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Abstract 

In this paper, we introduce and discuss the concept of anthropomorphic machine learning as 
an emerging direction for the future development in the area of artificial intelligence (AI) 
and data science. We start with outlining research challenges and opportunities, which the 
contemporary landscape offers. We focus on machine learning, statistical learning, deep 
learning and computational intelligence as theoretical and methodological areas of greater 
promise for breakthrough results and underpinning the future revolutionary changes in 
technology development as well as in our everyday life and societies. Our critical analysis 
brings us to the open problems and we formulate the paradigm shift in the understanding of 
machine learning. In a nutshell, our vision for the next generational machine learning 
methods and algorithms is anthropomorphic, which resembles the way people/humans 
learn from data. This concept brings machine learning from the statistics to the area of 
computational intelligence and AI.  
Keywords- anthropomorphic, machine learning, computational intelligence 

Data-rich environment, “digital obesity”, the new interpretation of Moor’s law in 
regards to the data 

We are witnessing technological developments with revolutionary potential – they are re-

shaping industries, the Society, our everyday life. These are based primarily on the 

exponentially growing amount, complexity and sources of data (streams). They strongly 

influence our ability to deal with such data-rich environments, in which there exists an 

abundance of data of various modalities. The data increasingly come in a form of streams, 

are non-linear, non-stationary and increasingly more multi-modal/heterogeneous: 

combining various physical variables, signals with images/videos as well as text. Now, since 

the famous Moors law is not so relevant for the hardware advance (because it reached the 

physical limits of miniaturization to a nanoscale), the breakthrough is required in the way 

we deal with data from algorithmic point of view. We are again witnessing an exponential 

growth similar to Moore’s law nowadays, but now it is in terms of the amount of data we 

produce and process rather than the hardware capacity and circuit integration. From 

personal aspect, human beings have to cope with this “digital obesity” from an earlier age 

with all positive and negative consequences. Nonetheless, in this paper we will focus on the 

technical and theoretical aspect of this revolutionary process.  

This reality is drastically different from the reality when the fundamental results of the 

probability theory, statistics and statistical learning were developed few decades and 

centuries ago. It calls for new approaches bringing some specific new challenges, but also 

offering new opportunities. 
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Are traditional machine learning, statistical learning and even the most recent deep 
learning fit to this environment? 

Traditional machine learning models [1] have internal structures, which are largely pre-

determined by the assumptions made at the start of the process. For example, they strongly 

depend on the assumed a priori data generation model [2]. The interpretability of the 

traditional statistical machine learning models is typically lower than that of the so-called 

“first principles” models, which themselves are often based on differential equations 

representing mass, energy balance or approximations of the laws of physics. However, the 

level of their interpretability is typically higher than that of some computational intelligence 

models such as artificial neural networks (ANN). The level of interpretability and 

transparency of “first principles” models is closer to the level of transparency and 

interpretability of another form of computational intelligence - the fuzzy rule-based (FRB) 

systems. In addition, there are some parallels and dualism between FRB system and mixture 

Gaussian probabilistic or Bayesian models [1]. 

The most successful classifiers, for example, support vector machines (SVM) [3] and deep 

learning neural networks (DLNN) [4], [5], e.g. convolutional neural networks (CNN) and 

recurrent neural networks (RNN), have very low level of interpretability [4]. Their internal 

structure is not informative or clear to the human users and does not relate to the problem 

at hand (for example, they cannot explain clearly the reasons for certain decisions, and do 

not allow alternatives to be explored). This is an especially acute problem for the quickly 

popularized DLNNs, which are able to extract high-level abstractions from images and have 

already demonstrated excellent results in image processing. However, the contemporary 

DLNNs lack transparency, and the hundreds of millions of weights they use have values that 

cannot be linked to the problem in an analytical manner understandable for humans [4]. 

They also do not have a clear semantic of the inner model structure, the number of hidden 

layers and many other parameters are decided ad hoc. Opacity and incapability of working 

under uncertainty scenarios are two of the most challenging problems when using deep 

learning, as recently stated by Google and Drive.ai [6], [7]. Wrong decisions can lead to life-

threatening situations. This is not a trivial problem and requires analytical insights into why 

DLNNs make particular decisions. The development of a transparent system that is designed 

to handle uncertainty by being able to recognize unknown scenarios can directly help 

solving several open problems that currently can only be addressed by deep learning.  

What are the limits, challenges? 

