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Abstract: We classify symmetry-protected and symmetry-breaking dynamical solutions for
nonlinear saturable bosonic systems that display a non-hermitian charge-conjugation symmetry,
as realized in a series of recent groundbreaking experiments with lasers and exciton polaritons.
In particular, we show that these systems support stable symmetry-protected modes that mirror
the concept of zero-modes in topological quantum systems, as well as symmetry-protected
power-oscillations with no counterpart in the linear case. In analogy to topological phases in
linear systems, the number and nature of symmetry-protected solutions can change. The spectral
degeneracies signalling phase transitions in linear counterparts extend to bifurcations in the
nonlinear context. As bifurcations relate to qualitative changes in the linear stability against
changes of the initial conditions, the symmetry-protected solutions and phase transitions can
also be characterized by topological excitations, which set them apart from symmetry-breaking
solutions. The stipulated symmetry appears naturally when one introduces nonlinear gain or
loss into spectrally symmetric bosonic systems, as we illustrate for one-dimensional topological
laser arrays with saturable gain and two-dimensional flat-band polariton condensates with
density-dependent loss.
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1. Introduction

A wide range of topological quantum effects manifest themselves in symmetries of an excitation
spectrum. This relation has been explored extensively for fermionic systems, for which the
single-particle Hamiltonian can obey a chiral symmetry or a charge-conjugation symmetry [1–3].
Allowing also for time-reversal invariance one can identify ten universality classes featuring a
variety of topological quantum numbers. These quantum numbers determine the formation of
zero modes and unidirectional transport channels at edges, surfaces, and interfaces of various
dimensions [4, 5]. In the fermionic case these symmetries are fundamental as they are owed to
the structure of Fock or Nambu space [6], and therefore also extend to the interacting case [7].
Prime examples are superconducting systems, for which a charge-conjugation symmetry dictates
that excitations ψ exp(−iωt) at a positive frequency ω are paired with excitations Xψ∗ exp(iωt)
at the corresponding negative frequency −ω, where X is a suitable unitary transformation. The
systems can then also feature robust Majorana zero modes ψ = Xψ∗ at ω = 0 [8–10], an effect
which translates to the fermion parity anomaly in the full many-body theory [11–13].

Some of these symmetries also play a natural role beyond the fermionic context. For instance,
time-reversal symmetry is intimately related to optical reciprocity [14], a classical concept whose
modification leads to topological effects in photonic structures [15] and analogous optical [16–19],
acoustic [20, 21] and mechanical [22] systems. Topological effects can also be engineered into
bosonic quantum systems, such as cold atomic gases [23] and exciton polaritons [24–26]. For
weakly interacting bosons the excitations are again characterized by a Bogoliubov theory [27–30],
and recent work has explored a variety of mechanisms to engineer topological features into this
description [31–37]. The charge-conjugation symmetry can also be induced into the single-particle
theory of bosonic systems, where one again can admit linear gain or loss [38–42]. The spectrum of
the effective Hamiltonian then displays symmetric pairs of complex frequencies (Ωn,−Ω∗n), which
can be interpreted as resonances. Topological features persist because this spectral constraint can
enforce a number of purely imaginary self-symmetric resonances Ωn = −Ω∗n, which provide an
analogue to broadened fermionic zero modes [43–47].

Five recent experiments aimed at realizing topological zero modes in polaritonic condensates
[48,49] and lasers [50–52]. As these are inherently nonlinear systems, the question arises whether
the notion of zero modes and topological protection persists. Here, we provide a unifying
perspective on these systems based on a notion of charge-conjugation symmetry that applies
directly to the time-dependent nonlinear wave equation. Our general strategy is as follows:
Topological states in linear systems are protected by symmetry, but their number can change
discretely in phase transitions, which are generally linked to degeneracies (such as when a band
gap closes). This notion is underpinned by the continuity of the spectrum under smooth parameter
changes (deformations of the system), a feature at the heart of linear spectral analysis. Analogously,
we show that nonlinear systems can display dynamical solutions that are protected by symmetry.
Their number can change in dynamical degeneracies, which correspond to bifurcations. This
notion is then underpinned by the structural stability of dynamical solutions, which is at the heart
of nonlinear dynamics. This nonlinear notion of topological states reduces to the conventional
spectral notions in the linear limit. New effects also appear: We identify a new class of topological
solutions that does not have a linear counterpart, and also exploit the link of bifurcations to a
qualitative change of the linear stability against changes of initial conditions, which again does
not feature in the linear context.
In detail, as we will see, nonlinearities in the gain or loss lead to complex-wave dynamics

