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Phase equilibria are at the heart of many properties of substances, such as their solubil-

ity, manufacturability, and stability. They are of significant industrial and commercial

interest, perhaps most importantly to the pharmaceutical industry where drug stability

and solubility are two of the largest challenges of drug development. The focus of this

thesis then was to develop a molecular level understanding of phase equilibria, and pro-

duce tools and models to predict phase stability. An emphasis was given to exploring

solid-solid and solid-liquid equilibria and stability. Specifically, the work presented here

aimed to elucidate what drives the formation of multicomponent crystals, improve avail-

able models for exploring phase equilibria phenomena and explore solubility prediction

from first principles as a potentially more powerful alternative to correlation based meth-

ods. These three fundamental areas were explored by employing molecular simulation

in combination with the machinery of statistical mechanics, utilising advanced sampling

methods and free energy calculations. This approach has led to the development of a

foundation for understanding multicomponent crystal formation in terms of molecular

affinities and packing, the characterisation of a set of soft coarse-grained potentials for

use in phase equilibria studies, which overcome the main limitations of the most widely

used potential, and finally, the development of a novel method for solubility prediction

from first principles. Here, this novel method was successfully applied to an ionic (aque-

ous sodium chloride) and small molecular (urea in methanol and aqueous urea) system.

In the future, these results are expected to lead to a set of guidelines for predicting (and

perhaps prohibiting) multicomponent crystal formation, the development of a higher

class of coarse-grained transferable force field with utility in studying phase equilibria,

and powerful approach for predicting solubility of even large, flexible molecules (such as

pharmaceuticals).



Declaration of Authorship

I, Simon Boothroyd, declare that this thesis titled, ‘Phase Equilibria from Molecular

Simulation’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

ii



Acknowledgements

I would like to express my deepest gratitude to all those who have helped and supported

me over the duration my PhD.

I would first like to thank my thesis advisor Prof. Jamshed Anwar for his constant

support, guidance and always driving me to be my best. I would also like to thank Dr.

Andy Kerridge for his invaluable feedback and discussions, and whose ability to simplify

any problem was always helpful.

I would also like to thank all of the individuals with whom I spent time with while

on site at AstaZeneca. In particular, I would like to thank Dr. Anders Broo and Dr.

David Buttar for organising my visits there, for their insights into the industry and their

valuable feedback on my work. Further, I would like to think Dr. Jim McCabe for

allowing me into his lab, and letting me loose on some ‘real’ chemistry!

I would also like to express my sincerest gratitude to my friends and to my family.

Without their support, I’m sure I would not have made it this far. And finally, I must

thank my amazing partner Ana. Thank you for putting up with all the long nights and

weekends spent in the office, for listening to me talk about my work, and for always

making me happy - no matter how many simulations had failed.

iii



List of Publications

This thesis is based on the following published and publishable manuscripts:

I. Why Do Some Molecules Form Hydrates or Solvates?

Simon Boothroyd, Andy Kerridge, Anders Broo, David Buttar, Jamshed Anwar

Cryst. Growth Des., 2018, 18, pp 1903–1908

S.B. and J.A. designed the research with help from A.K.; S.B. developed the meth-

ods and carried out the work; S.B. analysed the data; S.B. and J.A. wrote the

manuscript with the help of all co-authors; all co-authors contributed to a critical

discussion of the results and conclusions.

II. Towards Realistic and Transferable Coarse-Grained Models: Phase Di-
agrams of Soft van der Waals Potentials

Simon Boothroyd, Andy Kerridge, Jamshed Anwar

Manuscript in preparation

S.B. and J.A. designed the research; S.B. developed the methods and carried out

the work; S.B. analysed the data; S.B. and J.A. wrote the manuscript with the help

of all co-authors; all co-authors contributed to a critical discussion of the results

and conclusions.

III. Solubility prediction from first principles: A density of states approach

Simon Boothroyd, Andy Kerridge, Anders Broo, David Buttar, Jamshed Anwar

In review in PCCP

S.B. and J.A. designed the research; S.B. developed the methods and carried out

the work; S.B. analysed the data; S.B. and J.A. wrote the manuscript with the help

of all co-authors; all co-authors contributed to a critical discussion of the results

and conclusions.

iv



v

IV. Solubility prediction via chemical potentials from density of states

Simon Boothroyd, Jamshed Anwar

Manuscript in preparation

S.B. and J.A. designed the research; S.B. developed the methods and carried out

the work; S.B. analysed the data; S.B. and J.A. wrote the manuscript; all co-

authors contributed to a critical discussion of the results and conclusions.



Contents

Abstract i

Declaration of Authorship ii

Acknowledgements iii

List of Publications iv

Contents vi

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Crystal Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 The Solid State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Theory 12

2.1 Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Molecular Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Phase Coexistence Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Why Do Some Molecules Form Hydrates or Solvates? 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Towards Realistic and Transferable Coarse-Grained Models 48

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vi



Contents vii

4.5 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Solubility prediction from first principles: A density of states approach 68

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Solubility from density of states . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Technical details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Solubility prediction via chemical potentials from density of states 82

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Chemical potential of solution from DOS . . . . . . . . . . . . . . . . . . 85

6.3 Chemical potential of solid . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Technical details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Concluding Remarks 96

A Monte Carlo Simulation Code 100

A.1 Coding Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2 Input Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

References 112



List of Figures

1.1 The competing contributions to the free energy of homogeneous nucleation
as predicted by classic nucleation theory. . . . . . . . . . . . . . . . . . . . 4

1.2 A three-dimensional Kossel crystal with examples of facial (green), step
(red) and kink (blue) sites highlighted. . . . . . . . . . . . . . . . . . . . . 6

1.3 Two-dimensional surface nucleation growth with newly formed step and
kink sites highlighted in red and blue respectively. . . . . . . . . . . . . . 6

1.4 A screw dislocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 The three general categories of crystals. . . . . . . . . . . . . . . . . . . . 8

2.1 The state of the system is most commonly evolved in Monte Carlo simu-
lations by a number of trial moves. . . . . . . . . . . . . . . . . . . . . . . 20

2.2 An example potential energy function as a sum of its individual components. 24

2.3 An example primary cell (grey) surrounded by two of its images (white). . 26

2.4 The atomic point charges are surrounded by a neutralising Gaussian dis-
tribution. This distribution is neutralised by an equal but opposite sum
of distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 A 2-dimensional schematic of a liquid and solid phase coexisting in the
same box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Interactions between solute and solvent molecules (left) are characterized
by the ε and σ parameters of the Lennard-Jones potential, shown plotted
as a function of the separation distance r (right). . . . . . . . . . . . . . . 39

3.2 Phase diagram for equal-particle-size solute-solvent systems . . . . . . . . 40

3.3 Phase diagrams for (a) NaCl-type and (b) channel-packing type solute-
solvent systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Slices taken from the final structures of the solvent-phobic (εS−W = 0.3
kJ mol-1; σW / σS = 0.32) system. . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Thermodynamic cycle for the formation of a solvate from its components,
the solute and solvent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Two limiting cases of solvate formation, represented schematically . . . . 45

4.1 The melting and boiling curves of the 12-6 potential as calculated by
Agrawal and Kofke and this study . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Calculated phase diagrams of the 12-6 (top left), 9-6 (top right), 8-4 (bot-
tom left) and 6-4 (bottom right) potentials . . . . . . . . . . . . . . . . . 59

4.3 Coexistence densities determined from DOS calculations . . . . . . . . . . 60

viii



List of Figures ix

5.1 A schematic probability distribution for a system of solute (grey particles)
and solvent (blue particles) as a function of solute fraction. . . . . . . . . 72

5.2 The density of states is sampled independently for each concentration of
interest in both in the liquid state and the gas states. Insertion/deletion
moves between the different concentration windows are performed in the
gas phase in order to connect the independent concentration windows. . . 74

5.3 The two choices explored for the accessible energies and volumes between
the liquid and gas states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 The probability distribution for the aqueous sodium chloride system at
T=298 K and p=1 atm, averaged over five independant runs. . . . . . . . 77

5.5 The chemical potential of the JC/SPC/E NaCl model as a function of
concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 The solubility of the JC/SPC/E NaCl model as a function of temperature. 80

6.1 The total chemical potential of urea in methanol (left) and urea in water
(right) as a function of molefraction of urea (xUrea) . . . . . . . . . . . . . 92

6.2 The chemical potentials of urea in methanol (left) and urea in water (right)
for different temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 The chemical potential of solid urea as a function of temperature. . . . . . 94

6.4 The solubility of urea in methanol (left) and water (right) as a function
of temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.1 A simplified overview of the PhaseMC code structure. Most methods /
fields are omitted for clarity . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2 An overview of the MonteCarlo class. Only a selection of key methods
are presented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.3 A flow diagram of the main simulation loop implemented by the MonteCarlo
class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.4 An overview of the WangLandauMonteCarlo class. Only a selection of key
methods are presented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.5 An overview of the WangLandauMonteCarlo class. Only a selection of key
methods are presented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.6 A flow diagram of the main simulation loop implemented by the GibbsMonteCarlo
class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



List of Tables

4.1 The results of the absolute free energy calculations for the liquid and solid
phases for each of the potential models. . . . . . . . . . . . . . . . . . . . 58

4.2 Calculated critical points of the n-m potentials. . . . . . . . . . . . . . . . 58

4.3 Calculated triple points of the n-m potentials. . . . . . . . . . . . . . . . . 59

4.4 Approximate parameters for a coarse-grained water model using the 12-6,
9-6, 8-4 and 6-4 potentials. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 The coefficients derived by least square fitting used to approximate the
melting point of the 6-4, 8-4, 9-6 and 12-6 potentials. . . . . . . . . . . . . 62

4.6 Vapour-liquid coexistence points determined from Wang–Landau MC sim-
ulations for the 6-4 potential. . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Vapour-liquid coexistence points determined from Wang–Landau MC sim-
ulations for the 8-4 potential. . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.8 Vapour-liquid coexistence points determined from Wang–Landau MC sim-
ulations for the 9-6 potential. . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.9 Vapour-liquid coexistence points determined from Wang–Landau MC sim-
ulations for the 12-6 potential. . . . . . . . . . . . . . . . . . . . . . . . . 65

4.10 Solid-liquid coexistence points determined from direct coexistence for the
6-4 potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.11 Solid-liquid coexistence points determined from Wang–Landau MC simu-
lations for the 8-4 potential. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.12 Solid-liquid coexistence points determined from Wang–Landau MC simu-
lations for the 9-6 potential. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.13 Solid-liquid coexistence points determined from Wang–Landau MC simu-
lations for the 12-6 potential. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.14 Vapour-solid coexistence points determined from Wang–Landau MC sim-
ulations for the 6-4 potential. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.15 Vapour-solid coexistence points determined from Wang–Landau MC sim-
ulations for the 8-4 potential. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.16 Vapour-solid coexistence points determined from Wang–Landau MC sim-
ulations for the 9-6 potential. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.17 Vapour-solid coexistence points determined from Wang–Landau MC sim-
ulations for the 12-6 potential . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Calculated chemical potential of the solid phase of JC/SPC/E NaCl model
as a function of temperature. . . . . . . . . . . . . . . . . . . . . . . . . . 79

x



List of Tables xi

6.1 The solution free energies of urea in water calculated at 298 K. . . . . . . 91

6.2 The solution free energies of urea in methanol calculated at 298 K . . . . 91

6.3 The coefficients calculated by fitting the excess free energies calculated by
the DOS approach fit to Equation 6.6. . . . . . . . . . . . . . . . . . . . . 93

6.4 The individual components of the solid phase free energies as calculated
by the Einstein molecule method. . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 The coefficients calculated by fitting the solution phase volumes calculated
by the DOS approach fit to Equation 6.15. . . . . . . . . . . . . . . . . . . 93



Chapter 1

Introduction

1.1 Scope of the Thesis

The primary aim of this thesis is to advance our understanding of (and develop method-

ologies to predict) phase equilibria. A molecular level insight into why, and under which

conditions particular phases are favoured over others is key to predicting many proper-

ties of substances, such as their stability, solubility or even manufacturability. A deep

understanding of phase equilibria is of significant commercial interest, with applications

ranging from material development1–3, gas storage and carbon capture4–7, toxicology,

food formulation and pharmaceutical development.

Of particular importance are phenomena arising from solid-solid and solid-liquid phase

equilibria and stability. The issues arising from the relative stabilities of different solid

forms are many - from the interconversion of polymorphs in pharmaceuticals to the for-

mation of multicomponent crystals with degraded (or in cases enhanced) performance (as

is discussed in Section 1.4). Similarly, the stability of a solid in solution (i.e its solubility)

or lack thereof is a major issue for the pharmaceutical industry. This issue of solubility

is two-fold - there is the challenge of initially dissolving a solid into solution, and then

there is the potential issue of a new solid form with lower solubility recrystallising out.

The second case can compromise the bioavailability of a pharmaceutical. A molecular

level insight into what drives phase stability is thus critical. It would not only be key for

developing relevant interventions (or exploiting potentially beneficial applications), but

would also lay the foundation for predictive science. To this end, the aim of this thesis

is to

1
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• explore the phase stability of multicomponent crystals - the formation of which

can be both exploited or highly problematic (see Sections 1.4.2 and 1.4.3).

• contribute to molecular simulation methodology employed to explore phase equilib-

ria, with the intention of overcoming a number of the existing limitations explored

in Section 2.3.

• explore methods for solubility prediction from first principles as a potentially pow-

erful alternative to correlation based approaches.

Phase equilibria are investigated in the thesis using molecular simulation, which not

only offers molecular level insight into the mechanism of phase transitions, but also

when coupled with the machinery of statistical mechanics gives access to a kinetic and

thermodynamic description of phase stability. Phase transitions are particularly chal-

lenging to simulate however, as transitioning between phases is a stochastic process that

can occur over timescales much larger (from seconds all the way up to years) than are

accessible from typical simulations (on the order of microseconds). Free energy calcu-

lations and biased simulations are employed here to overcome these challenges. Many

of the simulations presented in this work were performed using PhaseMC - a bespoke

Monte Carlo code that I developed for the purpose of exploring phase equilibria (see

Appendix A).

This introductory chapter begins with a broad introduction into the kinetics and ther-

modynamics of phase equilibria. This is followed by an introduction to the different

forms of the solid state, with an overview of their associated challenges and applications

arising from phase stability. The second chapter provides an introduction to molecular

simulation and statistical mechanics and their application to calculating phase equilibria

is given. The remainder of this thesis is comprised of four significant components of

original research (one of which has been published, and another of which is in review)

resulting directly from this work, and a concluding chapter with a future perspective.

1.2 Nucleation

Nucleation is the first step of a phase transition. It involves atoms or molecules from

the old phase self-assembling into small clusters of the new phase, known as nuclei.

Nuclei whose size are below a certain threshold, the critical size rc, are unstable and

are likely to disassemble back into the old phase. Those that are above the critical size
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however continue to grow until the new phase is fully formed8. The driving force behind

nucleation from the melt is the degree of supercooling, from vapour it is the vapour

pressure and from solution it is the degree of supersaturation. The magnitude of this

driving force can be generalised as

∆µ = µnew − µold (1.1)

where µnew and µold are the chemical potentials of the new and old phases respectively9.

Nucleation can be classified into two categories depending on how the nuclei form. The

first, homogeneous nucleation, involves the formation of nuclei in a pure bulk medium

without the presence of impurities or heterogeneous surfaces. The second, heterogeneous

nucleation, involves the formation of nuclei at heterogeneous surfaces such as the walls

of a beaker or on the surface of small impurities.

1.2.1 Homogeneous Nucleation

The process of homogeneous nucleation is described by the classical nucleation theory

(CNT). When a nucleus of size r forms, there is a free energy penalty Gsurface associated

with creating an interface between the old and the new phases. Conversely, provided

that the new phase has a lower chemical potential, there is a competing favourable term

Gbulk associated with particles transferring from the old to the new phase. The free

energy change associated with a phase transition is thus given by

∆G = Gsurface +Gbulk (1.2)

Assuming a spherical nucleus (although this can be generalised to other shapes), these

two terms are expressed as

Gsurface = 4πr2γ (1.3)

Gbulk =
4

3
πr3∆µ (1.4)
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where γ is the surface energy density. Clearly as Gsurface depends on the surface area

of the nucleus, it grows proportionally to r2. Similarly, as Gbulk is dependent on the

volume of the nucleus, it grows as r3. At some size then, the critical size, the r3 term

begins to dominate and a maximum in the free energy is produced (Figure 1.1). The

magnitude of this maxima ∆Gc (defined in Equation 1.5) is the height of the free energy

barrier that must be overcome for a phase transition to occur.

dG(r)

dr

∣∣∣∣
rc

= 0, ∆Gc = ∆G(rc) (1.5)

The rate constant of nucleation depends on ∆Gc, and is given by

k = A exp (−β∆Gc) (1.6)

where A is a kinetic prefactor, β =
1

kBT
, kB is the Boltzmann constant and T is

temperature.

∆G

r

∆Gsurface

∆Gbulk

∆Gc

rc

Figure 1.1: The competing contributions to the free energy of homogeneous nucleation as
predicted by classic nucleation theory.

Although CNT gives a solid conceptual framework for understanding nucleation, and

generally agrees qualitatively with experimental observations, it is often unable to match

quantitative results. This is attributed to the assumption that bulk macroscopic prop-

erties, such as surface tension, can be used to describe microscopic nuclei, and that the

nuclei have a sharp, rather than diffuse interface10. Further, CNT makes the assumption

that nucleation is a single step process. There is evidence that nucleation can instead

proceed via a multistep route11.
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1.2.2 Heterogeneous Nucleation

In almost all experiments, the system undergoing a phase transition is not homogeneous

in composition and often contains many impurities such as dust particles. Further,

the system will be in contact with a number of heterogeneous surfaces such as beaker

walls or the fluid-air interface. As such, homogeneous nucleation is rarely observed in

practice. Rather, heterogeneous nucleation is more common - nuclei form on the available

heterogeneous surfaces.

Heterogeneous nucleation is more rapid than homogeneous nucleation as the surface will

lower the unfavourable interfacial free energy barrier. The degree to which the surface

will speed up nucleation depends on how greatly it mimics the structure of the final

phase12. For crystallisation, an important type of heterogeneous nucleation is secondary

nucleation that occurs on the surface of a pre-formed crystal. This seed crystal already

matches the structure of the desired crystal, thus aiding nucleation. Molecular simulation

has given insight into how crystals forming from solution can act as a further nucleation

sites, thus catalysing nucleation even further13.

1.3 Crystal Growth

Once nucleation has yielded nuclei of sufficient size, it becomes favourable for the nucleus

to grow. Each new atom or molecule that adds to the nucleus acts a growth unit. If the

new phase is crystalline, it is convenient to picture these growth units as simple cubes

that assemble to form the larger crystal. Each growth unit will either be neighbours

with other growth units, or a unit of the fluid phase. These model crystals are named

Kossel crystals (Figure 1.2).

The surface of the Kossel crystal has three potential binding sites: facial sites that can

form a single interaction, step sites that can form two, and kink sites that can form

three (Figure 1.2). As facial sites only offer a single binding opportunity, they have

the lowest binding energy while kink sites have the highest. As such, growth units will

preferentially adsorb onto kink and step sites over facial ones9. Once the majority of

kink and step sites have been occupied, 2-dimensional nucleation of the remaining flat

surfaces of mainly facial sites must begin.

Given that facial sites only offer a single interaction with incoming growth units, adsorp-

tion is weak. There is a contest between adsorption and de-adsorption back to bulk fluid
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Figure 1.2: A three-dimensional Kossel crystal with examples of facial (green), step (red) and
kink (blue) sites highlighted.

medium. Growth units that do adsorb to the surface will create new step sites. If other

growth units adsorb into these new step sites, small islands begin to form thus creating

new multiple binding sites where once there were only facial ones. These islands then

continue to grow outwards into full layers (Figure 1.3).

Figure 1.3: Two-dimensional surface nucleation growth with newly formed step and kink sites
highlighted in red and blue respectively.

Although surface nucleation growth offers a good conceptual mechanism for growth on

a surface, it makes the assumption that the growth surface is perfectly smooth. In

reality, crystals contain many defects and dislocations14. In particular, screw dislocations

(Figure 1.4) are responsible for spiral growth; screw dislocations produce continuous

step-binding sites on the growth faces of crystals that enables new growth units to easily

attach. By ignoring such dislocations, surface nucleation growth cannot fully account

for the growth rates measured experimentally9.
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Figure 1.4: A screw dislocation.

1.4 The Solid State

The solid state is an integral aspect of chemistry. The properties of a solid are not

solely reliant on the traits of a single molecule. Rather, bulk properties emerge from

the collective behaviour and are not entirely predictable from the traits of the single

molecule15. Phase stability of the solid state is one such bulk property. An understanding

of phase stability is critical to many topical applications, as will be explored in this

section.

The structure of a solid is classified as being either amorphous or crystalline. An amor-

phous solid is a structure that may have a short range, but no long range order. Its

constituent molecules are locked into an almost completely random array. In contrast,

crystals have a very well defined structure, constructed from tiled arrays of identical

building blocks of atoms and molecules. The shape, size and composition of the individ-

ual blocks and how these are arranged in terms of orientations and translations on the

lattice fully determine the structure of the crystal.

Amorphous solids tend to be less stable than their crystalline counterparts due to their

disordered nature, and thus have a higher solubility, dissolution rate and can exhibit

higher bioavailability when permeation across the gut membrane is not the rate limiting

step16. This property is particularly desirable where solubility is an issue, as is often the

case with pharmaceutical molecules. The lowered stability can be problematic however,

as commercially viable products need to remain stable for their lifespan (typically 3-5

years). As such, there is a growing interest in stabilising amorphous materials by intro-

ducing various additives, for example polymers to act as stabilisers16. While currently

a number of amorphous pharmaceutical products have made it to market16, crystalline

products tend to be more commonplace.
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Crystalline solids can be further organised into three categories: polymorphs, solvates

/ hydrates and co-crystals15 (Figure 1.5). These categories are not mutually exclusive,

with some crystalline solids fitting into all such categories.

Polymorphs

Co-crystal Solvate

Solvent

Molecule

Co-former

Figure 1.5: The three general categories of crystals.

1.4.1 Polymorphs

Polymorphs are crystals that are identical in composition but have a different arrange-

ment or packing of their components within the crystal lattice. Differences in packing

may vary from only slight rearrangements on a lattice to complete reorganisation. Fur-

ther, polymorphs may arise from molecules adopting different conformations. Hence,

polymorphism is especially common for larger, more flexible molecules - such as phar-

maceutical molecules.

The physicochemical and mechanical properties (melting point, solubility, dissolution

rate, crystal morphology, tensile strength to name a few) of different polymorphs tend to

vary markedly15,17,18. This can be problematic. A single molecule may exhibit a large

number of polymorphs, yet only one of the forms may have the required properties.

There is no guarantee that the required polymorph will be the most stable however.

Only one polymorphic form will be the most thermodynamically stable while the others

will be metastable. This is not to say the metastable polymorphs cannot be used in

applications. The metastable forms can be kinetically stable, taking months or even

years to convert to the most stable form. Still, caution is required.

A notorious case of a metastable polymorph converting to a more stable form is Riton-

avir18. While Ritonavir was produced as a polymorph with good solubility, over time it

transformed into a previously unknown, more stable polymorph. The new form had a
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lower solubility, which resulted in a reduced bioavailability. This led to a major product

recall.

A comprehensive understanding of a molecule’s polymorph landscape, and knowledge of

their relative stabilities, is critical. While experimental screens are routinely employed

to map out polymorph landscapes18, there is no guarantee however that the most stable

form will be found (as with Ritonavir). Computational screening offers a potential route

to complement experimental screens, yet crystal structure prediction (CSP) is still very

much an ongoing challenge. CSP is still mainly only successful for small, rigid molecules,

although large strides are continually being made19.

1.4.2 Solvates and Hydrates

Solvates and hydrates are one of the most prevalent types of multicomponent crystals.

When crystals form from solution, the crystallisation solvent can become incorporated

into the lattice. Crystals for which this phenomena is observed are known as solvates;

hydrates are a special case where the incorporated solvent is water15. The formation of

solvates and hydrates is common. It is predicted that roughly a third of drug molecules

are able to form a hydrate20.

