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Design and estimation in clinical trials with
subpopulation selection

Yi-Da Chiu?, Franz Koenig®, Martin Posch® and Thomas Jaki?*

Population heterogeneity is frequently observed among patients’ treatment responses in clinical trials because of
various factors such as clinical background, environmental and genetic factors. Different subpopulations defined
by those baseline factors can lead to differences in the benefit or safety profile of a therapeutic intervention.
Ignoring heterogeneity between subpopulations can substantially impact on medical practice. One approach to
address heterogeneity necessitates designs and analysis of clinical trials with subpopulation selection. Several types
of designs have been proposed for different circumstances. In this work we discuss a class of designs that allow
selection of a predefined sub-group. Using selection based on the maximum test statistics as the worst case scenario,
we then investigate the precision and accuracy of the maximum likelihood estimator (MLE) at the end of the study
via simulations. We find that the required sample size is chiefly determined by the subgroup prevalence and show
in simulations that the MLE for these designs can be substantially biased. Copyright (©) 2017 John Wiley & Sons,
Ltd.
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1. Introduction

Heterogeneity is frequently observed among patients’ treatment response in clinical trials. This is due to various factors
such as age, race, disease severity or genetic differences. The topic of heterogeneity in treatment effects has received
some attention in the literature (e.g. [1, 2, 3]) and graphical methods such as forest plots are routinely use for the purpose
of examining heterogeneity in effects (e.g. [4]). Ignoring heterogeneity can substantially impact on medical practice. For
example, a treatment might work well in some patients but not in others. Naively estimating the treatment effect across all

patients will result in a diluted effect for the group that truly benefits from the treatment. At the same time an ethical issue
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arises due to delivering a treatment to all patients while some might not expect an effect and will potentially be exposed to
harmful side-effects. To address these issues, trials that consider (potential) subgroups defined by one or more biomarkers
are becoming more popular. In general, a biomarker is some measurable variable that might help to identify distinct
groups of patients and some examples include cholesterol levels, genetic variations or age. A biomarker is considered
prognostic if it provides information about the value of some other variable of interest (e.g. the primary endpoint of a
study) while it is called predictive if it’s value yields information about the treatment effect. In this paper we will only

consider the latter type of biomarkers.

A number of different designs concerning treatment selection and subgroups within the study populations have
been proposed. These designs can be categorized by factors such as design setting (confirmatory or exploratory) or
methodology (frequestist, Bayesian or utility/decision function) - see [5, 6, 7]. Additionally, the designs can be categorized
into single-stage (fixed sample) designs and multi-stage (adaptive) designs. Both conventionally utilize multiple testing
procedures to test for effects in each of the populations of interest. An overview of different multiple testing approaches
for this purpose is given in [6] and the references therein. A single-stage design with one biomarker tests, for example,
the null hypotheses: the treatment effect of the full population is zero, Hyr; and the treatment effect in the subgroup
of interest is zero, Hygs [5, 8, 9, 10, 11, 12]. These designs are usually employed for exploratory subgroup analysis in
phase II (i.e. to identify an interesting subgroup), or for confirmatory subgroup analysis in phase III, examining the
treatment benefit of pre-specified subgroups. Corresponding multi-stage designs are constructed either as extensions of
group sequential approaches [13] or using combination tests [14]. They can refine the population to either the whole or
one or more subgroups at the interim analysis and can allow for early stopping for benefit and lack of benefit (see e.g.
[5, 15,16, 17, 18]).

The accuracy and precision of the treatment effect estimators in subgroup analysis is also crucial to the development
of novel treatments and decisions about treatment implementation. Especially, bias is ubiquitous in designs that select
(see [19]) and in the designs considered here the bias can come from selecting which (sub)population should be studied
further or from selective reporting promising results even in a simple fixed sample design. A variety of papers on
treatment effect estimation in the related problem of trials with treatment selection have been published. Approximate
bias-correction estimators for single stage designs for normal endpoints are discussed in [20, 21], uniformly minimum
variance conditional unbiased estimators (UMVCUE) for two stage designs have been proposed by Cohen and Sackrowitz
[22] and further extensions published in [23, 24]. Shrinkage estimators have been discussed in [25] while approaches to
construct confidence intervals are described in [26, 27, 28]. Time-to-event endpoints are considered in Briickner et al [29].

In contrast, rather limited literature addresses estimation issues in clinical trials with subpopulation selection. For
single-stage designs, Rosenkranz [30] proposed a bias-adjustment method employing bootstrap techniques to calibrate
the estimates upon general distributional assumption on outcomes. For multi-stage designs, Kimani et al. [31] proposed
two estimators: one is a naive estimator using a weighted average of per-stage means and prevalences for each subgroup;
the other is a uniformly minimum variance conditional unbiased estimator (UMVCUE) derived by the Rao-Blackwell
theorem. They assessed the performance under several situations, such as different values of prevalence and treatment
effect of one subpopulation, and also suggested which estimator should be used according to what population is selected
at stage 1. In addition, Magnusson and Turnbull [16] focused on the designs rather than estimation though, they outlined
an extended bias-reduction algorithm proposed by Wang and Leung [32] in which uses double bootstrap methods [33] to
adjust ML-estimates and build bootstrap confidence interval.

Despite some contributions on estimation, the aforementioned papers do not provide a complete overview of the

maximum likelihood estimator (MLE) under various designs and lack exploring the estimator performance in further
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conditions. Rosenkranz’s [30] simulation work on single-stage designs implicitly regarded the MLE only in circumstances
with few different treatment effects for subgroups and thresholds used in the selection rule. Kimani et al. [31] considered
two-stage adaptive seamless designs selecting subpopulation based on the stage 1 data but not allowing early stopping,
and they only assessed estimators with selection but without reporting promising results. The multi-stage designs of
Magusson and Turnbull allow to select multiple subpopulations if the estimates of treatment effects are above certain
thresholds at stage 1.

In this paper we discuss a framework to design single and multi-stage design which select subgroups. We illustrate the
design properties when selection is based on the maximum statistic and comprehensively evaluate the properties of the
MLE for these designs. Note that selecting on the basis of the maximum statistic is the worst case for both type I error
(provided that the number of hypothesis remains the same) and bias and hence of particular interest. In Section 2 we derive
a subgroup selection design that selects groups based on the maximum test statistic. Section 3 describes a simulation study
in which different general design scenarios are evaluated and the bias and MSE of the corresponding maximum likelihood
estimators is derived. In Section 4 we remark on the designs with different selection rules, then summarise the results of

the simulation study and discuss its implications for future work.