where the time-dependent solutions appear in pairs Ψ(t) and XΨ∗(t). In contrast to a general
time-reversal symmetry, which induces a partner solution XΨ∗(−t), the solutions Ψ(t) and
XΨ∗(t) both exhibit the same arrow of time. This time-preserving symmetry therefore allows
for self-symmetric states—including stationary states Ψ(t) = Ψ0 = XΨ∗0, which we interpret
as zero modes. As a notable feature without analogue in the linear case, the symmetry also
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protects a twisted variant of time-dependent power-oscillating states with Ψ(t + T/2) = XΨ∗(t),
for which periodicity Ψ(t + T) = Ψ(t) is enforced by symmetry—suggesting that the nonlinear
setting admits for a richer notion of protected states than the linear case. That these states enjoy
topological protection can be further ascertained by identifying topological excitations in the
stability spectrum, which we find to govern the spectral phase transitions between the different
types of symmetry-protected solutions—corresponding to different topological phases of the
dynamical system. We illustrate our findings for two model systems representing one-dimensional
topological laser arrays with saturable gain and two-dimensional flat-band polariton condensates
with density-dependent loss.

2. Results

2.1. Model and classification of states

Consider a bosonic system whose classical limit is described by a complex-wave equation

i
d
dt
Ψ(t) = HΨ(t) + F[Ψ(t),Ψ∗(t)]Ψ(t). (1)

The operator H provides an effective single-particle description, while the functional F describes
the nonlinear effects which may encompass gain and loss. We assume these effects to be local
in time and often will drop the time argument. In keeping with the quantum origin of the
wave function, the nonlinear effects should preserve the global U(1) gauge freedom, so that
any solution can be multiplied by a fixed phase factor exp(iα). This can be guaranteed by
assuming FΨΨ = FΨ∗Ψ∗, where subscripts denote functional derivatives. In addition, we here
stipulate that H displays a charge-conjugation symmetry, XHX = −H∗ where X is a unitary
operator with X2 = 1. To extend this notion to the nonlinear case, we similarly demand that
XF[Ψ,Ψ∗]X = −(F[XΨ∗, XΨ])∗, with the same operator X .
We will describe practical ways to realize such systems soon below but first discuss the

consequences of the following general observation. For any solution Ψ(t) of Eq. (1), we obtain a
partner solution

Ψ̃(t) = XΨ∗(t). (2)

Given our assumptions this correspondence even applies when H and F contain an explicit time
dependence [53]; however, we focus on the autonomous case.
Let us first reflect on the possible classes of solutions admitted by Eq. (1). Because of the

underlying charge-conjugation symmetry of H, the linear system possesses pairs of solutions
Ψ(t) = Ψn exp(−iΩnt) and Ψ̃(t) = XΨ∗n exp(iΩ∗nt), where the latter expression corresponds to
a frequency Ω̃n = −Ω∗n. This includes the possibility of topologically protected zero modes
with purely imaginary frequency Ωn = Ω̃n = i ImΩn and time dependence Ψ(t) = Ψ̃(t) =
Ψn exp(ImΩnt) [39–41, 43–47]. If for any of these states ImΩn is positive the linear system
is unstable, but the nonlinear effects can stabilize the system. This results in stationary states
Ψ(t) = Ψn exp(−iΩnt) with real Ωn, which are self-consistent solutions of the condition [54]

ΩnΨn = HΨn + F[Ψn,Ψ
∗
n]Ψn. (3)

The solutions either
(a) occur in pairs Ψn, Ψ̃n where Ωn and Ω̃n = −Ωn now are both real, or
(b) are time-independent zero modes Ψ0 = Ψ̃0 whose frequency Ω0 = 0 now vanishes [55].

