtTim 220],
1 is proposed to solve problem (23), which is guaranteed to 200
find the local optimum. Specifically, as a standard convex '
problem is solved at each iteration, only polynomial com-
putational complexity) (N + K)"(NM + K)") is required Fig. 3. The convergence procedure of Algorithm 4.
via the interior point method [18], [20], wherg and v
are positive constant. Besides, Algorithm 4 convergesdast
verified by simulation results (see Fig. 3). In conclusidre t

: : : .. __all the following results.
total computational complexity of Algorithm 4 for the joint L .
optimization of spectrum allocation and power coordinatio 1) Optimality and Convergence of the Proposed Algorithm:

is O (KQ (M — 1) (N + K)"(NM + K)"). In other words, We first compare the proposed two-stage i_terqtive a[gori.thm
the proposed algorithm only requires polynomial compl,exitWlth the exhau_stlve search methpd to .verlfy 'FS opt|maI|ty._
to solve problem (22). As the ex.haustlve searqh method is achieved with exporentia
computational complexity, the small-scale casedf= 2,
K =3, M = 4is presented as an instance in Fig. 2. As shown
in Fig. 2, our proposed algorithm approaches the exhaustive
In this section, numerical results are presented to demaearch algorithm in terms of the tradeoff between EE and SE.
strate the performance of our proposed algorithm. It is aShen, we investigate the convergence of the proposed two-
sumed that there are one macro BS in the cell center, thetage iterative algorithm, and Fig. 3 plots the sum data rate
pico BSs located at the circle with the radius of 200m, araf all CUs Ry (p, p©, pP) versus the number of iterations,
randomly distributed D2D pairs as well as CUs. The largevhere N = 12, M = 36. From Fig. 3, we can observe that
scale channel gain between two nodes is composed of p&th; (p,p“, p") increases uniformly and converges to the
loss and shadow fading, where the path loss is modellpdak value after about 6 iterations. Besides, it can be found
as 128.1 + 37.6log;,d (km), and the standard derivation ofthat the tradeoff parameter and the number of D2D pairs
shadow fading is 8 dB. Besides, it is assumed that all channk&ve insignificant influence on the speed of convergence. The
undergo Rayleigh fading, and the other related simulati@ibserved results also coincide with Theorem 5 given in 8ecti
parameters and their default values are shown in Table I. Ror
notational brevity, we usé,... to represent the normalized 2) Performance Comparison$:iurthermore, numerical re-
error bound for all interference channel uncertainty ragjo sults are presented in Figs. 4-6 to evaluate the performance
which is normalized by the corresponding estimate. Pleagk our proposed robust scheme in terms of EE, SE and
note that if there are not particular statements, the parrmed2D pairs QoS satisfying probability compared to the non-

380

360+

—w—c=125K=16
—G—<c= 145K =16
—0—c=125K =32
—de—c = 145, K = 32

240

2 3 4 5 6 7 8 9 10
Number of iterations

values mentioned in Table | are default values used to genera

V. SIMULATION RESULTS



Energy efficiency (bit/Joule/Hz)

Spectral efficiency (bit/s/Hz)

Fig. 4. The energy efficiency comparison under differerand 5, ax -

robust scheme. Note that the non-robust scheme indicats > The spectral efficiency comparison under differemind dmax.

that channel uncertainties are not taken into consideratil

all the channel estimates are adopted directly as they were
accurate. However, the interference channel uncertaisti#
exist in the non-robust scheme. Particularly, the effecBE

and SE are considered in Figs. 4-5, which is set as 0 when
the minimum rate requirements of CUs or D2D pairs are not
satisfied.