2. Designs

In this section, we first define the basic setting and notation and then provide general ideas for designs with subpopulation
selection based on the maximum test statistic.

2.1. Basic Setting and Notation

Assume J mutually disjoint subpopulations are in the full study population (F') and denote the prevalence of the j-th
subpopulation (S;) by A; , where j = 1,...,J and ) \; = 1. The sample size of each subgroup is fixed as a proportion
of the total sample size depending on the respective prevalence. We use n; to denote the sample size in subgroup S
and more generally use subscripts to denote groups and treatments and superscripts for stages. We consider a normally
distributed endpoint with mean f1;; with j = 1,...J and [ = T, C' where subscript T corresponds to the treatment group

and C to the control group. Additionally we assume a common variance, o2, across subpopulations.

2.1.1. Single stage design For a single-stage design, the test statistics used for selection and decision are distributed as
O _ W@ 1) 1
Z;' =1 (YJT _Yj,C> NN(Ij 0;.1).

Note that we use the (unnecessary) superscript (1) for consistency with the multi-stage notation used later. )7]<1T) and
YJ(Q are the sample means of the treatment group and of the control group within S}, respectively. The true treatment
difference in S; is denoted 0; = ;7 — p;,c and I;l) =1/(0/ 1/n§1% + l/ng%) is the information level for S;. This
further simplifies to 1/ (20\ /1/ nél)) when the assumed treatment allocation ratio is 1:1, where nél) is the total sample
size of S; until the end of stage 1.
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Considering a composite population ., ,, combining two subpopulations .5, and S, (where U,V C {1,2,...,J},
UNY = @), the test statistics are distributed as

(1) n‘Sl) (1) n‘gl) (1) 1 (v v (1) (1)
Zu+v = (1) Z“ t (1) Zv = Iu+v (Yl;+v~,T - Yz;+v7C) ~ N(Iwrv ('ulHV’T - llquv,C)a 1)’
Ny vy Ny 4y

where ¥V o+ and v ¢ are defined as before but the observations are from the combined treatment group and the
Uu+v, u+v,

combined control group of the united subpopulation S, ,,. The true treatment effect size and the information level

of §,,, are 6, =, 17— 0 and IV = 1/(0\/1/%({13\}? +1/ntM ). respectively. I{!) s also equal to

u+v,C

1/(204/ 1/(nd) + n\gl))) for equal allocation. Additionally, §,,, = (},6, + A\,6,)/(A, + A,). Note that if ¢/ and V are

complementary, their composite population S, . ,, is the full population F' and then the subscript of the above notations are

replaced with f. If & and V have an individual element for each, such as {1} and {2}, we simplify the notation of I/ + V

as 1 4 2. This notation simply denotes the union of §, and S, and it does not necessarily imply one is nested in the other.

2.1.2. Multi-stage design For multi-stage designs, the test statistic based on the accumulated data at the end of stage k
(k < K, the total stage number) for S, is denoted by

@ o _ .
ik _ Z %ZLEZ) _ Iulk (};17713 _ Y;nck) ~ N(Iul'keu’ 1),

where the superscript 1:k refers to a quantity calculated based on the accumulated data at the end of stage k; therefore,

I} is the accumulated information level defined accordingly as 1/(o/1/n!% +1/nl%,).

2.2. Designs considered

We consider designs that control the family-wise error rate (FWER) at level « in the strong sense [34] and the set of
hypotheses to be tested
Hys: 0, <0versus Hys: 0, >0, seS,

where S is the index set corresponding to the subpopulations considered and can index nested groups. For instance if we
consider subgroup 1, subgroup 1 and 2 or the full population being of interest, S = {1,1+ 2, f}.

2.2.1. Single-Stage Designs To select, we use the maximum of the test statistics among Zs(l), s € § for population
selection. Its implication and other selection rules will be discussed later. In the evaluation of the operating characteristics
we consider the case where population selection is undertaken first and only subsequently the corresponding hypothesis

being tested. The testing procedure is making a decision about rejecting Hy,, if Z,(Ul) > Cy, where w is a realized value of

)

the random variable W and refers to the event that subpopulation S,, is chosen. Z,S,l is the selected test statistic for .Sy,

and C|, is the corresponding critical value found to ensure the FWER in the strong sense.

The crucial element to finding the appropriate critical value and sample size is the density of the joint distribution
of the selected test statistic Z‘(,[l,) and the selected population index W. While the subsequent results are derived on the
basis of selecting based on the maximum statistic, other selection rules can equally be implemented. Using a different
rule results in a different density and for illustration purposes we also provide the resulting distribution for selecting
any populations whose estimated effect exceeds a pre-specified value, J, in the Supplementary Materials S.6. The joint
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W(zfu1 ), w; ®), w € § govern the probability whether to select S,, and to reject the null hypothesis Hy,,

(where O is a configuration of all mutually disjoint subgroup treatment effects 61, 6, . . . , 8 ;). It can further be decomposed

densities p ()
w

as p,m (zq(ul); @) Pr(W = w|Z1(Ul) =, ©®). Consequently, the joint densities of Z‘(,[l,) and W can be represented as

Py (o0 0:0) = 6= — 0, I s, (0, ., 2050, (1)
where ¢ denotes the standard normal density; Ws\,(:,...,;®) is the cumulative distribution function (CDF) of the

|S| — 1-dimensional normal distribution conditional on 7 undera specified configuration of treatment effects ®, where

|S| is the cardinality of S. The covariance matrix depends on whether subgroups are nested or not (see examples in
Supplementary Materials S.2 and S.3). The CDF specifies Pr(W = w|Zf,}) = zy; ©). It is noted that (1) is similar to the
integrand of equation (4) in [9] where two co-primary analyses are performed on the full population and a subgroup, and

the significance level for F is pre-specified.

