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Summary 21 

Visceral leishmaniasis (VL) causes significant mortality and morbidity in many parts of the world. 22 

There is an urgent need for the development of new, effective treatments for this disease. We 23 

describe the development of a novel anti-leishmanial drug-like chemical series based on a 24 

pyrazolopyrimidine scaffold. The leading compound from this series (7, DDD853651/ 25 
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GSK3186899) is efficacious in a mouse model of VL, has suitable physicochemical, 26 

pharmacokinetic and toxicological properties for further development and has been declared a 27 

preclinical candidate. Detailed mode of action studies indicate that compounds from this series act 28 

principally by inhibiting the parasite cdc-2-related kinase 12 (CRK12), thus defining a novel, 29 

druggable, target for VL. 30 

 31 

Introduction  32 

Leishmania parasites cause a wide spectrum of human infections ranging from the life-threatening 33 

visceral disease to disfiguring mucosal and cutaneous forms. Leishmania spp. are obligate 34 

intracellular parasites of the vertebrate reticuloendothelial system, where they multiply as 35 

amastigotes within macrophage phagolysosomes; transmission is by blood-sucking sandflies, in 36 

which they proliferate as extracellular promastigotes. 37 

Visceral leishmaniasis (VL), resulting from infection with Leishmania donovani and L. 38 

infantum, causes more than 30,000 deaths annually, of which ~60% occur in India, Bangladesh and 39 

Nepal1. In 95% of cases, death can be prevented by timely and appropriate drug therapy2. However, 40 

current treatment options are far from ideal with outcomes dependent upon a number of factors 41 

including geographical location, the immune status and other co-morbidities of the patient, and the 42 

disease classification. None of the current front-line treatments for VL, amphotericin B (liposomal 43 

or deoxycholate formulations), miltefosine, paromomycin and antimonials, are ideal for use in 44 

resource poor settings, due to issues such as teratogenicity, cost, resistance and / or clinical relapse, 45 

prolonged treatment regimens and parenteral administration3-5. Thus, there is an urgent need for 46 

new treatment options for VL, particularly oral drugs. Unfortunately, there are currently no new 47 

therapeutics in clinical development and only a few in preclinical development. There is a paucity 48 

of well-validated molecular drug targets in Leishmania, and the molecular targets of the current 49 

clinical molecules are unknown. Recent studies6 identified the proteasome as a promising 50 

therapeutic target for treatment of VL as well as other kinetoplastid infections, and this currently 51 
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represents the most robustly validated drug target in these parasites. Furthermore, whole cell 52 

(phenotypic) screening programs have been hindered by extremely low hit rates7. Here, we report 53 

the discovery of a promising new anti-leishmanial compound with a novel mechanism of action. 54 

 55 
Discovery  56 

Previously, we reported the identification of a diaminothiazole series from a compound screen 57 

against Trypanosoma brucei GSK3 kinase (TbGSK3)8. During compound optimization it became 58 

clear that the anti-trypanosomal activity of the series was driven, at least in part, by off-target 59 

activity. The diaminothiazoles were active against T. brucei bloodstream trypanosomes in viability 60 

assays, but were essentially inactive against L. donovani axenic amastigotes (e.g. compound 1). 61 

Modification of the core structure, whilst retaining hydrogen bond donor and acceptor 62 

functionalities, gave a bicyclic compound series (Fig. 1), one of which (compound 2), showed very 63 

weak activity against L. donovani axenic amastigotes, but was inactive against the clinically 64 

relevant intra-macrophage amastigotes. Appending a sulfonamide to the cyclohexyl ring resulted in 65 

compound 3, active against L. donovani amastigotes in both the axenic and intra-macrophage 66 

assays9,10 and selectively active against L. donovani compared to the THP-1 mammalian host cells 67 

used in the assay. Replacement of the iso-butyl substituent on the pyrazole ring with an aromatic 68 

substituent and the benzyl group on the sulfonamide with a trifluoropropyl substituent resulted in 69 

compound 4 which had marginally more activity. Critically this compound demonstrated >70% 70 

parasite reduction in a mouse model of VL when dosed orally, providing proof of concept in an 71 

animal model for this series. Replacing the pyridyl group with a 2-methoxyphenyl and the 72 

trifluoropropyl group with an iso-butyl group gave our most potent compound 5, which had an EC50 73 

of 0.014 μM in the intra-macrophage assay. Compound 5 was metabolically unstable, although it 74 

demonstrated >95% parasite reduction when dosed in a HRNTM hepatic CYP450 null mouse model 75 

of infection11. Furthermore, the solubility of compounds 4 and 5 was poor.  76 
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The 2-methoxyphenyl group of 5 was replaced by a morpholine (compound 6) to increase 77 

polarity, increase the 3-dimensional shape (sp3 character) and reduce the number of aromatic rings. 78 