Alternatively, the system may tend to time-dependent solutions, including periodic, aperiodic
and chaotic solutions. These will either

(c) still occur in pairs Ψ(t), Ψ̃(t) that bear no further relation besides Eq. (2), or may be
constrained in two possible ways:
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Fig. 1. Illustration of the five types of modes for a topological laser array based on a
Su-Schrieffer-Heeger chain with background loss γA = γB = 0.3 and various amounts of
saturable gain [see Eqs. (4), (5) and (6)]. (a) Stationary symmetry-breaking mode (gA = 0.4,
gB = 0.7). (b) Stationary self-symmetric zero mode (gA = 0.8, gB = 0.0). (c) Oscillating
symmetry-breaking mode (gA = 0.7, gB = 0.4). (d) Oscillating self-symmetric mode
(gA = 0.7, gB = 0.4 with symmetry-preserving initial conditions). (e) Twisted oscillating
mode (gA = 0.8, gB = 0.2). The sketches at the very top symbolize the traces of the
solutions in low-dimensional cross-sections of the dynamical phase space, where in (a-d)
the symmetry is represented as a reflection and in (e) as a rotation. In the second row, the
circles represent the resonators, where the area denotes the intensity (A and B sublattice in
red and blue; in the time-dependent case, we show two circles corresponding to the largest
and smallest intensity over a cycle.) The third row shows the time traces of the intensities
IA = |A|2 (red), IB = |B|2 (blue), and Itot = IA + IB (black). The bottom panels in (a,b)
show the stability spectra of the stationary states, while in (c-e) they show the correlation
functions C = |〈Ψ(0)|Ψ(t)〉| (orange), C̃ = |〈Ψ(0)|Ψ̃(t)〉| (brown) of the oscillating states.

(d) The time-dependent solution may be self-symmetric, Ψ(t) = Ψ̃(t); given this condition
at some point of time, it will remain true for all times [56].

(e) Two partner solutions may be related by a finite time-offset, Ψ(t) = Ψ̃(t + T/2). It then
follows that the solutions must be periodic, Ψ(t + T) = Ψ(t), which amounts to the twisted states
mentioned in the introduction.
The nature of a state can be assessed, e.g., by comparing the correlation functions C =
|〈Ψ(0)|Ψ(t)〉|, C̃ = |〈Ψ(0)|Ψ̃(t)〉|, which coincide or alternate for self-symmetric or twisted
solutions.

Based on the possible invariance of time-parameterized orbits under discrete involutions, this
categorization is minimal and complete. Note that the solutions of class (a), (d) and (e) all describe
orbits Ψ(t) that are invariant under the symmetry operation (2). In the self-symmetric cases (a)
and (d), this invariance is local at every point along the orbit, while for the twisted states (e) the
invariance occurs under a translation by T/2. The latter leaves the orbit invariant as the solution
is periodic. All these solutions are furthermore symmetry-protected, in that their number can
only change due to structural reconfigurations of the dynamical solutions. That such changes are
indeed possible at all is necessary in order to have a setting with meaningful topological features,
and not just symmetry-imposed constraints. In linear systems, the phase transitions at which the
number and nature of symmetry-protected solutions changes involves degeneracies; as we will
explore further in Section 2.3, for the nonlinear setting this naturally extends to bifurcations.
First, however, we provide concrete model systems with the time-preserving symmetry of Eq. (1)
and examples of the different classes of solutions.
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Fig. 2. Same as Fig. 1 but for a polaritonic flat-band condensate based on a Lieb lattice with
linear gain and density-dependent loss [see Eq. (7)]. To demonstrate the generality of our
findings we include 50% relative disorder in all parameters, including for the couplings
around their mean value tkl = 1, and the losses with average strength γA = γB = 0.3 (see
Fig. 3 for details of the configuration). (a) Stationary symmetry-breaking mode (average
gain gA = 0.15, gB = 0.3). (b) Stationary self-symmetric zero mode (average background
loss gA = −0.2 and gain gB = 0.5). (c) Slowly oscillating symmetry-breaking mode
(gA = 0.35, gB = 0.2). (d) Oscillating self-symmetric mode (gA = 0.5, gB = 0.3 with
symmetry-preserving initial conditions). (e) Twisted oscillating mode (gA = 0.1, gB = 0.4).

