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The Vehicle Routing Problem with Discrete Split Deliveries and Pickups is a variant of the Vehicle Routing Problem 

with Split Deliveries and Pickups, in which customers’ demands are discrete in terms of batches (or orders). It exists 

in the practice of logistics distribution and consists of designing a least cost set of routes to serve a given set of 

customers while respecting constraints on the vehicles’ capacities. In this paper, its features are analyzed. A 

mathematical model and tabu search algorithm with specially designed batch combination and item creation 

operation are proposed. The batch combination operation is designed to avoid unnecessary travel costs, while the 

item creation operation effectively speeds up the search and enhances the algorithmic search ability. Computational 

results are provided and compared with other methods in the literature, which indicate that in most cases the proposed 

algorithm can find better solutions than those in the literature. 
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1. Introduction 

  In the classical Vehicle Routing Problem (VRP), customers have only a single (delivery or pickup) demand. 

However, the increasing focus on environmental protection has led to the development of reverse logistics; in 

addition to distribution to customers, recycled or remanufactured items have to be transported in the reverse 

direction. Variants of the VRP have been proposed in response to such conditions and are named VRPs with 

Deliveries and Pickups (VRPDPs) in this paper. Parragh et al. (2008) classified VRPDPs into four sub-problems: 

the VRP with Clustered Backhauls (VRPCB), VRP with Mixed Linehauls and Backhauls (VRPMB), VRP with 

Simultaneous Delivery and Pickup (VRPSDP) and VRP with Divisible Delivery and Pickup (VRPDDP). The 
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linehaul and backhaul customers in the VRPCB and VRPMB are different, which means that all the customers can 

only have one kind of demand (delivery or pickup). The difference between the VRPCB and the VRPMB is that the 

former requires that all linehauls must be visited before any backhaul, and the latter allows linehauls and backhauls 

to occur in any sequence during a trip. In contrast to the VRPCB and VRPMB, customers in the VRPSDP and 

VRPDDP can have both delivery and pickup demands. In the VRPSDP, the restriction of serving these two 

demands per customer at the same time must be satisfied. However, in the VRPDDP it is not required that every 

customer is only visited once. Rather, two visits, one for delivery and one for pickup are possible. 

  Considering that customers may prefer one vehicle stop for the sake of convenience, the VRP and VRPDP 

always assume that each customer can only be visited once, belonging to problems without split demand. However, 

it is not rare to find that the demands of customers are transported by a variety of vehicles, and both theoretical 

research and practical applications have proved that splitting loads is beneficial by taking advantage of the vehicle 

capacity and reducing the vehicle travel cost. Problems of this type are classified as ones with split demand. Since 

Dror and Trudeau (1989) introduced the Split Delivery Vehicle Routing Problem (SDVRP), which is well known in 

the literature, a growing number of academics have worked in the field of split demand. To cater to the split case of 

VRPDPs, Mitra (2005, 2008) proposed the Vehicle Routing Problem with Split Deliveries and Pickups 

(VRPSPDP).  

  In the literature on problems with split loads, most are assumed to be continuous ones, in which customers’ 

demands can be split flexibly into loads of any amount in terms of units (minimum unit of measure). This 

assumption has a practical application background but also has limitations. In an actual logistics operation, loads 

may be assigned to a number of independent batches or orders. One batch or order, composed of several units or 

only one unit, is taken as a whole and cannot be split. This means that customers’ demands are discrete. For 

example, one unit can be one kilogram (kg) or one cubic meter (m3) according to whether the loads are measured 

by weight or volume. If a laptop weighs 4kg (units), it cannot be split into four parts with each part weighing one 

unit, so the laptop can be seen as a discrete batch (order). Considering another situation, because diverse types of 

cargoes may require different loading and unloading equipment and conveyance, allocating the same kind of loads 

to one batch (order) as a whole may be preferred for efficiency. To the best of our knowledge, the VRP with 

Discrete Split Deliveries and Pickups (VRPDSPDP) is presented in the literature for the first time in this study. 

  The contribution of this study on the VRPSDPDP is twofold: firstly, it describes the problem and establishes a 

corresponding mathematical model, analyses the features of the VRPDSPDP and presents the optimal solution 

properties of the problem; secondly, it develops a tabu search algorithm with two individual operations designed to 



avoid unnecessary travel costs, speed up the search and enhance the algorithmic search ability. The proposed 

heuristic is tested, and the results are compared with those in the related literature.   

2. Literature Review 

2.1. Problems with Split Loads 

Splitting loads such that the delivery of certain loads is conveyed by multiple vehicles rather than one results in 

opportunities for a reduction in number of vehicles used and travel distance. Several studies have shown the benefit 

of split loads for the classic VRP. (Dror et al., 1989, 1990; Belenguer et al., 2000; Ho and Haugland, 2004; Archetti 

et al., 2006a, 2006b, 2008a, 2008b, 2011, 2014; Derigs et al., 2010; Moreno et al., 2010; Wilck IV and Cavalier, 

2012a, 2012b; Berbotto et al., 2014; Khmelev and Kochetov, 2015; Silva et al., 2015; Ozbaygin et al., 2018). The 

SDVRP is reviewed by Archetti and Speranza (2008), while in Golden et al. (2008), a more general overview of the 

literature where split deliveries are considered is presented. More recently, Archetti and Speranza (2012) provided a 

survey on the SDVRP that also overviews its variants and in general all routing problems that consider split 

deliveries. 

There has been nearly 30 years since the earliest concept of split (Dror et al., 1989, 1990), and in the previous 10 

years, split was only considered in single demand problems (VRPs) until the first paper on the VRPMB with split 

loads (SVRPMB) appeared in Mosheiov (1998). His model created several fictitious co-located customers each 

with unit demand for each original customer. The first paper studied on the VRPSPDP is presented by Mitra (2005). 

In the VRPSPDP, split deliveries and pickups are permitted, which implies that each customer may be visited by 

more than one vehicle and more than once by the same vehicle. In Mitra (2005), a MILP formulation is presented 

and the same problem is also studied in Mitra (2008). On the base of Mitra’s research, Wang et al. (2010) 

considered time windows in the VRPSPDP. Yin et al. (2013) proposed a special mathematical model for the 

VRPSPDP, in which two new pre-conditions were assumed. One was an identical maximum travel distance 

constraint for all vehicles, and the other restricted each customer’s demand to be split only once. In connection to 

the VRPSDP, the VRPDDP is an interesting split case problem, in which the customers may have both delivery and 

pickup demands and be served twice. There is a significant distinction between the VRPDDP and the VRPSPDP. 

While at most two separate visits to each customer in the VRPDDP are allowed, one visit for deliveries and the 

other for pickups, there is no restriction on the number of visits in the VRPSPDP. Thus, the authors consider that 

regarding the VRPDDP as a constrained VRPSPDP is reasonable. Assuming that each customer’s delivery and 



pickup demands in the VRPDDP are two discrete batches (orders), the VRPDDP can be viewed as a problem with 

discrete split loads. 

2.2. Problems with Discrete Demands 

To the best of our knowledge, the concept of discrete demands was introduced by Nakao and Nagamochi (2007), 

who defined a VRP with such a requirement as a VRP with Discrete Split Demand (DSDVRP). In this problem, 

each customer requires the demand of different batches (orders). The demand of each batch (order) can be greater 

than one (unit) and, while a customer can be visited more than once, each item has to be served by exactly one 

vehicle. Following Nakao and Nagamochi, Salani and Vacca (2011) added a restriction of time windows to the 

DSDVRP. Chen et al. (2017) proposed two a priori split strategies and aimed to split each customer’s demands into 

several discrete items. The next paper to focus on discrete demands was presented by Fu et al. (2017), who 

introduced a related problem to the DSDVRP named the VRP with Soft Time Windows Split Deliveries by Order 

(VRPSTWSDO). Xia et al. (2018) extended the research on the VRPSTWSDO.  

