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On the Combined Effect of Due Date Setting, Order Release, and 

Output Control: An Assessment by Simulation 

Abstract 

The Workload Control production planning and control concept for high-variety shops is built on 

the principles of input/output control. Order release is used for input control, to regulate the flow 

of work entering the shop and/or shop floor while capacity adjustments are used for output control, 

to regulate the outflow of work. Both functions together should smooth workloads and stabilize 

throughput times. The literature however has argued that input/output control overemphasizes 

throughput improvements to the detriment of the timing of individual orders and, consequently, 

that it needs to be supplemented by a preceding customer enquiry stage where due dates (or 

delivery lead times) are quoted. Yet, although there are broad separate literature streams on due 

date setting, order release, and output control, there is a lack of research on the three functions 

together. In response, this study uses simulation to assess the combined performance effect of all 

three functions. Results show that each control function can be related to a specific performance 

objective. The degree of emphasis that should be placed on each function therefore depends on a 

company’s specific performance needs. Due date setting and capacity adjustments (output control) 

are shown to support each other as they address different performance objectives. Meanwhile, 

order release (input control) is effective in reducing work-in-process and can play a role in making 

throughput improvements when capacity adjustments are not possible. Findings enhance existing 

literature on the diagnosis of delivery reliability performance in high-variety shops, with important 

implications for research and practice. 

 

Keywords: Workload Control; Due Date Setting; Order Release; Capacity Adjustments; 

 Input & Output Control. 
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1. Introduction 

Workload Control is a production planning and control concept developed for high-variety 

contexts, such as small and medium-sized make-to-order companies, which often have a job shop 

configuration (Zäpfel & Missbauer, 1993; Stevenson et al., 2005). The concept has been shown to 

significantly improve the performance of job shops both through simulation (e.g. Thürer et al., 

2012, 2014) and, on occasions, in practice (e.g. Wiendahl, 1992; Bechte 1994; Hendry et al., 2013; 

Silva et al., 2015). While several different approaches to Workload Control exist (Thürer et al., 

2011), a major unifying principle driving Workload Control is input/output control, i.e. that the 

input rate to the shop should be equal to the output rate (e.g. Wight, 1970; Plossl & Wight, 1971). 

Consequently, there are two control mechanisms within the Workload Control concept (e.g. Land 

& Gaalman, 1996; Kingsman, 2000): (i) input control, which regulates the work that can enter the 

shop and/or shop floor; and (ii) output control, which uses capacity adjustments to regulate the 

outflow of work. Further, there are two performance objectives that together determine delivery 

performance in make-to-order job shops (e.g. Land, 2006): (i) throughput improvement, which 

aims to reduce the average lateness of orders; and, (ii) timing, which aims to reduce the dispersion 

of lateness. As noted by Kingsman et al. (1989), input/output control mechanisms have a strong 

bias towards throughput time stabilization and thus towards improving throughput performance. 

This overlooks the important role of the timing function and due date setting; the latter specifically 

if customer due dates can be determined internally by the company, i.e. are negotiable. In response, 

this study makes a contribution to the literature by using simulation to assess the combined effect 

of due date setting, order release, and output control. 

According to Bertrand & Wortman (1981), there are three main production control functions in 

job shops: due date setting, order release (input control), and output control. However, while there 
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exists a broad literature on the different functions in isolation, literature that assesses the combined 

effect of the different control functions is scarce. Few studies, for example, have examined the 

interactions between due date setting and order release control. Bertrand (1983a) argued that 

controlled order release does not have a significant impact on performance if an effective due date 

setting procedure is applied. Ahmed & Fisher (1992) later found that the true impact of order 

release depends on the set of due date setting and order release rules applied; but the authors did 

not consider the procedure described in Bertrand (1983a). More recently, Thürer et al. (2014) 

demonstrated that an effective due date setting rule and order release control can and should play 

complementary roles in an integrated Workload Control system while Thürer et al. (2016) 

demonstrated that output control can and should complement order release. Hence, there are a few 

papers that have examined pairs of control functions; but to the best of our knowledge, no study 

has examined the combined effect of all three control functions together. This is a major 

shortcoming since it remains unknown whether all three control functions should be implemented 

together or if a subset is sufficient (as argued in Bertrand 1983a); and, if so, which subset should 

be implemented. Addressing this research need is therefore the first objective of our study.  

A second objective of our study is to link the control functions to throughput and timing 

performance objectives. Soepenberg et al. (2012) recently argued that a diagnosis of delivery 

reliability performance is vital if production planning and control decisions are to be improved. 

The authors outlined a diagnosis framework that allows poor delivery reliability to be attributed to 

poor throughput or timing capabilities. The present study seeks to enhance this framework by 

providing an indication of which control function to use to improve delivery reliability. 

The remainder of this paper is structured as follows. In Section 2, we first discuss the Workload 

Control literature, outlining Workload Control and its control functions as applied in our study. 
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The simulation model used to evaluate performance is then described in Section 3. The results are 

presented, discussed, and analyzed in Section 4 before conclusions are provided in Section 5, 

where managerial implications, limitations, and future research directions are also outlined. 