Using an iterative search, C,, can then be found using the following inequality

= / Py (25, w; ©0)dzl), )
weS Ca v
where ® = © denotes the global null hypothesis Hy, #; = 62 = ... = 6; = 0. Note that finding the critical value under

this setting implies weak control of the FWER. Following [35] it can be shown, however, that weak control implies strong
control since #; = 0, = ... = 6; = 0 maximises the type I error when selection is based on the maximum. Similarly,
assume an alternative hypothesis that exactly one subgroup (say S,,, w in ) has nonzero positive effect size, , but others

1)

have none is true, the required total sample size for the full population n 7 can be found using the above critical values, a

desired effect and a specified power level, 1 — /3. The related equation is

1-5 g/ P (20w ©4)dzL), ()
C

o

th

where ®, denotes the alternative hypothesis, a vector of size .J whose elements are all 0 except for the w*" element which

is 0. The desired ngcl) is obtained by iteratively increasing the sample size until equation (3) holds.

Note that only rejection of the hypothesis with the truly largest effect is considered in this power requirement. Similar
considerations can be used to find the power to reject any false null hypothesis (see Figure 1 for an example).

We have derived the above formula here for consistency as for the multi-stage designs considered below only the
selected subgroup continues to subsequent stages.

The derivations of (2) and (3) are provided in the Supplementary Materials S.1 and more specific example solutions for
the single-stage design with two and three subgroups are given in Supplementary Materials S.2 and S.3 when the index
set of selection populationis S = {1, f} and S = {1,1+ 2, f}.

2.2.2. Multi-Stage Designs The multi-stage designs we consider follow similar procedures as the aforementioned
single-stage designs. Population selection is performed at the first interim analysis, but any population in S can be
selected. We consider the case where data after stage 1 are enriched so that the total sample size in the trial remains fixed
but the sample size of subgroups that have not been selected is reallocated to the remaining populations. Suppose the
selected population is S,,, the difference is that at stage k the testing procedure stops by rejecting Ho,, if ZL* > Oy, o,
or stops with retaining Ho,, if Z1* < C .» or the procedure continues to stage k + 1 if Cj, < ZLk < Cuy,a» Where Cy, o

and Cj, are the corresponding upper and lower stopping boundaries at stage k.
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Two elements are required for appropriate stopping boundaries and stagewise sample sizes. The first is the joint density
of (Z‘(,ll,), W), shown in (1). The second element is the density of the conditional distribution of the test statistics Z1*

(k=1)

(with accumulated data until stage k) given its precursor Z at stage k — 1. We denote this conditional density by

D k|k—1 (zLk |zlllj(k_1); ©®) and its general mathematical form is given in Supplementary materials S.4.

The stagewise density comprising of the two elements can then be used to determine the probability of stopping for
efficacy or for futility at stage k. For example, the stagewise densities at stage 2 with different values of W are specified
as

Py o (20,0 0)  puai (2,2, ©), weS. @)
w

Then given ® = O (i.e. under the global null hypothesis), the probability of early stopping at stage 2 (either for lack of

effect or early rejection) for the subgroup S,, can be calculated as

Cuy o )
/ / P, W(zfvl),w; ©)) -pw’2|1(2:110:2|z$); (-')O)dzgzdzfvl), w e S,
Cy, Cugra 7
where the integral bounds signify that the design continues after stage 1 but stops at stage 2 for efficacy. The conditional
function pw,2|1(z},ﬂzfu1 ); ©) is used to calculate stopping probability at stage 2 given that the design does not stop at
the preceding stage. Similarly, the stagewise densities at stage k are the product of the expression in (1) multiplying
the factor [} _, pw’m|m,1(z}u””\zif(m*l); ©). The value of the k-fold multiple integral within the integrand region
defined by stopping boundaries before stage k + 1 is the early stopping probability at stage k. Each conditional density
pw,m|,n_1(z};m|zij (m_l); ®) with its respective integral bound controls the probability of whether the design stops or

continues, given that the design has proceeded at the previous stage.

To find boundaries that ensure FWER control an iterative search over the stopping boundaries is conducted based on

the following inequality

K 1
02 TS f o [ mapt 00 (T st Dsempas ] 0
k=1 k m=k

weS

where the integration region Ay

Ay = [C1,,Cua) X [Clyy Cuga] X oo X [Crupr 00) i 201 x 212 Lk

w

where ©, denotes the globe null hypothesis. We define z.;° = z1:' and therefore p,, 1)1 (z,;"|24;"; ©) = 1. Note that
this yields only one inequality while Cj,,...,C, and Cy, q, ..., Cyy o are all unknown. To overcome this, we set them
to follow a specific functional form, where C;, = C,,,. o for the K stage design. For example, when using the O'Brien
Fleming (OBF) [13, 36] type stopping boundaries, C,, .o = Copr(K, a)m and C}, is a certain function of k. In
addition, the calculations in (5) assumes that the futility bounds are binding. For non-binding bounds, one can simply set
the lower bounds to —oo.

As before, (5) implies weak control of the FWER but also guarantees strong control following the arguments in Magirr
et al. [35].

Suppose an alternative hypothesis of the from 6,, = § > 0 for exactly one element (say w) in § and 0« = 0 Vw* # w €
S is true. Then under this alternative hypothesis, the above critical values and specified power, the stagewise total sample
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()

size for the full population n;* can be found to satisfy the following inequality:

K 1
1-8< Z [/ .. / pzw’w(zg),w; O,)- ( H pw,m‘m,l(zilu"”|zlllj(m_1); @a))dz}u:k .. .dzful)}, (6)
Ay

k=1 m=k

where the configuration ®, has an non-zero positive effect § on the w'” element but the other .J — 1 elements are zero.
Detailed derivations of (5) and (6) are provided in Supplementary Materials S.1 and the design details of two-stage designs

with two subgroups (considering selection of S or F') in Supplementary Materials S.5.

2.2.3. An illustrative example The Dose Ranging Efficacy And safety with Mepolizumab in severe asthma (DREAM)
trial [37] investigates, amongst other endpoints, the effect of mepolizumab on exacerbations and forced expiratory volume
in 1 second (FEV;). Subsequent secondary analyses of the trial data [38, 39] finds that the treatment effect of mepolizumab
depends on the baseline levels of eosinophil and suggests that only patients with blood eosinophil levels of more than 150
cells per pL receive benefit from the treatment.

