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Theory of Electron, Phonon and Spin Transport
in Nanoscale Quantum Devices

Hatef Sadeghi
Physics Department, Lancaster University, Lancaster LA1 4YB, UK

At the level of fundamental science, it was recently demonstrated that molecular wires can mediate long-range phase-coherent
tunnelling with remarkably low attenuation over a few nanometre even at room temperature. Furthermore, a large mean free path
has been observed in graphene and other graphene-like two-dimensional materials. These create the possibility of using quantum and
phonon interference to engineer electron and phonon transport through nanoscale junctions for wide range of applications such as
molecular switches, sensors, piezoelectricity, thermoelectricity and thermal management. To understand transport properties of such
devices, it is crucial to calculate their electronic and phononic transmission coefficients. The aim of this tutorial article is to outline
the basic theoretical concepts and review the state-of-the-art theoretical and mathematical techniques to treat electron, phonon and
spin transport in nanoscale molecular junctions. This helps not only to explain new phenomenon observed experimentally but also
provides a vital design tool to develop novel nanoscale quantum devices.

Index Terms—Molecular electronics, Nanoelectronics, Theory and modelling, Quantum interference, Phonon interference

I. INTRODUCTION: MOLECULAR ELECTRONICS

THE silicon-based semiconductor industry is facing a
grave problem because of the performance limits imposed

on semiconductor devices when miniaturized to nanoscale [1].
To counter this problem, new nanoscale materials such as car-
bon nanotubes, graphene and transition metal dichalcogenide
monolayers have been proposed [2]. Alternatively, the idea
of using single molecules as building blocks to design and
fabricate molecular electronic components has been around
for more than 40 years [3], but only recently has it attracted
huge scientific interest to explore their unique properties and
opportunities. Molecular electronics including self-assembled
monolayers [4] and single-molecule junctions [5] are of inter-
est not only for their potential to deliver logic gates [6], sensors
[7], and memories [8] with ultra-low power requirements
and sub-10-nm device footprints, but also for their ability to
probe room-temperature quantum properties at the molecular
scale such as quantum interference [9] and thermoelectricity
[10, 11]. There are five main area of research in molecular-
scale electronics [5] namely: molecular mechanics, molecular
optoelectronics, molecular electronics, molecular spintronics
and molecular thermoelectrics.

By studying electron and phonon transport across a junction
consisting of two or more electrodes connected to a single or
few hundred molecules, one could study the electrical and
mechanical properties of nanoscale junctions such as molec-
ular electronic building blocks, sensors, molecular spintronic,
thermoelectric, piezoelectric and optoelectronic devices. For
example, when a single molecule is attached to metallic
electrodes, de Broglie waves of electrons entering the molecule
from one electrode and leaving from the other form a complex
interference pattern inside the molecule. These patterns could
be utilized to optimize the single-molecule device performance
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[6]. In addition, the potential of such junctions for removing
heat from nanoelectronic devices (thermal management) and
thermoelectrically converting waste heat into electricity has re-
cently been recognized [10]. Indeed, electrons passing through
single molecules have been demonstrated to remain phase
coherent, even at room temperature. In this tutorial, the aim is
to outline the basic theoretical concepts and review theoretical
and mathematical techniques to model electron, phonon and
spin transport in nanoscale molecular junctions. This helps
not only to understand the experimental observations but also
provides a vital design tool to develop strategies for molecular
electronic building blocks, thermoelectric devices and sensors.

Transport on the molecular scale: Any nanoscale device
consists of two or more electrodes (leads) connected to a
scattering region (figure 1). Electrodes are perfect wave-
guides where electrons and phonons can transmit without any
scattering. The main scattering occurs either at the interface
to leads or inside scattering region. The goal is to understand
the electrical and vibrational properties of nano and molecular
junctions where a nanoscale scatter or a molecule is bonded
to electrodes with strong or weak coupling in the absence
or presence of surroundings, such as an electric field (e.g.
gate and bias voltages or local charge), a magnetic field, a
laser beam or a molecular environment (e.g. water, gases,
biological spices, donors and acceptors). There are different
approaches to study the electronic and vibrational properties
of molecular junctions such as semi-classical methods [12–14],
kinetic theory of quantum transport [15], scattering theory [16]
and master equation approach [17]. In this paper, our focus is
mostly on the scattering theory based on the Green’s function
formalism and the master equation approach.

Here, we begin with the Schrödinger equation and relate
it to the physical description of a matter at the nano and
molecular scale. Then we will discuss the definition of the
current using the time-dependent Schrödinger equation and
introduce density functional theory (DFT) and a tight binding
description of quantum system. The scattering theory and non-
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Fig. 1. A scattering region is connected to reservoirs trough ballistic leads.
Reservoirs have slightly different electrochemical potentials to drive electrons
from the left to right leads. All inelastic relaxation process take place in the
reservoirs and transport in the leads are ballistic.

equilibrium Green’s function method are discussed and differ-
ent transport regimes (on and off resonances) are considered.
One dimensional system and a more general multi-channel
method are derived to calculate transmission coefficient T (E)
for electrons (phonons) with energy E (~ω) traversing from
one electrode to the other through a scattering region. We then
briefly discuss the master equation method to model transport
in the Coulomb and Franck-Condon blockade regimes. We
follow with a discussion of the physical interpretation of
quantum systems including charge, spin and thermal cur-
rents, phonon thermal conductance, electron-phonon interac-
tion, piezoelectric response, inclusion of a Gauge field and
superconducting systems. Furthermore, environmental effects
and different techniques used to model the experiment are
discussed.

II. SCHRÖDINGER EQUATION

The most general Schrödinger equation [18] describes the
evolution of physical properties of a system in time and was
proposed by the Austrian physicist Erwin Schrödinger in 1926
as:

i~
∂

∂t
Ψ(r, t) = ĤΨ(r, t) (1)

where i =
√
−1, ~ is the reduced Planck constant (h/2π), Ψ is

the wave function of quantum system, r and t are the position
vector and time respectively, and Ĥ is the Hamiltonian oper-
ator which characterizes the total energy of any given wave
function. For a single particle moving in an electric field, the
non-relativistic Schrödinger equation reads as:

i~
∂

∂t
Ψ(r, t) = [

−~2

2m
52 +V (r, t)]Ψ(r, t) (2)

where m is the particle’s reduced mass, V is its potential
energy and 52 is the Laplacian. If we assume that the
Hamiltonian is time-independent and write the wavefunction
as a product of spatial and temporal terms: Ψ(r, t) = ψ(r)θ(t),
the Schrödinger equation become two ordinary differential
equations:

1

θ(t)

d

dt
θ(t) = − iE

~
(3)

and
Ĥψ(r) = Eψ(r) (4)

where Ĥ = −~2

2m 5
2 +V (r). Note that this is not a solution if

the Hamiltonian is time-dependent e.g. when a laser is shined
to a system or an AC high frequency voltage is applied in
which V (r) is varied by time and a time-dependent DFT
should be considered [19]. The solution of equation 3 could
be written as: θ(t) = e−iEt/~. The amplitude of θ(t) does not
change with time and therefore the solutions θ(t) are purely
oscillatory. The total wave function

Ψ(r, t) = ψ(r)e−iEt/~ (5)

differs from ψ(r) only by a phase factor of constant magnitude
and the expectation value |Ψ(r, t)|2 is time-independent. Of
course equation 5 is a particular solution of the time-dependent
Schrödinger equation. The most general solution is a linear
combination of these particular solutions as:

Ψ(r, t) =
∑
i

φie
−iEit/~ψi(r) (6)

In time independent problems, the spatial part needs to be
solved only, since the time dependent phase factor in equa-
tion 5 is always the same. Equation 4 is called the time-
independent Schrödinger equation and it is an eigenvalue
problem where E’s are eigenvalues of the Hamiltonian Ĥ .
Since the Hamiltonian is a Hermitian operator, the eigenvalues
E are real. ψ(r) describes the standing wave solutions of
the time-dependent equation, which are states with definite
energies called ”stationary states” or ”energy eigenstates”
in physics and ”atomic orbitals” or ”molecular orbitals” in
chemistry.

The Schrödinger equation must be solved subject to ap-
propriate boundary conditions. Since electrons are fermions,
the solution must satisfy the Pauli exclusion principle
and wavefunctions ψ must be well behaved everywhere.
The Schrödinger equation can be solved analytically for a
few small systems e.g the hydrogen atom. However, the
Schrödinger equation is too complex in most cases to be
solved even with the best supercomputers available today.
Therefore, some approximations are needed [20] such as the
Born-Oppenheimer approximation to decouple the movement
of electrons and nuclei; density functional theory (DFT) to
describe electron - electron interactions and pseudopotentials
to treat nuclei and core electrons except those in the valence
band. We will briefly discuss these approximations in the next
section. A more detailed discussion can be found elsewhere
[20]. To describe transport through molecules or nanoscale
matters, one needs to build a simple tight-binding Hamiltonian
using Hückel parameters or use DFT to construct the material
specific mean-field Hamiltonian.

To reduce the size of Hamiltonian, it is appropriate to define
basis functions where

Ψ(r) =
∑
i

φiψi(r) (7)
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The wavefunction can then be represented by a column vector
|φ〉 consisting of the expansion coefficients φi. The time-
independent Schrödinger equation could be written as a matrix
equation:

[H]|φ〉 = E[S]|φ〉 (8)

where
Sij = 〈i|j〉 =

∫
drψ∗j (r)ψi(r) (9)

and
Hij = 〈i|H|j〉 =

∫
drψ∗j (r)Hψi(r) (10)

The evaluation of these integrals is the most time-consuming
step, but once [H] and [S] are obtained, the eigenvalues En
and eigenvectors φn are easily calculated. If 〈i| and |j〉 are
orthogonal then Sij = δij where δij is the Kronecker delta
(δij = 1 if i = j and δij = 0 if i 6= j). Note that a system with
the Hamiltonian H and overlap matrix S obtained using non-
orthogonal basis could be transformed to a new Hamiltonian
H̄ = S−1/2×H×S−1/2 with orthogonal basis (S̄ = I where
I is the Identity matrix.)

A. Density functional theory (DFT)

In order to understand the behavior of molecular electronic
devices, it is necessary to possess a reliable source of structural
and electronic information. A solution to the many body
problem has been sought by many generations of physicists.
The task is to find the eigenvalues and eigenstates of the full
Hamiltonian operator of a system consisting of nuclei and
electrons as shown in figure 2. Since this is not practically
possible for the systems bigger than a few particles, some ap-
proximations are needed. The atomic masses are roughly three
orders of magnitudes bigger than the electron mass, hence the
Born-Oppenheimer approximation [20] can be employed to
decouple the electronic wave function and the motion of the
nuclei. In other words, we solve the Schrödinger equation for
the electronic degrees of freedom only. Once we know the
electronic structure of a system, we can calculate classical
forces on the nuclei and minimize these forces to find the
ground-state geometry (figure 2a).

Once the Schrödinger equation was solved, the wavefunc-
tion is known and all physical quantities of intereste could
be calculated. Although the Born-Oppenheimer approximation
decouple the electronic wave function and the motion of the
nuclei, the electronic part of the problem has reduced to
many interacting particles problem which even for modest
system sizes i.e. a couple of atoms, its diagonalization is
practically impossible even on a modern supercomputer. The
virtue of density functional theory DFT [20, 21] is that it
expresses the physical quantities in terms of the ground-state
density and by obtaining the ground-state density, one can in
principle calculate the ground-state energy. However, the exact
form of the functional is not known. The kinetic term and
internal energies of the interacting particles cannot generally
be expressed as functionals of the density. The solution is
introduced by Kohn and Sham in 1965. According to Kohn and
Sham, the original Hamiltonian of the many body interacting

system can be replaced by an effective Hamiltonian of non-
interacting particles in an effective external potential, which
has the same ground-state density as the original system as
illustrated in figure 2a. The difference between the energy of
the non-interacting and interacting system is referred to the
exchange correlation functional (figure 2a).

Exchange and correlation energy: There are numerous
proposed forms for the exchange and correlation energy Vxc
in the literature [20, 21]. The first successful - and yet simple
- form was the Local Density Approximation (LDA) [21],
which depends only on the density and is therefore a local
functional. Then the next step was the Generalized Gradient
Approximation (GGA) [21], including the derivative of the
density. It also contains information about the neighborhood
and therefore is semi-local. LDA and GGA are the two
most commonly used approximations to the exchange and
correlation energies in density functional theory. There are also
several other functionals, which go beyond LDA and GGA.
Some of these functionals are tailored to fit specific needs
of basis sets used in solving the Kohn-Sham equations and a
large category are the so called hybrid functionals (eg. B3LYP
[22], HSE [23] and Meta hybrid GGA [22]), which include
exact exchange terms from Hartree-Fock. One of the latest
and most universal functionals, the Van der Waals density
functional (vdW-DF [24]), contains non-local terms and has
proven to be very accurate in systems where dispersion forces
are important.

Pseudopotentials: Despite all simplifications shown in fig-
ure 2, in typical systems of molecules which contain many
atoms, the calculation is still very large and has the po-
tential to be computationally expensive. In order to reduce
the number of electrons, one can introduce pseudopotentials
which effectively remove the core electrons from an atom.
The electrons in an atom can be split into two types: core and
valence, where core electrons lie within filled atomic shells
and the valence electrons lie in partially filled shells. Together
with the fact that core electrons are spatially localized about
the nucleus, only valence electron states overlap when atoms
are brought together so that in most systems only valence
electrons contribute to the formation of molecular orbitals.
This allows the core electrons to be removed and replaced
by a pseudopotential such that the valence electrons still feel
the same screened nucleon charge as if the core electrons
were still present. This reduces the number of electrons in a
system dramatically and in turn reduces the time and memory
required to calculate properties of molecules that contain a
large number of electrons. Another benefit of pseudopotentials
is that they are smooth, leading to greater numerical stability.

Basis Sets: In order to turn the partial differential equations
(e.g. the Schrödinger equation 1) into algebraic equations
suitable for efficient implementation on a computer, a set
of functions (called basis functions) is used to represent the
electronic wave function. For a periodic system, the plane-
wave basis set is natural since it is, by itself, periodic.
However, to construct a tight-binding Hamiltonian, we need to
use localised basis sets discussed in the next section, which are
not implicitly periodic. An example is a Linear Combination
of Atomic Orbital (LCAO) basis set which are constrained to
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Fig. 2. From many-body problem to density functional theory DFT. (a) Born-Oppenheimer approximation, Hohenberg-Kohn theorem and Kohn-Sham ansatz,
(b) Schematic of the DFT self-consistency process.

be zero after some defined cut-off radius, and are constructed
from the orbitals of the atoms.

Mean-field Hamiltonian from DFT: To obtain the ground
state mean-field Hamiltonian of a system from DFT, the calcu-
lation is started by constructing the initial atomic configuration
of the system. Depending on the applied DFT implementation,
the appropriate pseudopotentials for each element which can
be different for every exchange-correlation functional might be
needed. Furthermore, a suitable choice of the basis set has to
be made for each element present in the calculation. The larger

the basis set, the more accurate our calculation - and, of course,
the longer it will take. With a couple of test calculations
we can optimize the accuracy and computational cost. Other
input parameters are also needed that set the accuracy of the
calculation such as the fineness and density of the k-grid points
used to evaluate the integral([21, 25]). Then an initial charge
density assuming no interaction between atoms is calculated.
Since the pseudopotentials are known, this step is simple and
the total charge density will be the sum of the atomic densities.

