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Abstract  

A molecular junction consists of a single molecule or self-assembled monolayer 

(SAM) placed between two electrodes. It has varieties of functionalities due to 

quantum interference in nanoscale. Although there exist issues, advantages could 

still appeal to scientists who wish to investigate transport properties in many 

aspects such as electronics, thermoelectronics, spintronics, and optotronics.  

Recent studies of single-molecule thermoelectricity have identified families of 

high-performance molecules. However, controlled scalability might be used to 

boost electrical and thermoelectric performance over the current single-junction 

paradigm. In order to translate this discovery into practical thin-film energy-

harvesting devices, there is a need for an understanding of the fundamental issues 

arising when such junctions are placed in parallel. As a first step in this direction, 

we investigate here the properties of two C60 molecules placed in parallel and 

sandwiched between top and bottom graphene electrodes. It is found that 

increasing the number of parallel junctions from one to two can cause the electrical 

conductance to increase by more than a factor of 2 and furthermore, the Seebeck 

coefficient is sensitive to the number of parallel molecules sandwiched between 

the electrodes, whereas classically it should be unchanged. This non-classical 

behaviour of the electrical conductance and Seebeck coefficient are due to inter-

junction quantum interference, mediated by the electrodes, which leads to an 

enhanced response in these vertical molecular devices. 
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Except the study of thermoelectricity, on the other hand, stable, single-molecule 

switches with high on-off ratios are an essential component for future molecular-

scale circuitry. Unfortunately, devices using gold electrodes are neither 

complementary metal-oxide-semiconductor (CMOS) compatible nor stable at 

room temperature. To overcome these limitations, several groups are developing 

electroburnt graphene electrodes for single molecule electronics. Here, in 

anticipation of these developments, we examine how the electrical switching 

properties of a series of porphyrin molecules with pendant dipoles can be tuned 

by systematically increasing the number of spacer units between the porphyrin 

core and graphene electrodes. The porphyrin is sandwiched between a graphene 

source and drain and gated by a third electrode. The associated rotation of 

porphyrin referred to graphene plane leads to the breaking of conjugation and a 

decrease in electrical conductances. As the number of spacers is increased, the 

conductance ratio can increase from 100 with one spacer to 200 with four spacers, 

and further enhanced by decreasing the temperature, reaching approximately 

2200 at 100K. This design for a molecular switch using graphene electrodes could 

be extended to other aromatic systems. 

As mentioned in the design of 𝐶60 -based thermoelectric vertical junction with 

graphene layers as electrodes and porphyrin-based switch in graphene nanogap, 

graphene provides a two-dimensional platform for contacting individual 

molecules, which enables transport spectroscopy of molecular orbital, spin, and 

vibrational states. Next, we report single-electron tunnelling through a molecule 

that has been anchored to two graphene leads. It is found that quantum 

interference within the graphene leads gives rise to an energy-dependent 



 

   iii 

transmission and fluctuations in the sequential tunnelling. The lead states are 

electrostatically tuned by a global back-gate due to the weak screening effect 

compared to the metal electrodes, resulting in a distinct pattern of varying 

intensity in the measured conductance maps. This pattern could potentially 

obscure transport features that are intrinsic to the molecule under investigation. 

Finally, using ensemble averaged magneto-conductance measurements, lead and 

molecule states are disentangled, enabling spectroscopic investigation of the 

single molecule.    

As the above describes, there are varieties of research on the charge transport 

properties of molecular devices. It is noticed that noise exists in all electronic 

devices, and the investigation on noise could help us understand more 

fundamental information of the device, i.e. the imperfections and configurational 

changes in the system, the correlation of the transmission conduction channels or 

even exploit the noise characteristics for biosensing. In electroburnt graphene 

nanogaps, our collaborators observe that 1/f noise and random telegraph noise at 

room temperature and 77K respectively. Here, I employ a simple one-dimensional 

tight binding model to gauge the effect of two-level fluctuations in the electrostatic 

environment in the tunnel junctions. Two types of models are investigated. Model 

I describes the case that the environmental traps drive the tunnel barrier locally 

and differently. Model II is the case that the collective effect of all the 

environmental traps drives the tunnel barrier synchronously. It is concluded that 

the 77 K data is best described by a single environmental fluctuator influencing 

the transmission through the tunnel barrier. This may either occur via a local 

perturbation of the barrier potential, or via an overall modulation of the barrier 
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height. A 1/𝑓  signal emerges as more fluctuators with different lifetime 𝜏  are 

added to the environment, corresponding to the thermal activation of multiple 

random telegraph noises (RTNs) at room temperature. 
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1 Introduction 

1.1   Molecular electronics 

The research field of molecular electronics aims to investigate the electronic and 

thermal transport properties of the molecular circuits which consist of a single 

molecule or self-assembled molecular monolayers (SAMs) and nanoscale 

electrodes made from metals, such as [1][2] (Au, Ag, Cu, Fe, Co, Ni), 

semiconductors such as Si[3], or carbon  (carbon nanotube[4][5], graphene 

monolayer[6][7][8] or graphite). To describe the flow of electricity and heat 

through such structures  combined knowledge from traditional disciplines like 

physics, chemistry, material science, electrical engineering is needed [9]. 

Molecular electronics has become widely investigated both theoretically and 

experimentally, because of the following advantages compared to traditional 

complementary metal oxide semiconductor (CMOS) technology. The first 

advantage is its nanoscale size which is appropriate to improve circuit-integration 

and lead to energy-saving and faster performance. Second, it provides a variety of 
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novelty functionalities due to quantum interference, i.e. switching 

[10][11][12][13][14][15][16], negative differential resistance[17][18][19], 

thermoelectronics[20][21][22][7][23], Coulomb blockades[24][25][26][6], 

Kondo resonances[27], spintronics[28][29], and optoelectronics[30][31][2]. 

Third, intermolecular interactions could also be utilised in nanoscale self-

assembly technology, potentially resulting in low-cost manufacturing. All the 

above show that molecular electronics has the potential to complement 

conventional silicon-based electronics.  

The origin of molecular electronics dates back 40-50 years. In the 1970s, Kuhn, 

Mann[32], polymerpoulos, and Sagiv [33][34] first developed effective techniques 

of self-assembly monolayers used as tunnelling barriers to prepare 

metal/insulator/metal junctions using organic molecules. Various techniques 

have been introduced for single-molecule studies in the following years based on 

metal electrode (scanning tunnelling microscopy (STM)[35] (see Fig. 1.1) and 

atomic force microscopy (AFM), mechanically controllable break junction[36], 

electro-migration breakdown[37], electrochemical depositions[38]), single-

walled carbon nanotube (SWNT) electrode fabricated by electrical 

breakdown[39] or lithography-defined oxidative cutting [5]and graphene or 

graphite based nanoelectrodes (feedback-controlled electrburning[26][25][6] 

(see Fig. 1.2), dash-line lithography[40]). The figures below illustrate two of these 

approaches. 

1. Mechanically controlled break junction(MCBJ)  
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Fig. 1.1 Schematic of Mechanically controllable break junction. The panel above with 

two red opposite arrows shows the artistic view on the atomically sharp electrodes 

(formed after the break of the wire) with single molecule between. The panel below 

shows the relative displacement 𝚫𝐱 , corresponding to the displacement 𝚫𝐳  of 

pushing screw[41].  

2. Feedback-controlled electroburning 

 

Fig. 1.2 (a)Schematic of the feedback-controlled electroburning process, before (the 

top) and after (the bottom) the formation of nanometre sized gaps in few-layer 

graphite flakes.  (b) Current-voltage traces of the evolution (green arrow) of the 

feedback-controlled electroburning[26].   
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In the process shown in Fig. 1.2, slowly increase applied voltage while monitoring 

changes in current flowing through the constriction. Upon further increase in 

applied voltage, a decrease in current is observed, which corresponds to the 

narrowing of the constriction due to Joule heating. At this point a feedback loop 

quickly brings back applied voltage to 0 V. The entire cycle is repeated multiple 

times with conductance decreasing after each iteration shown in (b). At the end of 

each cycle the resistance value is checked, and the electroburning procedure is 

terminated upon reaching the threshold value of junction resistance, which means 

the formation of tunneling junction. The edges of the electroburnt graphene 

nanogap in ambient is estimated to be terminated with -H, -OH, -COOH, etc. The 

length of the gap could be 1~2nm. 

In parallel with the above experimental developments, simulations based on first 

principles emerged as an indispensable theoretical tool allowing researchers to 

construct a quantitative picture of transport mechanisms and form predictions to 

guide further experimental studies. Combining density functional theory and 

Green’s function method, the transport properties of molecular devices based on 

scattering theory are investigated theoretically. 

The development of these experimental techniques and theoretical methods led to 

an explosion in the use of individual molecules or SAMs in molecular electronics. 

Although the development of molecular electronics has been significantly boosted 

and promoted, there are still some issues to solve and aspects to investigate, i.e., 

robustness, the effect of solvents, the noise in the electric system. So it is of 

significance and necessary to do more fundamental research on molecular 



Chapter 1: Introduction 

   5 

electronics before the final commercial applications can be realised at larger 

scales.  

1.2 Thesis outline 

This thesis consists of 6 chapters: An introduction to molecular electronics; an 

introduction to transport theory, three results chapters, a conclusion and 

suggestions for future work.  

In chapter 1, a simple definition for molecular electronics is provided and the 

development of molecular electronics is summarized. In chapter 2, the 

development of density functional theory (DFT) is briefly discussed and the 

transport theory based on scattering theory and equilibrium Green’s function 

method is presented. In addition, some fundamental scientific phenomena are 

briefly introduced in order to have a good understanding of the work shown in the 

following chapters. 

Chapter 3 presents the thermoelectric properties of a vertical 

graphene/ 𝐶60 /graphene architecture. It is found that quantum interference 

between two 𝐶60s placed in parallel enhances the conductance by more than two 

times that of the monomer 𝐶60 . Importantly, the Seebeck coefficient increases 

which is not expected classically. These results are considered as the starting point 

to understand the properties of SAMs sandwiched between two electrodes.  
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Chapter 4 shows a design of a single-molecule porphyrin-based switch for 

graphene nanogaps. Based on the development of feedback controlled 

electroburning, graphene nanogaps are utilised to propose a conjugation-

dependent switch. It is found that the system has an on-off ratio ranging from 100 

to 200 when increasing the spacers between the porphyrin and graphene. The 

switching ratio is further enhanced by decreasing the temperature, reaching 

approximate 2200 at 100K.  

Chapter 5 is a collaboration with experimental colleagues. Observed conductance 

fluctuations in molecular junctions formed from electro-burnt graphene nanogaps 

are modeled. In the simulation, a tight binding chain is first introduced to prove 

that the fluctuations are due to the lead states and are not an intrinsic feature of 

the molecule. Stripes in Coulomb diamonds happen when the molecular level 

matches a density of states peak in a lead and their slope could be tuned by the 

coupling between the lead and backgate. Furthermore, the magnetic field is 

introduced to distinguish the two kinds of states through ensemble average. 

Correspondingly, the ring is introduced into the tight binding model to allow a flux 

to be applied. In agreement with experiments, this confirms that fluctuations can 

be reduced by application of a magnetic field.  

Chapter 6 presents a study of 1/f noise and random telegraph noise, which are 

observed in graphene nanogap at room temperature and 77K respectively. I 

investigate two types of tight binding models to obtain further insight into the 

noise characteristics. I conclude that 77 K experimental data is best described by 

a single environmental fluctuator influencing the transmission through the tunnel 
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barrier. This may either occur via a local perturbation of the barrier potential, or 

via an overall modulation of the barrier height. A 1/𝑓  signal emerges as more 

fluctuators sampled in a large dwell time range are activated by the thermal energy 

at room temperature. 

The final chapter, I present the conclusions of my thesis and suggestions for future 

work. 
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2 Density functional theory and 

transport theory 

 

Simulations based on density functional theory (DFT) have emerged as an 

indispensable theoretical tool, which allows researchers to construct a 

quantitative picture of transport mechanisms and form predictions to guide 

further experimental studies. DFT and Green’s function methods provide a 

powerful electron transport theory of non-periodic and open molecular devices 

based on scattering theory. In this chapter, section 2.1 presents the basic 

principles and methodology for DFT. Section 2.2 illustrates the generic features of 

this transport theory by examining some simple tight binding models.  

2.1 Density functional theory 

Electronic structure of small and simple systems (i.e. 𝐻2, 𝐻𝑒 molecules) could be 

analysed through the wavefunctions solved by Schrödinger equation. However, 

when the system is a large organic molecule or condensed matter system, 

Schrödinger’s wave equation becomes too complicated to solve, due to the large 



Chapter 2: Density functional theory and transport theory 

   9 

number of interacting atoms. An alternative method to the analysis of electronic 

structure in 3-dimensional system is density functional theory (DFT) which 

chooses the system’s charge density 𝑛(𝑟)  as a basic parameter instead of the 

many-body wavefunctions. The following section simply illustrates the main basic 

theory of DFT.  It starts with the Schrödinger equation of a many-body system in 

real three-dimensional space which is too complicated to solve (section 2.1.1) due 

to large numbers of variables. Then section 2.1.2, describes the Hohenberg-Kohn 

formulation, which demonstrates that the ground-state charge density 𝑛(𝑟) 

implicitly determines all the properties of the system derivable from the 

Hamiltonian. In addition, the Hohenberg-Kohn variational principle of total energy 

functional is combined with Hartree’s self-consistent single-particle equations by 

Kohn and Sham (section 2.1.3) which has become a powerful and reliable 

approach to describing ground state properties of a quantum system. 

2.1.1 Many-body system 

The Hamiltonian of the many-body system with electrons and nuclei is shown 

below,[42] 

 �̂� = −
ℏ2

2𝑚𝑖
∑ 𝛻𝑖

2
𝑖 − ∑

𝑍𝐼𝑒
2

|𝑟𝑖−𝑅𝐼|
𝑖,𝐼 +

1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗|
𝑖≠𝑗 −

ℏ2

2𝑀𝐼
∑ 𝛻𝐼

2
𝐼 +

1

2
∑

𝑍𝐼𝑍𝐽𝑒
2

|𝑅𝐼−𝑅𝐽|
𝐼≠𝐽   

2.1 

Where the lowercase subscripts 𝑖, 𝑗, 𝑟𝑖, 𝑟𝑗  denote the quantities of electrons while 

the upper cases 𝐼, 𝐽, 𝑅𝐼 , 𝑅𝐽  represent the counterparts of nuclei. In terms of the 
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right part of the expression, the operators correspond to the kinetic energy, the 

interactions between nuclei and electrons, the electron-electron Coulomb 

interactions, the kinetic energy of nuclei and nucleus-nucleus coulomb 

interactions from the first term to the final one. Due to the large nuclear masses, 

the nuclear kinetic energy could be omitted, to yield the Born-Oppenheimer or 

adiabatic approximation[43]. The Born-Oppenheimer approximation is the 

assumption that the motion of atomic nuclei and electrons in a system can be 

separated due to the huge difference of the masses[42]. This allows the wave 

function of the system to be broken to electronic and nuclear parts. The final term 

is the classical interactions of nuclei, which makes no germane contribution to the 

description for electronic structures. Then Eq. 2.1 goes to Schrödinger equation 

for the many-electron wave function Ψ. 

 {−
ℏ2

2𝑚𝑖
∑ 𝛻𝑖

2
𝑖 − ∑ 𝑉𝑒𝑥𝑡(𝑟𝑖)𝑖,𝐼 +

1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗|
𝑖≠𝑗 }Ψ𝑛 = 𝐸𝑛Ψ𝑛  2.2 

Where 𝑉𝑒𝑥𝑡(𝑟𝑖) includes the effect of nuclei and the external electric/magnetic field 

on electrons.  

2.1.2 Hohenberg-Kohn theorems  

As for the electronic structure of large molecules and condensed matter systems, 

Schrödinger equation for these many-electron systems encounter an ‘exponential 

wall’ in terms of the very large number of parameters  in three-dimensional real 

space [44]. Therefore the electron density distribution 𝑛(𝑟) is adopted in density 
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functional theory (DFT). The starting point is the Hohenberg-Kohn formulation 

which starts from the following total Hamiltonian. In principle it is an exact theory 

of many-electron system[42]. 

 
�̂� = −

ℏ2

2𝑚𝑖
∑𝛻𝑖

2

𝑖

−∑𝑉𝑒𝑥𝑡(𝑟𝑖)

𝑖

+
1

2
∑

𝑒2

|𝑟𝑖 − 𝑟𝑗|𝑖≠𝑗

 
2.3 

Where Vext(r) represents the external potential including the part due to nuclei-

electron interaction. The total energy functional is written as follows, 

 
𝐸𝐻𝐾[𝑛] = 𝐹𝐻𝐾[𝑛] + ∫𝑑𝑟𝑉𝑒𝑥𝑡(𝑟)𝑛(𝑟) 

2.4 

where 𝐹𝐻𝐾[𝑛] = 𝑇[𝑛] + 𝐸𝑖𝑛𝑡[𝑛] includes all internal energies, kinetic and potential 

of the interacting electron system. 

Two basic lemmas provided by the HK theorem are presented as follows. [42][44]  

Lemma 1 shows the ground-state density 𝑛(𝑟)  corresponds to the only one 

external potential 𝑉𝑒𝑥𝑡(𝑟) . That is, there is no existence of the second external 

potential 𝑉𝑒𝑥𝑡2(𝑟) ≠ 𝑉𝑒𝑥𝑡1(𝑟) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  which gives rise to the same ground-

state density distribution with that of external potential 𝑉𝑒𝑥𝑡1(𝑟).  

Lemma 2: Hohenberg-Kohn variational principle 

 For any external potential 𝑉𝑒𝑥𝑡(𝑟) , the global minimum of the total energy 

functional (Eq. 2.4) is the exact ground-state energy and the corresponding 

density n(r) minimizing the functional (Eq. 2.4) is the exact ground-state density. 
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2.1.3 Kohn-Sham formulation 

It is proposed that using independent-particle equations for non-interacting 

electrons system to help to solve the original many-body problem by Kohn and 

Sham in 1965. As a self-consistent method, the Kohn-Sham approach assumes that 

the ground state density of the original interacting-electron system is equal to that 

of the chosen auxiliary non-interacting system where the many-body terms are 

included into an exchange-correlation functional of the density. The following 

shows the origin of Kohn-Sham equations, the ground-state energy and the 

corresponding ground-state electron density. 

Based on Hohenberg-Kohn functional variational principle, the expression for the 

ground-state energy functional of the interacting-electron real physical system is 

presented,[44] 

 
𝐸𝑉[𝑛(𝑟)] = ∫𝑉𝑒𝑥𝑡(𝑟)𝑛(𝑟)𝑑𝑟 + 𝑇[𝑛(𝑟)]

+
1

2
∫𝑑𝑟𝑑𝑟′

𝑛(𝑟)𝑛(𝑟′)

|𝑟 − 𝑟′|
 

2.5 

Now rewriting Eq. 2.5, 

 
𝐸𝑉[𝑛(𝑟)] = ∫𝑉𝑒𝑥𝑡(𝑟)𝑛(𝑟)𝑑𝑟 + 𝑇𝑠[𝑛(𝑟)]

+
1

2
∫𝑑𝑟𝑑𝑟′

𝑛(𝑟)𝑛(𝑟′)

|𝑟 − 𝑟′|
+ 𝐸𝑥𝑐[𝑛(𝑟)] ≥ 𝐸 

2.6 
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This variational expression is for an auxiliary non-interacting-electron system 

which has the same ground-state energy and density n(r)  as the interacting-

electron system. The next step is to apply Euler-Lagrange rules,  

 
𝛿𝐸𝑉[𝑛(𝑟)] = ∫𝛿𝑛(𝑟) {𝑉𝑒𝑓𝑓(𝑟) +

𝛿𝑇𝑠[𝑛(𝑟)]

𝛿𝑛(𝑟)
− 𝜀}𝑑𝑟 = 0 

2.7 

Here Veff = 𝑉𝑒𝑥𝑡(𝑟) + ∫𝑑𝑟
′ 𝑛(𝑟

′)

|𝑟−𝑟′|
+ 𝑉𝑥𝑐(𝑟) where  𝑉𝑥𝑐 =

𝛿𝐸𝑥𝑐[𝑛(𝑟)]

𝛿𝑛(𝑟)
.  Now Eq. 2.7 goes 

to single-particle equation which gives rise to the same ground-state density n(r) 

as Eq.2.7. 

 
(−

ℏ

2𝑚𝑒
∇2 + 𝑉𝑒𝑓𝑓 − 𝜀𝑚)𝜓𝑚

𝜎 (𝑟) = 0 
2.8 

Where  Veff = 𝑉𝑒𝑥𝑡(𝑟) + ∫𝑑𝑟
′ 𝑛(𝑟

′)

|𝑟−𝑟′|
+ 𝑉𝑥𝑐(𝑟)  and 𝑉𝑥𝑐 =

𝛿𝐸𝑥𝑐[𝑛(𝑟)]

𝛿𝑛(𝑟)
. 𝑁 = 𝑁↑ + 𝑁↓  is 

the number of electrons, the charge density 𝑛(𝑟) is given by the sums of squares 

of the eigenstates 𝜓𝑖
𝜎(𝑟) for each spin 

 
𝑛(𝑟) =∑𝑛(𝑟, 𝜎)

𝜎

=∑∑ |𝜓𝑚
𝜎 (𝑟)|2

𝑁𝜎

𝑚=1𝜎

 
2.9 

Now equations 2.8, 2.9 is the so-called Kohn-Sham equations. 

The ground state energy[44] of the full interacting many-body system is  
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𝐸𝐾𝑆 =∑𝜀𝑚

𝑚

−
1

2
∫𝑑𝑟𝑑𝑟′

𝑛(𝑟)𝑛(𝑟′)

|𝑟 − 𝑟′|
− ∫𝑑𝑟𝑉𝑋𝐶(𝑟)𝑛(𝑟)

+ 𝐸𝑋𝐶[𝑛(𝑟)] 

2.10 

Here 𝜀𝑚, 𝜓𝑚
𝜎  are the eigenvalue and eigenstate of Eq. 2.8. When the last two terms 

correlated to the exchange and correlation interaction of electrons in real many-

body system are not taken into consideration, Eq.2.10 degrades to Hartree’s self-

consistent single-particle ground-state energy. Exchange-correlation functionals 

(𝐸𝑋𝐶) in DFT approximations have generated good results where the local density 

approximation (LDA)[45], generalized gradient approximations (GGA) [46], and 

hybrid functionals [47] are included. In order to incorporate long-range van der 

Waals interactions and improve the self-interaction, further progress in deriving 

more accurate exchange-correlation functionals has led to the development of 

several available approximations, such as non-local functionals for van-der-Waals 

interactions [48], or range-separated hybrids [49]. 

The eigenstates 𝜓𝑚
𝜎 (𝑟) and eigenvalues 𝜀𝑚 of the Kohn-Sham equations don’t have 

any physical meaning, except for the correlation between 𝜓𝑚
𝜎 (𝑟)  and the true, 

physical density 𝑛(𝑟) shown in Eq. 2.9 and the fact that the ionization energy of 

this system is equal to the magnitude of the highest occupied eigenvalue (HOMO) 

referring to the vacuum. [44]. However, DFT is widely accepted in physics and 

chemistry which provides a relatively accurate approach to the science of quantum 

systems including large molecules compared to experiment, although 

discrepancies by orders of magnitude could be observed which originate from the 

underestimation of HOMO-LUMO gap due to the limitation inherent to DFT and 
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approximated exchange-correlation functionals[50][51][52].  Except the 

magnitude discrepancy, DFT could still provide quantitatively accurate trend for 

the comparison research of series of molecules[53] or the connectivity 

research[54]. It utilises the charge density which determines implicitly all the 

electronic properties derivable from the Hamiltonian. Based on the electronic 

structure DFT provides, transport properties of the functional molecular devices 

discussed in the following sections. 

2.2 Transport theory  

As for molecular devices consisting of a single molecule or monolayer connected 

to two electrodes, understanding their electronic properties is fundamental to the 

investigation of phenomena such as thermoelectricity[7][23] or functionalities 

such as molecular-scale switching[16]. Transport is considered to be phase 

coherent provided 𝑙 ≤ 𝜆 where 𝑙 is the length of the device and 𝜆 is the electron 

mean free path or scattering length. In this case, the energy of an electron passing 

through a device is conserved and the electric current flowing through the 

nanoscale device could be described by Landauer formula which is presented in 

section 2.2.1. In the current or conductance calculation, the most significant factor 

is the transmission function (the derivation is shown in section 2.2.4), which can 

be computed using scattering theory (section 2.2.2) and Green’s functions (section 

2.2.3). In what follows, the basic principles and methods are introduced, which 

allow the transmission function to be calculated.  Final section in this chapter 

presents the useful Breit-Wigner formula to describe the transmission properties, 
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especially the on-resonance transmission where the lowest order perturbation 

theory becomes invalid. To illustrate generic features in an accessible manner, all 

the transmission function formulae are derived based on simple tight binding 

model system connected to one dimensional electrodes or to electrodes containing 

several conduction channels. 

2.2.1 Landauer formula 

In a molecular device, the electrodes are connected to reservoirs which feed 

electrons of energy E. Landauer formula gives the net current passing from the left 

electrode L to the right electrode R. 

 
𝐼 =

2𝑒

ℎ
∫ 𝑑𝐸𝑇(𝐸)[𝑓𝐿(𝐸) − 𝑓𝑅(𝐸)]
+∞

−∞

 
2.11 

Where 𝑒 = −|𝑒|  is the electronic  charge, h is Plank’s constant, T(E) is the 

transmission spectrum for the electron passing from one lead to the other via the 

molecule and 𝑓𝐿(𝑅)(𝐸) =
1

𝑒

𝐸−𝜇𝐿(𝑅)
𝑘𝐵𝑇 +1

 is the Fermi-Dirac distribution function where 

𝜇𝐿(𝑅) is the chemical potential of the left (right) reservoir and 𝑇 is the temperature. 

If the bias 𝑉𝑏 is applied on the left and right reservoirs symmetrically, then μL =

𝐸𝐹 +
𝑒𝑉𝑏

2
 and μR = 𝐸𝐹 −

𝑒𝑉𝑏

2
. Clearly, 𝐼 = 0  when 𝑓𝐿(𝐸) = 𝑓𝑅(𝐸)  because only 

differences in the distributions contribute to the net current.  