Specifically, the performances of EE and SE are presented
with the variation of the tradeoff parameteand the normal-
ized error boundy,,.x in Fig. 4 and Fig. 5, respectively. It
can be observed in Fig. 4 that for a giventhe EE under the
non-robust scheme decreases rapidly with the increasg.of
while the EE under the robust scheme declines slightly with
Omax. This is because wheh, . increases, the minimum rate
requirements of CUs and D2D pairs for the non-robust scheme
are more likely to be violated, and the effective EE for norkig. 6. The D2D pairs QoS satisfying probability under difiete anddumax.
robust case is treated as O to present the infeasibility ef th
constraint C6. In contrast, as the proposed robust scheme is
guaranteed to satisfy the rate requirements of CUs invigriatof the logarithmic rate-power function. Consequently, B&s
the EE under our robust scheme is strictly greater than 0 kil decrease with.
the time. Similarly, we can also observe from Fig. 5 that for In addition, the QoS satisfying probability of D2D pairs
a givene, a largerd,,.. leads to a worse SE, and the robuss plotted against and dn.x in Fig. 6. It can be easily
scheme achieves higher effective SE in comparison with tfeund that our proposed robust scheme can always satisfy the
non-robust scheme for the samend ;... minimum rate requirements of all D2D pairs with the variatio

On the other hand, by adjusting the tradeoff parametef ¢ anddn.x, and therefore its QoS satisfying probability is
e from 6 to 7.5, Fig. 4 and Fig. 5 also show the tradeofflways 1. In contrast, for the non-robust scheme, the QoS
performance between EE and SE under robust and neatisfying probability of D2D pairs decreases with betand
robust schemes. Whef,... is fixed, the effective SE always dmax. Specifically, where increases, CUs will transmit data
increases witls under both schemes as shown in Fig. 5. This igith higher transmit power to improve the system SE, which
because larger indicates more transmit power is available t@roduces more serious interference to D2D pairs sharing the
improve the transmission rate of CUs. On the contrary, in Figame RB. Besides, with the increasedgf,«, the deviation
4, the effective EE first increases and then declines with thenge of the interference to D2D pairs extends gradually,
growing of ¢ for both schemes. When is small, the power which also increases the violation probability of the minim
consumption for data transmission plays a small part in thate constraint C7.
total power consumption compared to the fixed circuit power 3) Impact of D2D Minimum Rate RequiremeRtg. 7 and
consumption. Under this circumstance, SE goes up at a higk&y. 8 show the impact of the minimum rate requirements of
speed than the whole power consumption, and thus EE aB2D pairsR>, on the D2D pairs QoS satisfying probability
increases witte until reaching the peak point. After that, theand the EE-SE tradeoff. It is readily observed in Fig. 7 that
growing of transmit power consumption cannot be neglectealjr proposed robust scheme can always satisfy the minimum
and the increase of SE is slower owing to the reducing gradieate requirements of D2D pairs, while the D2D pairs QoS
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Fig. 7. D2D pairs QoS satisfying probabilitys. RD, for robust and non- Fig. 9. Energy efficiencys. spectral efficiency with differentp for the
robust schemes. proposed robust scheme.