There are other papers on problems related to the DSDVRP. Gulczynski et al. (2010) considered a special 

SDVRP in which split deliveries are allowed only if a minimum fraction of a customer’s demand is serviced by a 

vehicle and named the problem the SDVRP with Minimum Delivery Amounts (SDVRP-MDA). Minimum delivery 

can be regarded as a batch (order) that cannot be split any further; thus, the SDVRP-MDA falls into the field of the 

DSDVRP. Han and Chu (2016) also proposed the SDVRP-MDA with a more restricted constraint that the 

minimum demand amounts cannot exceed half of the vehicle capacity.  

In this paper, the VRPDDP can be classified as a special case of problem with discrete demands. Anily (1996) 

firstly presented the study on the VRPCB, which considers divisible pickups and deliveries. The VRPDDP itself 

was introduced by Salhi and Nagy (1999) and Nagy and Salhi (2005). Nagy and Salhi (2005) proposed a new set of 

routines devised specially for the VRPDDP, such as Neck (split a customer into a linehaul and backhaul) and 

Unneck (merge the linehaul and backhaul of the same customer). Recently Wassan et al. (2013), Nagy et al. (2015) 

and Polat (2017) focused on this interesting but rarely addressed problem. A brief list of literature for problems with 

discrete demands is illustrated in Table 1. However, limited work has considered discrete demands in the VRPSPDP. 

To the best of our knowledge, the VRP with Discrete Split Deliveries and Pickups (VRPDSPDP) is presented in the 

literature for the first time in this study. 



Table 1   

Literature for problems with discrete demands 

Paper Problem Paper Problem 

Nakao and Nagamochi (2007) DSDVRP Anily (1996) DVRPCB 

Gulczynski et al. (2010) SDVRP-MDA Salhi and Nagy (1999) VRPDDP 

Han and Chu (2016) SDVRP-MDA Nagy and Salhi (2005) VRPDDP 

Chen et al. (2017) DSDVRP Wassan et al. (2013) VRPDDP 

Fu et al. (2017) VRPSTWSDO Nagy et al. (2015) VRPDDP 

Xia and Fu (2018) VRPSTWSDO Polat (2017) VRPDDP 

2.3. Tabu Search and Local Search Algorithms 

For the sake of conciseness, our review is restricted to VRPDPs only. Koç and Laporte (2018) provided a general 

overview of papers for the VRPDPs until 2017 with detailed comparison of computational performance of solution 

methods, while Irnich et al. (2014) provided a general overview of VRPDPs papers from 2002 to 2014, without 

comparisons of computational performance. Parragh et al. (2008) comprehensively reviewed the pickup and 

delivery problems until 2007. Since the VRPDPs are NP-hard, more advanced procedures rather than simple 

interchange schemes have been developed in these years. Koc and Laporte (2018) pointed out that the main 

methods are the constructive heuristics integrated with Tabu Search (TS) and local search algorithms. 

For the problems without split loads, Osman and Wassan (2002) firstly introduced a reactive TS for the VRPCB. 

The reactive concept is used to speed up the neighborhood structures for intensification and diversification phases. 

Later, Wassan (2007) combined the TS by Osman and Wassan (2002) with an adaptive memory programming 

scheme, which is capable of maintaining a set of elite solutions for searching the unexplored regions of the solution 

space and has been extended for further research on the VRPSDP (Wassan, 2008), the VRPDDP (Wassan, 2013) 

and the VRP with Restricted mixing of Deliveries and Pickups (VRPRMDP) (Nagy et al., 2013). Crispim and 

Brandão (2005) proposed a hybrid algorithm for both VRPMB and VRPSDP that combines TS and variable 

neighborhood descent and Brandão (2006) presents a new TS algorithm that starts from pseudo-lower bounds. 

Chen and Wu (2006) developed a hybrid heuristic based on the record-to-record travel (RRT) method of Dueck 

(1993) and tabu lists from the TS. Meanwhile, Yu and Qi (2014) proposed two TS algorithms based on RRT for an 

industrial application case study. Hoff et al. (2009) studied lasso solution strategies for the VRPDPs and developed 

a TS heuristic that is capable of generating lasso solutions. Avci and Topaloglu (2016) studied a heterogeneous 

VRPSDP (HVRPSDP) and developed a hybrid local search algorithm in which a non-monotone threshold adjusting 



strategy is integrated with tabu search. In addition, there are other relevant papers applying TS in the literature, 

such as Alfredo Tang Montané and Galvão (2006), Bianchessi and Righini (2007), Zachariadis et al. (2009). 

  Until 2013, several heuristics mainly based on constructive methods have been developed for the problems with 

split loads. Two heuristics of a Tour Partitioning (TP) type were presented for the SVRPMB: Exhaustive Iterated 

Tour Partitioning (EITP) and Full Capacity Iterated Tour Partitioning (FCITP). Mitra (2005) proposed a route 

construction heuristic for the first VRPSPDP, on the basis of which a parallel clustering technique was developed 

three years later (Mitra, 2008). Wang et al. (2010) introduced a novel cluster-first-routing-second heuristic, 

Competitive Decision Algorithm (CDA), to solve the problem of VRPSPDP with Time windows (VRPSPDPTW). 

In 2015, Wang et al. achieved better solutions for the VRPSPDP using the CDA. The only TS heuristic for the 

VRPSPDP was introduced by Yin et al. (2013), except the Adaptive Guidance (AG) mechanism with TS from 

Archetti et al. (2006b) for the Vehicle Routing Problem with Splits and Clustered Backhauls (SVRPCB) (Lai et al., 

2015). There are three VRPDDP papers in the literature more recently. Wassan and Nagy (2013) and Nagy et al. 

(2015) studied the problem both using the meta-heuristic of reactive Tabu Search algorithm, and Polat (2017) 

solved the problem by a parallel variable neighborhood search. A brief list of literature for VRPDPs with split loads 

is presented in Table 2. 

Table 2   

Literature for VRPDPs with split loads 

Paper Problem Heuristic 

Polat (2017) VRPDDP Parallel Variable Neighborhood 

Wang et al. (2015) VRPSPDP Competitive Decision Algorithm (CDA) 

Nagy et al. (2015) VRPDDP Tried-and-tested Reactive Tabu Search Algorithm of Wassan et al. (2008) 

Lai et al. (2015) SVRPCB Adaptive Guidance (AG) Meta-Heuristic 

Wang et al. (2014) VRPSPDP Two-stage Heuristic 

Yin et al. (2013) VRPSPDP Tabu Search (TS) Algorithm 

Wassan and Nagy (2013) VRPDDP Reactive Tabu Search (RTS) Meta-Heuristic 

Wang et al. (2013) VRPSPDPTW Two-stage Heuristic 

Wang et al. (2010) VRPSPDPTW Competitive Decision Algorithm (CDA) 

Mitra (2008) VRPSPDP Parallel Clustering Algorithm 

Mitra (2005) VRPSPDP Constructive Algorithm (Tour Partitioning Algorithm) 

Mosheiov (1998) SVRPMB Exhaustive Iterated Tour Partitioning (EITP) 

Full Capacity Iterated Tour Partitioning (FCITP) Heuristics 



3. Problem Description and Properties 

  The VRPDSPDP aims to design the optimal set of routes to serve all customers with demands at the lowest cost 

(with the fewest vehicles and shortest trip distance) while satisfying the constraints as follows: 

(1) All the vehicles depart from and return to the same depot; 

(2) All the vehicles are homogeneous, and overloading is not allowed; 

(3) Customers may have both delivery and pickup demands, either of which may exceed the vehicle capacity; 

(4) Each customer can be visited by a variety of vehicles or several times by one vehicle; 

(5) Linehauls and backhauls can occur in any sequence along a vehicle route; 

(6) There is no restriction on time windows or maximum route length. 

  In general, the fixed costs associated with owning or hiring one more vehicle are much larger than the saving by 

shortening the trip distance at the cost of using more vehicles. Thus, we set the minimum number of vehicles used 

as an input parameter, which is calculated by the equation introduced by Mitra (2005): 

 max ,
=

cumulative delivery demand cumulative pickup demand
K

vehicle capacity

 
 
 

 

Let  ,G V E  be a given undirected network, where  = 0V NU  is the vertex set (vertices 1 ,i n K,  

correspond to the customers, while vertex 0 corresponds to the depot) and   , , ,E i j i j V i j    is the edge set. 