Suppose that, on the basis of these exploratory findings, we wish to embark on a prospective evaluation of the claim that
mepolizumab results in meaningful improvements only for patients with baseline levels of eosinophil of 150 or more cells
per pL in the blood. We will use change in FEV; from baseline to 90 days modelled as normally distributed as the primary
endpoints although the same arguments hold for other endpoints such as exacerbations. Additionally we suppose that the
prevalence of each group (below and above 150 cells per L blood) is 50%. Following [40] we assume that the standard
deviation is 0.72L and consider a reduction of FEV; of 0.23L as the minimum clinically relevant treatment difference and
consequently seek to power our evaluations for this effect.

Three different evaluation strategies are considered: 1) running two separate studies in each of the two subgroups, 2) a
single stage study with one subgroup versus the full population (see section 2.2.1) and 3) a two-stage enrichment design
where the best performing group is selected at the halfway point and early stopping using O’Brien and Flemming bounds
[36] are used (see section 2.2.2). For each of the three designs we consider a type I error per study of 2.5%, require a
power of 80% to reject any false null hypothesis. Further we assume that 25 patients are recruited per month and that it

takes two month to conduct the interim analysis for strategy 3.

Strategy max FWER N % superior duration (months)
Separate studies 0.0494 616 50% 27.64
Single stage study 0.0250 684 50% 30.36
2-stage design 0.0250 552 75% 25.08 or 36.12

Table 1. Comparison of different evaluation strategies. max FWER is the maximum family-wise error of the strategy, N
is the total sample size, % superior is the percentage of patient studied in the better performing subgroup and duration is
the time from recruiting the first patient until the primary endpoint is available for all patients.

A summary of the characteristics of the different strategies is given in Table 1. The strategy using two separate studies
requires just over 600 patients to be recruited while the single stage design with two groups does need almost 70 patients
more. The reason for this is that no attempt has been made in the first approach to control the family-wise error rate. If
we were to correct for multiplicity for the separate studies using a Bonferroni correction, the required sample size would
increase to 748 patients. Using a 2-stage selection design allows us to reduce the required sample size even further to
around 550 patients, a reduction of 10% and 30% compared to the uncorrected and multiplicity corrected separate study
strategy, respectively. Additionally, the 2-stage design does investigate more patients in the group that is truly benefitting
from treatment which is one of the reasons for the reduction in required sample size. Besides the reduction in sample size,

running a single study rather than two separate ones does also yield organisational advantages. The main drawback of this
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approach is that the duration of the study is increased by almost 9 month should the subgroup be selected (although a
small reduction in the duration is expected if the full population is selected at interim.

Note that in addition to the advantages illustrated above the family-wise error rate in the 2-stage enrichment design is
controlled for the worst case situation in terms of selection and hence other selection rules can be used without error rate
inflation.

2.2.4. Alternative Designs We have illustrated how to obtain critical bounds and sample size for general enrichment
designs above. Here, we discuss alternative designs considering different type-I-error and power configurations.

Significance levels and stopping boundaries:

An alternative to specifying the design and corresponding stagewise « levels via the boundaries is to specify marginal
significance level «, to each stage k (where >, oy = o) and use an error spending approach as used in classic group
sequential designs [13]. Such considerations affect the way we find stopping boundaries where the same boundaries are
shared by all the populations considered. More specifically, based on the following inequality (7) it is required to search
the critical value used in Aj_; first under the upper limit of a1 (where the subscript of the upper bounds is changed
accordingly). Then substitute those critical values for the associated bounds used in Ay under the upper limit of oy, for
finding the remaining critical values and so on.

Zal > Z{ / / Pz g (Z0 s ws O) - H Pumim—1(2™ 2" ©0)) dzy* dz(l)}} @

weS

Note that there are several ways to determine the lower stopping boundaries; for example, one could set symmetric values
with respect to the upper critical values, or simply set 0.

One can further pre-specify the marginal significance levels for |S| — 1 specific populations at each stage. One example
of taking this consideration can be found in [9] although they only consider single-stage designs. Such design features
may lead to different stopping boundaries for all the populations included in S.

Incidentally, for two-stage designs if early stopping is not considered at stage 1 (that is, the stage-1 data is only used
for population selection), then the first bound of integration in equation (5) and (6), Ay, is (—o0,00), where k > 1.

Meanwhile, the upper bound C,,, o, of A; is defined as oo and therefore the integral [ A, Py ( ZS), w; ®O)dz7(j) is 0.

Wy
W
Such designs are the same as the two-stage adaptive seamless designs used in [31].

Power:

The power of the designs in Section 2.2 is defined as the probability to detect the treatment effect of the population
of interest under H,. Alternatively we can define power to detect any treatment effects wherever they are from a set of

specific subpopulations. Such change leads the total sample size for F' to be different because of its influence on equation

(k)

(6), which is the basis of searching ny . Moreover, the equation becomes

K 1
1-8< {Z / / P (2w a>-(Hpw,mm_l(zi,;m|z3;<m-”;ea))dziﬁ...dzfﬁ}}, ®)
wES*

1 m=k

where S* is the subset of S and contains the specified subpopulations of interest. Take an example that if S = {1, f}

and §* = S, Figure | shows the resulting total sample sizes ngcl) in a single-stage design, corresponding to different
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prevalence values of S, under different definitions of power. The left panel is computed to have power 1 — 3 for selecting
the subpopulation with the largest true effect and rejecting the corresponding null hypothesis, while the right panel
considers any correct rejection. Under the left power definition the required sample size is large when the prevalence of
the subgroup with a positive treatment effect is small as the number of patients having said effect is (relatively) small.

(1)
f

As the prevalence \; approaches 1, n;’ increases again as the effect of the subgroup dominates the effect in the full

population and differentiating between the two populations becomes more difficult. In contrast ngcl)

always decreases
under the definition of power to detect §; > 0 or 6 > 0. Since the effect sizes for S; and F' are close, it is difficult
to select the correct subgroup and thus large sample sizes are needed. The reason that the behaviour of n;l) is always
decreasing for larger prevalences in the right panel is that there is no restriction on selecting a pre-specified population
and reporting the efficacy. The decreasing pattern can be similar to that using the closed testing procedure [41] in a
single-stage design, where the total sample is available for investigating any subpopulation without considering selection.

Note that all the patterns observed in Figure 1 emerge in a case of multi-stage designs as well (not shown in this paper).