The following shows two cases in zero temperature or zero bias limits[55]. 
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On one hand, with zero temperature approximation, but finite voltage, the current 

could be written by 

 𝐼 =
2𝑒

ℎ
∫ 𝑑𝐸𝑇(𝐸)
𝐸𝐹+𝑒𝑉𝑏/2

𝐸𝐹−𝑒𝑉𝑏/2

 2.12 

Consequently, the conductance 𝐺 = 𝐼/𝑉  is obtained by averaging 𝑇(𝐸)over an 

energy window of width eV centred on the Fermi energy.  

On the other hand, if 𝑇(𝐸)does not vary significantly over an energy range of order 

eV, then the Fermi functions can be Taylor expanded at  𝜇 = 𝐸𝐹 .  Continuously, 

substitute 𝜇𝐿 , 𝜇𝑅 in Eq. 2.15 and Eq. 2.16 respectively and neglect the high order 

terms if 𝑉𝑏 is small enough, 

 𝑓(𝜇𝐿) = 𝑓(𝐸𝐹) +
𝑑𝑓

𝑑𝜇
|
𝜇=𝐸𝐹

(𝜇𝐿 − 𝐸𝐹) 2.13 

 𝑓(𝜇𝑅) = 𝑓(𝐸𝐹) +
𝑑𝑓

𝑑𝜇
|
𝜇=𝐸𝐹

(𝜇𝑅 − 𝐸𝐹) 2.14 

Next, we have fL − 𝑓𝑅 =
df

dμ
|
𝜇=𝐸𝐹

(𝜇𝐿 − μR) = −(
𝑑𝑓

𝑑𝐸
)
𝜇=𝐸𝐹

𝑒𝑉𝑏. 

 The electrical conductance in the zero-voltage, finite temperature limit is, 

 𝐺 =
𝐼

𝑉
= 𝐺0∫ 𝑑𝐸𝑇(𝐸) (−

𝑑𝑓(𝐸)

𝑑𝐸
)
𝜇=𝐸𝐹

+∞

−∞

 2.15 

Where 𝐺0 is the quantum of conductance, 𝐺0 =
2𝑒2

ℎ
. Since the quantity −𝑑𝑓(𝐸)/𝑑𝐸 

is a normalised probability distribution of width approximately 𝑘𝐵𝑇 , the above 

integral represents a thermal average of the transmission function 𝑇(𝐸) over an 

energy window of width 𝑘𝐵𝑇. 
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Finally, with the combination of the two limits (zero voltage and zero 

temperature), one obtains  

 𝐺 = 𝐺0𝑇(𝐸𝐹) 2.16 

In summary, from the perspective of Landauer formula and the calculation of 

conductance, transmission function 𝑇(𝐸𝐹) is of central significant. Therefore in 

what follows, I present derivations of transmission properties of a few model 

systems. 

2.2.2 Bond current and Scattering matrix 

This section starts with bond current and then goes to the scattering matrix.  From 

the discussion of these two parts, I present that the current on every site of the 

one-dimensional chain is equal which further gives rise to the intrinsic 

characteristic of molecular devices based on scattering theory. That is, the 

transmission and reflection coefficients from one lead to the other lead are the 

same with the opposite injecting case. 

 

2.2.2.1 The description of bond current  

 

Fig. 2.1 Tight binding model for infinite chain. 𝜺𝒋  represents the on-site energy 

while 𝜸𝒋 stands for the hopping integral. 
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The time-independent Schrödinger equations for the system shown in Fig. 2.1 is 

as follows,  

 

{

𝜀𝑗−1𝜓𝑗−1 − 𝛾𝑗𝜓𝑗 − 𝛾𝑗−1𝜓𝑗−2 = 𝐸𝜓𝑗−1
𝜀𝑗𝜓𝑗 − 𝛾𝑗+1𝜓𝑗+1 − 𝛾𝑗𝜓𝑗−1 = 𝐸𝜓𝑗

𝜀𝑗+1𝜓𝑗+1 − 𝛾𝑗+2𝜓𝑗+2 − 𝛾𝑗+1𝜓𝑗 = 𝐸𝜓𝑗+1

 

2.17 

Similarly, the time-dependent Schrödinger equation is 

 𝑖ℏ𝜕𝜓𝑗

𝜕𝑡
= 𝜀𝑗𝜓𝑗 − 𝛾𝑗+1𝜓𝑗+1 − 𝛾𝑗𝜓𝑗−1 

2.18 

Multiplying Eq. 2.18 by 𝜓𝑗
∗ and multiplying the conjugation of Eq. 2.18 by 𝜓𝑗  leads 

to the following results, 

 

{
 
 

 
 𝜓𝑗

∗
𝑖ℏ𝜕𝜓𝑗

𝜕𝑡
= 𝜀𝑗𝜓𝑗

∗𝜓𝑗 − 𝛾𝑗+1𝜓𝑗
∗𝜓𝑗+1 − 𝛾𝑗𝜓𝑗

∗𝜓𝑗−1

𝜓𝑗 (
𝑖ℏ𝜕𝜓𝑗

𝜕𝑡
)

∗

= 𝜀𝑗𝜓𝑗𝜓𝑗
∗ − 𝛾𝑗+1𝜓𝑗𝜓𝑗+1

∗ − 𝛾𝑗𝜓𝑗𝜓𝑗−1
∗

 

2.19 

Then the following differential equation is obtained based on the above two 

equations, 

 𝑑𝜓𝑗𝜓𝑗
∗

𝑑𝑡
=
𝑑|𝜓𝑗|

2

𝑑𝑡

=
𝛾𝑗+1(𝜓𝑗𝜓𝑗+1

∗ − 𝜓𝑗
∗𝜓𝑗+1) − 𝛾𝑗(𝜓𝑗−1𝜓𝑗

∗ − 𝜓𝑗−1
∗ 𝜓𝑗)

𝑖ℏ
 

2.20 

As for the infinite chain, we have the following expression. 
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 𝑑|𝜓𝑗|
2

𝑑𝑡
=
𝑑𝑛

𝑑𝑡
= 𝐼𝑗−1→𝑗 − 𝐼𝑗→𝑗+1 

2.21 

Comparing Eq. 2.20and Eq. 2.21, yields the following expressions for the bond 

current from site j to site j+1. 

 
𝐼𝑗→𝑗+1 =

2𝛾𝑗+1

ℏ
𝐼𝑚(𝜓𝑗

∗𝜓𝑗+1) 
2.22 

If 𝜓𝑗  is an eigen state of H, then the bond current has the feature:  

 𝐼𝑗−1→𝑗 = 𝐼𝑗→𝑗+1 2.23 

This is proved by noting that if  

 |𝜓⟩ = 𝐴(𝑡)|𝜙𝑛⟩ 2.24 

Where 𝐻|𝜙𝑛⟩ = 𝐸𝑛|𝜙𝑛⟩, then the solution |𝜓⟩ for time dependent Schrodinger 

equation 
𝑖ℏ𝜕|𝜓⟩

𝜕𝑡
= 𝐻|𝜓⟩  is |𝜓⟩ = 𝑐𝑒−

𝑖𝐸𝑛𝑡

ℏ |𝜙𝑛⟩  is obtained. So we have 𝜓𝑗(𝑡) =

𝑐𝑒−
𝑖𝐸𝑛𝑡

ℏ 𝜙𝑛,𝑗  and further 𝜓𝑗𝜓𝑗
∗ = |𝑐|2𝜙𝑛,𝑗𝜙𝑛,𝑗 

∗ which does not depend on time. 

According to formula. 2.21,  𝐼𝑗−1→𝑗 − 𝐼𝑗→𝑗+1 = 0.  

An example: 

If ψj = Ae
ikj, the bond current is presented, 
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𝐼 =

2𝛾

ℏ
𝐼𝑚(𝜓𝑗

∗𝜓𝑗+1) =
2𝛾

ℏ
𝐴2 𝑠𝑖𝑛 𝑘 = 𝑉𝐴2 

2.25 

Where V is the group velocity.  

2.2.2.2 The derivation of the scattering matrix 

If an incident current transmission 𝐼𝑖𝑛 in a left lead produces an outgoing current 

𝐼𝑡 in a right lead, then the transmission coefficient 𝑇 is defined by 

 
𝑇 =

𝐼𝑡
𝐼𝑖𝑛

 
2.26 

To relate T to the scattering matrix, note that the most general solution of the time 

independent Schrodinger equation for the left lead along with its corresponding 

current is 

 
𝜓𝑗 =

𝐴

√𝑉𝑙
 𝑒𝑖𝑘𝑙𝑗 +

𝐵

√𝑉𝑙
𝑒−𝑖𝑘𝑙𝑗  

2.27 

 𝐼𝑙 = |𝐴|2 − |𝐵|2 2.28 

Similarly for the right lead: 

 
𝜓𝑗 =

𝐶

√𝑉𝑟
𝑒𝑖𝑘𝑟𝑗 +

𝐷

√𝑉𝑟
𝑒−𝑖𝑘𝑟𝑗 

2.29 
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 𝐼𝑟 = |𝐶|2 − |𝐷|2 2.30 

Since bond currents satisfy 𝐼𝒍 = 𝐼𝒓, there is the relationship below. 

 |𝐴|2 − |𝐵|2 = |𝐶|2 − |𝐷|2 2.31 

Or the total incoming current Iin is equal to the total outgoing current Iout. 

 |𝐴|2 + |𝐷|2 = |𝐵|2 + |𝐶|2 2.32 

Now imagine there is a matrix S to connect the four parameters as follows,  

 
[
𝐵
𝐶
] = [

𝑆11 𝑆12
𝑆21 𝑆22

] [
𝐴
𝐷
]   

2.33 

That is |out⟩ = S|in⟩. And then I could obtain ⟨out| = ⟨in|S. Finally, combine these 

two formulae to get ⟨out|out⟩ = |B|2 + |C|2 = ⟨in|S†S|in⟩. Due to ⟨in|in⟩ = |A|2 +

|D|2, So S is a unitary matrix. Put in another words, S† = S−1. Now two cases are 

considered in order to achieve further insight into the transmission properties. 

Case one: A=1; D=0 

The wavefunction for left and right leads: 
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{
 
 

 
 𝜓𝑗𝑙 =

𝑒𝑖𝑘𝑙𝑗

√𝑉𝑙
 +

𝑟

√𝑉𝑙
𝑒−𝑖𝑘𝑙𝑗

𝜓𝑗𝑟 =
𝑡

√𝑉𝑟
𝑒𝑖𝑘𝑟𝑗

 

2.34 

And then, we have 

 
[
𝑟
𝑡
] = [

𝑆11 𝑆12
𝑆21 𝑆22

] [
1
0
] 

2.35 

Finally, there is reflection coefficient 𝑅 = 𝐼𝑟/𝐼𝑖𝑛 = |𝑟|2 = |𝑆11|
2, and transmission 

coefficient 𝑇 =  𝐼𝑡/𝐼𝑖𝑛 = |𝑡|
2 = |𝑆21|

2. 

Case two: A=0; D=1 

The wavefunction for left and right leads: 

 

{
 
 

 
 𝜓𝑗𝑙 =

𝑡′

√𝑉𝑙
𝑒−𝑖𝑘𝑙𝑗

𝜓𝑗𝑟 =
𝑟′

√𝑉𝑟
𝑒𝑖𝑘𝑟𝑗 +

𝑒−𝑖𝑘𝑟𝑗

√𝑉𝑙

 

2.36 

And then, 

 
[
𝑡′

𝑟′
] = [

𝑆11 𝑆12
𝑆21 𝑆22

] [
0
1
] 

2.37 

Finally, there is 𝑅′ = Ir′/Iin′ = |r
′|2 = |S22|

2, T′ = It′/Iin′ = |t
′|2 = |S12|

2. 
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In summary, the scattering matrix S is represented by transmission and reflection 

coefficients as follows. 

 
𝑆 = [

𝑆11 𝑆12
𝑆21 𝑆22

] = [𝑟 𝑡′
𝑡 𝑟′

] 
2.38 

Since S†S = I, then there is 

 [
𝑟∗ 𝑡∗

𝑡′∗ 𝑟′∗
] [𝑟 𝑡′
𝑡 𝑟′

] = [
1 0
0 1

] 2.39 

Now I obtain the important transport properties in terms of scattering theory. 

 |𝑟|2 + |𝑡|2 = 1 2.40 

 |𝑡|2 = |𝑡′|2; |𝑟|2 = |𝑟′|2 2.41 

In summary, the transport properties are intrinsic where the transmission and 

reflection coefficients from one lead to the other are the same with the opposite 

injecting case.  

2.2.3 Green’s function 

In this section, the Green’s functions of simple models are listed.  
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Fig. 2.2 System A with dangling source B. The hopping integral between A and 

source B is −𝜶 . The connecting site can vary, for instance, site 2 is connected to the 

source.  

The Green’s function of system A in Fig. 2.2 satisfies, 

 
∑𝐻𝑖𝑗𝑔𝑗𝑙

𝑁

𝑗=1

+ 𝛿𝑖𝑙 = 𝐸𝑔𝑖𝑙 
2.42 

The Schrödinger equation of the system 𝐴 + 𝐵 shown in Fig. 2.2 is as follows, 

 𝜀𝑗𝜓𝑗 − 𝛾𝜓𝑗−1 − 𝛾𝜓𝑗+1 − 𝛼𝜙𝛿𝑗2 = 𝐸𝜓𝑗; 1 < 𝑗 < 𝑁 2.43 

Now suppose that –𝛼𝜙 is equal to -1, the equation goes to 𝜀𝑗𝜓𝑗 − 𝛾𝜓𝑗−1 − 𝛾𝜓𝑗+1 +

𝛿𝑗2 = 𝐸𝜓𝑗 . Comparing this equation with Eq. 2.42, they are the same. Therefore, 

we can say the wavefunction of the whole system shown in Fig. 2.2 are the Green’s 

function of system A in Fig. 2.2.  

Next, the Green’s function of an infinite chain is shown below. 
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Fig. 2.3 Tight binding model for an infinite chain. 

I now compute the Green’s function of an infinite system (Fig. 2.3) with no 

boundaries, which satisfies 

 𝜀𝑔𝑗𝑙 − 𝛾𝑔𝑗+1,𝑙 − 𝛾𝑔𝑗−1,𝑙 + 𝛿𝑗𝑙 = 𝐸𝑔𝑗𝑙 2.44 

Imagine we have the solution 𝑔𝑗𝑙 = {
𝐴𝑒𝑖𝑘𝑗;    (𝑗 ≥ 𝑙)

𝐵𝑒−𝑖𝑘𝑗;   (𝑗 ≤ 𝑙)
 . When 𝑗 = 𝑙 , if 𝐴 =

𝑐𝑒−𝑖𝑘𝑙, 𝐵 = 𝑐𝑒𝑖𝑘𝑙, 𝑔𝑙𝑙 = 𝑐 is both obtained in terms of both sides.  And from Eq. 2.44, 

we can get 𝜀𝑔𝑙𝑙 − 𝛾𝑔𝑙+1,𝑙 − 𝛾𝑔𝑙−1,𝑙 + 1 = 𝐸𝑔𝑙𝑙 . Considering 𝐸 = 𝜀 − 2𝛾 cos 𝑘 , we 

have the following expression, 

 2𝛾 𝑐𝑜𝑠 𝑘 𝑔𝑙𝑙 − 𝛾𝑔𝑙+1,𝑙 − 𝛾𝑔𝑙−1,𝑙 = −1 2.45 

we can have {
𝑔𝑙+1,𝑙 = 𝑐𝑒

𝑖𝑘;

𝑔𝑙−1,𝑙 = 𝑐𝑒
𝑖𝑘;

 Then substitute 𝑔𝑙±1,𝑙 in Eq. 2.45, it is proved that 𝑐 =

1

𝑖ℏ𝑉
 where V is group velocity. Now the Green’s function of infinite chain is written 

as follows which corresponds to the wavefunctions of the whole system shown in 

Fig. 2.4. 
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𝑔𝑗𝑙 =

{
 

 
𝑒𝑖𝑘(𝑗−𝑙)

𝑖ℏ𝑉
;   (𝑗 ≥ 𝑙)

𝑒−𝑖𝑘(𝑗−𝑙)

𝑖ℏ𝑉
;  (𝑗 ≤ 𝑙)

  𝑜𝑟  𝑔𝑗𝑙 =
𝑒𝑖𝑘|𝑗−𝑙|

𝑖ℏ𝑉
 

2.46 

 

 

Fig. 2.4 Schematic for the wave functions of the whole system. 

More generally, it is written as, 

 
𝑔𝑗𝑙 =

𝑒𝑖𝑘|𝑗−𝑙|

𝑖ℏ𝑉
+ 𝐴𝑒𝑖𝑘𝑗 + 𝐵𝑒−𝑖𝑘𝑗  

2.47 

2.2.4 Transmission function  

A general transmission formula is derived and then a specific expression is further 

achieved in combination of Green’s function method and Dyson’s equation (see 

Appendix 1).  Then the system extends from one-dimensional electrodes to the 

one with several electrodes. A generic expression of the transmission coefficients 

is obtained. 
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2.2.4.1 Junctions with two electrodes. 

Firstly, I mainly take advantage of the property that the wavefunction of a system 

with source is the Green’s function of the system without source. It is supposed 

that the wave function of the system is,  

 
{
𝑙𝑒𝑓𝑡 𝑙𝑒𝑎𝑑: 𝜓𝑙𝑗 = 𝑒𝑖𝑘𝑙𝑗 + 𝑟𝑒−𝑖𝑘𝑙𝑗

𝑟𝑖𝑔ℎ𝑡 𝑙𝑒𝑎𝑑: 𝜓𝑟𝑗 = 𝑡𝑒𝑖𝑘𝑟𝑗
 

2.48 

Next, I multiply the two formulae of Eq. 2.48 with A = 
𝑒−𝑖𝑘𝑙𝑚

𝑖ℏ𝑉𝑙
. Then new expressions 

are 

 
𝑙𝑒𝑓𝑡 𝑙𝑒𝑎𝑑: 𝜓𝑙𝑗 =

𝑒𝑖𝑘𝑙(𝑗−𝑚) + 𝑟𝑒−𝑖𝑘𝑙(𝑗−𝑚)

𝑖ℏ𝑉𝑙
 

2.49 

 
𝑟𝑖𝑔ℎ𝑡 𝑙𝑒𝑎𝑑: 𝜓𝑟𝑗 =

𝑡𝑒𝑖(𝑘𝑟𝑗−𝑘𝑙𝑚)

𝑖ℏ𝑉𝑙
 

2.50 

 

Fig. 2.5 Open system with a source and a backbone consisting of two semi-infinite 

electrodes and a scattering region.  
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The wave functions of the system shown in Fig. 2.5 have the same expressions with 

Eq. 2.49 and Eq. 2.50 for the left and right electrodes. Now I mark 𝜓𝑙,𝑟𝑗 as 𝑔𝑙,𝑟𝑗𝑚. 

 

{
 
 

 
 𝑔𝑙𝑗𝑚 =

𝑒𝑖𝑘𝑙(𝑗−𝑚) + 𝑟𝑒−𝑖𝑘𝑙(𝑗−𝑚)

𝑖ℏ𝑉𝑙

𝑔𝑟𝑗𝑚 =
𝑡𝑒𝑖(𝑘𝑟𝑗−𝑘𝑙𝑚)

𝑖ℏ𝑉𝑙
𝑚 = 0 (𝑎𝑟𝑏𝑖𝑡𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒)

⟹ {

𝑟 = 𝑖ℏ𝑉𝑙𝑔00 − 1

𝑡 = 𝑡√
𝑉𝑟
𝑉𝑙
= 𝑖ℏ√𝑉𝑟𝑉𝑙𝑔𝑁+1,0𝑒

−𝑖𝑘𝑟(𝑁+1)
 

2.51 

Now the transmission coefficient of the backbone without source could be 

achieved by the following formula. 

 𝑇(𝐸) = 𝑡𝑡∗ = ℏ𝑉𝑙ℏ𝑉𝑟|𝑔𝑁+1,0|
2
 2.52 

Further derivation for more specific expression is presented below. 

 

Fig. 2.6 (a) Isolated semi-infinite left, right electrodes (yellow regions) and 

scattering region with N sites (green region). 0 and N+1 represent the surfaces of 
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the electrodes which are also denoted as L and R. (b) Open and non-periodic system 

constituted by the isolated moieties in (a). The regions of electrodes are denoted as 

D while that of scattering region is denoted as S. 

The Green’s functions of the starting system shown in Fig. 2.6(a) are shown below. 

 
𝑔 = [

𝑔𝐷 0
0 𝑔𝑆

] ; 𝑔𝐷 = [
𝑔𝐿 0
0 𝑔𝑅

] ; 𝑔𝑆 = [
𝑔𝑎𝑎 0
0 𝑔𝑏𝑏

] 
2.53 

The difference between systems a and b is 

 
ℎ1 = [

0 ℎ𝐷𝑆
ℎ𝑆𝐷 0

] ; ℎ𝐷𝑆 = [
−𝛼𝑙 0
0 −𝛼𝑟

] = ℎ𝑆𝐷  
2.54 

Next we use Dyson equation: 𝐺 = (𝑔
−1
− 𝐻1)

−𝟏
 to achieve the expressions for 

transport properties. Solve the equations to obtain: 

 𝐺𝑆𝐷 = 𝑔𝑆ℎ𝑆𝐷𝐺𝐷𝐷 2.55 

 𝐺𝐷𝐷 = 𝑔𝐷 + 𝑔𝐷ℎ𝐷𝑆𝐺𝑆𝑆ℎ𝑆𝐷𝑔𝐷

⟹ [
𝛼𝑙
2(𝐺𝑆𝑆)𝑎𝑎𝑔𝐿𝑔𝐿 + 𝑔𝐿 𝑔𝐿𝛼𝑙(𝐺𝑆𝑆)𝑎𝑏𝛼𝑟𝑔𝑅
𝑔𝐿𝛼𝑙(𝐺𝑆𝑆)𝑏𝑎𝛼𝑟𝑔𝑅 𝛼𝑟

2(𝐺𝑆𝑆)𝑏𝑏𝑔𝑅𝑔𝑅 + 𝑔𝑅
]  

2.56 

 𝐺𝑆𝑆 = (𝑔𝑆
−1 − ℎ𝑆𝐷𝑔𝐷ℎ𝐷𝑆)

−1

⟹
𝛿

𝛥
[
(𝑔𝑎𝑎 − 𝛿𝛼𝑟

2𝑔𝑅) 𝑔𝑎𝑏
𝑔𝑏𝑎 (𝑔𝑏𝑏 − 𝛿𝛼𝑟

2𝑔𝐿)
]  

2.57 

Where 𝛿 = 𝑔𝑎𝑎𝑔𝑏𝑏 − 𝑔𝑎𝑏𝑔𝑏𝑎 and 
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𝑑−1 =

δ

Δ
= (1 − 𝑔𝑎𝑎𝛼𝑙

2𝑔𝐿 − 𝑔𝑏𝑏𝛼𝑟
2𝑔𝑅 + 𝛼𝑙

2𝛼𝑟
2𝑔𝐿𝑔𝑅𝛿)

−1 
2.58 

 
{
(𝐺𝐷𝐷)𝐿𝐿 = 𝛼𝑙

2(𝐺𝑆𝑆)𝑎𝑎𝑔𝐿𝑔𝐿 + 𝑔𝐿
(𝐺𝐷𝐷)𝑅𝑅 = 𝛼𝑟

2(𝐺𝑆𝑆)𝑏𝑏𝑔𝑅𝑔𝑅 + 𝑔𝑅
 

2.59 

And  

 (𝐺𝐷𝐷)𝑅𝐿 = 𝑔𝐿𝛼𝑙(𝐺𝑆𝑆)𝑏𝑎𝛼𝑟𝑔𝑅 2.60 

And also 

 
(𝐺𝑆𝑆)𝑏𝑎 =

𝛿

𝛥
𝑔𝑏𝑎 

2.61 

Finally, according to the Eq. 2.51 and Eq. 2.52, 

 
𝑡 = 𝑖ℏ√𝑉𝑙𝑉𝑟𝛼𝑙𝑔𝑙𝑔𝑏𝑎𝛼𝑟𝑔𝑟

𝛿

𝛥
𝑒−𝑖𝑘𝑟(𝑁+1) 

2.62 

 
𝑇(𝐸) = 𝑡𝑡∗ = |𝑡|2 =

ℏ𝑉𝑙ℏ𝑉𝑟𝛼𝑙
2|𝑔𝑙|

2|𝑔𝑏𝑎|
2𝛼𝑟

2|𝑔𝑟|
2

|𝑑|2
  

2.63 
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2.2.4.2 A junction with N electrodes. 

 

Fig. 2.7 A scattering problem with n electrodes. The green part denotes the 

scattering region. The blue circles in scattering region represent the contact sites 

with electrodes. 𝜺𝒏  is on-site energy of the electrode surface which is slightly 

different from the sites inside the electrode due to the influence of the scattering 

region. D denotes the region of all the electrodes while S is for the scattering region. 

As for the region D of n electrodes, the Green’s function is marked as 

 

𝑔𝐷 =∑|𝑗⟩𝑔𝑗⟨𝑗|

𝑁

𝑗=1

= [

𝑔1 0 0 0
0 𝑔2 0 0
0 0 ⋱ 0
0 0 0 𝑔𝑁

] ; |𝑗⟩ = [

0
1
⋮
0

]  

2.64 

There is ⟨𝑛|𝑔𝐷 = 𝑔𝑛⟨𝑛|, and 𝑔𝐷|𝑚⟩ = |𝑚⟩𝑔𝐷 . Based on Dyson equation and the 

expressions in section 2.56, we have 

 (𝐺𝐷𝐷)𝑛𝑚 = ⟨𝑛|𝑔𝐷|𝑚⟩ + ⟨𝑛|𝑔𝐷ℎ𝐷𝑆𝐺𝑆𝑆ℎ𝑆𝐷𝑔𝐷|𝑚⟩ 2.65 

When 𝑚 ≠ 𝑛, there is ⟨𝑛|𝑔𝐷|𝑚⟩ = 0, and then  
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 (𝐺𝐷𝐷)𝑛𝑚 = 𝑔𝑛⟨𝐵𝑛|𝐺𝑆𝑆|𝐵𝑚⟩𝑔𝑚 2.66 

Where ⟨𝑛|ℎ𝐷𝑆 = ⟨𝐵𝑛|, ℎ𝐷𝑆|𝑚⟩ = |𝐵𝑚⟩. Using this equation, there is  

 |(𝐺𝐷𝐷)𝑛𝑚|
2 = |𝑔𝑛|

2⟨𝐵𝑛|𝐺𝑆𝑆|𝐵𝑚⟩⟨𝐵𝑚|𝐺𝑆𝑆
† |𝐵𝑛⟩|𝑔𝑚|

2

= 𝑇𝑟{[|𝐵𝑛⟩|𝑔𝑛|
2⟨𝐵𝑛|]𝐺𝑆𝑆[|𝐵𝑚⟩|𝑔𝑚|

2⟨𝐵𝑚|]𝐺𝑆𝑆
† } 

2.67 

Due to |𝐵𝑛⟩|𝑔𝑛|
2⟨𝐵𝑛| =

2Γ(𝑛)

ℏ𝑉𝑛
, finally we get 

 𝑇𝑛𝑚 = 4𝑇𝑟(𝛤(𝑛)𝐺𝑆𝑆𝛤(𝑚)𝐺𝑆𝑆
† ) 2.68 

As for 𝐺𝑆𝑆, according to the Eq. 2.57, we have 𝐺𝑆𝑆 = (𝑔𝑆𝑆
−1 − Σ)−1. 

