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Abstract

The challenge of efficiently identifying anomalies in data sequences is an important statistical problem that
now arises in many applications. Whilst there has been substantial work aimed at making statistical analyses
robust to outliers, or point anomalies, there has been much less work on detecting anomalous segments,
or collective anomalies. By bringing together ideas from changepoint detection and robust statistics, we
introduce Collective And Point Anomalies (CAPA), a computationally efficient approach that is suitable
when collective anomalies are characterised by either a change in mean, variance, or both, and distinguishes
them from point anomalies. Theoretical results establish the consistency of CAPA at detecting collective
anomalies and empirical results show that CAPA has close to linear computational cost as well as being more
accurate at detecting and locating collective anomalies than other approaches. We demonstrate the utility of
CAPA through its ability to detect exoplanets from light curve data from the Kepler telescope.

1 Introduction

Anomaly detection is an area of considerable importance for many time series applications, such as fault detection
or fraud prevention, and has been subject to increasing attention in recent years. See [4] and [25] for comprehensive
reviews of the area. As [4] highlight, anomalies can fall into one of three categories: global anomalies, contextual
anomalies, or collective anomalies. Global anomalies and contextual anomalies are defined as single observations
which are outliers with regards to the complete dataset and their local context respectively. Conversely, collective
anomalies are defined as sequences of observations which are not anomalous when considered individually, but
together form an anomalous pattern.

A number of different approaches can be taken to detect point (i.e. contextual and/or global) anomalies.
These are observations which do not conform with the pattern of the data. Hence, the problem of detecting
point anomalies can be reformulated as inferring the general pattern of the data in a manner that is robust to
anomalies. The field of robust statistics offers a wide range of methods aimed at this problem. For instance,
[28] proposed S estimators to robustly estimate the mean and variance, which were extended to a multivariate
setting by [29]. A wide variety of robust time series models also exist. For example, [21] proposed a robust
ARMA model, [22] a robust ARCH model, and [23] a robust GARCH model. A robust non-parametric method,
which decomposes time series into trend, seasonal component, and residual was proposed by [5].

The machine learning community has also provided a rich corpus of work for the detection of point anomalies.
Commonly used methods include nearest neighbour based approaches, such as the local outlier factor (Breunig
et al. [3]), and information theoretical methods such as the one introduced by [8]. It is beyond the scope of this
paper to review them all. Instead we refer to excellent reviews that can be found in [4] and [25].

One common drawback of several point anomaly approaches is their inability to detect anomalous segments,
or collective anomalies. Such features are of significance in many applications. One example is the analysis of
brain imaging data, where periods in which the brain activity deviates from the pattern of the rest state have
been associated with sudden shocks ([1]). Another example is in detecting regions of the genome with unusual
copy number ([2] [31] [36]), with such copy number variation being associated with diseases such as cancer ([12]).

The main contribution of this paper is to use an epidemic changepoint model as a principled framework for
both collective and point anomalies. An epidemic changepoint model assumes that the data follow a certain
typical distribution at all time, except during some anomalous time windows. The behaviour changes away from
the typical distribution at the beginning of these windows and returns to it at the end. These epidemic changes
can naturally be interpreted as collective anomalies. For the case in which collective anomalies are characterised
by epidemic changes in mean and/or variance, point anomalies can additionally be modelled as epidemic changes
of length one in variance only. This framework thus allows for the joint modelling and detection of collective
anomalies and point anomalies. We therefore call the algorithm Collective And Point Anomalies (CAPA).

As a motivation for our work, and to help make the ideas in this paper concrete, consider the problem of
detecting exoplanets via the so called transit method first proposed by [33]. The luminosity of a star is measured
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(a) Full data (b) Subset (120 days)

Figure 1: Light curve of Kepler 1132, obtained at approximately 30 minute intervals. Missing values are due to
periods in which the star was not observed. Note the presence of a point anomaly on day 1550 and the fact that
no transit signature is apparent to the eye either in the full data or in the zoom, despite the known presence of
Kepler 1132-b, an exoplanet orbiting this star.

at regular intervals, with the aim of detecting periodically recurring segments of reduced luminosity. Such periods
indicate the transit of a planet ([30]) and can naturally be interpreted as collective anomalies. The light curves
are typically preprocessed ([24]) and both the raw and whitened light curves can be accessed online. We have
included the whitened light curve of the star Kepler 1132 in Figure 1 to illustrate the nature of this type of data.
We note the presence of a global anomaly on day 1550 and the noisy nature of the data, making the detection of
transits challenging given the weak signal induced by planetary transits. Indeed, even the transit of Jupiter past
the sun reduces the latter’s luminosity by only 1% ([30]).