This was substituted with a 2-methyl group to further reduce the planarity and the trifluoropropyl 79 

sulfonamide was re-introduced, to give the key compound DDD853651 / GSK3186899 (compound 80 

7)12. This compound was selected as our preclinical candidate, on the basis of the overall properties 81 

of the molecule (potency, efficacy in the mouse model, pharmacokinetics and safety profile).  82 

Compound 7 was active against L. donovani in an intra-macrophage assay9 with an EC50 of 83 

1.4 μM (95% CI 1.2-1.5 μM, n=12) and showed good selectivity against mammalian THP-1 cells 84 

(EC50 >50 μM). This is not as potent as our reported data for amphotericin B (EC50 of 0.07 μM in 85 

the intra-macrophage assay), but is comparable to the clinically used drugs miltefosine and 86 

paromomycin (EC50 values of 0.9 μM and 6.6 μM, respectively)9. Compound 7 was also active in 87 

our cidal axenic amastigote assay (EC50 0.1 μM (95% CI 0.06-0.17 μM, n=4)10. At a concentration 88 

of 0.2 μM, compound 7 was cytocidal at 96 h; increasing the concentration to 1.8 μM reduced this 89 

to 48 h (Extended Data Fig. 1). Compound 7 demonstrated a less than 10-fold variation in potency 90 

against a panel of Leishmania clinical-derived lines. The compound was also more active in a panel 91 

of Leishmania lines using human peripheral mononuclear cells as host cells (Extended Data Table 92 

1). 93 

A balance between solubility in relevant physiological media (Extended Data Table 2) and in 94 

vitro potency proved key for development of this series. Compound 7 was stable in microsomes and 95 

hepatocytes, predictive of good metabolic stability (Extended Data Table 3). The compound was 96 

orally bioavailable and showed a linearity of pharmacokinetics from 10 to 300 mg/kg in rats 97 

(Extended Data Table 4). In our mouse model of infection the compound demonstrated comparable 98 

activity to the front-line drug miltefosine, reducing parasite levels by 99% when dosed orally twice 99 

a day for 10 days at 25 mg/kg (Fig. 2). Efficacy of treatment was dependent on dose, frequency 100 

(twice a day better than once), and duration (10 days better than 5). The non-clinical safety data for 101 

compound 7 suggests a suitable therapeutic window for progression into regulatory preclinical 102 
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studies. In vitro assays demonstrated that this compound did not significantly inhibit cytochrome 103 

P450 enzymes, mitigating a potential risk of problematic drug-drug interactions that is particularly 104 

relevant due to the frequency of VL/HIV co-infections1.  105 

As the series was developed from a known protein kinase scaffold13, Cellzome’s KinobeadTM 106 

technology was used to determine if compound 7 inhibits human protein kinases14. These 107 

experiments indicated that compound 7 interacted with four human kinases, MAPK11, NLK, 108 

MAPK14 and CDK7, at concentrations within multiples of the predicted clinical dose (Table S1). 109 

However, the extent of inhibition of these human kinases is not sufficient to preclude clinical 110 

development of the molecule and no significant inhibition of other human kinases was detected in 111 

the KinobeadTM assays. Non-GLP preclinical assessment of cardiovascular effects and genotoxicity 112 

did not reveal any issues that would prevent further development. Additionally, there were no 113 

significant adverse effects in a rat 7-day repeat dose oral toxicity study with respect to clinical 114 

chemistry and histopathology at all doses tested. Both the in vivo efficacy and safety profile of 115 

compound 7 support progression to definitive safety studies. 116 

 117 

Mode of Action Studies 118 

Elucidating the mode of action of novel chemical series can greatly benefit drug discovery 119 

campaigns15. Since there is no blueprint to establish the mode of action of bioactive small 120 

molecules16,17, several complementary methodologies were employed. Representative 121 

pyrazolopyrimidine analogues (4, 5, 6 and 7) from the drug discovery program were used as 122 

chemical tools (Fig. 1), including compound 8, where the diaminocyclohexyl group was replaced 123 

by an aminopiperidine amide. These compounds showed very good activity correlation between the 124 

intra-macrophage, axenic amastigote and promastigote assays, giving us confidence to use the 125 

extracellular parasite forms (promastigote) for mode of action studies where it was not possible to 126 

use the intracellular forms (amastigote) (Table S2). 127 
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As a first step towards identifying the target(s) of the leishmanocidal pyrazolopyrimidine 128 

series, structure activity relationships were used to inform the design of analogues containing a 129 

polyethyleneglycol (PEG) linker (9, 11, 12; Extended Data Fig. 2), which were then covalently 130 

attached to magnetic beads to allow for chemical proteomics. Firstly, beads derivatized with 9 were 131 

used to pull down proteins from SILAC (Stable Isotope Labelling by Amino Acids in Cell Culture)-132 

labelled L. donovani promastigote lysates18 in the presence (“light-labelled lysate”) or absence 133 