 
𝛴 = 𝜎 − 𝑖𝛤 = ℎ𝑆𝐷𝑔𝐷ℎ𝐷𝑆 = ∑ℎ𝑆𝐷|𝑛⟩𝑔𝐷⟨𝑛|ℎ𝐷𝑆

𝑁

𝑛=1

= ∑𝛴(𝑛)

𝑁

𝑛=1

 
2.69 

An example is as follows: 

If only one site 𝜀𝑠  exists in the scattering region, then 𝐺𝑆𝑆 = (𝐸 − 𝜀𝑠 − Σ)
−1  and 

𝑇𝑛𝑚 =
4𝛤(𝑛)𝛤(𝑚)

(𝐸−𝜀𝑠−𝜎)2+Γ2
 where Σ = 𝜎 − 𝑖𝛤 = ∑ 𝛴(𝑛)𝑁

𝑛=1 . 

As shown in Fig. 2.7, when electrons are injected from more than one electrode 

(open conduction channels) simultaneously, and detected the total transmitted 

electrons from other left electrodes (open conduction channels). Then 

transmission function is 
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 T(E) =∑𝑇𝑛𝑚(𝐸)

𝑗

 2.70 

Which demonstrate the transmission with several conduction channels in two 

electrodes. 

2.2.5 Breit-Wigner resonance  

 

Fig. 2.8 An isolated system containing N sites. 

The Schrödinger equation is 𝐻|𝜓𝑛⟩ = 𝐸𝑛|𝜓𝑛⟩ . The following shows important 

properties: ⟨𝜓𝑛|𝜓𝑚⟩ = 𝛿𝑛𝑚  and  ∑ |𝜓𝑛⟩⟨𝜓𝑛| = 𝐼
𝑁
𝑛=1  in terms of normalised 

eigenstates. 

Based on the above basic equations, the definition of Green’s function, there is 

 
𝑔 = (𝐸 − 𝐻)−1𝐼 = ∑(𝐸 − 𝐻)−1|𝜓𝑛⟩⟨𝜓𝑛|

𝑁

𝑛=1

= ∑
|𝜓𝑛⟩⟨𝜓𝑛|

(𝐸 − 𝐸𝑛)

𝑁

𝑛=1

 
2.71 

If E≈ λ which is a nondegenerate eigenvalue of the Hamiltonian, then the Green’s 

function is approximately 
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𝑔 ≈
|𝜓𝜆⟩⟨𝜓𝜆|

𝐸 − 𝜆
= [

𝑔11 𝑔12 ⋯ 𝑔1𝑁
𝑔21 𝑔22 ⋯ 𝑔2𝑁
⋮ ⋮ ⋯ ⋮
𝑔𝑁1 𝑔𝑁2 ⋯ 𝑔𝑁𝑁

] 

2.72 

Where |𝜓𝜆⟩ is the corresponding eigen state, 

 

|𝜓𝜆⟩ = [

𝜙1
𝜙2
⋮
𝜙𝑁

]  

2.73 

Then we can obtain the elements of Green’s function below 

 
𝑔11 =

|𝜙1|
2

𝐸 − 𝜆
; 𝑔𝑁𝑁 =

|𝜙𝑁|
2

𝐸 − 𝜆
 

2.74 

 
𝑔1𝑁 =

𝜙1𝜙𝑁
∗

𝐸 − 𝜆
; 𝑔𝑁1 =

𝜙𝑁𝜙1
∗

𝐸 − 𝜆
; 

2.75 

So we have 𝑔11𝑔𝑁𝑁 = 𝑔1𝑁𝑔𝑁1. Here, it is assumed that 𝜀𝑙(𝑟) = 𝜀𝑙(𝑟) . Then 𝑔𝑙(𝑟) =

𝑒
𝑖𝑘𝑙(𝑟)

−𝛾𝑙(𝑟)
. According to Eq.2.62, 2.63, there is 

 𝑑 = 1 − 𝑔𝑙𝛼𝑙
2𝑔11 − 𝑔𝑟𝛼𝑟

2𝑔𝑁𝑁 2.76 

 
𝑡 =

𝑖ℏ√𝑉𝑙𝑉𝑟𝛼𝑙𝛼𝑟𝑒
𝑖𝑘𝑙𝑒𝑖𝑘𝑟

𝛾𝑙𝛾𝑟
(

𝜙𝑁𝜙1
∗

𝐸 − 𝜆 − 𝛴𝑙 − 𝛴𝑟
)  

2.77 

Where self-energy Σ𝑙 = 𝑔𝑙𝛼𝑙
2|𝜙1|

2, Σ𝑟 = 𝑔𝑟𝛼𝑟
2|𝜙𝑁|

2.  
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𝑇 = |𝑡|2 =

2𝑠𝑖𝑛𝑘𝑙 2𝑠𝑖𝑛 𝑘𝑟 𝛼𝑙
2𝛼𝑟

2

𝛾𝑙𝛾𝑟
(

|𝜙𝑁|
2|𝜙1|

2

(𝐸 − 𝜆 − 𝜎)2 + 𝛤2
)

=
4𝛤𝑙 𝛤𝑟

(𝐸 − 𝜆 − 𝜎𝑙 − 𝜎𝑟)2 + (𝛤𝑙 + 𝛤𝑟)
2 

2.78 

Where 𝜎𝑙 =
|𝜙1|

2𝛼𝑙
2 cos𝑘𝑙

𝛾𝑙
, 𝜎𝑟 =

|𝜙𝑁|
2𝛼𝑟

2 cos𝑘𝑟

𝛾𝑟
, 𝛤𝑙 =

|𝜙1|
2𝛼𝑙

2 sin𝑘𝑙

𝛾𝑙
, 𝛤𝑟 =

|𝜙𝑁|
2𝛼𝑟

2 sin𝑘𝑟

𝛾𝑟
. 𝜎𝑙(𝑟)  

and Γ𝑙(𝑟) corresponds to the real and imaginary parts of self-energy Σ𝑙(𝑟). 

 

Fig. 2.9 Three Breit-Wigner peaks in one transmission spectra T(E).  The longer red 

dashed vertical line shows the on-resonance position 𝑬 = 𝝀 + 𝝈𝒍 + 𝝈𝒓  while the 

shorter one represents the position 𝑬 = 𝝀 + 𝝈𝒍 + 𝝈𝒓 + 𝜞𝒍 + 𝜞𝒓  at half maximum 

value. In consequence, the corresponding half width of half maximum value is 𝜞𝒍 +

𝜞𝒓. 𝜹𝑬 shows the energy level which is much larger than the resonance width 𝜞𝒍 +

𝜞𝒓 for all three peaks. Obviously, they are Breit-Wigner resonances. 

Features: 

1. The resonance corresponds to nondegenerate eigenstate 
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2. If 𝛤 = 𝛤𝑙 + 𝛤𝑟 is much less than the level spacing 𝛿𝐸of the scattering region, 

then Breit-Wigner formula can be used.  

3. When 𝛤𝑙 = 𝛤𝑟 , the on-resonance value is the maximum 1. 

4. When 𝛤𝑙 ≪ 𝛤𝑟 , transmission coefficient on resonance is approximately 

equal to 4𝛤𝑙/𝛤𝑟 . 

2.3 Fundamental properties 

In the study of molecular devices, experimentally and theoretically, properties or 

functionalities are discovered and understood which indicate their possible future 

prospect in integrated circuits.  Here, I present the thermoelectric properties, the 

phenomenon of Coulomb blockade in single electron transistors, the observation 

of noise spectroscopy for the molecular devices which are closely correlated to my 

work in the following chapters. 

2.3.1 Thermoelectricity 

The Seebeck coefficient is defined as the voltage difference  Δ𝑉 = 𝑉1 − 𝑉2 

generated due to a temperature difference Δ𝑇 = 𝑇1 − 𝑇2  of the two electrodes 

which are connected to two hot and cold reservoirs respectively. In what follows, 

first, the sign of the Seebeck coefficient is discussed depending on which 

transmission peak (HOMO or LUMO) dominates the transmission. Next, the 

derivation for a series of thermoelectric equations is presented. Finally, the figure 

of merit ZT and two types of thermoelectric efficiency 𝜂  (the efficiency at 
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maximum output power and the maximum efficient) are introduced to further 

characterise a thermoelectric generator. 

2.3.1.1 The sign of Seebeck coefficient (S) 

   

Fig. 2.10 Different signs for Seebeck coefficient when the system is HOMO-

dominated (a, c) and LUMO-dominated (b, d) transport.  LUMO-dominated 

transport corresponds to a negative Seebeck coefficient while HOMO-dominated 

gives a positive Seebeck coefficient. 

Fig. 2.10 shows the energy level alignment for molecular devices consisting of two 

electrodes connected to two reservoirs labelled L, R and a single molecule. The 

voltages and temperatures of the reservoirs are denoted as 𝑉𝐿 , 𝑇𝐿  and 𝑉𝑅 , 𝑇𝑅 . 

Define ∆𝑉 =  𝑉𝐿  − 𝑉𝑅    and ∆𝑇 =  𝑇𝐿  −  𝑇𝑅 .  Chemical potentials are μL  = EF +

eVL, μR  = EF + eVR, where 𝑒 = −|𝑒| and their difference is ∆μ =  μL  −  μR  =  e∆V.  

Define the steady-state particle current J1 to be the number of electrons per unit 

time leaving reservoir L and entering reservoir R through the scattering region 
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and the steady-state particle current J2 to be the number of electrons per unit time 

leaving reservoir R and entering reservoir L. The net particle current leaving 

reservoir L and entering reservoir R is J =  J1  −  J2 and the electrical current is 𝐼 

= 𝑒𝐽 where 𝑒 = −|𝑒|.  In Fig. 2.10c and d, the Seebeck coefficient 𝑆 is defined as  =

 − (
∆𝑉

∆𝑇
)
𝐼=0

 , where ∆V = VL − 𝑉𝑅 is the open circuit voltage difference produced by 

a temperature difference ∆T = TL − 𝑇𝑅 . 

 To obtain the sign of 𝑆, start from the equilibrium condition ∆𝑉 = 0, ∆𝑇 = 0 (Fig. 

2.10a) and consider what happens when the temperature  𝑇𝐿 of the left reservoir 

is increased, such that the population of higher-energy electrons in reservoir L is 

higher than that of reservoir R.  If these higher-energy electrons find it easier to 

pass from reservoir L to reservoir R than lower-energy electrons, then  J1  will 

increase where LUMO-dominated transport happens shown in Fig. 2.10c. To 

achieve steady state the steady-state condition 𝐽 = 0, μR must increase, so that J2 

increases. This demonstrates that if TL  >  TR, μR  >  μL. Hence if ∆𝑇 > 0, ∆𝜇 < 0, 

∆𝑉 > 0 and 𝑆 < 0. This above situation occurs when the Fermi energy is in the 

HOMO-LUMO gap of a single molecule and located closer to the LUMO, because in 

this case the electron transmission coefficient is an increasing function of electron 

energy. It also occurs when the Fermi energy is in the band gap of a semiconductor 

and closer to the conduction band.  

Conversely, if the Fermi energy is located closer to the HOMO or to the valence 

band (Fig. 2.10b), higher-energy electrons find it more difficult to pass from 

reservoir L to reservoir R than lower-energy electrons, then if  TL   is increased 

relative to  TR ,   J1  will decrease and  𝑆 > 0 (Fig. 2.10d). 
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2.3.1.2 Thermoelectrical expression 

Based on the Landauer formula[56], there are expressions for electron current and 

heat current [57]due to electrons as follows:  

 
𝐼 =

2𝑒

ℎ
∫ 𝑑𝐸𝑇(𝐸)[𝑓𝐿(𝐸) − 𝑓𝑅(𝐸)]
+∞

−∞

 
2.79 

 
�̇� =

2

ℎ
∫ 𝑑𝐸(𝐸 − 𝐸𝐹)𝑇(𝐸)[𝑓𝐿(𝐸) − 𝑓𝑅(𝐸)]
+∞

−∞

 
2.80 

Where fL,R(𝐸) =
1

𝑒

𝐸−𝜇𝐿,𝑅
𝑘𝐵𝑇 +1

, 𝜇𝐿,𝑅 = 𝐸𝐹 ± 𝑒𝑉𝑏/2. By Taylor expanding of fL,R(μ, T) at 

point (μ = EF, 𝑇 = (T𝐿 + TR)/2)  and keeping the first order only when the 

temperature difference and bias are both small. And then substitute (μL,R, TL,R) in 

f(μ, T). Consequently, 

 
𝑓(𝜇𝐿 , 𝑇𝐿) = 𝑓(𝐸𝐹 , 𝑇) +

𝜕𝑓(𝐸𝐹, 𝑇)

𝜕𝜇
(𝜇𝐿 − 𝐸𝐹)

+
𝜕𝑓(𝐸𝐹 , 𝑇)

𝜕𝑇
(𝑇𝐿 − 𝑇) 

2.81 

 
𝑓(𝜇𝑅 , 𝑇𝑅) = 𝑓(𝐸𝐹 , 𝑇) +

𝜕𝑓(𝐸𝐹, 𝑇)

𝜕𝜇
(𝜇𝑅 − 𝐸𝐹)

+
𝜕𝑓(𝐸𝐹 , 𝑇)

𝜕𝑇
(𝑇𝑅 − 𝑇) 

2.82 

Then we have 
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𝑓𝐿 − 𝑓𝑅 =

𝜕𝑓(𝐸𝐹, 𝑇)

𝜕𝜇
(𝜇𝐿 − 𝜇𝑅) +

𝜕𝑓(𝐸𝐹 , 𝑇)

𝜕𝑇
(𝑇𝐿 − 𝑇𝑅)

= −
𝑑𝑓(𝐸)

𝑑𝐸
|
𝜇=𝐸𝐹,𝑇

(𝑒𝛥𝑉)−
𝑑𝑓(𝐸)

𝑑𝐸
|
𝜇=𝐸𝐹,𝑇

𝐸 − 𝐸𝐹
𝑇0

(𝛥𝑇) 

2.83 

where e = −|e|.  Then combining Eq.s 2.79 ~  2.83, we obtain the following 

expression, 

 
I =

2e

h
∫ dET(E) (−

df(E)

dE
|
μ=EF,T

) [eΔV +
E − EF
T

ΔT]
+∞

−∞

 
2.84 

 
Q̇ =

2

h
∫ dE(E − EF)T(E)(−

df(E)

dE
|
μ=EF,T

) [eΔV
+∞

−∞

+
E − EF
T

ΔT] 

2.85 

Now we have the matrix expression, 

 

(
𝐼
�̇�
) =

2

ℎ
(
𝑒2𝐿0

𝑒𝐿1
𝑇

𝑒𝐿1
𝐿2
𝑇

)(
𝛥𝑉
𝛥𝑇
)  

2.86 

Where (T =
(TL+TR)

2
, μ = EF) is the reference temperature and chemical potential 

(Fermi level of the system in the equilibrium), and Ln = ∫ 𝑑𝐸(𝐸 −
+∞

−∞

𝐸𝐹)
𝒏𝑇(𝐸) (−

𝑑𝑓(𝐸)

𝑑𝐸
). The Fermi-Dirac distribution fL,R(𝐸) =

1

𝑒

𝐸−(𝐸𝐹±𝑒𝑉𝑏/2 )

𝑘𝐵𝑇 +1

. 
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When ΔT = 0, Eq. 2.86 give us the electric conductance, 

 
𝐺 =

2𝑒2

ℎ
𝐿0 

2.87 

Which is just the conductance in finite temperature and zero bias limit shown in 

Eq.2.15. 

When I = 0, Eq. 2.86 gives us the Seebeck coefficient S = −(
ΔV

ΔT
)
𝐼=0

, 

 
𝑆 =

𝐿1
𝑒𝑇𝐿0

 
2.88 

Where e = −|e|.  

Alternatively, the Eq. 2.86 can be rearranged into  

 
(
𝐼
�̇�
) = (

𝐺 𝐺𝑆
𝐺𝑆𝑇 𝐾

) (
𝛥𝑉
𝛥𝑇
) 

2.89 

 
(
𝛥𝑉
�̇�
 ) = (

1/𝐺 −𝑆
𝛱 𝜅𝑒

) (
𝐼
𝛥𝑇
 ) 

2.90 

Where Peltier coefficient is Π = ST =
L1

𝑒𝐿0
, the thermal conductance due to 

electrons is  κe = K − GS2𝑇 =
2

hT
(L2 −

(L1)
2

L0
) . In terms of these quantities, the 

electric contribution to thermoelectric figure of merit is ZTe  =
S2GT

κe
=

(𝐿1)
2

𝐿0𝐿2−(𝐿1)2
.  

[58] 
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When energy is close to Fermi level 𝐸𝐹  and transmission spectrum varies 

approximately linearly with energy E in the scale of 𝑘𝐵𝑇 , then there are 

expressions  𝐿0 ≈ 𝑇(𝐸𝐹) , 𝐿1 ≈ (𝑒𝑇)
2𝛼

𝑑𝑇(𝐸)

𝑑𝐸
|
𝐸=𝐸𝐹

, 𝐿2 ≈ (𝑒𝑇)
2𝛼𝑇(𝐸𝐹)  where the 

Lorenz number 𝛼 = (
1

𝑒𝑇
)
2

∫ 𝑑𝐸(𝐸 − 𝐸𝐹)
2 (−

𝑑𝑓(𝐸)

𝑑𝐸
)

+∞

−∞
= 2.44 × 10−8𝑊 ∙ Ω ∙ 𝐾−2. 

In the derivation of the above expressions, Taylor expansion for transmission 

coefficient 𝑇(𝐸) = 𝑇(𝐸𝐹) +
𝑑(𝑇(𝐸))

𝑑𝐸
|
𝐸=𝐸𝐹

+⋯.  is required. Based on these 

approximations, there is. 

 
𝑆 ≈ 𝑒𝑇𝛼

𝑑𝑙𝑛[𝑇(𝐸)]

𝑑𝐸
|
𝐸=𝐸𝐹

 
2.91 

 κe ≈ 𝛼𝑇𝐺 2.92 

So the Seebeck coefficient 𝑆  could be enhanced by increasing the slope of 

transmission spectra 𝑇(𝐸) . Eq. 2.92 demonstrates the Wiedemann–Franz law 

which states thermal conductance from electronic contribution against electrical 

conductance is proportional to temperature 𝑇  where 𝛼 = 2.44 × 10−8𝑊ΩΚ−2  is 

the Lorenz number. In basis of Wiedemann-Franz law, there is 𝑍𝑇𝑒 =
𝑆2

𝛼
. As for 

𝑍𝑇𝑒 > 1, 𝑆 > 150𝜇𝑉/𝐾. 

As for I = GSΔT + GΔV, the two terms correspond to the two current paths of J1 

and J2  shown in Fig. 2.11. SΔT  is the electromotive force of the thermoelectric 

device and ΔV = VL − 𝑉𝑅 is the output voltage on load. When I=0, SΔT = −ΔV.  
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Fig. 2.11 Effective replacement (a battery with an inner resistance r) of the 

molecular device (the light purple region). 𝚫𝐕 = −𝐒𝚫𝐓  in open effective circuit 

where 𝐈 = 𝟎, 𝚫𝐕 = 𝐕𝐋 − 𝑽𝑹 and 𝐈 = 𝐆𝚫𝐕 + 𝐆𝐒𝚫𝐓in closed effective circuit where 

𝐈 ≠ 𝟎 and 𝚫𝐕 = 𝐕𝐋 − 𝑽𝑹. The red arrows show the current in the effective circuit. 

The magnitude of all the currents (|𝐈𝟏| = |𝑰𝟐|) is the same. The direction of current 

is the same with that of the voltage 𝚫𝐕. 𝐄𝐅  is the Fermi level for the equilibrium 

system. 𝛍𝐋,𝐑 is the chemical potential for the reservoirs.  

So far we have ignored phonons, whose contribution to the thermal conductance 

is  

 
𝜅𝑝ℎ(𝑇) =

1

2𝜋
∫ 𝑑𝜔ℏ𝜔𝑇𝑝ℎ(𝜔)

𝜕𝑓𝐵𝐸(𝜔, 𝑇)

𝜕𝑇
 

∞

0

 
2.93 

Where 𝑓𝐵𝐸(𝜔, 𝑇) = (e
ℏω

kBT − 1)
−1

 is the Bose-Einstein distribution function and 

Tph(𝜔)  is the transmission coefficient for phonons of energy ℏω .  Then the 

thermoelectric figure of merit is ZT =
S2GT

κe+𝜅𝑝ℎ
. 
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2.3.1.3 Thermoelectric efficiency 𝛈 

Thermoelectric efficiency is defined as, 

 𝜂

=
𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑣𝑖𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑

ℎ𝑒𝑎𝑡 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚  𝑡ℎ𝑒 ℎ𝑜𝑡  𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒 
 

2.94 

That is to say, 

 
𝜂 =

−𝐼𝛥𝑉

𝑆𝛥𝑇𝐼 + 𝜅𝛥𝑇
 

2.95 

Where I = I1 = −I2. 

a. Efficiency at maximum output power  

When the output power is maximum, that needs r = R in Fig. 2.11. That is to say, 

ΔV = −SΔT/2  and I = GSΔT/2 . So the relationship between thermoelectric 

efficiency η and thermoelectric figure of merit ZT in this case is 

 

𝜂𝑚𝑎𝑥𝑃 =

𝐺𝑆𝛥𝑇
2 ∙

𝑆𝛥𝑇
2

𝑆𝑇𝐺𝑆𝛥𝑇
2 + 𝜅𝛥𝑇

=
𝛥𝑇

2𝑇
∙
𝑍𝑇

𝑍𝑇 + 2
 

2.96 

b. The maximum efficiency 

The above efficiency at maximum power is not the maximum efficiency. The 

maximum efficiency ηmax is obtained by differentiating Eq. 2.95 with respect to ∆𝑉 

and setting the result to zero. This yields the following expression. 
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𝜂𝑚𝑎𝑥 =

𝛥𝑇

𝑇

√𝑍𝑇 + 1 − 1

√𝑍𝑇 + 1 + 1
 

2.97 

Both the efficiency at maximum power ηmaxP  and the maximum efficiency ηmax 

achieve their maximum values when 𝑍𝑇 tends to infinity. The derivation for 

maximum thermoelectric efficiency is shown in Appendices (Appendix 2). 

2.3.2 Coulomb blockade 

 

Fig. 2.12 Energy alignment for a single-electron transistor. (a), (d) Electron is 

blocked and the number of electrons in the dot is N and N-1, respectively. (b), (c) 

these two alignments almost happen simultaneously and in consequence the 

current forms. The number of charge in the dot fluctuates between N-1 and N. 

Energy level is 𝚫𝑬 = 𝝁𝑵 − 𝝁𝑵−𝟏. 
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Current in a tunnel junction is formed by the passing of exact one electron through 

the tunnel barrier (The case of two-electron simultaneous tunnelling is out of 

consideration.) since the electrical charge is discrete. In consequence, a voltage 

𝑈 =  𝑒/𝐶  is built up due to the charged tunnel junction, where 𝑒 = 1.6 × 10−19 

coulomb is the elementary charge and 𝐶 = 𝑒2/Δ𝐸  is the capacitance of the 

junction. Here, Δ𝐸  is the energy level spacing between level 𝑁  and 𝑁 − 1 . 

Considering a small capacitance, a large voltage buildup is achieved which could 

hold back a second electron from tunnelling. This phenomenon around zero bias 

is named Coulomb blockade.  

In order to observe the Coulomb blockade, the schematic of sequential tunnelling 

is depicted in Fig. 2.12 under small bias (𝑉𝑏 < 𝑒/𝐶) and at low temperature (𝑘𝐵𝑇 <

𝑒2/2𝐶) in terms of the energy diagram of a double tunnel barrier arrangement. 

Transport through the scattering region is blocked with N electrons on the dot in 

Fig. 2.12(a). By decreasing the gate voltage, the chemical potential 𝜇𝑁 inside the 

molecule is raised until it approximately aligns with that of the drain contact (𝜇𝑠 ≅

𝜇𝑁 ) and an electron can leave the dot. If at the same time 𝜇𝑠 ≥ 𝜇𝑑, a current can 

flow from source to drain and the number of electrons on the dot will fluctuate 

between N and N-1. When the gate voltage further decreases and  𝜇𝑠 < 𝜇𝑁 the dot 

is left with one electron less and the current is again blocked.  In summary, we 

therefore have a peak in the conductance whenever 𝜇𝑁 ≈ 𝜇𝑠 ≈ 𝜇𝑑  for a small bias. 

In such a process above, the electron tunnels from the source electrode, to the 

molecule, and to the drain which is on-resonant tunnel. According to Heisenberg’s 

uncertainty principle, the time of electron staying on the molecule is larger in the 

https://en.wikipedia.org/wiki/Coulomb
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case where weak coupling occurs between source and molecule and between 

molecule and drain. So this indicates that the electrons have sufficient time in the 

molecule to interact with other degrees of freedom which could lead to incoherent 

tunnelling. Two types of this incoherent tunnel are recognised. One is the case of 

elastic tunnelling due to the associated loss of phase, whereas the second case is 

inelastic tunnelling originating from the loss of both phase and energy [59]. 