Power to detect 8> 0 Power to detect 8,> 0 or 6; > 0
o o
2 1546 3 1480
— ¥ — .
o o
o _| o
o . o
-~ — ~ —
= . .
Z 788 &
.. 730_
§ _ 539._._418' . 493 § — 480, .
L343, . pog. - - 318 355, o0,
229 .. .495 o
(e I e e T R (o I e e e
| | T | T | T | | | | T | T | T | |
01 02 03 04 05 06 07 08 0.9 01 02 03 04 05 06 07 08 09
A1 A1

Figure 1. The total sample sizes of the full population F' (n(f1>) across prevalence rates of S1 (A1) for two different definitions of power. The design is a
single-stage design with two subpopulations where the treatment effects 1 and 62 for S1 and S> are 0.5 and 0, respectively. The type-I error and power are
specified at 0.025 and 80%.

3. Estimation Assessment

In this section we report a simulation study assessing the properties of MLEs. Note that in the reported figures different
scales for the y-axes are used in order to highlight patterns.

3.1. Simulation Set-up

In our evaluations, we specify the family-wise error rate, «, as 0.025 and set the sample size for each scenario so that the
power of the design is 1 — 8 = 80%. Our alternative hypothesis is that the treatment has an effect of 0.5 in S; while the
effect of the treatment is zero for all other subgroups. Therefore the power aims to detect the non-zero effect in .S; (that

2 issetto 1

is to reject Hyp) once the first subgroup is selected. The assumed common variance across subpopulations, o
and we use 1,000,000 simulation runs.
The designs we consider are: a single-stage design with two subpopulations (Design 1), a single-stage design with

three subpopulations (Design 2), a two-stage design with two subpopulations and three subpopulations (Design 3 and
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Design 4, respectively), with an O'Brien Fleming (OBF) upper stopping boundary and a fixed lower boundary of zero is
used. We calculate the stopping boundaries and the total sample sizes for F' based on (2) and (3) for single-stage designs
(and (5) and (6) for multi-stage designs). The sample sizes and critical values for each of the designs are given in Appendix
A. Based on these four designs, several scenarios are investigated altering the design features such as prevalence.

Denote 6 as the naive MLE (that is not accounting for selection) for the parameter 6, then 6 ¢ and 0, represent the MLEs
for the treatment effect of F' and S;, respectively. The estimates can be calculated by Z. ﬁk) /1 *® = }75(1}) — 178(18 where
s € {1, f} in scenarios for Design 1 and s € {1,1 + 2, f} in scenarios for Design 2 . In multi-stage scenarios, the MLE
estimates of 0 and 0 are calculated by ZI:M /TEM = Y EM — VEM where s € {1, f} and M is the stage at which the
study stops.

We define bias as bias(é) = E(é) — 6 and the mean squared error (MSE), MSE(é) = E((é — 6)2) as performance
measures for estimation assessment. As the sample size for the full population satisfies the above power requirement and
varies across different prevalence, a standardized scale is used in the assessments (readers are referred to Supplementary
Materials S.7 for details on the standardization). In our subsequent evaluations we will consider three situations. Firstly, we
consider the treatment effect estimator regardless of the population being selected or the hypothesis test being significant.
Secondly we consider only the estimators of the selected populations which is expected to result in selection bias. The third
situation considers reporting bias and for this we only consider only treatment effect estimates of the selected population if
the corresponding hypothesis test is significant. Implicitly we are therefore considering that the outcome of a study is only
reported (published) if it was significant. Note that in the evaluations to follow we refer to the selection bias as Select S,
and the reporting bias as Select S,, + Reject Hy,,, where w in S specifies the population chosen through a selection rule.
In addition to the bias and MSE depending on which subgroup has been selected, we also report the family-wise (FW)
bias and MSE, i.e. the bias and MSE averaged over all possible selections.

3.2. Scenarios for Design 1

Scenarios here cover different prevalence values of S, A1 varying from 0.05 to 0.95 in increments of 0.05. We illustrate
the assessments for the scenarios under three configurations of different values of 8; and 0 in Figure 3-4. Their horizontal
axes are for the prevalence of 57, A1, and the vertical axes of the row-wise panels are for standardized bias, standardized
+vMSE and simulation proportions (%).

Figure 2 presents the estimation assessment of 6 ¢ and 0, under the assumption of #; = 0 and A3 = 0. As expected we
do not see any bias when no selection is undertaken as well as constant standardized MSE - a pattern that is repeated
throughout all other simulations. Additionally the selection probability is constant at 50% due to the equal effect in both
subgroups. The selection bias is largest when the prevalence in the subgroup is smallest with a matching pattern for the
standardized MSE. The reporting bias and MSE follow the same pattern although at a markedly increased level.

Figure 3 considers the case when #; = 0.5 and 65 = 0. Considering the selection probabilities first, we find that, as
per design, there is a 80% chance to select population 1 correctly and reject the corresponding hypothesis. The selection
probability of the full population increases as the prevalence increases as the effect in the full population gets larger as the
subpopulation contributes more towards it. At the same time the chance to also reject the hypothesis also increases. The
selection and reporting bias in the full population estimate is largest when the prevalence in the subpopulation is smallest
and then steadily decreases towards zero. The size of the bias is well over 0.5 standard errors for almost all prevalences
and hence should be considered important although incorrect selection in itself is not very common in this case. For the
full population the bias dominates the MSE and hence the MSE follows the same pattern.

Focusing attention on subpopulation 1, we find that bias is present, although it is of much smaller magnitude (selection
bias at most 0.1 and reporting bias at most 0.35 standard errors) than for the full population (up to over 2 standard errors).
The selection bias is maximised at a prevalence of around 0.75 while it is largest for a small prevalence for the reporting
bias.

When both treatment groups have the same effect, §; = 62 = 0.5 (Figure 4) we observe that almost always the full
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Figure 2. (For Design 1, §; = 0 and 02 = 0) the standardized bias and standardized +/MSE of MLEs 0 s él and the simulation proportions for different
circumstances against the prevalence of subpopulation 1, Aj.

population is selected and only for large prevalences of the subpopulation (> 50%) we obtain notable selection probability
for the subpopulation (up to 20%). As a consequence of this we obtain no estimate of the bias and MSE for the
subpopulation for low prevalences. The bias in the estimate in this population is potentially very large (> 3 standard
errors) but drops quickly towards zero as the prevalence increases. In this setting it is also notable, that the selection bias
is virtually identical to the reporting bias as very large observed effects are necessary to select the subpopulation in the
first place.