(“heavy-labelled lysate”) of 10 µM compound 10, a structurally related, bioactive derivative of 134 

compound 9 19. After combining the bead eluates and performing proteomic analyses, proteins that 135 

bound specifically to the pyrazolopyrimidine pharmacophore could be distinguished from proteins 136 

that bound non-specifically to the beads by virtue of high heavy : light tryptic peptide isotope ratios. 137 

These experiments identified CRK12, CRK6, CYC9, CRK3, MPK9, CYC6 and a putative STE11-138 

like protein kinase (LinJ.24.1500) as specific binders to the compound 9-derivatised beads (Log2 139 

heavy : light ratio >2.8; 7-fold enrichment) (Fig. S5; Table S3). Secondly, pull down experiments 140 

were conducted with beads derivatized with 9, 11 or 12, followed by competition studies with 5, 8 141 

and 8, respectively. Adherent proteins were washed off the beads, digested with trypsin and labelled 142 

with isobaric tandem mass tags. Comparison of the labelled peptides derived from experiments, 143 

with and without competition, by liquid chromatography / mass spectrometry identified proteins 144 

likely to specifically bind to the immobilized ligands. Potential candidates identified included: 145 

CRK3, CRK6, CRK12, CYC3, CYC6, CYC9, MPK9, MPK5 and several hypothetical proteins 146 

(Fig. S6; Table S4). We also investigated immobilizing the compound at an alternate position on the 147 

scaffold and this gave a similar binding profile (Fig. S6; Table S4), further validating the approach. 148 

These results are consistent with previous studies which report that the pyrazolopyrimidine core 149 

binds to protein kinases13,20-22.  150 

The presence of cdc2-related kinases (CRK3, 6 and 12) and cyclins (CYC3, 6 and 9) in the 151 

initial target list led us to analyze the effects of pyrazolopyrimidines (5, 6, 7 and 8) on cell-cycle 152 

progression in L. donovani. Treatment resulted in an accumulation of cells in G1 and in G2/M and a 153 
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decrease in the proportion of cells in S phase (Fig. 3a for compound 7 and Fig. S9 for 5, 6 and 8), 154 

suggesting arrests in the cell-cycle at G1/S and G2/M, consistent with a mode of action via CRK 155 

and/or CYC components. 156 

Resistance was generated in L. donovani promastigotes against compounds 4 and 5.  A single 157 

cloned parental cell line was divided into three individual cultures for each compound and 158 

resistance was generated by exposing parasites to step-wise increasing concentrations of compound. 159 

Following resistance generation, each independently generated cell line was cloned and 3 individual 160 

clones from each compound selection (6 in total) were selected for in depth study. The resulting 161 

clones demonstrated >500-fold and 9→17-fold resistance to compounds 4 and 5, respectively 162 

(Extended Data Table 5). Resistance to both compounds was found to be stable over 50 days in 163 

culture in the absence of drug pressure and, significantly, all clones showed cross-resistance to 4 164 

and 5, and 20→50-fold cross-resistance to 7. These data suggest our pyrazolopyrimidines share 165 

common mechanisms of resistance and most likely modes of action. Importantly, intracellular 166 

amastigotes, derived from the resistant promastigotes, were 8.5-fold and 5-fold resistant to 5 and 7, 167 

respectively, compared to wild-type parasites (Extended Data Table 6) strongly suggesting that their 168 

mechanism(s) of action are the same in promastigote and intracellular amastigote stages of the 169 

parasite.  170 

To gain further insight into the mechanism of action and potential target(s) of this 171 

pyrazolopyrimidine series, our 6 drug-resistant clones underwent whole genome sequence analysis. 172 

