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ABSTRACT
Eye gaze for interaction is dependent on calibration. However, gaze
calibration can deteriorate over time affecting the usability of the
system. We propose to use motion matching of smooth pursuit eye
movements and known motion on the display to determine when
there is a drift in accuracy and use it as input for re-calibration.
To explore this idea we developed Smooth-i, an algorithm that
stores calibration points and updates them incrementally when
inaccuracies are identified. To validate the accuracy of Smooth-i, we
conducted a study with five participants and a remote eye tracker.
A baseline calibration profile was used by all participants to test
the accuracy of the Smooth-i re-calibration following interaction
with moving targets. Results show that Smooth-i is able to manage
re-calibration efficiently, updating the calibration profile only when
inaccurate data samples are detected.
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1 INTRODUCTION
Gaze has become a compelling modality for interaction. Users are
able to interact with static and moving content just by looking,
which has enabled a wide range of interaction techniques. How-
ever, in order to successfully estimate where users look, eye track-
ers require careful calibration to individual users. Conventional
approaches to calibration often hamper usability as they require
users to engage in a rigid procedure of fixating on a sequence of
points on the target display [Morimoto and Mimica 2005]. However,
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techniques have been developed that enable more implicit forms
of calibration, based on motion correlation of moving stimuli and
smooth pursuit eye movement [Pfeuffer et al. 2013; Ramirez-Gomez
and Gellersen 2017].

In this work we address the problem that gaze calibration can
become inaccurate over time. This occurs when the position of the
user relative to the eye tracker is changing, and affects the user
experience. Input actions become less accurate and more prone to
failure, necessitating re-calibration [Feit et al. 2017]. In the lab, it has
been experimenters ensuring that lapses in gaze accuracy where
detected and corrected. However, as eye trackers become deployed
as consumer devices, the onus is on the user to detect deviations in
accuracy and the need to re-calibrate. There are currently no auto-
mated methods for detecting when the gaze estimation becomes
inaccurate, and re-calibration remains a manual task.

We propose Smooth-i as an approach for automatic detection of
inaccuracy in estimated gaze input, and incremental re-calibration
as corrective action. It has previously been shown that smooth
pursuit eye movement can be used to detect reliably when a user is
looking at moving object, on the basis of motion correlation [Es-
teves et al. 2015; Ramirez-Gomez and Gellersen 2017; Velloso et al.
2017; Vidal et al. 2013]. In Smooth-i, we adopt the technique as a
tool for measuring the accuracy of gaze input. As and when a cor-
relation of eye movement with a moving object is detected during
interaction, the object’s position is compared with the eye tracker’s
estimated gaze point. If the error exceeds an accuracy threshold, a
re-calibration is triggered. This is based on calibration points that
are incrementally updated based on motion matching between gaze
and targets at known positions on the screen.

Our contributions are a description of the Smooth-i algorithm, an
experiment evaluating how effective it is for detecting and correct-
ing gaze inaccuracy, and a scenario-based evaluation of Smooth-i’s
incremental re-calibration performance.

2 RELATEDWORK
The user experience of gaze-based controls is dependent on the
accuracy of the eye trackers’ gaze estimates, and high levels of
accuracy can only be achieved through careful calibration to the
individual user [Morimoto and Mimica 2005; Nyström et al. 2013;
Schnipke and Todd 2000].

Most commonly used gaze calibration tasks require participants
to fixate on (between 4 and 9) known static points distributed
evenly around the screen. This process is usually separate from the
application, and constitutes undesirable configuration overhead for
the user. It has been reported to be of poor usability, boring, tedious
and tiring for the eyes [Morimoto and Mimica 2005; Schnipke and
Todd 2000; Villanueva et al. 2004].
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There is wide-ranging on improving the usability of calibration,
by reducing the number of calibration points [Guestrin and Eizen-
man 2008; Villanueva and Cabeza 2008], gathering manual user
input to calibrate [Sellen et al. 2017], using head movements to col-
lect a larger array of calibration points [Santini et al. 2017], and use
of moving targets to ease calibration [Kondou and Ebisawa 2008;
O’regan 1978]. Others have proposed the creation of calibration
games [Flatla et al. 2011; Renner et al. 2011], playful embedding of
calibration in the application [Dorr et al. 2009; Pfeuffer et al. 2013],
and implicit calibration based on interaction dynamics within the
application [Ramirez-Gomez and Gellersen 2017; Sidenmark 2017].