How the solvent is incorporated into the lattice depends on the relationship between

solute and solvent. The solvent can be directly integrated into the lattice, thus helping

to stabilize the structure. As a general trend, the resulting solvate will be less soluble than

the anhydrous form as the solvent has already interacted with the solute. Alternatively,

the solvent can occupy channels that form between the solute lattice - these structures

are known as channel solvates. The amount of solvent that occupies these channels is

dependent on the vapour pressure21.

As with polymorphs, the inclusion of solvent into the lattice results in a solid with

markedly different properties to the pure form. The propensity for a solvate to have

a decreased solubility can be detrimental to pharmaceuticals, as this can give rise to

decreased bioavailability where dissolution is the limiting step. An example of this was

the recall of generic carbamazepine pharmaceutical, due to the formation of a dihydrate18

with compromised bioavailability resulting from a reduced solubility.

Even given the significance of solvates and hydrates, the fundamental question of why

do some pairs of solute and solvents form solvates, while others only form anhydrous

crystals, remains very much open. This issue is explored in depth in Chapter 3.
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1.4.3 Co-crystals

Co-crystals, much like solvates, are another common form of multicomponent crystal.

They are broadly defined as crystals that contain two or more components22, although

a precise definition is still under debate. Other definitions further stipulate that each

component is solid23. Again, the inclusion of a second compound in the lattice can result

in a solid whose properties vary markedly from those of the pure forms. Co-crystals are

usually engineered to exploit this phenomenon.

The ability to modulate a compound’s properties without the need to make covalent

changes to the molecule’s structure is highly desirable. Hence, co-crystals offer an attrac-

tive solution22 where particular bulk properties of a system need to be enhanced24,25.

Prediction of the final properties of a co-crystal from the properties of the individual

components remains a challenge26. This, combined with an ability to predict co-former

compatibility would open the possibility of designing co-crystals27.

Forming a co-crystal is not always as simple as just mixing the active pharmaceutical

ingredient (API) with the co-former. The temperature, concentrations and even solvent

used during crystallisation all play an important role in what products will be formed28.

Hence, the phase diagram of the systems often lies at the heart of co-crystal design.

Although the binary phase diagram offers insight into the compatibility of the API for

the co-former29,30, it does not offer a complete picture. Even though it predicts the

formation of a co-crystal under certain conditions, changing the crystallisation solvent

can result in no co-crystal being formed. This phenomena can be rationalised by studying

a ternary phase diagram with axis of API, co-former and solvent concentration28. It can

be inferred that in order to truly be able to predict the conditions needed for co-crystal

formation, one needs to consider the solvent as much as the co-former28,31,32.

A key consideration for solvent selection is solubility of the co-former and API. This will

determine not only solvent compatibility, but also the crystallisation approach that must

be taken to ensure the co-crystal is formed31. Hence knowledge of the co-former and

API’s solubility in a range of solvents, and at a range of conditions is necessary. Molecular

simulations offer a potentially robust and efficient route to solubility prediction. A novel,

robust and efficient method for which is presented in Chapter 5.
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1.5 Thesis Outline

The primary aim of this thesis is to explore and predict phase equilibria using the

molecular simulation techniques introduced in Chapter 2.

Chapter 3 aims to address the fundamental question of ‘why do solvates and hydrates

form’ using molecular simulations of a simple model system. The intent is to elucidate

the core principles that facilitate the formation of hydrates. Phase stability is explored

as a function of saturation, pressure, solute-solvent affinity and solute-solvent size ratio.

The work also provides a foundation for answering the question of ‘why do only some

pairs of molecules form co-crystals’.

While the simple, coarse grained model employed in Chapter 3 enabled solvate formation

to be studied, it suffered from a number of limitations that prevented certain aspects of

solvation to be fully explored. Namely the model has only a limited boiling point range.

This forced us to study solvate formation for only a very small range of temperatures.

Further, the model suffered from kinetic trapping - the solid form that crystallised out

was, under certain conditions, the metastable one (i.e. the solvate occasionally formed

when the anhydrous phase should have been more stable). The main source of both

these issues was that the potential used to model the coarse-grained interactions was too

hard as the repulsive wall is too steep. Hence, the aim of the work described in Chapter

4 is to characterise a ‘softer’ coarse grained potential model. This will enable the design

of a better class of coarse grained models for use in a wide range of applications.

In Chapter 5, a novel, robust and efficient method is proposed for solubility prediction

from first principles. The method is in principle able to calculate the solubility for even

large, drug-like molecules for a large range of temperatures and pressures. The method

should thus be capable of predicting the solubility gain / loss by forming a solvate / co-

crystal as opposed to a single component crystal, which in turn could have large utility

in the drug development process. In Chapter 6, this method is further extended to the

calculation of chemical potential of fluid phases as a potentially more efficient route to

solubility calculation, and applied to molecular systems.

Finally, the results and their significance are summarised in a concluding discussion

chapter.



Chapter 2

Theory

2.1 Statistical Mechanics

Statistical mechanics at its heart is the bridge between the microscopic and macroscopic

- relating atomic information such as position and momentum to more familiar and

practically useful properties such as temperature, pressure, and chemical potential.

From a classical point of view, the microscopic state of a system of N atoms is described

by 6N coordinates: 3N give the atomic positions rN , while the other 3N give the

momenta pN . The full 6N -dimensional coordinate space is defined as phase space. At

the microscopic level, atomic coordinates evolve along deterministic trajectories though

phase space, giving rise to fluctuations in macroscopic properties. Most often it is the

average of these properties that are of interest, rather than the individual motions of the

atoms themselves. This averaging forms the basis of statistical mechanics.

Statistical mechanics provides two approaches for calculating macroscopic averages. The

first approach is to follow the microscopic trajectory of a system (by performing a molec-

ular dynamics simulation for example), and take a time average of the observable of

interest A, such that

〈A〉 = lim
τ→∞

1

τ

∫ τ

t=0
A
(
rN (t) ,pN (t)

)
dt (2.1)

where τ is the length of time over which the average is taken. The second approach

would conceptually involve constructing an ensemble of many replicas of the system,

12



Chapter 2. Theory 13

identical in nature, but occupying different phase space coordinates. The time average

could then be replaced by an ensemble average over the ensemble of configurations

〈A〉 =

∫
P
(
rN ,pN

)
A
(
rN ,pN

)
drNdpN (2.2)

where P is the ensemble’s probability density. The ergodic hypothesis states that these

two approaches are equivalent.

The probability density in Equation 2.2 arises from the imposition of macroscopic con-

straints on the microscopic trajectories. A closed and isolated system, for example,

would naturally exist at a fixed volume, number of particles and energy. As such, only

those elements of phase space that satisfy those conditions would have a non-zero P .

An ensemble of configurations subject to these conditions is named the microcanonical

ensemble (see 2.1.1). Of course, we are not limited to averaging in the microcanonical

ensemble. By coupling the system of interest to a thermal bath, averages may be taken

over an ensemble of configurations existing at a fixed temperature, rather than energy

(see 2.1.2). Similarly, coupling the system to a barostat, or a permeable membrane con-

nected to an infinite particle reservoir, allows averages at constant pressure or chemical

potential may be calculated (see 2.1.3). These common ensembles are detailed in the

following subsections.

2.1.1 The Microcanonical Ensemble

The microcanonical (NV E) ensemble is the simplest of the thermodynamic ensembles.

As described above, it is one in which the energy E, volume V and number of particles

N is fixed - i.e it is representative of a closed and isolated system.

The fundamental a priori probability postulate of statistical mechanics states that, for

an isolated system, all microstates with an equal energy are equally probable. Hence,

the probability density for this ensemble is given by

P
(
rN ,pN

)
=

1

Ω
δ
(
H
(
rN ,pN

)
− E

)
(2.3)
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where Ω is the density of states, H is the Hamiltonian of the system and δ is the Dirac

delta function. The density of states is the total number of microstates that have a non-

zero probability for the given energy level. It is essentially a degeneracy, and is directly

related to the system’s entropy S by

S (N,V,E) = kB ln Ω (N,V,E) (2.4)

where kB is the Boltzmann constant.

2.1.2 The Canonical Ensemble

The canonical (NV T ) ensemble is one in which the temperature T , volume and number

of particles is fixed. The probability of finding a given microstate subject to these

macroscopic constraints is given by the Boltzmann distribution

P
(
rN ,pN

)
=

1

Q (N,V, T )
exp

[
−βH

(
rN ,pN

)]
(2.5)

where β =
1

kBT
, and Q is the canonical partition function, defined by

Q (N,V, T ) =
1

h3NN !

∫
exp

[
−βH

(
rN ,pN

)]
drNdpN (2.6)

Here the Planck constant h is introduced so that the classical partition function matches

the quantum mechanics description of a particle in a box, and the N ! factor accounts

for the indistinguishability of particles.

While Q primarily acts as a normalisation constant, it is in fact one of the most fun-

damental quantities in thermodynamics. Although it equates to just a single number,

all thermodynamic properties of a system at equilibrium can be determined from it,

including the average system energy

〈E〉 =
∂ lnQ (N,V, T )

∂β
(2.7)

and from it heat capacity
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CV =
〈E〉
∂T

(2.8)

the entropy

S =
∂

∂T
(kBT lnQ (N,V, T )) (2.9)

and perhaps most importantly, the Helmholtz free energy

F (N,V, T ) = −kBT lnQ (N,V, T ) (2.10)

Evaluating the high dimensional integrals in Equation 2.6 analytically is unfeasible for

all but the simplest systems however. Instead, numerical approaches must be taken -

these often take the form of the molecular simulation techniques described in Section 2.2

The form of the partition function may be simplified slightly by analytically integrating

out the momentum terms. The Hamiltonian can be written as the sum of the system’s

kinetic (K) and potential (U) energies

H
(
rN ,pN

)
= K

(
pN
)

+ U
(
rN
)

=
N∑
i=1

∣∣p2
i

∣∣
2mi

+ U
(
rN
)

(2.11)

where the potential energy is only dependent on the positions, and the kinetic energy

depends only on the momenta. Here mi is the mass of atom i. Inserting this definition

into Equation 2.6 yields

Q (N,V, T ) =
1

h3NN !

∫
dpN exp

[
−β

N∑
i=1

∣∣p2
i

∣∣
2mi

]∫
drN exp

[
−βU

(
rN
)]

(2.12)

where now the integral has been separated into one over all momenta, and another all

positions. The integral over all momenta evaluates analytically to

∫
dpN exp

[
−β

N∑
i=1

∣∣p2
i

∣∣
2mi

]
=
h3N

Λ3N
(2.13)
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where Λ = h/
√

2πmkBT is the de Broglie wavelength of a classical particle. The final

form of the partition function then becomes

Q (N,V, T ) =
Z (N,V, T )

N !Λ3N
(2.14)

where

Z (N,V, T ) =

∫
drN exp

[
−βU

(
rN
)]

(2.15)

is the configurational partition function. Given that the momentum has been integrated

out, a corresponding probability distribution over only atomic positions is expressed as

P
(
rN
)

=
1

Z (N,V, T )
exp

[
−βU

(
rN
)]

(2.16)

This expression is fundamental to the Monte Carlo simulations described in Section 2.2.2

2.1.3 The Isothermal-Isobaric, and Grand Canonical Ensembles

Two useful extensions of the canonical ensemble are the isothermal-isobaric (NpT ) and

grand canonical (µV T ) ensembles.

In the isothermal-isobaric ensemble, the number of particles, pressure (p) and tempera-

ture is fixed. Much like the canonical ensemble, a probability distribution

P
(
rN ,pN , V

)
=

1

Q (N, p, T )
exp

[
−β
(
H
(
rN ,pN

)
+ pV

)]
(2.17)

a corresponding partition function

Q (N, p, T ) =

∫
exp [−βpV ]Q (N,V, T ) dV (2.18)

and a free energy expression (in this case the Gibbs free energy)

G(N, p, T ) = −kBT lnQ (N, p, T ) (2.19)
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are defined for the isothermal-isobaric ensemble. It is often the preferred ensemble to

work in as it is gives a close representation of experimental conditions.

The NpT ensemble is somewhat limited, however, by the condition of a fixed number of

particles. Several applications require the number of particles in the system to fluctuate.

These include studying the adsorption of particles into materials, or more importantly for

this work, calculating the solubility of a system (see Chapter 5). For such applications,

the grand canonical ensemble is employed - in the grand canonical ensemble the chemical

potential (µ), volume and temperature of the system is fixed. Its partition function Ξ

takes the form

Ξ (µ, V, T ) =
∞∑
N=0

exp [−βµN ]Q (N,V, T ) (2.20)

Conceptually, this ensemble is representative of coupling the system of interest to an

infinite reservoir of particles. The two subsystems would be separated by a permeable

membrane that allows particles to transfer between the two subsystems.

2.2 Molecular Simulation

Molecular simulation attempts to simulate the microscopic world, offering an atomic

resolution not accessible to experiment. Not only does it offer a powerful tool to study

the dynamic behaviour of systems, thermodynamic and structural properties can be ex-

tracted using the machinery of statistical mechanics. The two most commonly employed

molecular simulation techniques, molecular dynamics and Monte Carlo simulation, are

described in the following subsections.

2.2.1 Molecular Dynamics Simulation

Molecular dynamics simulations employ Newtonian mechanics to evolve the state of a

system over time. They give direct access to the dynamics of a system, as well as a route

to measuring thermodynamic and structural properties.

At each step of a molecular dynamics simulation, the force acting on each atom in the

system
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fi = −dU
(
rN
)

dri
(2.21)

is calculated from a potential energy function U (discussed in greater detail in section

2.2.4), where fi is the force acting on atom i and ri is the position of atom i.

The acceleration for each atom is then derived using Newton’s laws of motion

mir̈i = fi (2.22)

Integrating the acceleration numerically yields a new position and velocity for each atom

at a short time interval ahead. This procedure of generating forces, deriving accelerations

and from these, generating new positions and velocities is repeated typically for millions

of steps. In doing so, the system is evolved through time and a molecular trajectory is

constructed.

The choice of the time interval is critical. If it is too small, then the computational time

required to adequately explore phase space will be large. Conversely, if the time step

is too large, the numerical integration will be unstable due to atoms grossly impacting

and overlapping into each other resulting in high energy states. The best choice of value

depends on the dynamics of the system being simulated. Simulations of largely flexible

molecules require a much shorter timestep (typically around 1 fs) than simulations of

rigid bodies, for example, due to the increased mobility / faster motion of the atoms.

The configurations generated by this procedure would be consistent with the micro-

canonical ensemble - i.e the number of particles, the volume and the total energy of the

system is conserved. For most simulations, however, it common to employ either NV T

or NpT ensembles.

Sampling is performed in the NV T ensemble by coupling the sytem to a thermal bath

in order fix the temperature of the system. The instantaneous temperature of a system

at time t is related to the atomic velocities by

3

2
kBT (t) =

N∑
i

1

2
mi |vi|2 (2.23)

where vi is the velocity of atom i. Temperature then can be controlled by modulation

of the velocities of each atom. This is generally accomplished in practice by either
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stochastically scaling the velocities directly, or by introducing a fictitious dynamical

variable that modulates the velocities by scaling the simulation time itself33.

Molecular dynamics can further be extended to the NpT ensemble by introducing a

barostat. During an NpT simulation, the volume of the system is adjusted in order to

maintain the system’s pressure. During a simulation, the instantaneous pressure can be

calculated according to

PV = NkBT +W (2.24)

where

W =
1

3

N∑
i=1

ri · fi (2.25)

is the system’s virial.

2.2.2 Monte Carlo Simulations

Monte Carlo simulations are a broad class of numerical simulation, with applications

that include the accurate evaluation of multidimensional integrals and generating states

according to probability distributions. They are thus ideal for calculating the thermody-

namic properties of molecular systems using the machinery of statistical mechanics. As

was discussed in Section 2.1, the thermodynamic properties of a system are accessible

through the partition function. For simplicity the technique will be introduced in the

context of the NV T partition function, however it is easily extended to the many others.

Evaluation of the partition function for general systems is impossible both analytically

and by numerical integration. A naive approach to evaluate Equation 2.15 would be to

use one of the many quadrature methods, such as Simpson’s rule, whereby the atomic

coordinates for the N particles would be located on a uniformly distributed grid. The

number of grid points that would be required to properly capture the curvature of the

potential energy surface of a molecular system (even for relatively small systems) would

be enormous however.

An alternative approach would be to generate configurations at random, and weight any

observables of interest according to the Boltzmann distribution
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〈A〉 =

∑Nconfs

i=1 A
(
rN
)

exp
[
−βU

(
rN
)]∑Nconfs

i=1 exp [−βU (rN )]
(2.26)

where Nconfs is the number of random configurations generated. This approach would

be incredibly inefficient. The majority of sampled configurations would have a very high

energy due to a large number of overlapping particles. Their Boltzmann factors would

thus essentially be zero and hence they would barely contribute to Equation 2.26.

A better approach would be only to consider those configurations that do have a sig-

nificant Boltzmann weight. In other words, we wish to generate configurations with a

probability ∝ exp
[
−βU

(
rN
)]

. This is the basis of the Metropolis scheme34.

The Metropolis scheme proceeds by performing trial moves that transform the old state

of a system o to some new state n. These may include particle translations or rotations,

moves that scale the volume of the box or even particle insertion / deletion moves

depending on the desired ensemble (see Figure 2.1).

Translation Box Scaling Particle Deletion

Figure 2.1: The state of the system is most commonly evolved in Monte Carlo simulations by
performing particle translations, volume scaling (in the NpT ensemble) and particle insertions /
deletions (in the µV T ensemble)

The moves are chosen such that the condition of detailed balance

Poπo→n = Pnπn→o (2.27)

is obeyed, where Po, Pn are the desired equilibrium probabilities of being in states o and

n respectively (in the NV T ensemble they take the form of Equation 2.16), and πo→n,

πn→o are the probabilities of transitioning from o to n and n to o respectively. Enforcing

this rather strict condition guarantees the correct probability distribution is sampled.
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The probability of transitioning between states can be split into two components

πo→n = go→nαo→n (2.28)

where go→n is the probability of proposing the new state from the old state, and αo→n

is the probability of actually accepting the proposed transition. Pnπn→o is similarly

defined.

Inserting Equation 2.28 into 2.27 and rearranging yields

Pogo→nαo→n = Pngn→oαn→o =⇒ αo→n
αn→o

=
Pngn→o
Pogo→n

(2.29)

While many choices of αo→n ensure this equation is satisfied, the choice of

αo→n = min

[
1,
Pngn→o
Pogo→n

]
(2.30)

is most commonly employed33. This acceptance criteria is the heart of a Monte Carlo

simulation - it defines whether configurations generated by the trial moves should be

either accepted, or rejected. It should be noted that this acceptance criteria is incredibly

general - provided that the probability of generating a new configuration from an old

one can be determined, virtually any trial move (even those that are unphysical) can be

performed.

The most common trial moves employed in a Monte Carlo simulation are particle transla-

tions. A particle in the system is selected at random and displaced by a random amount

between −δmax and δmax in all three dimensions. The probabilities for generating the

forward and reverse moves are thus given by

go→n = gn→o =
1

N

1

(2δmax)3 (2.31)

Combining these with Equations 2.16 and 2.30 yields an acceptance criteria of
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α (o→ n) =

{
exp

[
U
(
rNn
)] 1

N

1

(2δmax)3

}
×
{

exp
[
U
(
rNo
)] 1

N

1

(2δmax)3

}−1

= exp
[
U
(
rNn
)
− U

(
rNo
)]

(2.32)

Remarkably, the partition function has completely cancelled out. Thus in a Monte Carlo

simulation we can directly sample and calculate properties from an ensemble without

explicitly calculating its partition function.

In practice, a Metropolis Monte Carlo simulation in the NV T ensemble will be performed

in the following way:

1. Select a particle at random and displace it by some random amount in the range

−δmax to δmax.

2. Calculate the change in energy between the new and old states and from this the

acceptance criteria in Equation 2.32.

3. Generate a random number between 0.0 and 1.0 and compare it with the acceptance

criteria:

i) if it less than the criteria, the move is accepted.

ii) otherwise, the move is rejected and the system is returned to its prior state.

Given that each configuration is generated with the correct probability by this method,

the average value of an observable can simply be calculated as the average over the

stochastic trajectory generated by the successive trial Monte Carlo moves.

Within the framework of Metropolis, extension to other ensembles (or in fact to any

arbitrary probability distribution) is trivial, and often only requires two alterations to

the canonical example. First, the probability distribution in Equation 2.30 must be

swapped with the distribution of interest. Secondly, new moves must be introduced to

ensure that all of the external variables of an ensemble are explored. In the isothermal-

isobaric ensemble, this means that moves that explore the accessible volume range of

a system must be introduced. These are generally employed as moves that scale the

size and coordinates of the simulation box. Similarly, particle insertion / deletion moves

must be performed when sampling in the grand canonical ensemble.
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2.2.3 Error Estimation on Averaged Quantities

The average value of any observable calculated by molecular simulation (whether that be

Monte Carlo or molecular dynamics) will be subject to a statistical uncertainty, arising

from the finite length of the trajectory over which the average was taken. It is often

important to quantify this error, and how it propagates through calculations and into

subsequent properties of interest.

The average value of a property A measured during a simulation is calculated according

to

Ā =
1

τrun

τrun∑
i=1

Ai (2.33)

where τrun is the number of samples taken during the simulation, and Ai is the i’th sample

of A taken. Here the bar notation is employed to distinguish between the simulation

average, and the true ensemble average (Equation 2.2), which would be equivalent in the

limit of infinite samples and provided sampling is ergodic. If the collected samples are

uncorrelated, the estimated error in this average would be

σĀ =
1

τrun

√√√√τrun∑
i=1

(
Ai − Ā

)2
(2.34)

Data is often sampled so frequently during a simulation however, that successive data

points are heavily correlated. The most common approach to overcome this is to employ

block averaging38. The sampled data set is split into a number of blocks (nb) of length

τb, so that τrun = τb ∗ nb. The average from each block Āb is then calculated by

Āb =
1

τb

τb∑
i=1

Ai (2.35)

As the block size is increased the block averages themselves become uncorrelated, so that

the total error in the average may be estimated by

σĀ =
1

nb

√√√√ nb∑
b=1

(
Āb − Ā

)2
(2.36)
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The value which τb should take is often unknown a priori, and may be found in practice

by plotting σĀ as a function of τb, and identifying the value at which the plot plateaus.

The uncertainties calculated in properties according to Equation 2.36 must be propa-

gated through any calculations by the standard expressions in order to obtain uncertain-

ties in the quantity of interest, such as free energies calculated by the thermodynamic

integration method introduced in Section 2.3.3.2.

2.2.4 Modelling Molecular Interactions

In a classical simulation, electrons and protons are not simulated explicitly. While this

greatly reduces the complexity and time needed to run a simulation, the many inter-

and intramolecular interactions need to be approximated. This is accomplished using

the potential energy function that approximately describes the nature of the interactions

between the atoms.

Every intramolecular interaction (such as bond stretching, angle bending or torsional

rotations) and every intermolecular interaction (both Coulombic and Van der Waals)

will have an associated potential energy. Each of these can be approximated by an

empirical function and an associated set of parameters - the energy of a bond stretching

can be approximated by a harmonic potential for example, that is parameterised by a

bond length and a bond stiffness.

The potential energy function is the combined sum of all such functions (Figure 2.2),

and can be directly employed in the molecular simulations described in sections 2.2.1

and 2.2.2.

UBond

UAngle

UDihedral

UCoulomb

UV dW

UTotal = +

+

+

+

+

- +

Figure 2.2: An example potential energy function as a sum of its individual components.
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Each of the potential functions (and the parameters that describe them) must be chosen

with great care, as these are what will determine the accuracy of the molecular models,

and hence the results of any simulations that use them. They must represent the phys-

ical molecular interactions as closely as possible. The challenge, however, is that there

is no unique way of making these choices. Although there are many ways to computa-

tionally model a classical molecule35, there are two general approaches: the all-atomistic

approach and the coarse grained approach.