 

2. Workload Control  

This study started by asking:  

 

What is the combined performance effect of due date setting, order release control, and 

output control?  

 

To answer this question, we explore the performance of a comprehensive Workload Control 

concept in a pure job shop using controlled simulation experiments. Workload Control was chosen 

since it integrates all three production control functions. The relevant literature on due date setting, 

order release control, and output control will be discussed in sections 2.1 to 2.3, respectively. Here 

we also outline how each control function is modeled in our study. 

 

2.1 Due Date Setting 

The due date is the date when the order is placed plus a lead time allowance (i.e. the time that the 

customer is willing to wait). In terms of setting lead time allowances, two types of jobs can be 

identified: (i) jobs where the lead time allowance is proposed or quoted by the company and, 

therefore, negotiable; and, (ii) jobs where the lead time allowance is specified by the customer and, 

therefore, relatively fixed (e.g. Ragatz & Mabert 1984; Cheng & Gupta 1989; Kingsman 2000). 

Five different scenarios are modeled to assess the effect of the due date setting rule: 100%, 75%, 

50%, 25% of due dates set using the internal due date setting rule; and, no due dates set internally 
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(i.e. 0% of due dates set by the due date setting rule). The probability that a due date can be set 

internally for an enquiry is modeled as a Bernoulli trial. 

 

2.1.1 Internally (or Endogenously) Set Due Dates 

When a new job j arrives, a feasible due date (
jd ) is determined via forward scheduling whereby 

the following three elements – which constitute the lead time allowance – are added to the current 

time t (see Equation (1)): an allowance 
ja  for the time that a job has to wait in the pre-shop pool 

prior to release; an allowance 
ijb  for the operation throughput time of each operation i in the 

routing 
jR of a job to allow for the shop floor throughput time; and, an external allowance 

jc  that 

compensates for variability between the estimated lead time and the delivery time that is ultimately 

realized. 

 

j

Ri

ijjj cbatd
j

 


         (1) 

 

The Workload Control literature on due date setting typically assumes that jobs are released 

immediately, i.e. that the pool waiting time 
ja  is zero (e.g. Enns, 1995a; Ahmed & Fisher, 1992) 

or constant for all jobs (Hendry et al., 1998; Thürer et al., 2013 and 2014). An exception is Land 

(2009) who presented a method of estimating a dynamic allowance for the pool waiting time, 

which will be used in this study. Following Little’s Law (Little, 1961), Land (2009) estimated the 

pool waiting time based on the total processing time units waiting in the pool to be released to the 

station that is most likely to restrict the release of a job, i.e. the station that has the largest load 

waiting to be released across the stations in the routing of a job. The pool waiting time is given by 

the quotient of this maximum pool load and the maximum output of the station. 



 

 

7 

Most due date setting rules presented in the Workload Control literature differ in the way that 

allowances are determined for the shop floor throughput time. For example, forward infinite 

loading assumes operation throughput times are constant (e.g. Weeks, 1979; Ragatz & Mabert, 

1984; Vig & Dooley, 1993). Meanwhile, other studies link the processing time and shop load to 

the delivery time based on historical data via regression (e.g. Ragatz & Mabert, 1984, Ahmed & 

Fisher, 1992; Vig & Dooley, 1993; Moses et al., 2004) or link the workload at a station to the 

allowance for the operation throughput time (e.g. Nyhuis & Wiendahl, 2009).  

Bertrand (1983a and 1983b) determined a dynamic allowance for operation throughput times 

by fitting a cumulative input curve to a cumulative output curve. Operation due dates 
ijd  for each 

operation i in the routing of a job j, where 
jd0
 is defined as the current date, are successively 

scheduled using the time-phased accepted workload ( A

stW ) and time-phased capacity ( stC ) of the 

corresponding station s – both measures calculated cumulatively up to time bucket t – as follows. 

Starting with the first station in the routing of a job: 

 If the time bucket into which the operation due date would fall if capacity were infinite – that 

is 
ijjiij pdd  1

 – has enough free capacity to include the workload pij of the ith operation of 

job j at the relevant station s – that is sstij

A

st uCpW  with su  equal to the utilization rate – 

then the operation is loaded into the time bucket and the operation due date is given by this time 

bucket.  

 If no or insufficient capacity is available, the next time bucket t+1 is considered until the 

workload has been successfully loaded. 

 

This procedure is then repeated at the next station in a job’s routing until all operation due dates 

have been determined. An operation remains loaded into a time bucket – and thus contributes to 
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the cumulative workload – until it has been completed. This forward finite loading procedure was 

recently identified as the best solution for the Workload Control concept (see, e.g. Thürer et al., 

2013) and will thus be included in our study to set allowances for operation throughput times. The 

time buckets are arbitrarily set to one time unit. 