Smooth-i specifically builds on smooth pursuits, first proposed
by Pfeuffer et al. for calibration [2013]. The use of smooth pursuits
leverage the natural attention of the eyes when they try to fixate
on a target that is moving [Gegenfurtner 2016], and has become
a compelling tool for interaction [Esteves et al. 2015; Špakov et al.
2016; Vidal et al. 2013]. Previous work based on the use of smooth
pursuits shows that motion matching provides relevant information
on when the users are attentive to the presented motion and where
are they looking. This advantage has been leveraged to demonstrate
that the creation of an integrated and invisible gaze calibration is
possible within the application dynamics [Ramirez-Gomez and
Gellersen 2017].

In order to validate the created calibration’s gaze accuracy, tests
are performed in experimental environments [Ohno and Mukawa
2004]. Traditionally, gaze accuracy is also assessed in a separate
application by performing a series of fixations at given points on
the screen, similar to the calibration process. Nevertheless, when
and how to assess the accuracy of the gaze point remains the user’s
responsibility. Users need to first comprehend that there is a drift
on the provided gaze accuracy and then decide to re-calibrate.

With Smooth-i we propose to solve the gap between the detec-
tion of inaccuracies and trigger and execution of the re-calibration
process by using smooth pursuit eye movements, enabling it to be
performed automatically.

3 SMOOTH-I DESIGN
Smooth-i approaches the detection of smooth pursuits in a novel
way, by leveraging the detection of where users look to both es-
timate gaze accuracy and re-calibrate ‘on-demand’. The method
is implicit and opportunistic in that it collects data points auto-
matically when the user happens to follow a moving target with
their gaze. While a correlation is detected, the point positions of
the moving target on the screen are associated with gaze points
provided by the eye tracker, in a continuous sampling process.

Figure 1 illustrates how Smooth-i is structured. First, the algo-
rithm performs motion-matching as it can only determine where
the user is looking when the user’s gaze matches the motion of a
known target’s trajectory. Second, the collected paired points are
evaluated in an accuracy check step. The distance between them is
evaluated against a desired gaze accuracy in degrees of visual angle
so as to only propagate forward those points that show inaccuracies
of the estimated gaze. Finally, the new paired points are stored to
be used for gaze re-calibration.

For re-calibration, Smooth-i maintains a store of calibration
points that is incrementally updated. When a Smooth-i application

Figure 1: Smooth-i method. First, gaze and target moving
points are evaluated through a motion matching procedure.
All detected paired points are used to asses the accuracy. In
case of inaccuracies, if there are no existing points in the
area (used for re-calibration), new points are added. If there
are old points in the same area, new points substitute them.

starts, the store might be empty or contain points from any prior cal-
ibration. In operation, the store is updated whenever inaccuracies
are detected. These can be caused by either a lack of information
in the area, in which case a new calibration point is added to the
store, expanding the calibration profile. Inaccuracies can also be
caused by previously stored calibration points that are causing the
error. To address this, Smmoth-i deletets any prior points from the
store that are in proximity of the detected inaccuracy. Following
the update, all the stored points are used to re-calibrate and create
an accurate gaze to display mapping.

3.1 Implementation
In order to test Smooth-i, we implemented an application in Java,
receiving gaze data from a Tobii EyeX remote eye tracker, collecting
data at 60Hz, via a C# app. We used a 27” monitor (Resolution:
1920x1080, Aspect ratio: 16:9). The system shows up to 3 circles (20
pixels diameter) moving in a loop distributed around the screen for
maximum spatial coverage in each scenario.

Smooth-i determines whether the user is following the displayed
movement by using the Pearson’s product-moment correlation for
motion matching with the threshold set at 0.9, as higher values
result in fewer detection errors [Vidal et al. 2013].