2.3.3 Applying a vector field 

An electromagnetic vector potential �̂� is related to a magnetic field B by the curl of 

�̂�,   

 

𝐵�̂� = 𝛻 × 𝐴 = ||

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐴𝑥 𝐴𝑦 𝐴𝑧

||

= (
𝜕𝐴𝑧
𝜕𝑦

−
𝜕𝐴𝑦

𝜕𝑧
) 𝑖̂ + (

𝜕𝐴𝑥
𝜕𝑧

−
𝜕𝐴𝑧
𝜕𝑥

) 𝑗̂

+ (
𝜕𝐴𝑦

𝜕𝑥
−
𝜕𝐴𝑥
𝜕𝑦

) �̂� 

2.98 

Where the direction �̂�  of B is subject to right-hand rule. There is some gauge 

freedom to choose the vector potential 𝐴  for a given perpendicular uniform 

magnetic field �⃑⃑� = 𝐵�̂�, such as the Landau gauge  𝐴 = 𝑥𝐵�̂� or a symmetric gauge 

𝐴 =
𝐵

2
(𝑥�̂� − 𝑦�̂�). The physics of the system is gauge invariant, which means that 

adding the gradient of a scalar field to �̂� changes the overall phase of the wave 
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function by an amount corresponding to the scalar field. But physical properties 

are not influenced by the specific choice of gauge. In addition, magnetic flux is 

associated with this vector potential through the formula 𝜙 = ∮𝐴𝑑𝑙. 

The Peierls substitution describes tightly-bound electrons in the presence of a 

slowly varying magnetic vector potential. Based on this, there is a relationship 

between the hopping integral 𝛾𝑖𝑗 between two sites and the magnetic vector 

potential, 

 
�̃�𝑖𝑗 = 𝛾𝑖𝑗𝑒

𝑖𝑒
ℏ ∫

�⃑�𝑑𝑙
𝑗
𝑖 = 𝛾𝑖𝑗𝑒

𝑖2𝜋
∫ �⃑�𝑑𝑙
𝑗
𝑖
𝜙0  

2.99 

Where 𝜙0 =
2𝜋ℏ

𝑒
 is the quantum of flux.  

2.3.4 Noise spectroscopy 

Noise characteristics play an important role in understanding conductance 

fluctuations and other fundamental information in molecular devices. In general, 

electrical noise is classified into four types: (a) thermal noise, (b) shot noise, (c) 

generation-recombination noise and (d) flicker or 1/f noise[60] where the first 

two types are frequency-independent, therefore called ‘white noise’ and the left 

two types are frequency dependent.  

As for thermal noise, it happens in equilibrium situations where the electrical 

current is zero. This noise is due to the fluctuations in the quantum mechanical 

occupation of electronic states which is temperature-dependent. The resulting 
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noise power spectral density 𝑆𝐼(𝑓) = lim
𝑇→∞

2|𝐼(𝑓)|2

𝑇
 where 𝐼(𝑓)  is the Fourier 

transform of 𝐼(𝑡) [61] is frequency 𝑓  independent and described by the well-

known Johnson-Nyquist theorem[62][63]: 𝑆𝐼(𝑓) ≅ 4𝑘𝐵𝑇𝐺 . Completely different 

from thermal noise, the shot noise arises from the discrete nature of carriers and 

happens only when the electrical current is nonzero and flows through a defined 

barrier which is due to a non-equilibrium phenomenon.[64] Shot noise can be 

exploited to analyse the correlation among different conductance channels 

through formula 𝑆𝐼(𝑓) = 2𝑒𝐼 (1 −
∑ 𝜏𝑖

2𝑛
1

∑ 𝜏𝑖
𝑛
1
) in the limit of low temperatures where 𝜏𝑖 

is the transmission coefficient for a conductance channel.[65][66]  

In terms of the frequency-dependent noise, the noise power spectral density (PSD) 

of a symmetric random telegraph signal (RTS) is 𝑆(𝑓) =
2(Δ𝐼)2𝜏

4+(2𝜋𝑓𝜏)2
 where 𝜏 is the 

mean dwell time for up or down current level, put in another way, the mean life-

time for each process of trapping-detrapping or generation-recombination of 

electrons, and Δ𝐼 is the deviation of the two current levels. [61] For the 1/f noise, 

no generic model or theory is proposed even though this noise is always observed 

in all kinds of electronic devices.[67] In basis of RTS noise with Lorentzian profile, 

McWhorter’s model for 1/f noise in conventional semiconductors is proposed, 

where the PSD is equal to the superposition of the counterparts of different 

Lorentzian noises, that is,  𝑆𝐼(𝑓) ∝ ∫ 𝑔(𝜏)
𝜏2

𝜏1

𝜏

1+(2𝜋𝑓𝜏)2
𝑑𝜏 where 𝑔(𝜏) = [𝜏 ln (

𝜏2

𝜏1
)]
−1

 

and the life-time 𝜏 spreads in a logarithmically wide time scale[𝜏1, 𝜏2].[60] 
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3 Thermoelectricity in vertical 

graphene-C60-graphene 

architectures 

3.1 Introduction 

Molecular devices consisting of single or multiple molecules bridging two or more 

electrodes have attracted intense theoretical and experimental interest, due to 

their tunable and unique transport properties, including negative differential 

resistance (NDR)[68][69][19], electrical switching [70][71][12] and 

thermoelectric power generation [72][73][74][75][21][55][76]. The conversion 

of a temperature gradient ∆T  to a voltage difference ∆V , is controlled by the 

Seebeck coefficient S = −∆V/∆T . Common inorganic thermoelectric materials 

such as Pb, Bi, Co, Sb are toxic and expensive due to limited global sources. 

Therefore, in recent years, different strategies have been proposed to exploit the 

thermoelectric properties of nanostructured organic materials or organic 

molecules [77][78][79][22][80]. At the single-molecule level, the Seebeck 

coefficient can be controlled using a gate electrode in a three-terminal device[81]. 

Furthermore, the sign and magnitude of S  can be changed by modulating the 
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coupling of the molecule to electrodes using the pressure induced by a STM tip 

[74]. Additionally, it has been demonstrated that the Seebeck coefficient of 

molecular junctions can be enhanced by manipulating intermolecular interactions 

of C60 molecules placed in series between two gold electrodes [75]. This effect 

arises from the quantum mechanical origin of the Seebeck coefficient at the 

molecular scale. Indeed, at a qualitative level, if the transmission probability of 

electrons with energy passing from one electrode to another through a C60 

molecule is T1(E), the transmission probability through two C60 molecules placed 

in series is approximately proportional to T1
2(E). Consequently, the conductance of 

two molecules placed in series G2 is equal to G1
2, whereas Ohm’s law predicts G2 =

G1/2. Similarly, the Mott formula S ∝
−∂lnT(E)

∂E
|E=EF  predicts that the thermopower 

coefficients are related by S2 ∝ 2 × S1, whereas classically S2 should be the same 

with S1. The aim of the chapter is to determine if similar non-classical behavior 

occurs when molecules are placed in parallel between two electrodes as in the 

concept device shown in Fig. 3.1 (a). If two such molecules in parallel behave 

classically, then the electrical conductance doubles according to Ohm’s law and the 

Seebeck coefficient is unchanged. Consequently, if many molecules are placed in 

parallel to form a self-assembled monolayer (SAM), then the electrical 

conductance would be proportional to the number of molecules and the Seebeck 

coefficient would be insensitive to the number of parallel molecules bridging the 

junction. Reuter and co-workers have addressed how the electrical conductance 

of two molecules placed in parallel between two electrodes need not be 2G1, and 

have proposed that deviations from Ohm’s law are a signature of direct inter-

molecular interactions or “cooperativity” [82].  
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In what follows, our aim is to examine this expectation from a microscopic point 

of view by computing the change in thermoelectric properties when two C60 

molecules are placed in parallel between two graphene electrodes. The results 

demonstrate that even when there is no direct inter-molecular coupling, indirect 

inter-molecular interactions mediated by the graphene electrodes produce 

quantum interference effects in the electronic structure of the molecular junction. 

As a consequence, the Seebeck coefficient is sensitive to the number N of parallel 

molecules and the electrical conductance is not simply proportional to N. These 

indirect interactions, if controlled properly can boost the electrical and 

thermoelectric performance of a device over the single-molecule paradigm. 
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3.2 Results and discussion 

 

Fig. 3.1 (a) Vertical scalable concept for molecular thermoelectricity. An insulating 

spacer is placed on top of a graphene bottom electrode, and drilled with nanopores. 

These pores are filled with 𝐂𝟔𝟎 molecules. A top graphene electrode is deposited. 

Thermoelectricity is enhanced by quantum interference. Schematics of the two 

simulated four-terminal devices: (b) a 𝐂𝟔𝟎  monomer and (c) a 𝐂𝟔𝟎  dimer 

sandwiched between two graphene monolayers. 

We have designed the vertical four-terminal devices shown in Fig. 3.1(b) and (c), 

where a single C60 and a C60 dimer are sandwiched between two horizontal 

graphene sheets, respectively. These two graphene sheets are separated by an 
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optimized vertical (z) distance and are electronically decoupled, except via the 

transport path through the buckyball(s) from the top to the lower sheet. The 

structure is assigned periodic boundary conditions in the x and y directions to 

avoid spurious edge effects. Furthermore, to eliminate edge effects in the z 

direction, the four regions (labelled leads 1–4) are semi-infinite crystalline leads, 

which channel electrons to and from reservoirs placed at infinity. In the case of the 

C60-dimer, the horizontal distance between the nearest atoms of the two C60s is 

initially set to 6 Å to avoid direct coupling between the buckyballs. We have used 

the DFT code SIESTA[83] to obtain the optimized geometry adopting the local 

density approximation and the Ceperley-Alder functional for exchange and 

correlation. We have also chosen a double-z plus polarization (DZP) basis set. After 

relaxing this structure, this distance is changed by only a fraction of an Å. In this 

situation, examination of the pseudo-atomic-orbital-based Hamiltonian describing 

the molecules confirms that there is no direct interaction between the two 𝐶60 

molecules. We have extracted the resulting mean-field Hamiltonian and overlap 

matrices and used them to compute the electrical and thermoelectric properties 

of the devices with our transport code GOLLUM[84]. The transmission coefficient 

for electrons of energy E travelling from lead i to lead j is calculated through the 

standard expression[30].  

 𝑇(𝐸) = 𝑇𝑟[𝛤𝑅(𝐸)𝐺
𝑅(𝐸)𝛤𝐿(𝐸)𝐺

𝑅†(𝐸)] 3.1 

where ΓL,R(E) = i(ΣL,R(E) − ΣL,R
†(E))/2  indicate the coupling between left and 

right electrodes and the extended molecule; ΣL,R(E) represent the self-energies; 
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and GR  the retarded Green’s function. The thermoelectric coefficients including 

the electrical conductance  G(T) , the thermopower S(T) , the contribution of 

electrons to the thermal conductance κe(T) and to the figure of merit ZTe(T) can 

be written as follows [30][31]: 

 𝐺(𝑇) = 𝐺0𝐿0 3.2 

 
𝑆(𝑇) = −

𝐿1
𝑒𝑇𝐿0

 
3.3 

 
𝜅𝑒(𝑇) = −2

𝐿0𝐿2 − 𝐿1
ℎ𝑇𝐿0

 
3.4 

 
𝑍𝑇𝑒(𝑇) =

𝐿1
2

𝐿0𝐿2 − 𝐿1
2 

3.5 

in terms of the Lorenz numbers 

 
𝐿𝑛(𝑇) = ∫ 𝑑𝐸(𝐸 − 𝐸𝐹)

𝑛𝑇(𝐸)(−
𝑑𝑓(𝐸)

𝑑𝐸
)

+∞

−∞

 
3.6 

where 𝐺0  =  2𝑒
2/ℎ is the conductance quantum, h is Planck’s constant, e is the 

absolute value of electron’s charge, T =  (Ti  +  Tj)/2 is the mean temperature of 

electrodes i and j, f is the Fermi-Dirac distribution function and μ is the chemical 

potential of the device at equilibrium, e.g.: when all leads voltages are set to zero. 

The specific implementation is explained in detail in the reference article of the 

GOLLUM code [84]. 
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Fig. 3.2 (a)Transmission coefficient of the electrons passing from electrode 1 to 

electrode 4. The blue and pink curves present the transmission spectra 𝐓𝟏(𝑬) and 

𝐓𝟐(𝑬) of the 𝐂𝟔𝟎-monomer and dimer devices, respectively. (b) The ratio of the two 

transmission coefficients shown in (a). 

The transmission functions T1,2(E) for electrons of energy E passing from the top-

left electrode (lead 1) to the bottom-right electrode (lead 4) are shown in Fig. 3.1 

for the C60 -monomer and -dimer devices. As expected, due to the periodic 

boundary conditions chosen for the electrodes, the number of open channels for 

both devices is 2 in the energy range between −1.5 and +1.5 eV around the Fermi 

energy EF. The energy position of the HOMO- and LUMO-mediated (highest-

occupied and lowest unoccupied molecular orbital, respectively) resonances does 

not depend on the relative position and orientation of the molecule and the 

graphene electrodes for van der Waals chemical bonding[85]. We therefore 

predict that T1,2(E) should remain qualitatively the same as the C60 molecules 

move around and rotate. Furthermore, a close match between graphene’s Fermi 

energy and the C60 HOMO or LUMO resonances is predicted since both are carbon-

based materials [8]. We find that the LUMO resonances are much closer to the 
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Fermi energy than the HOMO-mediated ones for the vertical junctions shown in 

Fig. 3.2(a) result consistent with previous studies [86][17][87]. Furthermore, the 

conductance gap (e.g. the gap between the HOMO and LUMO resonances) for the 

dimer device shrinks due to the splitting of the degenerate HOMOs and LUMOs, a 

quantum interference effect caused by their indirect coupling mediated by the 

electrodes. In order to estimate the departure from Ohm’s law caused by this 

indirect inter-molecular interaction, we show the ratio T2/(2T1) over an energy 

range within the conductance gap in the plot in Fig. 3.2(b). This ratio is 

approximately 1.5 in the energy range between −0.8 eV and 0 eV and then 

increases quickly above the Fermi energy when approaching the LUMO resonance. 

This increase above unity breaks Ohm’s law and is a consequence of the quantum 

interference effect that modifies the conductance gap. Indirect inter-molecular 

coupling not only changes the conductance ratios, but also affects the slope of the 

logarithm of the transmission coefficients. At low-enough temperatures, the 

Seebeck coefficient can be obtained using Mott formula [72] 

 
𝑆 = −

𝜋2

3
 
𝑘𝐵
2  𝑇

|𝑒|
 𝜕𝐸  𝑙𝑛 𝑇(𝐸) |𝐸=𝐸𝐹  

3.7 

Consequently, the Seebeck coefficient is proportional to the slope of natural 

logarithm of transmission function at the Fermi level and since these slopes differ, 

the Seebeck coefficients of the monomer and dimer junctions are different. 
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Fig. 3.3 Temperature evolution of thermoelectric coefficients. (a) Electrical 

conductance G(T). (b) Seebeck coefficients S(T). (c), (d) electronic contribution to 

thermal conductance  𝛋𝐞(𝐓) and thermoelectric figure of merit 𝐙𝐓𝐞. The pink and 

blue curves correspond to dimer and monomer respectively. 

Fig. 3.3 demonstrates that G, S, the electronic contribution to the thermal 

conductance κe  and the electronic contribution to the thermoelectric figure of 

merit ZTe = S
2GT/ke behave non-classically over a wide range of temperatures. 

Fig. 3.3(a) shows that the electrical conductance of the dimer system (pink curve) 

is more than twice that of the monomer (blue curve) over a wide temperature 

range. Fig. 3.3 (b) reveals that the Seebeck coefficient of the dimer junction is 

higher than that of the monomer junction. Fig. 3.3 (d) shows that although the 

electronic contribution to the thermal conductance (Fig. 3.3 (c)) of the dimer 

junction is higher than that of the monomer device, the higher electrical 

conductance and Seebeck coefficient of the dimer junction combine to deliver a 

higher electronic figure of merit.  



Chapter 3: Thermoelectricity in vertical graphene-C60-graphene architectures 

   60 

 

Fig. 3.4 Thermoelectric properties as a function of the Fermi energy at room 

temperature. (a) Electrical conductance G. (b) Seebeck coefficient S. (c) and (d) 

Electronic contribution to thermal conductance 𝛋𝐞  and thermoelectric figure of 

merit 𝐙𝐓𝐞.   

Since the Fermi energy of the electrodes may be changed by doping or external 

gating, we analyze the quantum behavior of the thermoelectric properties of the 

junctions as a function of the Fermi energy at room temperature. Fig. 3.4 (a) and 

(c) demonstrate that both the electrical conductance and the electronic 

contribution to the thermal conductance of the dimer device are more than twice 

that of the monomer junction over an energy window around the Fermi energy. 

Fig. 3.4 (b) reveals that the dimer configuration also has a larger Seebeck 

coefficient than the monomer in the energy range between -0.2 and 0.1 eV and also 

from 0.3 to 0.5 eV. Fig. 3.4 (d) demonstrates that ZTe is also larger in the vicinity 

of EF. 
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In order to obtain further insight into this quantum interference effect, we have 

performed calculations of model tight-binding structures that share similar 

parallel electron pathways as the devices shown in Fig. 3.1. The schematics of 

those model structures is shown in Fig. 3.5.  The red balls representing 𝐶60 

molecules are sandwiched between the blue chains representing the graphene 

electrodes. There is no direct hopping between the two red sites in the two-site 

model as in the 𝐶60 dimer DFT calculation. Therefore, any departure from Ohm’s 

law must be due to the indirect coupling between the two sites arising from 

quantum interference via the electrodes. 

The transmission coefficients T1,2  and the ratio T2/(2T1)  of these models are 

displayed in Fig. 3.6 (a). The pink curve shows that for the two-site model, the 

transmission resonance at energy E = ϵ is split in two due to the indirect coupling 

via the electrodes. The ratio T2/2T1 , shown in Fig. 3.6 (b) varies from 

approximately 0.5 to 2.5 and converges at a constant around 2, which is twice the 

expected classical value of unity. Consequently, despite the simplicity of the tight 

binding, we find that it captures the mechanism underlying the quantum 

interference effects uncovered in the DFT-based analysis.  
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Fig. 3.5 Tight binding models having (a) one-atom pathway and (b) two-atom 

pathways. The chains represent the graphene electrodes, where blue dots 

correspond to carbon atoms. The red dots represent the 𝐂𝟔𝟎 molecules. To fix the 

energy scale, the hopping integral 𝛄 between blue sites is set to unity. The hopping 

integral 𝛂 between red and blue site is set to 0.2. The hopping integral between red 

sites in (b) is set to zero. The on-site energy of both blue and red sites 𝛜𝟎 and 𝛜 is set 

to 0.25. This reflects the relevant energy levels landscape found in the DFT 

calculation and displayed in Fig. 3.5. (c) A modified two-atom model where n 

represents the separation between red sites evaluated by the number of the blue 

sites lying in between. 

We now discuss how this quantum interference behavior depends on the 

separation between the two sites. To do so, we modify the model shown in Fig. 3.5 

(b) and displace the two red sites laterally so that there are n blue sites in between 

them as shown in Fig. 3.5(c). Fig. 3.6(b) shows the conductance ratio G2/(2G1) at 
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three different temperatures (low, intermediate and high). We find that the ratio 

varies periodically with the distance n, and that it has an envelope that decreases 

with increasing n. We also find an even-odd quantum interference effect in the 

conductance ratio as a function of the parity of n. We therefore plot two curves for 

each temperature, one for even and another for odd n. 

 

Fig. 3.6 (a) Transmission coefficients as a function of energy for the one-site and 

two-site models shown in Fig. 3.5. The blue line stands for one-site model while the 

pink is for the two-site model. (b) Ratio 𝐓𝟐/𝟐𝑻𝟏 . (c) Conductance ratio 𝐆𝟐/𝟐𝑮𝟏 

evaluated at 𝐄𝐅 = 𝟎. 𝟐𝟏𝟕 and different temperatures: 𝐤𝐁𝑻 = 𝟎. 𝟎𝟎𝟒, 𝟎. 𝟏𝟑 and 0.03 

(red, blue and green curves). The two curves at each temperature show the 

conductance ratio for even and odd n. 
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The Figure also shows that this low-temperature oscillatory behavior is damped 

as the temperature increases. This damping is set by the temperature-dependent 

phase coherence length, and can be understood straightforwardly from the 

standard expression of the conductance G = G0 L0, where G0 is the conductance 

quantum unit and the integral L0  is defined in equation 3.6. The integration 

window for the integrals Ln covers an energy range of order kBT that is centered 

at the Fermi energy. Because the period of the oscillations in the transmission are 

energy-dependent and the different contributions to the integral dephase, the 

conductance oscillations die away at values of n beyond a certain dephasing length 

that is inversely proportional to the temperature, as illustrated in Fig. 3.6. 

Interestingly, in the absence of inelastic scattering, the asymptotic ratio G2/2G1 

does not approach unity for large distances n, even though the oscillations 

disappear above a certain temperature. This is because the asymptotic ratio 

depends on the position of the Fermi energy relative to the quantum interference-

split resonance shown in Fig. 3.6 (a). The above behavior is analogous to that of 

AlGaAs/GaAs quantum rings, where the temperature-dependent phase coherence 

length, extracted from Aharonov-Bohm magnetoresistance measurements, 

decreases as the temperature rises above 2.0 K [88]. The result also agrees well 

with that obtained by magneto-transport experiments combined with weak 

localization theory in MgZnO thin film [89], where the phase coherence length 

varies from 38.4 nm to 99.8 nm when temperature declines from 50 K to 1.4 K. If 

the model is extended to two-dimensional system where the one-dimensional 

leads is replaced by two-dimensional leads, the dephasing length is expected to 

decrease because of the quantum interference due to other conduction channels.  
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3.3 Conclusion 

The electrical conductance G2 of two parallel C60 molecules sandwiched between 

two graphene monolayers does not follow Ohm’s law, because it is more than twice 

larger than the conductance G1 of a single C60   molecule. This non-classical 

behaviour is due to indirect inter-molecular quantum interference effects 

mediated by the electrodes. Furthermore, increasing the number of C60  molecules 

sandwiched in parallel between graphene monolayers from one to two also 

increases the Seebeck coefficient, which is another non-classical effect. This is 

significant because it demonstrates that single-molecule thermoelectric 

properties will not translate into thin-film materials formed from self-assembled 

monolayers in a classical manner and by exploiting quantum interference, the 

thermoelectric performance of such SAMs can exceed classical expectations. 

Further insight into this quantum interference effect is gained by analyzing a tight 

binding model that features parallel electron transport through two sites. The 

model predicts that the thermoelectric properties of the dimer will oscillate with 

the dimer separation n up to a phase coherence length, which decreases with 

increasing temperature. 
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4 A single-molecule porphyrin-based 

switch for graphene nanogaps 

4.1 Introduction 

Single-molecule electronic devices have been investigated intensively both 

experimentally[90][91][92][81][93][94][95] and theoretically [55][78][96][97] 

[7][98], starting with the first molecular rectifier reported in 1974[99]. Since that 

time a variety of tuneable transport properties and active functionalities have 

been investigated, including molecular switches [100][101][102][103][104][40]. 

One example is the photo-switching operation of aryl azobenzene monolayer 

bridges between two vertical graphene sheets, whose conductance can be 

switched using optically-induced length changes of the molecule[105]. A second 

example involves redox based switching, in which a molecule based on 

anthraquinone with a cross-conjugated structure is in the “off” state, whereas it is 

in the “on” state when it is reduced to linear conjugation[101]. Another is based on 

conformational change, in which the conductance is tuned by decreasing the pi-pi 

orbital overlap within a bridging moiety by rotating adjacent phenyl 

rings[100][106]. Recently, in an effort to overcome the limitations of gold 

electrodes for contacting single molecules, graphene electroburnt 
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nanogaps[107][108][109][26][110][111] have been developed, which can be 

electrostatically tuned by a nearby buried gate electrode[112][6]. This opens the 

way to the design of new molecular switches, which take advantage of specific 

properties of such planar geometries.  

In the present work, stimulated by the fact that conjugation can be broken by 

rotating two adjacent planar aromatic rings[100], we examine the possibility of 

single-molecule conductance switching when a single aromatic ring is rotated 

relative to the pi system of graphene electrodes. The target three-terminal device 

is shown in Fig. 4.1 and consists of a single porphyrin molecule placed in the 

nanogap between two graphene electrodes and simultaneously gated by a third 

electrode. When the porphyrin and graphene sheets are in the same plane, we 

expect the conductance to be high. When the plane of the porphyrin is 

perpendicular to the graphene plane, the conjugation will be broken and we expect 

the conductance to be low. 

In the device of Fig. 4.1, the single porphyrin suspended in the graphene nano-gap 

contains pendant moieties, which create a dipole moment parallel to the plane of 

the porphyrin. The concept we aim to investigate is whether or not the porphyrin 

can be rotated by application of a modest electric field and whether or not this 

rotation creates a significant on-off ratio of the electrical conductance. In what 

follows, we demonstrate that there can be a huge difference in conductance 

between the zero-gate-voltage state and the device above a certain gate threshold 

value and therefore this combination of graphene electrodes and a porphyrin 

bridge is a promising design for a single-molecule switch. Crucially, it is possible 
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to enhance the switching behaviour by increasing the separation between the 

graphene electrodes and functionalised porphyrin molecule. We demonstrate that 

the room-temperature on-off conductance ratio can vary from 100 to 200 by 

increasing the number of C-C triple bonds from one to four, which act as spacers 

between porphyrin and graphene. We also demonstrate that the conductance ratio 

increases further from 200 to approximately 2200 by reducing the temperature to 

100K.  

 

Fig. 4.1 (a) Three terminal concept for nanoscale switch with source and drain and 

gate electrodes. The functionalised porphyrin is shown on the left of the device. The 

red, yellow and blue atoms represent oxygen, sulphur and nitrogen respectively. 

