
Fog at the Edge: Experiences Building an Edge Computing Platform

Nam Ky Giang∗, Rodger Lea†, Michael Blackstock‡, and Victor Leung∗
∗Department of Electrical and Computer Engineering

University of British Columbia, Vancouver, Canada. Email: kyng, vleung@ece.ubc.ca
†School of Computing and Communications

Lancaster University, Lancaster, UK. Email: rodger@comp.lanc.ac.uk
‡Sense Tecnic Systems Inc, Vancouver, Canada. Email: mblackstock@sensetecnic.com

Abstract—Technology advancement has pushed computation
to the network edge, paving the way for a class of IoT
applications that leverage CPU, storage and communications
in edge devices. Building these new IoT applications is not an
easy task however. Two key challenges include: supporting the
dynamic nature of the edge network and the context-dependent
characteristics of application logic. In this paper we report
our experience in building an edge computing platform that
uses a distributed data flow programming model based on the
popular open source Node-RED tool. We describe some of the
challenges we faced as well as some novel solutions that were
implemented in our platform. A new approach in applying the
concept of exogenous coordination is also presented and shown
to be necessary in building large scale IoT applications across
the edge, fog and cloud.

Keywords-edge; fog; computing; exogenous; dataflow

I. INTRODUCTION

As the number of connected Internet of Things (IoT)
devices increases, the amount of data generated by these
devices is putting pressure on the traditional centralized
cloud computing infrastructure. Fog computing where re-
sources are distributed closer to the edge network, has
emerged as a system model to support many data-intensive
or delay-sensitive IoT applications [1]. Thanks to its widely
distributed nature, fog computing infrastructure is able to
process the large amounts of sensing data produced by IoT
applications, often efficiently processing data locally at the
edge network rather than transporting sensed data streams
to the distant cloud.

While ”edge-ward” computing infrastructure offers a
more efficient and timely system model for IoT applications,
combining and leveraging these sparsely distributed comput-
ing resources across the edge network, fog and cloud, is not
an easy task. The large scale characteristics of these systems
and the complexity of the applications suggest that we
should rethink both the application model and development
process. The requirements are essentially twofold: how do
we decompose the application so that it can be easily
distributed from the cloud to the edge network; and how
do we support the characteristics that are inherently relevant
in edge network, such as large scale, dynamic nature and
the context-dependent nature of computation?

To gain experience and begin evaluating IoT applications
in fog systems, we’ve leveraged the open source project
Node-RED, which provides a visual dataflow programming
paradigm for building IoT applications. We developed ex-
tensions to Node-RED and built an open source platform -
Distributed Node-RED (DNR).

Our first version of DNR, originally introduced in [2],
allows developers to build distributed IoT applications that
span across multiple devices from the edge network to the
cloud. While this system could distribute Node-RED appli-
cations or application flows across multiple devices, it did
not address the replicated deployment of each computation
activity (the need to deploy multiple instances of software
components to a range of devices) nor did it adequately
support the dynamic nature of edge devices and context-
dependent nature of application logic. In a subsequent
iterations of the platform, DNR v2, we addressed these
requirements and solved a number of challenges that arose as
we improved our programming model. We developed several
fog applications using DNR v2 which we report on in this
paper and use to offer a number of lessons that we feel are
valuable for the community as a whole. To support further
experimentation within the community, we have made our
system, DNR v3, fully open source and available online1.
Throughout the paper, we use the term fog applications to
denote the IoT applications that involve computing resources
across the edge network toward the cloud, with a focus
on edge devices that are IP reachable and have sufficient
resources to support a minimal run-time.

II. FOG/EDGE COMPUTING

Today’s Internet infrastructure could be seen as a three-
tier distributed system [3] that includes a cloud layer, a
communication network layer and an edge layer. Internet
applications have been scattered around these computing
elements for many years with backend, frontend and content
delivery/caching logic. For the most parts, the development
of such Internet applications still follows a manual process
where developers build individual pieces of the application
and the communications in-between.