Each edge  ,i j E  corresponds to a non-negative ijc , representing the cost travelling from vertex i to vertex j. 

The maximum vehicle capacity is Q, and the number of vehicles used is K. We set iDM  and iPM  as the number 

of delivery batches and pickup batches of customer i, respectively. m

id  ( 1, , im DM K ) is the demand load of the 

mth delivery batch of customer i; thus, 
1

iDM m

i im
D d


  expresses the total amount of delivery goods of customer i. 

m

ip  ( 1, , im PM K ) is the mth pickup batch demand of customer i; 
1

iPM m

i im
P p


  is the total amount of pickup 

goods of customer i. 

3.1. Formulation of the VRPDSPDP 

The following are decision variables: 

k

ijd : amount of delivery loads moved from customer i to customer j by vehicle k; 

k

ijp : amount of pickup loads moved from customer i to customer j by vehicle k; 

  k

ijx : equals 1 if vehicle k travels from customer i to customer j; otherwise, it equals 0; 

  
k

imy : equals 1 if the mth delivery batch (order) of customer i is transported by vehicle k; otherwise, it equals 0; 



  k

imz : equals 1 if the mth pickup batch (order) of customer i is transported by vehicle k; otherwise, it equals 0. 

  The formulation of the VRPDSPDP modified on the base of Mitra (2005) is given below: 
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We present next a brief line-by-line explanation of this formulation. 

(1) The objective is to minimize the total distance travelled by the vehicles; 

(2) Each customer is served at least once; 

(3) – (4) Vehicles leave from the depot and return to the depot; 

(5) Vehicles visit a customer and then leave; 

(6) – (7) Each customer’s demand is satisfied; 

(8) Maximum capacity constraint;  

(9) – (11) Set , ,k k k

ij im imx y z  as 0 – 1. 



3.2. Problem Properties 

  Each batch (order) of a customer is an absolute object, which is independent from another. Because of the 

same coordinate position, the distance between a pair of batches of the same customer is zero. 

Before discussing the properties of the VRPDSPDP, the expression of paths is explained. As stated in the above 

section, the delivery and pickup demands of customer i are composed of iDM  and iPM  batches (orders), 

respectively. Thus, a path is expressed as a sequence composed of vertex numbers representing the depot or visits 

to a customer, together with the demands of batches (delivery and/or pickup) dealt with at that visit. For instance, 

there is a path expressed as follows: 

0 — 6 (
9

6d ,
5

6p ) — 8 ( 0 , 1 8

8 8+p p ) — 0 

A vehicle departs from the depot, visits customer 6 first, unloads the ninth delivery batch (order) and collects the 

fifth pickup batch with demands of 
9

6d  and 
5

6p , respectively. After leaving customer 6, the vehicle makes a trip to 

visit customer 8. Since the amount of delivery load of customer 8 is zero, the vehicle does not have a delivery plan 

at customer 8. However, the vehicle conveys the first and eighth pickup batches of customer 8 back to the depot.  

  To study the properties of the VRPSPDP, we discuss an example illustrated in Fig. 1, there are 3 customers in the 

network (the figures in brackets represent the total demands of delivery and pickup batches, separated by a comma). 

The figure beside each edge denotes the corresponding cost (distance), and the cost matrix satisfies the triangular 

inequality. The vehicle capacity is 10, so the minimum number of vehicles required is 2. 

1 (5, 8)

2 (7, 4)

3 (8, 8)0

2

2

2

2

2

 

Fig. 1  Total demands and the corresponding cost (distance) of the example discussed 

While the demands in the VRPSPDP are continuous and can be split in any way to fit the available capacity of a 

vehicle, those in the VRPDSPDP are discrete and cannot be split as arbitrarily as in the VRPSPDP. To clarify the 

customer delivery and pickup values for both the problems compared. We assume the demands in the VRPSPDP 

are split in terms of units as shown in Fig. 2, and those in the VRPDSPDP are split into several independent batches 

illustrated in Figure 3.  



1 (1+1+1+1+1,  

    1+1+1+1+1+1+1+1)

2 (1+1+1+1+1+1+1, 

                 1+1+1+1)

3 (1+1+1+1+1+1+1+1,

    1+1+1+1+1+1+1+1)0  

Fig. 2  Optimal solution to the VRPSPDP 

Path 1: 0 – 2(7, 4) – 1(3, 6) – 0 

Path 2: 0 – 1(2, 2) – 3(8, 8) – 0 

1 (3+2, 5+3)

2(4+3, 2+2)

3 (3+5, 3+5)
0  

Fig. 3  Optimal solution to the VRPDSPDP 

Path 1: 0 – 2(4, 2) – 1(3, 5) – 3(3, 3) – 0 

Path 2: 0 – 2(3, 2) – 3(5, 5) – 1(2, 3) – 0 

The paths of the optimal solutions are presented below the corresponding problem illustrations. The figures in 

bold are split points, and the two numbers in the brackets beside each point, separated by a comma, indicate the 

amount of delivery goods and the amount of pickups, respectively.  

  Three points are split in the above solution to the given VRPDSPDP, more than in the VRPSPDP (two split 

points). In addition, the total distance of the VRPSPDP (10+2 3 13.46 ) is shorter than that of the VRPDSPDP 

(18.93). 

  We can obtain the properties of the VRPDSPDP as follows: 

(1) If L and L’ correspond to the numbers of split points of the VRPSPDP and the VRPDSPDP, respectively, 

there always exists L L  with the same cost matrix, customer demands and other restrictions. 

(2) If Z and Z’ correspond to the objective function values of the optimal solution to the VRPSPDP and the 

VRPDSPDP, respectively, there always exists Z Z   with the same cost matrix, customer demands and 

other restrictions. 

(3) The VRPDSPDP is a special version of the VRPSPDP, which is an NP-hard problem (Yin et al., 2013); the 

VRPDSPDP is also an NP-hard problem. 

4. A Tabu Search Algorithm for the VRPDSPDP  

Previous research on similar problems suggests that large instances may not be solved by exact algorithms and that 

meta-heuristics will provide a more effective solution approach. Our algorithm is based on Tabu Search introduced 

by Glover in 1986, and since then it has been used to solve many practical applications. TS is a memory-based search 

strategy to guide the local search method to continue its search beyond a local optimum. One way to achieve this is 



to keep track of attributes of recent moves or solutions made in the past in a tabu list. Whenever the algorithm 

attempts to make a move in the tabu list, the move is banned. Consequently, other solutions must be explored. 

However, this feature is not strict; it can be overridden when some aspiration criteria are satisfied. A popular 

aspiration criterion is for the target function value to be the best ever seen. If this requirement is met, it is obvious 

that this solution is encountered for the first time and can be accepted. 

4.1. Initial Solution 

The tabu search algorithm has some dependence on the initial solution. A good initial solution can help the TS 

find a good final solution in the solution space, while a poor one can reduce the convergence speed of the TS. In 

general, when solving a specific problem, other algorithms can be used to generate a high-quality initial solution 

and then TS is used to further improve the quality of the solution. The solution from a well-designed TS should not 

depend strongly on the quality of the initial solution and if multiple starts are used for the TS, then there may be 

some advantages in the diversity gained from different initial solutions. Therefore, it is not rare to find initial 

solutions generated randomly. A survey on initial solution generation methods for the TS in recent years (from 

2000), which focus on the problems with split loads is shown in Table 3. 