The all-atomistic approach treats each atom in a molecule as a distinct particle. The

parameters that describe each of the interactions shown in Figure 2.2, such as the bond

length and stiffness in the case of a harmonic bond potential, are normally derived either

by quantum mechanics or by empirically fitting to experimental data. Non-bonded

intramolecular interactions (Van der Waals and Coulombic) between atoms separated

by one or two bonds (referred to as 1-2 and 1-3 interactions respectively) are excluded

from the energy function, as these are encoded within the bond and angle parameters

respectively. In some cases, the non-bonded interactions between atoms separated by

three bonds are also excluded (as they may already be accounted for by the dihedral

parameters), although it is more common to include them, but to scale them by some

constant.

While the all-atomistic approach can be used to closely match most of the physical molec-

ular interactions well, and hence reproduce the bulk properties of the physical system,

it rapidly becomes more expensive as the number of atoms in the system increases. This

increasing cost limits both the size and the length of simulation can be run. Clearly then

when simulating phenomena that occur over very large timescales (e.g protein folding),

or require many particles (e.g studying crystal defects) a different approach must be

taken.

The alternate approach, coarse graining, is to consider groups of atoms or even whole

molecules as single particles. This has two main benefits. The first is that the number

of particles that must be simulated (and hence the number of calculations that must be

made) is dramatically reduced. The second is that the potential energy surface of the

system becomes significantly smoother, allowing the phase space to be traversed much

more rapidly. Combined, this means that larger systems can be efficiently simulated for

much longer durations than would be possible for an atomic system, albeit at the cost

of some accuracy.
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The coarse grained approach has been used extensively in the modelling of crystallisation

processes13,36,37 and many other events that require simulating large systems over large

time scales such a protein aggregation. It is discussed in greater detail in Chapter 4.

2.2.5 Periodic Boundary Conditions

While real systems may contain billions of atoms (a single mole alone contains 6.022×1023

atoms), this presents an issue for current hardware which limits us to at best only

simulate a few million atoms for mere nanoseconds. An intuitive approach would be to

only examine a chunk of the bulk system thus simulating fewer atoms. An isolated block

of atoms would be entirely surrounding by vacuum however, and thus would be exposed

to large surface effects - more than likely the block would instantly vapourise.

Periodic boundary conditions offer a solution to this. A small fraction of atoms from

the bulk system are isolated in a volume known as the primary cell. Conceptually, this

cell is then surrounded by replica images of itself (Figure 2.3). In doing this, atoms in

the primary cell are then able to interact with the infinite array of replicas, so that the

primary cell is now surrounded again by the bulk phase, rather than vacuum. In practice,

this is achieved by simply translating any atom or molecule that leaves the simulation

box so that it re-enters on the opposite side. Further when calculating any distances

between atoms, the minimum image convention is applied - the smallest possible distance

between an atom in the primary cell and one of its neighbours is used. Care must be

taken that the size of the primary cell is not chosen to be too small, or else the system

will essentially become periodic and almost crystalline in nature.

Figure 2.3: An example primary cell (grey) surrounded by eight of its images (white).

As the number of atoms in the system increases, it is typical to also employ neighbour

lists to further increase the efficiency of the simulation38.



Chapter 2. Theory 27

2.2.6 Long-Range Electrostatic Interactions

The Coulomb potential is used to the compute the electrostatic interactions between

pairs of atoms

UCoulomb =
1

2

N∑
i=1

N∑
j=1

1

4πε0

qiqj
|rij |

(2.37)

where rij is the separation between atoms i and j, qi and qj are their respective charges

and ε0 is the permittivity of free space. Problematically, the Coulomb potential decays

slowly as a function of |rij |, acting over ranges much larger than the typical size of a

simulation box. Simply truncating the potential can result in large artefacts, especially

for systems containing ionic species38.

Although the summation can be rewritten as one that is between atoms in the primary

box and the periodic images surrounding it

UCoulomb =
1

2

∑′

n

 N∑
i=1

N∑
j=1

1

4πε0

qiqj
|rij + n|

 (2.38)

this summation is only conditionally convergent. Here the sum over n is over lattice

vectors between the primary and image cells, and the prime on the summation indicates

that the interaction between atoms i and j is discarded when n = 0. The Ewald

summation is employed to overcome this issue of convergence.

In the Ewald approach, each atom in the system is surrounded by a neutralising Gaussian

charge distribution of opposite sign. The sum of the atomic charges with the opposing

distribution converges rapidly as a function of |rij |. To recover the ‘true’ atomic interac-

tions, the effects of the neutralising distribution needs to be removed. This is achieved

by introducing a second set of Gaussian distributions with the same charge as the atom

they are centred on (see Figure 2.4).

Provided the width of the Gaussian distributions is large enough, the screened atomic

charges will only interact with the other screened charges within the primary cell, and

hence can be computed directly in real space. The second set of distributions, on the

other hand, will be located on a periodic lattice surrounding and including the primary

cell. As such, their interactions with the charges can be represented by an also rapidly

converging Fourier series calculated in reciprocal space. A final correction must be
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applied to account for the self interaction between the atoms and the compensating

charge distributions.
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Figure 2.4: The atomic point charges are surrounded by a neutralising Gaussian distribution.
This distribution is neutralised by an equal but opposite sum of distributions.

2.3 Phase Coexistence Methods

One of the great challenges that still plagues molecular simulation is calculating phase

coexistence11. Nucleation of a new phase (whether the new phase is a liquid, a solid or

a gas) is an entirely stochastic event that occurs rarely, as was discussed in Section 1.2.

Even in real systems where the number of atoms is on the order of 1023, a nucleation

event may take seconds, minutes or even longer to be observed. The rarity of these events

is only worsened in simulations. The volume element of the real system studied is very

small and hence the number of atoms simulated is many orders of magnitudes smaller

than experiment. Further, only microsecond timescales are accessible by simulation.

While phase transitions may be simulated by a brute force approach, they are generally

inaccessible for all but the simplest of systems. The homogeneous freezing of ice, for ex-

ample, took months of simulation time to be observed39. A more sophisticated approach

is thus required. A number of these are described in the following subsections.

2.3.1 Direct Coexistence Approach

The direct coexistence approach overcomes the issue of simulating nucleation events by

bypassing them completely. Simulations are run on a system containing the coexisting

phases of interest within the same simulation box (Figure 2.5).

Over the course of the simulation the position of the interface between the two phases

is monitored. If the interface remains stable, the two phases are coexisting. If not the

simulation conditions need to be adjusted depending on the direction the interface moves

until the right coexistence conditions are found (i.e, until the interface no longer moves).
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Figure 2.5: A 2-dimensional schematic of a liquid and solid phase coexisting in the same box.

While conceptually quite elegant, these types of simulation are far from ideal. Direct

coexistence simulations can be very sensitive to the size and shape of the interface.

Further, the time required to reach equilibration can be substantial (on the order of

microseconds)40.

2.3.2 Gibbs Ensemble Monte Carlo

Gibbs ensemble Monte Carlo (GEMC) simulations offer a possible solution to the inter-

facial issues experienced by direct coexistence simulations.

In a GEMC simulation, the different phases of interest are each simulated simultaneously

in separate boxes (thus eliminating the interface between them). These boxes are coupled

together by a series of Monte Carlo moves that aim to ensure that the temperature,

pressure, and chemical potential in each box is identical, i.e that the phases in each box

are coexisting.

In the simplest case, two boxes are constructed: one box with a volume VI that contains

NI particles of phase I, and another of volume VII that contains NII particles of phase

II. The total volume V = VI +VII, number of particles N = NI +NII and temperature T

remain fixed throughout the simulation. In this way, the multiple boxes being simulated

can actually be thought of a single united system being kept in the NV T ensemble.

As would be expected of an NV T simulation, particles in each box are independently

translated and rotated using the standard Monte Carlo moves. This ensures that each

box is sampling the correct temperature distribution. Driving the pressure of each box

to be equal is slightly more tricky. Periodically throughout the simulation, the volume of

one of the boxes (say box I for example) is varied by some amount VI = VI +∆V . At the

same time, VII is changed by an equal but opposite amount VII = VII−∆V . In this way

the total volume of the system is conserved, yet each box is simulated as if it were in the

NIpT / NIIpT ensemble. Here p is assumed to be equal in each box and is actually the
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coexistence pressure. A similar approach is employed to ensure the equality of chemical

potentials between the boxes. In this case however particle insertion / deletion moves

are employed, rather than volume scaling ones. As a particle is deleted from one box, it

is inserted into the other box and vice versa such that the total number of particles is

again conserved.

The pressure and chemical potential (see the single-step Widom’s method in Section

2.3.3.1) of each box are tracked over the course of the simulation to check when equi-

libration is achieved. Their values at equilibrium will be the coexistence pressure and

chemical potential respectively.

While GEMC has been used extensively to study vapour-liquid phase coexistence (see

also Chapter 4), it struggles to simulate solid phase coexistence. As is the case for

all Monte Carlo simulations where insertion / deletion moves are involved, inserting

particles into a dense system, such as a solid, will almost exclusively result in particle

overlap and thus such moves would constantly be rejected. The inability to perform

insertion moves means there is no way to couple the chemical potentials of each box,

and hence, coexistence between boxes cannot be guaranteed. Alternate methods are

thus required when considering dense phases.

2.3.3 Free Energy Methods

Free energy calculations offer a robust route for calculating phase coexistence. The

free energy (or chemical potential in the case of multicomponent systems) of coexisting

phases will be equal. Phase coexistence thus can be found by calculating the free energy

of each phase as a function of some property (e.g. temperature, pressure or density),

and determining where the free energy curves intersect.

Calculating absolute free energies by simulation however is challenging, as it requires the

direct evaluation of a system’s partition function. Instead, what is usually calculated is

the free energy difference between the system of interest, and some reference state whose

free energy is calculable analytically. The two main strategies to do this (although there

are many variants of each) are thermodynamic integration and free energy perturbation.
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2.3.3.1 Free Energy Perturbation

Consider the problem of determining the free energy difference between two states I and

II

∆F (A→ B) = FII − FI (2.39)

that are each characterised by different Hamiltonians (HI and HII respectively), but

sample largely the same configurations.

Substituting the canonical partition function into Equation 2.39, yields

β∆F (N,V, T ) = − ln
ZII (N,V, T )

ZI (N,V, T )

= − ln

∫
exp

[
−βHII

(
rN ,pN

)]
drNdpN∫

exp [−βHI (rN ,pN )] drNdpN

= − ln

∫
exp

[
−β∆H

(
rN ,pN

)]
exp

[
−βHI

(
rN ,pN

)]
drNdpN∫

exp [−βHI (rN ,pN )] drNdpN (2.40)

where ∆H = HII − HI. This final form is identical to taking an ensemble average

(Equation 2.2) of exp
[
−β∆H

(
rN ,pN

)]
. Hence the free energy difference between states

I and II becomes

∆F = − 1

β
ln
〈
exp

[
−β∆H

(
rN ,pN

)]〉
I

(2.41)

where the average is over an ensemble of configurations generated using the Hamiltonian

of state I. Provided that the two states exist at the same temperature, and hence have

an equal kinetic energy, the Zwangzig equation41 is recovered

∆F = − 1

β
ln
〈
exp

[
−β∆U

(
rN ,pN

)]〉
I

(2.42)

In practice, the average is calculated by running a simulation using the potential energy

function of state I, but each time a new configuration is generated, the energy of the

system is also calculated using the potential energy function of state II.
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One of the most well known applications of free energy perturbation is the single-step

Widoms insertion method. Consider a system of N fully interacting particles and a single

ideal gas particle - i.e. a particle that does not interact with any of the other particles

in the sytem. Compare this then to a system where the ideal particles interactions have

now been turned on, so that the system now contains N + 1 interacting particles. The

free energy difference between the two systems is actually the chemical potential.

The Widom method works in practice by simulating the system of N particles, and

then periodically inserting a virtual particle that interacts but is not part of the system.

The energy of interaction between this particle and the rest of the system is calculated,

added to a running average, and then the particle is immediately removed again. The

calculated average can then be inserted into Equation 2.42

As with all insertion schemes, the Widom method is only successful at calculating the

chemical potentials in low density systems, such as the gas phase. Still it is a useful

method, especially when combined with GEMC (section 2.3.2).

2.3.3.2 Thermodynamic Integration

Thermodynamic integration is another versatile method for calculating the free energy

difference between states.

Unlike free energy perturbation, the states in thermodynamic integration do not have

to share similar configurations. Instead, the state I is slowly transformed into state II

via some reversible (but not always physical) pathway. The change in free energy is

determined as a function of the progress along the path.

Let us start by more rigorously defining state I as being some state with a potential energy

function UI, and state II as having a potential energy function UII. We also introduce

a variable λ, a coupling parameter that measures the progress of the transition between

states. At λ = 0.0 state I is recovered, and likewise at λ = 1.0 state II is recovered.

The change in free energy of the system as a function of λ can be easily derived directly

from the partition function

∂F

∂λ
= − 1

β

∂

dλ
lnZ = − 1

β

1

Z

∂Z

∂λ
= − 1

β

1

Z

∫
β
∂U
(
λ, rN

)
∂λ

exp
[
−βU

(
λ, rN

)]
drN (2.43)
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where again the right hand side is simply just the ensemble average of ∂U/∂λ. Here U

is the potential energy function of the transitioning system. The change in free energy

between states I and II can thus be obtained by integrating Equation 2.43

∆F = FII − FI =

∫ 1

0

〈
∂U
(
λ, rN

)
∂λ

〉
dλ (2.44)

If the λ coupling is linear, i.e. U
(
λ, rN

)
= λUII

(
rN
)

+ (1 − λ)UI

(
rN
)
, Equation 2.44

reduces to

∆F = FII − FI =

∫ 1

0
〈UII − UI〉λ dλ (2.45)

In a similar vein to the single-step Widom’s method, the chemical potential of a system

can be directly calculated from Equation 2.44. Here, state I would correspond to a system

of N interacting and one non-interacting particles while state II would correspond to a

system of N+1 interacting particles. The variable λ would act as a switching parameter.

At λ = 0 the extra particles interactions would be fully switched off. As λ increases the

interactions would be gradually turned on until λ = 1, at which point the extra particle

would interact fully with the rest of the system.

Another widely employed application of thermodynamic integration is the Einstein crys-

tal method42, which calculates the free energies of solids. This method is discussed in

more detail in Chapter 6.

2.3.4 Umbrella Sampling

Umbrella sampling is often employed to overcome large free energy barriers that hinder

efficient sampling of phase space. A particularly good example of this is phase transitions,

where the free energy barrier associated with nucleation (see Section 1.2) is large, and

simulations often remain trapped in the metastable mother phase for large periods of

time.

A bias is introduced that restrains the state of the system to various points along some

reaction coordinate λ. The bias potential serves as an ‘umbrella’ bridging the end states.

This may be the distance between two molecules, some torsion angle, or in the case of

solid-liquid phase transitions, some measure of crystallinity such the Steinhardt Q6 order

parameter43.
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Restraining the system along this path ensures that the full path between different

states (including even unfavourable or metastable ones) is accurately sampled. The bias

is typically introduced as a perturbation W to the system’s potential energy, such that

the biased probability of finding the system in some state is given by

π
(
rN
)

=
exp

[
−β
(
U
(
rN
)

+W (λ)
)]∫

exp [−β (U (rN ) +W (λ))] drN
(2.46)

Any observable calculated in this biased scheme would of course then be weighted in

some way, as opposed to if it were calculated in an unbiased simulation. This weighting

can be removed by applying the following

〈
A
(
rN
)〉

=

〈
A
(
rN
)

exp [βW (λ)]
〉
W

〈exp [βW (λ)]〉W
(2.47)

where the W subscript indicates the average is taken over configurations sampled ac-

cording to Equation 2.46. A variant of the umbrella sampling approach is constraint

molecular dynamics, where the system is constrained (rather than restrained as with

umbrella sampling) at specific positions along the reaction coordinates.

Further to just enhancing sampling, Umbrella Sampling allows calculation of the free

energy profile along the reaction coordinate of interest. A number of simulations are

run, with each being restrained to different points along the reaction coordinate. For

each simulation, a probability histogram is constructed, measuring the frequencies at

which values of λ are visited. The histograms are unweighted and stitched together.

The free energy profile is then given by

F (λ) =
1

β
lnh (λ)−W (λ) + C (2.48)

where C is an unknown additive constant that vanishes when computing free energy

differences. Care must be taken to ensure that the histograms of neighbouring restrained

simulations do indeed overlap by a large amount.

A major limitation of this method is the possibility to drive the system towards an

unrealistic final configuration. Furthermore, if the collective variables are badly chosen,

entire regions of the energy surface could be poorly sampled. The choice of collective

variables are therefore crucial in ensuring a successful simulation11.
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2.3.5 Density of State Methods

Density of states simulations are closely related to, but are perhaps more robust than,

umbrella sampling. They are discussed in detail and employed heavily in Chapters 4, 5

and 6.



Chapter 3

Why Do Some Molecules Form

Hydrates or Solvates?

Abstract: The discovery of solvates (crystal structures where the solvent is incorporated

into the lattice) dates back to the dawn of chemistry. The phenomenon is ubiquitous,

with important applications ranging from the development of pharmaceuticals to the po-

tential capture of CO2 from the atmosphere. Despite this interest, we still do not fully

understand why some molecules form solvates. We have employed molecular simulations

using simple models of solute and solvent molecules whose interaction parameters could

be modulated at will to access a universe of molecules that do and do not form solvates.

We investigated the phase behaviour of these model solute-solvent systems as a function

of solute-solvent affinity, molecule size ratio, and solute concentration. The simulations

demonstrate that the primary criterion for solvate formation is that the solute-solvent

affinity must be sufficient to overwhelm the solute-solute and solvent-solvent affinities.

Strong solute-solvent affinity in itself is not a sufficient condition for solvate formation:

in the absence of such strong affinity, a solvate may still form provided that the self-

affinities of the solute and the solvent are weaker in relative terms. We show that even

solvent-phobic molecules can be induced to form solvates by virtue of a p∆V potential

arising either from a more efficient packing or because high pressure overcomes the energy

penalty.∗†

∗The manuscript presented in this chapter previously appeared in Cryst. Growth Des.44, and is listed
as Paper I in the list of publications.

†All spellings in this manuscript have been changed from the US (as were originally published) to
the UK versions, so as to be consistent with the rest of the thesis.

36
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3.1 Introduction

When a solute crystallizes from solution, it may do so either as a pure crystal or as a

solvate, in which solvent molecules are incorporated into the lattice. When the incorpo-

rated solvent is water, the solvate crystals are termed hydrates. Solvate formation, in

particular hydrate formation, is a common phenomenon.45,46 About a third of all organic

molecules are able to form hydrates and solvates,47–49 an example exhibiting extreme

promiscuity being the antibacterial sulfathiazole, for which over 100 solvates have been

characterized.50 Solvates can exhibit markedly different physicochemical properties rel-

ative to the corresponding anhydrous forms, including melting point, solubility, crystal

habit, and mechanical properties. In the pharmaceutical industry, the choice of whether

the form of the active substance is a solvate or anhydrous can affect its bioavailability

and the ease (or otherwise) of manufacturing the product as well as its stability.51 Hy-

drate formation is also an issue in the petroleum industry, where it can cause blockage

of gas pipelines.52 There are also other hugely beneficial potential applications ranging

from hydrogen and natural gas storage to atmospheric carbon dioxide capture.4–7

Despite this extensive interest, the fundamental question of why some molecules form

solvates remains open. The thermodynamic perspective is that the solvated forms of

these molecules have a lower free energy, but this is not insightful and begs the question

of why they have a lower free energy. The thermodynamics approach is exemplified by

studies comparing the potential energies (as approximations for free energies) of the var-

ious forms with a view to rationalizing why a particular molecule forms a hydrate while

a related one does not.53–55 While these methods offer some predictive capability, they

inform us only about the system of interest rather than revealing broader insights. An

alternative approach that addresses the posed question somewhat better has attempted

to link molecular features to the propensity for hydrate formation. A series of surveys of

the Cambridge Structural Database (CSD) revealed a strong correlation with the polar

surface area and degree of branching within a molecule and with an increased number

of polar functional groups (e.g., carbonyl (C=O), ether (C-O-C), hydroxyl (O-H), and

primary amine (N-H)),56–58 while no correlation was found with the ratio of hydrogen-

bond donors to hydrogen-bond acceptors as previously suggested.59,60 This suggests that

a strong affinity for the solvent may be important, and yet there are many examples of

substances with high solubility (i.e., those having a strong interaction with the solvent)

that do not form solvates. Furthermore, how does one rationalize hydrates of hydropho-

bic molecules (e.g., gas hydrates)?52
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At the heart of the question of why a particular molecule forms a solvate are the molec-

ular interactions, specifically the interplay between the solute-solvent, solute-solute, and

solvent-solvent interactions. Coupled to these interactions is the nature of the pack-

ing of the molecules in the potential anhydrous and solvate forms. Ideally, we need to

explore and understand how the phase diagram of a solute/solvent system varies as a

function of the strength of solute-solvent, solute-solute, and solvent-solvent interactions

and molecular packing. How might one achieve this? A cursory review of the problem

suggests that this is not feasible. To study the effect of variation of the intermolecular

interactions on the phase behaviour requires the consideration of a series of solute and

solvent molecules with a variety of molecular structures. The elucidation of the phase

diagram for each of these solute-solvent pairs would be a major task in itself, indepen-

dent of whether it is based on experiment or modelling. In addition to this, there is

the difficulty of deconvoluting the effects of molecular packing from the strengths of the

intermolecular interactions.

Here we access the phase behaviour of a universe of molecules that do and do not

form solvates by means of molecular simulations using simple coarse-grained models of

molecules. These simple models strip away the molecular complexity that otherwise

obscures the core issue while enabling modulation of the intermolecular interactions by

design. Thus, we investigate the crystallization behaviour of a series of solute-solvent

systems as a function of the affinity and molecule size ratio (packing) between the solute

and solvent. We show that solvate formation is promoted when the solute-solvent affinity

overwhelms the solute and solvent self-affinities but that a strong solute-solvent affinity is

not a sufficient condition in itself. Solvate formation can also occur for solutes with weak

solvent affinity by virtue of the p∆V component of the Gibbs potential arising either from

more efficient packing or because high applied pressure overcomes the energy penalty.

The phase behaviour of the solute-solvent systems was explored using molecular dy-

namics (MD) simulations. The solute and solvent molecules were represented by simple

single-particle models based on Lennard-Jones (LJ) interactions. Such models are ap-

propriate because solvate formation is a generic phenomenon, being observed in a wide

class of materials. These models have been successfully employed by us earlier to probe

crystal nucleation problems, including the identification of design rules for nucleation

inhibitors36,37 and for uncovering molecular processes in secondary nucleation.13 The

LJ model is characterized by two parameters (Figure 3.1): σ, the distance at which

the interaction potential is zero, which serves as the effective molecule size, and ε, the

potential energy well depth, which characterizes the affinity between the molecules. Our
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choices of LJ parameters for the models were not arbitrary but based on the LJ phase

diagram, which is known.61 Thus, the chosen solvent parameters, σW = 0.47 nm and

εW−W = 3.28 kJ mol-1, define a liquid (the solvent) with a melting point of 273 K. The

solute-phase packing parameters were in the range σS = 0.47-1.47 nm, while the solute

self-affinity was fixed at εS−S = 5.00 kJ mol-1. This chosen solute self-affinity for σS =

0.47 nm defines a solid with a melting point of approximately 421 K (about that of a

typical organic solid).

Figure 3.1: Interactions between solute and solvent molecules (left) are characterized by the ε
and σ parameters of the Lennard-Jones potential, shown plotted as a function of the separation
distance r (right).

It should be noted that the large values of the affinity parameter employed here, up to ε =

8.0 kJ mol-1, are well beyond the typical values characterizing van der Waals interactions.

For comparison, the oxygen-oxygen van der Waals interaction for the TIP3P water model

is characterized by ε = 0.6364 kJ mol-1.62 The implication is that the LJ model employed

in the study serves as a molecular potential that encapsulates both the weak van der

Waals and the stronger Coulombic interactions, albeit not strong formal charges. The

LJ model as utilized here is used in the widely employed coarse-grained MARTINI force

field63 to represent molecular moieties containing up to four non-hydrogen atoms, e.g.,

-CH2COOH, including water.