A range of mutations, relative to parental clones, were found across the genome (Table S5), 173 

including a long region with loss of heterozygosity on chromosome 9. In total, 75 sites were 174 

identified genome-wide that each had single base substitutions resulting in a non-synonymous 175 

change in at least one clone (Table S6). The majority (65) of non-synonymous substitutions 176 

consisted of derived clones losing a parental allele but amplifying the remaining allele. In five of 177 

the six resistant clones a new heterozygous substitution was selected in a single gene of unknown 178 

function (LdBPK_251630) but most strikingly, in all 6 drug-resistant clones, a single homozygous 179 
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non-synonymous substitution was found in CRK12 (LdBPK_090270), a gene within the long loss-180 

of-heterozygosity region. This mutation changes Gly572 to Asp and falls within the region 181 

predicted to encode the catalytic domain of L. donovani CRK12. This suggests that CRK12 is the 182 

target of the pyrazolopyrimdines. Extensive variations in chromosomal copy numbers are common 183 

in Leishmania23,24, and extra copies of chromosome 9, containing the CRK12 gene, were found in 184 

four out of six drug-resistant clones (Table S7). Additionally, three of these four clones had extra 185 

copies of chromosome 32, containing the gene for CYC9. Previous studies in T. brucei have 186 

established that the partner cyclin of CRK12 is CYC925. This suggests that CYC9 may be the 187 

cognate cyclin partner for L. donovani CRK12.  188 

 189 

Target validation 190 

To dissect the role of CRK12 and CYC9 in the mechanism of action and resistance of 191 

pyrazolopyrimidines a series of protein overexpression studies were undertaken in L. donovani 192 

promastigotes. In all cases, overexpression of putative targets was confirmed by elevated levels of 193 

transcripts in our transgenic cell lines relative to WT, as determined by qRT-PCR (Table S8).  194 

Counter-intuitively, overexpression of wild-type CRK12 (CRK12WT) rendered the parasites 195 

~3-fold more sensitive to 5 (Fig. 3b). The overexpression of CYC9 alone had no effect on 196 

compound resistance, but co-overexpression of CYC9 and CRK12WT rendered the transgenic 197 

parasites ~3-fold resistant to compounds 5 and 7 (Fig. 3c and Table S8). Next, we looked at the 198 

mutated (Gly572 to Asp) version of CRK12 (CRK12MUT) identified in all of our drug-resistant 199 

clones. Overexpression of CRK12MUT rendered the parasites ~3.4-fold resistant to 5 (Fig. 3d and 200 

Table S8) and to the preclinical lead compound 7 (Table S8), while being equally sensitive to the 201 

unrelated nitroimidazole drug fexinidazole sulfone (Table S9). Co-overexpression of CRK12MUT 202 

and CYC9 rendered the parasites ~6-fold resistant to compound 7 and ~8-fold resistant to 203 

compound 5. This shift in sensitivity is considerably greater than the 3.4-fold resistance observed 204 

with parasites overexpressing CRK12MUT alone (Fig. 3d). Replacing a single copy of the CRK12 205 
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gene with a drug selectable marker left parasites ~2-fold more susceptible to compound 5 than WT 206 

(Fig. 3e, Fig. S10). We were unable to directly replace both endogenous copies of the CRK12 gene, 207 

except in the presence of an ectopic copy of the gene, suggesting that the CRK12 gene is essential 208 

for the growth and survival of L. donovani (Fig. S10). 209 

Initially, CRK3 and CRK6 were identified as credible targets based upon our collective 210 

proteomics datasets, as well as their established roles in kinetoplastid cell cycle regulation26,27. 211 

However, whole genome sequencing, qPCR (Fig. S8) and Southern blot (Fig. S7) analysis of 212 

resistant clones confirmed that mutations within, or amplification of, the CRK3 and CRK6 genes 213 

were not responsible for resistance to pyrazolopyrimidines. Direct modulation of CRK3 and CRK6 214 

levels within L. donovani promastigotes, by generating overexpressing and single gene knockout 215 

parasites, did not alter drug sensitivity (Table S8). Overexpression of CRK3 and CRK6 in 216 

combination with their cognate cyclin partners CYC6 and CYC3 was not possible since co-217 

overexpression proved toxic. Collectively, these data suggest that the primary mechanism of action 218 

of this compound series is unlikely to be via CRK3 or CRK6 inhibition.  219 

Commonly, overexpression of a compound’s molecular target is accompanied by an 220 

increase in drug resistance. With this in mind, our collective data strongly suggest that the principal 221 

target of our pyrazolopyrimidine series is the CYC9-activated form of CRK12, such that 222 

overexpression of CRK12 and CYC9 together provides resistance. This hypothesis is also 223 

consistent with the amplification of both CRK12 and CYC9 in resistant parasites; as well as the 224 

identification of both proteins in our SILAC and KinobeadTM proteomic datasets. That 225 

overexpression of CYC9 alone has no effect suggests that CYC9 is, to some extent, in excess over 226 