Table 3   

Initial solution generation methods for the TS focusing on the problems with split loads 

Method Literature 

Random generating Xia et al. (2018); Avci (2017); Fu et al. (2017) 

Savings-based procedure Polat et al. (2015) 

Sweep-based procedure Nagy et al. (2015); Nagy et al. (2013) 

GENIUS algorithm Lai et al. (2015) 

Nearest Neighborhood Heuristic  Yin et al. (2013) 

In this paper, each batch (order) of a customer is an absolute object as a separate item in the beginning. That is, 

there exist 
i iDM PM  co-located fictitious customers. Nagy et al.. (2015) only created two co-located customers 

and have already run into difficulties solving even small problems to optimality. Due to the heavy problem 

complexity, the running time of the TS is required to be as short as possible. Since the TS is more important than 

the quality of the initial solution, we prefer to generate an initial solution randomly with less time-consuming 

process and leave more opportunities to the TS for further solution quality improvement. Thus, the initial solution 

is generated by building up successive routes on which the next item is chosen at random and added to the end of 



the route unless this violates the capacity constraint, in which case the route back to the depot is completed and a 

new route is started. The number of vehicle routes used in the initial solution may be more than the minimum 

required, but the tabu search will aim to reduce the number of vehicle routes if possible. 

4.2. Batch Combination  

  Since each discrete batch (order) is regarded as an independent object, the situation exists in which the same 

customer is visited more than once in one trip. Taking Fig. 4 as an example, vertices i and j correspond to two 

different batches of the same customer. Visiting a customer twice on the same route (once for batch i and once for 

batch j) will normally increase the route distance compared to visiting the customer once. To avoid this situation, we 

design a special operation to move batches of the same customer into one visit, where it is feasible to do so, by 

assigning vertex j next to vertex i. As shown in Fig. 4, besides moving vertex j  behind vertex i , relocating j  in 

front of i  ( a j i b    L L ) or putting i  next to j  ( c i j d    L L  or 

c j i d    L L ) may gain different results. Preventing from exploring multiple solutions with the same 

cost and reasonably shorten the operation time, we only consider the movement illustrated in Figure 4. This move 

is a basic operator in the path improvement of the VRPDSPDP, laying the foundation for a further neighbourhood 

structure. 

a i b c j d
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Fig. 4  Batch combination 

4.3. Item Creation 

  In traditional neighbourhood searching, there is an underlying assumption that the move object is an individual 

customer. However, the operator object of the VRPDSPDP is actually each batch (order); thus, simply using the 

customer whose batches in the route are all included cannot reflect the characteristic of discrete splits. However, 

taking a single batch as the operator object results in a computation-intensive and time-consuming process, because 

the number of batches is much larger than that of customers. Considering the above situation, we reach a 

compromise and design an individual operator aimed to create a neighbourhood move object, which corresponds to 

an “item” in this paper. The operation of item creation first selects a batch vertex randomly from a selected path and 



then searches both forward and backward to check whether other batches exist that have the same customer origin. 

After that, one or more adjacent vertices in a path representing batches for a customer dealt with in a single visit are 

selected at random to create an item. The item created through the designed operation is composed of one, several or 

all batches of a customer on the route. As illustrated in Fig. 5, the picked-out vertex is i, and, by checking forwards 

and backwards, t, i, j and k are shown to relate to the same customer. It is assumed that i, j and k are the selected 

adjacent batch vertices to create an item expressed as vertex i*. In the rest of this paper, we refer to each vertex of a 

route path as an item for the sake of conciseness. 

a i* b

a i bj kt

t

 

Fig. 5  Item creation 

The “splitshift” operator proposed by Nagy et al. (2015) for the VRPDDP is worth mentioning at this point. The 

“splitshift operator duplicates a customer where the delivery and pickup happen simultaneously on the current route 

and inserts either its linehaul or backhaul into another route. Merge operators often accompany split operators, 

however, if a delivery and pickup entity of a customer should find themselves next to each other in subsequent 

moves, Nagy et al. (2015) think that a separate operator is not required to bind them together again. The Item 

Creation can be seen as related to the “splitshift”. The new operator considers all demands of one customer, 

including t, i, j and k, which are currently served in a single visit. As shown in Fig. 5, Assume that t denotes the 

delivery batch, and i, j and k are pickup batches, then the Item Creation splits the customer into a delivery item (t) 

and a pickup item (i, j and k), respectively, which implements the same as “splitshift” in this case.  

4.4. Neighbourhood Structure 

Local search methods have been proved effective in solving the VRPSDP (Subramanian et al., 2010; Zhang et al., 

2012). Several operators from the local search method are 2-opt, 2-opt*, 3-opt, or-opt, swap, shift, reverse, cross, 

relocate and relocate split, which are applied to find the solution to the VRPSPDP or VRPDDP and further 

illustrated in Table 4. 

Except the Relocate operator and Relocate split operator proposed by Ho and Haugland (2004) which are 

designed specially to focus on split loads, all the local search methods listed in Table 4 consider the moves on 



customers, no matter whose demands are split or not. In our heuristic, due to the operation of Item Creation, the 

difference between a customer and the items for delivery or pickup can be ignored for the operation of these moves. 

In our implementation the neighbourhood moves of five classes are applied to the current solution. These moves 

include two intra-route operations and three inter-route ones. Table 5 provides a brief introduction. 

Table 4   

Local search methods for the VRPSPDP or VRPDDP 

Type Operator Detail Literature 

Intra-route 2-opt Replace a non-adjacent arc pair with a new one, which reverses the 

location of nodes lying between these new arcs. (Croes, 1958) 

Polat (2017);  

Lai et al. (2015);  

Wang et al. (2014, 2013);  

Yin et al. (2013). 

3-opt Delete three edges in a route and reconnect them in the same route. 

(Lin, 1965) 

Polat (2017). 

Or-opt Remove one, two or three adjacent customers and insert in another 

position of the route. (Or, 1976) 

Wang et al. (2014, 2013). 

Shift Randomly select a customer and move it to a random position on 

the same route. 

Polat (2017);  

Nagy et al. (2015);  

Wassan and Nagy (2013). 

Swap Randomly swap positions of two customers on the same route. Polat (2017);  

Yin et al. (2013). 

Reverse Simply reversing the direction of a route. Nagy et al. (2015);  

Wassan and Nagy (2013). 

Inter-route 2-opt* 

2-Exchange 

Remove two links from two different routes and introduce two new 

ones by connecting the first customer on the first link to the last 

customer on the second link and connecting the first customer on 

the second link to the last customer on the first link. (Potvin et al., 

1992) 

Wang et al. (2014, 2013). 

Exchange (m, n) Transfer m sequential customers from one route to another and in 

turn transfer n sequential customers from the second route to the 

first. (Osman, 1993) 

Polat (2017);  

Yin et al. (2013). 

Cross Exchange two segments of different routes. Polat (2017). 

Shift (1, 0) Move a customer from a route to the best possible position on 

another route.  

Polat (2017);  

Nagy et al. (2015);  

Wassan and Nagy (2013). 

Replace (1, 1) 

Swap (1, 1) 

Reallocate two customers currently on different routes. Polat (2017);  

Nagy et al. (2015);  

Lai et al. (2015);  

Wassan and Nagy (2013). 

Swap (m, n) Interchange m customers and n customers between two different 

routes 

Wang et al. (2014, 2013). 



Relocate Reallocate two one-unit demand of customers currently on different 

routes. (Ho and Haugland, 2004) 

Wang et al. (2014, 2013);  

Yin et al. (2013). 

Relocate split Delete a split node on a route in price of creating a new split node 

in another route. (Ho and Haugland, 2004) 

Wang et al. (2014, 2013);  

Yin et al. (2013). 

Table 5   

Neighbourhood moves 

Neighbourhood 

move 

Operation object (item) Effect of possible solution improvement 

Combine batches of 

the same customer 

Short route 

distance 

Reduce the number 

of vehicles used 

Intra-swap Two different customers (all their batches) Impossible Possible Impossible 

Intra-reverse Two different customers (all their batches) Impossible Possible Impossible 

Inter-reassignment Fractional and all batches of two customers  Possible Possible Possible 

Inter-swap Fractional and all batches of two customers  Possible Possible Impossible 

Tail-swap Two tails (each begins with a batch to the 

end) 

Possible Possible Impossible 

Detailed explanations of the above moves are provided in the rest of this section. For intra-swap and 

intra-reverse, one route is selected at random from the current solution and then two items of different customers 

are created and selected for this route. Regarding the inter moves, inter-reassignment, inter-swap and tail-swap, two 

different routes are chosen randomly and one item is generated for each path. 