Accuracy is evaluated in degrees of visual angle and computed
by the difference in position between two paired points (gaze and
target), and comparing it with a desired target accuracy. A prede-
fined accuracy threshold of 1.5◦ was set for the evaluation of the
method, as remote trackers’ average accuracy is often found to be
larger than 1 degree [Feit et al. 2017; Lander et al. 2018].

Finally, we stored the selected calibration points and used them
for re-calibration. Due to limitations at accessing Tobii’s raw data
and restrictions to modify its calibration profile, we map the new
calibration function on the given eye tracker’s estimation, produc-
ing a new calibrated gaze point based on Tobii’s gaze point. We
used a second order polynomial geometric linear transformation
for gaze to screen mapping (as a calibration function) [Morimoto
and Mimica 2005].
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3.2 Design requirements
Motion Matching for re-calibration: Application designers need to
be aware that the method can only detect the accuracy in areas
where motion occurs through motion matching. Smooth-i uses
the collected points to create a calibration profile able to estimate
(interpolate) the points within the area created by the stored points.
Hence, it is not necessary to display motion in all the screen, but
only where gaze pointing is going to be relevant.

Accuracy: The desired accuracy threshold needs to be set by the
designers of the end application. How gaze input is going to be
used in the final application would be determined by how detailed
gaze information needs to be. For lower values, we approximate
the estimation to "pixel perfect", whereas as the value increases,
the resultant estimation would produce a limited gaze point only
able to point at larger icons or regions of the screen.

4 EVALUATION
Smooth-i was evaluated in two experiments. First, in two steps,
an evaluation of the accuracy detection compared to traditional
methods, and an assessment of the acquired calibration’s accuracy.
Second, an evaluation of the performance of the method based on a
series of user’s interactions in 2 different scenarios. In each exper-
iment, the researcher performed a different 16 points calibration
based on fixations in order to start the system with a predefined
inaccurate calibration profile, before each step.

4.1 Experiment on Accuracy Detection
In the first experiment, we integrated a 16 points accuracy test
into Smooth-i. Users were required to fixate on each target while
they were displayed. All accuracy targets (40 pixels diameter with
a marked center) were scattered evenly around the screen forming
a 4x4 grid. Each target appeared on its own in a random order
during a period of 2 seconds. We obtain the accuracy values by
calculating the distance between the gaze point and the target point.
We dismissed the information obtained during the first 0.8 seconds
and the last 0.2 seconds related to the time participants’ eyes need
to travel to reach the target and anticipatory movements [Pfeuffer
et al. 2013]. The result is computed by taking the median distance
from all the gaze points to each target position, and later the mean
between all of the targets. An accuracy of 1◦ of visual angle is
considered good for remote eye trackers [Lander et al. 2018].

In the second part, after the researcher’s calibration of the system,
we tested how well Smooth-i can detect inaccuracies and correct
them compared to a standard accuracy test. We deployed the system
to show two target circles moving in a squared loop passing by all
the points used in the standard accuracy test, so we could acquire
close points and store the estimated accuracy with the motion
matching detection. Those points detected during the pursuits near
the 16 established points were considered as a section result.

We performed the evaluation with 5 participants (Age: M = 25±2,
4 male, 1 female, 2 wearing glasses). During the first part of the
study, re-calibration was not considered, only motion matching. We
asked each user to first perform a standard 16 points accuracy test.
Later, we asked them to follow the motions displayed on the screen
during two loops each. In the second part, we asked participants
to follow the same procedure again with Smooth-i re-calibration

Table 1: Experiment 1 (Part 1): Mean Accuracy at the 16
points across the screen (◦ of visual angle)

Standard Test at the Start (Mean: 4.00 ± 1.08 )
3.82 ± 1.22 4.27 ± 0.92 3.92 ± 1.03 3.57 ± 1.21
3.24 ± 0.64 3.98 ± 1.17 3.99 ± 0.95 4.37 ± 1.29
3.18 ± 1.09 4.01 ± 1.15 4.73 ± 1.38 4.38 ± 1.05
3.42 ± 1.02 4.21 ± 1.06 4.48 ± 0.94 4.41 ± 1.09