2.2. Realization in lasers and condensates

Figures 1 and 2 illustrate the different types of solutions for two model systems, which are both
formed of bipartite lattices (NA sites A and NB sites B) that give rise to a pseudospin degree of
freedom. The dynamics is governed by the equations

i
d
dt

Ak =
∑
<l>

tklBl + fA(|Ak |2)Ak, (4)

i
d
dt

Bk =
∑
<l>

tlk Al + fB(|Bk |2)Bk, (5)

where we grouped the amplitudes on both sublattices into vectorsA,B. The real nearest-neighbour
couplings tkl form a linear Hamiltonian H that supports at least ν = |NA − NB | zero modes,
irrespective of whether the system is homogenous or not [57]. In the examples this describes a
finite segment of a Su-Schrieffer-Heeger (SSH) chain with alternating couplings tk,k+1 = 1, 0.7
(Fig. 1), where a topological midgap state arises from a central coupling defect [40, 58, 59], or a
finite segment of a disordered Lieb lattice (Fig. 2), which exhibits multiple zero modes associated
with a flat band [60, 61]. Both of these models can be realized on a large variety of platforms,
including bosonic systems [41, 48–52, 62–72]. The detailed geometric configurations in both
models are given in Fig. 3.
For the SSH chain, we consider nonlinearities that represent saturable gain,

fs(|Ψk |2) = i
gs

1 + |Ψk |2
− iγs (saturable gain), (6)

as often adopted in laser models [76], while for the Lieb lattice we consider density-dependent
loss,

fs(|Ψk |2) = i(gs − γs |Ψk |2) (density-dependent loss) (7)
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Fig. 3. Detailed geometry of the two illustrative models investigated in this work. (a) The
model based on the SSH chain consists of a linear arrangement of 21 sites (11 A sites
and 10 B sites) with alternating couplings 1, 0.7. The centre contains a defect with two
consecutive couplings 0.7. This separates two configurations, denoted α and β, which can
be characterized by topological features of their band structure. In the hermitian model
the coupling defect induces one zero mode, which is spatially localized and exhibits an
anomalous response to loss and gain of different strength on the two sublattices. For this
model, we introduce nonlinearities in the form of saturable gain. (b) The model based on the
Lieb lattice also consists of 21 sites, but these are arranged in two dimensions so that 12
are A sites and 9 are B sites. In the hermitian limit, there are now at least three zero modes,
even in the case of disorder in the couplings. In this model we study density-dependent
losses, and include disorder in the couplings tkl as well as in the gain and loss parameters
gA,B and γA,B . This disorder is generated from independent random numbers rn with a box
distribution over [0.75, 1.25], so that pn = prn for any model parameter pn with average p.

as considered, e.g., in studies of polaritonic condensates [77].
For any solution with amplitudes A(t) and B(t), Eqs. (4) and (5), exhibits a partner solution

with amplitudes A∗(t) and −B∗(t), so that X = 1A ⊕ (−1B) acts as a Pauli-z matrix in pseudospin
space. Admitting different amounts of gain gA, gB and loss γA, γB on the two sublattices allows
us to study the competition between topological and nontopological states, which leads to the
different examples shown in the figures (for a detailed mapping of the phase space in the SSH
model see [78]).
Note that the form of X in these models implies that self-symmetric states display a rigid

phase-shift of i between the two sublattices. Given that Ψ̃(t) = Ψ(t), the amplitudes A(t) are real
while the amplitudes B(t) are imaginary, which then persists for all times. On the other hand,
symmetry-breaking stationary states with a finite frequency must have equal weight on both
sublattices [40]. The different types of states can therefore also be discriminated by their distinct
spatial features.