The self-consistent calculation [21] (figure 2b) starts by
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calculating the Hartree and exchange correlation potentials.
Since the density is represented in real space, the Hartree
potential is obtained by solving the Poisson equation with the
multi-grid or fast Fourier-transform method. Then the Kohn-
Sham equations are solved and a new density is obtained. This
self-consistent iterations end when the necessary convergence
criteria are reached such as density matrix tolerance. Once the
initial electronic structure of a system was obtained, the forces
on the nucleis is calculated and a new atomic configuration to
minimize these forces obtained. New atomic configuration is
the new initial coordinate for the next self-consistent calcula-
tion. This structural optimization is controlled by the conjugate
gradient method for finding the minimal ground state energy
and the corresponding atomic configuration [21]. From the
obtained ground state geometry of the system, the ground state
electronic properties of the system such as the total energy,
the binding energies between different part of the system, the
density of states, the local density of states, the forces could
be calculated. It is apparent that the DFT could potentially
provide an accurate description of the ground state properties
of a system such as the total energy, the binding energy and
the geometrical structures. However, all electronic properties
related to excited states are less accurate within DFT.

B. Tight-Binding Model

By expanding wave function over a finite set of atomic
orbitals, Hamiltonian of a system can be written in a tight-
binding model. The main idea is to represent the wave function
of a particle as a linear combination of some known localized
states. A typical choice is to consider a linear combination
of atomic orbitals (LCAO). If the LCAO basis is used within
DFT, the Hamiltonian H and overlap S matrices used within
the scattering calculation (section III) could be directly ex-
tracted. However, if a plane-wave DFT code is used, a LCAO-
like based Hamiltonian could be constructed using Wannier
functions. For a periodic system where the wave function is
described by a Bloch function, equation 8 could be written as∑

β,c′

Hα,c;β,c′φβ,c′ = E
∑
β,c′

Sα,c;β,c′φβ,c′ (11)

where c and c′ are the neighboring identical cells containing
states α and

Hα,c;β,c′ = Hα,β(Rc −Rc′) (12)

and

φβ,c = φβe
ik.Rc . (13)

Equation 11 could be written as∑
β

Hαβ(k)φβ = E
∑
β

Sαβ(k)φβ (14)

where

Hαβ(k) =
∑
c′

Hαβ(Rc −Rc′)eik(Rc−Rc′ ) (15)

and

Sαβ(k) =
∑
c′

Sαβ(Rc −Rc′)eik(Rc−Rc′ ) (16)

More generally, the single-particle tight-binding Hamiltonian
in the Hilbert space formed by |Rα〉 could be written as:

H =
∑
α

(εα + eVα)|α〉〈α|+
∑
αβ

γαβ |α〉〈β| (17)

where εα is the corresponding on-site energy of the state |α〉,
Vα is the electrical potential and γαβ are the hopping matrix
elements between states |α〉 and |β〉.

Simple TB Hamiltonian: For conjugated hydrocarbons, the
energy of molecular orbitals associated with the π electrons
could be determined by a very simple LCAO molecular or-
bital method called Hückel molecular orbital method (HMO).
Therefore, a simple TB description of system could be con-
structed by assigning a Hückel parameter to on-site energy
εα of each atom in the molecule connected to the nearest
neighbours with a single Hückel parameter (hopping matrix
element) γαβ . Obviously, more complex TB models could be
made using HMO by taking the second, third, forth or more
nearest neighbours hopping matrix elements into account.

It is worth mentioning that once a material specific LCAO
mean-field DFT or a simple HMO Hamiltonians (described
in this section) were obtained, electron and spin transport
properties of a junction can be calculated.

1) Two level system
As a simplest example, consider a close system of two

single-orbital sites with on-site energies ε and −ε coupled to
each other by the hoping integral γ. The Hamiltonian of such

system is written as: H =

(
ε γ
γ∗ −ε

)
, so the Schrödinger

equation reads: (
ε γ
γ∗ −ε

)(
ψ
φ

)
= E

(
ψ
φ

)
(18)

The eigenvalues E are calculated by solving det(H−EI) = 0

where I =

(
1 0
0 1

)
is the identity matrix.

E± = ±
√
ε2 + |γ|2 (19)

E− and E+ are called the bonding and anti-bonding states.

There must be two orthogonal eigenvectors
(
ψ+

φ+

)
and

(
ψ−
φ−

)
corresponding to each eigenvalue. By substituting equation 19
into equation 18,

ψ±
φ±

=
γ

E± − ε
=
E± + ε

γ∗
(20)

If ε = 0 and E = ±γ, simplest normalised eigenstates could
be written as:(

ψ+

φ+

)
=

1√
2

(
1
1

)
,

(
ψ−
φ−

)
=

1√
2

(
1
−1

)
(21)

If γ = 0 and E = ±ε, the wave functions are fully localised
on each site:(

ψ+

φ+

)
=

1√
2

(
0
1

)
,

(
ψ−
φ−

)
=

1√
2

(
1
0

)
(22)
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Fig. 3. One dimensional (1D) infinite chain. (a) hydrogen atoms in an infinite
chain with one orbital per atom, (b) 1D balls and springs, (c,d) electronic and
phononic band structures and (e,f) density of states (DOS) of a and b.

Effective Hamiltonian: The solution of the two level
system can be used to obtain solutions of a larger system.
For a given N × N Hamiltonian H , a new effective energy
dependent (N − 1) × (N − 1) Hamiltonian Ĥ(E) could be
obtained by decimating a given site p,

Ĥij(E) = Hij +
HipHpj

E −Hpp
(23)

Therefore, any N ×N Hamiltonian H of an arbitrary system
with N site could be reduced to 2 × 2 energy dependent
effective Hamiltonian Ĥ(E) by decimating all sites but two
sites of interest using equation 23.

2) One dimensional (1D) infinite chain
Consider an infinite linear chain of hydrogen atoms shown

in figure 3a. A single orthogonal orbital nearest neighbor tight
binding Hamiltonian of such system with on-site energies
〈j|H|j〉 = ε0 and the hopping matrix elements 〈j|H|j±1〉 =
〈j ± 1|H|j〉 = −γ could be written as:

H =
∑
j

ε0|j〉〈j| −
∑
j,j+1

γ|j〉〈j + 1| −
∑
j−1,j

γ|j− 1〉〈j| (24)

Therefore the Schrödinger equation reads

ε0φj − γφj−1 − γφj+1 = Eφj (25)

where −∞ < j < +∞. The solution of this equation could
be obtained using the Bloch function as

|φk〉 =
1√
N

∑
j

eik̄ja0 |j〉 (26)

and

E(k) = ε0 − 2γcos(k) (27)

where k = k̄a0 is the dimensionless wave vector and
−π/a0 < k̄ < π/a0 in the first Brillouin zone. Equation
27 is called a dispersion relation (E − k) or electronic band-
structure of a 1D chain. Since −1 < cos(k) < 1, hence
ε0 − 2γ < E < ε0 + 2γ; therefore the bandwidth is 4γ.

In the bottom of the band around Emin (figure 3c), by
Taylor expansion of equation 27, a parabolic band structure is
obtained: E(k) ≈ ε0 − 2γ + γk2. Comparing this with a free
electron parabolic band structure E(k) = ε0−2γ+~/2m∗k2,
γ = ~/2m∗ is inversely proportional to the effective mass m∗.
This implies that electrons in a system with smaller (larger)
bandwidth are heavier (lighter).

The band structure of a perfect 1D chain (equation 27) is a
continuous function and does not have any energy band gap.
Therefore, electrons injected to a 1D chain transmit perfectly
within the bandwidth (metal). However, 1D metallic chain
does not exist in reality. The reason is, if a band gap was
opened (e.g. by mechanical force), all energy levels below
valance band move down and therefore, total energy of the
system decreases leading to a more stable structure (Peierls
distortion). Unless gained electric energy is higher than lost
mechanical energy needed to distort the system, this will
continue. Therefore, atoms in a 1D crystal oscillate, so that
the perfect order is broken.

Density of States: From the dispersion relation (e.g. equa-
tion 27), one can obtain the density of states (DOS) using:

D(E) =
∑
k̄

δ(E − λk̄) (28)

where λk̄ are the eigenvalues of the system, δ is Kronecker
delta and k̄ ≡ kx, ky, kz where

∑
kp
→
∫ +∞
−∞ dkp/2π. From

the dispersion relation (equation 27), DOS of a 1D chain is
obtained as: D(E) = dk/πdE = 1/2πγsin(k). At k = ±π
where E = ε ± 2γ (close to the band edges), D → ∞. This
singularity in the DOS called Van Hove singularity. Figure 3a
shows the band structure and the DOS of a infinite 1D chain.

1D balls and springs: We have yet discussed the electronic
properties of a quantum system e.g. 1D chain. Now consider
a chain of atoms with mass m connected to the next nearest
neighbours with the springs with spring-constant K = −γ as
shown in figure 3. On the one hand, the derivative of the energy
U with respect to the position x describes forces on a particular
atom (F = − ∂

∂xU ). Provided a local minimum is reached, one
can expand the potential energy about this minimum in terms
of the powers of atomic displacements. Since all forces on
all atoms are zero, the Taylor expansion does not have linear
terms. By neglecting higher orders (harmonic approximation),
F = −∂

2U
∂x2 x = −Kx. Note that being at a local minimum,

the matrix of second derivatives must be positive definite,
and thus will have only positive eigenvalues. On the other
hand, from Newton’s second law F = −md2x

dt2 . Therefore, the
Schrödinger-like equation could be written as:

−md2xn
dt2

= −K[2xn − xn−1 − xn+1] (29)

Similar to what was discussed above, using xn(t) =
Aei(kn−ωt), equation 29 reads −mω2 = −K[2− e−ik − eik]
and therefore the phononic dispersion relation of a 1D chain
of ball and springs (figure 3b) is obtained as

ω(k) =

√
2γ − 2γcosk

m
(30)
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Fig. 4. 1D finite chain and ring. The energy levels and corresponding wave functions or orbitals for 1D finite chain and ring. The phononic mode for a finite
chain of balls and springs with mass m.

Comparing equations 27 and 30, it is apparent that equation 30
is obtained by changing E → ω2 and ε0 → 2γ/m in equation
27. ε0 = 2γ/m is the negative of sum of all off-diagonal
terms of 1D chain TB Hamiltonian which make sense to satisfy
translational invariance. Therefore, Schrödinger equation-like
relation for phonons could be written as

ω2ψ = Dψ (31)

where D = −K/M is the dynamical matrix, M is the mass
matrix and K is Hessian matrix calculated from the force
matrix.

3) One dimensional (1D) finite chain and ring
To analyse the effect of boundary conditions in the solution

of the Schrödinger equation, consider three examples shown in
figure 4. As the first example, consider a 1D finite chain of N
atoms. As a consequence of introducing boundary conditions
at the two ends of the chain, the energy levels and states are
no longer continuous in the range of ε0 − 2γ < E < ε0 +
2γ; instead there are discrete energy levels with corresponding
states in this range. This is obtained by writing the Schrödinger
equation in 1 < j < N (equation 25) and at the boundaries
j = 1 and j = N . At j = 1 the Schrödinger equation reads

ε0φ1 − γφ2 = Eφ1 (32)

and at j = N
ε0φN − γφN−1 = EφN (33)

using the Bloch function φj = eikj + ce−ikj , the solution for
the 1D finite chain problem is obtained as:

φj =

√
2

N + 1
sin(

nπ

N + 1
j) (34)

where n ∈ [1, ..., N ]. Similarly, solutions of 1D finite ring of
N atom could be obtained (figure 4) as:

φj =
1√
N
e

2nπ
N j (35)

where n ∈ [0, ..., N −1]. Clearly, the allowed energy levels of
1D finite chain is different than 1D ring. This demonstrates that
a small change in a molecular system may significantly affect
the energy levels and corresponding orbitals. This becomes
more important when few number of atoms was investigated
e.g. the molecules, so two very similar molecules may show
different electronic properties.

Figure 4 also shows a solution for a phononic toy model
consist of N ball connected to each other by springs with
spring constant −γ.

φj = A cos(
nπj

N
− nπ

2N
) (36)

where n ∈ [0, ..., N − 1], A = 1/
√
N for n = 0 and A =

1/
√

2N , otherwise. Note that to satisfy translational invariance
condition, the diagonal terms in dynamical matrix are +2γ
except in the boundaries (j = 1 and j = N ) where they are
+γ.

4) Two dimensional (2D) square and hexagonal lattices
In section II-B2, the band-structure and density of states

of a 1D chain were calculated. Now let’s consider two most
used 2D lattices: a square lattice where the unit-cell consist
of one atom is connected to the first nearest neighbour in two
dimensions (figure 5a) and a hexagonal lattice where a unit
cell consist of two atoms is connected to the neighbouring
cells in which first (second) atom in a cell is only connected
to the second (first) atom in any first nearest neighbour cell
(figure 5b). The TB Hamiltonian and corresponding band-
structure could be calculated [12–14] using equation 17 and
the Bloch wave function of the form Aeikxj+ikyl (figure 5).
The Schrödinger equation for two dimensional square lattice
(figure 5a) with on-site energies ε0 and hopping integrals γ
could be written as:

ε0φj,l−γφj,l−1−γφj,l+1−γφj−1,l,−γφj+1,l = Eφj,l (37)
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Fig. 5. Two dimensional square and hexagonal lattices. Lattice geometry of (a) square and (e) hexagonal lattices, the bandstructure of (b,c) square and (f,g)
hexagonal lattices and the number of conduction channels in (d) square and (h) hexagonal lattices.

Using the Bloch function φj,l = Aeikxj+ikyl, the band
structure of the 2D square lattice is obtained:

E = ε0 − 2γ(cos kx + cos ky) (38)

Using similar approach, the band structure of a hexagonal
lattice (e.g. graphene) could be obtained as:

E = ε0 ± γ
√

1 + 4cos kx cos ky + 4cos2 ky (39)

Figures 5b,c,f,g show the bandstructure of the square and
hexagonal lattices. The number of conduction channels (fig-
ures 5d,h) could be calculated from the band structure of
a crystalline system as we will discuss later in section III.
Graphene is a semimetal and can be used as electrodes to
probe molecules [7, 9, 26, 27].