Finally, the external allowance 
jc  is often included in the allowance for operation throughput 

times in the literature (Hopp & Sturgis, 2000). Notable exceptions that have differentiated between 

an internal (or production) due date and an external (or customer) due date – which is the internal 

due date plus the external allowance – were presented by Bertrand (1983a), Enns (1995b), and 

Hopp & Sturgis (2000). The latter compared the use of a constant external allowance with the use 

of alternative, dynamic external allowances. Numerical results suggested that there are no 

significant performance differences. Therefore, a constant allowance will be used. This allowance 

is set through preliminarily simulation experiments such that the average of the lead time 

allowance is 32 time units, i.e. the average of (exogenously set) lead time allowances, as will be 

described next.  

 

2.1.2 Externally (or Exogenously) Set Due Dates 

Due dates are set exogenously by adding a random lead time allowance, uniformly distributed 

between 28 and 36 time units, to the job entry time. The minimum value will be sufficient to cover 

a minimum shop floor throughput time corresponding to the maximum processing time (4 time 

units) for the maximum number of possible operations (6) plus an allowance for the waiting or 

queuing times of 4 time units. The maximum value has been set such that the percentage of tardy 

jobs is 20% if jobs are released immediately upon arrival and capacity adjustments are not applied. 

Like in all prior Workload Control simulation studies, backward scheduling is performed based on 
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the assumption of infinite capacity. The allowance for operation throughput times is set to 3 time 

units as this value resulted in the best performance during preliminary simulation experiments. 

 

2.2 Input Control - Order Release (and Dispatching) 

There are many order release methods in the Workload Control literature; for examples, see the 

reviews by Wisner (1995), Land & Gaalman (1996), Bergamaschi et al. (1997), and Fredendall et 

al. (2010). In this paper, the LUMS COR (Lancaster University Management School Corrected 

Order Release) method is used because it was recently shown to be the best order release solution 

for Workload Control (Thürer et al., 2012). LUMS COR uses a periodic release procedure 

executed at fixed intervals to control and balance the shop floor workload. This procedure keeps 

the workload R

sW  released to a station s within a pre-established workload norm as follows: 

(1) All jobs in the set of jobs J in the pre-shop pool are sorted according to highest priority 

determined by a pool sequencing rule (as will be described below).  

(2) The job Jj with the highest priority is considered for release first. 

(3) Take Rj to be the ordered set of operations in the routing of job j. If job j’s processing time pij 

at the ith operation in its routing – corrected for station position i – together with the workload 

R

sW released to station s (corresponding to operation i) and yet to be completed fits within the 

workload norm 
sN  at this station, that is 

ij R

s s

p
W N

i
    

jRi , then the job is selected for 

release. That means it is removed from J and its load contribution is included, i.e.  

i

p
WW

ijR

s

R

s :   
jRi . 

Otherwise, the job remains in the pool and its processing time does not contribute to the station 

load.   
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(4) If the set of jobs J in the pool contains any jobs that have not yet been considered for release, 

then return to Step 2 and consider the job with the next highest priority. Otherwise, the release 

procedure is complete and the selected jobs are released to the shop floor. 

 

A released job contributes to R

sW  until its operation at this station is completed. Therefore, the 

load contribution to a station in LUMS COR is calculated by dividing the processing time of the 

operation at a station by the station’s position in a job’s routing. This “corrected” aggregate load 

method (Oosterman et al., 2000) recognizes that a job’s contribution to a station’s direct load is 

limited to only the proportion of the total time that the job spends on the shop floor that it is actually 

at the station.  

In addition to the above periodic release mechanism, LUMS COR incorporates a continuous 

workload trigger. If the load of any station falls to zero, the next job in the pool sequence with that 

station as the first in its routing is released irrespective of whether this would exceed the workload 

norms of any station. The continuous trigger avoids premature station idleness (see, e.g. Kanet, 

1988; Land & Gaalman, 1998). When the continuous workload trigger releases a job, its workload 

contribution to a station is calculated using the same corrected aggregate load approach as is used 

for the periodic release time element of LUMS COR.   

As in previous simulation studies on Workload Control (e.g. Land & Gaalman, 1998; 

Fredendall et al., 2010; Thürer et al., 2012), it is assumed that all jobs are accepted, materials are 

available, and all necessary information regarding shop floor routings, processing times, etc. is 

known. Jobs flow into a pre-shop pool to await release according to LUMS COR. The time interval 

between releases for the periodic element of LUMS COR is set to 4 time units and eleven workload 

norms – from 4 to 14 time units – are considered. As a baseline measure, experiments without 
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controlled order release have also been executed, i.e. where jobs are released onto the shop floor 

immediately upon arrival. 

 

2.2.1 Pool Sequencing Rule 

Two pool-sequencing rules are considered in this study: the Planned Release Date (PRD) and 

Modified Capacity Slack (MODCS) rules. PRD sequences jobs according to planned release dates. 