The top moment group is positively charged while the bottom moment group is 

negatively charged. (b) Schematic of graphene/molecule/graphene device with one 

triple bond as spacer. Graphene is terminated by hydrogen (white atoms).  
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4.2 Results and discussion 

Fig. 4.1 (b) shows a single porphyrin molecule functionalised with side groups 

which impart a dipole moment of 38.5 Debye in the y direction, parallel to the 

plane of the porphyrin core. The latter is connected to two electroburnt graphene 

sheets via acetylene linkers. The separation between the two planar graphene 

sheets is d ≈ 1.3 nm and therefore they are electronically decoupled, except via 

the transport path though the porphyrin. Initially, as shown in Fig. 4.1, we consider 

only a single C-C triple bond spacer between each graphene electrode and the 

porphyrin. We used the DFT code SIESTA[83] to obtain the optimized geometry 

adopting the generalised gradient approximation (GGA) and PBE functional[113] 

for the exchange and correlation. We also chose a double-ζ plus polarized (DZP) 

basis set. Here, a large unit cell 50x51.12 in x, y direction shown in Fig. 1(a) is 

adopted to avoid the electrostatic interaction between the dipole moieties due to 

periodic boundary conditions. We then extracted the resulting mean-field 

Hamiltonian and overlap matrices and used them to compute the electrical 

properties of the devices with transport code Gollum[84]. The transmission 

coefficient T(E)  for electrons as a function of energy is calculated through the 

equations: 

 𝑇(𝐸) = 𝑇𝑟[𝛤𝐿(𝐸)𝐺(𝐸)𝛤𝑅(𝐸)𝐺
†(𝐸)] 4.1 

Where ΓL,R(E)is the anti-Hermitian part of the self-energies: ΓL,R(E) = i(ΣL,R(E) −

ΣL,R
†(E))/2. ΓL,R determines the width of transmission resonances, ΣL,R(E) are the 
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self-energies describing the contact between the molecule and left (L) and right 

(R) electrodes. while G is the retarded Green’s function of the molecule in the 

presence of the electrodes. The thermally-averaged conductance G(EF, V)  is 

evaluated using the following formulae: 

 
𝑃(𝜃𝑖, 𝑉) =

1

𝐴
𝑒−𝑈(𝜃𝑖,𝑉)/(𝑘𝐵𝑇) 

4.2 

 
𝐴 =∑𝑒−𝑈(𝜃𝑖,𝑉)/(𝑘𝐵𝑇)
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𝑖=1
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𝐺 = 𝐺0∫ 𝑑𝐸𝑇(𝐸)(−

𝜕𝑓(𝐸)

𝜕𝐸
)

+∞

−∞

 
4.4 

 
𝐺(𝐸𝐹, 𝑉) =∑𝐺𝑖(𝐸𝐹, 𝜃𝑖)𝑃𝑖(𝜃𝑖, 𝑉)
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4.5 

 
𝐼 =

2𝑒

ℎ
∫ 𝑑𝐸𝑇(𝐸)[𝑓𝑙(𝐸, 𝐸𝐹 , 𝑇) − 𝑓𝑟(𝐸, 𝐸𝐹 , 𝑇)]
∞

−∞

 
4.6 

where  G0 = 2e
2/h is the conductance quantum; h is the Planck’s constant; e is the 

charge of a proton; f(E) = (1 + exp (E − EF/kBT))
−1is the Fermi-Dirac probability 

distribution function, EF is the Fermi energy and V indicates the gate voltage. In 

equation (5), the quantity P(θ, V)  is the well-known Boltzmann distribution, 

which determines the statistical probability density that a system in 

thermodynamic equilibrium will be found to have energy U(θ, V)  and hence a 

rotation angle θ. 
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Fig. 4.2 Electrical conductances and energy landscapes of the device in Fig. 4.1, with 

one triple bond on each side. (a), (b) For a series of fixed values of 𝛉, these figures 

show room-temperature electrical conductances (in units of G0=2e2/h) without a 

gate electric field as a function of the Fermi level EF of the electrodes relative to the 

DFT-predicted value. (c) Potential energy versus 𝛉  for a series of perpendicular 

electric fields 0.0 V/nm (blue), 0.2 V/nm (red), 0.4 V/nm (yellow), 0.6 V/nm 

(purple). The dots represent the total energies relative to the energy at  𝟎° and 0 

V/nm calculated by DFT, which are fitted by 𝐲 = 𝐚𝐬𝐢𝐧𝟐 𝛉 + 𝐛 . (d) The 

corresponding Boltzmann probability distribution (defined by equation (2) and 

(3)) against 𝛉 under different gate electric fields at 300K. The different structures 

corresponding to different rotating angles are not relaxed, because otherwise, upon 

relaxation, they would all relax back to the same minimum-energy angle.   

To understand the change in conductance due to a rotation θ about the axis of the 

triple bonds, we first compute the room- temperature electrical conductance (see 

theoretical methods) when the porphyrin is frozen at a series of θ values between 

zero and 180o. Since the Fermi energy EF of the electrodes relative to the HOMO 

and LUMO levels could be tuned by doping or external gating, in Fig. 4.2 (a) and 

Fig. 4.2 (b), we plot graphs of room temperature ‘frozen’ zero-bias conductance 
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G(EF, θ) versus EF for different values of θ. Fig. 4.2 (a) shows results for rotation 

angles θ between 0° and 90°, while Fig. 4.2 (b) shows results for θ between 90° 

and 180°. The transmission spectra from which these conductances are derived 

are shown in Fig. 4.3. 

 

Fig. 4.3 Transmission spectra of different rotating configurations with one triple 

bond as the spacer on each side. 

 Results are plotted against 𝐸𝐹  − 𝐸𝐹
𝐷𝐹𝑇, where 𝐸𝐹

𝐷𝐹𝑇 ,  is the DFT-predicted Fermi 

energy. The junction in Fig. 4.1 (b) is not exactly symmetric about a perpendicular 

plane passing through the triple bonds, and therefore G(EF, 90° − θ) is almost, but 

not quite equal to G(EF, 90° + θ). This slight asymmetry is due to the different 

structures of the dipole moieties – C6H4SO3, −NC5H4CH3  and the slight 

asymmetric connection to the graphene, imposed by the armchair edge. Clearly 

there is a huge variation in G(EF, θ) as θ varies between 0° and 90°. Fig. 4.2 (a, b) 

show that there are two main resonances at -1eV and 0.5eV for all angles except 

90°, where the conjugation between the pi system of porphyrin and the pi orbitals 

of graphene is broken. This broken conjugation at 90° leads to a low conductance 

over a range of Fermi energies in the vicinity of 𝐸𝐹
𝐷𝐹𝑇 ,. In order to gain insight into 
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the origin of these resonances, Fig. 4.6 (left column) shows the local density of 

states (LDOS) in the vicinity of EFDFT, which is concentrated on the pendant 

moieties, whereas the right column shows that the LDOS at the transport 

resonance around 0.3 - 0.5eV, which is more delocalised across the backbone of 

the molecule. Similarly, the LDOS at -0.7eV resonance is dominated by the pendant 

group, while that at -1eV resonance is delocalised on the porphyrin core. The 

positions of the ‘delocalised’ resonances near 0.3 - 0.5eV and -1eV correspond to 

the LUMO and HOMO of the pure porphyrin molecule sandwiched in graphene 

nano-gap shown in Fig. 4.4, whose molecular orbitals are plotted in Fig. 4.5.   

Fig. 4.2 (a) and Fig. 4.2 (b) shows the conductance when a rotation angle θ is 

artificially imposed. In practice, the junction is controlled by imposing an external 

gate voltage V  and at a finite temperature T, the rotation angle will fluctuate 

thermally. The probability of finding a given angle θ will be proportional to the 

Boltzmann factor e−U(θ,V)/(kBT) , where U(θ, V)  is the change in energy of the 

junction as a function of θ and V[114]. Fig. 4.2 (c) shows the change of total energy  

U(θ, V) versus rotation angle θ with a series of gate voltages V. The dots in blue, 

red, yellow and purple correspond to energy changes under perpendicular electric 

fields 0 V/nm, 0.2 V/nm, 0.4 V/nm, 0.6 V/nm obtained from DFT calculation. These 

dots are fitted to the function y = a ∗ sin2 θ + b presented in solid lines, where b is 

an irrelevant constant, which disappears after normalising the Boltzmann weights. 

The blue line shows that in the absence of a gate field, the energy minimum occurs 

at θ = 0° and the maximum appears at 90°. On the other hand, the purple line 

shows that as the gate electric field increases, the energy minimum eventually 

switches from 0° to 90°. To compute each of the conductance curves of Fig. 4.2 (a) 
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and Fig. 4.2 (b), the rotation angle is constrained at a particular value of θ and the 

conductance calculated using Eq. 4.4 To determine the value of θ adopted by the 

switch at a given gate voltage V, the total energy U(θ, V) was computed for a series 

of angles θ and plotted in Fig. 4.2 (c). At absolute zero and at a given gate voltage 

V, the switch would adopt the angle corresponding to the minimum of U(θ, V). 

However, at finite temperatures, the switch is subject to thermal fluctuations and 

will sample all angles. The probability distribution P(θ, V) that at a particular 

instant, the switch will assume an angle θ is given by the Boltzmann distribution 

of Eq. 4.2 For the single triple bond and different values of V, the room-

temperature probability distributions are plotted in Fig. 4.2 (d) and show that 

those angles corresponding to minima in U(θ, V)  are sampled with the highest 

probability. 

 

Fig. 4.4 The transmission spectra for Zn-porphyrin molecule without functionalized 

dipole group bridging the two graphene sheets from 0 (shown in (a)) torsion angle 

to 90 (shown in (b)) between the molecule and graphene plane. 
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Fig. 4.5 The wave functions for (a)Zn-porphyrin with one triple bond each side and 

(b)functionalised Zn-porphyrin. The 1st and 2nd show the four frontier molecular 

orbitals for molecule (a). The 3rd ~6th depict the frontier molecular orbitals for 

molecule (b). 
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Fig. 4.6 Local density of states (LDOS) of the junctions at 𝟎° and 𝟗𝟎° rotation angles. 

(a), (b) show the LDOS in the energy windows -0.1~0.1eV and 0.3~0.5eV separately 

for 𝟎°. (c), (d) are for 𝟗𝟎°. (e), (f) are the lateral views for 𝟗𝟎°.   The energy windows 

refer to the DFT Fermi level in Fig. 4.2 (a) and Fig. 4.2 (b). Here, yellow atoms depict 

carbon atoms and light blue depict hydrogen atoms. The LDOS is calculated by 

integrating the imaginary part of the Green’s function 𝐆(𝐫, 𝐄) with respect to energy 

𝐄 over a small energy window, centred of a particular energy. In Fig. 4.6, results for 

two energy windows are presented, namely -0.1eV to 0.1eV and 0.3eV to 0.5eV. The 

orbitals within the first energy window are mainly located in the pendant groups, 

while the orbitals within the second energy window are localised on the porphyrin 

backbone.   
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Fig. 4.7 (a) Conductance versus the rotation angle derived from Fig. 4.2 (a) and 2(b) 

at (𝐄𝐅 − 𝐄𝐅
𝐃𝐅𝐓 = −𝟎. 𝟐𝟓 𝐞𝐕 and electric field is 0 eV.). The pink dots are obtained 

from the DFT calculation and the blue solid line is the fitting curve by 

𝐲 = 𝐚 ∗ 𝐜𝐨𝐬𝟒 𝛉 + 𝐛 . (b) Boltzmann-averaged conductances versus Fermi energy 

calculated using equation (5) by averaging over the curves in Fig. 4.2 (a), Fig. 4.2 

(b), using the probability distributions in Fig. 4.2 d). 

Fig. 4.7 (a) shows the cos4 θ  relationship between the conductance and the 

rotation angle. Here, the Fermi level is chosen to be EF - EFDFT = -0.25 eV, which is 

close to the middle of the HOMO-LUMO gap. The cos4 θ   dependence arises, 

because the coupling to both the left and right graphene electrodes is proportional 

to cos2 θ and the total conductance through the whole junction is proportional to 

the product of these couplings [8][115][116][117].  

Fig. 4.7 (b) illustrates the Boltzmann-averaged conductances obtained from Eq. 

4.5 for the series of perpendicular electric fields shown in Fig. 4.2 (d). Specifically, 

the 4 average conductance curves shown in Fig. 4.7 (b) are obtained based on the 

conductance curves in Fig. 4.2 (a) and Fig. 4.2 (b) of the 19 rotation angles and the 

distribution curves of the 4 electric fields in Fig. 4.2 (d) according to Eq. 4.5. This 
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shows that for a wide range of Fermi energies within the HOMO-LUMO gap (more 

precisely, -0.4~0.4eV), the conductance decreases approximately by two orders of 

magnitude due to the switching on of a 0.6V/nm electric field and therefore this 

porphyrin-graphene device is a potential switch. On the other hand, an on-off 

conductance ratio of 100 (one specific value at a Fermi energy EF - EFDFT = -0.25 

eV) in comparison with the gate electric field of 0 and 0.6V/nm is not quite 

sufficient to be of technical interest and therefore we now demonstrate that this 

ratio can be improved by increasing the number of triple bonds connecting the 

porphyrin core to the graphene. 

 

Fig. 4.8 (a) Geometry of the switch with two carbon-carbon triple bonds on each 

side. (b) Potential landscape under different perpendicular electric fields (0.0 V/nm 

(blue), 0.2 V/nm (red), 0.4 V/nm (yellow), 0.6 V/nm (purple) from top to bottom). 

Similar plotting to Fig. 4.2 (c). (c) Potential barrier extracted from the fitting curve 

as the function of the number of triple bonds on each contact. The blue one 

represents the energy barrier without gate while the red shows the potential well 
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under 0.6 V/nm. (d) Zero-bias, room-temperature conductance versus the external 

perpendicular electric field. The blue, red, cyan and pink are for one, two, three and 

four triple bonds structure. Here, the Fermi level is chosen to be near the centre of 

the HOMO-LUMO gap, at EF - EFDFT = -0.25 eV. 

Fig. 4.8 (a) shows a sketch of the device with two C-C triple bonds connecting the 

porphyrin to the graphene and Fig. 4.8 (b) shows the corresponding energy 

landscape for four values of the perpendicular electric field ranging from 0.0 V/nm 

to 0.6 V/nm. This series of calculations was repeated for junctions with three and 

four triple bonds connecting the porphyrin to each graphene electrode and in each 

case, a fit to the formula U(θ, V) = a sin2 θ + b  was carried out. The energy 

landscapes for the structures with three and four triple bonds on each side are 

shown in Fig. 4.9  and Fig. 4.10.  

 

Fig. 4.9 (a), (b) Electrical conductance in units of the conductance quantum 

G0=2e2/h) without gate electric field as a function of the Fermi level EF of the 

electrodes relative to the DFT-predicted value in zero bias limitation at 300K. (c) 

Potential landscape under a series of perpendicular electric field 0.0 V/nm (blue), 
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0.2 V/nm (red), 0.4 V/nm (yellow), 0.6 V/nm (purple) shown in (d). The dots 

represent the total energies relative to the energy at  𝟎° and 0 V/nm calculated by 

DFT which are fitted by 𝐲 = 𝐚 𝐬𝐢𝐧𝟐 𝛉 + 𝐛 . (d) Corresponding Boltzmann 

distribution probability (obtained by formula (2), (3)) against the rotation of 

porphyrin under different gate electric fields at 300K. ‘Three’ indicates 3 triple 

bonds between the molecule and each electrode. 

 

Fig. 4.10 (a), (b) Electrical conductance in units of the conductance quantum 

G0=2e2/h) without gate electric field as a function of the Fermi level EF of the 

electrodes relative to the DFT-predicted value in zero bias limitation at 300K. (c) 

Potential landscape under a series of perpendicular electric field 0.0 V/nm (blue), 

0.2 V/nm (red), 0.4 V/nm (yellow), 0.6 V/nm (purple) shown in (d). The dots 

represent the total energies relative to the energy at  𝟎° and 0 V/nm calculated by 

DFT which are fitted by 𝐲 = 𝐚 𝐬𝐢𝐧𝟐 𝛉 + 𝐛 . (d) Corresponding Boltzmann 

distribution probability (obtained by formula (2), (3)) against the rotation of 

porphyrin under different gate electric fields at 300K. ‘Four’ indicates 4 triple bonds 

between the molecule and each electrode. 

Fig. 4.8 (c) shows plots of the barrier heights a when the perpendicular electric 

field is either zero (blue) or 0.6 V/nm (red). For the former, a  is positive, 
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corresponding to a maximum at θ  =90o, and the barrier decreases with the 

number of triple bonds. For the latter, a is negative, corresponding to a minimum 

at θ =90o and the energy barrier increases with the number of triple bonds. In the 

absence of a gate voltage, this varies from about 0.2eV for the single triple bond 

linker, to 0.09eV for the 4-triple bond linker. For comparison, kBT at room 

temperature is 0.025eV. In the presence of a 0.6 V/nm gate field, these increase 

from about 0.25eV for the single triple bond linker, to 0.39eV for the 4-triple bond 

linker. Since these are an order of magnitude greater than room temperature, 

switching is significant.  Of course mathematically, for a large enough number of 

triple bonds, this trend should reverse and the energy barrier would tend to zero. 

However, in practice, the number of triple bonds is restricted by limits of synthetic 

chemistry, and therefore Fig. 4.8 (c) suggests that this limit is not readily 

accessible. 

Fig. 4.8 (d) shows the Boltzmann-averaged conductances obtained at a Fermi 

energy EF - EFDFT = -0.25 eV near the middle of the HOMO-LUMO gap. As expected, 

the conductances decrease as the number of triple bonds increases, because 

transport takes place via phase-coherent tunneling[118]. Furthermore, all 

conductances decrease with increasing electric field, because the most probable 

rotation angle switches from θ=0o at low fields to θ =90o at high fields. Fig. 4.8 (d) 

shows that when the gate field 0.6 V/nm is imposed, the room-temperature 

conductance decreases by a factor of 100 for one triple bond, approximately 150 

for two triple bonds, 185 for three, and 200 for four triple bonds (pink curve). This 

demonstrates that the on-off ratio can by increased significantly by increasing 

length of the linkers between the porphyrin core and the electrodes.  
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Of course, as the length of the linkers increases, the synthetic chemistry becomes 

more challenging and therefore to further increase the on-off ratio, we considered 

the effect of reducing the temperature. As shown in Fig. 4.11, reducing the 

temperature from 300K to 100K increases the on-off ratio from 100 to 1000 for 

one triple bond structure using the same electric field. This increase occurs, 

because in the presence of a 0.6 V/nm gate field, thermal fluctuations about the 

energy minimum are suppressed and therefore only low-conductances near at θ 

=90o are sampled. 

Fig. 4.11 (a) shows the on/off ratio evolution as the function of temperature. At 

infinite temperature, the on/off ratio would be, because all rotation angles would 

be sampled with equal probability, independent of the energy landscape.  Fig. 4.11 

(b) shows the on/off ratio at room temperature, which increases from 100 to 200 

when the number of triple bonds increases to four. Furthermore, from Fig. 4.11 

(a), at 100K, the corresponding increase is from 1000 to 2200.  
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Fig. 4.11 (a) On/Off ratio evolution versus temperature T. The blue, orange, yellow 

and purple are for one-triple bond, two triple bonds, three triple bonds and four 

triple bonds structure, respectively. Here one, two, three, four mean the number of 

triple bonds on each contact between electrode and molecule. (b) On/Off ratio 

evolution versus the number of triple bonds on each side. As an example, the on-off 

ratio of 100 for a single triple bond is obtained from Fig. 4.7(b) by comparing the 

conductance at one specific Fermi energy for gate voltage of 0 with the 

corresponding value at a gate voltage of 0.6V/nm. In practice, the precise Fermi 

energy depends on the doping of the graphene, which in most experiments is hole 

doped. Therefore, the selected Fermi energy was chosen to be EF - EFDFT = - 0.25 eV 

relative to the pristine value.  

Further, the currents under finite biases are calculated and shown in the following 

plots. Transmission spectra of the four devices with one, two, three, four triple 
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bonds are presented in Fig. 4.12 (a). Fig. 4.12 (b) show the currents corresponding 

to each rotation angle under finite bias obtained by Landauer formula shown in 

Eq. 4.6.  Fig. 4.12 (c)s depict the Boltzmann-averaged currents under different 

gates on the basis of the current shown in Fig. 4.12 (b). We can see the current 

increases linearly as the bias arises in a reasonable range. The corresponding On-

Off ratios extracted from Fig. 4.12 (c) are presented in Fig. 4.12 (d). Fig. 4.13 

presents the On-Off ratios of the four devices under three finite biases (𝑉𝑏=0.1eV, 

0.2eV, 0.3eV) at room temperature. It is found that there is no big difference in the 

On-Off ratios under the three finite biases. 

 

Fig. 4.12 Transmission spectra and I-V curves of the device with one triple bonds. 
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Fig. 4.13 On-Off ratio of four devices with one, two, three, four triple bonds under 

finite biases. 

4.3 Conclusions 

In summary, using density functional theory combined with Green’s function 

scattering techniques, we have computed the electrical conductance versus gate 

voltage of a porphyrin molecule sandwiched between two electro-burnt graphene 

electrodes. The porphyrin is connected to each electrode by oligoyne spacers 

formed from one to four triple bonds. Due to the presence of pendant moieties, 

which create an electric dipole moment, the gate voltage rotates the pi system of 

the porphyrin relative to the pi system of the graphene. For a rotation angle θ = 0, 

the pi systems are aligned and the conductance is high. For θ = 90o, the pi systems 

are orthogonal, the conjugation is broken and conductance is low. It is found that 

there exists a large conductance ratio between the on (θ = 90o) and off (θ = 0o) 

states, whose room-temperature value ranges from approximately 100 of one-

triple-bond spacers to 200 for four-triple-bond spacers. This on-off ratio can be 
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further increased to 2200 by cooling the switch to 100K. The above strategies for 

increasing the on-off ratio could be applied to other molecules with a conjugated 

core, connected to graphene electrodes by oligoynes linkers. To date switches of 

the kind discussed in this paper have not been realised experimentally, but we are 

hopeful that our study will encourage progress in this direction. There are two 

possible junction-formation techniques, which could be used to create these 

switches. The first uses electroburning to produce graphene nanogaps of the 

required size[107][108][26], while the second uses ultrahigh-resolution electron-

beam lithography and oxygen plasma ion etching[109]. 
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5 Distinguishing Lead and Molecule 

States  

5.1 Introduction 

Graphene electrodes are advantageous for use in single-molecule 

devices,[26][112][119] because unlike metal electrodes, they do not suffer from 

high atomic mobility and screening. Large area single-layer graphene can be 

grown and patterned into  electrodes separated by nanogaps,[120] and then 

molecules bridging the gap can be anchored to the electrodes via covalent bonding 

[109] or π–π-stacking[121][25]. However, the nontrivial density of states in 

graphene nanostructures, combined with the fact that graphene can be 

electrostatically gated, can lead to the transport features which are not intrinsic to 

the molecule under investigation, but are rather a property of the leads in 

graphene-based single-molecule devices. Experimental and theoretical studies 

have shown that quantum interference in graphene ribbons [122][123][124] and 

nano-constrictions [125] lead to conductance fluctuations at cryogenic 

temperatures. Quantum confinement in the source and drain electrodes of 

semiconductor single-electron transistors results in the observation of density of 

states oscillations in the sequential electron tunnelling transport through these 
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devices.[126] Therefore we expect that quantum interference effects in graphene 

electrodes will also influence the charge transport in single-molecule devices. 

Here the experimental data by the collaborator presents a transport spectroscopy 

investigation of a graphene-based single-electron transistor where the sequential 

electron tunnelling is attributed to the presence of a single molecule bridging the 

graphene nanogap. Although the charge island is most likely formed by an 

individual zinc-porphyrin dimer, the observed transport features are completely 

independent of the type of molecule used, and in fact can also be observed in 

graphene quantum dots in a similar device geometry. Experimental data show how 

the graphene leads couple electrostatically to a global back-gate, and that 

hybridization between the lead and molecule states results in distinct fluctuation 

patterns as a function of gate and bias voltage. This behaviour is confirmed by our 

simple tight-binding model, which we deal with both analytically and numerically. 

Finally, a strategy is proposed to recover transport features that are intrinsic to 

the molecule, and might be obscured by the density of states fluctuations in the 

leads. Simultaneously, another tight-binding model considering the effect of 

magnetic field is designed and the features are in good agreement with the 

experimental data. 
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5.2 Results and discussion 

5.2.1 The observation and simulation of Coulomb blockade  

 

Fig. 5.1 Measurement and theory of a graphene-based single-electron transistor. (a) 

Schematic depiction of the device. Graphene electrodes are connected to gold 

reservoirs left and right; a single molecule bridges the gap between the graphene 

electrodes. (b) Schematic energy diagram of the graphene–molecule–graphene 

junction. (c) Measured differential conductance 𝑮 = 𝒅𝑰/𝒅𝑽𝒃as a function of bias 

and gate voltage (sample A). (d) Equivalent circuit diagram of (a) and (b); the Ohmic 

approximation for a tunnel barrier is valid in the low bias regime of (c) and (e). (e) 

Calculated differential conductance as a function of bias and gate voltage. 

The conductance through the single zinc-porphyrin dimers was investigated via 

single-electron tunnelling from a metallic source reservoir via the left graphene 

lead, through the molecule, to the metallic drain reservoir via the right graphene 
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lead shown in Fig. 5.1a. The silicon dioxide substrate was used as a backgate to 

apply Vg . In contrast with metal-based single-molecule transistors, where the 

metal electrodes screen the gate electric field, the electrostatic gating influences 

both the molecular orbital states and the states in the graphene leads (Fig. 5.1b). 

These fluctuations in the graphene leads influence the transmission through the 

molecule as orbital states are tuned in and out of resonance with the lead states. 

Fig. 5.1c shows the differential conductance measured as a function of the applied 

bias and gate voltage for sample A. The data reveal a dense set of positive and 

negative conduction resonances visible as red and blue lines of positive slope that 

we attribute to fluctuations in the graphene leads. A striking feature of the data is 

that the red and blue lines do not run parallel to the lines at the edges of white 

regions of suppressed conductance. In what follows, we will discuss the origin of 

the conduction resonances and analyse the electrostatic gating of the molecule and 

the lead states. 