C. Current carried by a Bloch function

The time evolution of density matrix ρt = |ψt〉〈ψt| allows
us to obtain current associated with a particular quantum state
|ψt〉. Using the time-dependent Schrödinger equation 1,

I =
d

dt
|ψt〉〈ψt| =

1

i~
[H|ψt〉〈ψt| − |ψt〉〈ψt|H] (40)

By expanding |ψt〉 over orthogonal basis |j〉 equation 40 could
be written as:

dρt
dt

=
1

i~
[
∑
jj′

H|j〉〈j′|ψjψ∗j′ −
∑
jj′

|j〉〈j′|Hψjψ∗j′ ] (41)

Current carried by a Bloch function in a 1D chain: For a
1D infinite chain with the Hamiltonian of the form of equation
24, the rate of change of charge Il = dρlt/dt at site l could
be obtained by calculating the expectation value of both side
of equation 41 over the state |l〉

dρlt
dt

=
1

i~
[
∑
jj′

〈l|H|j〉〈j′|l〉ψjψ∗j′ −
∑
jj′

〈l|j〉〈j′|H|l〉ψjψ∗j′ ]

(42)
which could be simplified as

dρlt
dt

= Il+1→l + Il−1→l (43)

where

Il+1→l = − 1

i~
[〈l|H|l+1〉ψl+1ψ

∗
l −〈l+1|H|l〉ψlψ∗l+1] (44)

and

Il−1→l = − 1

i~
[〈l|H|l−1〉ψl−1ψ

∗
l −〈l−1|H|l〉ψlψ∗l−1] (45)

These equations could be rewritten as:

Il+1→l = −2γ

~
Im(ψ∗l+1ψl) (46)

and
Il−1→l = −2γ

~
Im(ψ∗l−1ψl) (47)

The charge density is changing at atom site l as a result of
two currents: right moving electrons Il+1 → l and left moving
electrons Il−1 → l. The corresponding current to a Bloch state
ψj(t) = eikj−iE(k)t/~ are:

Il+1→l = −vk (48)

and
Il−1→l = +vk (49)

where vk = ∂E(k)/~∂k = 2γsin(k)/~ is the group velocity.
Note that this defines the time that a wave-package need
to move from one site to another e.g. l + 1 → l, so the
actual group velocity is vk × a, where a is the spacing
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between the sites. Although the individual currents are non-
zero and proportional to the group velocity, the total current
I = Il+1→l + Il−1→l for a pure Bloch state is zero due to
an exact balance between left and right going currents. It is
worth to mention that to simplify the notation, a Bloch state
eikj is often normalized with its current flux 1/

√
vk calculated

from equations 48 and 49 to obtain a unitary current. Hence
we will mostly use a normalized Bloch state eikj/

√
vk in

later derivations. Furthermore, one important consequence of
equations 46 and 47 is that if ψj = Aeikj +Be−ikj , although
the charge density ρj = |ψj |2 is oscillating by j, the current is
not oscillating by j and it is equal to the sum of the individual
currents at site l only, Im(ψ∗l ψl+1) = |A|2sink − |B|2sink
due to the Aeikl and Be−ikl.

Initial states are usually assumed to be stationary. However,
if a non-stationary initial state was prepared in a closed (iso-
lated) system such as a finite 1D chain of N atom, the charge
density would be time-dependent (oscillatory) and therefore,
current could be defined. As an example, for a system of
two atoms coupled to each other by −γ, Hamiltonian reads
H =

( 0 −γ
−γ 0

)
. If the initial states are ψ1(t) =

(
1
0

)
and

ψ2(t) =
(

0
1

)
which are non-stationary states, the final state

is obtained ψ(t) = ψ1(t) + ψ2(t) =
( cos(γt/~)
isin(γt/~)

)
which is

not stationary. For such a closed system, the current could be
obtained from equations 44 and 45.

D. Parr-Pariser-Pople (PPP) Hamiltonian

Equation 17 described a non-interacting Hamiltonian which
could also be written in the form of

H =
∑
i

εini +
∑
i,j,s

γijc
†
i,scj,s (50)

where i and j run over the orbitals centred on each site. For the
orbital centred on site i and with spin s, c†i,s is the electron
creation operator that inserts an electron in state i and cj,s
is the electron annihilation operator which takes an electron
out of state i [12–14]. ni,s = c†i,scj,s is the electron number
operator with ni =

∑
s ni,s, εi is the energy of the orbital

relative to the chiral symmetry point and γi,j are hopping
integrals. Electron-electron interactions are missing from the
non-interacting Hamiltonian (equation 50). In order to take the
Coulomb electron-electron interaction into account, the Parr-
Pariser-Pople (PPP) model can be used to write the interacting
tight-binding Hamiltonian as

Hint = H +
∑
i

Uii(ni,↑ −
1

2
)(ni,↓ −

1

2
)

+
1

2

∑
i,j 6=i

Uij(ni − 1)(nj − 1)
(51)

where Uii and Uij are the on-site and long range Coulomb
interactions, respectively given by the Ohno parametrization,

Uii = U0 (52)

and for i 6= j

Uij = U0[1 + (
U0

e2/4πε0dij
)2]−1/2 (53)
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Fig. 6. Transport regimes. Transmission coefficient T of electrons with energy
E traversing from one electrode to the other through a scattering region.
Transport mechanism in a molecular junction could be either in tunnelling
(off-resonance) regime where electrons tunnel through the molecule that is
usually modelled with NEGF, or on-resonance where electrons transmit with
high rate through an energy level that is modelled using master equation.
The intermediate state (cross-over) between on and off resonance regimes are
difficult to interpret either with NEGF or master equation.

where dij is the distance between sites i and j and U0 is the
interaction amplitude e.g. U0 is equal to 11.26eV for gold and
carbon and 9.95eV for sulfur.

III. NANOSCALE TRANSPORT

Nanoscale transport can be described by three regimes:
(1) The self-consistent field (SCF) regime in which the

thermal broadening kBT and coupling Γ to electrodes are
comparable to Coulomb energy U0. The SCF method (single
electron picture) implemented within non-equilibrium Green’s
function (NEGF) could be used to describe transport in this
regime as discussed in sections III-A to III-D.

In molecular junctions smaller than ∼ 3 − 4nm, it is
shown that transport remain elastic and phase coherent at
room temperature. Therefore, using SCF models to describe
the properties of these molecular junctions is well accepted in
the mesoscopic community. Based on a single electron picture,
the NEGF method coupled to the SCF Hamiltonian describes
properties of the system on and off resonances (figure 6). Good
agreement between these models and many room-temperature
experiments suggest applicability of this method. A simplified
Breit-Wigner formula (III-A5) derived from this method also
could be used to model on-resonance transport through a
device provided the level spacing is larger than resonances
width. However, in those cases where the Coulomb energy
has larger contribution, this method cannot describe the on-
resonance properties of system.

(2) The Coulomb blockade (CB) regime in which Coulomb
energy U0 is much higher than both thermal broadening kBT
and coupling Γ where the SCF method is not adequate and
multi-electron master equation should be used to describe
properties of the system (figure 6) as discussed in section
III-E. This is usually needed to model the properties of
molecular junctions at low temperature where an electrostatic
gate voltage is applied through back gate.
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Fig. 7. Transport through an arbitrary scattering with Hamiltonian H
connected two single channel electrodes.

(3) The intermediate regime (figure 6) in which the
Coulomb energy U0 is comparable to the larger of the thermal
broadening kBT and coupling Γ. There is no simple approach
to model this regime. Neither the SCF method nor master
equation could be used to well describe the transport in
this regime because SCF method does not do justice to the
charging, while the master equation does not do justice to the
broadening.

A. Transport through an arbitrary scattering region

Consider the nanoscale junction of figure 7 where an
arbitrary scattering region with Hamiltonian H connected to
two single channel electrodes. On-site energies and coupling
in the left (right) lead L(R) are εL (εR) and −γL (−γR),
respectively. The leads are connected to the site a and b of
the scattering region with the couplings −αL and −αR. The
aim is to find the transmission t and reflection r amplitudes
for a Bloch wave normalized with its current flux eikLj/

√
vL

traveling from the left to right (figure 7).
If the wave function in the left and right leads and scat-

tering region are ψj = eikLj/
√
vL + re−ikLj/

√
vL, φj =

teikRj/
√
vR and fj , respectively; the Schrödinger equation in

the left and right leads, the scattering region and connection
points could be written as:

εLψj − γLψj−1 − γLψj+1 = Eψj if j < 0L (54)

εLψ0 − γLψ−1 − αLfa = Eψ0 if j = 0L (55)∑
i

Hjifi−αLψ0δja−αRφ0δjb = Efj if a 6 j 6 b (56)

εRφ0 − αRfb − γRφ1 = Eφ0 if j = 0R (57)

εRφj − γRφj−1 − γRφj+1 = Eφj if j > 0R (58)

From equations 54 and 58, the E−k relations (band-structure)
in the left and right leads are obtained as:

E = εL − 2γLcos(kL) if j ≤ 0L

E = εR − 2γRcos(kR) if j ≥ 0R
(59)

Equation 56 could be re-written as |f〉 = g |s〉 where g =
(E−H)−1 is Green’s function and |s〉 called source which is
a zero vector with non-zero elements in the connection points
only (at site j = a and j = b). For the junction in figure 7,
|f〉 has only two non-zero elements due to the source,(

fa
fb

)
=

(
gaa gab
gba gbb

)(
sa
sb

)
(60)

where sa = −αLψ0 and sb = −αRφ0. Furthermore, from
equations 55 and 57, the recurrence relation implies that:

−αLfa = −γLψ1

−αRfb = −γRφ−1
(61)

and
ψ1 = 1√

vL
(eikL − e−ikL) + ψ0e

−ikL

φ−1 = φ0e
−ikR (62)

Hence, by substituting ψ1 and φ−1 in equation 61(
fa
fb

)
=

(
− γL
α2
L
e−ikL 0

0 − γR
α2
R
e−ikR

)(
sa
sb

)
+

( γL
αL
√
vL

2isin(kL)

0

) (63)

From equation 60 and 63,(
sa
sb

)
=

(
gaa + γL

α2
L
e−ikL gab

gba gbb + γR
α2
R
e−ikR

)−1

×
( γL
αL
√
vL

2isin(kL)

0

) (64)

Since sa = −αL(1 + r)/
√
vL and sb = −αRt/

√
vR,

transmission t and reflection r amplitudes could be obtained.

t = i~
√
vLαLgL

(gba
d

)
gRαR

√
vR (65)

where

gL,R =
eikL,R

−γL,R
(66)

is the surface Green’s function in the left and right leads at
sites 0L and 0R (figure 7) and

d = 1− ΣLgaa − ΣRgbb + ΣLΣR(gaagbb − gabgba) (67)

where ΣL,R = α2
L,RgL,R are called self-energies due to the

left and right contacts. The Green’s function in the surface
of a semi-infinite lead (equation 66) can be obtained from
the Green’s function of a doubly infinite crystalline lead. For
example for the left electrode in figure 7, the Green’s function
of a doubly infinite crystalline chain is:

gLjl =
eikL|j−l|

i~vL
(68)

To calculate the Green’s function at site j = 0L due to a
source at site l = 0L (the surface Green’s function), equation
68 should vanish at site a (figure 7). This can be achieved by
adding an appropriate wave function to equation 68,

gLjl =
eikL|j−l|

i~vL
− e−ikL(j−2a+l)

i~vL
(69)

Hence, the Green’s function at site j = 0L due to a source at
site l = 0L is gL,R = −eikL,R/γL,R (equation 66). Assuming
two identical leads (kL = kR = k and γL = γR = γ),
equation 65 could be written as:

t = i2sin(k)e2ikαLαR
γ

(gba
d

)
(70)

where d = 1 + ∆1 + i∆2 and ∆1 = Acos(k) + Bcos(2k),
∆2 = Asin(k) + Bsin(2k), A = (gaaαL + gbbαR)/γ and
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B = α2
Lα

2
R(gaagbb − gabgba)/γ2. From equation 70, the

transmission amplitude at E = 0 (e.g. k = π/2) is

t = −2i
αLαR
γ

(
gba

1−B + iA

)
(71)

Finally, transmission probability T = tt†. More generally, the
total transmission T and reflection R probabilities for multi-
channel leads are obtained from

T =
∑
ij

tijt
∗
ij = Trace(tt†) (72)

and
R =

∑
ij

rijr
∗
ij = Trace(rr†) (73)

ti,j (ri,j) is the transmission (reflection) amplitude describing
scattering from the jth channel of the left lead to the ith
channel of the right (same) lead. Scattering matrix S is defined
from ψOUT = SψIN and could be written by combining
reflection and transmission amplitudes as:

S =

(
r t′

t r′

)
(74)

The S matrix is a central object of scattering theory and charge
conservation implies that the S matrix is unitary: SS† = I .

1) Transmission and reflection amplitudes from total
Green’s function

As demonstrated in equation 65, if the total Green’s function
of a junction consisting two or few electrodes connected
to an arbitrary scattering region is known, the transmission
amplitude t (and transmission probability T ) for electrons
traversing from one lead to the other could be calculated. The
main task now is to find a method to calculate the Green’s
function of whole system including crystalline leads (equation
68) connected to an arbitrary scattering region. Consider the
nanoscale junction shown in figure 7. The wave functions
including |ψ〉 and |φ〉 can be multiplied by any arbitrary
amplitude

A =
e−ikLl

i~√vL
(75)

without affecting the transport. Note that A does not depend
on j. Using this amplitude, the wave-functions |ψ〉 reads

ψj =
eikL(j−l)

i~vL
+ r

e−ikL(j+l)

i~vL
(76)

This equation looks like the Green’s function (equation 68)
for j ≥ l. If we show that for j ≤ l,

ψj =
eikL(l−j)

i~vL
+ r

e−ikL(j+l)

i~vL
(77)

then ψj is the Green’s function of whole system at site j due
to a source at site l and therefore transmission coefficient from
any point to any other point can be obtained (equation 65). To
demonstrate that equation 77 is valid for j ≤ l, consider

gjl =

{
ψj if j ≥ l
θj if j ≤ l

(78)

where

θj =
eikL(l−j)

i~vL
+ r

e−ikL(j+l)

i~vL
(79)

We shall show that gjl satisfy the Green’s function equation
(E −H)gjl = δjl. We note that gjl can be written as

gjl =

{
ψj if j ≥ l
θj = ψj + yj if j ≤ l

(80)

where

yj =
eikL(l−j)

i~vL
− eikL(j−l)

i~vL
(81)

and since any wave-function can be added or subtracted from
the Green’s function and the result is still a Green’s function,
by subtracting |ψ〉 from g, the new Green’s function ĝ is
obtained:

ĝj =

{
0 if j ≥ l

1
i~vL (eikL(l−j) − eikL(j−l)) if j ≤ l

(82)

Substituting this into the Green’s function equation (E −
H)gjl = δjl,

(E − ε0)ĝl,l − γĝl+1,l − γĝl−1,l = δl,l (83)

The first and second terms are zero from equation 82. For
j = l − 1, the third term −γgl−1,l = 1. Therefore

ψj =
eikL|j−l|

i~vL
+ r

e−ikL(j+l)

i~vL
(84)

is the Green’s function of whole system and describes the
wave function at any site j due to a source at site l. Similarly,
the wave-function

φj =
teikR(j−l)

i~√vR
√
vL

(85)

is the Green’s function for a source in the left lead where
j ≥ l. Therefore, the Green’s function of whole system e.g.
Gij ,

Gij =
teikR(j−l)

i~√vR
√
vL

=
eikL(j−l)

i~vL
+ r

e−ikL(j+l)

i~vL
(86)

the transmission amplitude t at j = 1 due to a source at l = 0
and the reflection amplitude r at j = 0 due to a source at
l = 0 could be calculated:

t = i~√vR
√
vLG01e

−ikR

r = i~vLG00 − 1
(87)

The transmission T and reflection R coefficients can then be
obtained from equations 72 and 73.