4.4.1. Intra-swap 

In this move the positions of two items of different customers (i and j) are swapped and a new route is generated, 

which is indicated by Fig. 6. 

a i b c j d
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Fig. 6  Intra-swap 

4.4.2. Intra-reverse 

Each item in this move is a sub-path beginning with i and ending with j. The neighbourhood move of 

intra-reverse inverts the orders of all the batches in the sub-path and produces a new route, which is illustrated in 

Fig. 7. 
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Fig. 7  Intra-reverse 

4.4.3. Inter-reassignment 

Assume that the randomly chosen routes are Route 1 and Route 2. Taking the example shown in Fig. 8, we 

remove item i from Route 1 and assign it after j to Route 2 in this move. Fig. 9 illustrates a special case: there is 

only one customer on Route 1, so, after moving i into Route 2, no vertex exists in Route 1. For this situation we 

design an operation named elimination. When the number of vehicles used in the current solution is more than the 

minimum required, elimination is implemented and generates a new solution, saving one vehicle. 
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Fig. 8  Inter-reassignment 
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Fig. 9  Elimination

4.4.4. Inter-swap 

In this move the positions of items i and j are exchanged and two new paths are obtained, as illustrated in Fig. 10. 

4.4.5. Tail-swap 

The operation of tail-swap is shown in Fig. 11; the tail  i b L  in Route 1 and the tail  j d L  in 

Route 2 are exchanged, and two new routes are generated. 

This neighbourhood structure is the one that allows moves to infeasible solutions in terms of the vehicle capacity. 

This structure is able to enhance the TS algorithm. 
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Fig. 10  Inter-swap 
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Fig. 11  Tail-swap

4.5. Evaluation of the Solutions 

The VRPDSPDP has two objectives to be optimized: the total travelling cost (distance) and the fixed cost (the 

number of vehicles used). As mentioned in relation to the VRPDSPDP, the priority is given to the fixed cost. 

Therefore, a feasible solution with a certain number of vehicles always dominates any other feasible solutions 

requiring more vehicles. For those solutions with the same number of vehicles, the one with the minimum total 

travelling cost is selected. 

To facilitate the exploration of the search space, a move is allowed even if it results in an infeasible solution. The 

extent of the infeasibility can be measured by incorporating the vehicle capacity into the objective function by 

adding a penalty if the constraints are broken. Gendreau et al. (2002) introduced penalties, produced a mix of 

feasible and infeasible solutions and avoided the possibility of being trapped in a local minimum in a tabu route 

algorithm for the VRP. We adopt the mechanism and use the equation given below: 

   
1

K

k

E r p A r


     

where K is the total number of routes in the solution,  E r  is the travelling cost of route r,  A r  is the number 

of excess edges along route r and p is the penalty coefficient.  A r  equals zero for all the routes if a solution is 

feasible.  0.000001,200000p  equals 1 at the beginning and is weighted by a self-adjusting parameter: every 10 

iterations, it is divided by 2 if all 10 previous solutions were feasible or multiplied by 2 if they were all infeasible.  

4.6. Tabu List  

We create five independent tabu lists for different classes of moves. The idea of each tabu list is learned and 

adjusted from Fu et al. (2005). Each tabu list contains the move attributes of solutions during the last five to eight 

(randomly selected) iterations. A set of n n  matrices can be constructed for the record of tabu status. For instance, 

if vertices i and j are selected for the intra-swap move, the tabu status is saved in the elements (i, j) of the 



intra-swap matrix. At each iteration the tabu status of the last move performed is added to the list while the others 

are decreased by one until they equal zero. 

4.7. Stopping Criterion 

The search is terminated if a specified number of iterations has elapsed since the last best solution was found. 

The variables presented in Table 6 are used in the description of the TS algorithm: 

Table 6   

Variables and their explanation used in the description of the TS algorithm 

Variable Explanation 

Iter Current number of iterations. 

ConsIter Current number of consecutive iterations without any improvement to the best solution so far. 

MaxConsIter Maximum number of consecutive iterations without any improvement to the best solution so far. 

CandList Current number of candidate moves on the list. 

MaxCandList Maximum number of candidate moves on the list. 

4.8. TS Algorithm 

The pseudo-code of the heuristic is given below: 

1. Initialize  

2.   Input the data and parameters; 

3.   Generate an initial feasible solution randomly and set it as the current solution and the best solution so far; 

4.   Construct five separate tabu lists of neighbourhood searching; 

5. While ( ConsIter < MaxConsIter ) do begin 

6.   While ( CandList < MaxCandList ) do begin 

7.     Select one of the five types of neighbourhood move randomly and create corresponding items; 

8.     Perform a corresponding operation on the current solution; 

9.     If the condition of elimination is satisfied, then implement elimination to remove one route. 

10.     Conduct batch combination and generate a new candidate solution; 

11.     Add the solution produced by the selected move to the candidate list; 

12.   End;  

13.   Select the best solution in the candidate list if not tabu or a solution better than the best one so far; 



14.   Set the new solution as the current solution, update the tabu list and increment Iter; 

15.   If the new solution improves the best solution so far, update the best solution so far and set ConsIter to 0;  

otherwise, increment ConsIter; 

16.   Update the corresponding tabu list; 

17. End. 

5. Computational Results and Comparisons 

5.1. A Priori Split Strategy 

To the best of our knowledge, there is neither any benchmark problem designed for the VRPDSPDP, nor any 

split strategy to generate discrete demands for a corresponding VRPSPDP. Chen et al. (2017) proposed two a priori 

split strategies to split deliveries in the SDVRP in advance and not during the algorithm procedure, aiming to split 

each customer’s demands into several parts of goods (discrete batches or orders) so that it is possible to make full 

use of a vehicle’s capacity. We propose two similar split strategies, adjusted from Chen’s and named 20/10/5/1/x 

and 25/10/5/1/x, to discrete demands in the VRPSPDP. Taking 20/10/5/1/x as an example, we assume that each 

customer’s demands can only be split and assigned to five separate groups, each of which has a different quantity 

from another. Batches of four groups have fixed demands of 0.2Q, 0.1Q, 0.05Q and 0.01Q, respectively. The fifth 

group includes loads of quantity less than 0.01Q. 
iD , the deliveries of customer i, will be split into five distinct 

groups  20,10,5,1,sW s x . Each batch in 
sW  has a quantity demand of 

sT , and the number of batches belonging 

to 
sW  is denoted as 

sH . The strategy of 20/10/5/1/x is shown in Table 7 ( u    is the maximum integer not bigger 

than u). 

Table 7   

Strategy of 20/10/5/1/x 
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We also propose a 25/10/5/1/x strategy, which has the same basic principle as 20/10/5/1/x. For example, if 

1000Q   and =566iD , the demand is split into 200, 200, 100, 50, 10 and 6 by the 20/10/5/1/x strategy and into 250, 

250, 50, 10 and 6 by the 25/10/5/1/x strategy. We use both strategies in our computational experiments. 

5.2. Performance of the a Priori Split Strategy 

We apply our TS algorithm with 20/10/5/1/x and 25/10/5/1/x split strategies to different classes of VRPSPDP 

instances and report the results in this section. All the experiments were performed on a personal computer with an 

Intel i7-4500U CPU 2.40 GHz and 12 GB RAM. In our TS algorithm, we set variables MaxConsIter and 

MaxCandList equal to 4500+10 n  and 150+2 n , respectively. 