The patterns for the full population are somewhat more distinct as no bias is observed for small prevalences, since it is
always the full population that is selected. The bias in this case is, however, very small even in the worst case situation
(prevalence of around 0.75) where the reporting bias is less than 0.1 standard errors and the selection bias is even smaller.

3.3. Scenarios for Design 2

Scenarios for Design 2 regard to select a population among S1, S1 42 and F' under different configurations of 6;, 65 and
#3. Our focus here is to assess the MLEs él, él and éf under 6, = 0.5,60, = 0,03 = 0 under the population selection rule
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Figure 3. (For Design 1, 6; = 0.5 and 02 = 0) the standardized bias and standardized v/ MSE of MLEs 0 s él and the simulation proportions for different
circumstances against the prevalence of subpopulation 1, A;.

given by
select Sy if Z{k) > max(Z}k),Zﬂ)Q)
select Sy if Z{" # max(2\", Z{%),),and 2%, > z" 9)
select /' if Z{" # max(2", 2{%,),and 2, < Z}",

This rule is one variant of the maximum statistic rule and sequentially decides which population to be selected. The results
for other configurations of 6;, A and 63 are provided in Tables S.1-S.3 in Supplementary Materials S.8. Note that for
all the scenarios simulations are run under the same stopping boundaries and sample sizes (ngcl) = 576) found based on
Design 2 with the maximum statistics selection rule, §; = 0.5,02 = 0, 03 = 0 and equal subgroup prevalence.

The results in Table 2 shows that in this case the correct population is selected most of the time (> 80%) due to the
design constraint to obtain 80% power. The selection bias when selecting the correct population is small at < 0.1 standard
errors and even the reporting bias is only modest at 0.27 standard errors. The selection and reporting bias when selecting
the incorrect population are notably larger in this instance resulting in biases up to 1.3 standard errors. The bias is largest
for the full population as the true underlying effect in this group is at 0.167 smallest amongst all populations and hence a
rather unusual sample is required for its MLE to be largest.

WWW.Sim.org Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 00 1-21
Prepared using simauth.cls



Statistics
Y. CHIU, F. KOENIG, M. POSCH and T. JAKI iIl Medicine

n n
For 6 For 6, o FW
- o \ N A
o] . o \ =]
% g - K . | \ i
- : - e
~ < . - N N \'\ S - ~.
o 4 . = . 5 .
% S L \ ) ~ © e \'.
8D . K4 — ~. -1 v
m o g o
O SN ————— | o 7 ~ - = > s
3 ) S I
T T T T e T T T T e T T T T
02 04 06 08 02 04 06 08 02 04 06 08
M M M
S S S 4
% - g _ ‘. - —
n o
o 4 O o o=t e g, - = = =
= 2 4 S . :
I('I/)J o N \ o |
o N . &
E o - = = = = - ~ - S ]
T o5 = —= 8 |
(S T T T T T T T T [S] T T T T
02 04 06 08 02 04 06 08 02 04 06 08
A A A
o o
S === o
c - \\ o
i) T '~ <
I o ‘N g N R
o o N _ s
o o . o rd
o N = s
= - (<] .
a \ _ s
& N S = ]
o T T T T [S) T T T T
02 04 06 08 02 04 06 08
M M
N N
—— Select None (8y) —— Select None (8;)
Selection bias: — = SelectF - = SelectS; — - Select (FW)
Reporting bias: -« . SelectF + RejectHpr - - - SelectS; + Reject Hpy- - - Select + Reject (FW)

Figure 4. (For Design 1, #; = 0.5 and 62 = 0.5) the standardized bias and standardized v MSE of MLEs éf, él and the simulation proportions for
different circumstances against the prevalence of subpopulation 1, Aq.

Bias/SE vVMSE/SE  Prop.(%)
0y (Select None) -0.00186  0.99849
éf (Select F) 0.96546 1.32104 3.74
éf (Select F + Reject Hyr) 1.31217 1.47472 291
0, (Select None) -0.00151  1.00004
0, (Select Sy) 0.09094 0.97526 88.58
0, (Select S; + Reject Ho,) 0.27068  0.87036 80.20
01+2 (Select None) -0.00118 0.99884
612 (Select S145) 0.76128 1.19617 7.68
01,2 (Select S1 45 + Reject Hy 142) | 1.02579  1.26021 6.47
Family-wise Select 0.17516 1.00518
Family-wise Select + Reject 0.35902 0.91814

Table 2. (For Design 2, §; = 0.5, §5 = 0 and A3 = 0) Standardized bias and standardized v MSE of the MLEs where
the prevalence rates of three subgroups are 1/3. In addition, Proportion (Prop.) stands for how often the corresponding
circumstance occurs.
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3.4. Scenarios for Design 3

The investigation presented here concerns Design 3, a two-stage design and we focus on #; = 0.5 and #, = 0 here while
the results for other configurations are given in Figures S.1-S.6 of Supplementary Materials S.8.

Figure 5 shows the results of the estimator for the full population. The top row corresponds to standardized bias, middle
row to standardized v/MSE and the bottom row to the probability of selecting the full population. The first column is
associated with the estimators that stop at Stage 1, the second considers only trials that reach Stage 2 while the final
column corresponds to the estimator irrespective of when the trial was stopped. In addition to the selection bias and the
reporting bias, we also consider the estimator irrespective of the reason for stopping (green triangle) in the figure.

The reporting bias is potentially very large (up to 3 standard errors for stage 1 only and up to 2 standard errors for stage
2) and is largest when the prevalence of the subgroup is small and subsequently decreases. When only considering studies
that select the full population and stop at stage 1 it approaches zero while the bias does in fact become negative for trials
that stop at the second stage. The overall estimator is, however, always positively biased showing a very similar pattern
as the stage 1 cases only. The selection bias overall and for stage 2 only follows the same pattern as the reporting bias
while it does show an inverted U-shape for stage 1 only which is maximised at a prevalence of around 0.5. The bias in
the estimator that only considers stopping at stage 1 for any reason follows the same pattern as the selection bias although
the bias is smaller. It is noteworthy that, although substantial bias is exhibited under some situation, the probability of
reaching these (e.g. selecting the full population and stopping at stage 1) are very rare. The standardized v/MSE appears
like that in standardized bias except for the second stage. In those exceptional cases, the MSE (for selection, reporting and

regardless of selection) decreases at a different rate before inflating substantially at a prevalence of 0.8.
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Figure 5. (For Design 3, §; = 0.5 and 63 = 0) standardized bias and MSE of 0 ¢ and simulation proportions for different circumstances at stopping stage
1, 2 and overall, against the prevalence of subpopulation 1, Aj.