The planned release date of a job is given by its due date minus a constant allowance for the 

operation throughput time for each operation in its routing. The constant allowance of the operation 

throughput time has been set to 5 time units since this value resulted in the best overall performance 

in preliminary simulation experiments. MODCS, as introduced by Thürer et al. (2015), uses: (i) a 

load-oriented Capacity Slack CORrected (CSCOR – as described below) element to speed up 

production when multiple jobs become urgent; and, (ii) a time-oriented PRD element to ensure 

non-urgent jobs are released so the mix of released jobs can be produced on time. MODCS can be 

summarized as follows:  

(i) Jobs are divided into two classes: urgent jobs, i.e. jobs with a planned release date that falls 

within the next release period or has already passed; and non-urgent jobs. Urgent jobs will 

always receive priority over non-urgent jobs. 

(ii) Within the class of urgent jobs, jobs are sequenced according to the CSCOR rule.  

(iii)Then, within the class of non-urgent jobs, jobs are sequenced according to the PRD rule.  

 

CSCOR is a load-oriented rule that sequences jobs according to a capacity slack ratio based on 

corrected aggregate load measures of the workload, as given by Equation (3) below. This rule 

integrates three elements into one priority measure: (i) the workload contribution of the job (i.e. 

the corrected processing time); (ii) the load gap at a station (i.e. the remaining capacity that is 
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available for orders in the pool to fill); and, (iii) the routing length nj, i.e. the number of operations 

in the routing of a job j, which is used to average the ratio between the load contribution and load 

gap elements over all operations in the routing of the job. The lower the capacity slack ratio (
jS ) 

of job j, the higher the priority of the job. Note that the same rule – but based on an uncorrected 

measure for calculating the load contribution and load gap elements – was originally proposed by 

Philipoom et al. (1993). 

 

j

ij

R
i R s s

j

j

p

i

N W

S
n



 
 
 

 
 
 



          (2) 

 

Finally, the capacity slack ratio could become negative due to the continuous starvation trigger 

incorporated in LUMS COR. This could result in the sequencing rule prioritizing a job that 

contributes to the workload of an already overloaded station. Therefore, if the workload of a station 

is equal to or exceeds the workload norm, that is 0R

s sN W  , then the job is positioned at the 

back of the queue by replacing the component 

ij

R

s s

p

i

N W

 
 
 

 
 
 

 related to this station in the priority 

value jS by 









M

i

pij
, where M is a sufficiently large number. 

 

2.2.2 Priority Dispatching 

For Workload Control due date setting rules to be effective, the dispatching rule applied on the 

shop floor should be related to the way in which operation due dates are determined. This ensures 
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that capacity control takes place, i.e. that capacity is used as planned (Bertrand, 1983a). Therefore, 

dispatching takes place according to operation due dates, i.e. the job with the earliest operation 

due date is chosen from the queue in front of a work center. 

 

2.3 Output Control - Capacity Adjustments 

The main interest of this study in terms of output control is in the operational impact of capacity 

adjustments. We are consequently not interested in the specific adjustment mechanisms used (e.g. 

overtime, outsourcing, etc.) but in the timing of the capacity adjustment, i.e. when and where to 

adjust capacity. To model a capacity adjustment, we simply decrease the operation processing time 

by a predetermined percentage. 

Several capacity planning techniques exist; for a review, the reader is referred to Wortmann et 

al. (1996). In this study, we use the procedure outlined by Land et al. (2015) where capacity 

adjustments are guided by three parameters:  

1. The size of the processing time reduction (α);  

2. The load threshold that triggers the commencement of a capacity adjustment (β); and,  

3. The load threshold signaling that the load has reduced sufficiently to cease the adjustment (γ).  

 

Five different scenarios for the adjustment size α are considered to assess the impact of output 

control: 0 (i.e. no capacity adjustment), 10, 20, 30, and a 40% adjustment. We only use one level 

of β (90th percentile) and one level of γ (85th percentile), which is justified by the performance 

frontier observed in Land et al. (2015).  

The two load thresholds specify which periods will be distinguished as high load periods and 

thus in need of capacity adjustments. These thresholds have been determined numerically based 

on preliminary simulation experiments where we recorded the cumulative frequency distribution 
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of the planned workload (measured in terms of the corrected load) that emerges without capacity 

adjustment for each workload norm being considered and for the scenario where all due dates are 

set externally. The planned workload is the workload in the pool plus the workload released to a 

station that is not yet completed. The load threshold for each workload norm is derived using a 

percentile of this distribution. The different levels for β and γ are summarized in Table 1. The same 

load threshold was applied for all levels of the percentage of due dates set internally. Finally, none 

of the capacity adjustments in our experiments reduced the overall utilization by more than 0.5 

percentage points. 

 

[Take in Table 1] 

 

This section has outlined the Workload Control concept considered and how it will be modeled 

in the simulations. In the next section we outline the characteristics of the pure job shop in which 

the performance of our Workload Control concept will be assessed. 