1https://github.com/namgk/dnr-editor

rodger lea


rodger lea


rodger lea
This is a pre-print of a paper published at the IEEE Edge computing conference, July 2018, part of the IEEE 2018 World Congress on Services, San Francisco, CA. The final published version is available via IEEE Xplore digital library



Building IoT applications in this distributed manner is
even more difficult as they often involve moving compo-
nents and have a close bond to the physical world. While
Distributed Systems have been extensively studied, with a
plethora of distributed application models, it is not always
clear how to apply them to these new requirements.

A. Geographic Distribution of Fog Computing Systems

Large scale fog computing systems may range from
industrial IoT spanning factories to smart city or regions
spanning metro areas of larger geographical groupings. This
large scale geographic distribution has several consequences
that influence the way applications are developed.

First, the fog computing resources are generally com-
municating over a heterogeneous network that involves 1)
different communication mediums (e.g Wi-Fi, LTE, Wired,
etc) and 2) a mix of static and dynamic endpoints with
different reachability (e.g direct IP addresses vs behind
NAT). This heterogeneity makes it more difficult for inter-
device communication. In large scale Fog applications, these
communication details should not hinder the development of
the application in general. Therefore, the developers should
be provided with enough programming tools and primitives
that allows them to focus only on the application logic.

Second, due to the large scale distribution of computing
resources, their physical location, or in general their physical
context, becomes an important factor in the fog computing
application model. For instance, if there are many instances
of a smoke detector and a robot extinguisher distributed over
a large area, a particular smoke detector instance might send
the data to a nearby robot extinguisher instance only. That is,
in addition to specifying the location where an application
component should be deployed, a developer might want to
restrict the interaction between two components based on
their locations.

B. Dynamic Nature of Edge Devices

Due to the close bonding with the physical world, edge
devices often exhibit a highly dynamic nature, in terms
of both load fluctuation and context changes (e.g. location
changes when fog nodes are mobile). While load balancing
and dynamic scaling is commonly used in cloud computing
to cope with the fluctuation in application load, it is more
difficult to do the same in the edge. This is partly because
edge resources are not as centralized and readily available
as cloud computing resources so that it is harder to scale
horizontally. The other reason is that the heterogeneous
networking environment makes it difficult to locate resources
for the load balancing task.

In addition to load fluctuation, changes in physical context
such as location, which as described in the previous section
plays an important role in IoT applications, requires a certain
level of context monitoring and situational re-evaluation.
The involvement of dynamic physical context also leads

to the question of how to expose the context information
to programming primitives or constructs that developers
can use to build the application. Returning to our previous
example of smoke detectors and robot extinguishers, the
application data in this case is the sensing data generated
by the smoke detectors, such as the level of CO2 in the air.
In order to communicate or send this data to the appropriate
robot extinguisher component, the contextual data - their
locations - are used to coordinate the communication, i.e to
route the sensing streams to the appropriate sinks.

III. EARLY EXPERIMENTS WITH THE DATAFLOW
PROGRAMMING MODEL

In our first attempt to build an application platform for
fog applications we only focused on solving the problem
of distributing the application across the edge devices, the
fog and the cloud. Dataflow-based programming languages
appeared to be a natural fit with the need for application
decomposition and distribution, as well as very suitable for
a vast number of IoT applications[4].

Briefly, Dataflow is a natural programming model for
the IoT where applications are abstracted as a directed
acyclic graph (DAG) of processing nodes. Due to the data-
oriented nature of many IoT applications, the dataflow-based
programming model provides many advantages by raising
the abstraction level of the underlying IoT systems.

Node-RED2 is a popular dataflow-based visual program-
ming tool and language for IoT applications. Applications
are developed by dragging and dropping processing nodes
onto a canvas, and ’wiring’ the nodes together. The wires
represent communication paths between nodes. As can be
seen (fig. 2), this is a direct visual analogy for the DAG
mentioned above. The resulting application, referred to as
a ”flow”, is then ’deployed’ to run as single process on a
single device, i.e. Node-RED has no support for distribution
or large scale programming.

Our initial goal was to leverage Node-RED to experiment
with the partitioning of fog applications so that they can be
easily deployed into the distributed computing infrastructure
across the edge network, fog and the cloud. We created the
first iteration of our Distributed Node-RED project where
we extended Node-RED in a number of ways.