Considering the findings for the estimator of the first subpopulation, 0, (Figure 6), the results exhibit similar patterns in
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many circumstances in Figure 5. When stopping the trial at the first stage, the estimator is largely biased for prevalences
up to 0.6. The reporting bias subsequently decreases from 2 standard errors while the selection bias is more moderate
at around 1 SE. All the MSE (regardless of any circumstances) decreases to 0.9 SE from 2 and is close one for larger
prevalances larger 0.7. As most of the time the subpopulation is selected correctly, the selection bias and the bias
considering all studies that stopped at stage 1 are very similar and the MSE, meanwhile, is near 1 standard error. The
estimators considering only trials that stop at stage 2 are almost unbiased for small and moderate prevalence but can
exhibit a large negative bias when the prevalence is large. The MSE is close to 1 SE for most of prevalences but becomes
very large beyond a prevalence of 0.7. The overall estimator is, however, positively biased (for both selection and reporting)
for all prevalences and shows an inverted U-shape with a maximum bias of about 0.3 SEs for a prevalence of 0.6. Its MSE
conditional on selection or no-selection appears different from that considering reporting before a prevalence of 0.7. The
estimator thereafter performs similarly in MSE with a small U-shape under 1 SE.
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Figure 6. (For Design 3, 61 = 0.5 and 02 = 0) standardized bias and MSE of 6, and simulation proportions for different circumstances at stopping stage
1, 2 and overall, against the prevalence of subpopulation 1, A1.

The family-wise bias and MSE for this design with §; = 0.5 and 62 = 0 is given in Figure 7.

3.5. Scenarios for Design 4

Scenarios for Design 4 is the two-stage counterpart of Design 2 for selecting a population among Si, Si42 and F
under different configurations of 6;, A5 and 3. The investigation here focus on assessing the MLEs él, é1+2 and éf under
0, = 0.5,02 = 0,05 = 0 under the population selection rule given in the equation 9. The results for other configurations
of 01, 65 and 65 are provided in Tables S.4-S.6 in Supplementary Materials S.8. All the simulations are run under the same
stopping boundaries and sample sizes (ngcl) = 335) found based on Design 4 with the maximum statistics selection rule,
the configuration of treatment effects (#; = 0.5, 0, = 0, 035 = 0) and subgroup prevalences being 1/3.
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Figure 7. (For Design 3, 81 = 0.5 and 62 = 0) family-wise bias and MSE and simulation proportions for different circumstances at stopping stage 1, 2
and overall, against the prevalence of subpopulation 1, Aj.

Stop at Stage 1 Stop at Stage 2 Overall
Bias/SE VMSE/SE Prop.(%) | Bias/SE VMSE/SE Prop.(%) | Bias/SE vVMSE/SE Prop.(%)
0 (Select None) 0.67715 1.13140 -0.26340  0.96585 0.05614  1.02209
05 (Select F ) 2.02110 2.14318 1.54 | 036337 0.92461 5.98 | 0.70283 1.17414 7.52
65 (Select F + Reject Hyr) 2.10568  2.14995 1.51 | 0.85268 1.01727 3.89 | 1.20283 1.33379 5.39
0 (Select None) 1.03255 1.22555 -0.29968  0.97840 0.15293  1.06237
6, (Select Sy ) 1.12932  1.27694 29.13 | -0.20496 0.94416 51.17 | 0.27906  1.06487 80.29
6; (Select S + Reject Hyy) 1.14828  1.26420 28.99 | -0.20175 0.93853 51.11 | 0.28684  1.05639 80.11
0142 (Select None) 0.81892 1.16958 -0.26809  0.96219 0.10120  1.03265
0112 (Select S149) 1.78983 1.88884 331 | 0.17732  0.89687 8.88 | 0.61488 1.16604 12.18
614 (Select Sy o + Reject Hy1.0) | 1.82834  1.88619 327 | 041744 0.81323 7.57 | 0.84338 1.13715 10.85
Family-wise Select 1.23403  1.37576 33.97 | -0.10207 0.93603 66.03 | 0.35185 1.08542
Family-wise Select + Reject 1.25693  1.36402 33.77 | -0.06135  0.92826 62.57 | 0.40076 1.08101

Table 3. For Design 4, 6; = 0.5, > = 0 and 03 = 0) Standardized bias and standardized vMSE of the MLEs where
the prevalence rates of three subgroups are 1/3. In addition, Proportion (Prop.) stands for how often the corresponding
circumstance occurs.

Table 3 shows the results of the estimators for the first subgroup, the combined subgroup and the full population. The
standardized bias, standardized v/MSE and simulation proportions are presented in the trials that stop at Stage 1, reach
Stage 2 and are irrespective of which stopping stage.

Considering the trials irrespective of stopping, we observed the correct population is selected in the 80% of simulations
due to the design requirement of 80% power. The bias is found positive for all the overall estimators and varies widely
(smallest at 0.05 and maximum up to 1.2 standard errors). The selection and reporting bias when selecting the correct
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population are the smallest (less than 0.3 standard errors), but larger when selecting the incorrect population (particularly
for the full population). All the standardized MSE are larger than 1 standard errors but only up to a moderate size of
around 1.3. While selecting the correct population or rejecting the null hypothesis the estimator for the first subgroup has
a smaller standardized MSE (around 1.06 standard errors) than its counterparts.

The results at different stages show a contrary picture. More trials stop at stage 2 than at Stage 1 and each stage has
a higher proportion of selecting the correct population (around 30% and 50% at Stage 1 and Stage 2, respectively). The
bias is large at Stage 1. The selection and reporting bias are smaller when selecting S; (around 1.1 standard errors) than
those when selecting S;42 or F' (around 1.8 and 2, respectively). A moderate bias is observed at Stage 2 (up to 0.85
standard errors). In particular, the selection and reporting bias are found negative in the estimator for the first subgroup.
The standardized MSE of all the estimators at Stage 1 are much larger than 1 SE but those at Stage 2 show the opposite
pattern being less than 1 (between 0.8 and 1).