For charge to flow through a molecule, electrons need to be added and removed 

from it. The energy required to add one electron to the molecule, i.e., its electron 

affinity, is given by the electrochemical potential 𝜇𝑀(𝑁) = 𝑈(𝑁) − 𝑈(𝑁 − 1) , 

where 𝑈(𝑁)  is the total energy of the N-electron redox state.[127] This 

electrochemical potential consists of the discrete orbital energy plus the 

electrostatic contribution to the energy, which depends linearly on the source 

(drain) 𝑉𝑠(𝑑) and gate Vg voltage as 
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 𝜇𝑀 = −

|𝑒|(𝐶𝑠,𝑀𝑉𝑠 + 𝐶𝑑,𝑀𝑉𝑑 + 𝐶𝑔,𝑀𝑉𝑔)

𝐶𝑠,𝑀 + 𝐶𝑑,𝑀 + 𝐶𝑔,𝑀 
 

5.1 

where the capacitance 𝐶𝑠(𝑑,𝑔),𝑀 describes the electrostatic interaction between the 

source (drain, gate) electrode and the molecule.[128] Electrons can tunnel 

through the molecule when its electrochemical potential is within the bias window 

defined by the electrochemical potentials 𝜇𝑠 = −|𝑒|𝑉𝑠  and 𝜇𝑑 = −|𝑒|𝑉𝑑  in the 

source and drain reservoirs, respectively. When 𝜇𝑀 is outside this bias window, 

electrons do not have the necessary energy to occupy/empty an orbital, resulting 

in diamond-shape regions of Coulomb blockade in the conductance versus bias 

and gate voltage map. The slopes of these Coulomb peaks (Fig. 5.3d) are given by 

the conditions 

 𝜇𝑀 = 𝜇𝑑;  𝜇𝑀 = 𝜇𝑠 5.2 

When the device is biased asymmetrically, in our case, i.e., 𝑉𝑠 = 𝑉𝑏  and 𝑉𝑑 = 0 , 

these conditions yield the slopes 

 
𝑏1 =

𝐶𝑔,𝑀

𝐶𝑑,𝑀 + 𝐶𝑔,𝑀
; 𝑏2 = −

𝐶𝑔,𝑀

𝐶𝑠,𝑀
 

5.3 

Similar to the molecular orbital states, the states in the graphene leads shift 

linearly as a function of the applied bias and gate voltage. The energy shift of the 

states in the left lead, which is coupled to the source reservoir, is given by 
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 𝛥𝜖𝐿  =  −|𝑒|(𝐶𝑠𝐿𝑉𝑠 + 𝐶𝑔𝐿𝑉𝑔/(𝐶𝑠𝐿 + 𝐶𝑔𝐿) 5.4 

and for the right lead coupled to the drain reservoir 

 𝛥𝜖𝑅  =  −|𝑒|(𝐶𝑑𝑅𝑉𝑑 + 𝐶𝑔𝑅𝑉𝑔/(𝐶𝑑𝑅 + 𝐶𝑔𝑅) 5.5 

In the case of asymmetric biasing, stripes in the conductance map for which a 

molecular orbital aligns with a state (quantization of the NL  sites due to the 

reflecting hopping integral) in the left lead have a slope given by μM  =  ϵ𝐿 = 0 +

Δ𝜖𝐿 

 dVb
dVg

=
Cg,L(Cs,M + Cd,M) − Cs,LCg,M

Cg,LCs,M − Cs,L(Cg,M − Cd,M)
 

5.6 

For states (quantization of the NR sites due to the reflecting hopping integral) in 

the right lead μM = ϵR = 0 + Δ𝜖𝑅, there is 

 dVb
dVg

=
Cg,R(Cs,M + Cd,M) − Cs,RCg,M

Cg,RCs,M + Cs,RCs,M
 

5.7 

From the slopes of the edges of the Coulomb diamonds in Fig. 5.1c, it is inferred 

that there are ratios: 𝐶𝑔,𝑀/𝐶𝑠,𝑀  =  (33 ±  1)  ×  10
−3 , and 𝐶𝑔,𝑀/𝐶𝑑,𝑀  = (20 ±

 1)  ×  10−3 . The relatively strong coupling to the source and drain electrodes 

compared to the gate electrode is due to the fact that the backgate is separated 

from the device by a 300nm layer of SiO2. Next, the electrostatic coupling of the 



Chapter 5: Distinguishing Lead and Molecule States 

   93 

lead states to the backgate is estimated. Conduction resonances with positive 

slopes is only observed, which implies that the experiment predominantly probes 

the left lead. From the positive slope of the conduction resonances it is found that 

𝐶𝑔,𝐿/𝐶𝑠,𝐿  =  (7 ±  1)  ×  10
−3, indicating that the gate coupling to the molecule is 

approximately 3~5 times stronger than to the lead states. So the difference in gate 

coupling between the molecule and the lead states is attributed to the higher 

carrier concentration in the graphene leads, which results in a more effective 

screening of the gate electric field. The average spacing between the conduction 

resonances is approximately 5 meV. 

In basis of the above parameters such as ϵL, 𝜖𝑅 , 𝜇𝑀 , we introduce a chain tight 

binding model to obtain a further insight into the Coulomb blockade and 

sequential tunnelling in terms of the effect of source-drain bias and backgate. The 

molecule is represented by a single site at n = 0 with an on-site energy 𝜇𝑀 and a 

hopping integral 𝛾𝐿,𝑅 to the left and right lead, respectively. The left and right leads 

are represented by semi-infinite chains with on-site energies 𝜖𝐿,𝑅  and nearest-

neighbour hopping integrals 𝛼𝐿,𝑅 . We introduce scattering into the left and right 

compound electrodes at 𝑛 =  −𝑁𝐿  and 𝑛 =  𝑁𝑅  by adjusting the hopping 

integrals−𝛽𝐿,𝑅. 

 

Fig. 5.2 Tight binding model of chain model with left, right semi-infinite electrodes 

and one molecular site. In each electrode, there exists one reflecting hopping 
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integrals −𝜷𝑳(𝑹)  at −𝐍𝐋  and 𝐍𝐑  sites. The number of sites between −𝜷𝑳(𝑹)  and 

−𝜸𝑳(𝑹) is 𝑵𝑳(𝑹) = 𝟏𝟎𝟎𝟎 in the following simulation in order to keep consistent with 

the experimental energy level spacing of approximate 4~5meV. 

When the lead states are clamped to the electrochemical potential of the 

reservoirs, i.e., if the capacitive coupling between the leads and the gate is zero, the 

slope of the lines for which the molecular orbitals align with the lead states run 

parallel to the edges of the Coulomb diamonds (see Fig. 5.5). Parallel lines in 

conductance maps resulting from disorder and confinement in the leads of single-

electron transistors have been studied extensively, for example in STM-fabricated 

devices in silicon. However, when there is capacitive coupling between the leads 

and the gate, these lines no longer run parallel to the edges of the Coulomb 

diamonds (see Fig. 5.4), and resonances between molecular and lead states shift 

in and out of the bias window. 

As a starting point, the Coulomb peak without fluctuations is researched based on 

the model in Fig. 5.2. In this case,  n = 1 in the expression βL
2 = 𝛽𝑅

2 = 𝑛𝛼𝐿(𝑅)
2  is 

needed which means there exists no reflection in both electrodes. Fig. 5.3 shows 

the corresponding features.  
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Fig. 5.3 The Coulomb peak of single-electron transistors (SETs) without Local 

density state (LDOS) fluctuations in leads where 𝛃𝐋
𝟐 = 𝜷𝑹

𝟐 = 𝒏𝜶𝑳(𝑹)
𝟐 , 𝒏 = 𝟏 . (a) 

Transmission spectrum at 𝑽𝒈 = 𝟎𝑽 in logarithm scale. (b) Transmission spectra at 

𝑽𝒈 = 𝟎  and 𝑽𝒃 = 𝟎𝑽  (blue), 𝟎. 𝟎𝟎𝟓𝑽  (red),  𝟎. 𝟏𝟐𝑽  (yellow), 𝟎. 𝟎𝟐𝑽 

(purple)respectively. (c) I-V curve at 𝑽𝒈 = 𝟎𝑽. (d) Coulomb peak of current I. The 

blue and red triangles depict the opposite current. The current is blocked outside 

the triangles. The light blue and orange lines represent the slopes of the coulomb 

peak when the chemical potential (on-site energy) of the molecular site is equal to 

those of source and drain electrodes. (e) Differential conductances versus source-

drain bias under different back gate voltage. (f) Coulomb peak of differential 

conductances G. 

Fig. 5.3a and b present the transmission spectra under different bias and at Vg =

0. Due to the tuning of the bias, the shifting of the resonance is observed. Fig. 5.3 c, 
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d show the one specific current as a function of bias at  Vg = 0 and the Coulomb 

peak of current as the function of Vb and Vg. The current plateaus appear in the 

curve and the Coulomb peak since the Breit-Wigner resonance is narrow relative 

to the energy-bias window [−eVb, 0]. In consequence, the integration in Landauer 

formula always contain the whole Breit-Wigner resonance in the plateau range. 

Fig. 5.3 e and f depict the differential conductance curves versus bias under 

different gate and the corresponding Coulomb peak which rises from the non-zero 

slopes in Fig. 5.3 c. The magnitudes are always positive and so negative differential 

resistance can’t be observed here.  

As for n = 0.6 in the expression βL
2 = 𝛽𝑅

2 = 𝑛𝛼𝐿(𝑅)
2 , that is, there exists reflection in 

both electrodes. Fluctuations (nonparallel stripes to the edges of Coulomb peak) 

in current or differential conductance Coulomb peak are observed which are 

different from the features in Fig. 5.3.  The slope of the stripes is positive in 

agreement with the experiment. It is realized by setting γL smaller than 𝛾𝑅, in our 

simulation, e.g. 𝛾𝐿 = 0.1𝛾𝑅 . Consequently, the states in left lead dominates the 

fluctuations in conductance map which confirms the analysis that the experiment 

probes the states in left lead. Fig. 5.4a and b present the transmission spectra 

consisting of one main peak and many shoulder-resonances each side under 

different bias and at Vg = 0 . The main peak corresponds to the molecular site 

while the shoulder-peaks are due to the quantized energy levels of the NL(R) sites 

in each electrode. In Fig. 5.4b, the higher and broader resonances (red and purple) 

happen when the level of molecular site aligns with the level in left lead. As the 

energy levels in lead and molecular single level are tuned separately by bias and 

backgate and when the levels in lead and molecule don’t match each other, e.g. the 
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molecular single level aligning with the middle gap between two levels in lead, the 

lower and narrower transmission spectra in Fig. 5.4b occur. 

 

Fig. 5.4 Coulomb peak of SETs with non-parallel Local density state (LDOS) 

fluctuations to the edges of the coulomb blockade. 𝛃𝐋
𝟐 = 𝜷𝑹

𝟐 = 𝒏𝜶𝑳(𝑹)
𝟐 , 𝒏 = 𝟎. 𝟔 (a) 

Transmission spectrum at 𝑽𝒈 = 𝟎𝑽 in logarithm scale. (b) Transmission spectra at 

𝑽𝒈 = 𝟎 and 𝑽𝒃 = 𝑽𝒃 = 𝟎𝑽 (blue), 𝟎. 𝟎𝟎𝟓𝑽 (red),  𝟎. 𝟏𝟐𝑽 (yellow), 𝟎. 𝟎𝟐𝑽 (purple) 

respectively. (c) I-V curve at𝑽𝒈 = 𝟎𝑽. (d) Coulomb peak of current I. The light blue 

and orange lines represent the slopes of the coulomb peak when the chemical 

potential of the molecule is equal to those of source and drain electrodes. (e) 

Differential conductances versus source-drain bias under different back gate 

voltage. (f) Coulomb peak of differential conductances G. 

Fig. 5.4c, d show the one specific current as a function of bias at  Vg = 0 and the 

Coulomb peak of current as the function of Vb and Vg. Fluctuations are observed in 
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the curve and the Coulomb peak. The peaks in Fig. 5.4c correspond to the 

integration over the higher and broader transmission resonances. In contrast, the 

valleys in Fig. 5.4c arises from the lower and narrower transmission resonances. 

Fig. 5.4e and f depict the differential conductance curves versus bias under 

different gate and the corresponding Coulomb peak. Negative differential 

resistance is observed here which is due to the energy level’s alignment and 

mismatch dependent on source-drain bias and backgate separately. 

Based on the above model (n = 0.6  in the expression βL
2 = 𝛽𝑅

2 = 𝑛𝛼𝐿(𝑅)
2 ; 𝛾𝐿 =

0.1𝛾𝑅), the couplings between backgate and electrodes are not considered which 

means Cgl = 0.0; Cgr = 0.0  which means the back gate can’t tune the two 

electrodes any more. Fluctuations in current (Fig. 5.5d) or differential 

conductance Coulomb peak (Fig. 5.5f) are observed, where the stripes are parallel 

to the edges of Coulomb peak. Fig. 5.5 a, b, c and d present the similar transmission 

spectra, I~Vb and differential conductance G~Vb curve to those in Fig. 5.5.  
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Fig. 5.5 Coulomb peak of SETs with parallel Local density state (LDOS) fluctuations 

to the edges of the coulomb blockade. 𝛃𝐋
𝟐 = 𝜷𝑹

𝟐 = 𝒏𝜶𝑳(𝑹)
𝟐 , 𝒏 = 𝟎. 𝟔. The effect of gate 

on electrode is removed which means 𝐂𝐠𝐥 = 𝟎. 𝟎; 𝐂𝐠𝐫 = 𝟎. 𝟎 . (a) Transmission 

spectrum at 𝑽𝒈 = 𝟎𝑽 in logarithm scale. (b) Transmission spectra at 𝑽𝒈 = 𝟎 and 

𝑽𝒃 = 𝟎𝑽 (blue), 𝟎. 𝟎𝟎𝟓𝑽 (red),  𝟎. 𝟏𝟐𝑽 (yellow), 𝟎. 𝟎𝟐𝑽 (purple) respectively. (c) 

I-V curve at𝑽𝒈 = 𝟎𝑽. (d) Coulomb peak of current I. The light blue and orange lines 

represent the slopes of the coulomb peak when the chemical potential of the 

molecule is equal to those of source and drain electrodes. (e) Differential 

conductances versus source-drain bias under different back gate voltage. (f) 

Coulomb peak of differential conductances G. 
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Now I want to discuss the hybridization between the lead states and the molecular 

orbitals as they are tuned in and out of resonance. The current through a molecular 

orbital is given by the Landauer formula[55] shown in Eq. 2.11. 

To investigate the role of scattering in the leads on the transmission through the 

molecular orbital we continue adopting the simple tight-binding model as shown 

in Fig. 5.2. For simplicity, the equilibrium system is considered, that is to say, Vb =

0 and Vg = 0.  

 

Fig. 5.6 Partitioning the molecule-lead system. (a) Partitioning of the system into 

simple lead 𝒍 and lead 𝒓 with a complex scattering region, and (b) into “compound 

leads” L and R and a simple scatting site M. 

Traditionally one would regard this structure as a complicated scatterer (S) 

consisting of the region between −𝑁𝐿  ≤  𝑛 ≤  𝑁𝑅 and two simple crystalline leads 

(shaded orange in Fig. 5.6a) along which electrons propagate ballistically into and 

from the simple leads. For such a system,  

 𝑇(𝐸) = 4𝑇𝑟[𝛤𝑙𝐺𝑆𝑆𝛤𝑟𝐺𝑆𝑆
† ] 5.8 
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where 𝛤𝑙 and 𝛤𝑟 describe the level broadening due to contact with the crystalline 

semi-infinite leads, 𝑙 and 𝑟. In this expression, the scattering region is a complex 

combination of the molecule and graphene and GSS is the Green’s function of the 

scattering region in the presence of the simple crystalline leads. Our aim is to 

separate the contributions to scattering from the molecule and graphene and 

therefore we adopt an alternative formulation in which the left graphene, and left 

semi-infinite lead, i.e., the region n < 0, are regarded as a compound electrode (L) 

and the right graphene and right semi-infinite lead (n > 0) form the right 

compound electrode (R). This viewpoint is encapsulated in the following 

alternative expression for the transmission coefficient, which is mathematically 

equivalent to Eq. 5.8  

 𝑇(𝐸) = 4𝑇𝑟[Γ𝐿𝐺𝑀𝑀Γ𝑅𝐺𝑀𝑀
† ] 5.9 

The Green’s function of the molecule in the presence of the compound electrodes 

is given by 

 𝐺𝑀𝑀 = (𝐸 − 𝜇𝑀 − 𝛴𝐿 − 𝛴𝑅)
−1 5.10 

where the self-energies of the left and right compound electrodes are 

 𝛴𝐿 = 𝐻𝑀𝐿[𝑔𝐿𝐿]𝑏𝑏𝐻𝐿𝑀 = 𝜎 − 𝑖𝛤𝐿 5.11 

 𝛴𝑅 = 𝐻𝑀𝑅[𝑔𝑅𝑅]𝑐𝑐𝐻𝑅𝑀 = 𝜎 − 𝑖𝛤𝑅 5.12 
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Where b, c represent the surficial sites for the compound leads shown in Fig. 5.7. 

Using Eq.s 5.9-5.12, we obtain the following formula 

 
𝑇(𝐸) =

4𝛤𝐿𝛤𝑅
(𝐸 − 𝜇𝑀 − 𝜎𝐿 − 𝜎𝑅)2 + (𝛤𝐿 + 𝛤𝑅)2

 
5.13 

In this equation, the level broadening due to contact between the molecule and the 

left and right compound electrodes are described by 

 

𝛤𝐿 =
𝛾𝐿
2 ([𝑔𝐿𝐿]𝑏𝑏 − [𝑔𝐿𝐿

† ]
𝑏𝑏
 )

−2𝑖
 

5.14 

 

𝛤𝑅 =
𝛾𝑅
2 ([𝑔𝑅𝑅]𝑐𝑐 − [𝑔𝑅𝑅

† ]
𝑐𝑐
)

−2𝑖
 

5.15 

where [𝑔LL]𝑏𝑏and [𝑔RR]𝑐𝑐are the Green’s functions of the isolated compound left 

and right electrodes, and 𝛾𝐿  and γR  denote the coupling between the left, right 

compound electrodes and the molecule.  

 

Fig. 5.7 A specific model for Fig. 5.6b. The molecule M is connected to b and c sites 

of compound electrodes L and R. −𝛃𝐋 is the scattering integral which connects site 

i and site a in the left lead while the other scattering integral −𝛃𝐑 connects site d 

and site j in the right lead.  
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In Fig. 5.7, the surface Green’s functions for the compound left and right electrodes 

are derived as follows, 

 
[𝑔𝐿𝐿]𝑏𝑏 =

𝑔𝑏𝑏 − 𝛽𝐿
2𝑔𝑖(𝑔𝑎𝑎𝑔𝑏𝑏 − 𝑔𝑏𝑎𝑔𝑎𝑏)

1 − 𝛽𝐿
2𝑔𝑖𝑔𝑎𝑎

 
5.16 

 
[𝑔𝑅𝑅]𝑐𝑐 =

𝑔𝑐𝑐 − 𝛽𝑅
2𝑔𝑗(𝑔𝑑𝑑𝑔𝑐𝑐 − 𝑔𝑐𝑑𝑔𝑑𝑐)

1 − 𝛽𝑅
2𝑔𝑗𝑔𝑑𝑑

 
5.17 

 ℏ𝑉𝐿𝛾𝐿
2|[𝑔𝐿𝐿]𝑖𝑏|

2 = 2𝛤𝐿 = −2𝛾𝐿
2𝐼𝑚[𝑔𝐿𝐿]𝑏𝑏 5.18 

 ℏ𝑉𝑅𝛾𝑅
2|[𝑔𝑅𝑅]𝑗𝑐|

2
= 2𝛤𝑅 = −2𝛾𝑅

2𝐼𝑚[𝑔𝑅𝑅]𝑐𝑐 5.19 

Where gbb , gaa , gab , and gba  are Green’s function for the isolated finite chain. 

gi(j) = −𝑒𝑖𝑘/𝛼𝐿(𝑅)  is the surface Green’s function for the electrode in Fig. 5.6b. 

VL(R) is the Fermi velocity of the electrode in Fig. 5.6b. Eq. 5.18 and Eq. 5.19indicate 

the relationship between surface Green’s function[𝑔𝐿𝐿]𝑏𝑏 , [𝑔𝑅𝑅]𝑐𝑐  and the Green’s 

function [𝑔𝐿𝐿]𝑖𝑏,  [𝑔𝑅𝑅]𝑗𝑐  which contain the information of disorders in the 

compound electrodes. 

In the case of the simple tight binding model, this implies that the tunnel-rate 𝛤𝐿(𝑅) 

is proportional to the local density of states ρb at site n = −1 and 𝛤𝑅 is proportional 

to the local density of states ρc at site n = +1. The relationship between them is 

given by  
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 𝛤𝐿 = −𝛾𝐿
2𝐼𝑚[𝑔𝐿𝐿]𝑏𝑏 = 𝜋𝛾𝐿

2𝜌𝑏 5.20 

Similarly  

 𝜎𝐿 = 𝛾𝐿
2𝑅𝑒[𝑔𝐿𝐿]𝑏𝑏 5.21 

Similar expressions hold for the right electrode. 

 Both the tunnel-rates and the energy shifts depend on the electrode density of 

states, which in turn is determined by the random locations of scattering centers 

within the graphene electrodes. The self-energies of the compound electrodes in 

the tight binding model can be found numerically by decimation or analytically by 

solving Dyson’s equation. The latter yields 

 
𝑍𝐿 = 

𝑠𝑖𝑛 𝑘𝐿 𝑒
−𝑖𝑘𝐿𝑁𝐿 − 𝑥𝐿 𝑠𝑖𝑛 𝑘𝐿(𝑁𝐿 − 1)

𝑠𝑖𝑛 𝑘𝐿 𝑒−𝑖𝑘𝐿𝑁𝐿 − 𝑥𝐿𝑠𝑖𝑛 𝑘𝐿𝑁𝐿 𝑒𝑖𝑘𝐿
 [− 

𝛾𝐿
2

𝛼𝐿
 𝑒𝑖(𝑘𝐿) ] 

5.22 

where 𝑥𝐿  =  𝛽𝐿
2/𝛼𝐿

2 –  1 and 𝑘𝐿  = cos
–1(𝜀𝐿 –  𝐸)/2𝛼 . Similarly ΓR is obtained by 

replacing L by R in the above expression. Here we have derived the transmission 

for a simple one-dimensional tight binding model, however Eq. 5.8 and Eq. 5.9 are 

completely general, and the transmission function will depend on the details of the 

system Hamiltonian. Experimentally, we find that the position of the molecular 

energy level with respect to the Fermi energy of the leads and the strength of the 

coupling between the molecule and the graphene leads varies significantly from 

device to device.  
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Fig. 5.8  Transmission spectra, tunnel-rate and hybridization energy calculated for 

𝛂𝐋,𝐑  =  𝟏 , 𝛜𝐋,𝐑  =  𝟎 , 𝛄𝑳  =  𝟎. 𝟎𝟎𝟐 , 𝛄𝑹  =  𝟎. 𝟎𝟐  , 𝜷𝟐 = 𝜶𝟐 and 𝐍𝐋,𝐑 =  𝟏𝟎𝟎𝟎 . (a) 

Transmission spectra as a function of energy with different chemical potential (on-

site energy) of the dot, 𝝁𝑴=0 (blue), 0.003 (red), 0.006 (yellow), 0.009 (purple). 

(b) Transmission spectra as a function of different chemical potential 𝝁𝑴of the dot 

with four specific energies E=0 (blue), 0.003 (red), 0.006 (yellow), 0.009 (purple).   

(c) Real (𝝈) and imaginary (𝜞 ) parts of the self-energies. Here the curves of 

imaginary parts are shifted up by 0.0005 in order to present the curves clearly. (d) 

Transmission as a function of energy E and on-site energy 𝝁𝑴. 

As a starting point, Fig. 5.8 shows the real and imaginary parts of the self-energies 

and transmission spectra for the system without reflections (𝛽2 = 𝛼2) in the leads. 

The self-energy or Green’s function are almost independent of energy (Fig. 5.8c) 

on the scale plotted, in agreement with equations (5.20) and (5.21). Transmission 

spectra have the same behaviour as a function of energy of the electron injected 

given a specific μM (Fig. 5.8a) and the on-site energy of the molecular site given an 
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electron of specific energy (Fig. 5.8b). Consequently, one straight line with a slope 

of unity is observed in the plotting of transmission coefficients as functions of the 

injected electron’s energy and on-site energy of the molecular site (Fig. 5.8d). 

Fig. 5.9a and b represent the transmission spectra as a function of E and μM. Both 

show that when the molecular level matches with a lead level, the transmission is 

broader and higher which accounts for the large Γ  (Fig. 5.9c). These broader 

resonances correspond to the crossing points in Fig. 5.9d. In particular, the 

broader resonance has two peaks in Fig. 5.9a because the alignment happens 

between the left lead and molecule due to strong asymmetry in coupling strength 

between the left and right lead, i.e. Γ𝐿 ≪ Γ𝑅 . The transmission resonance is only 

sensitive to states in the left lead. 

 Fig. 5.9c shows the real and imaginary part of the self-energies for strong and 

weak reflections in the leads. For strong reflection (𝛽𝐿,𝑅
2  =  0.3𝛼𝐿,𝑅

2 ) we find sharp 

peaks in the imaginary part of the self-energies, i.e., the density of states at the 

surface sites (n = ± 1), arising from quasi-bound states between the molecule and 

the reflection sites (𝑛 = −𝑁𝐿 ,  𝑁𝑅 ). In contrast, for weak reflections (𝛽𝐿,𝑅
2  =

 0.6𝛼𝐿,𝑅
2 ) we find a small sinusoidal modulation of both the tunnel-rates 𝛤𝐿,𝑅 and 

the energy shift 𝜎𝐿,𝑅. The tunnel-rate is maximum on resonance with the quasi-

bound lead states while the real part of the self-energy changes sign upon crossing 

the resonance condition. The transmission as a function of energy and 

electrochemical potential of the molecule 𝜇𝑀 (Fig. 5.9d) shows both the effect of 

the modulation of the tunnel-rate and the real part of the self-energy 

(hybridization energy).  
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Fig. 5.9 Transmission spectra , tunnel-rate and hybridization energy calculated for 

𝛂𝐋,𝐑  =  𝟏 , 𝛜𝐋,𝐑  =  𝟎 , 𝛄𝑳  =  𝟎. 𝟎𝟎𝟐 , 𝛄𝑹  =  𝟎. 𝟎𝟐  and 𝐍𝐋,𝐑 =  𝟏𝟎𝟎𝟎 . (a) 

Transmission spectra (𝜷𝟐 = 𝟎. 𝟑𝜶𝟐  case) as a function of energy with different 

chemical potential (on-site energy) 𝝁𝑴of the dot 𝝁𝑴=0 (blue), 0.003 (red), 0.006 

(yellow), 0.009 (purple). (b) Transmission spectra as a function of different 

chemical potential 𝝁𝑴of the dot with four specific energies E=0 (blue), 0.003 (red), 

0.006 (yellow), 0.009 (purple).   (c) Real and imaginary parts (𝝈) of the self-energies 

in two cases: 𝜷𝟐 = 𝟎. 𝟔𝜶𝟐 and 𝜷𝟐 = 𝟎. 𝟑𝜶𝟐. Here the curves of imaginary parts (𝜞) 

are shifted up by 0.0005 in order to present the curves clearly. (d) Transmission as 

a function of energy E and on-site energy 𝝁𝑴 for the case 𝜷𝟐 = 𝟎. 𝟑𝜶𝟐. 