We introduced the notion of device to the dataflow lan-
guage. Accordingly, every node in a dataflow program is
augmented with a new device Id constraint that specifies
on which device the node should be deployed and run.
For example, a node can be constrained to be deployed on
an edge device, a mobile host, a cloud server or on any
intermediary device across the edge to the cloud.

The second augmentation made to Node-RED was the
notion of ”remote wires” or ”remote arcs”. Since the nodes
may run on separate devices, the existing Node-RED wires

2https://nodered.org



Figure 1. Initial Distributed Node-RED

have to support inter-device communication to handle the
situation where a flow is broken up and its nodes are
distributed to several devices. This is implemented using
a publish/subscribe communication mechanism that binds
the nodes together. The key idea is to leverage the node
identifications as the topic for publishing and subscribing.
Further, a flow transformation process is applied so that the
nodes that do not meet the deployment requirement (e.g run
on ”mobile”, ”laptop” or ”server”) will be replaced with
a wire in or a wire out node. wire in node subscribes to
the communication broker so that it can receive data from
the external node running on a different device. wire out
receives data from the local node and publishes it to the
communication broker so that the wire in node from the
other side can pick it up. Figure 1 illustrates this process of
supporting the distributed deployment of a Node-RED flow
across multiple devices.

From the early experiments with DNR, we found that the
Distributed Dataflow programming model offers a natural
basis to decompose or partition an application so that it can
run across multiple devices from the edge network toward
the cloud. By hiding the details of remote communication,
developers did not have to worry about the communication
details, thus making the development process of distributed
fog-based applications more seamless.

However, in order to build more sophisticated and larger
scale applications, we found a need to support more complex
deployment requirements and a need to be able to deploy
flows and nodes to multiple devices in parallel. For example,
when deploying to multiple devices, we found that the notion
of device Id was too limiting. If we want to configure a node
to run on a specific location, we have to incorporate that

Figure 2. Annotating nodes with constraints

information into the device Id, e.g ”office-laptop”, ”home-
laptop”. That is, we found the need to deploy nodes based on
more complex requirements, and to have multiple instances
of node running on multiple devices at the same time.
These requirements are the basis for our work on the second
iteration of DNR, DNR v2.

IV. DNR V2: SUPPORTING MORE COMPLEX, LARGER
SCALE APPLICATIONS

The second iteration of DNR project, DNR v2 was built
based on the lessons from using DNR v1 to develop Fog
applications. The main motivation was to support applica-
tions at a larger scale that has a vast number of participated
devices, and with a larger deployment scope, such as across
a city area. In DNR v2, we addressed two major issues:
support for more complex deployment constraint of the ap-
plication flow; and the multi-instance deployment of nodes.

A. Constraint-based Application Flow Distribution

As described above, one key limitation of our DNR
v1 was the simplistic nature of the mapping from nodes
to devices. Our experience with DNR v1 highlighted that
the mapping needed to be much more sophisticated, for
example:

• A sensor node mounted on a moving vehicle could be
restricted to operate in a certain location.

• A vision processing node might be restricted to operate
in a more capable computing device.

To address these needs, we introduced the constraint
primitive as a broader abstraction that specifies how a node
is deployed and run in a distributed computing setting.
Accordingly, every node in a dataflow program is augmented
with a constraint property that defines how the deployment
is carried out. In our project, a constraint involves the
requirements on device identification, computing resources
such as CPU and memory and physical location.

The goal is to make the application model more suit-
able for a class of fog-based applications that are heavily
dependent on the context associated with the edge devices



Table I
TOPICS CONSTRUCTION

Wire Cardinality Communication Topic
1-1 <An instance of node A> <An instance of node B>
N-M <node A> <node B>
1-N <An instance of node A> <node B>
N-1 <node A> <An instance of node B>

they operate on. As a result, the developer can not only
specify which type of device a node should run on (e.g
mobile, server or laptop, etc) but can further constrain where
the node should run based on a variety of aspects such as
memory size, processing capability, location etc. To address
this need, we added support to allow application developers
to specify these node constraints via the programming user
interface. (fig. 2).