We investigated the crystallization behaviour of the solute for a universe of solute-solvent

systems. The solute-solvent affinity was varied to encompass a range of systems: εS−W

= 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, and 6.0 kJ mol-1, where the larger values characterize

systems with stronger affinities between the solute and the solvent. For each solute-

solvent pair, we explored the crystallization behaviour of the solute from a series of
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solutions with a range of solute concentrations: xsolute = 10, 20, 30, 40, 50, 60, 70, 80,

90, and 100 mol %. The system size in all cases was 10 000 particles. The primary

question for analysis was the following: which product crystallized out, the anhydrous

form or the solvate?

3.2 Results and discussion

The first set of simulations explored the crystallization behaviour of solutes for a universe

of solute-solvent systems with equal particle sizes (σS = σW = 0.47 nm). The depen-

dence of the crystallization product on the solute-solvent affinity is shown in the phase

diagram in Figure 3.2. A weak solute-solvent affinity εS−W implies a low solubility. Con-

sequently, at weak solute-solvent affinities, the solution becomes supersaturated at low

concentrations, limiting the solution region (lower left region of the plot in Figure 3.2).

At this weak solute-solvent affinity, the resulting product is the anhydrous structure. As

the solute-solvent affinity increases (going up the y axis in Figure 3.2), the solubility

increases, and the solution region becomes broader.

Figure 3.2: Phase diagram for equal-particle-size solute-solvent systems ( σW = σS = 0.47
nm) as a function of solute-solvent affinity εS−W and solute concentration xsolute at 283 K.
The phase diagram exhibits four distinct regions: solution (white), solvate (blue), anhydrous
(green), and anhydrous with some solvent inclusion (orange). Each data point on the plot
represents a simulation result. Circles mark crystallization events (structures shown on the
right), while triangles signify that the system remained a homogeneous solution. We note that
the solvate structure is a lattice but is disordered with respect to occupation of the lattice sites.
This is expected since close packing of two distinct but equal-sized particles cannot yield an
interpenetrating lattice like that observed for NaCl.

At stronger solute-solvent affinities (εS−W > 3.28 kJ mol-1), the solute-solvent affinity

surpasses the solvent’s affinity for itself, and each solute (solvent) particle shows a greater

preference to have a solvent (solute) particle as a neighbour. At an affinity of εS−W
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= 4.0 kJ mol-1 and above, the solute and solvent become fully integrated to yield a

solvate lattice. At still stronger solute-solvent affinities, the solute (solvent) particles

attract and order the solvent (solute) particles around themselves to such an extent

that crystallization of the solvate is induced even at low concentrations. Consequently,

the solution region in the phase diagram becomes more limited, with the saturation

line tending toward lower concentrations (top left region of plot in Figure 3.2). These

results suggest that the determining factor for solvate formation is the strength of the

solute-solvent interactions relative to the solute-solute and solvent-solvent interactions.

In the above simulations, the solute and solvent particles were of equal size. We then

considered the effects of packing, wherein we increased the solute particle size from σS

= 0.47 nm first to σS = 1.18 nm and then to σS = 1.47 nm while keeping the solvent

size fixed at σW = 0.47 nm. In both cases σS−W =
1

2
(σS + σW ). For the first of

these systems, the particle sizes (σS = 1.18 nm and σW = 0.47 nm; solvent/solute

radius ratio σW /σS = 0.40) were chosen to yield NaCl-type packing,64 and indeed, this

was the observed structure. In the second case, the solute molecules are substantially

larger than those of the solvent (σS = 1.47 nm and σW = 0.47 nm; σW /σS = 0.32).

These two systems show similar behaviour (Figure 3.3) that in broad terms is not too

different from the behaviour of the equal-sized molecules. Strong solute-solvent affinities

(compare the top left in Figures 3.2 and 3.3) yield the solvate phase while weaker solute-

solvent affinities yield the anhydrous form. The second case, however, also shows an

apparently unintuitive result that the solvate form is favoured even at the weakest solute-

solvent affinities (the two points at xsolute = 0.9 and εS−W = 0.5 and 1.0 kJ mol-1). We

are unable to give a rigorous explanation for these results, despite carrying out repeat

and additional simulations. At these data points the systems are 90% solute and 10%

solvent, and as the solvent particle size is relatively very small, the solvent volume is

miniscule. The entropy of solvent dispersion is probably more favourable, resulting

in a solvate rather than the formation of a separate, small, subcritical condensed-phase

cluster. The emergent solvates reveal a face-centered lattice for the solute molecules, with

the solvent molecules either forming an interpenetrating face-centered lattice (the NaCl

structure for σW /σS = 0.40) or filling the interstitial channels (for σW /σS = 0.32) (Figure

3.3). The latter structures are very similar to the class of nonstoichiometric channel

solvates,20,21,47,65 where the solvent molecules occupy channels formed within the solute

lattice and can freely diffuse out depending on the relative vapour pressure of the solvent

(relative humidity for a hydrate) in the environment. Indeed, the solvent particles in

these simulated channel solvates exhibit significant diffusion (diffusion coefficient ∼(3.5-

7.5)×10-9 m2 s-1).
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Figure 3.3: Phase diagrams for (a) NaCl-type and (b) channel-packing type solute-solvent
systems as functions of solute-solvent affinity and solute concentration. The blue regions indicate
solvate formation and the green regions the anhydrous form. Each data point on the graph
represents a single simulation. Circles mark crystallization events (structure shown on the right),
while triangles signify that the system remained a homogeneous solution.

For the system yielding the interstitial channels, we also looked closely at the extreme

case of a solute with a very weak affinity for the solvent (εS−W = 0.3 kJ mol-1), i.e.,

a solvent-phobic solute (see Figure 3.4). For this system, the solute-solute affinity was

increased to εS−S = 8.0 kJ mol-1, and we investigated the system at the low solute

concentration of 1 mol %. (It should be noted that this system is quite different from

the systems yielding the unintuitive data points at the bottom right in Figure 3.3b, as

the solvent is in significant excess, rather than the solute). The strong solute-solute

affinity and low molar concentration favoured the formation of a small solute crystallite

in the bulk solvent, making it easier to observe whether the solvent was either included or

excluded from the emergent structure. This system showed phase separation at (ambient)

pressure p = 0.001 katm but yielded a solvate structure at a higher pressure of p = 10

katm. Thus, it is clear that even solvent-phobic solutes can form solvates when driven

by the p∆V component of the Gibbs potential G. Indeed, the use of pressure to force

the formation of hydrates experimentally has been noted earlier.52,66,67
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Figure 3.4: Slices taken from the final structures of the solvent-phobic (εS−W = 0.3 kJ mol-1;
σW / σS = 0.32) system. (a) At ambient pressure (p = 0.001 katm) the solvent was observed
to be excluded from the solute structure, thus favoring the anhydrous form. (b) Increasing the
pressure (p = 10 katm) caused the solvent to fill the interstitial channels between solute particles,
similar to the behaviour observed in channel solvates.

The above results appear to show that a solvate is always formed when the solute-solvent

affinity is strong but can also form when such affinity is lacking. Can we qualify this

condition further? A limited number of additional simulations were carried out for the

equal-particle-size system in which the solute-solute affinity was increased incrementally

from the initially set value of εS−S = 5.0 to εS−S = 8.0 kJ mol-1 while the solute-solvent

affinity was kept fixed at εS−W = 4.0 kJ mol-1. This would be equivalent to a solute

with a higher melting point but the same interaction with the solvent. One might expect

that a such a system, given the strong (existing) solute-solvent affinity, would yield a

solvate, reproducing the data points for εS−W = 4.0 kJ mol-1 in Figure 3.2. It did not.

Instead, we observed that the anhydrous structure was the stable form. The inference

is that a strong solute-solvent affinity in itself is not a sufficient condition for solvate

formation. Rather, the solute-solvent affinity must be sufficient to overwhelm the solute

and solvent self-affinities. These systems with strong solute-solute affinities (εS−S = 5.0-

8.0 kJ mol-1) tended to become kinetically trapped, and we had to resort to calculations

of potential energy differences (as approximations for free energy differences) between

the anhydrous and solvated forms to assess the stability.

The thermodynamic criterion for solvate formation (see Figure 3.5) is ∆Gc,S·nW <

(∆Gv,S + n∆Gv,W ), where ∆Gv,S and ∆Gv,W are the molar free energy changes for

vapourization of the solute crystal and the solvent fluid, respectively, ∆Gc,S·nW is the

molar free energy change associated with crystallization of the solvate from the vapour

phase, and the integer n is the number of moles of solvent per mole of solute, as reflected

in the stoichiometry for the reaction of the solute plus the solvent to form the solvate:

S + nW → S · nW . For a 0 K (potential energy) approximation, the solvate formation

criterion becomes ∆Uc,S·nW < (∆Uv,S + n∆Uv,W ) where ∆Uc,S·nW is the lattice energy
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of the solvate form S ·nW , ∆Uv,S is the lattice energy of the anhydrous form, and ∆Uv,W

is the lattice energy of the solvent crystal (as the solvent would be a solid at 0 K).

Figure 3.5: Thermodynamic cycle for the formation of a solvate from its components, the solute
and solvent. ∆Gf,S·nW is the molar free energy change for solvate formation, and ∆Gv,S and
∆Gv,W are the molar free energy changes for vapourization of the solute crystal and the solvent
fluid, respectively. ∆Gc,S·nW is the molar free energy change associated with crystallization of
the solvate from the vapour phase, and the integer n reflects the stoichiometry S + nW → S ·
nW.

Within the spectrum of molecular interactions and packing ratios characterizing sol-

vate formation, one can identify two limiting cases (Figure 3.6): (a) when there is

strong solute-solvent affinity and (b) when the packing of the solute molecules is es-

sentially independent of the solvent. Expressing the 0 K stability criterion, Usolvate <

(Usolute + Usolvent), in terms of component atom-atom interactions yields[∑
US−S(solvate) +

∑
UW−W (solvate) +

∑
US−W (solvate)

]
<
[∑

US−S(solute) +∑
UW−W (solvent)

]
. For the equal-molecule-size system with strong solute-solvent affin-

ity, case (a), the dominating interactions within the solvate are those between the solute
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and the solvent, as each solute (solvent) molecule is surrounded by solvent (solute) par-

ticles. The solute-solute and solvent-solvent interactions in the solvate are marginal.

Consequently, for this case (to a first approximation), the stability criterion reduces to∑
US−W (solvate) <

[∑
US−S(solute)+

∑
UW−W (solvent)

]
. For such a system, we can

map the Lennard-Jones affinities onto the stability criterion by considering interactions

between particles as pseudobonds.

Figure 3.6: Two limiting cases of solvate formation, represented schematically: (a) equal-
molecule-size system with strong solute-solvent affinity; (b) solvate formation where the solute
packing is essentially the same in the anhydrous and solvate forms and independent of the solvent.

As a first-order approximation, we restrict the interactions to the first coordination

sphere. For the solute in a face-centered-cubic lattice, there are 12 “bonds”, and we

approximate the strength of each by εS−S . Likewise, there are about 12 “bonds” for the

liquid, for each of which we assume the strength εW−W (although the actual interaction

is a little weaker since the particle separation distance is slightly greater in the liquid

state). To form a solvate, the 12 solute-solute and 12 solvent-solvent “bonds” must

be broken and replaced with 24 new solute-solvent “bonds”, each with an approximate

strength of εS−W . The approximate stability criterion for the Lennard-Jones system

then becomes 24εS−W > 12εS−S + 12εW−W , that is, 2εS−W > εS−S + εW−W (here the

inequality operator has been switched from less than to greater than since ε is not the

interaction energy but the energy well depth parameter). Substituting the self-affinity

parameters utilized for the solute and solvent (εW−W = 3.28 kJ mol-1 and εS−S = 5.00

kJ mol-1), the criterion indicates solvate stability above the solute-solvent affinity εS−W

= 4.1 kJ mol-1. This is entirely consistent with the switchover point for solvate formation

observed in Figure 3.2, namely, about 4 kJ mol-1.
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For the limiting case (b) where the solute structure of the anhydrous form is essen-

tially identical to that in the solvate (as in a nonstoichiometric channel solvate, e.g., the

system shown in Figure 3.3b),
∑
US−S(solute) ≈ ∑US−S(solvate), and the solvent-

solvent interaction in the solvate is marginal, i.e.,
∑
UW−W (solvate)→ 0. In this case,

the stability criterion reduces to
∑
US−W (solvate) <

∑
UW−W (solvent), that is, the

solute-solvent interaction must be stronger than the solvent-solvent interaction. This

is intuitive, being akin to the interplay between the cohesive force of a fluid and the

adhesive force that determines whether, for example, water will wet a nanopore (hy-

drophilic surface) or bridge it (hydrophobic surface exploited in high-tech wetwear that

is waterproof and yet breathable). This issue is manifested by the system with weak

solute-solvent affinity, where the solute is essentially solvent-phobic (Figure 3.4). At low

pressures, the system phase-separates into the anhydrous form and the solvent. At the

higher pressure of p = 10 katm, the p∆V component of the Gibbs potential overwhelms

the solvent-solvent affinity, forcing the solvent into the lattice to form a solvate.

In conclusion, we have shown that the primary criterion for solvate formation is that

the solute-solvent affinity must be sufficient to overwhelm the solute-solute and solvent-

solvent affinities. A strong solute-solvent affinity in itself is not a sufficient condition.

Solute molecules even with a weak affinity for a solvent can form solvates provided that

the self-affinities of the solute and the solvent are weaker in relative terms. Indeed,

as demonstrated, essentially solvent-phobic molecules can form solvates when driven by

the p∆V term, i.e., under high pressure. In going forward, it would be insightful to

carry out atomistic lattice or free energy calculations on solvate systems (using, e.g.,

Cambridge Crystallographic Data Centre data and tools), partitioning the energy into

molecule-molecule (solute-solute, solute-solvent, and solvent-solvent) interactions to see

how the insights ascertained here play out in realistic systems. Finally, we note that

while the focus of this paper is solvate formation, the inferences are also applicable to

cocrystal formation for binary systems,22 where the second molecule in the lattice is not

the solvent but another solute (solid-phase) molecule.

3.3 Methodology

Molecular dynamics simulations were carried out using the DL-POLY 4.06 software

package68 in the NPT ensemble using a Nosé-Hoover thermostat and barostat. All of

the simulations were run at 283 K and a pressure of 1 atm unless otherwise indicated.

The interactions (van der Waals) were truncated at 2.5σS , and the standard long-range
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corrections applied. All of the simulations were run for a minimum of 5 million steps

using a 30 fs time step. The mass was set to 72 g mol-1 for all of the particles. The system

size was 10 000 particles. Initial configurations comprised randomized coordinates.



Chapter 4

Towards Realistic and

Transferable Coarse-Grained

Models: Phase Diagrams of Soft

van der Waals Potentials

Abstract: Coarse-grained molecular simulations offer a robust route to simulating sys-

tems that would otherwise be too large, or require too long to simulate by a fully atomistic

approach. Despite their numerous applications, the most commonly employed coarse-

grained force fields utilise the Lennard—Jones (LJ) potential, which has proven to be

too ‘hard’ to accurately reproduce molecular, rather than atomistic interactions. This

inherent ‘hardness’ is identified as the source of the limitingly narrow temperature range

over which models based on the LJ potential remain liquid. Here we characterise a set of

‘softer’, more representative potentials (the 9-6, 8-4 and 6-4 n-m potentials) by mapping

their full phase diagrams. The mapped phase diagrams exhibit a broader liquid range

than the more established LJ potential, thus enabling models based on these potentials to

be employed in studies of most phases, and over a much wider range of conditions than

would be previously accessible. Further, knowledge of these diagrams will enable the di-

rect parameterisation of a set of transferable coarse-grained beads with a fundamentally

physical grounding by employing the ‘PhaseD’ approach. This in turn will enable the

construction of a more accurate, high class of coarse-grained force field.∗

∗The manuscript presented in this chapter is listed as Paper II in the list of publications.

48
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4.1 Introduction

Molecular simulations are a vital tool in exploring and explaining chemical phenomena

at a molecular level, with widespread applications ranging from studying protein folding,

membrane formation69–72 and even crystallisation events13,36,37. The primary limitations

are the accuracy of the force field parameters that characterise the molecular interac-

tions, and the limited time- and length-scales that can be sampled. Currently, using

high performance computing facilities, the accessible length scale is tens of nanometres

(corresponding to an order of a 1 million particles) for simulation times of up to a few

microseconds. The implication is that large systems (e.g. large biomolecular assemblies)

and many phenomena (e.g. protein folding, phase transitions) remain inaccessible. There

are two major approaches for dealing with length- and time-scale issues. For time-scale

limited problems, one can resort to thermodynamic approaches, focusing on free energies

calculations (free energy differences, chemical potentials, and free energy as a function

of a reaction coordinate). For large systems, one can investigate the problem at a lower

resolution – a coarse-grained perspective.

The coarse-grained approach treats groups of atoms, and potentially whole groups of

molecules, as a single volume element. This element may be a spherical particle, an

ellipsoid or some other variation.73 This approach significantly reduces the number of

particles that need to be simulated, thus enabling larger systems to be simulated at

the cost of compromising atomistic resolution. There are also additional benefits. The

interaction potential is softer enabling a larger timestep to be taken, from 0.002 ps to

about 0.040 ps – a twenty fold advantage. Further, the coarse-graining softens the free

energy surface, which enables faster equilibration of the system.

There are two distinct philosophical approaches to developing a coarse-grained repre-

sentation of an atomistic system. In the chemical approach, the coarse-grained model is

the best accurate representation of the atomistic model, encapsulating the full chemical

specificity. Such parameterisation is typically carried out using Boltzmann inversion74

or force-matching. In the physics-type approach, the philosophy is to develop the sim-

plest generic model that encapsulates the essential physics of the chemical behaviour

of interest. Coarse-grained models that encapsulate the full chemical specificity are te-

dious to develop, and are by design specific and hence, not transferable. Further, such

models are only parameterised for conditions (e.g. temperature, pressure) at which they

were derived75. In between the generic physics-type models and the coarse-grained,

chemically-specific models are the transferable off-the-shelf coarse-grained models with
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applicability to a large range of molecules. It is understood that the transferability

implies loss of accuracy. Examples of such transferable coarse-grained models include

MARTINI63 and SDK76,77

Most transferable coarse grained force fields, including the popular MARTINI force field,

use the Lennard-Jones (LJ) potential71 to represent non-bonded interactions between the

CG particles. MARTINI indeed lumps all electrostatics resulting from partial charges

on atomistic sites including hydrogen bonding into the coarse-grained LJ parameters.

The LJ energy parameter ε, for example, takes values of ε = 2.00-6.00 kJ mol-1 which

is markedly higher than the typical value characterising an atomistic van der Waals

interaction of ε =0.07-0.70 kJ mol-1. The primary issue is that the LJ potential is too

hard and does not represent well the softer interaction that characterises the non-bonded

interaction between molecular moieties. This reveals itself in unphysical behaviour in

such models, such as the over structuring of the fluid phase and fluid phases having

a limited liquid-phase range78. The MARTINI water model, for example, freezes at

ambient conditions, which must be circumvented by the inclusion of anti-freeze particles.

Chemically-specific coarse-grained models reveal that the non-bonded interaction be-

tween the coarse-grained particles are best described by softer n-m (Mie) potentials,

relative to the 12-6 form of the Lennard Jones potential. Shelley et al, for instance,

identified that for CG lipid models of dimyristoylphosphatidylcholine, the 9-6 potential

form was the best description for the various CG lipid moieties, whilst the water model

was described by a 6-4 potential79.

Recently, we proposed a new approach to parameterising non-bonded interactions for

off-the-shelf, transferable CG models or force fields, based on the phase diagram of the

selected model potential80. The approach enables the design of CG particles whose

melting points match that of the target molecule or moiety group. Specifically, values

of ε and σ are directly identified from the phase diagram to give a CG particle with a

particular melting point that corresponds to the melting point of the chemical moiety

being represented. We term this the PhaseD approach, emphasizing the link with the

phase (coexistence) diagram. This approach gives a good physical foundation for the

CG particles, unlike ad-hoc but self-consistent parameterisations which can lead to non-

realistic or unphysical behaviour. The procedure requires a knowledge of the phase

diagram of the potential and involves fixing the mapping and the associated potential

size parameter σ (which for example for MARTINI is σ = 0.47 nm for 4 atoms to 1 CG

particle mapping), and then identifying the energy parameter ε that corresponds to the

melting point Tmp from the phase diagram.
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To exploit the more realistic softer n-m potentials for a transferable, and physically-

founded CG force field as proposed by the PhaseD approach, we need to characterise

the full phase diagram for these soft model potentials, which we do here. We characterise

the phase behaviour of the 6-4, 8-4 and 9-6 n-m potentials, which could serve a softer

alternative to the LJ potential:
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where r is the distance between two particles, ε is the depth of the potential well and

σ is the distance at which the potential is zero. Note that the forms given here differ

slightly from the notation of some of the popular molecular simulation packages, such

as DLPOLY68, where the form of the potentials are
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The two can be converted between using the relation r0 = σ( nm)
1

n−m .

From theoretical considerations, one may expect the 6-exponent dispersive term to carry

over for CG particles given its physical basis for atomic systems. However, chemically

specific coarse graining suggests that for some chemical moieties a different dispersive

exponent may be a better description. Several coarse-grained models based on the n-m

potentials, with dispersive exponents ranging from 4 to 8.8, have already been shown to

well reproduce vapour phase properties of chain molecules, as well as being used for a

number of polymer simulations79,81,82.

Elucidating phase diagrams from molecular simulations is still challenging, even for

small molecular systems. For the simple n-m potentials, there are three components to
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the phase diagram: the solid-liquid, solid-vapour and liquid-vapour coexistence curves.

Molecular simulation offers a variety of methods for predicting such phase diagrams,

some being general whilst others are more specific, finding utility only for a particular

co-existence branch. The brute force approach for finding phase coexistence involves

setting up a simulation box with the two phases separated by an interface, evolving the

system using either molecular dynamics (MD) or Monte Carlo (MC) at a chosen temper-

ature and pressure, and monitoring which way the interface between the phases moves.

The temperature (for a fixed pressure) or pressure (for a fixed temperature) would then

be varied until the conditions are found such that the location of the interface remains

constant. Such direct coexistence approaches are tedious, requiring many simulations

to narrow down to the coexistence condition. The thermodynamic approach for finding

phase coexistence is to calculate the absolute free energies (or chemical potentials) of the

individual phases as a function of temperature and pressure and searching for the condi-

tions at which they are equal. This is typically achieved using either a thermodynamic

integration83,84 or perturbation approach41,85,86. Again, these methods can be tedious

to employ in practice, requiring a number of simulations (usually as at least a dozen or

more) to calculate even a single free energy. It is not necessary to access the full phase

diagram via such free energy calculations, however. Once a single phase-coexistence

point has been determined, the Gibbs-Duhem integration procedure87 can be used to

trace the rest of the coexistence curves from a much more modest number of simulations.

Caution however is required when using this method. If the initial condition is far away

from the true coexistence curve, the path traced by the Gibbs-Duhem integration can

diverge due to cumulative errors from successive integrations. The method is best used

in conjunction with additional coexistence points that serve as constraints.

An alternative and perhaps more elegant method is to employ a density of states ap-

proach, which offers an efficient and robust route to calculating phase coexistence for a

wide range of conditions, all from a somewhat limited number of simulations. They en-

able calculation of a system’s partition function (to within an unknown constant), from

which most thermodynamic properties, including phase coexistence, can be determined.