5.2.1. Experiment 1 

The data for this experiment were randomly generated by Mitra (2008). Before applying the TS algorithm in this 

paper to the instances, we discretized the delivery and pickup loads of customers through the strategies of 

20/10/5/1/x and 25/10/5/1/x, separately. For the sake of exposition, discretized batches for delivery and pickup for 

each customer for each strategy are presented in Appendix A. To show the solution performance, a comparison 

including the corresponding routes, delivery and pickup loads of customers along routes and the total route 

distances was performed, as shown in Table 8. The best-known result, a total distance of 60, was given by Mitra 

(2008). Our problem solution in both situations (20/10/5/1/x and 25/10/5/1/x) is 56, which is better than Mitra’s 

with a 6.67% distance reduction. As presented in Table 8, customer 7 is split by two routes in our solution instead 

of customer 4 in Mitra’s solution. 

Table 8   

Solution comparison for Experiment 1 

 Route Path Total distance 

Mitra (2008) 1 0 – 2(0.40, 0.40) – 6(0.50, 0.40) – 4(0.10, 0.20) – 0 60 

2 0 – 1(0.30, 0.30) – 8(0.30, 0.20) – 5(0.20, 0.20) – 0 

3 0 – 7(0.30, 0.30) – 3(0.30, 0.40) – 4(0.30, 0.30) – 0 

20/10/5/1/x 1 0 – 5(0.20, 0.20) – 8(0.30, 0.20) – 1(0.30, 0.30) – 7(0.20, 0.00) – 0 56* 

2 0 – 4(0.40, 0.50) – 3(0.30, 0.40) – 7(0.10, 0.30) – 0 

3 0 – 2(0.40, 0.40) – 6(0.50, 0.40) – 0 

25/10/5/1/x 1 0 – 5(0.20, 0.20) – 8(0.30, 0.20) – 1(0.30, 0.30) – 7(0.05, 0.29) – 0 56* 

2 0 – 7(0.25, 0.01) – 3(0.30, 0.40) – 4(0.40, 0.50) – 0 

3 0 – 2(0.40, 0.40) – 6(0.50, 0.40) – 0 



Figures 12 and 13 present the fluctuations of the total loads on each trip and the illustrations of each demand. It 

is obvious that the deliveries decrease while the pickups increase. Experiment 1 shows the proposed heuristic is 

capable of producing a good solution to a problem studied in the literature. 

 

Fig. 12  Load changes in the solution obtained by 

20/10/5/1/x 

 

Fig. 13  Load changes in the solution obtained by 

25/10/5/1/x 

5.2.2. Experiment 2 

  The data provided by Yin et al. (2013) were used in this experiment. The solution comparison is presented in 

Table 9. The results obtained by our algorithm (both strategy 20/10/5/1/x and strategy 25/10/5/1/x) are better than 

the best-known one (Yin et al., 2013). The solution achieved by strategy 20/10/5/1/x (308.74) is the best one so far, 

which reduces by 3.55% the total distance of Yin et al. (320.11). The solution of 25/10/5/1/x (311.87) is also better 

than Yin’s solution. 

Table 9   

Solution comparison for Experiment 2 

Route Yin et al. (2013) 20/10/5/1/x 25/10/5/1/x 

1 0-20-22(2.50,0.60)-4-3-0 0-5-8-19-24(1.00,0.00)-0 0-21-24(2.50,0.00)-9-0 

2 0-21-11-10-24(1.00,0.00)-9-0 0-13-17-16-15-14-7-0 0-3(0.50,0.00)-22(3.75,5.00)-0 

3 0-8-9-0 0-1-22(3.00,4.00)-0 0-2-5-19-8-0 

4 0-23(0.00,0.30)-18-17-13-15-16-12-0 0-3-22(0.00,1.60)-4-2-0 0-24(3.75,0.00)-6-4-3(0.00,0.16)-0 

5 0-5-7-14-1-6-2-0 0-20-22(4.50,5.00)-0 0-13-15-14-1-7-22(0.00,1.25)-0 

6 0-22(5.00,5.00)-0 0-24(5.00,0.00)-23(0.00,4.25)-10-0 0-11-23(0.00,0.80)-18-16-17-12-0 

7 0-24(5.00,0.00)-22(0.00,5.00)-0 0-24(5.00,0.00)-9-0 0-20-22(3.75,4.35)-3(0.50,0.00)-0 

8 0-24(5.00,0.00)-23(0.00,5.00)-0 0-21-11-18-23(0.00,1.05)-12-0 0-24(4.75,0.00)-23(0.00,4.50)-10-0 

Distance 320.11 308.74* 311.87 

  To check further the convergence of our TS heuristic, we provide two illustrations (Fig. 14 and Fig.15) of the 



convergence process, which both show a good performance.  

 

Fig. 14  Convergence process of the results of 20/10/5/1/x 

 

Fig. 15  Convergence process of the results of 25/10/5/1/x 

In addition to convergence, the solution quality is another vital criterion on which to judge an algorithm. Yin et al. 

(2013) used a fluctuation coefficient of the solution to evaluate the solution quality, which is calculated by the 

equation below: 

max min
100%

value value
fluctuation coefficient

average value


   

We list ten results compared with Yin et al. (2013) in Table 10. Fig. 16 further illustrates the quality comparison 

over ten runs. The fluctuation coefficients of our algorithm (2.4% of 20/10/5/1/x and 2.57% of 25/10/5/1/x) are both 

better than those of Yin et al. (2013) (2.69%). In addition, the average solution values from our proposed algorithm 

are lower than the average solution in Yin et al. (2013). 

Table 10   

Comparison of ten results 

 Yin et al. (2013) 20/10/5/1/x 25/10/5/1/x  Yin et al. (2013) 20/10/5/1/x 25/10/5/1/x 

1 320.11 314.76 317.86  6 326.99 316.39 319.97  

2 322.44 308.74 319.21  7 320.95 308.74 312.10  

3 320.53 315.22 312.10  8 320.11 313.92 317.63  

4 328.82 315.95 311.87  9 323.76 308.84 311.87  

5 325.68 315.65 315.97  10 323.07 313.92 319.06  

Average solution 323.25 313.21 315.76  

Fluctuation coefficient 2.69% 2.44%* 2.57% 



     

                               (a)                                         (b) 

Fig. 16  Fluctuation comparison between results from the proposed method and results from Yin et al. (2013) 

By analysing the convergence and solution quality, the algorithm indicates good convergence with a stable 

solution quality.  

5.2.3. Experiment 3 

  Experiments 1 and 2 presented good performances of our heuristic. To confirm further the effective computation 

capability of our TS algorithm, more instances (problems of three sets given by Mitra (2005) for the VRPSPDP) are 

tested in this experiment. The distance between each pair of customers has two cases. (For both the cases, the route 

costs are symmetric). The delivery demand and pickup demand for each customer are listed in Appendix B. 

  Case 1: All the route costs are equal. 10, ,ijc i j   such that j i  and ,iic i  . 

  Case 2: All the route costs are not equal. 9 , ,ijc j i i j     such that j i  and ,iic i  . 

For each instance our heuristic is run for 20 minutes (maximum), which is less than the 30 minutes of Mitra 

(2008). The same data were also used by Wang et al. (2015). However, in Wang et al. (2015) the objective of the 

VRPSPDP was to minimize the total travel distance and the number of assigned vehicles was not restricted. As a 

result, in Wang et al. (2015) a few shortest distances are found using more vehicles. Because of the much higher 

cost assumed for an extra vehicle compared with the distance related costs, the solution with the fewest vehicles 

and shortest route length is regarded as the best-known one in this paper. The comparison of our results for the 

VRPDSPDP and those for the VRPSPDP is presented in Table 11 and Table 12 in terms of both the same result and 

better ones. The column 3 in Table 12 shows the vehicle number of each problem. For each problem, the number of 

vehicles required are the same under Case 1 and Case 2. The minimum and actual number of assigned vehicles of 

optimal / upper bound solution, 20/20/5/1/x, 25/10/5/1/x, Mitra et al. (2008), Wang et al. (2015) and the best-known, 

separated by “ / ” , are given in column 3.  