CRK12 and thus overexpression of CRK12MUT can provide (~3-fold) resistance that is increased 227 

when additional CYC9 is co-expressed (~8-fold). The “hyper-sensitivity” of parasites 228 

overexpressing CRK12WT alone to these compounds remains perplexing. One potential explanation 229 

is that CRK12WT bound to a pyrazolopyrimidine in the absence of a CYC9 subunit is particularly 230 

toxic to the parasite. Alternatively, elevated levels of CRK12 may well sequester other cyclins 231 
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thereby preventing their essential interactions with other CRKs. Further studies will be required to 232 

test these hypotheses.  233 

Given that the compounds from this chemical series interacted with protein kinases, in 234 

particular CRK12, we used Cellzome’s KinobeadTM technology14,28,29 with axenic amastigote 235 

extracts to identify pyrazolopyrimidine-binders in the Leishmania kinome. These experiments were 236 

performed in the presence or absence of an excess of the soluble parent compound 5. All proteins 237 

captured by the beads were quantified by TMT tagging of tryptic peptides followed by LC-MS/MS 238 

analysis30. CRK12, MPK9, CRK6 and CYC3 (Fig. 4a) were identified, consistent with the other 239 

experiments above. A dose response experiment was performed in which 5 was added over a range 240 

of concentrations in order to establish a competition-binding curve and determine a half-maximal 241 

inhibition (IC50) value (Fig. 4b). The IC50 values obtained in these experiments represent a measure 242 

of target affinity, but are also affected by the affinity of the target for the bead-immobilized ligands. 243 

The latter effect can be deduced by determining the depletion of the target proteins by the beads, 244 

such that apparent dissociation constants (Kd
app) can be determined that are largely independent 245 

from the bead ligand30. The apparent dissociation constants (Kd
app) were determined as 1.4 nM for 246 

CRK12, 45 nM for MPK9, 58 nM for CYC3 and 97 nM for CRK6. These values are determined in 247 

physiological conditions (substrates, cyclins and ATP) and provide further compelling evidence that 248 

the principal target of this compound series is CRK12. Further pull-downs with a resin-bound 249 

pyrazolopyrimidine analogue (11) were conducted in parallel with the KinobeadTM experiments and 250 

returned broadly similar results (Fig. 4 c, d). 251 

Collectively, our data provides strong evidence that CRK12 forms a significant interaction 252 

with CYC9: (a) our studies indicate that overexpression of CYC9 alongside CRK12 markedly 253 

increases resistance to our pyrazolopyrimidine compounds; (b) in several of our compound-resistant 254 

cell lines, additional copies of chromosome 32, containing the CYC9 gene were found; (c) in the 255 

related organism T. brucei CYC9 was confirmed as the partner cyclin for CRK12; (d) in several 256 
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chemical proteomics studies CYC9 was identified as binding to immobilized compounds from our 257 

pyrazolopyrimidines alongside CRK12. 258 

 259 
Modelling 260 

A homology model was built for L. donovani CRK12 using the structure of human cyclin 261 

dependent kinase 9 (CDK9, PDB code:4BCF) as a template. (Interestingly 7 showed an IC50 > 20 262 

μM against CDK9 in the Kinobeads™ assay.) A combination of docking studies, molecular 263 

dynamics simulation and free energy calculations indicated the most likely binding mode is that 264 

shown in Fig. 5 (see supporting information for discussion). With very few exceptions, the binding 265 

modes of protein kinase inhibitors are highly conserved across kinase family members; searching 266 

the protein database revealed a related 5-amino-pyrazolopyrimidine, which bound to ALK in a very 267 

similar fashion (PDB code 4Z55, ligand 4LO). In our proposed binding mode, the bicyclic scaffold 268 

interacts with the hinge residues establishing two hydrogen bonds between the sp2 pyrimidine 269 

nitrogen in position 6 and the backbone NH of Ala566 and between the pyrazole NH in position 1 270 

and the backbone carbonyl oxygen of Ala564 (Fig. 5b). A third hydrogen bond is also established 271 

between the amino NH in position 5 and the backbone carbonyl oxygen of Ala566. The substituent 272 

in position 3 of the pyrazole ring is directed towards the ATP back pocket interfacing with the 273 

gatekeeper residue (Phe563). This binding mode is consistent with the analogues 9, 11 and 12 274 

retaining binding affinity, with the PEG linkers being attached to water-accessible parts of the core. 275 