The isothermal-isobaric partition function is given by the weighted summation over all

the microstates accessible to a system

Q (N, p, T ) =

states∑
i

e−β(Ei+pVi) (4.7)
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where N is the number of particles in the system, p is pressure, T temperature, β =

1/kBT is the Boltzmann factor and Ei, Vi are the energy and volume of microstate i

respectively. Given that a number of these microstates will be degenerate, the partition

function may be rewritten as

Q (N, p, T ) =
∑
E

∑
V

Ω (V,E) e−β(E+pV ) (4.8)

where Ω is the the density of states (which is independent of both temperature and

pressure), and the first summation (over E) is now over all possible energy levels. The

corresponding probability distribution for the system is given by

P (V,E) =
1

Q (N, p, T )
Ω (V,E) e−β(E+pV ) (4.9)

The density of states itself can be determined using already well established Wang-

Landau Monte Carlo (WLMC) simulations88,89. Given an estimated density of states,

phase coexistence is found by fixing the temperature and varying pressure in Equation

4.9 (or vice versa) until the probability distribution exhibits two peaks of equal area, i.e.

the system is equally likely to exist in two unique phases. This temperature and pressure

pair is a single coexistence point. As the density of states is independent of temperature

and pressure, many coexistence points can be determined from a single density of states

calculation88.

Here we predominantly employ the DOS approach90 complemented with the Gibbs-

Duhem method to map out the full, and largely unexplored phase diagrams of the softer

6-4, 8-4 and 9-6 potentials. The methodology is first validated on the 12-6 potential

whose phase diagram is already well characterised61. The phase diagram of the softer

van der Waals potentials will enable the development of a transferable, higher quality,

coarse-grained force field that can better reproduce the interactions and properties of

groups of atoms being represented by the coarse-grained model.

4.2 Methodology

The full phase diagram for each potential was constructed in a piecewise fashion: First,

the solid-liquid and vapour-liquid coexistence lines were calculated using density of states

calculations. The critical and triple points where determined directly from these two
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curves. The solid-vapour coexistence curve was then calculated by Gibbs Duhem inte-

gration.

4.2.1 Vapour-liquid coexistence

The density of states for the liquid and vapour phases for each potential were estimated

using Wang-Landau Monte Carlo simulation as outlined by Shell et al88. The deter-

mined density of states was inserted into Equation 4.9 and reweighted for a range of

temperatures and pressure to map out a large region of the coexistence curve. In addi-

tion, Gibbs ensemble Monte Carlo and Gibbs-Duhem integration were used to predict

the same regions of the coexistence curves to give further confidence in the results. The

Gibbs-Duhem integration was run using one of the coexistence points generated by the

density of states approach as an initial condition. Provided that the initial condition is

in fact a coexistence point, the integration should trace out the liquid-vapour coexistence

curve that passes through each of the other points produced by both the DOS and Gibbs

ensemble simulations.

With the liquid-vapour coexistence curves determined, the critical temperature and den-

sity for each potential was estimated by fitting the coexistence densities and temperatures

from the density of states calculations to the laws of rectilinear diameters and scaling33.

The critical pressure was found by fitting the liquid-vapour curve to a function of the

form

lnP ∗ = a0T
∗−1 + a1 (4.10)

(where P∗ = Pσ/ε is the reduced unit coexistence pressure, T∗ = kBT/ε is the re-

duced unit coexistence temperature, kB is the Boltzmann constant, and a0 and a1 are

constants that were determined by least-squares fitting) and substituting in the critical

point temperature.

4.2.2 Solid-liquid coexistence

Whilst the vapour-liquid coexistence curves were readily accessible using the combina-

tion of DOS and Gibbs-Duhem, the solid-liquid coexistence curves proved to be more

challenging. The system in the DOS simulations became trapped for large periods of

time in one of the two phases, meaning that the density of states was sampled much more
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in one phase than the other. Thus, the estimated density of states was somewhat biased

towards one phase over the other and hence could not accurately define phase coexis-

tence. In view of this, we resorted to a free energy approach. First, the density of states

of the liquid and the solid phases were sampled individually. The free energy of each

phase can be determined from these independent density of states surfaces according to

FWL,solid = −kBT ln
∑
E

∑
V

Ωsolid(V,E)e−β(E+pV ) + Csolid (4.11)

FWL,liquid = −kBT ln
∑
E

∑
V

Ωliquid(V,E)e−β(E+pV ) + Cliquid (4.12)

where Csolid and Cliquid are unknown constants arising from the WL algorithm only

calculating the density of states to within some constant. As the density of states

of each phase is sampled independently, Cliquid 6= Csolid. Thus, to compare the free

energies produced by Equations 4.11 and 4.12, and hence find phase coexistence, the

values of Cliquid and Csolid must be determined. Their values can be found provided a

single absolute free energy for the liquid and solid phases is known (the free energy is

calculated from the density of states at the conditions at which the known free energy

was calculated, then the constant is chosen so that the two become equal). The Einstein

molecule method was used to calculate the absolute free energy of the solid phase for

a temperature and pressure close to a coexistence condition (as determined from the

initial Wang-Landau calculations)91, while a variation on the Wang-Landau algorithm

as developed by us and described elsewhere92 was employed to calculate the absolute

free energy of the liquid phase for the same condition. These values for the free energies

were compared to those calculated using Equations 4.11 and 4.12, and used to determine

the values of Cliquid and Csolid. Once these two constants were determined, absolute free

energies of the two phases, and thus phase coexistence, was calculated for a wide number

of conditions by directly reweighting Equations 4.11 and 4.12, without the need to repeat

the relatively tedious absolute free energy calculations. The Gibbs-Duhem integration

was run using one of the coexistence points generated by this approach as an initial

condition.
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4.2.3 Triple point and solid-vapour coexistence

The triple point was determined from the point of intersection of the solid-liquid and

vapour-liquid coexistence curves. Towards the triple point, the solid-liquid curve becomes

vertical, thus effectively fixing the triple point temperature. All that remains is to

determine the pressure at which the curves intersect. This was found by substituting

the triple point temperature into Equation 4.10. The solid-vapour coexistence curve was

then traced by Gibbs-Duhem integration, using the triple point as the initial condition.

4.2.4 Technical details

All simulations were run using an in-house Monte Carlo code with the exception of the

brute force molecular dynamics simulations of direct coexistence, and the solid-liquid,

liquid-vapour Gibbs-Duhem integration simulations which were run using DLPOLY

4.0768. The energy and length scales were defined by ε and σ, which were fixed at

1 kJ mol-1 and 1 Å respectively for all simulations. The 12-6 and 9-6 potentials were

truncated after 3σ, the 8-4 and 6-4 after 4.5σ and the usual energy and virial corrections

applied. For the low-exponent dispersion term potentials i.e. the 8-4 and 6-4 potentials,

the interaction decays much more slowly with separation distance. Consequently, there

is need to employ a larger cutoff, which is the basis for the larger cutoff of 4.5σ employed

for these potentials. System size was 500 particles for simulations involving the 12-6

and 9-6 potentials, and 1372 particles for the 8-4 and 6-4 potentials. The larger system

size was needed for the 8-4 and 6-4 potentials to accommodate the increased cut-off

radius, as the box size needs to be twice the cutoff to eliminate the possibility of double

inclusion of interactions resulting from periodic boundaries. For the direct coexistence

simulations 24000 particles were used to minimise finite size effects. Wang-Landau Monte

Carlo simulations were run until the modification factor was reduced to below 10-6 for

the standard DOS calculations and to below 10-7 for the free energy calculations, with

reductions taking place after the minimum histogram value was no less than 80% of the

average value.

4.3 Results and discussion

The coexistence approach and methodology was first tested on the LJ potential, whose

phase diagram has been determined. The calculated solid-liquid, vapour-liquid curves
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on a reduced pressure (P ∗ = pσ3/ε) – reduced temperature (T ∗ = kBT/ε) plane were

found to be in close agreement with those presented by Agrawal and Kofke61 as shown

in Figure 4.1. The LJ potential was found to have a triple temperature and pressure

of T ∗tp = 0.688, P ∗tp = 0.0012 and a critical temperature and pressure of T ∗c = 1.297,

P ∗c = 0.120 which are in good agreement with other literature estimates (T ∗tp = 0.694,

P ∗tp = 0.0013, T ∗c = 1.299, P ∗c = 0.123)93,94. The slight difference in values are most

likely attributed to the differences in cut-off length, and system size. The accurate

reproduction of the LJ phase diagram gives confidence in the approach and methodology

(and in particular our Monte Carlo code).
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Figure 4.1: The melting (blue) and boiling curves (green) of the 12-6 potential as calculated
by Agrawal and Kofke (solid line) and this study. Each circle (©) represents a coexistence point
calculated by Gibbs-Ensemble Monte Carlo, each triangle (4) a point by Wang-Landau Monte
Carlo and each cross cross (×) a point by Gibbs–Duhem integration.

Given this confidence, we proceeded to map the largely unknown phase diagrams of

the 6–4 , 8–4 and 9–6 potentials which are presented in Figures 4.2 and 4.3 (tabu-

lated data is available in Supplementary Information). The density of states approach

was successfully used to determine the liquid-vapour coexistence curves of the 6–4, 8–4

and 9–6 potentials. The calculated curves were in excellent agreement with both the

Gibbs-ensemble and Gibbs-Duhem integration techniques, which were employed for con-

firmation. The coexistence curve traced by Gibbs-Duhem integration passed straight

through those generated by the other two methods without diverging, which is a good

indication that each curve has indeed been calculated accurately. Similarly, for the solid-

liquid coexistence, the combined free energy and DOS approach were in good agreement

with Gibbs-Duhem integration for the 8–4 and 9–6 potentials. The results of the free

energy calculations are presented in Table 4.1. However, the combined approach was



Chapter 4. Towards Realistic and Transferable Coarse-Grained Models 58

unable to yield consistent results for the 6–4 potential. The curve traced by Gibbs-

Duhem integration using one of the Wang Landau Monte Carlo coexistence points as

the initial condition diverged rapidly. We are unable to offer a rigorous explanation as

to why the method was successfully used for the 8–4, 9–6 and 12–6 potential, and yet

was unsuccessful for the 6–4 potential. We believe that the broader potential well of the

6-4 potential perhaps hindered sampling of the liquid phase during the WL sampling.

Consequently, for the solid-liquid coexistence of the 6–4 potential, we resorted to direct

coexistence simulations using molecular dynamics simulations to identify a number of

points on the solid-liquid existence curve. One of these values was then used as the

initial condition for the Gibbs-Duhem integration. The Gibbs-Duhem was able to trace

the full curve being in excellent agreement with the discrete points determined by direct

coexistence simulations.

Table 4.1: The results of the absolute free energy calculations for the liquid and solid phases
for each of the potential models.

T ∗ P ∗ µSolid µLiquid
12-6 1.0000 3.9400 0.825 0.819
9-6 1.2400 8.4176 4.747 4.740
8-4 1.9200 12.0735 -5.551 -5.494

The critical temperature T ∗c and density ρ∗c of each potential were calculated by fitting

the liquid-vapour curves to the scaling and rectilinear laws and are presented in Table

4.2. The curves were also fitted to Equation 4.10, yielding the coefficients that are also

presented in Table 4.2. The critical pressures P ∗c were determined from these. For each

potential, the calculated lnP ∗ varied linearly as a function of 1/T ∗, and hence the fitted

curves were in excellent agreement with the calculated ones.

Table 4.2: Calculated critical points of the n-m potentials.

T ∗c P ∗c ρ∗c a0 a1

12-6 1.2970 0.1199 0.314 -6.742 3.074
9-6 1.5918 0.1425 0.309 -7.765 2.924
8-4 4.9525 0.5276 0.356 -21.077 3.607
6-4 8.1626 1.0176 0.441 -33.555 4.111

The triple-point pressures were determined directly from the solid-liquid coexistence

curves. Interestingly, the point comes naturally out of reweighting the solid-liquid den-

sity of states. Below the triple-point temperature, the weighted probability distribution

only exhibits a single peak at an energy and density consistent with a solid, regardless

of pressure. The triple-point temperature can thus be found by incrementing the tem-

perature at some fixed low pressure until the liquid peak appears, and has an equal area
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Figure 4.2: Calculated phase diagrams of the 12-6 (top left), 9-6 (top right), 8-4 (bottom left)
and 6-4 (bottom right) potentials. The melting, boiling and sublimation curves are marked in
blue, green and red respectively. Triangle (4), circle (©) and cross (×) symbols mark points
calculated using Wang-Landau (or direct coexistence in the case of the 6-4 potential), Gibbs
ensemble Monte Carlo and Gibbs-Duhem integration respectively.

to the solid peak. The triple pressure was determined by substituting the triple temper-

ature into Equation 4.10, along with the coefficients in Table 4.2. The triple points for

each potential are given in Table 4.3.

Table 4.3: Calculated triple points of the n-m potentials.

T ∗tp P ∗tp(×10−4)

12-6 0.688 11.990
9-6 0.705 3.038
8-4 1.432 0.150
6-4 1.921 0.016

While the critical and triple points are largely consistent with the literature, with some
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Figure 4.3: Coexistence densities determined from DOS calculations (and direct coexistence
calculations in the case of the 6-4 potential) for the 12-6 (top left), 9-6 (top right) and 8-4 (bottom
left), and 6-4 (bottom right) potentials. The critical point is shown by the star symbol.

minor deviations likely due to differences in cut-off length and system size (previous

estimates for the 9-6 potential suggest triple and critical coexistence conditions as T ∗tp =

0.720, P ∗tp = 0.00036, T ∗c = 1.616, P ∗c = 0.151)94–98, the values for the 6-4 and 8-4 differ

significantly from those predicted by the equation of state (EOS) proposed for the n-m

potential99. The deviations are most likely attributed to the EOS being fitted against

mostly much harder potentials than are explored here, and hence the EOS is being

extrapolated beyond its limits. The values of the critical and triple points presented

here could perhaps be used to improve the EOS.

Whilst it has been identified that the lower exponent non-bonded interactions are better

representations of the true interaction of a mapped groups of atoms, a clearer under-

standing as to why this so is lacking, other than that such potentials are softer. The

calculated phase diagrams (presented in Figure 4.2) reveal the significant, actual impact
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of the choice of a given n-m potential on the phase behaviour of the coarse-grained

model. The most notable difference is the width of the liquid range; the range over

which the model remains a liquid markedly increases as the potential is softened (as the

exponents get lower). It is interesting to note that that the range over which the model

remains a solid also expands, although not quite so dramatically.

The significance of the width of the liquid range for the n-m potentials, for example, can

be illustrated by mapping a coarse-grained water model onto each of the potentials. We

take the diameter of the coarse-grained water particle to be 0.47 nm, approximately the

size of four clustered water molecules (although this value should likely be larger for the

softer potentials), and the melting point is fixed to Tmp = 273 K, pmp=1 atm. For these

constraints one can read off the corresponding value of ε from the phase diagram. The

sigma value of 0.47 nm and the identified value of ε, therefore, yields a water model that

by design melts at 273 K. Linking the potential parameters to a melting point also fixes

the boiling point (given approximately by Equation 4.13) of the model. The estimated

boiling point for such a water model are summarised in Table 4.4. Particularly notable is

the extremely limited liquid-phase range for the LJ water model spanning 273 – 286 K,

a range of just 13 K. Thus, the origin of the unphysical freezing of the MARTINI water

model becomes clear. In contrast, the softer, lower-exponent potentials clearly show a

marked increase in the liquid range relative to the LJ potential. While the 8-4 potential

gives the closest match to physical water (a liquid range of 100 K and boiling point of

373 K), the other soft potentials cover a wide range of phase behaviour, and hence could

be effectively employed to represent of a spectrum of different molecules and moieties.

It is pertinent to note that liquid range identified for the water model depends on the

choice of mapping. Should the coarse-grained mapping be say 3-1 (3 atoms being rep-

resented by 1 CG particle), the appropriate sigma value will be smaller, compared with

the 4-1 mapping which gives a sigma value of 0.47 nm. A smaller sigma corresponds

to a lower reduced pressure P*, and sampling the phase diagram at the lower reduced

pressure yields a more limited liquid range. Likewise, a higher mapping (a more lower-

resolution model) will mean a larger sigma, and hence higher reduced pressure, which

on the phase yields a much broader liquid range. For example, a water model with a

higher mapping of say approximately 8 water molecules that equating to a sigma of 9.65

nm would yield a liquid range of about 100 K.

We present here fitted equations that enable the identification of the melting (Tmp) and

boiling (Tbp) points of each potential, and from these, an equation that yields the value

of epsilon for a chemical moiety with a particular melting point for a given choice of
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Table 4.4: Approximate parameters for a coarse-grained water model using the 12-6, 9-6, 8-4
and 6-4 potentials.

ε / kJ mol-1 Tbp / K (Tbp − Tmp) / K

12-6 3.298 286 13
9-6 3.215 328 55
8-4 1.573 437 164
6-4 1.180 510 237

sigma (defined by the chosen mapping). The melting T ∗mp and boiling T ∗bp temperatures

of each potential can be approximated to a good degree for pressures below the critical

pressure by the following

T ∗bp = a0 (lnP ∗ − a1)−1 (4.13)

T ∗mp = b0 + b1P
∗ + b2P

∗2 (4.14)

where the coefficients b0, b1, b2 are presented in Table 4.5. The coefficients were cal-

culated from the WL coexistence data using least-squares fitting. Combining Equation

4.14 with the definition of the reduced LJ units and rearranging yields

ε =
1

2b0

kBTmp − b1pmpσ3 +
((
b1pmpσ

3 − kBTmp
)2

+ 4b0b2p
2
mpσ

6
)1

2

 (4.15)

Table 4.5: The coefficients derived by least square fitting used to approximate the melting point
of the 6-4, 8-4, 9-6 and 12-6 potentials.

b0 b1 b2
12-6 0.6882 0.0855 -0.0019
9-6 0.7061 0.0738 -0.0013
8-4 1.4430 0.0483 -0.0004
6-4 1.9235 0.0292 -0.0001

4.4 Conclusion

To conclude, we have characterised the largely unknown phase diagrams of the softer

6-4, 8-4, 9-6 n-m potentials, using a combined methodology validated against the well

characterised LJ phase diagram. These diagrams have given direct insight into the
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nature and cause of the limited liquid range exhibited by the widely used LJ potential.

The determined phase diagrams will form the basis for the development of new class of

force field with strong physical basis, being linked to the melting points of the chemical

moieties being represented. The universal nature of the approach and the diversity of the

potentials will enable the parameterisation of a wide class of transferable coarse-grained

beads, which will offer a more representative and robust representation of molecules.

Further, the broadened liquid range inherent to the softer potentials will open the scope

of systems and conditions at which simulations can be carried out, facilitating the study

of a wide range of solid, liquid and vapour phenomena.
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4.5 Supplementary Information

Table 4.6: Vapour-liquid coexistence points determined from Wang–Landau MC simulations
for the 6-4 potential.

T∗ P∗ ρvapour ρliquid
3.5000 0.0042 0.0012 1.3454
4.1500 0.0189 0.0047 1.2677
4.8000 0.0557 0.0123 1.1902
5.4500 0.1272 0.0259 1.1098
6.1000 0.2451 0.0476 1.0243
6.7500 0.4195 0.0802 0.9304
7.4000 0.6585 0.1293 0.8229
8.0500 0.9688 0.2094 0.6856

Table 4.7: Vapour-liquid coexistence points determined from Wang–Landau MC simulations
for the 8-4 potential.

T∗ P∗ ρvapour ρliquid
2.0000 0.0010 0.0005 1.0867
2.5000 0.0081 0.0033 1.0089
3.0000 0.0326 0.0116 0.9334
3.5000 0.0881 0.0287 0.8519
4.0000 0.1872 0.0591 0.7600
4.5000 0.3401 0.1109 0.6512
4.7500 0.4392 0.1516 0.5835
4.9000 0.5064 0.1857 0.5331

Table 4.8: Vapour-liquid coexistence points determined from Wang–Landau MC simulations
for the 9-6 potential.

T∗ P∗ ρvapour ρliquid
0.8500 0.0020 0.0024 0.8298
0.9500 0.0053 0.0058 0.7947
1.0500 0.0114 0.0118 0.7581
1.1500 0.0217 0.0214 0.7183
1.2500 0.0371 0.0359 0.6753
1.3500 0.0587 0.0573 0.6252
1.4500 0.0878 0.0898 0.5678
1.5500 0.1256 0.1448 0.4863
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Table 4.9: Vapour-liquid coexistence points determined from Wang–Landau MC simulations
for the 12-6 potential.

T∗ P∗ ρvapour ρliquid
0.7500 0.0027 0.0037 0.8218
0.8500 0.0078 0.0098 0.7765
0.9500 0.0179 0.0214 0.7277
1.0500 0.0350 0.0413 0.6722
1.1500 0.0611 0.0751 0.6029
1.2500 0.0986 0.1389 0.5071
1.2750 0.1101 0.1681 0.4679

Table 4.10: Solid-liquid coexistence points determined from direct coexistence for the 6-4 po-
tential.

T∗ P∗ ρsolid ρliquid
1.9209 0.0000061 1.597 1.530
1.9218 0.00061 1.597 1.529
2.1481 7.7058 1.669 1.610
2.6844 29.5825 1.839 1.780
3.2664 59.9791 2.021 1.948

Table 4.11: Solid-liquid coexistence points determined from Wang–Landau MC simulations for
the 8-4 potential.

T∗ P∗ ρsolid ρliquid
1.44484 0.000015 1.263 1.174
1.5000 1.3079 1.278 1.191
1.6400 4.1840 1.307 1.225
1.7800 7.3038 1.335 1.257
1.9200 10.6780 1.362 1.289
2.0600 14.3113 1.389 1.319
2.2000 18.2021 1.416 1.349
2.3400 22.3405 1.443 1.378
2.4800 26.7172 1.470 1.407

Table 4.12: Solid-liquid coexistence points determined from Wang–Landau MC simulations for
the 9-6 potential.

T∗ P∗ ρsolid ρliquid
0.7045 0.0003 0.979 0.879
0.7127 0.1053 0.980 0.882
0.7900 1.1347 0.996 0.905
0.8800 2.4250 1.014 0.930
0.9700 3.8137 1.031 0.953
1.0600 5.2950 1.049 0.974
1.1500 6.8666 1.065 0.995
1.2400 8.5267 1.082 1.015
1.3300 10.2720 1.098 1.033
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Table 4.13: Solid-liquid coexistence points determined from Wang–Landau MC simulations for
the 12-6 potential.

T∗ P∗ ρsolid ρliquid
0.6879 0.0012 0.970 0.849
0.7100 0.2568 0.973 0.855
0.7500 0.7316 0.978 0.867
0.7900 1.2210 0.984 0.877
0.8300 1.7253 0.990 0.887
0.8700 2.2428 0.997 0.896
0.9100 2.7712 1.002 0.904
0.9500 3.3117 1.007 0.913
1.0000 4.0052 1.014 0.922

Table 4.14: Vapour-solid coexistence points determined from Wang–Landau MC simulations
for the 6-4 potential.

T∗ P∗ ρsolid ρvapour
1.6211 5.0244E-08 1.638 3.093E-08
1.6711 9.7761E-08 1.634 5.839E-08
1.7211 1.8281E-07 1.630 1.058E-07
1.7710 3.2913E-07 1.626 1.852E-07
1.8210 5.7302E-07 1.621 3.138E-07
1.8710 9.6707E-07 1.616 5.152E-07

Table 4.15: Vapour-solid coexistence points determined from Wang–Landau MC simulations
for the 8-4 potential.

T∗ P∗ ρsolid ρvapour
1.1325 2.2944E-07 1.266 2.020E-07
1.1825 5.3811E-07 1.261 4.528E-07
1.2324 1.1737E-06 1.255 9.503E-07
1.2824 2.4017E-06 1.250 1.867E-06
1.3324 4.6432E-06 1.244 3.474E-06
1.3823 8.5415E-06 1.239 6.169E-06

Table 4.16: Vapour-solid coexistence points determined from Wang–Landau MC simulations
for the 9-6 potential.