B. Replicated Deployment of Nodes

With the new constraint notion, we were able to experi-
ment with the replication of nodes on multiple devices. For
example, in the simplified application flow described in the
last section, the Function node can now have a constraint
such as ”run within the location X (e.g in Vancouver)”
instead of being constrained to only device Id. This is
a significant upgrade because, while device Id specifies a
particular device a node should run on, constraint specifies
a group of devices. This means that DNR v2 is now is able
to support large scale deployment of fog-based applications
that involve a large number of devices and a programming
pattern where applications flows and their associated nodes
are replicated across many devices. As identified earlier, this
is a key requirement for large scale IoT applications. Inter-
estingly, there are several inherent challenges in supporting
this new deployment capability.

1) Wire cardinality: First we have to add the notion of
cardinality or arity to the wires. That is, since a node can
run on multiple devices, there may be multiple instances of
a given node at runtime, each hosted by a different devices.
An initial implication of this capability is that there has to
be a cardinality relationship between nodes that mandates
how their runtime instances communicate. These include 1-
1, 1-N, N-1 and N-M cardinality.

Table. I summarizes these different cardinalities and their
associated communication topics. Specifically:

With N-M wire cardinality: , the communication hap-
pens freely between Node A and Node B and that the
participating devices do not have to know about one another.
The topic for inter-device communication is as simply as
<node A>-<node B>. For the sake of readability, we now
omit the node Id in a node’s representation (e.g instead
of writing node A’s Id, we only write node A). Topic
construction for this special case is the same as in our first
version of DNR.

Figure 3. Wire Fragmentation

With 1-N or N-1 wire cardinality: , one instance of
Node A can multicast to a number of instances of Node B.
However, each instance of Node B can only accept data from
one particular instance of Node A. In this case, the topic is
constructed as <an instance of node A>-<node B>, where
an instance of node A is a combination of node A’s Id and
the Id of the device it is running on. A similar reasoning
is applied to the N-1 wire cardinality case, in which the
constructed topic will be <Node A>-<an instance of Node
B>.

Lastly, with 1-1 wire cardinality: , both the devices
running Node A and Node B have to know the particular
instance of the other peer in order to construct the topic. In
this case the constructed topic will be<an instance of node
A>-<an instance of node B>.

To support these instance-specific topic construction,
when a device participates in the DNR application, it pe-
riodically provides information about its’ physical context
as well as the nodes it can run to the coordinator. The
coordinator in turn keeps a repository of node instances with
corresponding constraint information. When an instance-
specific topic needs to be constructed, the device asks the
coordinator which node instance to use and the coordinator
answers to those requests based on its node instance repos-
itory. We refer to this as a node instance request.

2) Wire Fragmentation: With the new constraints ab-
straction and the associated notion of wire cardinality, we
are faced with a wire fragmentation problem. The wire
fragmentation problem occurs when there are more than
one instance of a data processing node available across the
runtimes and the system inadvertently configures itself to
have all data sources communicate with one instance, but
all data sinks communicate with a different instance, i.e. the
natural flow (or wiring) from source, via processing, to sink
is fragmented.

Consider an intrusion detection and alert system which
involves security cameras, data processor systems and speak-
ers for alerting purpose. Accordingly, multiple instances of
the camera sources send video streams to an instance of data
processors for intrusion detection, and the potential alerts are
broadcasted to the speakers.

Fig. 3 illustrates the process of forming a distributed
deployment of this application. When the devices running
Camera nodes want to construct the topic for inter-device
communication, since this is a N-1 wire cardinality, they
request the coordinator for an instance of Data processor



node by sending node instance requests. The coordinator,
based on its node instance repository, picks an instance
of the Data processor node that satisfies the deployment
constraints and sends it back. A similar process happens
when the devices running Speaker node want to form a N-1
inter-device communication with a particular Data Processor
node.

The wire fragmentation problem occurs when there are
more than one instance of the Data Processor node in the
system. That is, even though the coordinator’s assignment
of these node instances can satisfy all the constraints, the
instances being assigned could be different. This results in
the situation where all Camera node instances send their
video streams to one instance of Data Processor node and
all Speaker node instances get the alert notification from
a different instance of Data Processor node, i.e. the wire
is broken or fragmented. This symptom also occurs when
devices fail or move to different locations.