4. Discussions and concluding Remarks

In this paper we have discussed general design considerations for clinical trials with subpopulation selection and illustrate
how such studies can be designed. The design framework described can be viewed as an extension of group-sequential
methods [42] and therefore requires the same types of assumptions and specifically we do assume an independent
increment structure of the data. In our evaluations we have assumed that the primary endpoint is available immediately
or at least before the next patient is recruited to the trial. While the general results in the paper will remain to hold if
the endpoint is available only after some time, patients may still be recruited from a subpopulation that is subsequently
not selected. Different approaches to deal with delayed responses have been proposed (e.g. [43]) in the context of group-
sequential trials have been proposed. As a general rule, however, it is clear that the efficiency of selection is reduced
if the time to observe the endpoint is long in comparison with the recruitment speed. Other assumptions made within
this framework are common to most adaptive designs. Most notably we are assuming that there are differences in the
population before and after interim analysis and in particular that no time trends are present.

In this work we only consider designs with normally distributed endpoints, although they can easily be extend to other
types of endpoints via the efficient scores framework [42, 44]. Note, however, that particular care is required when using
time to event endpoints - see [45] for a more detailed challenges of adaptive trials with time to event endpoints. Moreover
we assume that the subgroup prevalence is known although clearly specifying this parameter correctly in the design will be
crucial for the designs operating characteristics. A consequence of the assumed known prevalence is that we only present
the estimation assessment of the MLE where subgroup sample sizes are fixed according to the respective prevalence in
designs. Further simulations (not shown), however, suggest that random sample sizes of populations only alter the findings
marginally.

Selection based on the maximum test statistics is the main focus throughout the paper and an R package implementing
this design is currently under development. While this selection rule is simple and intuitive, it may not be optimal in
certain circumstances. It makes sense to adopt the rule when some subgroup treatment effects have been identified
as being positive and difference between test statistics across subgroups are reasonably large. However, when the test
statistic for S and F' are close but the former is larger, applying this rule leads to ethical issues that selecting only part of
the population rather than the whole population although they could benefit from the treatment. Therefore, other options
for selection rules should be considered for similar situations and investigation.

One alternative, which is also considered for designs with treatment selection (e.g. [46]), can be to introduce a threshold
in the selection rule. This allows all the subgroups whose effect sizes are similar to the best one (their absolute difference
is within a threshold) to be united so that the pooled population can continue to the next stage. Meanwhile, it also permits

Statist. Med. 2017, 00 1-21 Copyright (©) 2017 John Wiley & Sons, Ltd. WWWw.sim.org
Prepared using simauth.cls



Statistics
in Medicine Y. CHIU, F. KOENIG, M. POSCH and T. JAKI

to select a population whose effect size is above a threshold plus the effect size from the others.

Another option that has been used in the context of treatment selection (e.g. [35, 16]) is simply to select a population
whose efficacy exceeds a certain value at stage 1. This selection rule was used in [16] and integrates population selection
and hypothesis testing at the first stage. Their designs considering a prior ordering on underlying effect sizes of all
individual subgroups somehow connect to ours where the target subpopulations for selection has a nested structure. It is
noted that the mathematical expression of p Z‘(,y,w(" -) in (1) will be different if the above selection rules are used. We

provide the required modifications to the design framework in the Supplementary Materials for illustrative purposes.

In term of estimation we have assessed the bias of the MLE under various scenarios. We find that almost always bias is
positive leading to an over-enthusiastic estimate of the true treatment effect. While for some settings the size of the bias
can be viewed as negligible it can become large under other situations. The challenge clearly being that one will usually
not know if one is in one of these extreme situations. Another observation we make is that although bias is introduced
by selecting the population, the bias gets markedly increased (often more than doubled) when only significant results
are reported highlighting the effect of reporting bias which may be even more problematic than the bias introduced by
selection.

Our results suggest the MSE of the overall MLEs performs quite well (around 1 standard error) in many circumstances
and scenarios. We find whether selecting the correct population or not impacts the size of MSE for the corresponding
estimator. The extent can be more substantial when further reporting significant results. The same finding is even observed
in the extreme scenario, where no correct population is defined because the underlying effect of each subgroup is assumed
none.

Future work will consider estimators that are unbiased (or have smaller bias) while maintaining comparable MSE.
Conditional bias-adjusted estimator following the ideas in [28] appear most promising. One extension to the case of
multiple-stage designs given the process continues to the final stage can be naturally achieved. However, whether the
derived estimators have less MSE should be verified in further investigations.
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A. Design specifications
A.l. Design 1

A | 0.05 0.1

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

c | 2232 2228
N | 3070 1546

2223 2217 2212 2206 2.200 2.193 2.186 2.178
1040 788 638 539 469 418 380 351

A | 055 0.6

0.65 0.7 0.75 0.8 0.85 0.9 0.95

¢ | 2170 2.160
N | 329 313

2.150 2139 2.126 2.111 2.094 2.072 2.042
303 298 302 318 363 493 943

Table 4. Design specifications for

A.2. Design 2

A | 0.05 0.1

different values of A for Design 1. ¢ is the critical value and [V is the total sample size.

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

c1 | 3.018 3.031
co | 2.134  2.143
N | 719 401

3.037 3.039 3.039 3.037 3.034 3.029 3.023 3.016
2.147 2149 2.149 2148 2.145 2142 2.138 2.133
298 251 224 207 196 188 183 181

A | 055 0.6

0.65 0.7 0.75 0.8 0.85 0.9 0.95

c1 | 3.008 2.999
co | 2127 2.121
N | 181 184

2989 2977 2964 2948 2930 2907 2.875
2.114 2105 2.096 2.085 2.072 2.055 2.033
192 205 229 269 342 491 943

Table 5. Design specifications for

different values of A for Design 2 and an interim analysis after half the patients have

been observed. ¢; is the upper stopping boundary at stage 1, ¢, the final stage critial value and IV the total sample size.

The lower bound at stage 1 is fixed at zero for all \.
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A.3. Design 3

For this single stage design with three subgroups, the prevalance of each subgroup is equal to one third resulting in a

critical value of ¢ = 2.289 and a total sample size of N = 575.

A.4. Design4

The two stage design with three subgroups uses equal prevalance of each subgroup and an interim analysis after half the
patients have been observed. The critical value at the first stage is ¢; = 3.119 while the final critical value is co = 2.205.
A fixed futility bound of zero is used and the total sample size is N = 335.
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