1 Phenotyping Photosynthesis on the Limit – A critical examination of RACiR.

We are now in the phenomic era. New, rapid screening approaches that provide quality data 2 on plant physiological performance are a priority. A recently published advance, enabled by a 3 next generation gas exchange system (LI-6800, LI-COR, Lincoln NE, USA), is the Rapid A-4 Ci Response (RACiR: Stinziano et al., 2017). This technique aims to allow rapid (~12 min) 5 6 determination of the A/c_i response (net CO₂ assimilation (A) response to intercellular CO₂ 7 concentration (c_i)), which previously required ~40 minutes (standard A/c_i approach). Evaluating RACiR as a means for higher throughput phenotyping reveals offsets to 8 9 commonly estimated parameters from A/c_i analyses; however, best practices for RACiR 10 application and reporting should enable reliable comparisons with standard A/c_i

11 measurements.

The A/c_i response is a powerful tool used by plant physiologists to establish factors 12 limiting photosynthesis in vivo and in situ. In combination with biophysical models, A/ci 13 measurements can establish apparent rates for Rubisco carboxylation (V_{cmax}), electron 14 transport capacity (J), and, triose-phosphate utilisation (TPU), as limits affecting 15 photosynthesis (Long & Bernacchi, 2003). The term apparent is used here, since the true 16 values of the parameters requires the response of A/c_c , where c_c is [CO₂] within the 17 chloroplast, which can be determined by simultaneous measurement of mesophyll 18 conductance (g_m) (Bernacchi *et al.* 2002). These parameters are used in applications from 19 crop improvement (Kromdijk & Long, 2016) to global change modelling (Rogers et al., 20 2014). An important application of A/c_i response measurements is in understanding 21 22 regulation of plant carbon and water balance by partitioning limits to photosynthesis into diffusive and biochemical components (Farquhar & Sharkey, 1982; Jones, 1985; Buckley & 23 24 Diaz-Espejo, 2015). In addition, by establishing the $c_{i,trans}$ at which electron transport or TPU limitation replace carboxylation as limiting for photosynthesis, trends in c_i under operating 25 26 conditions can be used to identify limiting states under dynamic conditions (e.g., Taylor & Long, 2017). 27

Measurements of A/c_1 responses using the RACiR rely on comparisons of sample (CO_{2,S}) and reference (CO_{2,R}) [CO₂] under a continuous, linear ramp in CO_{2,R}; possible because of the LI-6800 photosynthesis system. Following Stinziano et al., (2017) the linear relationship between sample and reference IRGA [CO₂] from a measurement with an empty chamber is used to correct *A*.

1

33
$$A_{\text{EMPTY}} = m \cdot \text{CO}_{2,\text{R}} + c$$

34
$$A_{\text{CORR}} = A_{\text{MEAS}} | \text{CO}_{2,\text{R}} - A_{\text{EMPTY}} | \text{CO}_{2,\text{R}}$$

Where A_{EMPTY} is the net CO₂ assimilation rate measured with the empty chamber; *m* and *c* are a slope and intercept respectively; A_{CORR} is the corrected, A_{MEAS} the measured, and A_{EMPTY} the apparent empty chamber net CO₂ assimilation rate. In addition, c_i must be corrected to match A_{CORR} . Substituting A_{CORR} for *A* in the manufacturer's equation:

39
$$c_{i,CORR} = \frac{\left(g_{tc} - \frac{E}{2}\right)CO_{2,R} - A_{CORR}}{\left(g_{tc} + \frac{E}{2}\right)}$$

Where g_{tc} is the total leaf conductance to CO₂, and *E* is the rate of transpiration. These corrections to *A* and c_i attempt to integrate correction of errors resulting from sources with different time constants: volume differences of the sample and reference flow paths, impacts of the particular flow rate used, physical distance between CO₂ injector and reference chamber, and cumulative calibration offsets (IRGA matching; Stinziano et al., 2017).

Experimental results suggest that RACiR measurements demonstrate a consistent offset towards lower CO₂ compensation points (Γ) (Fig. 1). This was tested using both a C₃ species (cowpea, *Vigna unguiculata*; Fig. 1a) and a species with C₄ photosynthesis, teff (*Eragrostis teff*), which we expected to show a compensation point close to zero. We found that the RACiR suggested an impossible, negative compensation point for teff (Fig. 1b). Returning to the data published by Stinziano et al., (2017) we also found unrealistic offsets in Γ (Fig. 1c).