To overcome this problem, we developed link score, a
quantitative measure that indicates the connectedness of a
specific node. With this new primitive, every node has a
forward and a backward link score. Whenever the centralized
coordinator assigns a node instance to a node instance
request, it updates the link scores for the node instance
being assigned in both forward and backward direction.
In subsequent node instance requests, it chooses the node
instance that has the highest link score to minimize the wire
fragmentation problem.

C. Experience with DNR v2

DNR v2 exhibited several novel solutions to some of the
challenges in building fog applications, such as constraint-
based deployment primitives, multitude deployment of nodes
and link score. However, to fully support edge devices
in fog applications, the platform has to be able to cope
with the highly dynamic characteristic of many typical
edge devices. For example, there are some major use cases
in fog applications that involve the mobility of the host
device, such as in vehicular applications. In such cases, the
deployment of nodes becomes more dynamic as the edge
device moves from place to place, which may at times enable
or disable the execution of certain nodes. Based on this
location change, the communication pattern among nodes
from different devices also needs to be coordinated properly.

To better understand the needs of large scale fog applica-
tions, we developed a series of prototype deployments for
smart city transport applications that focused on intelligent
vehicles. These are reported in more detail in [3].

One application that we explored is to leverage video
streams from dashcams mounted on cars to deliver the real-
time traffic status. The video streams can be processed by
local road-side units mounted on lamp posts and the results
are distributed back to nearby cars. It could also be used to
actuate some smart transportation elements such as traffic

lights, be recorded for data analysis purpose, or to interact
with social media. This type of application involves several
independent data processing components that are linked
together in a dataflow-type of architecture. It also involves
the need to, in a timely manner, produce an outcome from
the video inputs in order to actuate some physical processes,
e.g. smart traffic lights.

This example application illustrates two new challenges,
which DNR v2 was not able to support fully. Firstly, the
need to synchronize with the changing context in a highly
dynamic and large scale system. As described above, vehi-
cles in a transportation network are highly dynamic and their
context, both location, but also resources and capabilities
are constantly changing as different groups of vehicles pass
through specific locations in the city. This points to a need
for a management (or co-ordination) system that is able to
evaluate, in real time, the current status of the city wide
system and make decisions about where nodes should run.

Secondly, a related problem is the coordination of the
communications among components. Once we are able to
support highly dynamic systems where processing compo-
nents are constantly reconfigured to meet changing context
constraints, then we need to address the co-ordination of
the communication amongst them. We refer to this as inter-
component constraints.

These two requirements influenced the evolution of our
DNR platform as we began to consider how the communi-
cation among components is coordinated and how that might
require an external coordination layer.

V. DNR V3: TOWARD EXOGENOUS COORDINATION FOR
FOG-BASED IOT APPLICATIONS

A. Towards an Exogenous Coordination Platform

Coordination models and languages have long been used
to support the communication constraints of Distributed
Systems applications and to coordinate the interplay among
distributed computation activities [5]. For larger scale sys-
tems, where ”programming in the large” comes to the
fore, the separation of concern between computation and
communication has led to a need for exogenous coordination
models and languages [6].

In exogenous coordination, applications consists of partic-
ipating computation activities (software components) which
cooperate with one another to fulfill the application’s logic.
These software components can be independently developed
by different developers and have no knowledge about their
environment. Thus, they should not have external depen-
dencies other than having to conform with the coordination
protocol. To incorporate these different software compo-
nents together in a single application, a coordination layer
is needed to coordinate the communication among them.
To do this, the software components usually declare their
communication ports such as input and output ports. They
then take data from the inputs, do the computation and



Figure 4. Exogenous Coordination in DNR

place the result on the outputs, where it will be taken
by the coordination layer and routed to other appropriate
components. Everything related to communication such as
buffering, queueing or rerouting is taken care of by the
coordination layer.

We suggest that an exogenous coordination model is
necessary in building an application model for large scale,
geographically distributed, fog computing systems. When
the computation and communication aspects of the applica-
tion is explicitly separated, it is possible for the applications
to leverage off-the-shelves software components and dynam-
ically adjust to the constantly changing physical context
of the underlying computing infrastructure. The application
development process becomes just designing the compo-
nents architecture and specifying coordination requirements,
without changing a lot of code.