 
The mainstream DLNNs, despite their success (reported results comparable or surpassing 
the human ability [4]) and publicity (including the commercial one) and the increased media 
interest, still have a number of unanswered questions and deficiencies [6]–[8]: 

• The internal architecture of DLNNs is opaque and lacks transparency (there are 
many ad hoc decisions and parameters such as number of layers, neurons, 
parameter values); 

• The training process of DLNNs requires a large amount of data, time and 
computational resources, which preclude training and adaptation in real-time, 
therefore, DLNNs cannot cope with the evolving nature of the data (they have 



fixed structure and settings, e.g. number of classes), cannot be used and learn 
“from scratch”; 

• DLNNs are prone to overfitting; 

• DLNNs cannot handle uncertainty. Not only they poorly perform on inference 
data that is significantly different from the training data, but they are also 
unaware of it (it is practically impossible to analyze the reasons for errors and 
failures); they can be easily fooled at outputting high confidence scores even 
when facing unrecognizable images [8].  

 

What are the opportunities, alternatives? 
 

Both machine learning and statistical learning as well as computational intelligence and 
deep learning as a form of the most advanced and complex artificial neural networks are 
quite different from the way people learn from data (for example, images). Statistical 
learning is based on the classical probability theory and iterative optimization. Due to the 
solid mathematical foundation, the performance of these learning algorithms are, in 
general, guaranteed when the amount of data tends to infinity and all the data come from 
known distributions. Nonetheless, the presumed random nature and known distribution(s) 
imposed on the data generation model are too strong and impractical to be holding true in 
real situations [2]. In addition, the predefined parameters of machine learning algorithms 
usually require a certain amount of prior knowledge of the problem, which, in reality is 
often unavailable. 

If we compare the way people/humans learn from data (including, but not limited to, 
images) with the currently existing machine learning approaches, we can notice some 
fundamental differences, for example: 

• People can easily learn from a single or a handful of examples; 
• People do learn lifelong rather than “train and fix our recognition rules”; 
• Our recognition rules (classifiers) do evolve (new rules and/or classes can emerge 

or some rules and/or classes are being merged as we grow up; the number of 
rules and/or classes is not fixed once and forever) [9];  

• People can add new classes, rules, etc., “on the fly”, in real–time (we do not stop 
for re-training) [9];  

• People can explain why they recognize a particular image (assign to a certain 
class), for example, colour of the hair, ears, nose if we consider face recognition 
or details if we talk about cars or houses, etc.; 

• People can learn collaboratively (they can exchange aggregated data to each 
other and learn from it) [9]; 

We see great opportunities in developing the next generation Machine Learning in an 
anthropomorphic manner. In our view, the future intelligent machines and machine 
intelligence will be more human-friendly, human-like while offering a much higher 
throughput, automation and thus, augmenting our (human) capabilities. 

The research challenge is, thus, to develop and implement accurate, transparent, 
adaptable, self-learning and computationally efficient machine learning methods (i.e. 
classifiers for images, predictors, controllers, anomaly detectors, recommender systems, 
etc.) capable of detecting unknown scenarios. These next generation machine learning 



methods should not involve handcrafting, restrictive prior assumptions, user- or problem-
specific parameters. That is, they have to be with high degree of autonomy. However, they 
have to be human-friendly, transparent and human-like (anthropomorphic). 
 