Existing work on the detection of collective anomalies can be found in the statistics and machine learning
literature. On the statistical side, hidden Markov models have been proposed, which assume that a hidden state
obeying a Markov chain determines whether the data produced is anomalous or typical ([32]). The underlying
assumption that anomalous segments share one or multiple common behaviours is very attractive for the exoplanet
detection application outlined above, but can be a constraint in others. Hidden Markov models also suffer from
the fact that they are not robust to global anomalies which are present in the Kepler data, as can be seen in
Figure 1. Moreover, they tend to be slow to fit, which is an important disadvantage in many modern, big-data
applications. For example, there are currently 40 million light curves, similar to that shown in Figure 1, that
have been gathered and need analysing. Conversely, machine learning methods include LinkedIn’s luminol ([19])
which uses a sign test to detect segments of anomalous mean. However, as we will see in the simulation section
of this paper, this method’s performance can be poor.

Epidemic changepoints can be modelled as two classical changepoints, for the detection of which a variety of
methods have been proposed ([6], [7], [11], [15], [18]). However, this approach does not exploit the fact that the
behaviour of the segment before the start and after the end of an epidemic segment is the same, which reduces
its statistical power. This is a disadvantage, especially when faced with a weak signal, like in the light curve
data.

The epidemic changepoint problem as such was first considered by [17], who use a cumulative sum type statistic
to detect them [34]. The main corpus of work addressing the problem of their detection has since been driven by
the analysis of neuroimaging and genome data. An early application of epidemic changepoints to neuroimaging
data can be found in [27], who use a hidden Markov model to detect epidemic changes in mean. This was
later extended by [1]. Both methods are vulnerable to point anomalies, a shortcoming in some applications like
the one we consider in this paper. Another limitation is that both approaches assume the presence of at most
one change. Conversely, motivated by challenges arising in Genomics, a range of methods, both univariate and
multivariate, have been proposed to detect epidemic changes in mean, mainly by considering sum of squares type
test statistics (see [12] [31] [36]), sometimes in combination with hidden states. They are therefore vulnerable to
global anomalies. A more general Bayesian hidden state method for the detection of anomalous segments was
proposed by [2].

The article is organised as follows: We begin by introducing a parametric model with epidemic changes in
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Section 2. This provides a general framework for collective anomalies, the location of which we infer by minimising
a penalised cost. Motivated by our application, we will place a special emphasis on the detection of joint epidemic
changes in mean and variance and show that epidemic changes of length one in variance only can be incorporated
to model point anomalies.

In the classical changepoint setting, information is not typically shared between different segments of the
data. However, in this epidemic setting, the typical parameter is shared, making it impossible to minimise the
penalised cost via the dynamic programming approach of [10]. We therefore provide an algorithm in Section
3 which minimises an approximation to the penalised cost based on a robust estimate of the parameter of the
typical distribution. This approximation can be minimised by a dynamic program, which can be pruned in a
fashion similar to [15]. As a result of this pruning, we find that the run time of CAPA is close to O(n) in some
cases.

We present theoretical results regarding the consistency of CAPA at detecting collective anomalies in Section
4. Specifically, we introduce a proof of consistency for the detection of joint classical changes in mean and
variance using a penalised cost approach, which is of independent interest. We then compare CAPA to other
methods in a simulation study in Section 5 and show that it outperforms them, especially in the presence of
point anomalies. We conclude the paper by demonstrating in Section 6 that CAPA can be used to detect Kepler
1132-b, an exoplanet which orbits Kepler 1132 ([20]). The proofs of the theoretical results are all given in the
appendix and the supplementary material can be found at the end of the paper. Code implementing CAPA can
be accessed at https://github.com/Fisch-Alex/anomaly.

2 A Modelling Framework for Collective Anomalies

We assume that the data follow a parametric model and model collective anomalies as epidemic changes in the
model parameters. Whilst, in practice, it is unlikely that the distribution of the data in an anomalous segment
will belong to the same family of distributions as the distribution of the typical data, it can nevertheless be
expected that a set of parameters different from the typical distribution’s will offer a better fit. We say that data
x1, ...,xn follow a parametric epidemic changepoint model if

xt ∼ f(xt, θ(t)), θ(t) =


θ1 s1 < t ≤ e1,

...

θK sK < t ≤ eK ,
θ0 otherwise,

where θ0 is the usually unknown parameter of the typical distribution, from which the model deviates during theK
anomalous segments (s1, e1),...,(sK , eK). We assume these windows do not overlap, i.e. e1 ≤ s2, ..., eK−1 ≤ sK .
Note that fitting an epidemic changepoint requires only one new set of parameters for θ, since the typical
parameter is shared across the non-anomalous segments. This compares favourably with the two additional sets
of parameters for θ introduced when an epidemic changepoint is fitted using two classical changepoints. We
therefore gain statistical power. This gain is particularly important when θ is high dimensional.