185

18} With the increase of), more D2D pairs are permitted to share
the same RB, which provides more degrees of freedom in
spectrum allocation and thus contributes to the improvemen
of SE. Besides, whefy increases from 2 to 6, the maximum
EE and its corresponding SE first increases and then remains
stable, which indicates that allowing five or more D2D pairs t
share the same RB cannot obtain extra performance gain. This
is mainly due to the fact that more D2D pairs sharing one RB
will also introduce heavier mutual interference, whichuees
the performance advantage of spectrum sharing to sometexten
‘ ‘ ‘ ‘ ‘ ‘ ‘ Therefore, the maximum EE and corresponding SE cannot be
90 95 100 105 110 115 120 125 130 135 enhanced by increasing the maximum number of D2D pairs at
Spectral efficiency (bit's/Hz) each RB. Also, as the computational complexity of Algorithm
Fig. 8. Energy efficiencys. spectral efficiency with differenRP. for the 3 r_lseS. up with@, the choice of@) S_hOUId_be appropna_te,
proposed robust scheme. which is suggested to be 5 for the given simulation settings.
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satisfying probability for the non-robust scheme declinith VI. CONCLUSION
the increase ofRL. . Besides, for the non-robust scheme,
the increase ofc also contributes to the deterioration of In this paper, the robust multi-objective optimization i2D
QoS satisfying probability for D2D pairs, since higher levecommunications underlaying HetNets has been investigated
of interference from CUs will be imposed on D2D pairand the uncertain MOO problem was formulated to optimize
sharing the same RBs. Then, in Fig. 8, ascreases from the system EE and SE at the same time under the minimum
6 to 7.5, higher rate requirement of D2D pairs means worsate requirements of all CUs and D2D pairs, where the
performance in terms of the EE-SE tradeoff. Specifically, faincertainties of all interference channels were taken ¢oto-
the same EE, the SE is reduced with higher minimum ras@eration. Then, we proposed an effective two-stagetivera
requirement of D2D pairs. Since D2D pairs need to transnaigorithm for the joint optimization of the spectrum alltioa
with larger power to achieve higher rate, heavier interfeee and power coordination with polynomial complexity, whose
will be introduced to the CUs which share the same RBeonvergence and optimality were demonstrated through- theo
Therefore, from Fig. 8, we can conclude that there existsretical derivation. Besides, our proposed algorithm cogee
tradeoff between the rate requirement of D2D pairs and tfest as shown in numerical results. Compared to the nonstobu
EE-SE performance of CUs. scheme, the proposed robust scheme achieved much higher
4) Effect of RB QuotaTo investigate the impact of theeffective EE and SE, and always satisfied the minimum rate
maximum number of D2D pairs at each RB, the curves foeequirements of D2D pairs. By investigating the impact of
the tradeoff between EE and SE with differ&ptare plotted the D2D pairs’ minimum rate requirements, we found there
in Fig. 9. With the increasing of from 6 to 7.5, all the five existed an intrinsic tradeoff between the EE-SE perforraaic
curves show the same trend that EE first goes up and th@ds and the minimum rate requirements of D2D pairs. Finally,
declines with the growing of SE. As shown at the second hdalfe effect of the RB quota was studied, which suggested that
of curves where EE declines with the increase of SE, highitie choice of quota should be appropriate for the compromise
SE can be obtained with larger value @ffor the same EE. between complexity and performance gain.
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APPENDIXA which contradicts with the assumption that is Pareto
PROOF OFTHEOREM 1 optimal for problem (16). The necessity is also proved.
We first prove the sufficiency, and define that
F C2B ,D2BY _ [ C2B ,D2B) T (35
(Xag 8 ) [ 1 <X7g 8 ) Q(X)} ) ( ) APPENDIXC
wherex = (p,p“,pP). Assume thatx* is robust Pareto PROOF OFTHEOREM 3
optimal for P (G), and thus there does not existsatisfying
Cl - C7 andFg (x) — RZ C Fg (x*) — RZ simultaneously. _ . b , .
Suppose thak* is not Pareto optimal for problem (16), ASsuming th.a@ ’_(t)vp (1)) is the obtained optimal solu-
which indicates that there exists another feasible salutio tON at thet-th iteration, we can obtain that

of problem (16) satisfying Rior (pO-(=1), pP:(t=D)
F (<, 8520 (<) gR20 (x) ) = Ry (pC0,pP070) 42
€ F (x*, g (x*) , grax (x7)) — R, < RY, (pO©), pP0) (42)

where < Ry, (OO, pP®)

(8528 (x), g8 (x)) =arg max_f; (x,g“%%,gP?F).

R where the equality (a) is becausg (p© !~ !, pP(~1) =
(37) V.Y (p&(-1), pP:(t=D); the inequality (b) is valid due the

Since fact that problem (32) is convex an@p®®, pP®) is

its global optimal solution; the inequality (c) holds since
F (x. ¢C2B_oD2B) < | (x/. gC2B (x/) oD2B (y/ 38) - : ; :
(.27, 87) < F (¢, g () g () > (38) B (p©, pP) is the lower bound of?. (p“, pP) according
vgC2B ¢ GC2B gb2B ¢ gD2B 3zlways holds, we have to (29). Therefore R (p©, pP) is improved at each itera-

tion.