B. Exogenous Coordination in DNR v3

As we introduce the notion of exogenous communication
to our DNR platform, some major design decisions have
been made that replace aspects of the old design.

One particular aspect is how we control the execution
of each node among devices. When an application flow is
deployed into the participating devices, the nodes could be
replaced with wire in or wire out nodes depending on the
deployment constraints. In supporting the dynamic nature
of the system, and in particular, building an exogenous
coordination platform, this design choice no longer works.
This is because the decision of whether or not to run a
particular node is only temporary, not permanent and at
times is made by an external coordinator, not the device
itself.

Our solution, is to intercept the communication links
among nodes and regulate these communications by inject-
ing to every wire a special node that we developed, the
coordination node. This could be seen as a different design
of remote links in comparison to DNR v1 and v2. These

coordination nodes receive coordination controls from a flow
coordinator that runs locally. The job of this flow coordinator
is to synchronize the device context with the centralized
coordinator and receive coordination control messages from
the centralized coordinator. Upon receiving coordination
controls from the centralized coordinator, it updates the
coordination nodes. Consequently, the coordination nodes
are the one who directly do the coordination. There are four
coordination states that these coordination nodes can be in.
Fig 4 illustrates this process.

In the NORMAL state, these nodes just pass the data
through its outputs, thus acting as a normal wire between
two nodes. This is the state where the local device satisfies
the deployment constraints of both the Node A and B.

There is a DROP state where they drop all the data they
receive. This is useful when a local coordinator believes
the data will have already been consumed elsewhere. For
example, Node A does not have any constraint so all devices
can run it, however the local device cannot run Node B.
Since all devices can run Node A, the coordination node
can assume Node B is already in another device that has
data input, so it just drops the data.

Another state is the FETCH FORWARD state, where it
acts as a wire in node to get data from an external instance
of Node A and forwards the data to Node B. To recall, this
happens when the device can run Node B but not Node A.

Lastly a similar state with FETCH FORWARD is the
RECEIVE REDIRECT state, where it acts as a wire out
node to send data from Node A to an external instance of
Node B. Again, this happens when the device can run Node
A but not Node B.

In the last two states, there is an extra bit of information
that has to be decided in order to construct the state. It
is the destination of the data to be sent to, or the origin
of the data to be received from. The coordination nodes
use the wire cardinality of the communication link they
are currently coordinating to decide the data destination. If
the wire cardinality is N-M, they do not need to specify
a particular node instance for the communication, thus the
target is just the node’s identity (see Section III). If the
wire cardinality is instead 1-1, 1-N or N-1, they need to
specify a particular instance of external node for the data.
The process of obtaining this information is described in
Section III. Once the destination is obtained, it is included
in the state construction.

From time to time, the state of each coordination nodes
might change, allowing them to dynamically coordinate the
communication among nodes in our DNR platform. Gener-
ally, there is 50 percent chance the participating devices have
to send out a node instance request to the centralized coordi-
nator. This is because, if the wire cardinality is 1-N, but the
node state is RECEIVE REDIRECT, the coordination node
does not need to send this request because it should redirect
the data to all other external devices. Similarly if the wire



cardinality is N-1 but the node state is FETCH FORWARD,
it should fetch data from any external device, thus need not
send a node instance request. In the N-N state, it never has to
send out these requests. However, in 1-1 state these requests
are always needed.

Another important aspect relates to how the coordination
layer resolves the node constraints and its response to node
instance requests. Based on the context synchronization
mechanism, the coordination layer should have a global
view of the whole system, however, the search space could
potentially be very large. Currently we are experimenting
with using a constraint solver to resolve the node constraints
in our platform. There are several inherent challenges with
regard the adoption of an off-the-shelves constraint solver.
First, the solver has to be executed periodically to yield a
correct coordination execution as the system is dynamic.
Second, the solver has to be able to keep track of previous
solutions and minimize the change in responses to node
instance request. This is because if previous solutions are
not reused, existing communications, while still meeting all
the constraints, might be rewired unnecessarily leading to a
high communication overhead and inefficiency as the system
reconfigures.