T∗ P∗ ρsolid ρvapour
0.5382 5.3673E-06 1.004 9.995E-06
0.5548 9.0038E-06 1.001 1.629E-05
0.5714 1.4634E-05 0.997 2.566E-05
0.5881 2.3126E-05 0.993 3.943E-05
0.6047 3.5579E-05 0.990 5.916E-05
0.6213 5.3476E-05 0.986 8.625E-05
0.6379 7.8616E-05 0.982 1.236E-04
0.6546 1.1323E-04 0.978 1.737E-04
0.6712 1.6009E-04 0.975 2.397E-04
0.6878 2.2235E-04 0.971 3.255E-04



Chapter 4. Towards Realistic and Transferable Coarse-Grained Models 67

Table 4.17: Vapour-solid coexistence points determined from Wang–Landau MC simulations
for the 12-6 potential

T∗ P∗ ρsolid ρvapour
0.5216 2.7380E-05 1.003 5.258E-05
0.5383 4.4528E-05 0.999 8.280E-05
0.5549 7.0322E-05 0.996 1.272E-04
0.5715 1.0795E-04 0.992 1.897E-04
0.5882 1.6187E-04 0.988 2.773E-04
0.6048 2.3697E-04 0.984 3.951E-04
0.6214 3.3959E-04 0.979 5.525E-04
0.6380 4.7730E-04 0.976 7.581E-04
0.6547 6.5940E-04 0.971 1.022E-03
0.6713 8.9584E-04 0.967 1.354E-03



Chapter 5

Solubility prediction from first

principles: A density of states

approach

Abstract: Solubility is a fundamental property of widespread significance. Despite its

importance, its efficient and accurate prediction from first principles remains a major

challenge. Here we propose a novel method to predict the solubility of molecules using

a density of states (DOS) approach from classical molecular simulation. The method

offers a potential route to solubility prediction for large (including drug-like) molecules

over a range of temperatures and pressures, all from a modest number of simulations.

The method was employed to predict the solubility of sodium chloride in water at ambient

conditions, yielding a value of 3.77(5) mol kg-1. This is in close agreement with other

approaches based on molecular simulation, the consensus literature value being 3.71(25)

mol kg-1. The predicted solubility is about half of the experimental value, the disparity be-

ing attributed to the known limitation of the Joung-Cheatham force field model employed

for NaCl. The proposed method also accurately predicted the NaCl model’s solubility over

the temperature range 298 - 373 K directly from the density of states data used to predict

the ambient solubility.∗

∗The manuscript presented in this chapter is listed as Paper III in the list of publications.
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5.1 Introduction

When dissolving a substance in solution, there comes a point when no more will dis-

solve. The concentration at which this occurs is the solubility limit (the solubility) and

depends on the properties of both the solute and solvent. Being a fundamental prop-

erty, the solubility is of interest across a spectrum of application domains that include

chemical toxicity, formulation of foods and development of chemical and pharmaceutical

products100, weathering of the terrestrial and built environments, and formation and dy-

namics of ecological environments such as soil including fate of pollutants. The solubility

is also an important factor in many disease states which include cholesterol deposition in

atherosclerosis, formation of gall and kidney stones, and formation of amyloid plaques in

disease such as Alzheimer’s101. Another notable example is the interest in the solubility

of carbon in the Earth’s upper mantle, the latter represents the largest reservoir of carbon

on Earth102. For each of these, considerations of solubility are important for devising

relevant interventions. For some of these e.g. pharmaceuticals, being able to accurately

predict the solubility from the molecular structure would be a ‘game-changer’103,104.

There are three main approaches to solubility prediction: empirical, correlation-based

methods105, quantum mechanical (QM) continuum solvation models such as COSMO-

RS106, and molecular simulation107. Correlation methods include quantitative structure

property relationships (QSPR) based on molecular descriptors, with the parameters

being optimised against a dataset of molecular structures with known solubilities. Such

models are limited in their usage, breaking down when predicting solubility for molecules

that are distinct from the training set. Furthermore, the solubility can only be predicted

at the conditions (e.g. temperature and pressure) at which the training set data were

collected. The continuum solvation approaches neglect sampling of the solvent degrees

of freedom and involve parameterisation, in particular requiring a fitted value for the

free energy of fusion for the prediction of solubility of solids.

Molecular simulation offers potentially the more powerful approach to solubility predic-

tion, with the solubility being accessed via statistical mechanics. There are two distinct

approaches: via calculation of the chemical potentials108 (summarised below), or direct

(brute force) simulation of the dissolution of the solid in a solvent towards equilibrium40.

The latter requires large system sizes to minimise finite-size effects and very long simu-

lations to attain the essential near equilibrium conditions.

At the solubility limit, the (undissolved) solid phase coexists with its solution. As the

two are in equilibrium, the chemical potential of the solute in the solid phase and that
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in solution are identical at the given temperature T and pressure p. Prediction of the

solubility therefore requires in general the calculation of the chemical potential of the

solute in solution for a series of concentrations, and then interpolation to find where it

intersects the chemical potential of the solid (which is calculated separately). Both of

these chemical potentials are accessible by molecular simulation. The chemical potential

of the solid phase can be calculated via thermodynamic integration of an Einstein crys-

tal42,109 or by quasi-harmonic lattice dynamics. Calculation of the chemical potential

of the solute in solution is more demanding, though the methods are well established

and include thermodynamic integration83,84, the so-called perturbation approach41,85,86,

expanded ensembles110,111, and variations on these112. These methods involve ‘growing’

the solute molecule from its reference state reversibly in the solvent. While both thermo-

dynamic integration and perturbation techniques are robust and effective (particularly

when coupled with soft-core113 and dampening potentials114), large drug-like molecules

are still challenging, and these methods are computationally very demanding. Each

chemical potential determination requires at least a dozen or so separate simulations,

that need to be repeated for any other temperature and pressure conditions of interest.

To date there are only a few studies that have attempted to predict solubilities from

molecular simulation via chemical potential calculations111,115–120. Much of the focus of

these studies has been on the alkali halides with NaCl becoming a model test case.

Here we present a novel method to calculate the solubility directly from the density

of states of a system. Density of states (DOS) calculations are well established, being

particularly effective and efficient for determining phase co-existence88,89,121. The appli-

cation of DOS methods however has been largely restricted to single, pure component

systems. We utilise the DOS framework for multicomponent systems to access phase co-

existence of a solid in equilibrium with its solution, and hence the solubility. The method

in principle is able to predict solubility for a range of temperatures, pressures and solid

forms using a single, density of states. It is more efficient than thermodynamic integra-

tion and the perturbation approach. We have successfully applied the methodology to

predict the aqueous solubility of sodium chloride.

5.2 Solubility from density of states

We start by considering a pure system to illustrate how phase coexistence can be de-

termined via a density of states approach, before considering its application to more
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complicated multicomponent systems. The isothermal-isobaric (NpT ) partition func-

tion is given by

Q (N, p, T ) =

states∑
i

exp [−β (Ei + pVi)] (5.1)

where the first summation is over all states, with corresponding energy Ei and volume

Vi. Given that distinct states may have identical energies i.e. are degenerate, Q (N, p, T )

may be expressed in the form

Q (N, p, T ) =
∑
E

∑
V

Ω (V,E) exp [−β (E + pV )] (5.2)

where Ω (V,E) is the density of states of the system90 and the summation over energy

is now over energy levels. The corresponding probability distribution is then

P (V,E) =
1

Q (N, p, T )
exp [ln Ω (V,E)− β (E + pV )] (5.3)

If the density of states is known, the phase coexistence condition can be determined by

exploring the probability distribution at a given pressure whilst scanning in temperature,

or vice versa. The probability distribution of single component at coexistence exhibits

two peaks of equal area, indicating that both phases are equally likely under these

conditions. A key feature of the DOS approach is that the density of states Ω (V,E)

is independent of T and p. This means that, in principle, coexistence conditions can

be determined for a range of temperatures and pressures all from a single density of

states88.

We now consider a multicomponent system composed of a number of different molecular

species i, j, k, . . . . Within this system, we allow the number of molecules of one compo-

nent to fluctuate, while the populations of the other components Nj , Nk, . . . , are kept

fixed.

For such a system, the partition function is given by

Ξ (µi, p, T )Nj ,Nk,...
=
∑
E

∑
V

∑
Ni

Ω (Ni, V, E)Nj ,Nk,...
exp [−β (E + pV − µiNi)] (5.4)
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where µi is the chemical potential of component i. The corresponding probability dis-

tribution is then

P (Ni, V, E)Nj ,Nk,...
=

Ω (Ni, V, E)Nj ,Nk,...
exp [−β (E + pV − µiNi)]

Ξ (µi, p, T )Nj ,Nk,...

(5.5)

As before, if Ω (Ni, V, E)Nj ,Nk,...
is known, exploration of the above probability distri-

bution would enable coexistence conditions to be identified - including the sought-after

coexistence point at which the solid phase of component i would be in equilibrium with its

solution phase i.e. the solubility. Thus for a given temperature and pressure, tweaking

the chemical potential for component i would yield a bimodal probability distribution as

a function of number of particles Ni in the Nj , Nk, . . . mixture system at the solubility

limit, from which the solubility concentration can be ascertained. The two coexistence

states would be the 100% solute (solid) phase, and its saturated solution (Figure 5.1).

𝑥𝑖
1.00.0

Solubility

Limit

=

Figure 5.1: A schematic probability distribution for a system of solute (grey particles) and
solvent (blue particles) as a function of solute fraction. At the solubility limit, the solute particles
will have an equal probability of being in both the solid phase (the green peak at x = 1.0) and
the solution phase (the blue peak). The location (mole fraction) of the solution phase peak is
the solubility limit.

We do not, however, need to determine the density of states for the whole spectrum

of mole fraction values from xi = 0 (pure solvent) to xi = 1 (pure solute) as implied,

though we could. Given that at the solubility limit, µsolid (T, p) = µsoln (T, p), one could

substitute the chemical potential of the solid, if it were known, into the probability

distribution (Equation 5.5). This would guarantee that a peak is observed at xi = 1. A

second peak would then be expected at some lower mole fraction, which would correspond

to the solubility (Figure 5.1). Thus, we can calculate the chemical potential of the solid

phase separately, and therefore focus on a limited mole fraction range where the solute

remains in solution; the solubility condition will reveal itself as a single peak in the

probability distribution located at the corresponding concentration.
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The primary challenge therefore is to access the density of states Ω (Ni, V, E)Nj ,Nk,...
,

techniques for which are now well established122. Here we employ a 3-dimensional vari-

ant of the efficient Monte Carlo scheme originally developed by Wang and Landau90.

Configurations are generated according to probability

P (Ni, V, E)Nj ,Nk,...
∝ 1

Ω (Ni, V, E)Nj ,Nk,...

(5.6)

with Ω (Ni, V, E)Nj ,Nk,...
being developed and improved on-the-fly as the simulation pro-

ceeds in a self consistent manner. Everytime a particular point in Ω (Ni, V, E)Nj ,Nk,...

space is visited, its value is incremented according to ln Ω (Ni, V, E)Nj ,Nk,...,new
= ln f +

ln Ω (Ni, V, E)Nj ,Nk,...,old
, where ln f is an arbitrary modification factor. When Ω has

converged to its true value, all possible states in the system would be visited with an

equal probability. This convergence is tracked by means of a separate histogram of visits

to particular states h (Ni, V, E). The density of states is said to have converged when

the histogram becomes ‘sufficiently’ flat.

The density of states is evolved over a number of iterations, beginning with a (gross)

value of ln f = 1. When the histogram of visits h (Ni, V, E) is sufficiently flat (in our

case, when the minimum value is greater than 80% of the average), the value of ln f

is reduced to ln fnew =
1

2
ln fold, the histogram of visits is reset to zero for the next

iteration of the simulation.

To explore the (Ni, V, E) space associated with Ω (Ni, V, E)Nj ,Nk,...
, we employed Monte

Carlo simulations involving particle translation, volume scaling, and solute insertion /

deletion moves. The respective moves were accepted or rejected in accordance with the

following criteria119, which are valid provided that the volume is sampled logarithmically:

Ptranslation (A→ B) = min

(
1,

Ω (A)

Ω (B)

)
Pvolume (A→ B) = min

(
1,

Ω (A)

Ω (B)

V Ni+1
B

V Ni+1
A

)

Pinsertion (A→ B) = min

(
1,

Ω (A)

Ω (B)

V

Ni,B

)
Pdeletion (A→ B) = min

(
1,

Ω (A)

Ω (B)

Ni,A

V

)
(5.7)
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As is well known, insertion/deletion moves present a particular challenge for dense sys-

tems and large solute molecules. Insertions of such molecules in dense systems are

invariably rejected due to overlaps, while deletion of species with a high affinity for each

other e.g. ion pairs, will often be unfavourable. Here we have devised a creative so-

lution wherein we extend the sampled volume space for the liquid (solution) state to

the gas phase for each of the Ni systems, and then proceed to carry out the particle

insertion/deletion there (see Figure 5.2).

𝑁𝑖+1

𝑉

𝐸

lnΩ(𝐸, 𝑉)

𝑁𝑖+2 𝑁𝑖+3

Figure 5.2: The density of states is sampled independently for each concentration of interest
in both in the liquid state and the gas states. Insertion/deletion moves between the different
concentration windows are performed in the gas phase in order to connect the independent
concentration windows.

The procedure to predict the solubility, therefore, comprises two distinct stages:

(i) Determination of the 2-d density of states Ω (Ni, V, E)Nj ,Nk,...
for each solution

concentration (. . . , Ni−1, Ni, Ni+1, Ni+2, . . . ), calculated (independently) in the

NpT ensemble. The energy and volume ranges are chosen so that both the liquid

and gas states are sampled at each particular Ni.

(ii) Determination of the density of states in the gas phase of the full assembly of mul-

tiple concentration systems (. . . , Ni−1, Ni, Ni+1, Ni+2, . . . ) in an µV T ensemble

(involving particle insertions and deletions) over the entire chosen concentration

range, where the volume is chosen such that the number density of the system is

sufficiently low that insertion/deletion moves become feasible.

As the density of states for each window is calculated to within a multiplicative constant,

the individual density of states windows must be combined using a fitting procedure.
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This requires finding a set of offsets using least squares, which minimises the error

function

etot =

M∑
i=1

∑
k

[ln Ωi,NpT (k) + Ci − ln ΩµV T (k)]2 (5.8)

where M is the number of individual concentration windows, k is an index for all the

overlapping points shared by the two windows88, Ωi,NpT is the density of states of con-

centration window and ΩµV T is the density of states sampled in the µV T ensemble.

This approach has significant advantages. Firstly, the insertion / deletion moves are

favourable even for large solute molecules - the minimum system number density (max-

imum volume) sampled can be increased arbitrarily to accommodate this. Secondly,

exploring the volume and concentration dimensions independently greatly reduces the

space that must be explored. Instead of having to sample the entire, combined 3-

dimensional energy, volume and concentration space (E-V -Ni), one essentially samples

the 2-dimensional E-V and E-Ni spaces. Finally, to study broader temperature and

pressure ranges, only the solution (liquid) portion of the windows need to be expanded

(so as to cover the energies and volumes accessible to the system over the range of con-

ditions to be studied), the rest remains constant. This significantly reduces the number

of simulations that must be run when exploring temperature and pressure.

5.3 Technical details

The above methodology was applied to predict the solubility of NaCl in water. The

molecular system contained 200 water molecules and between 6 and 18 sodium chloride

pairs, covering a concentration range of ∼1.67 - 5.00 mol kg-1. The SPC/E model was

used to represent the water molecules, while the sodium chloride ion pair were modelled

by the Joung-Cheatham (JC/SPC/E) force field123. A short MC simulation in the NpT

ensemble was run for each of the concentrations at T=298 K and p=1 atm and T=373 K

and p=1 atm to determine the accessible energy and volume ranges for the liquid portions

of each concentration window. The simulations were repeated in the NV T ensemble at

the elevated temperature of 10,000 K to determine the maximum and minimum energies

accessible for each concentration in the gas phase. The high temperature was necessary

to ensure that NaCl ions did not cluster together into a single nucleus, the formation

of which would hinder the particle removal moves. The volume for the gas phase was
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fixed at 28.38 nm3 which, by trial and error, was found to be large enough to easily

accommodate the solute insertion moves.

We explored two approaches for choosing the accessible volume and energy ranges for

states between the liquid and gas regions, shown in Figure 5.3. The first approach was to

simply interpolate the accessible energies and volumes between the liquid and gas values.

For the second approach, at low volumes (those accessible to the liquid) we allowed the

system to explore energies ranging from the liquid values all the way to close to the

gas values, essentially allowing the liquid to pass into a supercritical regime. At higher

volumes, moving towards the gas volume, the system was restricted to exploring only the

high energy states. This second pathway was found to give a much faster convergence of

the density of states (possibly because the system navigates around the first-order gas

to liquid transition), and hence was used in this study.

V

E

Liquid

Gas

V

E

Liquid

Gas

i) ii)

Figure 5.3: The two choices explored for the accessible energies and volumes between the liquid
and gas states: i) direct interpolation between the liquid and gas states and ii) transformation
of the liquid to dense, high energy states before expanding to the gas state, thereby avoiding a
first order liquid-gas phase transition.

The energy range was discretised into bins of width 10,000 kJ mol-1 while the logged

volume range was discretised bins of width 0.008. These values where chosen so that the

curvature of the peaks in the probability distributions was sufficiently captured, which

is also a good indicator that the curvature of the density of states has been sufficiently

captured also.

For each of the simulations the initial value of the Wang-Landau convergence factor was

set to 1.0, and was allowed to decrease until it was less than 2× 10-7. By this point the

relative change in the logged density of states between the current and previous iterations
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was low, indicating that the density of states was converged. Further, both the chemical

potentials and the probability distributions had also reached convergence by this point.

It is crucial for this method that the density of states has indeed converged as small

errors in the density of states can lead to large errors in the probability distribution.

The Monte Carlo code was parallelised using the scheme proposed by Vogel et al124 to

expedite convergence and precision. Three walkers were found to be optimal for the

liquid-gas windows and four walkers for the gas windows.

5.4 Results and discussion

The probability distribution for the JC/SPC/E model of sodium chloride at 298 K and 1

atm, calculated directly from the density of states by reweighting according to Equation

5.5, is shown in Figure 5.4. The NaCl solid chemical potential was taken as = -770.92

kJ mol-1 as reported by Benavides et al107. Their choice of a de Broglie wavelength of

1.0 Åwas adopted in this study. This choice does not affect the phase coexistence as the

same value is used for the solution and solid phase calculations125.
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Figure 5.4: The probability distribution for the aqueous sodium chloride system at T=298 K
and p=1 atm, averaged over five independant runs.

The probability distribution reveals a dominant peak at about 13 NaCl pairs. Taking

an ensemble average

〈NNaCl〉T,p,NH2O
=
∑
E

∑
V

∑
NNaCl

NNaCl × P (NNaCl,V,E)T,p,NH2O
(5.9)
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gives an average of 13.57(18) sodium chloride pairs, and hence a solubility of 3.77(5) mol

kg-1, where P is the probability distribution given in Equation 5.5. Uncertainties in these

values were calculated by averaging the results obtained from five independant DOS cal-

culations. The calculated solubility is in close agreement with the values found in the

literature for the Joung-Cheatam model (force field) for NaCl, the consensus literature

value being 3.71(25) mol kg-1. This value is actually roughly half of the experimental

solubility of 6.14 mol kg-1. This disparity between the calculated and experimental sol-

ubility is due to the model itself (which is currently the best available)107. In relative

terms the solubility prediction is decent given that aqueous solubilities predicted by con-

tinuum solvation methods are at best within 4-fold of experimental data and often worse.

The handful of solubility predictions from molecular simulation that have been reported

(including the current study) reveal the critical nature of the force field parameters.

Coexistence points are known to challenge force fields but for the same reason serve as

essential data points for developing and optimising force field parameter sets.

We then used the determined density of states to ascertain how the chemical potential

of NaCl solutions varies as function of concentration, using two distinct approaches.

Firstly, we calculated the chemical potential from the density of states for a series of

NaCl concentrations by calculating the free energy as a function of concentration, to

which a polynomial was fitted and then differentiated with respect to Ni. In the second

approach we switched the independent-dependent variables, and estimated the NaCl

concentrations from probability distributions (as for NaCl solubility) corresponding to

a series of chosen chemical potential values between -770.5 and -773.5 kJ mol-1. While

both approaches were in reasonably good agreement, the latter approach turned out

to be more accurate - the data for which is presented in Figure 5.5 along with values

presented in the literature for this model107,118. As can be seen, the predicted values

are in excellent agreement with the literature values, confirming that the presented DOS

methodology not only offers a robust route to solubility prediction, but also enables the

calculation of chemical potential of solutions.

As a further validation of the method, the solubility of the JC/SPC/E NaCl model was

calculated for a range of temperatures between 298 K and 374 K, from the same density

of states surface as used for the calculation at 298 K. For each of these calculations, the

chemical potential of the NaCl crystal is required at the respective temperature, which

was calculated following the procedure outlined by Argones et al.116 and is presented in

Table 5.1.
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Figure 5.5: The chemical potential of the JC/SPC/E NaCl model as a function of concentration
as calculated by this work (crosses), Vega et al 107 (triangles), Panagiotopoulos et al 118 (squares).

Table 5.1: Calculated chemical potential of the solid phase of JC/SPC/E NaCl model as a
function of temperature.

T / K µsolid / kJ mol-1

313.00 -770.288(2)
333.00 -769.359(2)
353.00 -768.473(2)
373.15 -767.610(4)

These chemical potential values of the NaCl solid, along with the density of states, were

inserted into Equation 5.5 in order to generate probability distributions for each temper-

ature, from which the NaCl solubility was determined as before. The predicted solubility

as a function of temperature is presented in Figure 5.6. Counter-intuitively, the solubil-

ity of the NaCl model actually decreases as the temperature increases. This unexpected

behaviour has also been reported by others in the literature118, again attributed as a

limitation of the model itself.

A possible issue with the density of states approach for determining coexistence points is

the potential for inadequate sampling of the coexistence states. The required nucleation

step characterising first-order transitions (particularly the solid-liquid transition) is often

suppressed as the creation of a surface involves an energy penalty. This is not an issue for

the solubility prediction approach developed here. We are not sampling the dissolution

of the solid nor its crystallisation but rather determining the density of states for the

most part of the solution state albeit around saturation.

There are three main sources of error within the methodology: errors associated with

insufficient sampling, detailed balance not being satisfied, and the saturation of error
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Figure 5.6: The solubility of the JC/SPC/E NaCl model as a function of temperature.

caused by the modification factor reduction scheme. The errors due to saturation and

detailed balance have been discussed at depth in the literature88,126, and are expected

to be small relative to the sampling error. Notably, the overall estimated errors in

the solubility and chemical potential calculations, being determined by performing five

independant sets of simulation, are relatively small.

While the method has so far been applied only to a simple ionic system, we do not

expect any significant challenges in extending the approach to larger solute molecules

(including drug-like) in both aqueous and non-aqueous solvents. The switching from

ions to molecules only requires a change in the density of the gas phase, avoiding the

problematic creation and annihilation of particles in a condensed phase. Further, as the

method samples only according to the density of states (i.e. entropy space), thermal

barriers, such as those limiting dihedral rotations are expected to be less of an issue here

than perhaps in other methods. For more challenging flexible molecules, the method

could be coupled with established configurational-bias Monte Carlo moves to facilitate

more efficient sampling of their molecular degrees of freedom.

In summary, we have developed and demonstrated a density of states approach to pre-

dicting solubility from molecular simulation. The method entails calculation of the den-

sity of states for a multicomponent solution, followed by exploration of the probability

distribution as a function of number of solute particles in the system and the chemical

potential of the solid, to identify coexistence conditions corresponding to the solubility.

The density of states calculation is made possible by a unique pathway that avoids the

problematic annihilation and/or creation of particles which is common to established

methods. Consequently, the method is expected to perform well even for large, drug-like
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molecules. Further, it is able to yield, relatively efficiently, solubilities over a range of

temperatures and pressures. The predicted solubility of the NaCl model at 298 K was

found to be in close agreement with the literature.