2) Scattering theory and Green’s function
Green’s function method has been widely used in the

literature to model electron and phonon transport in nano and
molecular scale devices and has been successful to predict
and explain different physical properties. Green’s function is
a wave function in a specific point of the system due to
an impulse source in another point. In other words, Green’s
function is the impulse response of the Schrödinger equation.
Therefore, as shown in previous section, Green’s function
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Fig. 8. Transport through a scatter connected to two 1D leads. For a
Bloch wave eikj/

√
vk incident with a barrier, the wave is transmitted with

the amplitude of t (teikj/
√
vk) and reflected with the amplitude of r

(re−ikj/
√
vk). Using the surface Green’s function of the leads (g00 and

g11), the Hamiltonian of the scattering region in which bridge two leads
h and Dyson’s equation, the total Green’s function G could be calculated.
The Green’s function could then be used to calculate the transmission t and
reflection r amplitudes.

naturally carries all information about the wave-function evo-
lution from one point to the other in a system [12–14, 28, 29].
The Green’s function G of a system with N site described by
Hamiltonian H is defined as:

G = (EI −H)−1 (88)

where I is the identity matrix. Using the completeness condi-
tion, ∑

n

|ψn〉〈ψn| = 1 (89)

The Green’s function could be written in terms of eigenstates
ψn and eigenenergies λn of H ,

G =

N∑
n=1

|ψn〉〈ψn|
E − λn

(90)

and therefore the Green’s function element between point a
and b is,

G(a, b) =

N∑
n=1

ψn(a) ψ∗n(b)

E − λn
(91)

Figure 8 shows how Green’s function could be used to calcu-
late the transmission and reflection amplitudes in a simplest
one dimensional system where two semi-infinite crystalline 1D
leads are connected to each other through coupling β (repre-
senting the scattering region). The main question is what the
amplitudes of the transmitted and reflected waves are? There
are two main steps, first to calculate the total Green’s function
matrix elements between sites 0 and 1 (G10) or 0 and 0 (G00);
and secondly project these to the wavefunction to calculate
transmission t and reflection r amplitudes (equation 87). For
this example, the transmission and reflection probabilities are
obtained from T = tt† and R = rr†.

Dyson’s equation describes the exact Green’s function of a
system G = (g−1 − h)−1 in terms of the Green’s function of

non-interacting parts g and Hamiltonian that connects them h.
As shown in figure 8, using the surface Green’s functions of
the decoupled two semi-infinite leads g =

( g00 0
0 g11

)
and the

Hamiltonian that couples them h, the total Green’s function
could be obtained from Dyson’s equation (first step). The
second step is to use equation 87 to calculate t and r from
the total green’s function G. It is worth to mention that
Dyson’s equation could take different equivalent forms such
as G = (g−1 − h)−1, G = g + ghG or G = g + gV g where
V = (g−1 − h)−1.

3) Green’s function of N site finite chain and ring
Similar to the Green’s function of a semi-infinite chain

(equation 69), from the Green’s function of the doubly infinite
crystalline chain (equation 68), the Green’s function of N site
finite chain and ring shown in figure 4 could be obtained [9]
using appropriate boundary conditions as

gchainjl =

cos(k(N + 1− |j − l|))− cos(k(N + 1− j − l))
2γsin(k)sin(k(N + 1))

(92)

and

gringjl =
cos(k(N/2− |j − l|))
2γsin(k)sin(kN/2))

(93)

These are useful equations to remember because they can
help to understand quantum interference effects in simple
molecules. As an example, consider a ring of 6 sites (N = 6)
e.g. benzene with on-site energies ε = 0 and hopping integrals
γ = −1. In the middle of the energy band e.g. E = 0, from
the dispersion relation of a 1D chain (equation II-B2), the
wave vector is k = π/2. The Green’s function of benzene
ring between any site i and j at the middle of the band is
obtained from equation 93 as:

gbenzenejl =
cos(π2 (3− |j − l|))

2
(94)

For any odd to odd (oo) or even to even (ee) connectivities (fig.
4), (3−|j− l|) is an odd number and therefore gbenzeneoo or ee = 0.
This is called destructive quantum interference because the
transmission between oo or ee sites are zero. In contrast, for
any odd to even (oe) connectivity, (3 − |j − l|) is an even
number and therefore gbenzeneoe 6= 0 which is called construc-
tive quantum interference. This implies non-zero transmission
between any oe sites.

The Green’s function of the ring of 6 sites with on-
site energies ε = 0 and hopping integrals γ can also be
obtained by substituting its wavefunction (equation 35) into
equation 91. The eigenenergies of such system are: En =
2γcos(2nπ/N) = [−2γ,−γ,−γ,+γ,+γ,+2γ]. The highest
occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) levels are degenerate. At the middle
of HOMO-LUMO gap E = EHL where EHL = (EH −
EL)/2 = 0 and EH (EL) is the energy of HOMO (LUMO)
level, the Green’s function is obtained from equation 91,

gringjl =
1√
N

2∑
n=−3

ei
2nπ

6 (j−l)

−En
(95)
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It is convenient to introduce the notation,

gringjl =
1√
N

(gring1 /γ + gring2 /γ + gring3 /2γ) (96)

where

gringx = A(ei(xπ/3)(j−l) − ei(π+xπ/3)(j−l)) (97)

and A = [−1, 1, 1] for x = [1, 2, 3], respectively. For any oo
or ee connectivities, j−l is an even number leading to a phase
shift of 2π in the second term of equation 97, that does not
change the sign of second term. Therefore the magnitude of the
first and second terms in equation 97 are equal with opposite
sign and therefore gring1 = 0, gring2 = 0, gring3 = 0 and
gringoo or ee = 0 (the destructive quantum interference). This is a
radical behaviour since contribution from all pares of HOMO
– LUMO, HOMO-1 – LUMO+1 and HOMO-2 – LUMO+2
states to the Green’s function are zero.

In contrast, for any oe connectivity, j− l is an odd number
leading to a phase shift of π in the second term of equation 97,
that changes the sign of second term. Therefore, the magnitude
and sign of the first and second terms in equation 97 are
equal, leading to non-zero values gringoe 6= 0 (the constructive
quantum interference).

Consider a molecule which possesses only a HOMO ψH(l)
of energy EH and a LUMO ψL(l) of energy EL, whose
Green’s function from equation 91 is given by

glm(E) =
ψH(l)ψ∗H(m)

E − EH
+
ψL(l)ψ∗L(m)

E − EL
(98)

In this equation, ψH(l) and ψL(l) are the amplitudes of the
HOMO and LUMO orbitals on connection site l, while ψH(m)
and ψL(m) are the amplitudes of the HOMO and LUMO
orbitals on connection site m. Since the core transmission
coefficient for connectivity lm is given by τlm = (glm(E))2

a destructive interference feature occurs at an energy E given
by glm(E) = 0, or equivalently

ψH(l)ψ∗H(m)

ψL(l)ψ∗L(m)
=
E − EH
E − EL

(99)

If the energy E at which the destructive interference feature
occurs lies within the HOMO-LUMO gap, then E −EH > 0
and EL −E > 0. This can only occur if the left hand side of
equation 99 is positive and therefore the condition that a de-
structive interference feature occurs within the HOMO-LUMO
gap is that the orbital products must have the same sign. Con-
versely, if they have opposite signs, there will be no destructive
interference dip within the HOMO-LUMO gap. In the most
symmetric case, where ψH(l)ψ∗H(m) = ψL(l)ψ∗L(m), this
yields E = (EL − EH)/2 and therefore the interference dip
occurs at the middle of the HOMO-LUMO gap. On the other
hand, if |ψH(l)ψ∗H(m)| << |ψL(l)ψ∗L(m)|, then E ' EH
and the dip is close to the HOMO. In this case, for a real
molecule with many orbitals, the approximation of retaining
only the LUMO and HOMO breaks down, and the effect of
the HOMO-1 should also be considered.

It is apparent from equation 98 that manipulating anti-
resonances (e.g. due to the destructive quantum interference)

Fig. 9. Green’s function GF illustration and its relation with molecular
orbitals MOs (wave functions) and transmission coefficient T . Hückel MOs
of (a) benzene and (b) pyridine. All orbitals in the left (right) side of the dashed
line in a and b are occupied (unoccupied). HOMO and LUMO are degenerate
in benzene which are lifted by perturbation due to nitrogen in pyridine. The
colour and radius of circles show sign and amplitude of MOs at each site,
respectively. (c,d) illustrate GF due to injection point shown by green arrows
at two energies E = 0 (e.g. mid-gap) and E = 0.5 (e.g. close to the LUMO
resonance). These are obtained using equation 90 and MOs in a and b.
In all illustrations, the radius and colour of circles represent the amplitude
and sign of GF matrix elements between injection point (shown by green
arrows) and all collection points. Blue (red) represents positive (negative)
numbers. If electron with energy E = 0 was injected from site shown by
green arrows in c, the Green’s function matrix elements are zero for meta
collection points but non zero for ortho and para collection points. Since
transmission T is proportional to the module square of GF , zero transmission
is expected for meta connectivity whereas T is non-zero for para connectivity
as shown in e. This is illustrated using GF plots in c and inset of e. From the
graphical visualisation of GF , the differences between transmission functions
are predictable. (d) illustrates GF for pyridine when electrons are injected
from site shown by green arrows in d and collected from any other points. (f)
shows specific injection and collection points at E = 0 and E = 0.5. In both
cases the radius of GF increases by energy in agreement with transmission
curve.

is easier than resonances. To manipulate a resonance, red-ox
state of a molecule should change whereas small environmen-
tal effects such as an inhomogeneous charge distribution or
nearby ions could lead to a significant change in the position
of anti-resonances.

Graphical illustration of Green’s function: As we dis-
cussed in section III-A1, transmission coefficient T is pro-
portional to the modules square of Green’s function. We also
showed that Green’s function can be obtained from the wave
functions (molecular orbitals) using equation 90. To predict
quantum interference from molecular orbitals (e.g. figure
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9a,b), a combination of two (HOMO and LUMO orbitals)
or more orbitals need to be considered (section III-A3). All
of these contributions are naturally considered in Green’s
function and therefore, by visualising the Green’s function, all
information about quantum interference features are directly
accessible. Graphical illustration of Green’s function also
provides more intuitive picture. This is like an intermediate
step between using molecular orbitals to predict transport and
carrying out a full transmission calculation. The graphical
illustration of Green’s function is also useful because it is
not trivial to predict differences between non-zero quantum
interference effects from molecular orbitals, whereas graphical
illustration of Green’s function provides this information (i.e.
differences in the radius of circles in figure 9c,d).

Figure 9 shows two examples of polycyclic aromatic hy-
drocarbons, benzene and pyridine. Six molecular orbitals and
corresponding eigenenergies due to six pz orbitals are shown
in figure 9a,b. HOMO and LUMO states are degenerate
in benzene. These degeneracies are lifted in pyridine due
to the presence of heteroatom (nitrogen). Consequently, the
molecular orbitals are also affected.

Since Green’s function is the wave function due to a given
source, we can visualise Green’s function just like molecular
orbitals for given electron injection point and energy. Exam-
ples of Green’s function visualisation are illustrated in figure
9c,d. Similar to wave functions visualisations, the radius and
color of circles represent the amplitude and sign of Green’s
function matrix elements, respectively due to a source in site
shown by the green arrows. Figures 9e,f show transmission
coefficients of para and meta connectivities of benzene and
a para connectivity of pyridine connected to two 1D leads
through a weak coupling. Corresponding Green’s function
illustrations are provided in the inset of figure 9e,f at two
different energies. Clearly, from the size of circles the main
features of transmission is predictable. Therefore, one could
use the Green’s function illustration of a molecule to predict
transport intuitively.

4) Density of states from Green’s Function
The density of states for a system with eigenvalues λ is

obtained from equation 28. However, having calculated the
Green’s function G from equation 90, the density of states
can be calculated. We note that a delta function δ(x−x0) can
be defined as the limit of a function which exhibits a sharp
peak about x0 and whose integral over space is 1. For Instance

δ(x− x0) =
1

π
lim
η−→0

(
η

(x− x0)2 + η2
) (100)

To prevent Green’s function to diverge at E = λ, equation 90
can be written as

G =
∑
n

|ψn〉〈ψn|
E − λn + iη

= Gr + iGi (101)

where η is a small number and

Gr =
∑
n

|ψn〉〈ψn|
(E − λn)

(E − λn)2 + η2 (102)

and

Gi = −
∑
n

|ψn〉〈ψn|
η

(E − λn)2 + η2 (103)

Since the eigenstates are orthonormal ψinψ
j
n
∗

= δij , we can
find the expression for the trace of the Green’s function when
η → 0 as trace(Gi) = −

∑
n

η
(E−λn)2+η2 = π

∑
n δ(E−λn).

Therefore DOS is obtained,

D(E) = − 1

π
trace(Gi) (104)

5) Breit-Wigner formula (BWF)
In the SCF regime, provided the coupling to electrodes

was weak enough, level broadening on resonances due to
electrodes was small enough and level spacing (differences
between the eigenenergies of a quantum system) was large
enough, the Green’s function gba in equation 65 for a system
described by Hamiltonian H (figure 7) and energies close to
an eigenvalue λm of H , is approximately

gba ≈
ybya

E − λm
(105)

where ya,b = fma,b and |fm〉 is the eigenvectors of H . This
is a good approximation for E’s close to an eigenvalue λm
if above mentioned conditions satisfied because the Green’s
function g =

∑
n
|fn〉〈fn|
E−λn terms in n 6= m are much smaller

than in n = m. This yields to on-resonance transmission T for
electrons with energy E passing through a molecule described
by a Lorentzian like transmission function called BWF:

T (E) =
4ΓLΓR

(E − εn)2 + (ΓL + ΓR)2
(106)

where εn = λ− σL − σR, σL,R =
α2
L,R

γL,R
y2
a,bcos(kL,R) are the

real part of the self-energies. ΓL,R =
α2
L,R

γL,R
y2
a,bsin(kL,R) are

the imaginary part of the self-energies (Σ = σ + iΓ) which
describe broadening due to the coupling of a molecular orbital
to the electrodes. λ is the eigenenergy of the molecular orbital
shifted slightly by an amount σ = σL+σR due to the coupling
of the orbital to the electrodes. In this expression, y2

a and y2
b

are the local DOS on the scattering region at the contact point.
This formula shows that when the electron resonates with the
molecular orbital (e.g. when E = εn), electron transmission
is a maximum. The formula is valid when the energy E of
electron is close to an eigenenergy λ of the isolated molecule,
and if the level spacing of the isolated molecule is larger
than (ΓL + ΓR). If ΓL = ΓR (a symmetric molecule attached
symmetrically to the identical leads), T (E) = 1 on-resonance
(E = εn).

If a bound state (e.g. a pendant group εp) is coupled
(by coupling integral α) to a continuum of states, Fano
resonances could occur [30, 31]. Fano resonance contains an
anti-resonance followed by a resonance with an asymmetric
line profile in between. Fano resonance originates from a close
coexistence of resonant transmission and resonant reflection.
This could be modeled by considering εn = λ − σL − σR +
α2/(E − εp) in BWF. At E = εp, electron transmission is
destroyed (the electron anti-resonates with the pendant orbital)
and at E = εn, the electron transmission is resonated by εn.
The level spacing between this resonance and antiresonance
is proportional to α.

Two levels BWF: As we discussed above, if a level
broadening is smaller than level spacing between resonances,
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BWF can be used in the weak coupling regime. In case of two
degenerate states, since these resonances can be close such that
their level spacing is smaller than broadening, it is useful to
drive a new form of BWF for two levels system. For a two
levels system, the Hamiltonian H in figure 7 is given by

H =

(
ε1 Vd
Vd ε2

)
(107)

where ε1 and ε2 are the energy levels coupled to each other
by Vd. If ε1 (ε2) is weakly bonded to the left (right) lead, the
transmission coefficient T (E) could be obtained form equation
65 as [32, 33]:

T (E) =
4ΓLΓRV

2
d

[(E − ε1 − σL + iΓL)(E − ε2 − σR + iΓR)− |Vd|2]2

(108)

where σL,R (ΓL,R) are the real (imaginary) part of the self-
energies due to the left L and right R leads.