Fg (x') CF (x*, goatl (x*) , ghay (x*)) — R2

( T * )R (39)  Besides, as the constraint set is compact and there exists an
CFg (X ) Rza

_ . . _ . upper bound ofR; (p, pP) for the given transmit power
which contradicts with the assumption that' is robust pygget, Algorithm 1 must converge. AssunfpC*, pP*) is
Pareto optimal fo (G). Therefore,(;)*,pc*,pD*) is Pareto the convergent solution. As the objectives and constraints
optimal for problem (16) if it is robust Pareto optimal forproblem (23) and problem (32) have the same values and
P (G). Conversely, we can prove the necessity in a similaerivative values afp®*, pP*), (p©*, pP*) must satisfy the

way, which completes the proof. KKT conditions of problem (23).
APPENDIX B
PROOF OFTHEOREM 2
We first prove the sufficiency. Define that APPENDIXD
PROOF OFTHEOREM 4
()= max f(x, g@",g™"),  (40a)
g2 (x) =f2 (%), (40Db) Assume that the,-th swap operations is forced by the swap-

. . . ) Tom km
wherex = (p, p©, pP). For givene, assumex* is the unique blocking pair(D Py, DP;), i.e., M) =M=~ ;". From the
optimal solution of problem (17), and we hayg (x*) < definition of swap-blocking pairs, it can be obtained that

g1 (x), for all x satisfying C1-C5, C6 C7 and C8. Riot (M(Ts>) — Riot (M(Ts—l))
Now we suppose that* is not Pareto optimal for the MOO = 3 (RS (M) — RS (M7==1))
problem (16). Thus, there must exist another solutdrof nec
problem (17) that satisfies = mgM (Urp,, (M) —Ugp_, (M="1)) (43)
g (x) <g (x*),Vi=1,2, (41) = Ugg,, (M) + Ugp, (M(™))
—~Urp,, (M(Trl)) — Urp, (M(Tsfl))

and there is at least onec {1, 2} such thak; (x') < g; (x*).
Apparently, this contradicts with the uniqueness asswnpti o )
Therefore, we can conclude that is Pareto optimal for the which indicates that the objective function of problem (24)
MOO problem (16). Furthermore, from Theorem 1, it can bwill not decrease wi_th the progress of Alggr.ithm 3. Since the
readily obtained thak* is also robust Pareto optimal for thenumbers of D2D pairs and RBs are both finite, the number of
original uncertain MOO probler® (G). potential swap operations is also finite. Hence, the corvrerg

On the other hand, it is assumed thétis a robust Pareto Of Algorithm 3 must occur in a finite amount of iterations.
optimal solution for probler® (G) and thus Pareto optimal for ~ As depicted in Algorithm 3, when it converges, no D2D pair
problem (16). Then, let=g> (x*), and suppose that* is not can find another D2D pair to constitute a swap-blocking pair.
the optimal solution of problem (17). Thus, there must exist other words, the matching at convergence is a two-sided
anotherx’ with g; (x') <g; (x*) andgy (x') < e = g2 (x*), exchange-stable matching, which completes the proof.

> 0,



APPENDIXE
PROOF OFTHEOREMS5

Considering the-th iteration of Algorithm 4, we can obtain
the following inequality

Rior (pU7~ 1, p& =1, pP(m=1)
%Rtot (p™, pC(T=1) pD:(r=1))
< Ruor (p7),p7), pP))

(44)

Specifically, the first inequalityx has been verified in The- 9
orem 4 where the sum rate of CUs will not decrease df-!
ter Algorithm 3 conducted. Also, Theorem 3 has illustrated

that Rio: (p©, pP) increases with the number of iterations

which proves the second inequalify Hence, Algorithm 4
monotonically decreases the objective of problem (22) at
each iteration. Furthermore, with the given spectrum argil
power budget, the sum rate of CUBi (p,p“,pP) is
upper bounded. Therefore, Algorithm 4 is guaranteed
converge after finite iterations at eitheflag < @ or

Riot (p7), ) p2 () —Rioi (p 771, p 771 pPr (771
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