5.2.2 Applying magnetic field to distinguish the DOS in leads and 

molecule 
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Fig. 5.10 Electrodes with ring-paths. (a) Tight binding model describing a molecular 

orbital connected to semi-infinite one-dimensional leads via ring paths. (b) 

Calculated transmission for two different values of 𝜽 =  𝟐𝝅𝜱/𝜱𝟎. (c) Differential 

conductance at B = 0 compared to the ensemble averaged values, calculated for 

𝜶𝒓𝒊𝒏𝒈,𝑳  =  𝜶𝒓𝒊𝒏𝒈,𝑹 =  𝟎. 𝟕𝜶𝑳,𝑹  and 𝜸𝑳  =  𝜸𝑹  =  𝟎. 𝟎𝟕𝟓𝜶𝑳,𝑹 . (e) Differential 

conductance measured at B = 0 T compared with the ensemble averaged differential 

conductance in experiment. 

The conductance fluctuations observed in the sequential tunnelling regime arise 

from interference effects in the leads, which can either be the result of scattering 

of random impurities leading to universal conductance fluctuations (UCFs), or 

Fabry-Pérot interferences resulting from reflections at potential barriers. When a 

magnetic field is applied perpendicular to the graphene leads, electron waves 

acquire an additional phase due to the vector potential. Theoretically, conductance 
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fluctuations can be reduced by a factor of √𝑁  where N is the size of the 

ensemble[129]. This behaviour can be illustrated by a tight-binding model shown 

in Fig. 5.10a, in which the leads contain circular regions through which a magnetic 

flux can pass. Again the transmission coefficient can be obtained analytically as a 

function of the flux Φ passing through each of the loops. This is imposed via a 

Peierls substitution by adding a phase factor 𝜃 =  2𝜋𝛷/𝛷0 to nearest neighbour 

hopping integrals. In the absence of a magnetic field, Fig. 5.10b and c show an 

example of the transmission and differential conductance, which reflects the 

density of states fluctuations in such a model. The ensemble averaged curves show 

a strong reduction of the fluctuations, in correspondence with the experimental 

results in Fig. 5.10e. 

The following presents the analytical derivation for the ring tight binding model 

shown in Fig. 5.10a. Consider a ring of 𝑁𝐿 sites, with periodic boundary conditions. 

All of the above equations Eq. 5.8-5.22 are unchanged, except 𝑔𝑎𝑎, 𝑔𝑏𝑏 , 𝑔𝑎𝑏 are 

replaced by the Green’s function of a ring in Eq. 5.13. If the ring is threaded by a 

magnetic flux 𝜙, then we define 𝜃 =
2𝜋𝜙

𝜙0
=

2𝜋

𝜙0
∫ �̂�𝑑𝑙
𝑗

𝑖
, where 𝜙0 is the flux quantum. 

This gauge applying is shown in the section 2.3.3. 

The Schrödinger equation for such a lattice is 

 𝜀𝐿𝜑𝑗−𝛼𝐿𝑒
−𝑖𝜃𝜑𝑗+1−𝛼𝐿𝑒

𝑖𝜃𝜑𝑗−1 = 𝐸𝜑𝑗  5.23 
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The solutions which satisfy periodic boundary conditions are 𝜑𝑗 = 𝑒
𝑖(
2𝑛𝜋

𝑁
)𝑗 . These 

have 𝑛  eigen energies 𝐸𝑛 = 𝜀𝐿−2𝛼𝐿 cos[
2𝑛𝜋

𝑁
− 𝜃] , 𝑛 = 0, ±1,±2 … , ±(𝑁 − 1)/2,

𝑁/2 for 𝑁 even (or 𝑛 = 0,±1,±2 …± (𝑁 − 1)/2,  for 𝑁 odd.) 

Another way of stating this result is to write 𝜑𝑗 = 𝑒𝑖(𝜃+𝜂)𝑗  or 𝜑𝑗 = 𝑒
𝑖(𝜃−𝜂)𝑗 . The 

energy of these states is 𝐸 = 𝜀𝐿−2𝛼𝐿 cos 𝜂. 

Periodic boundary conditions require 𝜃 + 𝜂 = 2𝑛𝜋/𝑁  and −𝜂 = 2𝑛𝜋/𝑁 . In fact, 

these are the same condition, because the set of numbers cos 𝜂𝑛 = cos (
2𝑛𝜋

𝑁
−  𝜃)  is 

identical to the set of numbers cos 𝜂𝑛 = cos ( 𝜃 −
2𝑛𝜋

𝑁
). To obtain the Green’s 

function of such a ring at energy 𝐸, we define 𝜂 =  cos[( 𝜀𝐿−𝐸)/2𝛼𝐿]. 

Then for a ring of N sites, the Green’s function matrix element 𝑔𝑗𝑙  connecting a 

source site 𝑙 to a drain site 𝑗 is  

 

𝑔𝑗𝑙 =
𝑒𝑖𝑠𝜃(

|𝑗−𝑙|−
𝑁
2
)

4𝛾 𝑠𝑖𝑛 𝜂
{

𝑒𝑖𝜂(
|𝑗−𝑙|−

𝑁
2
)

𝑠𝑖𝑛[
(𝜂 + 𝑠𝜃)𝑁

2 ]
+

𝑒−𝑖𝜂(
|𝑗−𝑙|−

𝑁
2
)

𝑠𝑖𝑛[
(𝜂 − 𝑠𝜃)𝑁

2 ]
} 

5.24 

Where 𝑠 is the sign of (𝑗 − 𝑙). [Ie 𝑠 = 1 𝑖𝑓 𝑗 − 𝑙 > 0 and 𝑠 = −1 𝑖𝑓 𝑗 − 𝑙 < 0] If 𝑗 =

𝑙 either sign of s can be chosen, since both choices yields the same result. 

Note that:  

1. As expected  𝑔𝑗𝑙 = 𝑔𝑙𝑗
∗. 
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2. When 𝜃 = 0,  𝑔𝑗𝑙 =
cos𝜂(|𝑗−𝑙|−

𝑁

2
)

2𝛾 sin𝜂 sin[
𝜂𝑁

2
]
, in agreement with eq (9) of the literature 

[55]. 

3. Clearly  𝑔𝑗𝑙  diverges when 𝜃 + 𝜂 = 2𝑛𝜋/𝑁 and −𝜂 = 2𝑛𝜋/𝑁, as expected. 

4. Derivation of Eq. 5.24 is shown in Appendices (Appendix 3). 

5.3 Conclusion 

In this work we have investigated the role of density of states fluctuations in 

single-molecule devices contacted to single-layer graphene nanoelectrodes 

experimentally and theoretically. By analysing local measurements of the quasi-

bound lead states, we find that the electrostatic coupling to the global back-gate is 

weaker than the gate coupling to the molecule. This enables electrostatic control 

over the hybridization between lead and molecule states. A chain tight binding 

model is designed to show exactly the effect of local states in electrodes on the 

conductance map against  𝑉𝑔  and 𝑉𝑏  and further verifies the conduction 

fluctuations in the conductance map is due to the lead not the intrinsic 

characteristics of the molecule. If the energy-spacing between the quasi-bound 

lead states can be increased by further quantum confinement, they may act as an 

energy filter for the transport through the molecular orbitals. The approach of 

ensemble averaging magnetoconductance traces provides an effective way of 

distinguishing between features that are intrinsic to the molecule and those that 

are the result of quantum interference in the leads. A tight binding model with 

rings in the electrodes is investigated to have a further sight into the effect of the 
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magnetic fields which confirms the suppression of the fluctuations due to 

additional acquired phase. The averaging magnetoconductance traces provides a 

useful tool for the spectroscopic investigation of single molecules. 

To conclude, our results highlight the importance of the electronic properties of 

the lead electrodes in single-molecule electronics. While graphene may be a 

material system that is very well suited to host these devices, further 

understanding of the hybridization between graphene and molecules will be 

needed to develop these devices into a technology. Atomically precise control of 

the structure and edge termination of the graphene leads, [130] together with 

stacked two-dimensional material approaches could enable functional graphene-

molecule hybrid systems. 
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6 Low frequency noise in graphene 

tunnel junctions 

6.1 Introduction  

As the size of the electronic circuit decreases to the nanoscale, it is supposed that 

the device will be more sensitive to noise. In a molecular system, this is  due to 

defects in the contact between electrodes and molecules or in the molecular layers,  

traps in the substrate[131][65], or due to the molecules in the solvent[132] or 

configurational changes[133]. So research on noise characteristics can make 

contributions to the understanding of fundamental principles and information in 

molecular junctions.  Random telegraph noise (RTN), 1/f noise and shot noise in 

an alkyl-based self-assembled monolayer (SAM) adhered to two gold electrodes 

originate from the localized states in the tunnel barrier which helps to assess the 

effects of the localized states on charge transport[65]. Shot noise could provide 

information about the correlations of transmission probabilities among different 

conductance channels[65]. Noise characterisation is even exploited for bio-

sensing[134].  In the past 40 years, varieties of functionalities in molecular 

electronics  have been discovered and investigated in terms of the intrinsic charge 

transport properties[16][23][7][100] whereas only few studies on the electrical 
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noise characteristics as the functionalities of molecular devices have been carried 

out. It is of great significance to carry out the research and understand electrical 

fluctuations and noise for promoting and enhancing the development of 

molecular-scale devices. 

Recent studies have demonstrated charge transport through single molecules 

which were firmly anchored between a pair of graphene electrodes via π-π 

stacking[25] or covalent bonding[40]. Moreover, graphene nanogaps have been 

proposed as candidate systems for molecular sensing,[132] in particular for 

sequencing DNA molecules[97]. These devices rely on the unique material 

properties of graphene: its two-dimensional nature, zero-energy bandgap, and 

semi-metallic conductance[135]. However, in graphene-based devices, electrical 

noise can’t be avoided where both carrier fluctuations and mobility fluctuations 

play an important role[60]. As for the observation of random telegraph noise 

(RTN) in graphene, it has not been systematically researched and is expected to 

exist in small sized graphene where fewer surface or interface traps are expected. 

Furthermore, RTN in graphene nanogap junction has not been reported up to now. 

Conductance fluctuations or noise in 40–70 nm wide graphene nanoribbons was 

enhanced due to the quantum confinement effect [136].  So when structure 

approaches a ~1 nm nanogap, how the noise in empty graphene junctions behaves 

has not been addressed to date. This question becomes particularly pertinent for 

applications that require a large signal-to-noise ratio, such as DNA sequencing  

Low-frequency 1/𝑓  noise or ‘flicker’ noise is ubiquitous in nanoscale electronic 

systems. While the physical mechanisms that generate these fluctuations may vary 
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and are often not known, it is generally accepted that 1/𝑓 noise is the result of a 

distribution of nonidentical random telegraph noise (RTN) which was first 

described by McWhorter in the context of interface traps in metal-oxide-

semiconductor field-effect transistors (MOSFETs) where trapping and detrapping 

of charges results in fluctuations in the number of charge carriers in the 

semiconductor channel[131]. In the case of tunnel junctions, fluctuations in the 

electrostatic environment and mechanical instabilities will lead to noise in the 

tunnel current through modulation of the transmission function. Here, we will 

investigate the noise properties of nanometre-sized graphene tunnel junctions 

and present a theoretical description of the emergence of 1/𝑓 noise resulting from 

a distribution of classical fluctuators coupled to a quantum mechanical system. 

6.2 Results and discussion 
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Fig. 6.1 Characteristics of 1/f and random telegraph noise (RTN) in graphene 

nanogaps (tunnel junctions). (a) Fluctuations in the tunneling current at room 

temperature (RT). (b) The corresponding log-normal distribution of current values 

of room temperature. (c) I-t trace with two levels upon cooling the device to 77 K. 

(d) Bimodal current distribution with two Gaussian peaks at 77K. (e) Noise power 

spectral density (PSD).  Noise PSD follows 1/f trend at room temperature and 

Lorentzian noise spectral at 77K with lower overall noise level. 

Fig. 6.1(a) shows the typical current–time (𝐼– 𝑡) trace measured for a graphene 

tunnel junction at room temperature. The room temperature 𝐼– 𝑡 trace (Fig. 6.1a) 

shows characteristic flicker noise behaviour, in which the signal has a wandering 

baseline as the high frequency noise rides on a low frequency component. The 

corresponding histogram of the current at room temperature (Fig. 6.1b) reveals a 

distinct log-normal distribution of the current values and gives a first hint at the 

physical mechanism behind the 1/𝑓  noise. By contrast, the I-t trace (Fig. 6.1c) 

predominantly fluctuates between two levels, indicating that a single two-level 

fluctuator dominates the noise. Similarly, Fig. 6.1(d) presents the corresponding 

current histogram distribution, which consists of two Gaussian peaks. The power 

spectral density of a single two-level fluctuator is given by 𝑆𝐼(𝑓) =  
2Δ𝐼2𝜏

4+(2𝜋𝑓𝜏)2
 

,where Δ𝐼 is the deviation between the two levels in the I-t trace and 𝜏 the mean 

dwell time or lifetime of the fluctuator.[60][137] The Lorentzian profile consists 

of the frequency independent region below 𝜏−1 and a 1/𝑓2 dependence region far 

above 𝜏−1 . If the fluctuations are thermally activated, the process follows the 

Arrhenius law 𝜏−1 = 𝜏0
−1𝑒−𝐸𝑎 𝑘𝐵𝑇⁄ . Reducing the temperature will shift the corner 

frequency 𝜏−1 down[137]. The fact that RTS at 77 K is observed indicates that at 
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this temperature a smaller number of RTSs are sampled.  More features correlated 

to RTNs observed in experiment are shown in Fig. 6.2. 

When comparing the noise power spectral density 𝑆𝐼(𝑓) of the tunnel junction at 

room temperature and 77 K (Fig. 6.1e), it is found that 𝑆𝐼(𝑓) at room temperature 

is well described by 𝐴/𝑓, whereas 𝑆𝐼(𝑓) at 77K shows a Lorentzian-shape noise 

with a distinct corner around 𝑓 = 1 Hz superimposed onto a linear slope 1/𝑓𝑎  

where 1 < 𝑎 < 2 which might originate from the switching of more remote traps 

with larger dwell times. Since the density of thermally activated fluctuators is 

typically not constant in space, their different activation energies can lead to the 

dominance of a single fluctuator within different spectral windows when the 

temperature is reduced.  

 

Fig. 6.2 RTS characteristics with voltage bias and tunnelling current. (a) 

Dependence of mean dwell time 𝝉 on applied voltage. Horizontal line shows 𝝉 = 𝟑. 𝟏 

ms reference level. (b) Dependence of ∆𝑰  amplitude on the measured mean 

tunneling current. 
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The dependence of the amplitude and dwell time of RTS on applied voltage is 

presented in Fig. 6.2. The dwell time distribution shows no meaningful trend 

within the experimental error bars with increasing voltage (Fig. 6.2a). It indicates 

that a smaller number of environmental fluctuators with a narrower dwell time 

window are sampled. On the contrary there is a linear increase of the RTS ∆𝐼 

amplitude with the increase in the mean tunnelling current (Fig. 6.2b). This 

indicates that the observed fluctuations in conductance are not driven by the 

tunnelling current, but they exist regardless of the current. The current is only a 

readout method of the independent fluctuations. This feature is clearly obtained 

in our tight binding simulation when one environmental fluctuator is considered.  

 

Fig. 6.3 1/f noise in GTJs at room temperature (a) Noise spectra for several bias 

values. (b) Distribution of 𝜸 slopes fitted with Gaussian function. (c) Distribution of 

normalized 𝒇𝑺𝑰(𝒇)/𝑰𝟐 noise amplitude for 35 measured GTJs. 
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In terms of 1/f noise, to further characterise the noise amplitude, the normalized 

noise power spectral density 𝑆𝐼(𝑓)/𝐼2 for 35 devices are compared in experiment 

in Fig. 6.3. The noise spectra recorded for several voltage values show that the 1/f 

noise profile is present independent of the applied voltage and increasing voltage 

does not induce RTS at room temperature (Fig. 6.3a). It is found that the exponent 

𝛾 = 1 ± 0.2 (Fig. 6.3b) and its value does not depend on the tunnelling current. 

Deviations from 1/𝑓 are typically attributed to variations in the distribution of the 

RTSs, and the γ values obtained in our graphene tunnel junctions are very similar 

to values obtained for silicon devices[138], tunnel junctions[139], and 

nanopores[140]. More surprising are the values for the normalized noise 

amplitude, or pseudo-Hooge parameter, 𝛼 =  𝑓𝑆𝐼(𝑓)/𝐼
2 , which ranges from 

log 𝛼 = -2 to 0 (Fig. 6.3c). These values are 7 to 9 orders of magnitude larger than 

those reported in micrometre-sized graphene channels[141], and 2 to 3 orders of 

magnitude higher than the normalized noise amplitude measured in graphene 

nanopores of comparable size to our tunnel junctions[142]. We attribute this large 

noise amplitude to the extreme sensitivity of the tunnel current to environmental 

fluctuations.  

Here, I employ a simple one-dimensional tight binding models to gauge the effect 

of two-level fluctuations in the electrostatic environment of the tunnel junction. 

The tunnel barrier is modelled as a scattering region containing 𝑁 sites with onsite 

energies 𝜀𝑖 , located between two semi-infinite leads. We investigate two types of 

models. Model I shows the effect of local environmental fluctuators on the tunnel 

barrier, while Model II represents the collective effect of the remote fluctuators in 

the environment on the tunnel barrier. By comparing our simulated and 
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experimental 𝐼– 𝑡 traces, we conclude that the 77 K data is best described by a 

single fluctuator influencing the transmission through the tunnel barrier for both 

types of models. A 1/𝑓  signal emerges as more fluctuators are added to the 

environment, corresponding to the thermal activation of multiple RTSs at room 

temperature.  

Before starting the simulations, I present some background and simple 

introduction for the tight binding model which consists of three ingredients: 

1. A quantum system comprising a conducting chain of N quantum levels with 

energies 𝜀𝑖 placed between two electrodes. 

2. A classical fluctuating environment represented by one or more 

generalized coordinates 𝑥𝑖 . 

3. The coupling between the classical environment and the quantum levels of 

the conducting chain. 

To introduce this tight binding model (TBM), the simplest case is considered 

which comprises a single energy level (red) and one environment fluctuator (trap 

𝑥 in Fig 6.4). In a more general model, the number of energy levels in the scattering 

region (i.e. the tunnel barrier) can be increased and the number of generalized 

coordinates 𝑥 in the fluctuating environment can also be varied. 
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Fig. 6.4 A single energy level one dimensional tight binding model. 𝜺𝟎 = 𝟎 indicates 

the on-site energies of the left and right electrodes (blue balls). 𝜺 shows the on-site 

energy for the scattering site (red ball). The hopping integrals 𝜸𝟎  in the two 

electrodes are all set to be unity. 𝜶 = 𝜷 = 𝟎. 𝟑𝟓 represents the coupling between 

electrodes and scattering site. 𝒙  is a generalized coordinate describing an 

environmental trap.  

The time dependence of the generalized coordinate 𝑥 is described by the Langevin 

equation (Eq. 6.1), which models an overdamped ‘particle’ whose mass is 

negligible.  In what follows, the potential landscape of this classical coordinate is 

represented in Eq. 6.2, which possesses two minima, as shown Fig. 6.5(a). The two 

minima are located at 𝑥 = ±√𝑐𝑖, and the depth of the wells is 
𝑐𝑖
2

40
 relative to 𝑈 = 0 

in Fig. 6.5(a).  The values of 𝑐𝑖 are specified in each model below. The fluctuating 

environment 𝑥 is subject to Gaussian white noise, as shown in Fig. 6.5(b). As for 

the Gaussian white noise, Eq. 6.3 and Eq. 6.4 show the correlation function and the 

derived variance when the expectation 𝜇 is 0. The damping coefficient 𝜆 is set to 

be 0.0015. Here, 𝑘𝐵 is Boltzmann’s constant and T is temperature. Fig. 6.5 (c) 

shows that the displacement 𝑥(𝑡) is located mainly at -1, 1 and fluctuates between 

when 𝑐𝑖 = 0.4. More examples for c and U are shown in Table 1. 
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𝜆
𝑑𝑥(𝑡)

𝑑𝑡
=
−𝑑𝑈(𝑥)

𝑑𝑥
+ 𝜂(𝑡) 

6.1 

 
𝑈𝑖(𝑥) =

𝑥4

40
− 𝑐𝑖

𝑥2

20
 

6.2 

 < 𝜂(𝑡) 𝜂(𝑡′) >  = 2𝜆𝑘𝐵𝑇𝛿(𝑡 − 𝑡
′) 6.3 

 
< 𝜂2(t) >  =

2𝜆𝑘𝐵𝑇

∆𝑡
= 𝜎2 (𝑤ℎ𝑒𝑛 𝜇 = 0) 

6.4 

 

Fig. 6.5 An environmental ‘charge’ 𝒙 fluctuating between two potential minima. (a) 

The potential landscape introduced in Langevin Equation. (b) Gaussian white noise. 

(c)-(d) Fluctuations versus time and histogram distribution of the fluctuating 

environment 𝒙. 
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Table 1: The potential well depth associated to parameter c and a. At low 

temperature (77K), 𝑘𝐵𝑇 = 6.6𝑚𝑒𝑉  and at room temperature 𝑘𝐵𝑇 = 25𝑚𝑒𝑉 

provided 𝛾0 = 1𝑒𝑉 in my simulation. 

c 0.4 0.6 0.8 1.0 1.8 2.4 3.0 

U=c2/a; a=40; (meV) 4 9 16 25 81 144 255 

 

As for the relationship between the quantum system and the environmental classic 

system, the simplest possible relationship, 𝜀 ∝ 𝑥 is adopted. More specific details 

could be found in the following sections. In what follows, two types of TBMs are 

considered, denoted model I and model II. In each type, two models (a) and (b) are 

displayed, which reproduce the switching behaviour and log-normal distribution 

of measured current. 

Fig. 6.6 shows the models used for low temperatures (77K) and room 

temperature. Variants (a) and (b) of Model I are used to simulate the case where 

the perturbation originates from the local environment. Or we can say, the tunnel 

barrier is driven by the environmental fluctuators differently and locally. The one-

dimensional chains consisting of blue balls represent electrodes. 𝜀𝑖 shows the on-

site energies for the scattering region (the grey and red balls) which forms a tunnel 

barrier. The red sites could be stimulated by the environmental charge 𝑥 while the 

grey sites are static. At 77K, one trap in the substrate is considered while several 

traps are activated by the higher temperature.  
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Fig. 6.6 Tight binding models I for two-level current at 77K and current with 1/f 

noise at room temperature. 𝜺𝒊~𝒙𝒊 (a) One fluctuating level (red) among the five in 

the scattering region due to one environmental trap 𝒙𝟏. The index number of the 

fluctuating level (red) is randomly chosen in different samples which are used for 

ensample average noise power spectral density. (b) All levels fluctuating stimulated 

by more potential wells {𝒙𝟏, 𝒙𝟐, … , 𝒙𝟓} with different well depths. 𝜺𝟎 = 𝟎 indicates 

the on-site energies of the left and right electrodes (the blue balls) in the light green 

shades. 𝜺𝒊 shows the on-site energy for the scattering region (the grey and red balls) 

which forms a tunnel barrier. The red sites could be stimulated by the 

environmental charge 𝒙 while the grey stays static. The hopping integrals 𝜸𝟎, 𝜸 in 

the two electrodes are all set to be unity. 𝜶 = 𝜷 = 𝟎. 𝟑𝟓 represent the coupling 

between electrodes and scattering site. 𝒙 is a generalized coordinate describing an 

environmental trap. 𝜺𝒊 is linear to 𝒙𝒊.  

Here, we define the height of tunnel barrier between the two leads to be the 

difference between the Fermi level and the mean value (the blue dashed baseline 

in Fig. 6.7c) of the lowest eigenvalue of the scattering region. So the deviation 

means the difference between the two mean values (the red dashed baselines in 

Fig. 6.7c) of the two-level eigenvalue trace. The deviations of tunnel barrier height 

depend on the position of the site energy in the scattering region, which is 
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perturbed by the environmental fluctuator. That means the position where 

perturbation is imposed will determine the amplitudes of the fluctuations of the 

quantum system. More details are shown in Fig. 6.7 which corresponds to model I 

(a) in Fig. 6.6.   

 

Fig. 6.7 Fluctuations of eigenvalues depending on the position in the scattering 

region which is influenced by the environmental trap in model I(a) shown in Fig. 