To establish the importance of these offsets, the Farquhar et al., (1980) model (FvCB model) was fit to RACiR data of Stinziano et al., (2017) using 500-0 μ mol mol⁻¹ and 300-800 μ mol mol⁻¹ ramps in CO_{2,R}, compared with overlapping data for standard *A/c*_i measurements.

55
$$A = min(A_{\rm C}, A_{\rm J})\left(1 - \frac{\Gamma^*}{c_i}\right) - R_d$$

 $56 \qquad A_{\rm C} = V_{c,max} \frac{c_i}{c_i + K_{CO}}$

57
$$A_{\rm J} = J \frac{c_i}{4.5c_i + 10.5\Gamma^*}$$

 $A_{\rm C}$ is Rubisco-limited, $A_{\rm J}$ electron transport-limited CO₂ assimilation, and $R_{\rm d}$ dark 58 respiration. The parameters Γ^* (photorespiratory compensation point) and $K_{\rm CO}$ 59 $(K_{CO}=K_C(1+O/K_O))$: where K_C and K_O are temperature dependent, Rubisco Michaelis-60 Menten constants for CO_2 and O_2 ; and O is atmospheric oxygen concentration) were 61 obtained from Bernacchi et al., (2001). Estimating V_{cmax} , J and R_d from the data, led to 62 similar V_{cmax} and J for the two methods (Table 1). However, there were significant offsets in 63 R_d (-95%), Γ (-11%), and $c_{i,trans}$ (-13%) for RACiR measurements (Table 1), consistent with 64 the initial observation of an offset towards unrealistic Γ for C₄ and more negative Γ for C₃ 65 leaves measured using RACiR (Fig. 1). Notably, the estimate of R_d from the RACiR data was 66 $0.04\pm0.036 \mu$ mol m⁻² s⁻¹ (mean±s.e.m.), compared with 0.81±0.215 for traditional A/c_i 67 measurements (paired t-test: t = 3.98, d.f. = 5, P = 0.01). 68

Further model fits were undertaken to determine if estimates of V_{c,max} and J obtained 69 70 using RACiR were affected by assuming fixed values for all, or only some of the parameters Γ^* , K_{CO} and R_d . If none of the model's parameters were fixed, R_d tended to zero for both 71 72 RACiR and standard A/c_i measurements (Supplementary Table 1). When we constrained Γ^* , $K_{\rm CO}$, and $R_{\rm d}$ (based on the initial standard $A/c_{\rm i}$ fit that fixed Γ^* and $K_{\rm CO}$), $V_{\rm cmax}$ increased for 73 74 the RACiR, resulting in a significant difference compared with the standard A/c_i data (+6%; 75 Table 1). Differences in $c_{i,trans}$ and Γ also remained significant (Table 1). The difference in $c_{i,trans}$ increased from 13 to 16%, while the difference in Γ decreased dramatically from 11% 76 to almost zero, probably because of the proximity of Γ to Γ^* and R_d . 77

To establish the potential impact of RACiR offsets on Γ^* , we fit an FvCB model in 78 which only K_{CO} and R_d (as above) were held constant. As anticipated, Γ^* from the standard 79 A/c_i responses were close to (<0.01% greater than) values from Bernacchi et al., (2001; Table 80 1). By contrast, Γ^* from RACiR was 20% lower and paralleled the lower Γ (Table 1). 81 Compared with a model that fixed Γ^* , fitting Γ^* while holding R_d and K_{CO} constant resulted 82 83 in smaller differences in V_{cmax} (2.7% difference) and $c_{i,\text{trans}}$ (9% difference), while not inconsiderable in the case of $c_{i,trans}$ (39 µmol mol⁻¹), differences between RACiR and 84 standard A/c_i for these two parameters were not statistically significant. However, fitting Γ^* 85 to the data resulted in significantly lower J (6.5%) for the RACiR than the standard A/c_i . 86

87 To determine whether estimating both Γ^* and R_d affected the match between V_{cmax} 88 and *J* for the two techniques, a final fit was implemented fixing only the value of K_{CO} . This 89 decreased R_d for both measurement techniques and *J* estimated from RACiR data, resulting 90 in a significant (6%) difference between the standard and RACiR estimates of *J*. As expected,
91 Γ*, Γ and c_{i,trans} were also underestimated in RACiR data (Table 1).

These analyses show that for the dataset of Stinziano et al., (2017) fixing Γ^* and K_{CO} 92 for A/c_i fits results in reasonably close agreement of V_{cmax} and J for paired RACiR and 93 standard A/c_i measurements. Caution is still necessary, however, because the offsets in 94 RACiR measurements shown in Fig. 1 mean that RACiR tends to estimate V_{cmax} as higher 95 and J as lower than standard A/c_1 measurements. Since rates of flow, CO₂ ramping during 96 97 RACiR measurements, and instrument-specific match parameters could be factors 98 contributing to these offsets, we suggest that work using the RACiR technique should 99 incorporate ground-truthing controls that compare paired RACiR standard A/c_i 100 measurements. This will allow empirical corrections to be applied to RACiR offsets.