Table 11   

Comparison between results from the proposed method and the best-known ones 

Case Set Number of 

instances 

Same result Better result Same and better results 

20/10/5/1/x 25/10/5/1/x 20/10/5/1/x 25/10/5/1/x 20/10/5/1/x 25/10/5/1/x 

Case 1 Set 1 25 17 20 0 0 17 (68.00%) 20 (80.00%) 

Set 2 9 2 1 6 5  8 (88.89%)  6 (66.67%) 

Set 3 9 0 1 7 6  7 (77.78%)  7 (77.78%) 

Case 2 Set 1 25 9 20 0 0 9 (100.00%) 20 (80.00%) 

Set 2 9 0 0 8 6  8 (88.89%)  6 (66.67%) 

Set 3 9 0 0 9 9 9 (100.00%) 9 (100.00%) 

Both Mitra (2008) and Wang et al. (2015) obtained the problem solutions with same (minimum) number of vehicles 

used for Set 1. 14 out of 25 best-known solutions for Set 1 are proved to be optimal (bold underlined data in 

columns named “Opt./UB”). Since the optimal solution to the VRPDSPDP cannot be better than that of the 

VRPSPDP, which means that the optimum of the VRPDSPDP may be worse than that of the VRPSPDP (as seen in 

Problem Properties), it is reasonable that the results of Set 1 of the VRPDSPDP are no better than those of the 

VRPSPDP. For Sets 2 and 3, we find the best-known solution or improve it in at least two thirds of the instances. 

The new best-known results are marked by “*” in Table 12. As seen in Set 2, 8 out of 9 instance solutions are better 

than or the same as the best-known ones by means of the strategy of 20/10/5/1/x and 6 out of 9 by that of 

25/10/5/1/x. In terms of Set 3, we achieve 77.78% of the results of Case 1 that are no worse than those in the 

literature and 100% of those of Case 2 that are better than the best-known ones. We apply the hypothetical situation 

created by Mitra (2008), in which the fixed charge and mileage for owning or hiring a vehicle are taken as $100 and 

$0.10, separately. Because Wang et al. (2015) obtained all problem solutions of the minimum number of vehicles 

for Set 1, we only compare the problems of Sets 2 and 3. The result comparison for the above hypothetical situation 

is presented in Tables 12 and 13. 

As shown in Table 13, over 88.89% of the results of the VRPDSPDP are better than or the same as those of the 

VRPSPDP. 

5.3 Performance on the DSDVRP 

To better judge the quality of the proposed algorithm, another set of computational experiment comparisons are 

made focusing on the DSDVRP. The data provided by Chen et al. (2017) were used in this experiment. The solution 

comparison is presented in Tables 14 and 15, and all the instance solutions are solved with the minimal numbers of  



Table 12   

Comparison of the results from the proposed method, Mitra (2008), Wang et al. (2015) and the best-known 

Set No. Number of vehicles 

used 

Case 1 Case 2 

Opt./UB 20/10/5/1/x 25/10/5/1/x Mitra 

(2008) 

Wang 

(2015) 

Best- 

known 

Opt./UB 20/10/5/1/x 25/10/5/1/x Mitra 

(2008) 

Wang 

(2015) 

Best- 

known 

Set 1 1 2 / 2 / 2 / 2 / 2 / 2 240 210 210 210 210 210 566 245 245 263 245 245 

2 10/10/10/10/10/10 290 290 290 290 290 290 554 461 461 515 461 461 

3 19/19/19/19/19/19 380 380 380 380 380 380 722 722 722 722 722 722 

4 29/29/29/29/29/29 790 680 680 710 670 670 1303 1411 1185 1303 1183 1183 

5 38/38/38/38/38/38 760 780 760 760 760 760 1444 1475 1444 1444 1444 1444 

6 10/10/10/10/10/10 320 290 290 290 290 290 545 461 461 515 461 461 

7 19/19/19/19/19/19 380 380 380 380 380 380 722 722 722 722 722 722 

8 19/19/19/19/19/19 380 380 380 380 380 380 722 722 722 722 722 722 

9 29/29/29/29/29/29 740 670 670 750 670 670 1353 1187 1183 1365 1183 1183 

10 29/29/29/29/29/29 740 670 670 750 670 670 1296 1193 1183 1365 1183 1183 

11 29/29/29/29/29/29 710 670 670 710 670 670 1283 1202 1183 1321 1183 1183 

12 38/38/38/38/38/38 760 760 770 760 760 760 1444 1462 1444 1444 1444 1444 

13 38/38/38/38/38/38 760 760 770 760 760 760 1444 1453 1453 1444 1444 1444 

14 38/38/38/38/38/38 760 770 770 760 760 760 1444 1453 1462 1444 1444 1444 

15 38/38/38/38/38/38 760 770 760 760 760 760 1444 1462 1453 1444 1444 1444 

16 10/10/10/10/10/10 290 290 290 290 290 290 543 461 461 515 461 461 

17 19/19/19/19/19/19 380 380 380 380 380 380 722 722 722 722 722 722 

18 29/29/29/29/29/29 730 670 670 750 670 670 1364 1187 1183 1383 1183 1183 

19 38/38/38/38/38/38 760 780 780 760 760 760 1444 1466 1444 1444 1444 1444 

20 19/19/19/19/19/19 380 380 380 380 380 380 722 722 722 722 722 722 

21 29/29/29/29/29/29 740 670 670 750 670 670 1379 1206 1183 1383 1183 1183 

22 38/38/38/38/38/38 760 760 760 760 760 760 1444 1468 1444 1444 1444 1444 

23 29/29/29/29/29/29 710 680 670 710 670 670 1357 1203 1183 1303 1183 1183 

24 38/38/38/38/38/38 760 780 760 760 760 760 1444 1464 1444 1444 1444 1444 



25 38/38/38//38/38/38 760 780 780 760 760 760 1444 1462 1453 1444 1444 1444 

Set 2 1 27/27/27/27/28/27 730 630* 630* 710 680 710 1648 1268* 1280 1379 1295 1379 

2 27/27/27/27/28/27 740 620* 640 710 680 710 1341 1269 1263* 1379 1295 1379 

3 27/27/27/27/28/27 800 640* 660 700 680 700 1491 1291* 1311 1442 1259 1442 

4 37/37/37/37/37/37 990  830* 850 890 850 850 1714 1617* 1624 1773 1639 1639 

5 37/37/37/37/37/37 950 860 840* 870 860 860 1731 1615 1608* 1719 1639 1639 

6 37/37/37/37/37/37 920 860 870 900 860 860 1794 1674 1667 1818 1650 1650 

7 46/46/46/46/47/46 1090 1070 1070 1080 1060 1080 2107 2005* 2443 2119 1981 2119 

8 46/46/46/46/47/46 1170 1050* 1090 1080 1060 1080 2423 2032* 2176 2146 1981 2146 

9 46/46/46/46/47/46 1130 1090 1200 1070 1060 1070 2948 2089* 2115 2191 1981 2191 

Set 3 1 27/27/27/27/28/27 810 630* 650 710 680 710 1526 1247* 1256 1379 1259 1379 

2 27/27/27/27/28/27 830 640 630* 710 680 710 1646 1259* 1284 1397 1259 1397 

3 27/27/27/27/28/27 800 630* 680 700 680 700 1920 1289* 1315 1397 1259 1397 

4 37/37/37/37/37/37 910 840* 840* 890 850 850 1834 1617* 1619 1791 1639 1639 

5 37/37/37/37/37/37 900 830 820* 870 850 850 1879 1615* 1636 1719 1639 1639 

6 37/37/37/37/37/37 980 880 880 900 860 860 1857 1639* 1639* 1746 1650 1650 

7 46/46/46/46/47/46 1190 1020* 1070 1080 1060 1080 2519 1989* 2107 2119 1981 2119 

8 46/46/46/46/47/46 1170 1050* 1080 1080 1060 1080 2136 2036* 2080 2155 1981 2155 

9 46/46/46/46/47/46 1090 1090 1130 1070 1060 1070 2326 2070* 2121 2137 1981 2137 

Table 13   

Comparison between the results from the proposed method and those from Wang et al. (2015) 