 

3. Simulation Model 

The shop and job characteristics modeled in the simulations are first outlined in Section 3.1 before 

Section 3.2 summarizes the experimental design and the measures used to evaluate performance. 

 

3.1 Overview of Modeled Shop and Job Characteristics 

A simple job shop model is used to avoid interactions that may interfere with our understanding 

of the effects of the experimental factors. A simulation model of a randomly routed job shop 

(Conway et al., 1967) – later referred to as a pure job shop (Melnyk & Ragatz, 1989) – has been 

implemented in the Python© programming language using the SimPy© simulation module. The 

shop contains six stations, where each station is a single, constant capacity resource. The routing 
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length of jobs varies uniformly from one to six operations. All stations have an equal probability 

of being visited and a particular station is required at most once in the routing of a job. Operation 

processing times follow a truncated 2-Erlang distribution with a mean of 1 time unit after 

truncation and a maximum of 4 time units. The inter-arrival time of jobs follows an exponential 

distribution with a mean of 0.648, which – based on the average number of stations in the routing 

of a job – deliberately results in a utilization of 90%. While any individual job shop in practice 

will differ in many aspects from this stylized environment, it captures the typical job shop 

characteristics of high routing variability, processing time variability, and arrival variability.  

 

3.2 Experimental Design and Performance Measures 

The experimental factors are: (i) the five levels of the percentage of due dates set internally by the 

due date setting rule (100%, 75%, 50%, 25%, and 0%); (ii) the eleven levels of the workload norm 

for LUMS COR (from 4 to 14 time units); (iii) the two pool sequencing rules (PRD and MODCS); 

and, (iv) the five levels of capacity adjustment reflected by α.  

A full factorial design was used with 550 (5x11x2x5) scenarios, where each scenario was 

replicated 100 times. Results were collected over 10,000 time units following a warm-up period 

of 3,000 time units. Since we focus on a make-to-order job shop, our main performance indicator 

will be delivery performance. Delivery performance will be measured by: the percentage tardy – 

i.e. the percentage of jobs completed after the due date; and, the mean tardiness, that is 

),0max( jj LT  , with 
jL  being the lateness of job j (i.e. the actual delivery date minus the due 

date of job j). To assess timing performance we measure the standard deviation of lateness. To 

assess throughput performance, we measure the mean lead time – i.e. the mean of the completion 

date minus the pool entry date across jobs. Please note that the fixed arrival rates in the simulation 

determine the total throughput that can be realized. Therefore, the throughput improvement 
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capabilities of a production control method will manifest itself in shorter total throughput times, 

i.e. lead times, rather than increased throughput.  As an instrumental performance variable, the 

average shop floor throughput time is also evaluated. While the lead time includes the time that an 

order waits before being released, the shop floor throughput time only measures the time after an 

order has been released to the shop floor. By Little’s law, the average shop floor throughput time 

is directly related to the average level of work-in-process on the shop floor. 

 

4. Results 

Statistical analysis has been conducted by applying ANOVA to obtain a first indication of the 

relative impact of the experimental factors. ANOVA is here based on a block design, which is 

typically used to account for known sources of variation in an experiment. In our ANOVA, we 

treat the workload limit as the blocking factor. The results are summarized in Table 2. All main 

effects and most two-way and three-way interactions were shown to be statistically significant. 

Detailed performance results will be presented and discussed next in Section 4.1 – first for each 

control function in isolation, followed by the results for pairs of functions, and finally for the 

combination of all three functions together. Section 4.2 then discusses the relationship between 

the control functions and the throughput and timing performance objectives.  

 

[Take in Table 2] 

 

4.1 Performance Assessment 

In Figure 1 we depict the percentage tardy, mean tardiness, standard deviation of lateness, and lead 

time results against the throughput time results for the scenario where all due dates are set 

internally by the due date setting rule (Figure 1a) and for the scenario where all due dates are set 



 

 

17 

externally, i.e. the due date setting rule is not active (Figure 1b). Only the results for PRD pool 

sequencing are presented in Figure 1, with the impact of the MODCS pool sequencing rule 

discussed in Section 4.2 below. Meanwhile, results for the intermediate settings of the percentage 

of due dates set internally are presented in Figure 2a (75%), Figure 2b (50%), and Figure 2c (25%). 

The results are presented in the form of performance curves, where the left-hand starting point of 

the curves represents the tightest workload norm of 4 time units. The workload norm increases 

step-wise by moving from left to right in each graph, with each data point representing one 

workload norm (from 4 to 14 time units). Loosening the norms (towards a norm of 14 time units) 

increases the workload on the shop floor and, as a result, the throughput time on the shop floor. In 

addition, the results obtained when jobs are released immediately are also included. These results 

are given by the single point towards the right-hand side of each figure and represent the outcome 

when no order release control is applied, i.e. immediate release.  