Chapter 6

Solubility prediction via chemical

potentials from density of states

Abstract: The solubility of compounds is of fundamental significance to most fields,

yet its prediction from first principles (starting from only knowledge of the solute and

solvent’s structure) remains a challenge. Recently we proposed a robust and efficient

method to this end, employing classical molecular simulations to access the density of

states (DOS) of a system of solute and solvent, and from this solubility. Here we improve

the efficiency, and indeed the generality, of the method by extending it to calculate solu-

tion chemical potentials, from which solubility may be accessed. We employ this method

to predict the chemical potential of urea in water and urea in methanol for a range of

concentrations at ambient conditions. These were validated against values calculated by

thermodynamic integration, and were found to be in excellent agreement. They were

further used to obtain the solubility of urea in water (20.15 mol kg-1) and in methanol

(4.11 mol kg-1) at ambient conditions, and for further temperatures up to 338 K.∗

∗The manuscript presented in this chapter is listed as Paper IV in the list of publications.
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6.1 Introduction

Solubility is perhaps one of the most fundamental properties in chemistry, arising from

the complex interactions between a solute and solvent. It is of marked importance for

most fields, including material development, toxicology, food processing, the oil indus-

try127 and, pharmaceutical development128 where many (if not most) drug molecules

have poor solubility which in turn can hinder bioavailability. In each of these fields,

the ability to accurately and efficiently predict the solubility would be a significant util-

ity. Such methods will also give access to the solubility of compounds that would be a

challenge to study in the laboratory and at conditions inaccessible to experiment e.g.

high temperature and pressures. Molecular simulation offers a potentially powerful first

principles route to this end.

For some applications, e.g. the development of pharmaceuticals, there is a need to

predict the soubility of molecules that have yet to be synthesised, and hence for which

the structure of the solid is unknown. In such cases, the polymorph landscape of the

molecule would need to be first identified. This is becoming increasingly feasible with

improving crystal structure prediction methods129. Molecular simulation would then be

employed to gain access to the solubility of each possible form.

A route to predict solubility from simulation would be to employ a direct coexistence

approach. Whilst this is promising, there are limitations, a key one being the time

required to reach equilibrium can be unfeasable (on the order of microseconds)40. In

contrast, the chemical potential route to solubility prediction is more robust and efficient.

At the solubility limit, the chemical potentials of the solute in solution and in the solid

phases are equal, such that

µsolutesolid (T, p) = µsolutesolution(T, p) (6.1)

where T , p are the system’s temperature and pressure respectively. While µsolutesolid is read-

ily calculated by employing the Einstein molecule130 (or crystal42) method described be-

low, calculating µsolutesolution is typically more involved. In general, there are two approaches

to do this: the first would be to determine the solution concentration that would exist at

a given chemical potential (i.e at µsolutesolid ), while the second would invole calculating the

chemical potential of the solution for a range of concentrations, and determining the con-

centration at which the solid and solution chemical potentials intersect116. Calculating
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concentration for a given chemical potential is generally achieved by performing simu-

lations in the semi grand-canonical ensemble117, where molecules are grown or removed

step-wise from the solution until equilibrium at the desired chemical potential is achieved.

While this method works well for calculations involing ionic or atomic solutes117,131,132,

large solute molecules pose a challenge. The alternative approach, determining the chem-

ical potential as a function of concentration, is more general and established; the methods

include thermodynamic integration83,84 (TI), perturbation41,85,86 or expanded ensemble

calculations110,133. TI in particular can require dozens of simulations to calculate even

a single value for a single concentration for a single condition. These would then need

to be repeated for each concentration / condition of interest. Further, these methods

too are challenged by larger molecules, although employing soft-core potentials113 or the

recently employed cavitation method120 go some way to overcome this.

Recently we proposed a novel method to calculate solubility directly from a systems

density of states (DOS) that, in principle, is able to overcome both these limitations134,

demonstrating the method for predicting the solubility of NaCl. The DOS gives ac-

cess to most properties of a system, including the probability of the system existing at

different concentrations as a function of chemical potential from which solubility can

be determined. The approach employes a variant of the Wang–Landau algorithm88,90,

where solution simulations are bridged to the vapour phase for the required insertion /

deletion moves, so that insertion of even large molecules may be facilitated. Further, as

the density of states is independent of temperature and pressure, the DOS gives access

to solubility for wide range of conditions from a single DOS calculation.

Here, we extend the new DOS methodology for predicting solubility from focussing on

the co-existence distributions to a more efficient approach of predicting solubility from

chemical potentials calculated from DOS. In the original DOS solubility approach, one

identifies the location of the probability distribution in the discrete solution concentration

space (N, N+1, N+2, N+3 .. systems) at a particular chemical potential – the chemical

potential of the solid phase. To accurately capture this distribution, the DOS must

be determined for all concentrations that have a non-zero probability of existing at the

given chemical potential. When the solubility limit is completely unknown a priori, it

is then necessary to include a large spectrum of discrete solute concentrations within

the DOS calculation as one does not know the location of the probability distribution

in concentration space. Much of this information, however, is redundant, since the

important concentrations are only those that contribute to the distribution peak that

identifies the solubility concentration. In the original DOS-based solubility study, we
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exploited prior knowledge of the solubility of the NaCl model, and employed 12 discrete

concentrations with the DOS calculation. Here we reformulate the DOS-based solubility

prediction method to calculate chemical potentials as a function of concentration, rather

than the other way around. The free energy of solution of a given concentration is

directly accessible (to within a given constant) from its density of states as calculated by

our approach. If several such free energies are determined, an analytical function may

be fitted to these as a function of solute concentration, then the chemical potential is

simply its derivative. While a certain number of free energies (equating to the number of

discrete concentrations) must be determined to produce an accurate fit, this in general

will be much less than would be required for the distribution route. It should be noted

that while this method is presented in the context of solubility calculation, it is in fact a

general approach for calculating the chemical potential of fluid phases – the free energy

change would be expected to vary linearly as a function of the number of molecules of

interest, with the gradient being the chemical potential. We demonstrate and apply the

method to predict the solubility of the organic molecule urea in both methanol and water

for a range of temperatures. The chemical potentials calculated using DOS have been

validated by thermodynamic integration.

6.2 Chemical potential of solution from DOS

The isothermal-isobaric partion function of a system of Nsolute solute and Nsolvent solvent

molecules is given by

Q(T, p,Nsolute, Nsolvent) =
qNsolute
solute q

Nsolvent
solvent

Nsolute!Nsolvent!Λ
3Nsolute
solute Λ3Nsolvent

solvent

×
states∑
i

exp [−β (Ei + pVi)] (6.2)

where qsolute, qsolvent are the molecular partition functions (i.e rotational, vibrational

and electronic) of the solute and solvent species respectively, Λsolute, Λsolvent are their de

Broglie wavelengths, β = 1
kBT

and kB is the Boltzmann constant120,135. Here the first

summation is over all possible microstates (with energy Ei and volume Vi) adopted by

the system. Given that certain microstates are degenerate, Equation 6.2 can be rewritten

as
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Q(T, p,Nsolute, Nsolvent) =
qNsolute
solute q

Nsolvent
solvent

Nsolute!Nsolvent!Λ
3Nsolute
solute Λ3Nsolvent

solvent

×
∑
E

∑
V

Ωconf (V,E) exp [−β (E + pV )] (6.3)

where Ωconf is the configurational density of states88 and the summation is now over

all energy levels. For convenience, the molecular partition functions and de Broglie

wavelengths of the solute and solvent will be set to unity. This choice can only be made

provided that these terms take the same values in both the solid and solution phases

or provided the two system share a common reference state. In this work, the common

reference state for both systems is an ideal gas of fully formed molecules, whose rotation

is unrestrained. The free energy of this system is then

G(T, p,Nsolute, Nsolvent) = − 1

β
lnQ(T, p,Nsolute, Nsolvent)

= − 1

β
ln

[∑
E

∑
V

Ωconf (V,E) exp [−β (E + pV )]

]
(6.4)

Given that the density of states is independent of temperature and pressure, Equation

6.4 can in principle be used to determine the free energy for a range of temperatures

and pressures, all from a single density of states calculation. Should the free energy

be determined for a series of concentrations (enforcing the condition that number of

solvent particles is fixed, and only the number of solute particles is allowed to vary), the

solution chemical potential is found by fitting a polynomial as a function of Nsolute, and

analytically taking the derivative. As noted by Vega et al 116, a more accurate fit can be

achieved by splitting the free energy into an ideal (Gid), and an excess (Gex) component

G = Gid +Gex where

βGid = Nsolute ln
Nsolute

V
−Nsolute (6.5)

and fitting the polynomial to the excess, rather than full free energy. The rationale

behind this is that at low concentrations, the free energy profile is dominated by the

log term of the ideal free energy, while the excess free energy varies more smoothly. In
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fact, the excess free energy can be fitted to a good approximation to a second order

polynomial, such that

Gex = a0N
2
solute + a1Nsolute + a2 (6.6)

where a0, a1 and a2 are coefficients to be determined by least squares fitting. The excess

chemical potential is then

µex = 2a0Nsolute + a1 (6.7)

and the full chemical potential is recovered by

µ = µex +
1

β
ln
Nsolute

V
(6.8)

where the righthand term is the ideal chemical potential.

The challenge then is to calculate the density of states of the system of solute and solvent

for a range of concentrations. This can be accomplished by employing the method

proposed previously by us134. In this approach, the DOS of the solute in solution is

calculated for each concentration of interest. This DOS window must be large enough

so as to encompass all possible and energies and volumes that would be available at

each temperature / pressure at which the solubility will be calculated. A second set

of DOS windows are then calculated, which extend the energy range sampled in the

original windows to energies which would be accessible to the system at a temperature

/ pressure above the critical point. A third set of DOS windows are then calculated

which extends the volume range sampled in the supercritical state to also cover the

volume of some low density gas phase. In the gas phase, a DOS window spanning the

entire concentration range of interest is calculated – employing solute insertion / deletion

moves to transition between concentrations. The advantange of calculating the DOS in

this way is two-fold: firstly, by first transitioning the system to a supercritical state,

the system may then be transitioned to the gas phase without having to undergo a first

order transition (which are known to challenge simulation); secondly, as the insertion /

deletion moves are performed in the gas phase, there will be sufficient space to insert

solute molecules into (the volume of the gas phase can simply be expanded further to

facilitate larger solutes) without them overlapping with existing molecules in the system

(a problem commonly encountered when employing such moves).
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6.3 Chemical potential of solid

The chemical potential of solid urea was calculated using the Einstein molecule method.

The reference state in this calculation is an ideal Einstein lattice of fully formed urea

molcules, which are restrained to their lattice sites by harmonic potentials of the form

Upos =

Nsolid∑
i

K(ri,C − r0,i,C)2 (6.9)

where Nsolid is the number of molecules in the solid, K is the spring stiffness, and ri,C ,

r0,i,C are the instantaneous and lattice positions of the carbon atom of urea molecule

i respectively. Here the restraints are attached to the central carbon atom as a good

approximation of the molecule’s centre of mass. To prevent the diffusion of the centre of

mass of the system (see Frenkel and Ladd42 for the reasoning behind this), the position

of one of the carbon atoms in the system is kept fixed. The free energy of this reference

state is then

β

Nsolid
A0 =

3

2

(
1− 1

Nsolid

)
ln
βK

π
+

1

Nsolid
ln
Nsolid

Vsolid
(6.10)

where Vsolid is the volume of the solid91. To ensure parity with the solution phase cal-

culations, the molecular partition functions and de Broglie wavelength terms are chosen

here to be unity. This reference state is transformed into the full, unrestrained crystal

by three successive steps, such that the total free energy of the crystal is given by

Asolid = A0 + ∆A0 + ∆A1 + ∆A2 +Asym (6.11)

The first step is to introduce two extra tethers per urea molecule that effectively fix its

orientation. The free energy change associated with this step is calculated by thermo-

dynamic integration

∆A0 =

∫ ln(K+c)

ln c

〈
Nor∑
i

(ri − r0,i)
2

〉
K

(K + c)d ln(K + c) (6.12)

where Nor is the total number of atoms that will be restrained by these new orientational

tethers. In the case of urea, these restraints are attatched to each of the nitrogen
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atoms, so that Nor = 2Nsolid. The extra constant c = exp[3.5] is introduced to improve

the accuracy of the integral33. The second step is to reintroduce the intermolecular

interactions. The free energy difference between the ideal, non-interacting crystal and

the fully interacting one (∆A1) is calculated by free energy perturbation

β∆A1 = βUlattice − ln 〈exp [−β (Usolid − Ulattice)]〉 (6.13)

where the average is evaluated over configurations sampled employing the ideal Hamil-

tonion (i.e one that only evaluates the tethered and intramolecular interactions), Usolid

is the instantaneous energy of the solid evaluated using the full system hamiltonion and

Ulattice is the energy of the perfect lattice. The final step involves removing all restraints

from the system, where the corresponding free energy change ∆A2 is calculate by ther-

modynamic integration

∆A2 = −
∫ ln(K+c)

ln c

〈
Ntethers∑

i

(ri − r0,i)
2

〉
K

(K + c)d ln(K + c) (6.14)

where Ntethers is the total number of restrained atoms (for urea Ntethers = 3Nsolid).

The final term in Equation 6.11, Asym, accounts for the orientation field not having

the same symmetry as the molecule of interest130. As urea has a point group of C2v,

β∆Asym = −Nsolid ln 2

6.4 Technical details

The solubility of urea in methanol, and urea in water was explored as a function of

temperature using the above methodology. 125 methanol and between 1 and 20 urea

molecules were employed in the methanol solution calculations, spanning a concentration

range of 0.25-5.00 mol kg-1, while 216 water and between 1 and 9 urea molecules were

employed in the aqueous calculations, spanning a concentration range of 0.26-2.31 mol

kg-1. The Amber GAFF force field136 was used to model the urea and methanol inter-

actions while the TIP3P water model was employed62. The urea and water molecules

were treated as rigid bodies. For the density of states calculations, an energy bin size

of 10 kJ mol-1 was used, while a logged volume bin size of 0.008 and 0.011 was used

for the methanol and aqueous systems respectively. Gas phase volumes of 73617.7Å and

25592.7Å were used for the methanol and aqueous studies respectively. These values
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were chosen by trial and error so that the employed grand canonical insertion / deletion

moves were easily accommodated. The Wang-Landau modification factor was allowed

reduced to 1× 10-6, at which point the results were well converged. For the thermody-

namic integration calculations, the general scheme utilising soft core potentials proposed

by Shirts and Pande137 was followed. A 16 point Gaussian quadrature was employed to

evaluate both the van der Waal and Coulomb integrals. All solution phase calculations

were performed using our in house Monte Carlo simulation code.

The chemical potential of the solid phase was calculated at 298, 308, 318, 328 and 338 K.

The structure of crystalline urea was taken from the Cambridge Structure Database138

(reference code UREAXX29). From this a 4 × 4 × 4 crystal was constructed. The

cell vectors and angles were equilibrated at each temperature of interest by molecular

dynamic simulations performed using DLPOLY 4.0768. Simulations were ran for 100000

steps with a timestep of 5 fs in the ‘nst’ ensemble (cell lengths / angles were allowed

to vary anisotropically) using a Nose-Hoover thermostat and barostat. In each case the

angles of the box, while permitted to change, remained orthogonal to a good degree. For

each temperature, a perfect lattice with the equilibrated cell lengths was constructed.

The remainder of the simulations were perfomed using our in house Monte Carlo code.

The integrals in Equations 6.12 and 6.14 were evaluated using a 32- and 16- point Gauss-

Legendre quadrature respectively.

6.5 Results and discussion

The density of states of urea in methanol, and of urea in water was calculated for a

range of concentrations by employing the procedure outlined previously by us134. The

free energies (to within an unknown constant arising from the DOS being also calculated

to within an unknown multiplicative constant) of both systems, for each concentration

studied, were obtained at 298 K by weighting these DOS surfaces according to Equation

6.4, and are given in Tables 6.1 and 6.2. The excess free energies were calculated from

these by subtracting the ideal component (Equation 6.5), which were then fitted to a

polynomial of the form of Equation 6.6 by the least squares method. The coefficients

of the fit are given in Table 6.3. The excess solution chemical potential was calculated

from the fitted coefficients according to Equation 6.7, from which the total chemical

potential of solution (presented in Tables 6.1 and 6.2, and graphically in Figure 6.1) was

determined. In addition, the chemical potentials of both systems were determined by

thermodynamic integration, and are also shown in Figure 6.1.
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Table 6.1: The solution free energies of urea in water calculated at 298 K to within an unknown
(but identical for each concentration) additive constant, and the chemical potentials calculated
from the polynomial fitted to this data.

Nsolute V / Å3 G / Gid / Gex / µid / µex / µ /
kJ mol-1 kJ mol-1 kJ mol-1 kJ mol-1 kJ mol-1 kJ mol-1

1 6583.17 -1179.05 -24.26 -1154.78 -21.78 -52.96 -74.75
3 6719.78 -1325.22 -64.77 -1260.45 -19.11 -53.27 -72.39
5 6860.39 -1469.71 -101.88 -1367.83 -17.90 -53.59 -71.48
7 6993.73 -1612.55 -137.13 -1475.42 -17.11 -53.90 -71.01
9 7135.35 -1754.31 -171.15 -1583.16 -16.54 -54.21 -70.75

Table 6.2: The solution free energies of urea in methanol calculated at 298 K to within an
unknown (but identical for each concentration) additive constant, and the chemical potentials
calculated from the polynomial fitted to this data.

Nsolute V / Å3 G / Gid / Gex / µid / µex / µ /
kJ mol-1 kJ mol-1 kJ mol-1 kJ mol-1 kJ mol-1 kJ mol-1

1 8235.32 -384.10 -24.82 -359.29 -22.34 -53.92 -76.26
3 8353.55 -531.07 -66.39 -464.68 -19.65 -54.12 -73.77
5 8461.38 -678.98 -104.48 -574.51 -18.42 -54.32 -72.74
7 8569.37 -824.89 -140.65 -684.24 -17.62 -54.52 -72.14
10 8748.58 -1040.59 -192.61 -847.98 -16.78 -54.82 -71.61
15 9066.09 -1397.90 -275.17 -1122.73 -15.87 -55.33 -71.19
20 9376.21 -1755.18 -354.30 -1400.88 -15.24 -55.83 -71.07

It can be seen that there is an excellent agreement between the two methods for both

systems. This gives a good degree of confidence that the DOS approach is indeed able

to accurately calculate the chemical potential of even molecular systems, in addition to

simple ionic ones. Although urea is a relatively small molecule, the creative pathway

employed when determining the density of states as a function of concentration appears

to transfer well to molecules without modification. While standard grand-canonical

simulations are challenged when performing insertion moves involving molecular species

(due to the inserted molecules overlapping with existing molecules in the system leading

to unfavourable high energy states), we have demonstrated that our employed pathway

of first vapourising the solution, and then performs all solute insertion / deletion moves

in the gas phase overcomes this limitation. It would seem then that the method should

continue to scale well as larger molecules are considered.

For both systems the free energies were further calculated at 308 K, 318 K and 328 K

(as well as 338 K for the aqueous system) by reweighting the DOS used in the 298 K

calculations according to Equation 6.4. The excess portion of these were then fitted to

polynomials of the form given in Equation 6.6 (the coefficients of which are given in
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Figure 6.1: The total chemical potential of urea in methanol (left) and urea in water (right)
as a function of molefraction of urea (xUrea). Each cross represents a result calculated by
thermodynamic integration, and each circle a result calculated by the DOS approach. The
dashed horizontal line represents the chemical potential of the solid phase at 298 K, calculated
by this work using the Einstein molecule method.

Table 6.3) yielding the chemical potentials shown in Figure 6.2. As would be expected,

the chemical potential is seen to increase smoothly as a function of temperature for both

systems.
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Figure 6.2: The chemical potentials of urea in methanol (left) and urea in water (right) for
different temperatures.

In order to calculate the solubility of these systems, the chemical potential of the solid

phase was calculated as a function of temperature using the Einstein molecule method.

The results of these calculations are presented Table 6.4, and graphically in Figure

6.3. The solubility at each temperature was then determined by finding the point of

intersection between the solid and solution curves. To a good approximation, the volume

of the solution phase can be fitted to a second order polynomial of the form



Chapter 6. Solubility prediction via chemical potentials from density of states 93

Table 6.3: The coefficients calculated by fitting the excess free energies calculated by the DOS
approach fit to Equation 6.6.

T
Methanol Water

a0 a1 a2 a0 a1 a2

298 -0.05 (12) -53.82 (25) -304 (1) -0.078 (25) -52.81 (25) -1101.72 (54)
308 -0.05 (11) -52.82 (25) -371 (1) -0.077 (22) -51.98 (22) -1162.25 (48)
318 -0.051 (12) -51.84 (25) -437 (1) -0.076 (21) -51.18 (21) -1222.61 (45)
328 -0.051 (12) -50.87 (26) -503 (1) -0.072 (20) -50.42 (21) -1282.78 (44)
338 - - - -0.069 (19) -49.68 (20) -1342.85 (42)

Table 6.4: The individual components of the solid phase free energies as calculated by the
Einstein molecule method.

T
βAsym
Nsolid

βA0

Nsolid

β∆A0

Nsolid

β∆A1

Nsolid

β∆A2

Nsolid

βAsolid
Nsolid

298 -0.693 11.639 18.280 -41.676 -17.185 -29.636
308 -0.693 11.639 18.281 -40.303 -17.303 -28.380
318 -0.693 11.639 18.281 -39.010 -17.427 -27.211
328 -0.693 11.639 18.281 -37.796 -17.546 -26.116
338 -0.693 11.639 18.281 -36.651 -17.666 -25.091

Vsolution = b0N
2
solute + b1Nsolute + b2 (6.15)

where b0, b1 and b2 are coefficients found a least squares fitting procedure (Table 6.5).

Combining Equations 6.1, 6.6 and 6.15 yields

2a0Nsolute + a1 +
1

β
ln

Nsolute

b0N2
solute + b1Nsolute + b2

= µsolid (6.16)

which can easily be solved for the solubility limit by applying the Newton—Raphson

algorithm. Three iterations were required for the algorithm to convergence. The solu-

bilities calculated by this approach are presented in Figure 6.4.

Table 6.5: The coefficients calculated by fitting the solution phase volumes calculated by the
DOS approach fit to Equation 6.15.

T
Methanol Water

b0 b1 b2 b0 b1 b2
298 0.288 (69) 54 (2) 8183 (6) 0 68.91 (32) 6514 (2)
308 0.315 (54) 54 (1) 8293 (5) 0 69.77 (21) 6569 (1)
318 0.301 (56) 54 (1) 8405 (5) 0 70.64 (11) 6628.99 (64)
328 0.203 (68) 56 (1) 8517 (6) 0 71.2 (14) 6695.69 (78)
338 - - - 0 71.53 (21) 6768 (1)
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Figure 6.3: The chemical potential of solid urea as a function of temperature.
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Figure 6.4: The solubility of urea in methanol (left) and water (right) as a function of temper-
ature.

For both systems the calculated solubility of the model is markedly lower than experiment

– at 298 K urea has an experimental solubility of 4.11 mol kg-1 in methanol and 20.15

mol kg-1 in water. While the calculated solubility in methanol (0.86 mol kg-1) is roughly

4 fold lower than experiment, the aqueous solubility (0.46 mol kg-1) is more significantly

underestimated by roughly 40 fold the experimental value.

There are two potential sources of this departure from experiment: i) the method itself or

ii) the computational model. We argue that the source of this discrepancy is most likely

the latter, rather than the former. The solution phase chemical potentials of the two

systems were calculated by both the proposed DOS approach, and well established TI

calculations for a number of concentrations, and where found to be in excellent agreement

(to within the statistical uncertainties of each method). If the DOS approach was flawed,
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a strong departure from the TI values would be expected. The more likely explanation is

that the model parameters employed to represent either urea or water were insufficient; it

has been commonly observed now that existing force field parameters are challenged by

solubility, even though they may be able to reproduce well other properties of molecules

(such as their melting point)107,120. Further, it should be considered that only a single

model, using a single charge set was considered for all species. It may be the case that

one of the other available models (such as the model proposed by Duffy et al 139) may

better reproduce the solubility of urea. In future we aim to explore this further, and

aim to identify whether it is the solid, solution or both phases which leads to the poor

solubility.

These results further highlight how critical it is to have a robust and efficient method

for calculating a model’s solubility, as such a method will be invaluable in not only

testing, but also helping to optimise existing force fields. A higher quality of force field

is clearly required if solubility prediction from classical molecular simulations are to be

routinely performed (or more importantly, trusted). This must be one of the major

focuses of future work. To accommodate this, the method proposed here would in future

would benefit from extension to larger, and more flexible systems. It is expected that

application of the method to larger solute molecules will not be an issue, as the only

change that is anticipated to be made is to increase the volume of the gas phase in the

DOS calculations. Furthermore the method is expect to work well in combination with

configurational bias Monte Carlo simulation moves140, which would enhance sampling

of the internal degrees of freedom of flexible molecules, and in turn, would enable the

solubility of even flexible molecules to be determined with a good degree of accuracy.