101 The standard A/c_i technique does take longer than RACiR. However, it allows modulated fluorescence measurements and estimation of mesophyll conductance and $c_{\rm c}$ by 102 the variable J method (Harley et al., 1992) that can separate variation in g_m from variation in 103 $V_{\rm cmax}$. For investigators focussed on understanding the biochemical factors limiting crop 104 photosynthesis and the impacts of rising [CO₂], it is particularly important to realise that 105 RACiR measurements can result in large underestimates of R_d , Γ , and $c_{i,trans}$. These offsets 106 will impact identification of biochemical factors limiting photosynthesis and affect analyses 107 that aim to partition the impacts of biochemical and stomatal limitations on photosynthesis. 108 Samuel H. Taylor¹, and Stephen P Long^{1,2} 109 ¹Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ 110

²Carl R. Woese Institute of Genomic Biology, University of Illinois, 1206 W Gregory Dr.,

112 Urbana, IL 61801, USA.

113 (email: slong@illinois.edu)

114 **References**

- Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR, Long SP. 2001. Improved temperature
 response functions for models of Rubisco-limited photosynthesis. *Plant, Cell & Environment*24: 253-259.
- 118 Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP. 2002. Temperature
- response of mesophyll conductance. Implications for the determination of Rubisco enzyme
- 120 kinetics and for limitations to photosynthesis *in vivo*. *Plant Physiology* **130**: 1992-1998.
- **Buckley TN, Diaz-Espejo A. 2015.** Partitioning changes in photosynthetic rate into
- 122 contributions from different variables. *Plant, Cell & Environment* **38:** 1200-1211.
- 123 Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic
- 124 CO₂ assimilation in leaves of C₃ species. *Planta* **149**: 78-90.
- 125 Farquhar GD, Sharkey TD. 1982. Stomatal conductance and photosynthesis. Annual
- 126 *Review of Plant Physiology* **33:** 317-345.
- 127 Harley PC, Loreto F, Di Marco G, Sharkey TD. 1992. Theoretical considerations when
- estimating the mesophyll conductance to CO₂ flux by analysis of the response of
- 129 photosynthesis to CO₂. *Plant Physiology* **98**: 1429-1436.
- Jones HG. 1985. Partitioning stomatal and non-stomatal limitations to photosynthesis. *Plant, Cell & Environment* 8: 95-104.
- 132 Kromdijk J, Long SP. 2016. One crop breeding cycle from starvation? How engineering
- crop photosynthesis for rising CO₂ and temperature could be one important route for
 alleviation. *Proceedings of the Royal Society B* 283: 20152578.
- Long SP, Bernacchi CJ. 2003. Gas exchange measurements, what can they tell us about the
 underlying limitations to photosynthesis? Procedures and sources of error. *Journal of Experimental Botany* 54: 2393-2401.
- **R Core Team. 2017.** *R: A language and environment for statistical computing. R Foundation*
- 139 for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (accessed 5th Apr
- 140 2018).

- 141 Rogers A, Medlyn BE, Dukes JS. 2014. Improving representation of photosynthesis in
- 142 Earth System Models. *New Phytologist* **204:** 12-14.
- 143 Stinziano JR, Morgan PB, Lynch DJ, Saathoff AJ, McDermitt DK, Hanson DT. 2017.
- 144 The rapid A- C_i response: photosynthesis in the phenomic era. *Plant, Cell & Environment* **40**:
- 145 1256-1262.
- 146 **Taylor SH, Long SP. 2017.** Slow induction of photosynthesis on shade to sun transitions in
- wheat may cost at least 21% of productivity. *Philosophical Transactions of the Royal Society*B 372: 20160543.
- 149
- 150 Key words: Photosynthesis, Rubisco, A/c_i, rising CO₂, CO₂ compensation point, global
- 151 change, crop adaptation, phenomics.