Smooth-i detection (Mean: 4.01 ± 1.23 )
4.37 ± 1.56 3.45 ± 0.82 2.97 ± 0.90 2.85 ± 0.88
3.91 ± 0.68 4.40 ± 0.90 3.89 ± 1.32 4.41 ± 1.18
3.68 ± 1.31 4.48 ± 1.03 4.07 ± 1.61 3.87 ± 1.21
4.19 ± 1.40 4.33 ± 1.31 4.89 ± 1.42 4.36 ± 1.58

Table 2: Experiment 1 (Part 2): Evolution of the Mean Accu-
racy at the 16 points across the screen (◦ of visual angle)

Standard test at the Start (Mean: 2.64 ± 0.72 )
2.57 ± 0.76 2.72 ± 0.69 2.54 ± 0.59 3.02 ± 0.87
1.87 ± 0.59 2.31 ± 0.78 2.82 ± 0.92 2.71 ± 0.91
2.26 ± 0.82 2.40 ± 0.54 2.7 ± 0.63 2.68 ± 0.97
2.83 ± 0.46 2.57 ± 0.40 3.24 ± 0.45 3.06 ± 0.81

Standard test after Smooth-i (Mean: 1.01 ± 0.48 )
1.14 ± 0.20 1.10 ± 0.33 0.76 ± 0.68 0.75 ± 0.33
0.91 ± 0.43 0.90 ± 0.70 1.04 ± 0.90 1.10 ± 0.39
0.86 ± 0.26 0.95 ± 0.49 0.97 ± 0.66 1.10 ± 0.49
1.34 ± 0.34 0.79 ± 0.21 0.96 ± 0.37 1.46 ± 0.54

Figure 2:MeanAccuracy. (Left)Accuracy reported by the stan-
dard test (4.00 ± 1.08◦) and Smooth-i (4.01 ± 1.23◦). (Right)
Accuracy at the start(2.64 ± 0.72◦) and end of the study after
Smooth-i (1.01 ± 0.48◦).

being applied, followed by another standard accuracy test at the
end. Results were calculated in degrees of visual angle.

Results: Table 1 and Table 2 show the mean screen accuracy
at the 16 points scattered around the screen. Table 1 shows the
differences between the standard accuracy test (at the start of the
study) and the Smooth-i detection. Results show how both report
inaccuracies, with a difference of 0.01 ± 0.78◦ (Figure 2, left). The
mean of the absolute difference between both accuracies (0.61 ±
0.48◦) show how pursuits report the re-calibrated gaze point to be
further away from the target point than fixations.
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Table 3: Results Experiments on Smooth-i Performance
T User Calibration Points New / Erased

Tu
rn

ta
ki
ng

1 1 28 12 / 0
2 2 32 12 / 8
3 1 35 11 / 8
4 2 36 13 / 12

Sh
ar
ed

ca
li
br
at
io
n 1 1 20 5 / 1

2 2 23 4 / 1
3 3 34 11 / 0
4 1 36 2 / 0
5 2 42 7 / 1
6 3 43 6 / 5
7 1 47 15 / 11

We performed aWilcoxon signed-rank test showing a not statis-
tically significant difference between both methods for assessing
accuracy (Z = -.072, p = 0.943). Table 2 shows the mean accuracy
from the accuracy tests performed during the study. It shows how
Smooth-i improves accuracy from a mean of 2.64 ± 0.72◦ to 1.09 ±
0.48◦ (Figure 2, right), with little variance between users.

4.2 Experiment on Performance
In the second study, we evaluated how Smooth-i is able to update the
calibration profile when different users use the same. We explored
the performance of our proposed method in two case scenarios:

A) Turn taking: Two users using the same display at different
times. Both use the system and then leave for two times.

B) Shared calibration Three users sharing the same display at
different times. Each of them only needs access to one third of the
screen. All three users come and leave two times. At the end, the
first user comes back and uses all three parts of the screen.