Anthropomorphic machine Learning 

Anthropomorphic characteristics of a machine learning method enable computers “to learn 
like humans do”. Nowadays, the vast majority of machine learning methods, including the 
mainstream DLNNs, require a huge amount of training data to be able to work. However, 
people can recognize an object that they have seen only once.  
Just imagine the Opera House in Sydney, Australia or Tower Bridge in London, England– how 
many training images do we need to be able to associate new images with it next time. 
Humans are able to associate and make the respective reasoning, classification or anomaly 
detection based on a single or few examples. Therefore, the ability of building a model 
from a single or very few training data samples, namely, to “start from scratch”, is a 
human-like (anthropomorphic) characteristic.  
Another human-like feature is the ability to explain the decisions made. When we 
recognize a bird, we never say “this is a parrot, but I do not know why”. Instead, we would 
say “this bird looks very much like a parrot because of its head, its beak, its craws, its wings, 
color of the feathers, sounds it makes, etc.” However, DLNNs are not able to do that. 
Identifying and using prototypes to which the new observations are associated makes it 
possible and easy to explain the reason for a certain decision. This is an anthropomorphic 
(human-like) feature that the current DLNNs, SVM as well as other state-of-the-art 
approaches cannot offer.  
Further, the ability to learn continuously is also an anthropomorphic characteristic, which 
the vast majority of the existing methods (with the exception of the reinforcement learning 
method) cannot offer. However, reinforcement learning cannot guarantee convergence. In 
comparison, humans dynamically evolve their internal perception of the real world (the 
model of the environment) all the time. We all are able to learn new information and 
update the previously learned one. This ability is another anthropomorphic characteristic, 
which most mainstreaming machine learning methods lack, but is badly needed because of 
the raising challenges in todays’ world [9]. 
Last, but not least, human brain is remarkably efficient from the energy consumption point 
of view. It coordinates a large number of extremely complex tasks all day long. It consumes 
around 12 watts—a fifth of the power required by a standard 60 watt lightbulb, but makes 
miracles. The key to have anthropomorphic algorithms and methods for machine learning is 
to learn in a lean, computationally efficient manner. However, the state-of-the-art 
approaches, especially, DLNNs, are computationally expensive and cumbersome. Currently, 
they require HPC, accelerators (i.e. GPUs), etc. A lot of attempts were made in optimizing 
the hardware (e.g., neuromorphic chips Loihi by Intel [10]). However, we believe that the 
huge untapped potential resource is the fundamentally different algorithmic processing 
using recursive, non-iterative, prototype-based methods. 
In short, the reality we live in requires a shift towards anthropomorphic machine learning 
approaches. 

Bottleneck issues in mainstream approaches 

 Ideally, an anthropomorphic system will be able to: 



• learn from a single or very few examples; 

• learn lifelong from newly observed examples; 

• explain what it knows as well as know what it does not know and why it made 

specific errors; 

• detect data samples that are significantly different from all the previously 

observed ones and form new rules and/or classes when necessary (self-learning 

and self-organizing); 

• perform learning in a lean, computationally efficient manner; 

• collaborate with other anthropomorphic machine learning systems (if any). 

However, the key bottleneck issue in the mainstream approaches is the lack of situational 
awareness. In addition, the ability of presenting to the users the already learned 
knowledge in a transparent, human-interpretable manner requires much more attentions 
as well. This also contributes to the reliability of the system.  
Indeed, DLNNs can learn from the data under the most diverse scenarios but remain black 
boxes. They are able to perform highly accurate classification on data with familiar patterns. 
However, they completely fail when confronted with unfamiliar data patterns that deviate 
from the previously observed ones. Furthermore, DLNNs are unable to recognize when this 
happens. This deficiency is not trivial, but can cause serious problems, which further 
prohibits the use of DLNNs in real world applications. One well-known example is the self-
driving vehicles which use DLNN-based computer vision technologies [6], [7]. They have 
been experimentally studied and even tested on real roads for a few years. However, 
although self-driving vehicles are able to perform well around familiar scenarios (highway, 
residential area, day, night, rain, snow, low traffic, high traffic, etc.), they are unable to 
recognize whether the current scenario is known or not. This can lead to a high risk and 
create a lot damages and even fatalities. As a result, identifying the unknown situations 
and autonomously learning from them are of paramount importance for the safety and 
wider use of this technology [9]. 
Ultimately, the goal has to be building a system that is able not only to recognize previously 
known patterns, but also to recognize the “unexpected” ones. In a way, the problem can be 
seen as a system that is aware of its limitations and is able to initiate a safety procedure 
when facing an unknown impossible to predict situation and learns from this autonomously.  
Another very important characteristic for an algorithm is whether it can work in the so-
called “one-pass” mode. The term of “one-pass” means that a data sample (e.g. an image) 
once taken and processed by the algorithm is then thrown away, not stored in the memory 
nor used anymore. Learning models designed in offline mode may have a very good 
performance for validation data if the validation data share similar characteristics and 
patterns with the training data. However, their performance dramatically worsens facing 
the so-called data shift and drift [9]. In such cases, models designed offline require a 
recalibration or a complete re-design, which may be very expensive in terms of not only 
model design costs, but also the possible related industry stoppage costs. In real problems, 
this is often the case as significant changes may happen due to, for example, raw material 
quality variations (in oil refining), illuminations conditions (i.e. day, night) in image 
processing, etc.[9] 
Being “one-pass” is a very demanding form of data processing. It requires the algorithm to 
rely only on the current data sample and possibly some statistical aggregations, model 