Wigner delay time: Wigner delay time is the measure of
time spent by an electron to pass from a scattering region of an
open system. If the transmission amplitude of a given system
t = |t|eiθ (106) is defined by its magnitude |t| and phase θ,
the Wigner delay time describes the phase difference between
a scattered wave and a freely propagating one. Therefore, the
Wigner delay time τw = ~dθ/dE.

6) Open and close channels in leads
To calculate the number of open conduction channels in a

3D arbitrary crystalline lead, it is useful to consider a simple
2D cubic lattice with one orbital per site where each site is
connected to its first nearest neighbouring sites as shown in
the figure 5. For simplicity, consider a finite system in the y
direction Ny whereas the lattice is infinite in the x direction. A
normalized wave function and the band-structure of such struc-
ture are calculated as ψmkx =

√
2/(Ny + 1)sin(mπl/(Ny +

1))eikxj and E(kx) = ε0−2γcos(mπ/(Ny+1))+2γcos(kx),
respectively. Similar to the one-dimensional case (section
II-C), current is associated to each ψmkx since every mini-
band corresponds to a Bloch state. ψmkx are called channels.
If we assume that the injected electrons from each lead to
any individual channel are uncorrelated, the conductance at a
given Fermi energy EF is given by G(EF ) = 2e2M(EF )/h
where M(EF ) is the number of open conduction channels at
EF . In a one-dimensional lead with one orbital per site, there
are either one open conduction channel or it is closed.

For the above quasi one dimensional system where x is the
transport direction and y is the transverse direction with Ny
atomic sites, the Green’s function in the sites l and j due to
the source in the sites l′ and j′ could be written as:

glj,l′j′ =

Ny∑
m=1

2

Ny + 1
sin(

mπ

Ny + 1
l)sin(

mπ

Ny + 1
l′)
eik

m
x |j−j

′|

i~vmx
(109)

where kmx is longitudinal momentum and vmx =
∂E(kmx )/~∂kmx is the group velocity of channel m.
Equation 109 could be re-written as:

glj,l′j′ =

Ny∑
m=1

φml
eik

m
x |j−j

′|

i~vmx
φ′m∗l (110)

TABLE I
FOUR CLASSES OF POSSIBLE SCATTERING CHANNELS

left right
Decaying: Im(kmx ) > 0 Im(kmx ) < 0
Propagating: Im(kmx ) = 0, vmx < 0 Im(kmx ) = 0, vmx > 0

Fig. 10. A sketch of a closed subspace B, in contact with subspace A through
couplings W. XL denotes the surface of A connected to B. Subspace B
includes some open subspaces connected to reservoirs shown by dotes.

where φml =
√

2
Ny+1sin( mπ

Ny+1 l). glj,l′j′ consists of the sum

of all allowed longitudinal modes eik
m
x j weighted by the

corresponding transverse components φml . Note that for a
given E, kmx could be both real and imaginary. If kmx value
of an eigenstate has no imaginary part Im(kmx ) = 0, this
state defined to be open, or propagating since a complex kmx
will only occur if the wave is tunnelling, or decaying. The
sign of the imaginary part of kmx (the group velocity) can be
used to define the direction of a decaying wave (a propagating
wave) as summarized in the table I. Propagating (decaying)
channels are conventionally called open (close) channels. It is
worth to mention that retarded Green’s function of equation
110 is obtained by summing up all Ny scattering channels
some of which are open channels and some others are closed
channels. Figures 5d,h show two examples of the number of
conduction channels for the square and hexagonal lattices. The
number of channels has a maximum in the middle of the band
for the square lattice, whereas for the hexagonal lattice, there
are fewer open channels (e.g. only two for graphene) in the
middle of the band.

B. Generalized model to calculate transmission coefficient

In this section, an expression for the transmission coefficient
Tnn′ = |sn,n′(E,H)|2 between two scattering channels n, n′

of an open vector space A, in contact with a closed subspace
B is obtained. The result is very general and makes no
assumptions about the presence or otherwise of resonances.
More precisely, we describe a quantum structure connected
to ideal, normal leads of constant cross-section, labelled
L = 1, 2, . . . . Consider two vector spaces A and B, spanned
by a countable set of basis functions. In what follows, the sub-
space B represents the structure of interest and sub-space A
the normal leads, as shown in figure 10. The Hamiltonian is
H = HA + HB + HJ , where HJ allows transitions between
the subspaces. Since HJ can be written

HJ =

(
0 W
W † 0

)
(111)
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the Green’s function G for the combined space A⊕B has the
form

G =

(
GAA GAB
GBA GBB

)
(112)

To derive the more general formula where degenerate states
can simultaneously resonate, note that when HJ = 0, G
reduces to the Green’s function g of the decoupled system,
where

g =

(
gA 0
0 gB

)
(113)

and Dyson’s equation G = g(1−HJg)−1 yields

GAA = gA(1−WgBW
†gA)−1

GAB = gA(1−WgBW
†gA)−1WgB

GBA = gB(1−W †gAWgB)−1W †gA

GBB = gB(1−W †gAWgB)−1

(114)

Rewriting the above result for GAA in the form

GAA = gA + gAWgB(1−W †gAWgB)−1W †gA (115)

yields
GAA = gA + gAWGBBW

†gA (116)

GAB = gAWGBB (117)

and
GBA = GBBW

†gA (118)

These demonstrate that once GBB is known, all other quanti-
ties are determined. To obtain an expression for transmission
coefficients, it is convenient to introduce a set of states {|n̄〉},
which span the subspace A and write gA =

∑
n̄m̄ |n̄〉gn̄m̄〈m̄|.

Since part of A consists of a number of ideal, straight,
normal leads of constant cross-section, described by a real
Hamiltonian, it is convenient to associate a sub-set of the states
{|n̄〉} with open channels of these leads. For these states, the
notation |n̄〉 = |n, x〉 is introduced, where n is a discrete label
identifying the lead, quasi-particle type, transverse kinetic
energy and any other quantum numbers of an open channel
and x is a position coordinate parallel to the lead. With this
notation,

gA =
∑
n,x,x′

|n, x〉gn(x, x′)〈n, x′|+
∑
n̄m̄

′
|n̄〉gn̄m̄〈m̄| (119)

where the prime indicates a sum over states |n̄〉, |m̄〉 orthog-
onal to the open channels (the close channels), and

gn(x, x′) =
eik

n
x |x−x

′| − e−iknx (x+x′−2(xL+a))

i~vn
(120)

is the Green’s function of the semi-infinite lead between any
position point x and x′ in the transport direction terminated at
x = xL and vanishes at x = xL+a [34]. knx is the longitudinal
wave vector of channel n. If the lead belonging to channel n
terminates at x = xL, then on the surface of the lead, the
Green’s function gn(x, x′) takes the form gn(xL, xL) = gn,
where gn = an + ibn with an real and bn equal to π times
the density of states per unit length of channel n. Moreover,
if vn is the group velocity for a wave packet traveling along
channel n, then ~vn = 2bn/|gn|2. It is interesting to note that

if x and x′ are positions located between xL and some point
xn,

gn(x, xn)g∗n(x′, xn) =
−2

~vn
Imgn(x, x′) =

−2

~vn
Imgn(x′, x)

(121)
If xn is some asymptotic position far from the end of the lead
belonging to channel n and far from the scattering region (e.g.
contact) defined by HJ , then the transmission amplitude t and
the transmission coefficient T from channel n′ to channel n
(n 6= n′) are

tnn′ = i~
√
vn
√
v′n|〈n, xn|GAA|n′, xn′〉| (122)

and
Tnn′ = ~vn~v′n|〈n, xn|GAA|n′, xn′〉|2 (123)

and since

〈n, xn|GAA|n′, xn′〉 =∑
x,x′

gn(xn, x)〈n, x|WGBBW
†|n′, x′〉gn′(x′, xn′), (124)

one obtains

Tnn′ = 4
∑
x,x′
x̄,x̄′

[Im gn(x̄, x)]〈n, x|WGBBW
†|n′, x′〉

〈n, x̄|WGBBW
†|n′, x̄′〉∗[Im gn′(x

′, x̄′)]

(125)

Let’s introduce eigenstates of HB , satisfying HB |fν〉 = εν |fν〉
and write

gB =
∑
ν

|fν〉〈fν |
E − εν

(126)

From the expression for GBB given in equation 114, this
yields

GBB =(gB
−1 −W †gAW )−1

=
∑
µ,ν

|fµ〉(GBB)µν〈fν | (127)

where

(GBB
−1

)µν = (E − εν)δµν − 〈fµ|W †gAW |fν〉 (128)

Combining this with equation 119 yields

(GBB
−1)µν = (E − εν)δµν

−
∑
n
x,x′

〈fµ|W †|n, x〉gn(x, x′)〈n, x′|W |fν〉

−
∑
n̄m̄

′
〈fµ|W †|n̄〉gn̄m̄〈m̄|W |fν〉

(129)

In general, since the energy E lies in a region where the con-
tribution to the density of states from gn̄m̄ is zero, Imgn̄m̄ = 0
and gn̄m̄ = g∗n̄m̄. For this reason it is convenient to introduce
the notation

σ′µν =
∑
n̄m̄

′
〈fµ|W †|n̄〉gn̄m̄〈m̄|W |fν〉, (130)

σµν(n) =
∑
x,x′

〈fµ|W †|n, x〉[Re gn(x, x′)]〈n, x′|W |fν〉,

(131)
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σµν =
∑
n

σµν(n), (132)

Σµν = σµν + σ′µν , (133)

Γµν(n) = −2
∑
x,x′

〈fµ|W †|n, x〉[Im gn(x, x′)]〈n, x′|W |fν〉,

(134)
and

Γµν =
∑
n

Γµν(n) (135)

Clearly the matrices σ′, σ(n) and Γ(n) are Hermitian. With
this notation (G−1

BB)µν = (E− εν)δµν −Σµν + iΓµν . Further-
more equation 125 becomes

Tnn′ =
∑
µνµ′ν′

Γµ′µ(n)(GBB)µν(GBB)
∗
µ′ν′Γνν′(n

′)

= Trace
[
Γ(n)GBBΓ(n′)GBB

†
] (136)

where the trace is over all internal levels of B and

GBB
−1 = gB

−1 − σ′ − σ + iΓ (137)

In these expressions, Γ(n) is a Hermitian matrix of inverse
lifetimes, Γ =

∑
n Γ(n), σ and σ′ are Hermitian self-energy

matrices and gB is the retarded Green’s function of subspace
B when HJ = 0.

The form of equations 136 and 137 highlights the essential
difference between open and closed channels. In the absence of
open channels, σ and Γ are identically zero and if the subspace
B is closed, GBB describes a quantum structure with well-
defined energy levels, shifted by the self energy σ′ arising
from contact with closed channels. Clearly no quasi-particle
transport is possible through such a structure. When contact
is made with open channels, the levels are further shifted by
the self energy matrix σ and more crucially are broadened by
the life-time matrix Γ.

For a system with non-orthogonal basis sets, in equa-
tion 128, δµν should be replaced with the overlap matrix
Sµν = 〈fµ|fν〉. It is interesting to note that the vector
spaces A representing the normal leads include both crystalline
structures connected to the outside world and any close system
coupled to the vector spaces B representing the structure of
interest. In the latter case, the only effect of the closed part
of the vector spaces A is to contribute in the scattering by its
self-energy. Furthermore, figure 11 shows a slightly different
approach to calculate the transmission (reflection) amplitude
t (r) in a two terminal system with non-orthogonal basis set
[28].

Surface Green’s function: An important step to calculate
the total Green’s function of a system is to calculate the
Green’s function at the surface of a semi-infinite lead. A lead
is a perfect wave guide connected to a reservoir in the infinity
from one side and to the scattering region from another side.
It consists of identical slices described by Hamiltonian H0

connected to the first nearest neighbour with matrix elements
H1. Note that for any lead the periodic slices could be
chosen large enough to avoid the second and higher nearest
neighbours interactions. The Green’s function of the semi-
infinite lead at the point of contact to the scattering region

is called the surface Green’s function. There are two main
methods to calculate the surface Green’s function: analytic
and recursive methods. In the analytic methods, first Green’s
function of a doubly infinite lead is calculated. Then, a proper
wave function is added to the Green’s function of a doubly
infinite lead such that the Green’s function is vanished at the
site next to the surface of the lead. This was discussed in the
section III-A, equation 68 and the section III-B.

In the recursive methods, the following non-linear equation
138 is solved iteratively using different algorithms such as a
fixed-point iterative or Newton’s scheme.

gs = ((E − iη)I −H0 −H†1gsH1)−1 (138)

where gs is the surface Green’s function and η is a small
number to avoid divergence of the Green’s function. In the
fixed-point iterative scheme, equation 138 takes the following
form:

gn+1
s = ((E − iη)I −H0 −H†1gnsH1)−1 (139)

where n indicates the iteration number and g1
s = ((E −

iη)I − H0)−1. The convergence of the fixed-point method
can be quite poor, so more sophisticated methods such as the
Newton’s scheme may be used [35].

C. The Landauer formula

Landauer used the scattering theory of transport as a
conceptual framework to describe the electrical conductance
and wrote ”Conductance is transmission” [36]. In the Landauer
approach a mesoscopic scatterer is connected to two ballistic
leads (see figure 1). The leads are connected to the reser-
voirs where all inelastic relaxation processes take place. The
reservoirs have slightly different electrochemical potentials
µL − µR → 0 to drive electrons from the left to the right
lead. Current therefore could be written as:

I =
e

h

∫
dE T (E) (f(E − µL)− f(E − µR)) (140)

where e = |e| is the electronic charge, T (E) is the trans-
mission coefficient and f is Fermi-Dirac distribution function
f(E − µ) = 1/(1 + e(E−µ)/kBT ) associated with the elec-
trochemical potential µ, kB is Boltzmann’s constant and T
is temperature. The Fermi functions can be Taylor expanded
over the range eV ,

I =
e

h

∫
dE T (E)

(
−∂f(E)

∂E

)
(µL − µR) (141)

where µL − µR = eV . By including the spin, the electrical
conductance G = I/V reads:

G =
2e2

h

∫
dE T (E)

(
−∂f(E)

∂E

)
(142)

At T = 0K, −∂f(E−µ)
∂E = δ(µ) where δ(µ) is the Kronecker

delta. For an ideal periodic chain where T (E) = 1 at T = 0K,
the Landauer formula becomes:
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Fig. 11. Generalized transport model using Green’s function method. Generalized transport model using equilibrium Green’s function method [28] and its
equivalent model for a simple 1D problem.

G0 =
2e2

h
' 77.5 µ Siemens (143)

G0 is called the ”Conductance Quantum”. In other words, cur-
rent associated with a single Bloch state vk/L and generated
by the electrochemical potential gradient is I = e(vk/L)D∆µ
where D = ∂n/∂E = L/hvk. It is worth mentioning
that the Landauer formula 141 describes the linear response
conductance, hence it only holds for small bias voltages,
δV → 0.