To conclude, in this work we have shown how the chemical potential of a system may

be determined from density of states calculations, demonstrating that the accuracy of

the method is comparable to that of more established methods. The employed method,

while preciously only applied to ionic systems, is shown to map well on molecular systems.

Further, it was demonstrated that the method is able to calculate chemical potentials

for a range of temperatures from knowledge of a single density of states surface. The

ability to calculate which has led to the calculation of the solubility of urea in methanol,

and urea in water as a function of temperature from a relatively modest number of

simulations compared to what would be required for more traditional approaches.



Chapter 7

Concluding Remarks

The main aim of this thesis has been to gain molecular level insights into phase equilibria,

and to produce methodologies to predict phase stability with an emphasis on solid-

solid and solid-liquid equilibria. More specifically, the thesis aimed to address three

fundamental issues. Firstly, it aimed to explore what drives multicomponent crystals

to form. Secondly, it aimed to overcome a number of limitations present in current

simulation methods used to explore phase coexistence. Finally, it aimed to develop

methodology to calculate solubility from first principles as a potentially more powerful

approach than correlation based methods. These aims have been accomplished by using

a combined molecular simulation / statistical mechanics approach.

As a direct result of this work: a framework for understanding how the affinities between

molecules and their packing complementarity facilitate solvate formation has been con-

structed; a set of coarse-grained interaction potentials with large application to studying

phase equilibria and much more have been characterised; and a computationally robust,

from first principles, methodology for solubility prediction of molecular and ionic systems

was developed.

The solvates study presented in Chapter 3 has identified three key regimes in which

solvates are expected to form. The solvate is expected to be favoured provided that

i) the solute-solvent affinity is strong enough to overcome the combined solute-solute

and solvent-solvent self affinities; ii) there is sufficient complementarity in solute-solvent

packing such that voids large enough to incorporate solvent molecules are formed or iii) a

strong p∆V potential is required in cases where the solute-solvent affinity is weak relative

to the solute-solute and solvent-solvent affinities. The identification of these regimes

lays the foundation in future for designing guidelines for determining when solvates
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may form. The existence of such guidelines would be fundamental in identifying where

solvate formation may be an issue far in advance, allowing interventions or alternative

approaches to be devised. Further, although initially derived in the context of solvates,

the findings are expected to be applicable to co-crystals. An understanding of what may

constitute a ’good’ co-former could be a significant utility to drug development process,

where co-crystallisation is becoming more popular. Furthermore, the observation that

a strong p∆V potential is able to facilitate solvate formation even in the absence of

strong affinities offers an explanation as to why gas clathrates (where a strong affinity is

lacking) are able to form. It thus may also offer a future pathway for forming solvates

and co-crystals when traditional methods fail.

While the work in Chapter 3 provides a strong starting point for understanding the

driving force behind solvate formation, it would in future benefit from the gradual re-

introduction of molecular detail, such as the presence of specific molecular moieties. The

challenge will be to identify how best to map the broad properties of affinity and size

ratio (packing) onto a molecular language. The hydrogen bond descriptors or indicators

of polarity that are commonly employed are unlikely to capture the formation of low

affinity solvates, for example. The work would most likely proceed, at least in part, by

a targeted survey of the Cambridge structural database (CSD). In addition, a number

of limitations would be addressed. The first is to investigate solvate formation as a

function of temperature. The Lennard–Jones model employed has a limited range over

which it is liquid. As such, the influence of temperature could not be fully explored.

Further, the produced phase diagrams contain a handful of anomalous points arising

from kinetic trapping of unfavourable phases. Should a similar methodology be employed

to study solid-solid phase phenomena, such as why do some molecules form co-crystals,

this trapping would likely be emphasised. Finally, the solid phase only emerged at

high concentrations. As the system was predominantly solute - there was always a mix

of solvate and anhydrous forms in the simulation box. Ideally, a model with a lower

solubility relative to its melting point would be employed, so that individual crystallites

are observed. Not only would this make identifying the presence of solvates as opposed

to pure crystals easier, but would also help overcome the issues of kinetic trapping.

The limited boiling range and the kinetic trapping observed in the solvate study can in

part be attributed to the relative ‘hardness’ of the Lennard–Jones potential. To address

this, this work aimed to characterise a set of softer potentials. To ensure the models

employing these potentials have a strong physical grounding (the solute parameters were

chosen in Chapter 3 to have properties similar to a typical organic molecules for example)
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their phase diagrams must be determined. This was done in the work presented in

Chapter 4. This work has developed a much clearer understanding of where the limited

liquid range of the Lennard–Jones potential arises from - namely that the dispersive and

attractive exponents are too high. The broad range of behaviour of the characterised

potentials opens the possibility of constructing a better class of coarse-grained force

field. A force field using these potentials would not only be able to reproduce a wide

range of chemical specificity, but would have widespread application in studying the

behaviour of most phases over a broad range of conditions. Future work will be focussed

on constructing such a force field. There are two key challenges to doing this: the first will

be determining which potential on average is best able to reproduce the interactions of

a wide range molecular moieties. Once identified, homogeneous interaction parameters

can be extracted directly from the calculated phase diagram of the potential. The

second challenge will be to determine the heterogeneous interaction parameters - while

the Lorentz–Berthelot mixing rules are applied in most situations to calculate these, a

cursory investigation has revealed that they are in fact not suitable for use in coarse-

graining. It was found that the affinity between beads predicted by these rules was too

strong. It is anticipated that a new set of rules will need to be derived - this will most

likely be achieved by an empirical study of the interactions of many types of chemical

moieties, and performing some form of fitting procedure.

The final pieces of work presented in Chapters 5 and 6 were focused on developing a

robust, accurate and efficient method for solubility prediction from first principles. The

developed method is, in principle, capable of calculating the solubility of even large,

flexible molecules for a large number of temperatures and pressures, from a reasonably

modest number of simulations. The applicability of the method to even large molecules

is possible due to the use of a creative sampling pathway, that overcomes the common

issues associated with grand-canonical (and similar) simulations. Further, the methods

ability to calculate solubilities over a wide range of temperatures and pressures signifi-

cantly reduces the number of simulations that must be run. The method has been shown

to be successful at not only predicting the solubilities of both a molecular and ionic sys-

tem, but also to offer a robust and accurate route to calculating chemical potentials of

fluid phases in general. Further, the method will serve as a useful tool for benchmarking

the accuracy of existing force fields, and hence, would have future application in param-

eter development and optimisation. The next step in developing this method forward

is to apply it to larger, more flexible molecules - the transition to which is expected to

be smooth. The employed insertion moves should be able to accommodate even large
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molecules, and the lack of any thermal barriers, especially when combined the configu-

ration bias moves, should enable even largely flexbile molecules (such as pharmaceutical

drug molecules) to be studied. Finally, in the future the method will be applied to sys-

tems containing multiple solute / solvent species. This would have applications in the

development, and predicting the properties of co-crystals and even solvates, and hence

has the potential to be a large utility in the drug development process and numerous

other applications.

To summarise then, the work compiled in this thesis has advanced the calculation and

understanding of solid-liquid phase equilibria. The thesis has offered insight into why

molecules are able to form multicomponent crystals, providing a solid foundation for

studying the phenomenon further, has characterised a set of more molecular like coarse-

grained interaction potentials for future use in exploring phase equilibria, and finally,

has presented a method for predicting solubility - arguably one of the most important

properties of a system arising from phase stability.



Appendix A

Monte Carlo Simulation Code

All Monte Carlo simulations utilised by this thesis were performed using a bespoke Monte

Carlo simulation code, nicknamed PhaseMC. It was written in C++ entirely by myself

over a three year period, and consists of over 10,000 lines of code. Access to the source

code will be provided upon request.

The core aim of PhaseMC is to facilitate the calculation of phase equilibria, and prop-

erties of phases. It supports simulating in the most common ensembles:

• NV T

• NpT

• µV T

and implements a number of advanced techniques such as

• Wang-Landau sampling,

• Gibbs-Ensemble simulations

• Einstein crystal calculations

• Thermodynamic integration calculations

The code is relatively flexible in terms of the type of system that can be studied. So far it

has been applied to simple Lennard–Jones type coarse-grained systems, rigid molecules,
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ionic species and a limited number of small flexible molecules. Electrostatic interactions

are fully supported, and implemented as Ewald summations.

PhaseMC is currently limited to studying relatively small simulations (<1000 molecules).

This is in part by design, as development time has predominantly been focused on feature

development, and rigourous testing. At present there is no parallelisation for efficiency

gain, and no neighbour lists are implemented.

The following sections aim to provide an overview of the key structures of the code, as

well as a brief description of the input files required to run simulations with PhaseMC.

A.1 Coding Overview

PhaseMC is written in an object orientated style. The advantages of this are many.

Object orientated code is significantly easier to maintain due to reduced code redundancy,

is often simple to understand and navigate, and perhaps most importantly, is readily and

rapidly extensible. A heavily simplified overview of the code structure is presented in

Figure A.1

WangLandauMonteCarlo

Control

+Load() : bool

ForceField

+Load() : bool

GibbsMonteCarlo

-simulationBox1 : MonteCarlo
-simulationBox2 : MonteCarlo

MonteCarlo

+Initialize() : bool
+Run()        : bool

#control: Control
#forceField: ForceField

Figure A.1: A simplified overview of the PhaseMC code structure. Most methods / fields are
omitted for clarity

There are three main kernel classes (MonteCarlo, WangLandauMonteCarlo and the Gibb-

sEnsembleMonteCarlo) that implement the Monte Carlo simulation loops for the differ-

ent sampling approaches.

These are supported by a ForceField and Control class. The ForceField class is

responsible for loading and maintaining the systems force field. It contains helper meth-

ods to evaluate each term in the potential energy function. The Control class stores
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and loads any parameters (such as temperature or number of steps) required by the

simulation.

Given that the kernel classes form the heart of the code, they are discussed in more

detail in the following subsections.

A.1.1 Metropolis Monte Carlo

The foundation of PhaseMC is the Metropolis Monte Carlo kernel, implemented in the

MonteCarlo class. It’s key methods have been highlighted in Figure A.2

MonteCarlo

+Initialize() : bool
+Run()        : bool
+PerformTrialMove() : void
#PerformBarostat()  : void
#PerformInsertion() : void
#PerformDeletion() : void
+CalculateSystemEnergy()        : void
#CalculateMoleculeEnergy()      : void
#CalculateMoleculeEnergyDelta() : void
#TestMonteCarloMove()          : bool
#TestMonteCarloMoveInsertion() : bool
#TestMonteCarloMoveRemoval()   : bool
+ProposeBarostatMove() : void
+CommitBarostatMove() :  void
+RejectBarostatMove() :  void

Figure A.2: An overview of the MonteCarlo class. Only a selection of key methods are pre-
sented.

The Initialize method is called before any simulation is started. It is responsible for

reading and validating all input files. This includes loading the force field, the simulation

control file and the atomic coordinate file. Further, it is responsible for constructing all

atomic (and any other required) arrays.

Provided that Initialize is successful, the Run method is called. Run, as the name

suggests, is responsible for maintaining the main simulation loop. It proceeds according

to the flow chart shown in Figure A.3. Key here are the different Perform... methods.

Each of the Perform... methods is an implementation of a Monte Carlo trial move -

PerformTrialMove handles molecule / atom displacements and rotations, PerformBarostat

performs the box scaling barostat moves, and PerformInsertion / PerformDeletion

are responsible for any µV T insertion / deletion moves. They are responsible for gener-

ating any new configurations, calculating the changes in energy, volume, particle number

and then deciding whether to accept or discard the move.
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Current Step = 0

Current Step < 
Maximum Step?

Run()

PerformTrialMove()

Output Data Files

End

Ensemble == NpT

Ensemble == 𝜇VT

PerformBarostat()

PerformInsertion() /
PerfromDeletion()

Current Step + 1

true

false

false

truefalse

true

Optimise Trial Moves

Figure A.3: A flow diagram of the main simulation loop implemented by the MonteCarlo class.

The coordinate generation is move specific, and not particularly interesting so will not

be discussed here. More important is the energy calculation. Calculating energies is

arguably the slowest, but one of the most critical part of any Monte Carlo code. In

PhaseMC, three different methods to calculate energy are provided:

• one for calculating the energy of the entire system (CalculateSystemEnergy).

• one for calculating the change in energy of a single molecule (CalculateMolecule-

EnergyDelta).

• one for calculating the absolute energy of single molecule (CalculateMolecule-

Energy).

Combined, these methods enable almost all changes in the systems energy to be cal-

culated in an optimised way regardless of the trial move. As such, implementing new
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moves only requires a new method for generating or perturbing the systems coordinates,

and one to implement the Metropolis acceptance / rejection criteria.

The changes in energy (and other state variable such as volume) are passed to an ap-

propriate Test... method. These methods implement the Metropolis acceptance /

rejection criteria, and ensure detailed balance is satisfied. They return a back a simple

true or false boolean, which determine whether to accept or reject the move. They are

implemented as virtual functions that can be overridden. This allows any child kernel

class, such as WangLandauMonteCarlo, to implement their own variations, and hence

sample from a probability distribution of their choosing without having to reimplement

all of the trial move code. This significantly reduces the amount of redundant code, and

makes extension to other ensembles simple.

The Perform... method takes the result of the acceptance or rejection criteria and

then either returns the system back its orginal state before the move or copies the new

state over the old one. Implementation wise, two sets of structures are maintained - one

set that stores the current, accepted system state and another that stores any proposed

changes. This avoids the need to performing any form of caching prior to the move

being made, and further means that when a move is rejected, nothing needs to be done.

Accepting a move simply involves copying the new state over the old.

Over the course of the simulation, a set of counters are maintained that tracks the

frequency with which moves are either accepted or rejected. These are used to optimise

the moves on the fly to acheive a roughly 50% acceptance ratio. In the case of particle

translations, for example, the size of the displacement is optimised.

At the end of the simulation, the final system energy is recalculated from scratch and

compared to the final energy reported by the main loop. Agreement shows that the

various energy calculations (such as the change in molecular energy) are performing as

expected. A deviation means there is a problem in the code and hence serves as a useful

diagnostic.

A.1.2 Wang-Landau Monte Carlo

The Wang–Landau sampling method is implemented in the WangLandauMonteCarlo

class, whose key structure is shown in Figure A.4.
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WangLandauMonteCarlo

#ReadEnergyBoundsFile()  : bool
#SampleDensityOfStates() : double
#SetUpMPI()              : bool
#BeginNextIteration()    : void
#SyncBlockWalkers()      : void

#loggedDensityOfStates    : double*
#densityOfStatesHistogram : int*

Figure A.4: An overview of the WangLandauMonteCarlo class. Only a selection of key methods
are presented.

It inherits the MonteCarlo class. As was alluded to, the Wang–Landau method is mainly

implemented by overriding the different Test... methods. The following additions are

also required:

• A density of states array and a histogram array is defined and updated after each

trial move.

• The Perform... methods are also overridden so that extra checks are performed

that ensures the state of the system does not depart from the defined sampling

window.

To run a Wang–Landau Monte Carlo simulation a sampling window must be defined.

In the NV T ensemble this is simply and energy range, in the NpT and µPT ensem-

bles however both an energy and volume range must be specified. These are stored

in the Control file. In addition to defining a global window, the accessible energies

for individual densities are defined using the EnergyBounds.dat input file, read by the

ReadEnergyBoundsFile method.

A large extension made by the WangLandauMonteCarlo class is the introduction of MPI

threading. It has two functions in the code. The first is to split the density of states

window into blocks. Each block is assigned an MPI thread that runs a separate copy

of the simulation, but samples in a different region. The second is to assign multiple

walkers to sample the same region. This improves both the efficiency and precision of

the algorithm. All MPI variables are initialised in SetUpMPI. At the end of each WL

iteration, all walkers within a block are forced to wait until the others in that block

have also reached the end of their iteration. The density of states from each walker is

then sent to a dedicated ‘lead’ walker. This lead walker superimposes and averages the

different DOS windows, and returns the combined one back to each walker ready for
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the next iteration124. This is implemented in the SyncBlockWalkers method. The next

iteration is started by the BeginNextIteration method.

A particularly important routine is SampleDensityOfStates. This method is used to

sample the density of states for a set of coordinates (e.g for a given (E, V ) pair). It

employs either nearest neighbour, linear or bilinear sampling. While performing different

sampling methods is trivial on rectangular surfaces, it is more complex for irregular

shaped surfaces. At a high level, the method proceeds by discretising the systems state

into a density of states bin. It then checks whether each of the neighbouring bins is within

the accessible sampling window. Depending on the number of available neighbours, either

bilinear, linear or nearest neighbour sampling is employed to sample the density of states.

PhaseMC is complemented by a separate toolkit of utilities, named the DOStoolkit.

These include tools that

• stitch multiple density of states windows into a single one.

• reweight a density of states window to produce probability distributions at different

T and P and µ.

• detect bimodal probability distributions and evaluating the difference in their prob-

abilities.

• determine the free energy of phases / different concentrations.

A.1.3 Gibbs-Ensemble Monte Carlo

The Gibbs-Ensemble Monte Carlo sampling mode is implemented as a separate entity

to the MonteCarlo class. It’s key methods and properties are shown in Figure A.5.

GibbsMonteCarlo

#PerformBarostat() : void
#PerformSwapMove() : void
#TestBarostatMove()  : bool
#TestSwapMove()      : bool

#simulationBox1    : MonteCarlo*
#simulationBox2    : MonteCarlo*

Figure A.5: An overview of the WangLandauMonteCarlo class. Only a selection of key methods
are presented.

Within the class, two MonteCarlo simulation objects are created, and initialised using

identical control and topology files, but different configurations. The GibbsMonteCarlo
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class implements an entirely separate main loop, bypassing those of the individual

MonteCarlo Run methods. It proceeds according to Figure A.6.

Current Step = 0

Current Step < 
Maximum Step?

Run()

Output Data Files

End

Current Step + 1

false

true

Optimise Trial Moves

simultationBox1->PerformTrialMove()

simultationBox2->PerformTrialMove()

PerformBarostat()

PerformSwapMove()

Figure A.6: A flow diagram of the main simulation loop implemented by the GibbsMonteCarlo
class.

Within the loop, the individual PerformTrialMove methods of each object are called.

This is followed by calls to the GibbsMonteCarlo implementation of the PerformBarostat

and PerformSwapMove moves. These are almost idential to the same class of methods

implemented by MonteCarlo. They do not however directly alter the coordinates of the

two MonteCarlo objects. Rather, they call the objects Propose... methods. These

essentially force each object to generate a new set of coordinates, pass back the changes

in state, but not enforce the acceptance / rejection criteria. This is instead performed by

the GibbsMonteCarlo implementation of the Test... methods. Acceptance / rejection

of the move is then enforced by calling the individuals objects Commit... or Reject...

methods. This setup results in a remarkably simple and clean GibbsMonteCarlo imple-

mentation, that is easily expanded to an arbitrarily number of coexisting boxes.
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A.2 Input Files

Within this section, the required input files needed to run a simulation using PhaseMC

are presented.

A.2.1 CONFIG File

The CONFIG file defines the dimensions of the simulation box, and contains the coor-

dinates, and types of all atoms in the system. It is identical to the CONFIG file used

in DLPOLY simualtions68. A full description of the file format can be found in the

DLPOLY 4 user manual.

An example CONFIG file for a system of Lennard–Jones particle in a cubic simulation box

is given below:

An example LJ system

0 1 5

6.8476934433e+00 0.0000000000e+00 0.0000000000e+00

0.0000000000e+00 6.8476934433e+00 0.0000000000e+00

0.0000000000e+00 0.0000000000e+00 6.8476934433e+00

S 1

0.070714 0.070714 0.070714

S 2

0.070714 0.070714 1.048956

S 3

0.070714 0.070714 2.027198

S 4

0.070714 0.070714 3.005440

S 5

0.070714 0.070714 3.983681

A.2.2 Control File

The Control file (Control.inp) contains all parameters for the simulation, such as the

type of sampling mode to use, or the number of steps to run for. It is a free-formatted

text file, consisting of a list of keywords, and values. An example file is given below:
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mode mc

ensemble npt

temperature 269.42507

pressure 183.61707

cycles 100000

cutoff 3.0

trajectory 1000

statistics 100

A selection of the main keywords and a description of their role are presented below:

keyword description

temperature f The temperature of the system / K.

cutoff f The cut-off radius for van der Waals interactions / Å.

cycles n The number of cycles to run the simulation for.

ensemble The ensemble to run in - one of nvt, npt, or muvt.

equilibration n The number of equilibration steps.

ewald-cutoff f The real space cut-off radius for electrostatic interactions / Å.

ewald-precision f The precision of the ewald summation.

mode The sampling mode to run in - one of mc, wl or gibb.

mu f The chemical potential of the system (µV T ) / kJmol-1.

pressure f The pressure of the system (NpT ) / katm.

statistics n The frequency with which to print the statistics about the system.

trajectory n The frequency with which to print the simulation trajectory.

A.2.3 Topology File

The topology file (Topol.top) describes the chemical composition, and force field pa-

rameters that are to be used in the simulation. An example file is given below:
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[ atom types ]

# name charge

OW -0.8476

HW 0.4238

[ end ]

[ molecule type Water ]

[ atoms 3 ]

# index type

1 OW

2 HW

3 HW

[ end ]

[ properties ]

rigid

[ end ]

[ end type ]

[ intermolecular ]

# atomA atomB type param1 param2 param3 param4

# e.g. lj eps sigma

# or nm eps sigma n m

# or bhm A B C D sigma

OW OW lj 650.000 3.166

OW HW lj 000.000 0.000

HW HW lj 000.000 0.000

[ end ]

[ system molecules ]

Water 200

[ end ]

[ reservoir molecules ]

Water 0

[ end ]



Appendix A. Monte Carlo Code 111

A.2.4 Energy Bounds File

The energy bounds file (EnergyBounds.dat) is an optional input file used when perform-

ing Wang–Landau sampling simulations. It is used to define the accessible energy ranges

for individual densities. It consists of four columns: the first index column is the index

of volume bin to set the energy range for. Similarly the second column is the index of

particle bin. The third and fourth columns are minimum and maximum energies of the

range respectively, given in J mol-1. An example EnergyBounds.dat file is given below:

0 0 -3719469 -3598791

1 0 -3690450 -3570256

2 0 -3661836 -3542092

3 0 -3633616 -3514290

4 0 -3605784 -3486846

5 0 -3578333 -3459751
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[124] Vogel, T.; Li, Y. W.; Wüst, T.; Landau, D. P. Generic, Hierarchical Framework

for Massively Parallel Wang-Landau Sampling. Physical Review Letters 2013, 110,

210603.

[125] Vega, C.; Sanz, E.; Abascal, J. L. F.; Noya, E. G. Determination of phase diagrams

via computer simulation: methodology and applications to water, electrolytes and

proteins. J. Phys.: Condens. Matter 2008, 20, 153101.

[126] Schneider, S.; Mueller, M.; Janke, W. Convergence of Stochastic Approximation

Monte Carlo and modified Wang–Landau algorithms: Tests for the Ising model.

Computer Physics Communications 2017, 216, 1–7.

[127] Park, S. J.; Ali Mansoori, G. Aggregation and Deposition of Heavy Organics in

Petroleum Crudes. Energy Sources 1988, 10, 109–125.



References 123

[128] Di, L.; Fish, P. V.; Mano, T. Bridging solubility between drug discovery and de-

velopment. Drug Discovery Today 2012, 17, 486–495.

[129] Nyman, J.; Reutzel-Edens, S. Crystal structure prediction is changing from basic

science to applied technology. Faraday Discussions 2018,

[130] Aragones, J. L.; Noya, E. G.; Valeriani, C.; Vega, C. Free energy calculations for

molecular solids using GROMACS. The Journal of chemical physics 2013, 139,

034104.
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