parameters (such as cluster centers, prototypes, etc.), but not to use a (possibly, sliding) 
window of data samples or the so-called “data chunks”. “One-pass” is a very efficient mode 
of operation in terms of using memory of the machine, computational resources (search, 
storage) and can work lifelong. The difference is very significant. For example, in video 
processing, a “one-pass” algorithm only processes the current image frame and does not 
store past frames in the memory. Instead, it stores in the memory a small amount of 
statistical aggregations and model parameters only [9]. 
The ability of an algorithm to be “one-pass” is strongly depends on it being non-iterative and 
recursive [9]. The reason is simple, if an algorithm involves an iterative search procedure, 
there is no guarantee that it will get the result before the next data sample arrives. Having a 
recursive algorithm guarantees the ability of being “one-pass”, because recursive algorithms 
update their parameters at the current time step using only the values of these parameters 
at the previous time step and some simple arithmetic operations such as summation, 
multiplication by numerical coefficients. 

First step towards anthropomorphic machine learning 

As one of the recent advances in the field of machine learning, the recently introduced Deep 
Rule-Based (DRB) systems [11], [12] provide a possible solution to the problem. The DRB 
system is a principally new generic approach that combines the advantages of both, the self-
organizing non-parametric FRB system and the multi-layer structure of DLNNs [11]. The DRB 
system is able to offer a self-organizing, self-adaptive, transparent, highly parallelizable rule-
based architecture and learning algorithm with theoretically proven convergence. It has to 
be stressed that this new method is a general machine learning approach and is applicable 
to various classification and prediction problems with simple modifications, but in this 
paper, we will present the general concepts and principles focusing on image classification 
problems [11]–[13]. 
The general architecture of a DRB system for image classification is given in Fig. 1.  As one 
can see from the figure, the classifier is composed of the following components [11]–[13]. 
1) Pre-processing block, which involves the widely used pre-processing techniques in the 
field of computer vision including: 

i) normalization, 
ii) scaling, 
iii) rotation, and 
iv) segmentation, etc.  

Thus, it is, in fact, composed of a number of sublayers serving various purposes. 
2) Feature descriptor, which projects the original images to a feature space that makes 
images from different classes separable, namely I x .  
3) Massively parallel fuzzy rule-base, which is a complex non-linear predictive model 
serving as the “learning engine” of the system. The predictive model itself is an ensemble of 
massively parallel AnYa type 0-order fuzzy rules [9], and each massively parallel fuzzy rule is 
composed of a (large, but not pre-determined) number of prototypes identified from 
samples of a particular class within the training set. Thus, for a training set containing data 
samples (e.g. images) of C  different classes, there would be C  fuzzy 

... ... ... ... ...

number of prototypes

IF OR OR OR THEN  rules identified in parallel (one rule per class). 

4) Decision-maker, which decides the winning class label based on the partial suggestions 
(degree of confidence) of the massively parallel local/sub-decision makers per IF…THEN… 



rule/per class. Generally, the global decision-maker as well as the local ones within the DRB 
system uses the popular “winner takes all” principle. But, other decision-making strategies, 
i.e. “few winners take all,” “fuzzily weighted,” “average” can also be considered depending 
on specific problems. 
Alternatively, a DRB system can also be viewed as a self-evolving ANN [11]. 

 
Fig. 1. General architecture of a DRB system for image classification 

 



The DRB approach, which has anthropomorphic characteristics, works with prototypes of 
the data. In practice, these prototypes are the local maxima of the multi-modal 
typicality/data density automatically extracted from the observed data as described in [2]. 
Prototypes are instrumental to the DRB approach, they set this approach apart from the 
mainstream approaches including DLNNs [2], [11], [12]. These prototypes are identified 
based on the disclosed ensemble properties and mutual distribution of the data using 
parameter-free operators through a fully autonomous, online, non-parametric, non-
iterative and “one-pass” learning process [2]. They are the most representative samples 
within the dataset, and directly reflect the knowledge that the DRB approach gained from 
the data [2].  
Based on the identified prototypes, the DRB approach self-organizes and self-evolves from 
data a fully transparent and human-interpretable IF…THEN… massively parallel FRB system 
[11]. Each massively parallel fuzzy rule is formulated around a (large) number of prototypes 
identified from the training data samples of a particular class connected by a local decision-
maker using “winner takes all” principle. An example of such fuzzy rule is given in expression 
(1) [11]–[13]: 
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where “~” denotes similarity, which can also be seen as a fuzzy degree of 

membership/satisfaction; x  is a particular sample;  
,i jp  is the jth prototype in the fuzzy rule 

corresponding to ith class; iN  is the number of prototypes of the ith class. Equivalently, iR  