2.3. Phase transitions and topological features of the excitation spectrum

The presented classification of solutions is exhaustive in terms of symmetry-protection. To
complete the analogy to topological notions in linear systems, it is essential to explore how
the number of symmetry-protected solutions can change. In linear systems, this is generally
connected to degeneracies, relying on the structural stability of the spectrum against parametric
changes. In nonlinear systems, this is paralleled by the notion of structural stability of dynamical
solutions (again against parameter changes), with qualitative changes mandated by bifurcations.
In this context, we can then exploit the general link of bifurcations to a change of the linear
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stability (against initial conditions), which allows an emerging spectral interpretation in terms
of the stability of linear perturbations. To conclude this paper, we therefore further illuminate
the topological aspects of the symmetry-protected solutions by spectral signatures. Here, we
in particular exploit the pinning of excitations to symmetry protected positions, in analogy to
Majorana zeromodes in fermionic systemswith charge-conjugation symmetry [1,2] and analogous
zero modes in periodically driven systems [5, 75]. These connections can be established by
utilizing the link between dynamical stability of nonlinear systems and their excitation spectrum,
which is addressed by Bogoliubov theory. We first present the results of this analysis, and describe
the technical details in the following subsection.
The analysis amounts to identifying the eigenmodes ψ = (u, v)T of linear perturbations

ue−iωt + v∗eiωt , and here results in a spectrum of 2(NA + NB) excitation frequencies ωm. For
a stable system all of these excitations must obey Imωm ≤ 0. For non-self-symmetric pairs of
stationary modes Ψn, Ψ̃n, the time-preserving symmetry of Eq. (1) implies that their excitation
spectra are identical, but does not impose any further constraints on these spectra. For self-
symmetric stationary zero modes Ψ0 = Ψ̃0 with Ω0 = 0, on the other hand, we can classify the
perturbations into symmetry-preserving modes v+ = u+ and symmetry-breaking modes v− = −u−.
For our models of gain or loss, these perturbations fulfill the reduced eigenvalue equations

ω+u+ = (H + f + 2 f ′ |Ψ0 |2)u+, (8)
ω−u− = (H + f )u−, (9)

where f is diagonal with entries fA(|Ak |2) or fB(|Bk |2) (depending on the sublattice), and the
prime denotes the derivative with respect to the argument. The excitation spectrum is thus
composed of two parts, eigenvalues ω+ that display an enhanced nonlinearity and eigenvalues
ω− that coincide with those of the nonlinear wave operator H + f , with Ψ = Ψ0 fixed to the zero
mode.

Panel (b) in Figs. 1 and 2 shows that the eigenvalues ω− determine the stability of the stationary
zero modes while the eigenvalues ω+ lie deep in the complex plane. Therefore, if we restrict the
perturbations to preserve the symmetry, the stability of such modes is greatly enhanced. Note that
both reduced spectra in these examples have an odd number of excitations. Thus, each reduced
spectrum has an odd number of eigenvalues pinned to the imaginary axis. Setting u− = Ψ0
we recover that one of the eigenvalues ω−,0 = Ω0 = 0 vanishes, in accordance with the U(1)
symmetry of the wave equation.

A similar analysis can be carried out for time-dependent solutions Ψ(t), whose stability is then
characterized by a corresponding quasienergy spectrum obtained from a propagator U(t) with
eigenvalues λm = exp(−iωmt). This again includes the U(1) Goldstone mode with λ0 = 1, but
also an additional Goldstone mode λT = 1 that describes the time-translation freedom of any
solution Ψ(t). For general pairs of states Ψ(t), Ψ̃(t), the time-preserving symmetry again dictates
that their quasienergy excitation spectra are identical. For self-symmetric states Ψ(t) = Ψ̃(t),
we can once more separate perturbations that preserve or break the symmetry. This leads to
time-dependent variants of Eqs. (8) and (9),

i
d
dt

u+(t) = [H + f (t) + 2 f ′(t)|Ψ(t)|2]u+(t), (10)

i
d
dt

u−(t) = [H + f (t)]u−(t), (11)