Interestingly, the constraint solver also has to derive as
many non-overlapped solutions as possible due to the large
geographic distribution of the system. This is because when
there are a large number of node instances that are scattered
over a large area such as a city, there are multiple combi-
nations of these node instances that are useful in different
places. For example, there could be multiple combinations
of [dashcam, image processing and visualizer] serving in
multiple locations of the city. The constraint solver has to
derive as many of these combinations as possible without
any overlapping instances.

VI. LESSONS LEARNT

Through the development of DNR and our effort in
making DNR a comprehensive platform for building fog
applications, the challenges we have faced have highlighted
a number of interesting lessons.

A. Programming-in-the-large Mindset Required

From our experience to date, and unlike centralized cloud
computing applications, we’ve found that there are two
concerns in building large scale fog applications. The first
is implementing application logic, and the second is how
the system will be deployed in-the-large. The system will
not only run on a single device or server, but across
cloud servers, gateways and edge devices. This involves
writing components that encapsulate functionality, can be
easily distributed, and can communicate with other required
components in various ways as discussed in this paper. The
second and more important concern is the need for the fog
developer to specify how the system as a whole decides

where groups of components, that is, sub flows should be
split, run and how they communicate with each other. In
essence, the developer needs to adopt a programming-in-
the-large mind-set, one that involves specifying constraints
such as location, computing and network requirements,
replication and cardinality requirements. The system then
can use dynamic information from the physical environment
such as the quality of network communications, current
location, current power levels and other factors to decide
what subflows are deployed where. The combination of
these two concerns, expressed in two different programming
models that work together, is key to the development of fog
applications.

B. Exogenous Coordination necessary for Dynamic Fog
Systems

At a general level, a dataflow language can be seen as
having a coordination model with a clean the separation
of computation and communication activities [7]. At the
simplest, it acts as a configuration-oriented coordination
model [8] with static assignment of nodes and links. It
also exhibits a simple form of exogenous coordination as
the computation and communication is explicitly separated.
However the dynamic nature and the complexity of the
Fog system demand a more comprehensive coordination
platform to coordinate the communications among software
components. One example is to support inter-component
constraints, which requires a global view of the whole
system with constant situation re-evaluation instead.

C. A Stateful Coordination Layer is Necessary

In order to properly coordinate the communications
among nodes in a large scale, dynamic distributed system,
the coordination layer has to be able to keep track of the
system as it evolves over time. That is, the constraint solver
has to derive the minimum difference based on the change
of the system context in order to reduce the coordination
overhead as much as possible. This is particularly important
in large scale, more complex systems which incorporate
many heterogeneous edge devices.

D. Dataflow Programming Maps Well to Fog Applications

The dataflow programming model offers a natural way
to decompose and partition an application into indepen-
dently developed, off-the-shelf components, which can be
distributed to a large scale computing infrastructure. The
dataflow programming model also provides a means for
abstracting the complexity of inter-device communication,
an important characteristic when it comes to building large
scale, complex applications. While it provides many ad-
vantages, applying dataflow programming in large scale
fog applications has several challenges such as deployment
constraints, wire cardinality and wire fragmentation. We
solved these problems by modeling the constraints with



computing resources and location of a device; introducing
link score and a special publish/subscribe topic construction
method. This approach lends itself to a wide range of use-
cases with differing requirements.

VII. RELATED WORK

As a new computing system, fog computing with its own
characteristics, requires an appropriate application model.
Some recent attempts to address these problems have been
demonstrated by Hong et al. [9], Olena et al. [10] and Bin
et al. [4]. Hong et al. proposed a high-level programming
model that allows the developers to specify how the ap-
plication can be deployed to many fog computing nodes
and supports dynamic scaling of the computing resources.
This work demonstrated that the application model itself
should be aware of the underlying computing node on which
the application is running. On the down side, the proposed
model does not explicitly break the application into sub
components, which make it impossible to have different de-
ployment strategies without changing the application logic.
Olena et al. proposed that fog applications consisting of
many services, that have their own computation demands,
are placed into the fog computing system in a way that
satisfies the deadline requirement of the applications. While
this work pushed the componentization of the application
code and studied the placement of those components, it does
not take into account the contextual information of data. Bin
et al. proposed a containerized dataflow-oriented application
models with external configurations that specify how the
data flows through the fog computing nodes. However,
the coordination mechanism is still simple, based on only
deployment scope and the inter-node communication is also
limited at either broadcast or unicast fashion.