can also be interpreted as a (large) number of simpler fuzzy rules sharing the same singleton 
consequent part as given by expression (2): 
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The degree of membership/satisfaction of each fuzzy rule is calculated based on the 
identified prototype closest to the validation data sample [11]: 
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The singleton consequent parts of the massively parallel fuzzy rules further allow the DRB 
system to be free from user- and problem-specific parameters as well as from the need to 
handcraft the membership functions.  
Each massively parallel fuzzy rule (one per class) can be viewed as a number of simpler fuzzy 
rules with a single prototype and the same singleton consequent part connected by an “OR” 
logic operator. Since each fuzzy rule is fully independent from each other, they are trained 
in parallel. Moreover, each rule can be updated or removed without influencing other rules 
in the rule base. This allows a very high level of parallelization. 
Critically, the DRB approach is not “black box” (unlike the mainstream approaches [3], [5]). 
One of its most appealing aspects is the prototype-based nature, which offers human 
interpretability and transparency of the internal structure of the system. Most existing 
machine learning methods require a huge amount of training data, while the DRB system 
can learn even from a single example, that is, to start “from scratch”. The non-iterative 



online autonomous learning algorithm further enables the DRB system to learn lifelong with 
newly observed samples continuously even after training/deployment, namely, to be 
“evolving” [9], [12].   

Example of a DRB image classifier  

For example, let us consider three fuzzy rules trained based on single images of a typical 
house taken from three countries (UK, Greece and Japan) as presented in Fig. 2(a). By giving 
more training samples, the DRB system identifies more new prototypes, the structure of the 
each fuzzy rule becomes massively parallel, the scale of the DRB system grows larger 
correspondingly and, most importantly, the DRB system gains a better understanding of the 
problem. The rules are given in Fig. 2(b), from which one can get a better understanding 
about the differences in the architectural styles extracted autonomously from the data.  
The transparency and human-interpretability of the DRB approach brought by its prototype-
based nature are of great importance for the real world applications [11]. One can check the 
aggregated information after the training process and can easily understand and analyze 
what has been learned by simply looking at the identified prototypes. This also enables 
users to identify possible mistakes when the deployed system goes wrong, and solve them 
easily by, for example, deleting the wrongly assigned prototypes, adding new prototypes, 
etc.  
To give an idea of this, let us continue the example presented in Fig. 2(b). One may notice 

that, the second prototype 
3,2p  of the rule 3R  is actually a typical house in China, which is 

wrongly labelled as a Japanese type house. To modify the DRB system, one can simply 

remove 
3,2p  from  3R  and create a new rule 4R  with 

3,2p  as its new prototype. This process 

is presented in Fig. 2(c) as an illustration. 
Another anthropomorphic characteristic of the DRB system is its strong sense of situation 
awareness, which is closely linked with its prototype-based nature [11]–[13] as well. For the 
newly observed samples, the DRB system will make a comparison with the previously 
identified prototypes. The system can easily distinguish new samples with unfamiliar 
patterns based on the lower degrees of membership/satisfaction. This further enables the 
system to learn continuously without or with very little human intervention or supervision 
by exploiting prototype-based semi-supervised and active learning algorithms [12]. Then, 
the DRB system can learn new prototypes as well as new classes actively in an autonomous 
manner “on the fly”, and users can be (optionally) involved in double-checking the newly 
gained information afterwards. 

 

(a) Fuzzy rules with single prototype 



 

(b) Massively parallel fuzzy rules 

 

(c) Fuzzy rule modification by replacement of a prototype 

Fig. 2. Illustrative examples of massively parallel fuzzy rules 

Collaborative machine learning 

The transparent, interpretable internal structure and the non-iterative learning process of 
the DRB systems further allow different machines to learn collaboratively on the same 
problem but from different aspects by exchanging very little information between each 
other, namely, the prototypes and the corresponding singleton consequent parts [9], [14]. 
Collaborative learning is an anthropomorphic characteristic since people usually exchange 
aggregated information through communication instead of the raw data. This is also a very 
appealing feature since it provides a feasible solution for handling very large scale data by 
parallelizing into a number of processing units, which not only speeds up the whole learning 
process but also lowers the requirement for computation and memory resources for each 
machine involved in the collaborative learning [9], [14]. In contrast, the training process of 
the mainstream approaches, i.e. DLNNs, requires iterative solutions, and thus, is very 
expensive and cumbersome for parallelization and scaling up.  
Thanks to the prototype-based nature, the DRB systems can learn collaboratively in a 
flexible architecture. Each system continuously collects and exchanges with others the 



partial information, and based on this aggregates the information. In this way, each DRB 
system has the key information about the problem learned by all the connected systems 
without the need to have all the observations. 