 

[Take in Figure 1 & Figure 2] 

 

In terms of the main effects, the following can be observed from the results: 

 Due Date Setting in Isolation: This can be observed from the results for immediate release with 

no capacity adjustments (i.e. the single point towards the right-hand side) in Figure 1 and Figure 

2. From the figures, we can observe a strong reduction in the percentage tardy, mean tardiness, 

and the standard deviation of lateness when due dates are set internally. 

 Order Release in Isolation: This can be observed from the curve for no adjustment and all due 

dates set externally by the customer (Figure 1b). We observe a reduction in the percentage tardy 

and mean tardiness when order release control is applied if norms are set appropriately (i.e. 

neither too loosely nor too tightly). It can be concluded that this reduction is due to a reduction 
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in the lead time, i.e. a throughput improvement, since the standard deviation is either maintained 

or it increases.  

 Capacity Adjustments in Isolation: This can be observed from the results for immediate release 

(the single point towards the right-hand side) and all due dates set externally by the customer 

(Figure 1b). We observe a strong improvement in all performance measures when capacity 

adjustments can be made. 

 

Due date setting and capacity adjustments both improve delivery performance; the former 

through improved timing and the latter through improved throughput. This can be explained by 

the strong correlation between high load periods (when capacity adjustments are triggered) and 

tardiness (Land et al., 2015). In fact, if there is an overload, management may either increase the 

lead time allowance or increase capacity, i.e. both functions can improve delivery reliability at the 

moment when this is required by the high load. Order release has a weaker impact since its load 

balancing mechanism neglects the workload situation. While a larger set of available orders in the 

pool makes more effective load balancing more likely, this effect is weaker compared to capacity 

adjustments. The effectiveness of load balancing can be seen from the lead time reductions. But 

the main role of controlled order release is to shift work from the shop floor to the pre-shop pool, 

which results in shorter shop floor throughput times, better prioritizations, and a leaner shop floor.  

If we look at the performance impact of combining two of the three production control 

functions, the following can be observed: 

 Due Date Setting and Order Release: This can be observed from the curves in Figure 1 and 

Figure 2 for no capacity adjustment. We observe that all performance measures improve when 

a larger percentage of due dates can be determined internally; but here the influence on lead 

time performance is at its weakest. The order release function is able to enhance this lead time 
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performance in combination with a strong reduction in shop floor throughput times. The impact 

of the order release function is stronger when not all due dates are set internally (i.e. Figure 1b 

and Figure 2a-2c).  

 Due Date Setting and Capacity Adjustments: This can be observed from the results for 

immediate release, i.e. the four single points towards the right-hand side in all figures, with  the 

differences between points within a given figure demonstrating the influence of capacity 

adjustments and the differences between figures demonstrating the influence of due date setting. 

Both control functions impact on all performance measures and are highly complementary. Due 

date setting especially improves the standard deviation of lateness while the main effect of 

capacity adjustments is on reducing the lead time. Together, they strongly reduce the percentage 

tardy and the average tardiness. In the absence of any order release control, all improvements 

take place at high shop floor throughput times, i.e. at a high level of work-in-process.  

 Order Release and Capacity Adjustments: This can be observed from the curves where all due 

dates are set externally by the customer (Figure 1b). Both functions support each other in 

reducing lead times. Order release allows this improvement to be combined with a strong 

reduction in shop floor throughput times, i.e. work-in-process. However, the detrimental effect 

of the order release function on the standard deviation of lateness and on the average tardiness 

limits the reduction in percentage tardy when the two functions are combined. To ensure the 

lowest percentage tardy when capacity adjustments are possible, order release should only be 

used to enable a relatively small reduction in work-in-process. 

 

The combined effect of the three functions, i.e. Due Date Setting, Order Release, and Capacity 

Adjustments, can best be observed from Figure 1a and Figure 1b, while Figure 2 depicts the 

intermediate levels of due date setting (i.e. where 75%, 50%, and 25% of due dates are set 
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internally). It can be concluded from the figures that the best performance is in fact realized by 

combining all three control functions. This can be seen from observing the lowest points across all 

curves. However, if both the due date setting and capacity adjustment functions can be executed 

to an intensive degree, order release can only be used to achieve a limited reduction in work-in-

process, as represented by the shop floor throughput time. Strong reductions in work-in-process 

would be to the detriment of other performance measures. Hence, workload norms have to be 

calibrated in combination with the use of the other control functions. 

Finally, similar conclusions on the impact of order release control (as under PRD pool 

sequencing) can be obtained for order release under MODCS sequencing. This can be observed 

from Figure 3a and Figure 3b, which provide the results for the same scenarios as in Figure 1 but 

under MODCS pool sequencing. However, compared to PRD pool sequencing, a much stronger 

reduction in the percentage of tardy jobs can be observed for MODCS. Meanwhile, the 

performance differences between the different levels of the capacity adjustment diminish. As an 

exception, the standard deviation of lateness does not improve, and this can be explained by the 

creation of SPT effects through the use of the MODCS sequencing rule.  