The number of Calibration Points stored and used for later re-
calibration, including the number of new points that were added or
erased, were saved as a result after each user iteration. Before each
case test starts, the system was given a 16 points calibration profile.
Each of the users was asked to follow the motion of an assigned
target during two loops each, and then leave.

For Turn taking, the system was configured so a single target
performed a circular movement in the middle of the screen occu-
pying most of the display. We tested how Smooth-i manages user
changes.

In Shared calibration, the system was configured so that three tar-
gets (1 for each user) occupied a different section of the screen. We
tested how Smooth-i manages different users sharing a calibration
profile.

Results: Table 3 shows the total amount of calibration points
added after the given 16 points following each users’ interaction
(T) for each case study. Moreover, it presents how many new points
were added during each stage and how many existing points from
the calibration profile were erased to give space to a recently added
ones. In Turn taking, we can observe how user 2 is updating the pro-
file from user 1 with their gaze points, substituting 8 and 12 points.
In Shared calibration, we can observe how after each user only
interacted with their area, user 1 takes over the other’s sections,
substituting 11 points and adding 4. These results show that cor-
rections and updates of the calibration profile occurred throughout
the study.

5 DISCUSSION
Smooth Pursuit eye movements’ attentive behavior when motion
is presented enabled new calibration methods that are reported as
more flexible and less tedious.

Leveraging the eyes’ ability to follow movement, motion match-
ing methods are able to identify when the user is looking at a
moving target. Smooth-i identifies this behavior and uses it for
accuracy assessment rather than a direct re-calibration. According
to the detected accuracy, our proposed method decides whether
re-calibration is needed, and it manages the calibration profile by
erasing and adding points.

Results in Table 1 show how the detection of accuracy differs
from fixation and pursuits based methods. The mean accuracy for
the screen is similar (4◦ and 4.01◦), and both methods are reported
to be statistically equal. However, the detection based on pursuits
is reported to score greater inaccuracies (absolute difference mean
0.61 ± 0.48◦) than the standard test. We believe this is an effect of
the difference between the eye movements behavior when selecting
targets [Lohr and Komogortsev 2017], and it can be related to the
phase shift (lag) of pursuits during this movement [Holmqvist et al.
2011]. Nevertheless, Figure 2 shows how the proposed method is
able to detect a drift in gaze accuracy for later correction as the
standard method would do.

Moreover, the results shown in Table 2 and Figure 2 show that
Smooth-i is a competent method for re-calibration. It was able to
improve a detected inaccuracy of 2.64◦ to 1.01◦. Accuracies of 1◦
are considered good results [Lander et al. 2018], even if greater
results are often reported in controlled environments for remote
eye trackers [Feit et al. 2017; Nyström et al. 2013].

Further, different scenarios were tested to assess Smooth-i’s
management of calibration points. Table 3 shows how, on each
user’s interaction with the system, the profile is being updated as
one user’s points take over the profile. On the other hand, the second
scenario presents further evidence that samples for 3 different users
could be collected to be used in different parts of the screen within
the same profile. Our results suggest this approach might broaden
opportunities to use gaze in shared displays and multi-user systems.

Moreover, Smooth-i has the potential to be integrated inside ap-
plications containing moving content. Examples range from screen
savers or locked screens which would require explicit interaction
with moving content [Pfeuffer et al. 2013], games [Ramirez-Gomez
and Gellersen 2017; Vidal et al. 2013] that could be extended with
gaze interaction, or even infographics (motion graphics) videos with
moving animations that would allow re-calibrating gaze implicitly.

6 CONCLUSION
Weproposed Smooth-i as a novelmethod for automatic re-calibration
using smooth pursuit eye movements. The method presents a new
approach on the detection of smooth pursuits to assess the accu-
racy of the gaze point and automatically re-calibrate when required.
Results show how the system is able to manage re-calibration only
when inaccuracies are detected by adding new samples and erasing
outdated points. Smooth-i leads towards more usable and intelli-
gent strategies for re-calibration, while maximizing its potential
for multiuser systems or shared displays.
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