Set Strategy Same number of vehicles  Fewer vehicles Same and lower cost 

Same distance/cost Shorter distance/lower cost Shorter distance Lower cost 

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

Set 2 20/10/5/1/x 2 0 1 2 4 0 6 6 9 (100.00%) 8 (88.89%) 

25/10/5/1/x 0 0 2 2 0 0 6 6 8 (88.89%) 8 (88.89%) 

Set 3 20/10/5/1/x 0 0 2 2 2 2 6 6 8 (88.89%) 8 (88.89%) 

25/10/5/1/x 0 0 2 2 0 1 6 6 8 (88.89%) 8 (88.89%) 



Table 14   

Comparison between results from the proposed method and those from Chen et al. (2017) 

 Number of 

instances 

Same result Better result Same and better 

results Only fewer 

vehicles 

Only shorter 

distance 

Both fewer vehicles 

and shorter distance 

Same vehicles 13 3 \ 4 \ 7 ( 53.85%) 

Fewer vehicles 12 \ 10 \ 2 10 (100.00%) 

Sum 25 3 10 4 2 17 ( 68.00%) 

Table 15   

Instance results from Chen et al. (2017) and the proposed method 

Instance Minimal 

number of 

vehicles used 

Chen et al. (2017) 20/10/5/1/x 25/10/5/1/x 

Number of 

Vehicles used 

Distance Number of 

Vehicles used r 

Distance Number of 

Vehicles used 

Distance 

eil22 4 4 375.28 4 375.28 4 375.28 

eil23 3 3 568.56 3 568.56 3 568.56 

eil30 3 3 497.53 3 512.72 3 512.72 

eil33 4 4 826.41 4 837.67 4 837.67 

eil51 5 5 524.61 5 524.61 5 524.61 

eilA76 10 11 849.60 10 860.11 10 853.83 

eilB76 14 15 1024.44 14 1037.93 14 1047.26 

eilC76 8  8 748.51 8 745.92 8 744.71* 

eilD76 7 7 684.53 7 719.05 7 699.34 

eilA101 8 8 814.51 8 824.09 8 826.00 

eilB101 14 14 1099.21 14 1098.95* 14 1116.82 

S51D1 3 3 459.50 3 457.67* 3 458.29 

S51D2 9 10 716.83 9 714.05* 9 717.57 

S51D3 15 16 964.83 15 971.46 15 975.76 

S51D4 27 28 1592.23 27 1624.55 27 1673.90 

S51D5 23 24 1371.41 23 1392.15 23 1399.96 

S51D6 41 43 2240.46 41 2360.93 41 2310.32 

S76D1 4 4 614.31 4 600.19 4 599.41* 

S76D2 15 16 1120.71 15 1413.73 15 1422.75 

S76D3 23 24 1445.23 23 1702.57 23 1709.04 

S76D4 37 37 2138.64 37 2171.96 37 2179.10 

S101D1 5 6 746.08 5 742.97 5 732.46* 

S101D2 20 21 1412.98 20 1448.28 20 1437.42 

S101D3 31 31 1924.39 31 1957.34 31 1989.13 

S101D5 48 50 2874.86 48 3225.70 48 3228.09 



vehicles by our TS algorithm. As shown in Table 14, 12 out of 25 problem solutions obtain less vehicles by the 

proposed algorithm, in which 16.67% improved with shorter distances. In the other 13 problems with the same 

number of vehicles, 53.85% are not worse than those in Chen et al. (2017). Overall, 68% (17 out of 25) instances 

have solutions from Chen et al. (2017) that have been improved (fewer vehicles or shorter distances) or reproduced 

the same solutions by our TS algorithm. 

6. Conclusion and future research opportunities 

  The VRPDSPDP is not only of theoretical interest as it has practical applications in distribution. Allowing 

customers to be visited by more than one vehicle, travel cost savings can be obtained by taking full advantage of 

the vehicle capacity and reducing the route distances. In this work we describe the problem and establish a 

corresponding mathematical model. We analyse the features of the VRPDSPDP and present the optimal solution 

properties of the problem. A tabu search algorithm is proposed, in which two individual operations are designed to 

avoid unnecessary travel costs, speed up the search and enhance the algorithmic search ability. The computational 

results indicate that in most of cases the proposed algorithm can be used to find better solutions than those in the 

literature to the less constrained VRPSPDP. 

  Several opportunities for future research exist, including exploiting the special structure of the VRPDSPDP, 

which may lead to further improvements in the performance of the proposed method. Future studies may also 

include the influences of additional discrete demand restrictions on the solution costs. We believe that it will be 

worth exploring the new “Item Creation” further to focus on limitations of the proposed formulation due to its 

different alternative optima, which is capable of reducing the number of alternative optima that may be considered.  
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Appendix A. 

Table A1.1   

Discretized batches for delivery for each customer for 20/10/5/1/x in experiment 1 

Customer Delivery 

demand 

Number of 

delivery batches  

Batch1 Batch2 Batch3 Batch4 Batch5 Batch6 Batch7 Batch8 

1 0.30  7 0.20  0.05  0.01  0.01  0.01  0.01  0.01    



2 0.40  2 0.20  0.20              

3 0.30  7 0.20  0.05  0.01  0.01  0.01  0.01  0.01    

4 0.40  2 0.20  0.20              

5 0.20  1 0.20                

6 0.50  8 0.20  0.20  0.05  0.01  0.01  0.01  0.01  0.01  

7 0.30  7 0.20  0.05  0.01  0.01  0.01  0.01  0.01    

8 0.20  1 0.20                

Amount 2.60  35                 

Table A1.2   

Discretized batches for pickup for each customer for 20/10/5/1/x in experiment 1 

Customer Pickup 

demand 

Number of 

pickup batches  

Batch1 Batch2 Batch3 Batch4 Batch5 Batch6 Batch7 Batch8 

1 0.30  7 0.20  0.05  0.01  0.01  0.01  0.01  0.01    

2 0.40  2 0.20  0.20              

3 0.40  2 0.20  0.20             

4 0.50  8 0.20  0.20  0.05  0.01  0.01  0.01  0.01  0.01  

5 0.20  1 0.20                

6 0.40  2 0.20  0.20              

7 0.30  7 0.20  0.05  0.01  0.01  0.01  0.01  0.01    

8 0.20  1 0.20                

Amount 2.70  30                 

Table A2.1   

Discretized batches for delivery for each customer for 25/10/5/1/x in experiment 1 

Customer Delivery 

demand 

Number of 

delivery batches 

Batch1 Batch2 Batch3 Batch4 Batch5 Batch6 

1 0.30  6 0.25  0.01  0.01  0.01  0.01  0.01  

2 0.40  3 0.25  0.10  0.05        

3 0.30  6 0.25  0.01  0.01  0.01  0.01  0.01  

4 0.40  3 0.25  0.10  0.05        

5 0.20  2 0.10  0.10          

6 0.50  2 0.25  0.25          

7 0.30  6 0.25  0.01  0.01  0.01  0.01  0.01  

8 0.20  2 0.10  0.10          

Amount 2.60  30             

Table A2.2   

Discretized batches for pickup for each customer for 25/10/5/1/x in experiment 1 

Customer Pickup Number of Batch1 Batch2 Batch3 Batch4 Batch5 Batch6 



demand pickup batches 

1 0.30  6 0.25  0.01  0.01  0.01  0.01  0.01  

2 0.40  3 0.25  0.10  0.05        

3 0.40  3 0.25  0.10  0.05        

4 0.50  2 0.25  0.25          

5 0.20  2 0.10  0.10          

6 0.40  3 0.25  0.10  0.05        

7 0.30  6 0.25  0.01  0.01  0.01  0.01  0.01  

8 0.20  2 0.10  0.10          

Amount 2.70  27             

Appendix B. 

Table B   

Delivery demand and pickup demand for each customer in experiment 3 

Set No. Delivery demand Pickup demand Set No. Delivery demand Pickup demand 

Set 1 1 1 1 Set 2 1 
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