where f and f ′ inherit their time dependence from Ψ(t). The stability spectrum thus again
contains a component ω− inherited from the nonlinear wave operator H + f , which includes the
vanishing eigenvalue ω−,0 = 0 (with u−,0 = Ψ(t)) dictated by the U(1) gauge freedom. In addition,
there is now also an eigenvalue ω+,0 ≡ ωT = 0 arising from the time-translation freedom of any
solution Ψ(t), which is associated with u+,0 = dΨ(t)/dt.
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Fig. 4. (a) Phase transition from a stationary zero mode to a twisted oscillating state of
period T as signalled by the linear stability excitation spectrum, here shown for the SSH laser
array with gA = 0.693, gB = 0.1. At the transition the excitations match up via the relation
λ = exp(−iωT). This leads to a three-fold degeneracy of marginally stable excitations with
λ = 1. (b) Away from the transition (gA = 0.8, gB = 0.1), the excitations rearrange to
describe the stabilization of the oscillation amplitude of the emerging twisted mode (λ f ),
leaving a two-fold degeneracy of marginal excitations λ0 = λt = 1 corresponding to U(1)
and time-translation invariance. In the half-step operators, these two excitations are separated
at λ′0 = −1, λ′t = 1 and hence structurally stabilized, which provides a signature of twisted
states in terms of topological excitations.

For the final case of a twisted periodic state with Ψ(t + T/2) = Ψ̃(t), the evolution operator of
the perturbations factorizes as U(T) = U ′2 with a half-step propagator U ′ = XΣxU(T/2), where
X = 12⊗X while Σx = σx⊗1 interchanges u and v. TheU(1) gauge and time-translation freedoms
can now in principle be satisfied in two ways, corresponding to ω′0,TT/2 = 0 or π. Inspecting
the Goldstone mode ψ0(t) = (Ψ(t),−Ψ∗(t))T we invariably find that the twisted solutions realize
ω′0T/2 = π, while the time-translation freedom remains associated with ω′TT/2 = 0. This
separation of eigenvalues to symmetry-protected positions is again a robust spectral feature that
can only change in further phase transitions.

The key observation in this respect is that these phase transitions naturally link the appearance
of twisted modes to the instability of zero modes, which occurs when a pair of excitations
ω̃−,? = −ω̃−,? = 2π/T crosses the real axis (see Fig. 4), and hence corresponds to a Hopf
bifurcation [73, 74] into a time-dependent state that here is still protected by symmetry. At
the transition, the excitations ωn map onto the stability spectrum λn = exp(−iωnT) of the
emerging twisted state, where ω−,? and ω̃−,? both map onto eigenvalues λ−,? = λ̃−,? = 1. These
are degenerate with the U(1) Goldstone mode λ0 = 1. Away from the transition, these three
excitations rearrange into a decaying excitation |λ f | < 1 describing the stabilization of the
oscillation amplitude of the twisted mode, and the Goldstone modes λ0 = λT = 1 from U(1)
gauge and time-translation invariance. These phase transitions therefore provide the mechanism
by which the proposed class of nonlinear systems acquires robust dynamical features that do not
have a counterpart in the linear case.

2.4. Detailed derivation of the symmetry-constrained excitation spectrum

We here provide the technical details on the derivation of the stability excitation spectrum for the
different solutions identified in the previous subsection.
For stationary states, their stability can be analyzed by setting

Ψ(t) = [Ψn + u exp(−iωt) + v∗ exp(iωt)] exp(−iΩnt) (12)

and expanding in the small quantities u and v, which we group into a vector ψ = (u, v)T . This
leads to the Bogoliubov equation

ωψ = (H[Ψn] − ΣzΩn)ψ (13)
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where Σz = σz ⊗ 1 is a Pauli matrix in the space of u and v while the Bogoliubov Hamiltonian
is given byHuu = −H∗vv = H + (FΨ)Ψ,Huv = −H∗vu = (FΨ)Ψ∗ . In our models with saturable
gain or density-dependent loss [Eq. (6) and (7)], this becomes