Anthropomorphic decision support and recommender systems  

Decision support systems (DSS) are traditionally based on FRB systems which are usually 
handcrafted in a subjective way involving human experts. Recommender systems, on the 
other hand, are often based on statistical analysis, but also require feature selection and 
many other ad hoc decisions. Both can often run into the so-called “curse of dimensionality” 
problem. For example, a medical DSS design would require a computing expert to 
collaborate with a medical expert and to determine: 

• features of interest, e.g. blood systolic pressure, body temperature, haemoglobin 

level, etc. 

• type of membership function if an FRB approach is used or type of data distribution 

model, e.g. Gaussian, etc. has to be determined; 

• in the FRB approach the number of linguistic terms, e.g. Low, Medium, High or also 

Very Low, Extremely Low, etc. has to be determined 

• parameters of the membership functions (or of the probability density function 

(pdf), if using statistical approach) have to be determined, etc. 

It is obvious that the traditional approach (both, based on FRB systems or statistical one) are 
cumbersome, involve ad hoc decisions and human and may run into “curse of 
dimensionality” problems for realistic high scale applications. Moreover, once they are built, 
it is very difficult to update them later with new data (they are fixed, offline and not 
evolving dynamically).  

The proposed recently alternative of empirical fuzzy sets and systems [15] possess many of 
the features of an anthropomorphic machine learning. The way they work is to only ask 
human experts (the subjective version) or automatically determine from the data (the 
objective version) to select few prototypes (minimum one per class). For example, for the 
medical DSS we described above the medical doctor (or based on objective data by applying 
so called Autonomous Data Partitioning approach [16] to identify prototypes of ill and 
healthy patients. Similarly, one can easily imagine a recommender system for selecting 
properties to buy or rent or cars or holidays, etc. Then the empirical fuzzy sets approach will 
automatically build the membership functions (or alternatively, one can design typicality 
which is an analogy to the pdf [2]). The system can then be used to automatically determine 
for future patients or recommend properties, cars, holidays, etc.  

Such anthropomorphic DSS and recommender systems are: 

• prototype-based; 

• highly interpretable, allows the users to know how the decision/recommendation is 

made; can be used to extract human-intelligible and understandable, transparent 

linguistic information from data, formalize the knowledge and represent it in a 

mathematical form through membership function; 



• personalized, not “one size fits all” type; 

• computationally lean; 

• dynamically self-evolving. 

Furthermore, the anthropomorphic characteristics of the empirical fuzzy sets and systems 
[15] further facilitate the collaborations between experts from different areas and the 
computer scientists. For example, medical doctors and other domain experts are often 
reluctant to be involved in the design of traditional DSS mainly because of the cumbersome 
nature of the design process while providing few examples of ill and healthy patients 
(prototypes of the two classes, in this case) is not such a burden as asking a medical doctor 
to specify hundreds or thousands of Gaussian membership functions. Moreover, the 
consistency in determining the parameters and the smooth shape of the membership 
functions (or pdf) is usually not representing the real data correctly. 

Conclusions and future directions 

Currently existing machine learning methods were developed over past decades and the 

closely related statistical learning is based on centuries old probability theory. One 

particular technique, which borrows the key elements of its concept from the 

computational intelligence and artificial neural networks, called deep learning, has lately 

become the “golden standard” in computer vision and machine learning. However, among 

other problems, (e.g. it requires huge amounts of data and computational power), DLNNs 

are not adaptable to new scenarios and lack of transparency, being often referred as “black-

boxes”.  

In this paper, we introduce the concept of anthropomorphic machine learning as one which  

• is transparent, not a black box; 

• is prototype-based and is, thus, human-interpretable; 

• is highly parallelizable, non-parametric, evolving; 

• achieves human-level precision. 

It further has human-like abilities, including: 

• learning from a single example or very few examples; 

• learning lifelong from new examples; 

• learning efficiently “on the fly”; 

• learning collaboratively; 

• learning actively with little supervision; 

• being aware of what has been learned and why mistakes take place; 

• explaining clearly about what have been not learned; 

• being aware of what is known, what is unknown and why. 

We further demonstrated that anthropomorphic machine learning is possible by giving an 

example, namely the DRB approach, which was recently introduced. We also presented an 

approach to anthropomorphic decision support and recommender systems. Undoubtedly, 

there will be more types of anthropomorphic machine learning developed in the future. 
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