 

[Take in Figure 2] 

 

4.2. Discussion of Results: Throughput Improvements and Timing Performance 

In terms of our two performance objectives – throughput improvement, which aims to reduce 

average lateness, and timing, which aims to reduce the dispersion of lateness – the following can 

be observed from the results: 

 Throughput Improvement: Results confirm that order release and output control (capacity 

adjustments) have the strongest impact on lead times whereby order release mainly affects the 
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share of the shop floor throughput time while capacity adjustments directly affect the total lead 

time. We can also observe a reduction in the lead time and shop floor throughput time for due 

date setting. This reduction can however be explained by SPT effects, which are created as part 

of the forward loading procedure since operations with short processing times find it easier to 

fit within the capacity norm (Thürer et al., 2013).   

 Timing Performance: Results confirm that due date setting has the strongest impact on the 

standard deviation of lateness. But order release and output control (capacity adjustments) may 

also positively impact this performance measure. Order release may have a positive impact 

through its PRD pool sequencing rule, which considers the urgency of jobs; and output control 

improves performance since the periods of high load are also the periods during which orders 

are at the highest risk of becoming tardy. 

 

Table 3 summarizes our findings on the link between the three control functions and the two 

key performance objectives. Our results confirm Kingsman et al. (1989) in the sense that 

input/output control has a bias towards load balancing, although it also realizes good delivery 

performance in contexts where the urgency of orders and the size of the workload are highly 

correlated. We therefore agree with Kingsman et al. (1989) that input/output control should be 

enhanced by a customer enquiry stage where due dates or delivery lead times (and prices) are 

quoted, especially in make-to-order contexts where due dates are negotiable. Further, if due dates 

are fully under the control of the company then using an effective due date setting rule is likely to 

have a stronger impact on delivery performance than input/output control. 

 

[Take in Table 3] 
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5. Conclusions 

Workload Control is a production planning and control concept that was developed for high-

variety contexts. A unifying principle of Workload Control methods is input/output control 

whereby input control, such as in the form of an order release mechanism, is used to regulate the 

work that can enter the shop and/or shop floor; and output control, such as in the form of capacity 

adjustments, is used to regulate the outflow of work. It has however been argued in the literature 

that input/output control overemphasizes throughput improvements to the detriment of the timing 

performance objective; and that input/output control should therefore be enhanced by a customer 

enquiry stage where due dates are quoted. Yet, although a broad literature on due date setting, 

order release, and output control exists, literature on the combined effect of the three control 

functions is limited.  

In response to the above, this study has asked: What is the combined performance effect of due 

date setting, order release control, and output control? Using simulation, we have confirmed 

earlier arguments and also shown that each control function can be related to a specific 

performance objective. Consequently, the best performance for all scenarios is realized via the 

combined use of all three control levels, i.e. by realizing load balancing and timing. Due date 

setting and output control in particular are shown to be highly supportive of each other as they 

address different performance objectives; therefore, their effect is complementary and additive. 

The contribution of order release to throughput improvement diminishes when capacity 

adjustments are in place. Without capacity adjustments, order release can take over part of this 

function to reduce the average lead time. In all settings, order release helps to realize a reduction 

in shop floor times, which can be important for exploiting the typical gains of a lean shop floor. 
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The managerial implications of our findings will be discussed next before the paper closes with its 

limitations and proposed future research directions. 

 

5.1 Managerial Implications 

Our results have demonstrated that the best performance can be achieved by combining the three 

control functions; but a significant investment may be necessary in order to successfully implement 

all three functions together. Moreover, in practice each shop is likely to require a different balance 

between throughput and timing improvements to eventually improve delivery reliability. So a 

trade-off may have to be made between the degree to which a control function is implemented in 

line with the costs, additional complexity, and required performance improvement. The required 

performance improvement can be identified using, for example, the diagnosis framework outlined 

in Soepenberg et al. (2008, 2012). Our study indicates the control function to use in order to best 

achieve this performance improvement. We saw that each of the three control functions has a major 

impact on a specific performance measure:  

1. Due date setting on the standard deviation of lateness;  

2. Order release (input control) on the shop floor throughput time or level of work-in-process; and, 

3. Capacity adjustments (output control) on the lead time.  

So, due date setting has a strong effect on timing and order release and output control on improving 

throughput. A company should therefore first diagnose their shop to identify which of the two – 

poor average throughput times or poor timing – is the main cause of unsatisfactory delivery 

performance and then implement or improve the corresponding control function(s). 
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5.2 Limitations and Future Research 

A shortcoming of our study is the limited environmental setting. While this is justified by the need 

to keep this study focused, future research is required to assess the impact of environmental factors 

such as the routing direction or level of processing time variability on performance. Similarly, we 

have only used one production control system, i.e. Workload Control. While this is justified by the 

job shop model applied in this study, future research could explore the impact of other production 

control systems on throughput and timing performance. This includes the development of control 

systems that integrate the two different performance objectives into one control decision. 
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Table 1: Summary of the Corrected Planned Workload Thresholds used in the Simulations 
 