1) Landauer-Buttiker formula for multi-terminal structures
Conductance measurements are often performed using a

four-probe structure to minimize the contact resistance effect.
Also multi-probe structures are widely used to describe the
Hall-effect or in sensing applications. Based on the Landauer
approach for two terminal system, Buttiker [37] suggested
a formula to model multi-probe currents for structures with
multiple terminals as:

Ii =
e

h

∑
j

Tij(µi − µj) (144)
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where Ii is current at ith terminal and Tij is the transmission
probability from terminal j to i. In a multi-terminal system, it
is convenient to assume one of the probes as reference voltage
Vref = 0 and write currents based on that. As an example, for
a four probe structure, current in each probe can be written
as:

Ii =
2e2

h

(
Niδij −

∑
j=1,2,3,4 Tij

)
Vi (145)

where Ni is number of open conduction channels in lead i. In
the four probe structure, if probe 3 and 4 are the outer voltage
probes (I3 = I4 = 0) and probe 1 and 2 are the inner current
probes, the four probe conductance is

Gfour−probe = (2e2/h)(V3 − V4)/I1 (146)

2) Equilibrium vs. non-equilibrium I-V
The Landauer formula only holds in the linear response

regime. A transmission coefficient T (E) of particle with
energy E from one electrode to the other is obtained in the
steady state condition where the junction is assumed to be
close to equilibrium (δV → 0). In this regime, transmission
coefficient is assumed to be not voltage dependent and current
is calculated using equation 140.

However, if transmission coefficient changes by applied
bias voltage (the non-linear regime), bias voltage dependent
transmission coefficient T (E, Vb) should be calculated. In
order to take the effect of electric field on T (E) into account,
new Hamiltonian for a given field is calculated. This is
obtained by calculating the potential profile applied to the
junction due to the given electric field (e.g. bias voltage) using
Poisson’s equation 52U = −ρ/ε where U is potential profile
due to charge distribution ρ and ε is permittivity which could
vary spatially [12–14]. In the non-equilibrium condition, the
Landauer formula (equation 140) takes the form,

I(Vb, Vg) =

e

h

∫
dE T (E, Vb, Vg)

(
f(E +

eVb
2

)− f(E − eVb
2

)

)
(147)

where Vb and Vg are bias and gate voltages, respectively
and T (E, Vb, Vg) is transmission coefficient calculated at each
bias and gate voltages. It is worth mentioning that in some
experiments, the measured conductance G = I/Vb is noisy.
Therefore, the differential conductance map Gdiff (Vb, Vg) =
dI(Vb, Vg)/dVb is plotted. This could be calculated by dif-
ferentiation of equation 147 with respect to the bias voltage
Vb.

D. Non-equilibrium Green’s function formalism

If ES|ψ〉 = H|ψ〉 describes the properties of the closed
system H with non-orthogonal basis set S, then once it
connects to the outside world and becomes an open system
(see figure 12), a modified Schrödinger equation in the non-
equilibrium condition could be written [12–14]:

ES|ψ〉 = H|ψ〉+ Σ|ψ〉+ |s〉 (148)

where the terms Σ|ψ〉 and |s〉 describe the outflow and inflow
(e.g. see equation 60), respectively arises from the boundary
conditions. Equation 148 could be rewritten as

Fig. 12. Non-equilibrium Green’s function (NEGF) equations. [12–14]

|ψ〉 = [GR]|s〉 (149)

where GR = [ES − H − Σ]−1 is retarded Green’s function
(GA = [GR]†), Σ = Σ1 + Σ2 + Σ0 is sum of self-energies
due to the electrodes Σ1, Σ2, and surroundings Σ0 such as
dephasing contact or inelastic scattering e.g. electron-phonon
coupling, emission and absorption. Dephasing contact terms
could be described by the SCF method whereas for inelastic
processes one needs to use for instance Fermi’s golden rule
to describe these self energies. There are a few proposals in
the literature to treat incoherent and inelastic processes [12–
14, 38]. Buttiker [38] suggests to treat the inelastic and inco-
herent scattering by introducing a new probe to the original
coherent system. This could be seen as assigning new self-
energies associated with any inelastic or incoherent processes.
However, if the incoherent and inelastic effects are treated
by introducing an extra electrode, corresponding distribution
function e.g. Fermi function for electrons is assigned which in
general may not be the case. More generally, any incoherence
and/or inelastic processes are introduced by appropriate self
energies which not necessarily described by equivalent Fermi
functions in the contact.

For a normal, coherent elastic junction if H1,2 are the
coupling matrices between electrode 1 (2) and scattering
region and g1,2 are the surface Green’s function of the elec-
trodes, Σ1,2 = H†1,2g1,2H1,2. Furthermore, current could be
calculated as

I1 =
e

h
Trace[−Γ1G

n + Σin1 A] (150)

where Γ1 = i(Σ1 − Σ†1) is the imaginary part of the self-
energy, Gn is the density matrix,

∑in
1 = s1s

†
1/2π is related
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Fig. 13. Two terminal system with two 1D leads connected to a scattering
region ε1.

to the source |s〉 and A = GRΓGA is the spectral function as
shown in figure 12. Note that the definition of self-energy here
is a bit different than what was discussed in section 3.2. From
the basic law of equilibrium, in a special situation where we
have only one contact connected; the ratio of the number of
electrons to the number of states must be equal to the Fermi
function in the contact (

∑in
1,2 = Γ1,2f1,2(E)). However, in

dephasing contact, Σin0 is not described by any Fermi function
and since inflow and outflow should be equal Trace[

∑in
0 A] =

Trace[Γ0G
n]. Figure 12 summarize the basic non-equilibrium

Green’s function (NEGF) equations to calculate current in a
most general junction where surroundings are present. In the
absence of surroundings, current (equation 150) in lead i could
be re-written as [12–14]:

Ii =
e

h

∑
j

Trace[ΓiG
RΓjG

A](fi − fj) (151)

where Tij(E) = Trace[Γi(E)GR(E)Γj(E)GA(E)] is the
transmission coefficient for electrons with energy E passing
from lead i to lead j.

It is worth mentioning that in the past decade, several
numerical implementations of the scattering theory and non-
equilibrium Green’s functions approach such as Gollum [29],
SMEAGOL [28], TransSIESTA [39] and TURBOMOLE [40]
have been developed.

Transport through one-level system: Consider two iden-
tical 1D leads with on-site energies ε0 and hoping integrals γ
connected to a scattering region ε1 with coupling integrals α
and β as shown in figure 13. The transmission coefficient T for
electrons with energy E traversing from the left to right leads
can be calculated as T (E) = ΓL(E)GR(E)ΓR(E)GA(E)
where the retarded Green’s function is GR(E) = (E − ε1 −
Σ)−1, the self-energies Σ = ΣL + ΣR is obtained from
ΣL = α2eik/γ and ΣR = β2eik/γ and the broadening due to
the left and right leads are ΓL = i(ΣL−Σ†L) = −2α2sin(k)/γ

and ΓR = i(ΣR − Σ†R) = −2β2sin(k)/γ. Note that for a
one-level system, this equation can be exactly re-written in the
form of Breit-Wigner formula (equation 106). However, for the
two or more level systems, BWF is a good approximation only
to describe on-resonances transport and if the level spacing is
less than level broadening (see section III-A5).

Mapping quantum to semi-classical model: Current in the
semi-classical method is defined as the flow of charge N in the
unit time t as I = dN

dt . As shown in figure 14, in the contact
one, there are two in-going S1D0 and outgoing ν1N currents
where ν1 is coupling strength to the contact 1, S1 = ν1f1 is
source and D0 =

∫
D(E)dE is total density of state in the

scattering region. Therefore, current in the contact 1 is written
as:

I1 = e

∫
dE D(E)

ν1ν2

ν1 + ν2
(f1 − f2) (152)

Fig. 14. Semi-classical method to calculate current [12–14].

where f1 and f2 are the Fermi distribution in the contact 1
and 2, respectively. In order to build a physical intuition of
NEGF equations (figure 12), we compare the semi-classical
picture (figure 14) with the quantum model (figure 12),

A
2π ↔ D, Gn

2π ↔ N, Σin

~ ↔ S, Γ
~ ↔ ν (153)

A and Gn look like matrix version of the density of states
and the total number of electrons, respectively. However, the
exact relations are: D =

∫ +∞
−∞ dE trace(A(E))/2π and N =∫ +∞

−∞ dEtrace(Gn(E))/2π. Clearly, the semi-classical picture
is missing most of the interesting effects such as quantum
interference and connectivity dependence of conductance [6,
41, 42].

E. Master equation

As discussed in section III, if the Coulomb energy is much
higher than thermal broadening and coupling to electrodes (the
on-resonance transport regime) in a molecular junction, the
SCF method is not adequate to describe properties of the
junction. For example, when Fermi energy is moved from
one side of a resonance to the other using bias or gate
voltages, the redox state of molecule may change by gaining
or losing an electron. In order to account for this effect,
the occupation probability of each state should be calculated.
This is described by the multi-electron master equation. In
the multi-electron picture, the overall N -electron system has
different probabilities Pα of being in one of the 2N possible
states α. Furthermore all of these probabilities Pα must add up
to one. The individual probabilities could be calculated under
steady-state conditions where there is no net flow into or out
of any state (see figures 15 and 16)

∑
β

R(α→ β)Pα =
∑
β

R(β → α)Pβ (154)

where R(α → β) is the rate constants obtained by assuming
a specific model for the interaction with the surroundings. In
a system that electrons can only enter or exit from the source
and drain contacts, these rates are given in figures 15 and 16
for one and two electron systems. Equation 154 is called a
multi-electron master equation [12–14]. The general principle
of equilibrium statistical mechanics could be used to calculate
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the probability Pα that the system is in state α with energy
Eα and Nα electrons as

Pα =
e
−Eα−µNαkBT∑
α e
−Eα−µNαkBT

(155)

where kB is Boltzmann’s constant and T is temperature.
One-electron energy levels represent differences between

energy levels corresponding to states that differ by one elec-
tron. If E(N) is the energy associated with the N -electron
state, the energy associated with the addition of one electron
is called affinity energy EA = E(N)− E(N + 1). Similarly
the energy needed to remove one electron is called ionization
energy IP = E(N − 1)− E(N).

One electron system: Figure 15 shows the master equation
for spin-degenerate one electron system with energy ε where
there are only two possibilities, either the state is full |1〉 or
empty |0〉. Current is then calculated as:

I =
e

~
γ1γ2

γ1 + γ2
(f1(E)− f2(E)) (156)

where γ1 and γ2 are the rates that electron can go in and out
from the left and right electrodes with f1(E) and f2(E) Fermi
functions.

Two electron system: When the number of electrons N
increases, the number of possibilities increases by 2N . In two
electron system, there are four possibilities (22), both states
empty |00〉 or full |11〉 and either one of them full and the
other empty (|01〉 and |10〉). Figure 16 shows how to calculate
current in two electron system [12–14]. Note that as soon as a
state become full, there need an additional energy (Coulomb
repulsion energy) to have second electron in the other state in
addition to the level spacing between the two energy levels.
Furthermore, it is not correct to assume one Fermi function for
all transitions. Due to the Coulomb blockade energy, each level

Fig. 15. Spin-degenerate one electron system with energy ε. There are two
possibilities either the state is full |1〉 or empty |0〉. The rate to move an
electron into the state (|0〉 to |1〉) is a product of the rates that electron can
go in and the Fermi function in the leads (R(|0〉 → |1〉) = γ1f1 + γ2f2)
[12–14]

Fig. 16. Two electron system. There are four possibilities, both states empty
|00〉 or full |11〉 and either one of them full and the other empty (|01〉 and
|10〉) [12–14].

needs certain electrochemical potential to overcome the barrier
and current flow. Clearly, the expression for current in two
electron system is more complicated than one electron system.
This becomes even more complicated when multi-electron
system was considered. In this case, the number of calculations
rapidly increases, therefore efficient numerical algorithms are
needed to solve the multi-electron master equation.

Coulomb and Franck-Condon blockade regimes: The
electronic properties of weakly coupled molecules are domi-
nated by Coulomb interactions and spatial confinement at low
temperatures [43]. This could lead to Coulomb blockade (CB)
regimes in which the transport is blocked due to the presence
of an electron trapped in the junction. In addition, charge
transfer can excite vibrational modes or vibrons, and strong
electron-vibron coupling leads to suppression of tunnel current
at low bias called Franck-Condon (FC) blockade regimes.

To describe transport in this regime, a minimal model
(the Anderson-Holstein Hamiltonian) can be used [44] that
captures the CB, FC and the Kondo effect if three assumptions
are made: (1) the relaxation in the leads assumed to be
sufficiently fast leading to Fermi functions for the distribution
of the electrons in thermal equilibrium at all times; (2) the
transport through the molecule is dominated by tunnelling
through a single, spin-degenerate electronic level, and (3) one
vibron taken into account within the harmonic approxima-
tion. In this case, the Anderson-Holstein Hamiltonian reads
H = Hmol +Hleads +HT with



HATEF SADEGHI, 2018, NANOTECHNOLOGY, 29, 373001 22

Hmol = εdnd + Und↑nd↓ + ~ωb†b+ λ~ω(b† + b)nd (157)

describing the electronic and vibrational degrees of freedom
of the molecule,

Hleads =
∑
a=L,R

∑
p,σ

(εap − µa)c†apσcapσ (158)

the non-interacting leads, and

HT =
∑
a=L,R

∑
p,σ

(tapc
†
apσdσ + h.c.) (159)

the tunnelling between the leads and molecule. Here, Coulomb
blockade is taken into account via the charging energy U
where eV, kBT << U . The operator dσ (d†σ) annihilates
(creates) an electron with spin projection σ on the molecule,
nd =

∑
σ dσd

†
σ denotes the corresponding occupation-number

operator. Similarly, capσ (c†apσ) annihilates (creates) an elec-
tron in lead a (a = L,R) with momentum p and spin
projection σ. Vibrational excitations are annihilated (created)
by b (b†). They couple to the electric charge on the molecule by
the term ∼ nd(b†+b), which can be eliminated by a canonical
transformation, leading to a renormalisation of the parameters
ε and U , and of the lead-molecule coupling ta → tae

−λ(b†+b).
The master equations determining the molecular occupation
probabilities Pnq for charge state n and vibrons q is:

dPnq
dt

=
∑
n′,q′

(Pn
′

q′ W
n′→n
q′→q − Pnq Wn→n′

q→q′ )

− 1

τ
(Pnq − P eqq

∑
q′

Pnq′)

(160)

P eqq denotes the equilibrium vibron distribution with a relax-
ation time τ and Wn→n′

q→q′ denotes the total rate for a transition
from |n, q〉 to |n′, q′〉.

Wn→n+1
q→q′ =

∑
a=L,R

(fa(En+1
q′ − Enq ))Γn→n+1

q→q′;a ,

Wn→n−1
q→q′ =

∑
a=L,R

(1− fa(Enq − En−1
q′ ))Γn→n−1

q→q′;a

(161)

where fa is the Fermi function and the transition rates Γ are
calculated from Fermi’s golden rule.

Γn→n+1
q→q′;a = sn→n+1 2π

~
ρa(En+1

q′ − Enq )|Mn→n+1
q→q′;a |

Γn→n−1
q→q′;a = sn→n−1 2π

~
ρa(Enq − En−1

q′ )|Mn→n−1
q→q′;a |

(162)

Here, ρa denotes DOS in lead a, Mn→n±1
q→q′;a denotes the FC

matrix elements and sn→m the spin factor [45] such that for
sequential tunnelling and assuming twofold degeneracy they
are s1→0 = s1→2 = 1, s0→1 = s2→1 = 2. The matrix
elements Mn→n±1

q→q′;a defined for vibrations are

Mn→n±1
q→q′;a = t0

√
q1!

q2!
λq2−q1e−λ

2/2 (163)

where q1 = min{q, q′} and q2 = max{q, q′}. This minimal
model captures the main features of resonant tunnelling due
to Coulomb energy and vibrons effect in low temperature [45,
46].