The Gly572Asp mutation causing resistance to the pyrazolopyrimidine series is located at the end 276 

of the hinge region nine residues from the gatekeeper. In the Gly572Asp mutant, the negatively 277 

charged side chain of the aspartic acid is positioned in close contact to the oxygen atoms of the 278 

sulfonamide moiety leading to an unfavorable electrostatic interaction.  279 

 280 

Discussion 281 
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New oral drugs for VL, particularly those capable of treating on-going outbreaks in East Africa, are 282 

urgently needed. Effective drugs will make a significant difference to treatment outcomes for this 283 

devastating parasitic disease. With the ultimate goal of VL elimination, multiple new treatment 284 

options will be required. We have identified a pyrazolopyrimidine series showing potential to treat 285 

VL. Our studies indicate that the principal mechanism of action of our pyrazolopyrimidine 286 

compounds is through inhibition of CRK12, defining CRK12 as one of very few chemically-287 

validated drug targets in Leishmania. Further, our data indicate that CYC9 is the definitive partner 288 

cyclin for CRK12. The physiological function(s) of CRK12/CYC9 have yet to be determined and 289 

the availability of our inhibitory pyrazolopyrimidines should assist in probing this aspect of parasite 290 

biology. 291 

It is clear from our collective chemical proteomics studies that the pyrazolopyrimidines also 292 

interact with other Leishmania protein kinases, in particular CRK6 and CRK3, albeit with 293 

significantly lower affinities than for CRK12. While CRK12 is undoubtedly the principal target of 294 

this compound series, we cannot rule out the possibility that underlying this mechanism of action is 295 

an element of polypharmacology. Indeed, inhibition of secondary kinase targets may be responsible 296 

for some of the phenotypic effects observed in drug-treated parasites, such as cell cycle arrest. 297 

Compound 7 is being advanced towards human clinical trials and is currently undergoing 298 

preclinical development. The data generated to date provides a reason to believe that 299 

compound 7 has the potential to fulfil the community target product profile31. However, as a 300 

systematic approach to drug discovery is relatively new in this neglected disease and there is a lack 301 

of correlation between pre-clinical and clinical data, there are outstanding questions that can only be 302 

answered as the compound progresses through development. 303 

 304 

End notes 305 

Supplementary Information: this contains chemical synthesis and characterization, methodology 306 

and ethical statements. 307 
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Figure 1: The evolution of the pyrazolopyrimidine series to give the development compound 79. 329 

Potencies against axenic amastigotes, intra-macrophage amastigotes and against THP-1 cells are 330 

shown9; data from ≥ 3 independent replicates for cidal axenic and intra-macrophage assays. In the 331 

cidal axenic assay a higher cell density and improved detection limit is used than in compared to the 332 

axenic assay allowing distinction between cytostatic and cytotoxic compounds 10. 333 

 334 

Figure 2: Efficacy of compound 7 in a mouse model of VL. Each arm was carried out with 5 335 

mice. (a) Reduction in parasite load for various dose regimens. uid is once daily dosing; bid is twice 336 

daily dosing. (b) Dose response for twice daily dosing for 10 days. (c) Given dose required to give a 337 

particular reduction in parasite load for twice daily dosing for 10 days. The reported ED90 for 338 

miltefosine in a mouse model is 27 mg/kg uid 6,32,33.  339 

# Leishman Donovan Units (LDU) are the number of amastigotes per 500 nucleated cells multiplied 340 

by the organ weight in grammes34,35.  341 

 342 

Figure 3: Studies to validate the molecular target of the pyrazolopyrimidine series. (a) Cell 343 

cycle analysis following treatment with compounds for 8 h. Untreated cells at 0 h (black) and at 8 h 344 

(grey). Cells treated with 5x EC50 value of compound 7 for 8 h (white). Unpaired Student t test (**, 345 

P = 0.01; ***, P = 0.001 (b) Effects of CRK12WT overexpression in promastigotes on the potency of 346 

compound 5 (EC50 value of 0.24 ± 0.002 nM, closed circles) compared to WT cells (0.72 ± 0.01 347 

nM, open circles). (c) Effects of CRK12WT and CYC9 co-overexpression in promastigotes on the 348 

potency of compound 5 (EC50 value of 1.43 ± 0.01 nM, closed circles) compared to WT cells (EC50 349 

value of 0.5 ± 0.004 nM, open circles). (d) Effects of CRK12MUT and CYC9 overexpression in 350 

promastigotes on the potency of compound 5 (EC50 value of 1.99 ± 0.002 nM, open circles) 351 

compared to WT cells (EC50 value of 0.59 ± 0.001 nM open squares) and CRK12MUT/CYC9 co-352 

overexpressing promastigotes (EC50 value of 4.6 ± 0.05 nM, closed circles). (e) Effect of knocking 353 

out a single copy of the CRK12 gene on the potency of compound 5 in promastigotes (EC50 value of 354 
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0.76 ± 0.004 nM, closed circles) compared to WT cells (EC50 value of 1.5 ± 0.004 nM, open 355 

circles). P = 0.0014 using an unpaired Student t test.  All data are the mean ± SD from n = 3 356 

technical replicates and are representative of at least duplicate experiments. 357 