 
Norm 

4 
Norm 

5 
Norm 

6 
Norm 

7 
Norm 

8 
Norm 

9 
Norm 

10 
Norm 

11 
Norm 

12 
Norm 

13 
Norm 

14 
IMM 

PRD 
β  23.64 22.16 21.01 20.23 19.65 19.24 18.93 18.72 18.59 18.48 18.43 18.93 

γ 20.46 19.19 18.24 17.58 17.1 16.79 16.54 16.38 16.28 16.21 16.16 16.54 

MODCS 
β 24.11 23.19 22.44 21.72 21.14 20.65 20.22 19.72 19.39 19.11 18.84 20.22 

γ 20.73 19.88 19.16 18.55 18.04 17.62 17.29 16.92 16.69 16.52 16.35 17.29 

 

 

Table 2: ANOVA Results 
 

 Source of Variance 
Sum of 

Squares 
Degree of 
Freedom 

Mean 
Squares 

F-Ratio 
p-

Value 

Lead Time 

Norm 14580.006 10 1458.001 1012.440 0.000 

Percent Due Date Internal (DD) 16229.146 4 4057.287 2817.400 0.000 

Pool Sequencing Rule (SR) 5886.250 1 5886.250 4087.440 0.000 

Capacity Adjustment (CA) 28319.972 4 7079.993 4916.390 0.000 

DD x SR 279.250 4 69.813 48.480 0.000 

DD x CA 24.448 16 1.528 1.060 0.387 

SR x CA 512.752 4 128.188 89.010 0.000 

DD x SR x CA 3.206 16 0.200 0.140 1.000 

Residual 79118.034 54940 1.440   

Percentage 
Tardy 

Norm 7.624 10 0.762 1452.790 0.000 

Percent Due Date Internal (DD) 57.242 4 14.310 27268.230 0.000 

Pool Sequencing Rule (SR) 2.950 1 2.950 5621.560 0.000 

Capacity Adjustment (CA) 6.770 4 1.693 3225.140 0.000 

DD x SR 4.439 4 1.110 2114.460 0.000 

DD x CA 2.769 16 0.173 329.810 0.000 

SR x CA 1.291 4 0.323 614.880 0.000 

DD x SR x CA 0.446 16 0.028 53.110 0.000 

Residual 28.833 54940 0.001   

Mean 
Tardiness 

Norm 7036.528 10 703.653 8864.450 0.000 

Percent Due Date Internal (DD) 2984.158 4 746.040 9398.430 0.000 

Pool Sequencing Rule (SR) 1281.996 1 1281.996 16150.290 0.000 

Capacity Adjustment (CA) 2432.767 4 608.192 7661.860 0.000 

DD x SR 121.393 4 30.348 382.320 0.000 

DD x CA 684.268 16 42.767 538.770 0.000 

SR x CA 2.710 4 0.678 8.540 0.000 

DD x SR x CA 75.917 16 4.745 59.770 0.000 

Residual 4361.091 54940 0.079   

Standard 
Deviation of 

Lateness 

Norm 206217.040 10 20621.704 8300.240 0.000 

Percent Due Date Internal (DD) 192119.800 4 48029.951 19332.070 0.000 

Pool Sequencing Rule (SR) 82494.553 1 82494.553 33204.090 0.000 

Capacity Adjustment (CA) 92636.006 4 23159.001 9321.510 0.000 

DD x SR 1254.560 4 313.640 126.240 0.000 

DD x CA 3478.860 16 217.429 87.520 0.000 

SR x CA 12333.877 4 3083.469 1241.100 0.000 

DD x SR x CA 106.462 16 6.654 2.680 0.000 

Residual 136496.770 54940 2.484   
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Table 3: Link between Control Functions and Performance Objectives 
 

 Performance Objective 

Throughput Timing 

Control 
Function 

Due Date Setting 

Weak impact through the forward 
loading mechanism, which combined 
with the dispatching rule introduces 
SPT effects  

Strong impact on timing performance 

Order Release 
Strong impact on the shop floor 
throughput time, weaker impact on the 
total lead time 

Weak impact through the pool 
sequencing rule 

Output Control 
(Capacity 
Adjustments) 

Strong impact on the total lead time 
Weak impact the through relationship 
between high-load periods and urgency  
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 (a) 100% of DDs Set Internally (b) All DDs Set Externally 
 

 
 

Figure 1: Performance Comparison for PRD Pool Sequencing:  

100% of DDs Set Internally and All DDs Set Externally (0% of DDs Set Internally) 
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 (a) 75% DDs Set Internally (b) 50% DDs Set Internally (c) 25% DDs Set Internally 

 
 

Figure 2: Performance Comparison for PRD Pool Sequencing: 

75%, 50%, and 25% of DDs Set Internally 
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 (a) 100% of DDs Set Internally (b) All DDs Set Externally 
 

 
 

Figure 3: Performance Comparison for MODCS Pool Sequencing:  

100% of DDs Set Internally and All DDs Set Externally (0% of DDs Set Internally) 