F. Minimal phase-coherent CB description

Since transport through molecular junctions is usually phase
coherent even at room temperature and at low temperatures
exhibits Coulomb blockade, we can employ a minimal model
by including the effect of the Coulomb energy and computing
the differential conductance as a function of the bias and gate
voltages. This model preserves phase coherence, implements
a derivative discontinuity to describe Coulomb blockade and
avoids self-interactions. The bias and gate voltage depended
differential conductance is calculated by differentiating bias-
dependent current with respect to the bias voltage Gdiff =
dI(Vb, Vg)/dVb using the Landauer formula:

I(Vb, Vg) =
2e

h
×∫

dET (E, Vb, Vg)(f(E + Vb/2)− f(E − Vb/2))
(164)

Note that a factor of 2 in this equation accounts for spin
so that T = (T1 + T2)/2 where T1 (T2) is transmission
function for majority (minority) spins. This method can lead to
long calculation times, which can be reduced by considering
only the first term of the Taylor expansion of the Fermi-
Dirac distribution function f(E). Therefore, a simplified and
approximated form of Gdiff is obtained in the limit of low
temperatures

Ĝdiff =
2e2

h
× [

T (EF = Vb/2, Vb, Vg))

2

+
T (EF = −Vb/2, Vb, Vg))

2
]

(165)

To include the effect of additional or Coulomb energy, for
each new bias, we can start from the ’bare’ tight binding
Hamiltonian and then we (1) add the gate voltage to each site
energy, (2) diagonalise the Hamiltonian (3) if an eigenvalue
drops below the drain voltage and the level becomes occupied
we add the Coulomb energy to all other eigenvalues and then
transform back to the original basis. (4) T (E, V b, V g) and
the corresponding differential conductance is computed using
this new Hamiltonian and steps 1 to 4 are repeated. Figure 17
shows the stability diagram obtained by applying this minimal
model calculation with and without additional energy.

IV. MODELLING THE EXPERIMENT

So far we have discussed, different transport regimes and
the methods to model electron and phonon through nanoscale
junctions. However, all of these tools are useful if they can
explain new observed physical phenomenon or predict new
properties of a future physical system and suggest new design
principles. Experiments in the field of molecular electronics
either study new junction physical properties such as con-
ductance and current or focus on using well characterized
junctions for future applications. It is important to understand
the limits in theory and experiment. For example, there are
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Fig. 17. Stability diagram.(a) a tight-binding model consists of two one-
dimensional leads with hopping elements of γ = −2 (which sets the energy
scale) connected to a scattering region containing 10 sites with hopping
elements γi = −[0.25, 0.125, 0.25, 0.25, 0.075, 0.2, 0.2, 0.25, 0.25, 0.4].
All on site energies (εi and ε0) are set to zero. The scattering region is
coupled to the left and right electrodes by hopping elements α = 0.1γ. (b,d)
The differential conductance dI(Vb = 0, Vg)/dVb. (c,e) The stability diagram
dI(Vb, Vg)/dVb is obtained by applying minimal model calculation (section
III-F). In c,d the the Coulomb energy U is zero whereas in e,f U = 0.125γ.
Chessboard pattern due to quantum interference is obtained in c. By including
additional energy U , the size of Coulomb diamonds (blockade region) is
increased accordingly and excited states do not penetrate to the blockade
region.

certain quantities that are not directly measurable but can
be calculated such as wave-functions. In contrast, there are
quantities that are not predictable but accessible in experiment
such as the position of the Fermi energy, the overall effect of
the inhomogeneous broadening on the transport, or screening
effects which is related to the exact junction configuration in
the real-time experiment.

Furthermore, more reliable predictions can be made if
a series of junctions were studied and the overall trends
compared between theory and experiment. The bottom line is
theory and experiment are not two isolated endeavours. They
need to communicate with each other in order to discover new
phenomena. Those quantities that cannot be computed reliably,
but for which experimental data is available, can be used to
correct and refine theoretical models. Usually to explain new
phenomena, one needs to build a model based on a working
hypothesis. To make an initial hypothesis, a theorist needs to
know how to take into account different physical phenomena
such as the effect of environment, presence of an electric or

magnetic field. In the following, the aim is to make few bridges
between the well-known physical phenomena and the methods
to model them theoretically.

A. Virtual leads versus physical leads

Let’s start by considering the differences between a lead and
a channel. From a mathematical viewpoint, channels connect
an extended scattering region to a reservoir and the role of lead
i is simply to label those channels ki, q̄i, which connect to a
particular reservoir i. Conceptually, this means that from the
point of view of solving a scattering problem at energy E, a
single lead with N(E) incoming channels can be regarded as
N(E) virtual leads, each with a single channel. We could take
advantage of this equivalence by regarding the above groups
of channels with wave-vectors kαi , q̄αi as virtual leads and
treating them on the same footing as physical leads [29].

This viewpoint is particularly useful when the Hamiltonians
Hi

0, Hi
1 describing the principle layers PLs (the identical

periodic unit cells Hi
0 connected to each other by Hi

1) of the
physical lead i are block diagonal with respect to the quantum
numbers associated with kαi , q̄αi . For example, this occurs
when the leads possess a uniform magnetization, in which
case the lead Hamiltonian is block diagonal with respect to
the local magnetization axis of the lead and α represents the
spin degree of freedom σ. This occurs also when the leads are
normal metals, but the scattering region contains one or more
superconductors, in which case the lead Hamiltonian is block
diagonal with respect to particle and hole degrees of freedom
and α represents either particles p or holes h. More generally,
in the presence of both magnetism and superconductivity, α
would represent combinations of spin and particles and holes
degrees of freedom.

In all of these cases, Hi
0, Hi

1 are block diagonal and it
is convenient to identify virtual leads αi with each block,
because we can compute the channels kαi , q̄αi belonging to
each block in separate calculations and therefore guarantees
that all such channels can be separately identified. This is
advantageous, because if all channels of Hi

0, Hi
1 were calcu-

lated simultaneously, then in the case of degeneracies, arbitrary
superposition of channels with different quantum numbers
could result and therefore it would be necessary to implement a
separate unitary transformation to sort channels into the chosen
quantum numbers. By treating each block as a virtual lead, this
problem is avoided.

B. Charge, spin and thermal currents

When comparing theory with experiment, we are usually
interested in computing the flux of some quantity Q from
a particular reservoir. If the amount of Q carried by quasi-
particles of type αi is Qαi(E), then the flux of Q from
reservoir i is:

IiQ =
1

h

∫
dE

∑
αi,j,βj

T i,jαi,βj f̄
j
βj

(E) (166)

T i,jαi,βj in this expression is transmission coefficient of quasi-
particles of type αi. In the simplest case of a normal conductor,
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choosing Qαi = −e , independent of αi, this equation yields
the electrical current from lead i. αi may represent spin, and in
the presence of superconductivity it may represent hole (αi =
h) or particle (αi = p) degrees of freedom. In the latter case,
the charge Qp carried by particles is −e, whereas the charge
Qh carried by holes is +e. In the presence of non-collinear
magnetic moments, provided the lead Hamiltonians are block
diagonal in spin indices, choosing αi = σi and Qαi = −e in
Eq. (166) yields for the total electrical current

Iie = − e
h

∫
dE

∑
σi,j,σj

T i,jσi,σj f̄
j
βj

(E) (167)

Note that in general it is necessary to retain the subscripts
i, j associated with σi or σj , because the leads may possess
different magnetic axes.

Similarly the thermal energy carried by the electrons from
reservoir i per unit time is

Iiq =
1

h

∫
dE

∑
σi,j,σj

(E − µi)T i,jσi,σj f̄
j
βj

(E) (168)

For the special case of a normal multi-terminal junction having
collinear magnetic moments, αi = σ for all i and since there is
no spin-flip scattering, T i,jσ,σ′ = T i,jσ,σδσ,σ′ [29]. In this case, the
total Hamiltonian of the whole system is block diagonal in spin
indices and the scattering matrix can be obtained from separate
calculations for each spin. we assume that initially the junction
is in thermodynamic equilibrium, so that all reservoirs possess
the same chemical potential µ0. Subsequently, we apply to
each reservoir i a different voltage Vi, so that its chemical
potential is µi = µ0 − e Vi. Then from equation (166), the
charge per unit time per spin entering the scatterer from each
lead can be written as

Iie = − e
h

∫
dE
∑
σ,j

T i,jσ,σ f̄
j
σ(E) (169)

and the thermal energy per spin per unit time is

Iiq =
1

h

∫
dE
∑
σ,j

(E − µi)T i,jσ,σ f̄ jσ(E) (170)

where e = |e| and f̄ iσ(E) = f(E − µi) − f(E − µ) is the
deviation in Fermi distribution of lead i from the reference
distribution f(E−µ). In the limit of small potential differences
or small differences in reservoir temperatures, the deviations in
the distributions from the reference distribution f̄ jσ(E) can be
approximated by differentials, therefore by Taylor expanding
fj = f(E−µj), fj−f = − ∂f

∂E (µj−µ)− ∂f
∂E (E−µT )(Tj−T )

is obtained. Using this expression for fj − f , equations 169
and 170 could be written as:(

I

Q̇

)
=

(
− e
h

∑
σ L

0
ij,σ − e

h

∑
σ

L1
ij,σ

T

1
h

∑
σ L

1
ij,σ

1
h

∑
σ

L2
ij,σ

T

)(
e4V
4T

)
(171)

Since nth moment of probability distribution P (x) define as:
〈xn〉 =

∫
dxP (x)xn, the spin-dependent moment Lij,σ in the

presence of collinear magnetism is obtained as

Lnij,σ(T,EF ) =

∫ ∞
−∞

dE (E − EF )n T ijσ,σ(E)

(
− ∂f
∂E

)
(172)

where f(E, T ) = (1 + e(E−EF )/kBT )−1 is the Fermi-Dirac
distribution function, T is temperature and kB is Boltzmanns
constant. Therefore, in the linear-response regime, the electric
current I and heat current Q̇ passing through a device is related
to the voltage difference ∆V and temperature difference ∆T
by (

∆V

Q̇

)
=

(
G−1 −S
Π κel

)(
I

∆T

)
(173)

where electrical conductance G (thermal conductance κel) is
the ability of the device to conduct electricity (heat) and the
Seebeck coefficient S (Peltier Π) is a measure of generated
voltage (temperature) due to a temperature (voltage) differ-
ences between two sides of the device. In the presence of two
leads labeled i = 1, 2, the spin-dependent low-voltage electri-
cal conductance G(T,EF ), the Seebeck coefficient (somtimes
called thermopower) S(T,EF ) = −∆V/∆T , the Peltier
coefficient Π(T,EF ) and the thermal conductance due to the
electrons κel(T,EF ) as a function of Fermi energy EF and
temperature T can be obtained as

G(T,EF ) =
∑
σ

e2

h
L0

12,σ

S(T,EF ) = − 1

e T

∑
σ L

1
12,σ∑

σ L
0
12,σ

Π(T,EF ) = T S(T,EF )

κel(T,EF ) =
1

hT

(∑
σ

L2
12,σ −

(
∑
σ L

1
12,σ)2∑

σ L
0
12,σ

)
(174)

Note that the thermal conductance is guaranteed to be positive,
because the expectation value of the square of a variable
is greater than or equal to the square of the expectation
value. Furthermore, by Taylor expanding T ijσ,σ(E) around EF ,

T ijσ,σ(E) ≈ T ijσ,σ(EF ) +
∂T ijσ,σ(E)

∂E |E=EF (E − EF ), the low
temperature approximation of L1

ij,σ and L0
ij,σ where T ijσ,σ(E)

varies approximately linearly with E on the scale of kBT
could be written as:

L0
ij,σ ≈ T (EF ) (175)

and

L1
ij,σ ≈

∂T ijσ,σ(E)

∂E
|E=EF

∫
dE(− ∂f

∂E
)(E − EF )2

≈
∂T ijσ,σ(E)

∂E
|E=EF (eT )2α

(176)

and

L2
ij,σ ≈ (eT )2αT (EF ) (177)

where α = k2
Bπ

2/3e2 WΩK−2 is the Lorenz number.
Therefore, Seebeck coefficient could be re-written as:

S(T,EF ) ≈ −
∂T ijσ,σ(E)

∂E
|E=EF

〈(E − EF )2〉
T ijσ,σ(EF )eT

= −k
2
Bπ

2T

3e

∂Ln(T ijσ,σ(E))

∂E
|E=EF

(178)

Equation 178 is also called the Mott Formula. From equations
175-177, the electrical conductance and thermal conductance
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due to electrons are obtained as G(T,EF ) ≈ G0T (EF ) and
κel(T,EF ) ≈ αTG(T,EF ). The latter is also called the
Wiedemann-Franz law and shows that thermal conductance
due to electrons is proportional to the electrical conductance.

Efficiency of a thermoelectric martial η is defined as the
ratio between the work done per unit time against the chemical
potential difference (between two hot and cold reservoir) and
the heat extracted from the hot reservoir per unit time. The
maximum efficiency ηmax could be written as:

ηmax =
∆T

Th

√
Z.Tavg + 1− 1√
Z.Tavg + 1 + Tc

Th

(179)

where Th and Tc are temperatures of hot- and cold-sides,
respectively, ∆T = Th − Tc and Tavg = (Th + Tc)/2.
The thermoelectric conversion efficiency (equation 179) is the
product of the Carnot efficiency ( ∆T

Th
) and a reduction factor as

a function of the material’s figure of merit Z = S2G/κ, where
S, G, and κ = κel+κph are the Seebeck coefficient, electrical
conductance, and thermal conductance due to both electrons
and phonons, respectively. More commonly a dimensionless
figure of merit (ZT = Z.Tavg) is used to account for the
efficiency of the thermoelectric materials. The thermoelectric
figure of merit could be written as

ZT = ZTel
κel

κel + κph
(180)

where the electronic thermoelectric figure of merit for a two-
terminal system is

ZTel =
L1

12

L0
12 L

2
12 − L1

12

(181)

To calculate the total ZT , not only the thermal conductance
due to the electrons are needed but also it is absolutely crucial
to take the phonons contribution to the thermal conductance
(κph) into account as described in the next section.

C. Phonon thermal conductance

To calculate the heat flux through a molecular junction
carried by the phonons, equation 166 could be used where
the thermal conductance due to the phonons κph could be
obtained [10] by calculating the phononic transmission Tph
for different vibrational modes as

κph(T ) =
1

2π

∫ ∞
0

~ωTph(ω)
∂fBE(ω, T )

∂T
dω (182)

where fBE(ω, T ) = (e~ω/kBT − 1)−1 is Bose-Einstein dis-
tribution function and ~ is reduced Plancks constant and kB
is Boltzmanns constant. To calculate the vibrational modes
of a system, we use the harmonic approximation method to
construct the dynamical matrix D. From the ground state
relaxed xyz coordinate of the system, each atom is displaced
from its equilibrium position by δq′ and −δq′ in x, y and
z directions and the forces F qi = (F xi , F

y
i , F

z
i ) in three

directions qi = (xi, yi, zi) on each atom are calculated. For
3n degrees of freedom (n = number of atoms), the 3n × 3n
dynamical matrix D is constructed from Hessian matrix K

Dij =
Kqq′

ij

Mij
(183)

where Kqq′

ij for i 6= j are obtained from finite differences

Kqq′

ij =
F qi (δq′j)− F

q
i (−δq′j)

2δq′j
(184)

and the mass matrix M =
√
MiMj . To satisfy momentum

conservation, the Ks for i = j (diagonal terms) are calculated
from Kii = −

∑
i 6=j Kij . Once the dynamical matrix is con-

structed the Green’s function method as described in section
III-B could be used to calculate the phononic transmission
coefficient Tph.