  358 

Figure 4: Identification of cyclin dependent related kinases as targets of the 359 

pyrazolopyrimidine series using a chemoproteomic approach. (a) Relative amounts of protein 360 

captured on Kinobeads™ in the presence of 10 µM compound 5 compared to vehicle, comparison 361 

of  2 experiments. A log2 scale is used. (b) Dose response curves of proteins binding to 362 

Kinobeads™ in the presence of varying concentrations of compound 5. (c) Relative amounts of 363 

protein captured on 11-derviatised beads in the presence of 10 µM compound 5 compared to 364 

vehicle, comparison of  2 experiments. A log2 scale is used. (d) Dose response curves of binding of 365 

proteins to 11-derivatised beads in the presence of varying concentrations of 5.  366 

 367 

Figure 5. Docking poses for (a) compound 4 and (b) compound 7. Dotted purple lines 368 represent H-bonds. The mutated residue in position gate-keeper (GK) +9 is indicated in purple 369 in the ribbon diagram. 370  371 

Extended Data Figure 1: Rate-of-kill of L. donovani axenic amastigotes by compound 7. Chart 372 

shows relative luminescence units (RLU) versus time from axenic amastigote rate-of-kill 373 

experiment with compound 7 (representative results for one of two independent experiments are 374 

shown; data is presented as mean and standard deviation of 3 technical replicates.). Concentrations 375 

are as follows (µM): 50, open circles; 16.7, closed circles; 5.6, open squares; 1.85, closed squares; 376 

0.62, open triangles; 0.21, closed triangles; 0.069, open inverted triangles; 0.023, closed inverted 377 

triangles, 0.0076, open diamond and 0.0025, closed diamond. 378  379 
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Extended Data Figure 2. Linker-containing target molecules synthesized for chemical proteomic 380 

experiments and corresponding EC50 values. 381  382 

Extended Data Table 1. Activity of compound 7 and miltefosine against a panel of Leishmania 383 

clinical isolates (intramacrophage assay using human peripheral blood mononuclear cells). 384  385 

Extended Data Table 2. Solubility of compound 7 in simulated physiological media (4h at 37°C). 386  387 

Extended Data Table 3. In vitro metabolic stability data for compound 7. 388  389 

Extended Data Table 4. DMPK data for compound 7 390  391 

Extended Data Table 5. Sensitivity of WT and drug-resistant promastigotes to compounds within 392 

the series. Resistance was generated against compounds 4 and 5.  393  394 

Extended Data Table 6: Sensitivity of WT and compound 5-resistant intramacrophage amastigotes 395 

(INMAC) to the compound series. 396  397 

 398 
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 400 
Extended Data Figure 1: Rate-of-kill of L. donovani axenic amastigotes by compound 7. Chart 401 

shows relative luminescence units (RLU) versus time from axenic amastigote rate-of-kill 402 

experiment with compound 7 (representative results for one of two independent experiments are 403 

shown; data is presented as mean and standard deviation of 3 technical replicates.). 404 

Concentrations are as follows (µM): 50, open circles; 16.7, closed circles; 5.6, open squares; 405 

1.85, closed squares; 0.62, open triangles; 0.21, closed triangles; 0.069, open inverted triangles; 406 

0.023, closed inverted triangles, 0.0076, open diamond and 0.0025, closed diamond. 407 

  408 
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 409 

 410 

Extended Data Figure 2. Linker-containing target molecules synthesized for chemical 411 

proteomic experiments and corresponding EC50 values. 412 

  413 
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Extended Data Table 1. Activity of compound 7 and miltefosine against a panel of 414 
Leishmania clinical isolates (intramacrophage assay using human peripheral blood 415 
mononuclear cells). 416 

 417 

Strain 
Country 

of origin 
Year 

Compound 7 

EC50 (µM) 

Miltefosine 

EC50 (µM) 

L. donovani LV9 Ethiopia 1967 0.06 0.40 

L. donovani SUKA 001 Sudan 2010 0.10 1.0 

L. donovani BHU1 * India 2002 0.10 0.50 

L. donovani DD8 India 1980 0.13 0.50 

L. infantum ITMAP263 Morocco 1967 0.13, 0.50 0.79 

* Antimony-resistant reference strain 418 
 419 
Strains were tested on a single (DD8, SUKA001, BHU1) or two (LV9, ITMAP263) test 420 

occasions; for ITMAP263 the respective EC50 values are shown. 421 

  422 
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Extended Data Table 2. Solubility of compound 7 in simulated physiological media (4h at 423 