152 Figure Legends

- 153 **Figure 1**
- 154 Standard A/c_i (open) and RACiR (closed) measurements made for (a) cowpea (*Vigna*
- unguiculata); (b) the C₄ grass teff (*Eragrostis teff*); and (c) selected data for *Populus*
- 156 *deltoides* from Stinziano et al., (2017). Insets show the region around Γfor each set of
- 157 measurements. Measurements of *V. unguiculata* and *E. teff* used respective flow rates of 500
- and 600 μ mol s⁻¹; incident photosynthetic photon flux density (PPFD), 1500 μ mol m⁻² s⁻¹;
- air temperature, 30 °C; leaf vapour pressure deficit (VPD_{leaf}), 1.7 kPa; and chamber over-
- 160 pressure, 0.1 kPa. For *P. deltoides*: flow rate, 600 μ mol s⁻¹; leaf temperature, 25 °C; VPD_{leaf},
- 161 1.2 kPa; overpressure, 0.2 kPa (Stinziano et al., 2017)

162

Fixed parameters		$V_{\rm cmax}$	J	R _d	Γ^*	Г	C _{i,trans}	K _{CO}
$\Gamma^*, K_{\rm CO}$	standard A/ci	110±5.2	230±11	0.81±0.215	42.9	48.6±1.53	432±16.4	714
	RACiR	114±5.1	223±11	0.04±0.036	42.9	43.1±0.265	374±22.6	713
	Δ%	3.6	-3.0	-95.1	-	-11.3	-13.4	-
	P (paired t-test, d.f.=5)	0.223	0.273	0.011	-	0.011	0.016	-
$\Gamma^*, K_{\rm CO}, R_{\rm d}$	standard A/c _i	110±5.3	230±11.3	0.81	42.9	48.58±0.284	434±19.5	714
	RACiR	117±5.3	228±11	0.81	42.9	48.16±0.226	364±22.6	713
	Δ%	6.4	-0.01	-	-	-0.01	-16.1	-
	P (paired t-test, d.f.=5)	0.014	0.585	-	-	0.029	0.006	-
$K_{ m CO}, R_{ m d}$	standard A/c _i	110±5.1	231±11	0.81	43.2±1.44	48.9±1.49	431±15.6	714
	RACiR	113±4.6	216±10	0.81	34.2±1.09	39.7±1.25	392±21.1	713
	Δ%	2.7	-6.5	-	-20.8	-18.8	-9.0	-
	P (paired t-test, d.f.=5)	0.341	0.033	-	4×10 ⁻⁵	2×10 ⁻⁵	0.056	-
K _{CO}	standard A/ci	110±5	232±12	0.34±0.262	46.2±1.68	48.7±1.47	428±16.7	714
	RACiR	112±4.5	218±11	0.3±0.31	37.5±2.75	39.8±1.22	389±20.2	713
	Δ%	1.8	-6	-11.8	-18.8	-18.3	-9.1	-
	P (paired t-test, d.f.=5)	0.377	0.026	0.934	0.021	3×10 ⁻⁵	0.049	-

163 **Table 1** Parameter choice affects statistical outcomes when comparing standard A/c_i and RACiR measurements made by Stinziano et al., (2017).

164 Using the R Language and Environment (R Core Team, 2017) function *optim*, the residual sum of squares (RSS) for $A_{\rm C}$ and $A_{\rm J}$ was used to 165 establish best fitting parameter combinations with $c_{\rm i,trans}$ values from 50 to 499 µmol mol⁻¹, then RSS was used to further select the $c_{\rm i,trans}$ at 166 which the optimisation had produced the best fit.

Supplementary Material

Phenotyping Photosynthesis on the Limit – A critical examination of RACiR

Samuel H. Taylor¹, and Stephen P Long^{1,2}

¹Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ

²Carl R. Woese Institute of Genomic Biology, University of Illinois, 1206 W Gregory Dr., Urbana, IL 61801, USA.

(email: slong@illinois.edu)

Supplementary Table 1 FvCB model fits made allowing all parameters to be estimated from the data, for six paired measurements from the Supplementary data of Stinziano et al., (2017).

ID	Data	$V_{\rm cmax}$	J	Rd	Γ*	Kco	Γ	C _{i.trans}
	collection							
	method							
LI1A	Standard	102	262	0	49.1	553	49.1	472
	RACiR	98	240	0	40.6	500	40.6	389
LI1B	Standard	75	180	0.9	41.5	547	48.4	411
	RACiR	91	175	2.7	22.1	588	41.1	350
LI1C	Standard	118	238	0	50.7	786	50.7	425
	RACiR	109	221	0	39.8	709	39.8	411
LI2A	Standard	99	256	0	48.1	500	48.1	410
	RACiR	103	262	0	41.8	500	41.8	427
LI2B	Standard	97	232	0	52.3	598	52.3	417
	RACiR	87	206	0	45.2	500	45.2	340
LI2C	Standard	124	233	1.1	42.5	900	50.9	476
	RACiR	118	218	0	42.1	884	42.1	450