6.6(a). (a, d) Transmission spectra of the two samples. 𝜺𝟓  is influenced by the 

fluctuating environmental charge in sample 1 (the top panel) while 𝜺𝟑 is affected in 

sample 2 (the bottom panel). (b, e) Lowest two eigenvalues which correspond to 

the two transmission peaks in (a, d).   (c-f) The lowest eigen value trace among the 

five eigenvalues. The blue dashed baseline demonstrates the mean tunnel barrier 

height referred to the Fermi level of the whole device 𝑬𝑭 = 𝟎. The two red dashed 

baselines above and below the blue are the mean value for each level.  The difference 

between the two red lines is defined as the deviation of the tunnel barrier. 
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Fig. 6.7 depicts the dependence of the fluctuating amplitude of the eigenvalues on 

the position which is influenced by the environmental charge. This phenomenon 

is explained by the perturbation theory. For a Hamiltonian 𝐻 = 𝐻0 + 𝐻1, where 𝐻0 

is the original Hamiltonian and 𝐻1  is the perturbation, the total energy is 

approximately 𝐸 = 𝐸0 + ⟨𝜓
𝑛|𝐻1| 𝜓

𝑛⟩. For a finite chain consisting of 5 sites, the 

eigenstate is 𝜓𝑗
𝑛 = √

2

𝑁+1
𝑠𝑖𝑛𝑘𝑛𝑗 where 𝑘𝑛 =

𝑛𝜋

6
; 𝑛 = 1, 2, … , 5. So finally, in terms 

of the lowest eigenvalue, the additional energy stemming from eg a perturbation 

H1 = 𝜂𝛿𝑖5 , which acts on site 5 only, is Δ𝐸1 =
2η

𝑁+1
(sin2

𝜋

6
∙ 5) . Similarly a 

perturbation H1 = 𝜂𝛿𝑖5, which acts on site 3 only causes a shift Δ𝐸2 =
2η

𝑁+1
(sin2

𝜋

6
∙

3) . Since Δ𝐸2 > Δ𝐸1, the amplitudes of the lowest eigenvalues in Fig. 6.7(c) is less 

than those in Fig. 6.7(f). The second-lowest eigenvalues in orange in Fig. 6.7(e) 

exhibit a totally a straight line because the site 𝜀3 in the middle of the scattering 

region and Δ𝐸2 =
2η

𝑁+1
(sin2

2𝜋

6
∙ 3)

𝑥

20
= 0. So when the perturbation is imposed on 

the nodes in eigenstate for the chain consisting of odd sites, there can be no 

influence on the backbone for some eigenvalues. A more pronounced effect is 

observed for other eigenvalues. All these features are determined by the position 

at which the perturbation is imposed. 
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Fig. 6.8 Characteristics of currents and noise power spectral density (PSD) 

corresponding to Model I in Fig. 4. (a)-(b) Switching behavior corresponding to 

Model I (a) where the potential parameter c=0.4. Therefore, the ratio of potential 

well and thermal energy at 77K is  
𝑼

𝒌𝑩𝑻
=

𝟒

𝟔.𝟔
  which means this environmental 

fluctuator could be activated easily. (c)-(d) Log-normal current distribution with 

flicker noise 𝟏/𝒇𝒂 corresponding to Model I (b) where 𝒂 is equal to 1.2. 𝜺𝒊 is linear 

to 𝒙𝒊, i.e. 𝜺𝒊 =
𝒙𝒊

𝟐𝟎
+ 𝟏. 𝟗𝟕𝟓. {𝒄𝒊}=0.4, 1.0, 1.7, 2.4, 2.9 where the potential of 𝒄 = 𝟏. 𝟎 

corresponds to the 𝒌𝑩𝑻 at room temperature in terms of energy.  

Fig. 6.8 shows the current traces, current histograms, noise power spectral density 

for the tight binding model I (a), (b) in Fig. 6.6. Fig. 6.8(a) shows that the current-

time trace has a switching behaviour with two main steps which originates from 

the tunnel barrier in the scattering region subject to a single potential well with 

two minima. Fig. 6.8 (b) is the corresponding current histogram with two Gaussian 

peaks. Then in terms of the features in the experiment at room temperature, more 

potential wells in the environment are activated, so in the simulation, we consider 

the effect of 5 potential wells with different well depths. These 5 potential wells 

drive the energy levels differently to simulate traps close to the tunnel barrier, 

which leads to the log-normal current histogram distribution shown in Fig. 6.8(c), 
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(d) where potential-well parameters are {𝑐𝑖 } = {0.4, 1.0, 1.7, 2.4, 2.9}. These five 

potential wells have depth 
𝑈

𝑘𝐵𝑇
= 4/25, 25/25, 72/25, 144/25, 210/25 compared 

to 𝑘𝐵𝑇 at room temperature. In addition, the magnitude 𝑎  is also associated with 

other factors (i.e. the fluctuations of the barrier height) shown in Fig. 6.10. Fig. 

6.8(e) is the PSD spectra for the two-level current and the current with a log-

normal distribution. It should be noted that the PSD denoted by green dots (with 

a magenta fitting curve) has a good Lorentzian profile, while the one denoted by 

blue dots (with a red fitting curve) has flicker noise characteristic 𝑆𝐼(𝑓) = 𝐴/𝑓𝑎 

where a is equal to 1.2 which is in an acceptable region[137].  

 

Fig. 6.9 Features of current and noise power spectral density (PSD) corresponding 

to Model I (a). 𝜺𝒊  is linear to 𝒙𝒊 , i.e. 𝜺𝒊 =
𝒙𝒊

𝟐𝟎
+ 𝟏. 𝟗𝟕𝟓 . (a) Exponential increase 

between current deviations 𝚫𝑰  and source-drain bias voltages applied. (b) The 

linear relationship between current deviations 𝚫𝑰 and mean currents of the two-

level current system. Current deviation 𝚫𝑰 means the difference between the mean 

values of the two levels. The mean currents in (b) are the mean values for the whole 

two-level currents. 
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Fig. 6.9(a) presents the exponentially increasing tunneling current feature against 

bias. Δ𝐼 is the difference of the two mean values of the two steps Δ𝐼 = 𝐼𝑢𝑝 − 𝐼𝑑𝑜𝑤𝑛. 

Here, the transmission has the form of 𝑇(𝐸) = 𝑇0𝑒
−𝛽(𝐸𝐹)𝐿 due to the Fermi level 

located in the tail of the transmission peak dominated by the lowest eigenvalue. 

This exponential term in transmission is the origin of the exponential current 

feature. In the other hand, this deviation of current Δ𝐼 increases linearly with the 

mean current of the whole current trace with time. It is noted that the slope of 

fitting curves consist is 0.1, which is in qualitative agreement with the 

experimental results. In my simulation, the fluctuators in the environment are not 

affected by the bias voltage applied on the quantum system. The obtained 

qualitative agreement with experiment support the conclusion that the noise is not 

driven by the tunneling current in graphene nanogaps. In the basis of these 

qualitative agreements, it is estimated that the ratio between the tunnel barrier 𝑢 

and the deviation of the tunnel barriers between the two-level steps Δ𝑢  is 

approximately 0.035 (Δ𝑢/𝑢 = 0.035). All the features depicted in Fig. 6.12  are in 

qualitative agreement with the experimental results. 

Put in another way, if the Fermi level is fixed, variations of the tunnel barrier height 

among the samples could exist and can lead to the transmission variations. 

Consequently, the current would vary and the slope magnitude 𝑎  of the flicker 

noise 1/𝑓𝑎  would have fluctuations. For the choice of εi =
xi

4
+ 2.35 , the 

corresponding plots are shown in Fig. 6.10. The two-level current, the Lorentzian 

noise, exponential and linear increasing current features, the log-normal 

distribution currents, the 1/f noise power spectral density are all shown in Fig. 

6.10, which are in good agreement with the previous simulation. Finally, we find 
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that the slope 𝑎  of flicker noise 1/𝑓𝑎  varies in the range of 1.0~1.2  in the 

simulations, which agrees very well with the experimental results shown in Fig. 

6.3. The inset in Fig. 6.10(e) shows the linear relationship between current 

deviation and mean current. 

 

 

Fig. 6.10 Features of current and noise power spectral density (PSD) corresponding 

to Model I a, b. (a), (b) Current for Model I (a). (c), (d) Current for Model I (b). (e) 

PSD spectra for the two current traces. The magnitude of the flicker noise slope 𝒂 is 

1. 𝜺𝒊 is linear to 𝒙𝒊, i.e. 𝜺𝒊 =
𝒙𝒊

𝟒
+ 𝟐. 𝟑𝟓. {𝒄𝒊}=0.4, 1.0, 1.7, 2.4, 2.9. 



Chapter 6: Low frequency noise in graphene tunnel junctions 

   131 

 

Fig. 6.11 Tight binding models II for switching behaviour at 77K and 1/f noise at 

room temperature. 𝜺~∑ 𝒙𝒊
𝟓
𝒏=𝟏  The scattering region (tunnel barrier) driven by one 

environmental trap 𝒙𝟏 at 77K (a) and by the sum of several traps {𝒙𝟏, 𝒙𝟐, … , 𝒙𝟓} in 

different potential well depths at room temperature (b).  𝜺𝟎 = 𝟎 indicates the on-

site energies of the left and right electrodes (the blue balls) in the light green shades. 

𝜺 shows the on-site energy for the scattering region (the red balls) which forms a 

tunnel barrier. The hopping integrals 𝜸𝟎, 𝜸 in the two electrodes are all set to be 

unity. 𝜶 = 𝜷 = 𝟎. 𝟑𝟓 represent the coupling between electrodes and scattering site. 

𝒙 is a generalized coordinate describing an environmental trap. The tunnel barrier 

could be tuned by the environmental traps synchronously. 

Fig. 6.11 presents the models for low temperature (77K) and room temperature. 

(a) and (b) of Model II are used to simulate the case where the traps are buried 

deeper in the substrate. The semi-infinite chains consisting of blue balls represent 

electrodes. The scattering region (red balls) forms a tunnel barrier with the same 

on-site energy 𝜀 for both models (a) and (b).  In other words, the tunnel barrier is 

driven by the superposition of all the potential wells. At 77K, one trap in the 

substrate is considered, while several traps are activated at higher temperatures. 

The simulation results are shown in the following.Fig. 6.12 shows the current 
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traces, current histograms, noise power spectral density for the tight binding 

models (a), (b) shown in Fig. 6.11.  Fig. 6.12(a) depicts the current trace has 

switching behaviour with two main levels which originates from the tunnel barrier 

in the scattering region subject to one two-well potential. Fig. 6.12 (b) is the 

corresponding current histogram with two Gaussian peaks. To model the 

experiments at room temperature, more fluctuators in the environment are 

activated, where, for example, 5 potential wells with different well depth are 

considered in the simulation. These 5 fluctuators drive the energy levels in the 

scattering region equally to simulate the traps buried deeply in the substrate, 

which leads to the log-normal current histogram distribution shown in Fig. 6.12 

(c), (d). Fig. 6.12(e) presents PSD spectra with the potential wells {𝒄𝒊} =0.4, 0.8, 

1.2, 1.8, 2.5 for the 𝐴/𝑓𝑎  noise, where 𝑎=1.3 in this calculation and c=0.4 for the 

Lorentzian-shape noise. {𝑐𝑖}=0.4, 1.2, 1.9, 2.5, 3.2 was also tried and the magnitude 

of the slope was found to decrease further to 1.2. In addition, the magnitude 𝑎  is 

associated with other factors (i.e. the fluctuations of the tunnel barrier height) 

shown in Fig. 6.14. All the features depicted in Fig. 6.12 are in qualitative 

agreement with the experimental results. 
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Fig. 6.12 Features of current and noise power spectral density (PSD) corresponding 

to Model II a, b. (a), (b) Current for Model II (a). (c), (d) Current for Model II (b). (e) 

PSD spectra for the two current traces. The magnitude of the flicker noise slope is 

1.3. 𝜺 is linear to the sum of 𝒙𝒊, i.e. 𝜺 = 𝟏. 𝟗𝟕𝟓 + ∑
𝒙𝒊

𝟏𝟓𝟎

𝟓
𝒏=𝟏 . C=0.4, 0.8, 1.2, 1.8, 2.5 (If 

𝒄𝒊=0.4, 1.2, 1.9, 2.5, 3.2 are chosen, the magnitude of the slope could decrease to 

1.2.).  

As for the two-level system, current deviations for the graphene nanogaps (1~2 

nm) increase exponentially in experiment. In our model, this feature is clearly 

shown in Fig. 6.13(a). Δ𝐼 is the difference of the two mean values of the two steps 

Δ𝐼 = 𝐼𝑢𝑝 − 𝐼𝑑𝑜𝑤𝑛. Here, the transmission has the form of 𝑇(𝐸) = 𝑇0𝑒
−𝛽(𝐸𝐹)𝐿 due to 

the Fermi level located in the tail of the transmission peak dominated by the lowest 

eigenvalue. This exponent term in transmission is the origin of the exponential 

current feature. In addition, this deviation of current Δ𝐼 increases linearly against 

the mean current of the whole current trace with time. It is noticed that the slope 

of the fitting curve is around 0.1, which is in qualitative agreement with the 

experimental results. Again, in this simulation, the environmental fluctuators are 

related to the bias or tunnelling current in graphene nanogaps. Consequently, this 
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model can also support the conclusion that the noise in graphene nanogaps are not 

driven by the tunnelling current. In the basis of these qualitative agreements, it is 

concluded that the ratio between the tunnel barrier 𝑢  and the deviation of the 

tunnel barriers between the two-level steps Δ𝑢 is approximately 0.028 (Δ𝑢/𝑢 =

0.028). 

 

Fig. 6.13 Features of current and noise power spectral density (PSD) corresponding 

to Model II(a). (a) Exponential increase between the square of current deviations 

and source-drain bias voltages applied. (b) The linear relationship between current 

deviations 𝚫𝑰 and mean currents of the two-level current system. Current deviation 

𝚫𝑰  means the difference between the mean values of the two levels. The mean 

currents in (b) mean the mean value for the whole two-level currents. 𝜺 is linear to 

the sum of 𝒙𝒊, i.e. 𝜺 = 𝟏. 𝟗𝟕𝟓 + ∑
𝒙𝒊

𝟏𝟓𝟎

𝟓
𝒏=𝟏 .  

If the Fermi level is fixed, the oscillations of the tunnel barrier height due to 

different widths of the graphene nanogap among the samples could happen and 

this can lead to the transmission variations. Consequently, the current would vary 

and the slope magnitude 𝑎 of the flicker noise𝐴/𝑓𝑎  would have fluctuations. The 

relationship of εi =
xi

15
+ 2.35 is chosen and the corresponding plots are shown in 

Fig. 6.14. The two-level current, the Lorentzian noise, exponential and linear 
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increasing current features, the log-normal distribution currents, the flicker noise 

power spectral density 𝐴/𝑓𝑎  with 𝑎 = 1 are all shown in Fig. 6.14, which are in 

good agreement with the previous simulation. Finally, we would say the slope 𝑎 of 

flicker noise 𝐴/𝑓𝑎 varies in the range of 1~1.3 in the simulations, which is also in 

agreement with the experimental results shown in Fig. 6.3. 

 

Fig. 6.14 Features of current and noise power spectral density (PSD) corresponding 

to Model II a, b. (a), (b) Current for Model II (a). (c), (d) Current for Model II (b). (e) 

PSD spectra for the two current traces. The magnitude of the flicker noise slope 𝒂 is 

1.  𝜺 is linear to the sum of 𝒙𝒊, i.e. 𝜺 = 𝟐. 𝟑𝟓 + ∑
𝒙𝒊

𝟏𝟓

𝟓
𝒏=𝟏 . c=0.4, 0.8, 1.2, 1.8, 2.5. The 

inset shows the linear relationship between deviations of the two-level current and 

the mean currents of the whole I-t trace under different biases. 

6.3 Conclusions  

In electroburnt graphene nanogaps, 1/f noise and random telegraph noise are 

observed at room temperature and 77K respectively. The RTN is the first time 
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observed in graphene nanogaps due to the small exposure surface compared to 

submicron devices. Larger noise amplitude in graphene nanogaps is attributed to 

the extreme sensitivity of the tunnel current to environmental fluctuations. In 

addition, the noise in graphene nanogaps is not driven by the tunnelling current, 

which is indicated by the linear increasing relationship between current deviation 

Δ𝐼 and mean tunnel current.  This feature of the linear Δ𝐼~𝐼 is confirmed by our 

tight binding models, where environmental fluctuators are not affected by the 

source-drain bias. 

 I employed simple one-dimensional tight binding models to gauge the effect of 

two-level fluctuations in the electrostatic environment of the tunnel junction. The 

tunnel barrier is modelled as a scattering region containing 𝑁  sites with onsite 

energy 𝜀𝑖  between two semi-infinite leads. I investigate 4 limiting cases, where: 

I(a) there is only a single environmental fluctuator coupled to a single level in the 

tunnel barrier; I(b) there are multiple fluctuators that independently couple to 

each individual site; II(a) there is only a single fluctuator coupled to all energy 

levels in the barrier; II(b) there are multiple fluctuators that couple collectively to 

all energy levels.  

The calculated I–t traces for cases I(a) and II(a) show a distinct RTS, in contrast to 

the I–t traces for case I(b) and II(b), which have the characteristic wandering 

baseline associated with flicker noise. Moreover, the current histograms for I(b) 

and II(b) have the same log-normal distribution that was observed in the room 

temperature experiments. By comparing our simulated and experimental I–t 

traces, we conclude that our 77 K data is best described by a single fluctuator 
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influencing the transmission through the tunnel barrier. This may either occur via 

a local perturbation of the barrier potential, or via an overall modulation of the 

barrier height. A 1/𝑓  signal emerges as more fluctuators with the dwell time 

sampled in a large range are added to the environment, corresponding to the 

thermal activation of multiple RTSs at room temperature.  

Model I and II both work very well compared with the experimental data. Our 

models can be extended to simulate all the tunnel junction with a molecule 

bridging the two electrodes or without. It combines the classic environment and 

the quantum system by the coupling term which could be tuned according to the 

experimental system of interest.  
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7 Conclusions  

Using DFT and Green’s function methods as well as a simple tight binding method 

(TBM), we can theoretically investigate transport properties of molecular scale 

junctions and achieve qualitative agreement with experimental data. 

Consequently, theory and experiment could effectively communicate and help 

each other to finally explain physics phenomena at the molecular scale.  

 In Chapter 3, I presented the thermoelectric properties of vertical 

graphene/C60/graphene architectures. It is found that quantum interference 

between two C60 placed in parallel enhances the conductance by more than two 

times in comparison with the monomer C60. Importantly, the Seebeck coefficient 

also increases which is not expected classically. These results are considered as 

the starting point to understand the properties of SAMs, when they are 

sandwiched between two electrodes.  

In chapter 4, I showed a new design for single-molecule porphyrin-based switch 

for graphene nanogaps. Based on the development of feedback controlled 

electroburning, graphene nanogaps are utilised to propose a conjugation-

dependent switch. It is found that the system has an on-off ratio from 100 to 200 

when the number of triple-bond spacers between the porphyrin and graphene is 

increased. Also the switching ratio is further enhanced by decreasing the 

temperature, reaching approximate 2200 at 100K.  
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Chapter 5 describes a joint work with experimental collaborators. I proposed a 

model to understand experimentally observed conductance fluctuations in 

electro-burnt graphene nanogaps. In the simulation, a simple tight binding model 

is introduced to prove that the fluctuations are due to the lead states and are not 

an intrinsic feature of the molecule. The stripes in stability diagrams happen when 

the molecular level matches with a density of states feature in the leads and the 

slope could be tuned by the coupling between the lead and a backgate. Next a 

magnetic field is introduced to distinguish the two kinds of states through 

ensample averaging. When a ring is introduced to the tight binding model, the 

same features are obtained to further confirm the results in experiment. This work 

showed that the local density of states in graphene is easier to observe, because 

there are few open channels around Dirac point and the screening effect in 

graphene is weaker compared to metal electrodes.  

Chapter 6 is also a collaborating work with experimental colleagues. In 

electroburnt graphene nanogaps, 1/f noise and random telegraph noise are 

observed at room temperature and 77K respectively. The RTN is the first time 

observed in graphene nanogaps due to the small exposure surface compared to 

submicron devices. Here, I employ a simple one-dimensional tight binding model 

to gauge the effect of two-level fluctuations in the electrostatic environment in the 

tunnel junctions. The tunnel barrier is modelled as a scattering region containing 

𝑁  sites with onsite energy 𝜀𝑖  between two semi-infinite leads. We investigate 4 

limiting cases, where: I(a) there is only a single environmental fluctuator coupled 

to a single level in the tunnel barrier; I(b) there are multiple fluctuators that 

independently couple to each individual site; II(a) there is only a single fluctuator 
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coupled to all energy levels in the barrier; II(b) there are multiple fluctuators that 

couple collectively to all energy levels. The calculated I–t traces for cases I(a) and 

II(a) show a distinct RTS, in contrast to the I–t traces for case I(b) and II(b), which 

have the characteristic wandering baseline associated with flicker noise. By 

comparing our simulated and experimental I–t traces, I conclude that our 77 K data 

is best described by a single dominating fluctuator influencing the transmission 

through the tunnel barrier. This may either occur via a local perturbation of the 

barrier potential, or via an overall modulation of the barrier height. A 1/𝑓 signal 

emerges as more fluctuators are added to the environment, corresponding to the 

thermal activation of multiple RTNs at room temperature.  

For the future, apart from the investigation of whole thesis, many other aspects in 

this field deserve further attention, including electron-phonon coupling, spin 

transport in the presence of ferromagnetic electrodes[143] , phonon transport 

through parallel arrays of molecules in SAMs, the effect of solvent, robustness of 

the contact. Furthermore, when thermoelectricity is considered, new strategies 

are needed to suppress phonon transport, including designs for new combinations 

of electrodes, molecules and interfaces to improve the figure of merit. At low 

temperatures, it may also be of interest utilise superconducting electrodes, where 

Andreev scattering[144] can be utilised to reduce the thermal conductance due to 

electrons, without reducing the electrical conductance. 
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8 Appendices 



Chapter 8: Appendices 

   142 

Appendix 1: Dyson equation 

When we want to deal with an open and non-periodic system, solving the infinite 

Schrödinger equation directly is impossible. In order to address this issue, Dyson 

equation method is introduced. The following is an example to clarify this point. 

 

Fig. 8.1 Tight binding model of an open system with a scattering region (the light 

green shades). 

 

 

𝐻 =

(

 
 

⋱ ⋱ 0 0 0
⋱ 𝜀0 −𝛾 0 0
0 −𝛾 𝜀0 −𝛾 0
0 0 −𝛾 𝜀0 ⋱
0 0 0 ⋱ ⋱)

 
 
+ 

(

 
 

0 0 0 0 0
0 𝜀 0 0 0
0 0 𝜀 0 0
0 0 0 𝜀 0
0 0 0 0 0)

 
 
   

8.1 

Or  

 𝐻 = 𝐻0 + 𝐻1 8.2 
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Where 𝐻0 is Hamiltonian which is an infinite tridiagonal matrix and 𝐻1 is infinite 

diagonal matrix in which the corresponding on-site energy is 𝜀 from 0 to N+1 

rows. Put in another way, 𝐻1 is the difference between 𝐻 and 𝐻0 . G is the Green’s 

function of model (a) shown in Fig. 8.1. 𝑔 is the Green’s function of model (b) in 

Fig. 8.1. Then we have 

 (𝐸 − 𝐻)𝐺 = 1 ⟹ (𝐸 − 𝐻0)𝐺 − 𝐻1𝐺 = 1 ⟹ 𝑔−1𝐺 = 1 +

𝐻1𝐺 ⟹ 𝐺 = 𝑔 + 𝑔𝐻1𝐺  

8.3 

Or we can expand it as follows 

 
𝐺𝑖𝑗 = 𝑔𝑖𝑗 + ∑ ∑ 𝑔𝑖𝑙(𝐻1)𝑙𝑘𝐺𝑘𝑗

+∞

𝑙=−∞

 

+∞

𝑘=−∞

 
8.4 

It is known that (𝐻1)𝑙𝑘 = {
𝜀 0 ≤ 𝑙 = 𝑘 ≤ 𝑁 + 1

0 𝑙 ≠ 𝑘
  , and so we have 

 𝐺 = 𝑔 + 𝑔 𝐻1 𝐺 ⟹ 𝐺 = (𝑔
−1
− 𝐻1)

−1
 8.5 

Here the labels with hat mean the corresponding elements in the range 0 ≤ 𝑙, 𝑘 ≤

𝑁 + 1where the connections or disturbances exist. 
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Appendix 2: Thermoelectric efficiency 

The derivation for maximum thermoelectric efficiency. 

 
𝜂 =

−𝐼𝛥𝑉

𝑆𝑇𝐼 + 𝜅𝛥𝑇
 

8.6 

We have I = GΔV + GSΔT, and substitute I in the expression of η. In order to obtain 

the maximum of η, we should set 
dη

dΔV
= 0. Then there is equation as follows, 

 𝐺𝑆𝑇(𝛥𝑉)2 + 2𝐺𝑆2𝑇𝛥𝑉𝛥𝑇 + 2𝜅𝛥𝑉𝛥𝑇 + 𝐺𝑆3𝑇(𝛥𝑇)2

+ 𝑆𝜅(𝛥𝑇)2 = 0 

8.7 

Using Z to replace ZT in the following derivations, then we obtain  

 
𝛥𝑉 =

𝑆𝛥𝑇

𝑍
(√1 + 𝑍 − (1 + 𝑍)) = 𝑆𝛥𝑇𝑎 

8.8 

Where a =
1

Z
(√1 + 𝑍 − (1 + Z)). Now substitute equation 8.8 to 8.6,  

 
𝜂 =

−𝐺(𝛥𝑉)2 − 𝐺𝑆𝛥𝑇𝛥𝑉

𝑆𝑇𝐺𝛥𝑉 + 𝐺𝑆2𝑇𝛥𝑇 + 𝜅𝛥𝑇
= −

𝛥𝑇

𝑇
𝑎

𝑍𝑎 + 𝑍

𝑍𝑎 + 𝑍 + 1

=
𝛥𝑇

𝑇
∙
√1 + 𝑍𝑇 − 1

√1 + 𝑍𝑇 + 1
 

8.9 
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Where 𝑇 is the reference temperature, and here 𝑇 is equal to the average of the 

high and low temperature which is consistent with the value in the derivation part 

(Thermoelectrical expression2.3.1.2). 
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Appendix 3: Green’s function of a ring 

The derivation for the Green’s function of a ring is as follows, 

The Green’s function of a doubly-infinite chain is  

 
𝑔𝑗𝑙 =

𝑒𝑖(𝜃+𝜂)(𝑗−𝑙)

2𝑖𝛾 𝑠𝑖𝑛 𝜂
      (𝑗 − 𝑙) ≥ 0 

8.10 

 
𝑔𝑗𝑙 =

𝑒𝑖(𝜃−𝜂)(𝑗−𝑙)

2𝑖𝛾 𝑠𝑖𝑛 𝜂
         (𝑗 − 𝑙) ≤ 0 

8.11 

Hence for a ring, we try 

 
𝑔𝑗𝑙 =

𝑒𝑖(𝜃+𝜂)(𝑗−𝑙) + 𝑎𝑗𝑙

2𝑖𝛾 𝑠𝑖𝑛 𝜂
      (𝑗 − 𝑙) ≥ 0 

8.12 

 
𝑔𝑗𝑙 =

𝑒𝑖(𝜃−𝜂)(𝑗−𝑙) + 𝑎𝑗𝑙

2𝑖𝛾 𝑠𝑖𝑛 𝜂
        (𝑗 − 𝑙) ≤ 0 

8.13 

Where  𝑎𝑗𝑙 is a wave function given by  𝑎𝑗𝑙 = 𝑏𝑒𝑖(𝜃+𝜂)(𝑗−𝑙) +  c𝑒𝑖(𝜃−𝜂)(𝑗−𝑙) . 

Choosing 𝑏 and c such that 𝑔1𝑙 = 𝑔𝑁+1,𝑙 yields the desired result. 
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