H[Ψ] =
(

H + f + f ′ |Ψ|2 f ′Ψ2

−[ f ′Ψ2]∗ −[H + f + f ′ |Ψ|2]∗
)
, (14)

where the terms containing f have to be read as diagonal matrix with entries fA(|Ak |2) or
fB(|Bk |2) (depending on the sublattice), and the prime denotes the derivative with respect to
the argument. As any Bogoliubov equation, Eq. (13) exhibits the charge-conjugation symmetry
(H[Ψn] − ΣzΩn)∗ = −Σx(H[Ψn] − ΣzΩn)Σx , with the corresponding Pauli matrix Σx = σx ⊗ 1.
This implies that the excitation spectrum is symmetric under the transformationωm → ω̃m = −ω∗m.
Furthermore, due to the U(1) gauge freedom, Eq. (13) always admits the Goldstone mode
ψ0 = (Ψ,−Ψ∗)T with eigenvalue pinned at ω0 = 0. As the dimension ofH is even, an additional
odd number of eigenvalues must lie on the imaginary axis. We need to explore the interplay of
these spectral features with the analogous symmetries in Ω.
The time-preserving symmetry of the nonlinear wave equation (1) induces the relation

X(H[Ψn] − ΣzΩn)∗X = −(H[Ψ̃n] + ΣzΩn) (15)

where X = 12 ⊗ X . For non-self-symmetric pairs of stationary modes Ψn, Ψ̃n, this implies that
their excitation spectra are identical. For self-symmetric stationary zero modes Ψ0 = Ψ̃0 with
Ω0 = 0, on the other hand, Eq. (15) turns into an additional charge-conjugation symmetry which
imposes a constraint on the excitation spectrum. In this case, we can classify the perturbations
into joint eigenstates of X with eigenvalue σ = ±1. These take the form vσ = σXuσ , and fulfill
the reduced eigenvalue equations

ω±u± = [H + F + FΨΨ0 ± FΨ∗Ψ0X] u±. (16)

For our models with saturable gain or density-dependent loss, this simplifies to Eqs. (8) and
(9). As described there, the excitation spectrum is thus composed of two parts, eigenvalues
ω+ that display an enhanced nonlinearity and eigenvalues ω− that coincide with those of the
nonlinear wave operator H + f , with Ψ = Ψ0 fixed to the zero mode. According to Eq. (12), the
perturbations [e−iω−tu− − eiω−t Xu∗−] corresponding to ω− break the time-preserving symmetry
of the zero mode. Setting u− = Ψ0 we recover that one of the eigenvalues ω− = Ω0 = 0 vanishes,
in accordance with the U(1) symmetry of the wave equation.

For time-dependent solutions Ψ(t), their stability against perturbations u(t) + v∗(t) is governed
by the time-dependent Bogoliubov equation

i
d
dt
ψ(t) = H[Ψ(t)]ψ(t), (17)

whose solutions ψ(t) = U(t)ψ(0) define the propagator U(t). The eigenvalues λm = exp(−iωmt)
of U(t) can be represented by complex quasienergies that are constrained in similar ways as
the excitations in the stationary case. The conventional charge-conjugation symmetryH∗(t) =
−ΣxHΣx implies U∗ = ΣxUΣx , so that each ωm comes with a partner ω̃m = −ω∗m (thus
λ̃m = λ

∗
m) or is purely imaginary (whereupon λm is real). This includes the U(1) Goldstone mode

ψ0(t) = (Ψ(t),−Ψ∗(t))T , as well as an additional Goldstone mode ψT (t) = (dΨ/dt, dΨ∗/dt)T
which describes the time-translation freedom t0 of any solution Ψ(t + t0).

For general pairs of states Ψ(t), Ψ̃(t), the propagators are related as U(t) = XŨ∗(t)X =
XΣxŨ(t)ΣxX, which again implies that their quasienergy excitation spectra are identical. This
also applies to the case of periodic solutions with Ψ(t) = Ψ(t + T), where the propagator
U(T) represents a Bogoliubov-Floquet operator. Such solutions are unstable if |λm | > 1, hence
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Imωm > 0, apart from the two Goldstone modes that are fixed at λ0 = λT = 1. For the more
general case of periodic solutions with Ψ(t) = exp(iϕ)Ψ(t + T), this applies when the Floquet
operator is redefined as diag(e−iϕ, eiϕ)U(T).