Several coordination models and languages exist to sup-
port the development of edge-ward distributed application
such as [11], [12]. Although they provide a mean for
application decomposition and distribution, they lack support
for context-dependent logic or inter-component constraints.

In our work, contextual information is incorporated into
the application model, allowing the developer to express
application-level constraints based on the physical context
of the computation activities (i.e software components,
dataflow nodes). DNR also has support for the dynamic
nature of the system, allowing mobile edge devices such
as in vehicular applications to actively participate in the
application.

VIII. CONCLUSION

In this paper, we describe our experiences in building an
edge computing platform; Distributed Node-RED. Through
the three iterations of our project, we explored a number
of challenges associated with developing fog applications
that span across the edge network to the cloud. Several
novel solutions have been introduced that were incorporated

into the platform. We also show that in developing fog ap-
plications, exogenous coordination provides a reusable and
scalable application model thanks to the explicit separation
of communication and computation activities.

IX. ACKNOWLEDGEMENTS

This work has been partially funded by NSERC grant
XXXX and the EU H2020 BigClout project (Grant Agree-
ment N723139)

REFERENCES

[1] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao,
“A Survey on Internet of Things: Architecture, Enabling
Technologies, Security and Privacy, and Applications,” IEEE
Internet of Things Journal, vol. 4, no. 5, pp. 1–1, 2017.

[2] N. K. Giang, M. Blackstock, R. Lea, and V. C. M. Leung,
“Developing IoT Applications in the Fog : a Distributed
Dataflow Approach,” in Internet of Things (IOT), 2015 5th
International Conference on the. IEEE, 2015, pp. 155–162.

[3] N. Giang, V. Leung, and R. Lea, “On developing smart
transportation applications in fog computing paradigm,” in
DIVANet 2016 - Proceedings of the 6th ACM Symposium on
Development and Analysis of Intelligent Vehicular Networks
and Applications, co-located with MSWiM 2016, 2016.

[4] B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, and
A. Kitazawa, “FogFlow: Easy Programming of IoT Services
Over Cloud and Edges for Smart Cities,” IEEE Internet of
Things Journal, vol. 4662, no. c, 2017.

[5] G. A. Papadopoulos and F. Arbab, “Coordination Models and
Languages,” Advances in Computers, vol. 46, no. C, pp. 329–
400, 1998.

[6] F. Arbab, “Composition of interacting computations,” Inter-
active Computation: The New Paradigm, pp. 277–321, 2006.

[7] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in
dataflow programming languages,” ACM Computing Surveys,
vol. 36, no. 1, pp. 1–34, 2004.

[8] G. A. Papadopoulos and F. Arbab, “Configuration and dy-
namic reconfiguration of components using the coordination
paradigm,” Future Generation Computer Systems, vol. 17,
no. 8, pp. 1023–1038, 2001.

[9] K. Hong, D. Lillethun, B. Ottenwälder, and B. Koldehofe,
“Mobile Fog : A Programming Model for Large Scale Ap-
plications on the Internet of Things,” in The second ACM
SIGCOMM f (MCC ’13), 2013, pp. 15–20.

[10] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “To-
wards QoS-Aware Fog Service Placement,” Proceedings -
2017 IEEE 1st International Conference on Fog and Edge
Computing, ICFEC 2017, pp. 89–96, 2017.

[11] R. Sen, G. C. Roman, and C. Gill, “CiAN: A workflow
engine for MANETs,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 5052 LNCS, pp.
280–295, 2008.



[12] A. Lombide Carreton and T. D’Hondt, “A Hybrid Visual
Dataflow Language for Coordination in Mobile Ad Hoc
Networks,” in Coordination Models and Languages: 12th In-
ternational Conference, COORDINATION 2010, Amsterdam,
The Netherlands, June 7-9, 2010. Proceedings, vol. 6116
LNCS, Berlin, Heidelberg, 2010, pp. 76–91.