37°C). 424 

  425 

Media Final pH Solubility

[mg/mL] 

SGF pH1.6 SGF (1.5) 1.12 

Fasted SIF pH6.5 FaSSIF (6.5) 0.017 

Fed SIF pH6.5 FeSSIF (6.5) 0.025 

SGF, Simulated Gastric Fluid; SIF, Simulated Intestinal Fluid. Data for polyform 1. 426 
 427 

  428 
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Extended Data Table 3. In vitro metabolic stability data for compound 7. 429 

 430 

Species Concentration 
(μM) 

Microsomes Cli 
(mL/min/g 
tissue) 

Hepatocytes Cli 
(mL/min/g 
tissue) 

Mouse 0.5 0.52 0.84 
Rat 0.5 <0.5 0.77 
Dog 0.5 <0.4 0.31 
Human 0.5 0.71 0.5 
 431 
 432 
 433 
 434 
  435 
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Extended Data Table 4. DMPK data for compound 7 436 

 437 
 438 

Intravenous Mouse 
(male, CD1) 

Rat 
(male, SD) 

1 mg/kg 1 mg/kg 
Cl (ml/min/kg) 169 ± 50 14 ± 9 
Vdss (L/kg) 4.0 ± 0.5 0.4 ± 0.2 
T1/2 (h) 0.3 ± 0.04 0.4 ± 0.1 
AUC(0-inf) (ng.h/mL) 104 ± 26 1514 ± 782 
Oral 10 mg/kg 10 mg/kg 
Cmax (ng/ml) 561 ± 148 1043 ± 261 
Tmax (h) 2 2 
T1/2 (h) 1.2 ± 0.4 2.5 ± 0.6 
AUC(0-inf) (ng.h/mL) 1463 ± 362 6475 ± 2494 
F% based on AUC(0-inf)  >100 46 ±18 
Oral 100 mg/kg 100 mg/kg 
Cmax (ng/ml) 8813 ± 1966 8470 ± 3750 
Tmax (h) 3 7.3 
T1/2 (h) 2.6 ± 0.8 2.1 ± 0.1 
AUC(0-inf) (ng.h/mL) 39433 ± 23830 61202 ± 23591 
F% based on AUC(0-inf)  >100 40 ± 15 
Oral 300 mg/kg 300 mg/kg 
Cmax (ng/ml) 11393 ± 4212 14833 ± 2676 
Tmax (h) 5 7.3 
T1/2 (h) 2.5 ± 0.6 2.8 ± 0.6
AUC(0-inf) (ng.h/mL) 66150 ± 636 136333 ± 24846
F% based on AUC(0-inf)  >100 51 ± 22 
 439 
 440 
 441 
  442 
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Extended Data Table 5. Sensitivity of WT and drug-resistant promastigotes to compounds 443 
within the series. Resistance was generated against compounds 4 and 5.  444 

 445 
 446 
 447 
 448 

449 

Cell line 
  

4 5 7 

pEC50 (SD) Fold pEC50 (SD) Fold pEC50 (SD) Fold 

Wild type 
(Start clone) 

7 (0.1) 1 8.2 (0.4) 1 7.1 (0.3) 1 

Wild type 
(Age-matched) 

7.1 (0.2) 1 8.2 (0.1) 1 7.3 (0.2) 1 

4-resistant clone 1 < 4.3 >500 7.2 (0.1) 11 5.8 (0.4) 20 

4-resistant clone 2 < 4.3 >500 7.3 (0.1) 7 5.7 (0.2) 24 

4-resistant clone 3 < 4.3 >500 7 (0.2) 17 5.4 (0.1) 48 

5-resistant clone 1 < 4.3 >500 7.1 (0.2) 11 5.5 (0.2) 41 

5-resistant clone 2 < 4.3 >500 7.1 (0.2) 14 5.5 (0.1) 35 

5-resistant clone 3 < 4.3 >500 7.3 (0.1) 9 5.7 (0.1) 22 
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Extended Data Table 6: Sensitivity of WT and compound 5-resistant intramacrophage 450 
amastigotes (INMAC) to the compound series. 451 

 452 
 453 

Compound  Cell line pXC50 Host cell 
pXC50 

Fold 
difference  

5 WT 7.5 <5.3 - 

5 5 RES clone 1 6.6 <5.3 8.5 

7 WT 5.9 <4.3 - 

7 5 RES clone 1 5.2 <4.3 5.0 
 454 
 455 

  456 
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Figures 5a and 5b – original photoshop versions provided separately 
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