It is worth to mention that in order to compute the electron-
phonon coupling matrices Wλ for a given phononic mode λ,
one could use the Hamiltonian matrices {{〈i|H|j〉}} for the
displaced configurations [47].

〈i| ∂H
∂δq′
|j〉 =

∂〈i|H|j〉
∂δq′

− ∂〈i|
∂δq′
|H|j〉 − 〈i|H| ∂|j〉

∂δq′
(185)

where |i〉 are basis orbitals. The Wλ matrices are then used
[47] to calculate the appropriate self-energies (see section
III-D) to account for inelastic scattering due to electron-
phonon interactions.

D. Piezoelectric response

In piezoelectric materials, electric field is generated due to
conformational changes. The piezoelectric response between
atoms i and j of a molecule is given by:

Pij =

∂u
∂fj
− ∂u

∂fi

rij
(186)

where rij is the distance between atom i and j in the
equilibrium geometry. Displacement derivatives ∂u

∂f is given
by

∂u

∂f
= −VW−1H̄ (187)

where W and V are normal modes and vectors of Hessian
matrix K = ∂2E

∂u2 , respectively (section IV-C). H̄ = V TH

where H = ∂2E
∂f∂u is dipole derivatives matrix. Note that just

like equation 184, these derivatives can be calculated using
finite differences. Clearly, larger piezoelectric response is
expected for molecules with larger dipole moments. Recently,
a large converse piezoelectric effect was measured in helicene
single molecules [48].

E. Spectral adjustment

Although DFT has been successful at predicting the trends,
it usually underestimates the position of the Fermi energy
EF , the exact energy levels (Kohn-Sham eigenvalues [49])
and therefore the position of the HOMO and LUMO and the
energy gap. To compare mean-field theory with experiment,
some corrections are needed. One way is to use hybrid func-
tionals e.g. B3LYP [50] or many body calculations e.g. GW
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approximation [51]. The latter is computationally expensive
[52] and can only be used for molecules with few atoms. An
alternative way is to correct the HOMO-LUMO gap using the
values measured experimentally. A phenomenological scheme
that improves the agreement between theoretical simulations
and experiments in, for example, single-molecule electronics
consists of shifting the occupied and unoccupied levels of
the molecule (M) downwards and upwards, respectively to
increase the energy gap. The procedure is conveniently called
spectral adjustment in nanoscale transport [29, 53] and has
been widely used in the literature to correct theoretical trans-
port gap [54, 55]. The Hamiltonian K = H −ES of a given
M region could be modified as:

KM = K0
M + (∆o −∆u)SM ρM SM + ∆u SM (188)

where ∆o,u are energy shifts. ρM =
∑
no |Ψno〉〈Ψno| is

the density matrix where (no, nu) denote the occupied and
unoccupied states, respectively and SM is overlap matrix. If
experimental HOMO and LUMO energies are available, ∆o,u

can be chosen to correct HOMO and LUMO obtained from the
mean-field Hamiltonian. Alternatively, in the simplest case, the
shifts ∆o,u are chosen to align the highest occupied and lowest
unoccupied molecular orbitals (ie the HOMO and LUMO)
with (minus) the ionization potential (IP ) and electron affinity
(EA) of the gas phase molecule

∆0
o = εHOMO + IP + Z

∆0
u = −εLUMO − EA− Z

(189)

The ionization potential (IP = E(+e) − E(0)) and electron
affinity (EA = E(0) − E(−e)) are calculated from total
energy calculation of the gas phase molecule. E(0) is the total
energy of the neutral molecule, E(+e) is the energy of the
molecule with one electron removed (i.e. positively charged),
and E(−e) is the total energy of the molecule with one added
electron. The energy-gap Eg of a molecule (sometimes called
additional energy) could be calculated from IP and EA as:
Eg = IP − EA [12–14]. The important conceptual point is
that the electrochemical potential µ should lie between the
affinity levels (above µ) and ionization levels (below µ) in the
ground state. Note that IP and EA are traditionally defined
positive energies below the vacuum level, whereas HOMO and
LUMO level are negative, if they are below the vacuum level.

The Coulomb interactions in the isolated molecule are
screened if it is placed in close proximity to a metallic surface.
Due to this image charge interactions, the occupied energy
levels shift up whereas the unoccupied states move down
resulting in shrinking of energy gap. This could be taken into
account by using a simple image charge model, where the
molecule is replaced by a point charge located at the middle
point of the molecule and where the image planes are placed
∼ 1 Å above the electrodes’ surfaces. Then the shifts are
corrected by screening effects Z = e2 ln 2/(8πε0a) where a
is the distance between the image plane and the point image
charge.

F. Hopping versus tunnelling

Charge transport mechanism through the molecular scale
junctions are either coherent transport via tunnelling (called
also superexchange) or incoherent thermally activated hop-
ping. Transport through the short molecules with the length
of < 3− 4nm has been demonstrated [56, 57] to be coherent
tunnelling. This is characterized by an exponential dependence
of conductance G with length given by

G = Gce
−βL (190)

where Gc is a pre-exponential factor dependent on junction
contacts and nature of metallic leads, β is the tunnelling decay
constant (called also attenuation or β factor), and L is the
length of the molecule. The coherent process is also character-
ized by temperature independence. In contrast, incoherent hop-
ping is believed to be the charge transport mechanism along
longer molecules. In incoherent hopping transport regime, the
conductance follows an Arrhenius relation

G = Gae
−EA/kBT (191)

where Ga is a constant pre-exponential factor for each chem-
ical reaction, EA is the hopping activation energy, T is the
temperature and kB is the Boltzmann’s constant. In this
regime, the conductance varies as the inverse of molecu-
lar length and also decays exponentially with temperature.
Therefore, the length and temperature dependent conductance
measurements are widely used in the literature to distinguish
between different transport regimes [58, 59].

G. Spin Hamiltonian

To take electrons spin into account in a Hamiltonian H
(Eψ = Hψ), in the absence of spin-orbit coupling, the
Schrödinger equation can be written,

E

(
ψ

ψ̄

)
=

(
H 0
0 H̄

)(
ψ

ψ̄

)
(192)

where ψ and ψ̄ are spin-up and spin-down component of wave-
function. If electrons travel with high velocities, relativistic
effects can become significant. This is not usually a case in
solids but near the nuclei of atoms where the electric fields are
high, weak relativistic effects might be expected. Therefore,
a spin-orbit correction need to be considered using the Dirac
equation.

E

(
ψ

ψ̄

)
=

(
H 0
0 H̄

)(
ψ

ψ̄

)
+

(
Mz Mx − iMy

Mx + iMy −Mz

)(
ψ

ψ̄

) (193)

Spin-orbit Hamiltonian is often written as σ.M where σ is
Pauli spin matrices.

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(194)

If M points in the direction (θ, φ), Mx = sin θ cos φ, My =
sin θ sin φ and Mz = cos θ, therefore
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Fig. 18. Magnetisim. Schematic represents a scattering region with two 1D chain for each spin. ε1 and ε2 are site energies for spin-up and spin-down,
respectively. In the para-magnetic case, the site energies for spin-up and spin-down are equal ε0. In the presence of spin-orbit coupling, there are coupling
between spin-up and spin-down sites.

(
Mz Mx − iMy

Mx + iMy −Mz

)
=

(
cos θ sin θ e−iφ

sin θ eiφ −cos θ

)
(195)

The spin wavefunction, spinors thus is obtained
ψ =

(cos(θ/2) e−iφ/2

sin(θ/2) eiφ/2

)
, ψ̄ =

(−sin(θ/2) e−iφ/2

cos(θ/2) eiφ/2

)
. If there

is no spin-orbit coupling, the Hamiltonian is block diagonal
for spin up and spin down. Therefore, transmission coefficient
for spin up and down could be treated independently. If
an scattering region cause spin flip, the new Hamiltonian
is twice bigger than Hamiltonian without spin and to
calculate transmission coefficient, one need to consider whole
Hamiltonian. For a para-magnetic system, one could obtain
the total transmission by multiplying one spin transmission
by 2. Figure 18 shows examples of ferromagnetic and
anti-ferromagnetic systems.

H. Inclusion of a Gauge field

For a scattering region of area A, if a magnetic field
B is applied the magnetic flux φ = B × A. To compute
transport properties in the presence of a magnetic field, a
Peierls substitution is considered by changing the phase factors
of the coupling elements between atomic orbitals. For example
in the case of a nearest-neighbor tight-binding Hamiltonian,
the hoping matrix element Hij between site i and site j is
replaced with the modified element,

HB
ij = Hije

−iφ, (196)

where

φ =
e

~

∫ ri

rj

A(r)dr (197)

and ri and rj are the positions of site i and j and A is the
vector potential. The gauge should be chosen such that the
principal layers of the leads remain translationally invariant
after the substitution.

I. Superconducting systems

Figure 19a shows a two-probe normal-superconductor-
normal device with left and right normal reservoirs connected
to a scattering region containing one or more superconductors.
If the complete Hamiltonian describing a normal system is
HN , then in the presence of superconductivity within the
extended scattering region, the new system is described by
the Bogoliubov-de Gennes Hamiltonian

H =

(
HN ∆
∆∗ −H∗N

)
(198)

��

��

��

��

Virtual Lead
electrons

Virtual Lead
holes

Fig. 19. Two-terminal device consists of two physical leads connected to a
scattering region containing two superconductors with order parameters 41

and 42. The left (right) physical lead consists of two virtual leads p1 and
h1 (p2 and h2) carrying particle and hole channels, respectively.

where the elements of the matrix ∆ are non-zero only in the
region occupied by a superconductor, as indicated in figure
19b. Physically, HN describes particle degrees of freedom,
−H∗N describes hole degrees of freedom and ∆ is the super-
conducting order parameter.

The multi-channel scattering theory for such a normal-
superconducting-normal structure could be written as [29]:(

IL
IR

)
=

2 e2

h
a

(
µL−µ
e

µR−µ
e

)
(199)

where IL (IR) is the current from the left (right) reservoir,
µL − µ (µR − µ) is the difference between the chemical
potential of the left (right) reservoir and the chemical potential
µ of the superconducting condensate and the voltage difference
between the left and right reservoirs is (µL − µR)/e. In this
equation,

a =

(
NL −Ro +Ra −T ′o + T ′a
−To + Ta NR −R′o +R′a

)
(200)

where NL (NR) is the number of open channels in the left
(right) lead, Ro, To (Ra, Ta) are normal (Andreev) reflection
and transmission coefficients for quasi-particles emitted from
the right lead, R′o, T

′
o (R′a, T

′
a) are normal (Andreev) reflec-

tion and transmission coefficients from the left lead and all
quantities are evaluated at the Fermi energy E = µ. As a
consequence of unitarity of the scattering matrix, these satisfy
Ro + To +Ra + Ta = NL and R′o + T ′o +R′a + T ′a = NR.

The current-voltage relation of equation 199 is fundamen-
tally different from that encountered for normal systems,
because unitarity of the s-matrix does not imply that the sum
of each row or column of the matrix a is zero. Consequently,
the currents do not automatically depend solely on the applied
voltage difference (µL − µR)/e (or more generally on the
differences between incoming quasi-particle distributions). In
practice such a dependence arises only after the chemical
potential of the superconductor adjusts itself self-consistently
to ensure that the current from the left reservoir is equal to the
current entering the right reservoir. Insisting that IL = −IR =
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I , the two-probe conductance G = I/((µL−µR)/e) takes the
form of

G =
2 e2

h

a11a22 − a12a21

a11 + a22 + a12 + a21
(201)

If a superconductor is disordered, then as its length L in-
creases, all transmission coefficients vanish. Consequently, the
superconductor possesses zero resistivity (equation 201). In
this limit, the above equation reduces to (h/2e2)G = 2/Ra +
2/R′a. In contrast with a normal scatterer, this shows that in
the presence of Andreev scattering, as L tends to infinity, the
resistance ( = 1/conductance) remains finite and therefore the
resistivity (i.e. resistance per unit length) vanishes.

J. Environmental effects

Environmental effects such as presence of water, counter-
ions, solvents, pH, molecules conformational change, dopants,
nearby molecules, charge trap in a substrate can affect trans-
port properties through a molecular junction. In order to model
these effects, a statistical analysis needs to be carried out.
Since a molecular junction in the presence of surrounding
molecules is a dynamic object at room temperature, a molec-
ular dynamics simulation is usually needed to understand the
range of possible configurations of the system. A few con-
figuration then should be extracted and full DFT calculations
carried out to obtain the mean field Hamiltonian of the system
in the presence of surrounding molecules. An alternative
way to study the environmental effect is to create a series
of more ideal configurations systematically in the presence
of surrounding molecules (e.g. by moving surroundings in
different directions). Then without geometry optimization, one
could calculate the binding energy of surroundings to the
molecule for each configuration and study transport properties
of the confirmations with higher binding energies. Alterna-
tively, Boltzmann distribution Tnew = Told × e|E

binding|/kBT

can be used to account for the weight of each confirmation on
total ensemble transmission coefficient. Both of these methods
are widely used in the literature to model environmental
effects.

To calculate the binding energy between surroundings S
and the backbone B, three total energy calculations need to be
carried out. (1) The total energy of whole structure including
surroundings and the backbone ESB , (2) The total energy of
the surroundings in the presence of the backbone ghost states
ESb, (3) The total energy of backbone in the presence of the
surroundings ghost states EsB . The binding energy is then
obtained by EbindingSB = ESB − (ESb + EsB). It is worth
mentioning that since different effects such as physobrtion and
charge transfer can play important role in these simulations,
SCF methods need to be used to calculate transport from the
mean-field DFT Hamiltonian. Recently, machine learning al-
gorithms have been proposed to predict behavior of a junction
in the absence/presence of surroundings. In these methods,
machine is trained using a series of molecular junctions which
are fully characterised using SCF methods. Machine then
predicts the behavior of new junctions using its data base and
pattern recognition algorithms.

V. CONCLUSION

To understand, predict and explain new phenomenon in
the nanoscale junctions, one needs to study electron, phonon
and spin transport through these junctions. The focus of this
paper was on exploring theoretical methods to study electron,
phonon and spin transports through molecules and low di-
mensional materials. Systematic study of such systems begins
with understanding their vibrational and electronic structure.
Then, one need to calculate the core quantities, transmission
function of electrons Te and phonons Tph traversing through
such systems from one electrode to the other. This is not only
vital to understand their properties and related experiments
but also to develop new concepts and design strategies for
future applications. We mainly considered junctions where the
transport is assumed to be elastic and coherent. In addition, we
showed that how these methods could be extended to the inco-
herent and inelastic regimes. A good agreement between ex-
periments and theories devolved using these methods [6, 9, 11]
demonstrate that they are accurate enough to predict trends and
develop new design strategies for future applications. However,
in terms of predicting actual numbers, there are rooms for
improvements. Apart from those quantities that depends on the
actual shape of the contact (e.g. screening effects) and cannot
be easily calculated; new computationally cheap approaches
are needed to take into account electron-electron interactions
more accurately. This would help to predict more accurate
energy gap and level spacing leading to more realistic modells.
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