For self-symmetric states Ψ(t) = Ψ̃(t), we have at all times U(t) = XU∗(t)X = XΣxU(t)ΣxX.
This allows us to separate perturbations that preserve or break the symmetry, and leads to the time-
dependent variants (10) and (11) of Eqs. (8) and (9). For periodic states Ψ(t) = exp(iϕ)Ψ(t + T),
the self-symmetry constraints the phase to ϕ = 0, π, hence τ = exp(iϕ) = ±1, which needs to be
respected in the proper definition of the Bogoliubov-Floquet operator F = τU(T) to result in two
Goldstone modes pinned at λ0 = λT = 1.
For the final case of a twisted periodic state with Ψ(t + T/2) = Ψ̃(t), we have automatically
Ψ(T) = Ψ(0) without any additional phase [furthermore, the case Ψ(t + T/2) = −Ψ̃(t) is not
separate since we can then redefine Ψ(t) → iΨ(t)]. The Floquet operator factorizes as

U(T) = XU∗(T/2)XU(T/2) = XΣxU(T/2)ΣxXU(T/2). (18)

In this case, the stability spectrum λm = (λ′m)2 thus follows from the eigenvalues λ′m of the
half-step propagator U ′ = XΣxU(T/2). The U(1) gauge freedom can now in principle be
satisfied in two ways, corresponding to λ′0 = ±1. However, inspecting the Goldstone mode
ψ0(t) = (Ψ(t),−Ψ∗(t))T we invariably find ψ0(T/2) = −XΣxψ0(0) so that the twisted solutions
indeed always realize the case λ′0 = −1. The Goldstone mode ψT (t) = (dΨ/dt, dΨ∗/dt)T of
the time translation, on the other hand, fulfills ψT (T/2) = XΣxψT (0), and hence always lies at
λ′T = 1. Note that this spectral separation persists if we were to redefine the half-step propagator
as −XΣxU(T/2) (as we are entitled to do; both conventions make sense), upon which the two
symmetry-protected excitations swap their positions.

3. Conclusion

In summary, we showed that spectral symmetries underpinning topological quantum systems can
be extended to nonlinear complex-wave equations, where they lead to robust constraints of the
dynamics. Conceptually, this allowed us to identify a generalization of zero modes from the linear
to the nonlinear setting, as well as symmetry-protected power-oscillating modes that do not have
a counterpart in the linear case. These states furthermore support symmetry-protected excitations,
which play a crucial role in their dynamical features. Practically, nonlinearities are of fundamental
importance to stabilize systems with loss and gain in quasistationary operating regimes. In
particular, the symmetry-protected modes can be induced into weakly interacting bosonic
systems with saturable gain or density-dependent loss, such as recently realized in polaritonic
condensates [24, 49] and topological lasers [50–52]. The results can also be reinterpreted in
classical wave settings, as encountered, e.g., in conventional optics and acoustics.
These findings show that the notion of symmetry-protected topological states persists in

nonlinear bosonic systems, and that the nonlinearities lead to an even richer phenomenology than
in the original single-particle context. On the practical side, it is worthwhile to explore further
extensions to include the dynamics of the medium [79], which is particularly important when one
considers time-dependent solutions. More generally, it would be highly worthwhile to explore
nonlinear extensions for other representatives of linear topological universality classes, for which
experimental realizations and a general classification are currently unknown.

Funding

UK Engineering and Physical Sciences Research Council (EPSRC) (EP/N031776/1,
EP/P010180/1). The research data is accessible at doi 10.17635/lancaster/researchdata/235

                                                                              Vol. 26, No. 17 | 20 Aug 2018 | OPTICS EXPRESS 22517 



Disclosures

The authors declare that there are no conflicts of interest related to this article.

                                                                              Vol. 26, No. 17 | 20 Aug 2018 | OPTICS EXPRESS 22518 