It is possible to infer the number and location of epidemic changes by choosing K̃, (s̃1, ẽ1),...,(s̃K̃ , ẽK̃), and

θ̃0, which minimise the penalised cost

∑
t/∈∪[s̃i+1,ẽi]

C(xt, θ̃0) +

K̂∑
j=1

min
θ̃j

 ẽj∑
t=s̃j+1

C(xt, θ̃j)

+ β

 , (1)

subject to ei − si ≥ l̂, where l̂ is the minimum segment length for an appropriate cost function C(x, θ) and a
suitable penalty β. For example, C(x, θ) could be defined as the negative log-likelihood of x under the parametric
model using parameter θ. The penalty β could then be set to (2 + ||θ||0) log(n) and this would be a BIC type
penalty.

Using the formulation in (1), we can infer the location of joint epidemic changes in mean and variance by
minimising the penalised cost related to the negative log-likelihood of Gaussian data. In this case θ = (µ, σ2)
contains both the mean and variance and we minimise

∑
t/∈∪[s̃i+1,ẽi]

[
log(σ2

0) +

(
xt − µ0

σ0

)2
]

+

K̃∑
j=1

[
(ẽj − s̃j)

(
log

(∑ẽj
t=s̃j+1(xt − x̄(s̃j+1):ẽj )2

(ẽj − s̃j)

)
+ 1

)
+ β

]
, (2)

using a minimum segment length of 2 to account for the fact that θ is two dimensional.
It is well known that many changepoint detection methods struggle in the presence of point anomalies in the

data and tend to fit two changepoints around each of them ([6]). An approach based on minimising the above

3



cost function is not intrinsically immune to it. However, we can modify the model by allowing epidemic changes,
in variance only, of length one to address this issue. We therefore choose K̃, (s̃1, ẽ1),...,(s̃K̃ , ẽK̃), µ0, σ0, as well
as the set of point anomalies O ⊂ {1, ..., n}, which minimise the modified penalised cost

∑
t/∈∪[s̃i+1,ẽi]∪O

[
log(σ2

0) +

(
xt − µ0

σ0

)2
]

+
∑
t∈O

[
log
(
(x− µ0)2

)
+ 1 + β̃

]
+

K̂∑
j=1

[
(ẽj − s̃j)

(
log

(∑ẽj
t=s̃j+1(xt − x̄(s̃j+1):ẽj )2

(ẽj − s̃j)

)
+ 1

)
+ β

]
,

where β̃ is a penalty smaller than β. This modification ensures that it is now cheaper to fit an outlier as an
epidemic changepoint in variance only than as a full epidemic change. Consequently, the method becomes robust
against point anomalies, fitting epidemic changes only around true collective anomalies. This modification has
the added benefit that it allows the algorithm to detect and distinguish between point and collective anomalies.
This property is important for a range of applications in which collective and point anomalies have different
interpretations (see Section 6 for an example).

3 Inference for Collective Anomalies

Algorithm 1 CAPA Algorithm (No Pruning)

Input: A set of observations of the form, (x1, x2, . . . , xn) where xi ∈ R.

Penalty constants β and β̃ for the introduction of a collective and a point anomaly respectively
A minimum segment length l ≥ 2

Initialise: Set C(0) = 0, Anom(0) = NULL.

1: µ̂←MEDIAN(x1, x2, . . . , xn) . Obtain robust estimates of the mean and variance
2: σ̂ ← IQR(x1, x2, . . . , xn)
3: for i ∈ {1, ..., n} do
4: xi ← xi−µ̂

σ̂
. Centralise the data

5: end for
6: for m ∈ {1, ..., n} do
7: C1(m)← min0≤k≤m−l

[
C(k) + (m− k)

[
log
(

1
m−k

∑m
t=k+1

(
xt − x̄(k+1):m

)2)
+ 1
]

+ β
]

. Collective Anom.

8: s← arg min0≤k≤m−l

[
C(k) + (m− k)

[
log
(

1
m−k

∑m
t=k+1

(
xt − x̄(k+1):m

)2)
+ 1
]

+ β
]

9: C2(m)← C(m− 1) + x2m . No Anomaly

10: C3(m)← C(m− 1) + 1 + log
(
γ + x2m

)
+ β̃

]
, . Point Anomaly

11: C(m)← min [C1(m), C2(m), C3(m)]
12: switch arg min [C1(m), C2(m), C3(m)] do . Select type of anomaly giving the lowest cost
13: case 1 : Anom(m)← [Anom(s), (s+ 1,m)]

14: case 2 : Anom(m)← Anom(m− 1)

15: case 3 : Anom(m)← [Anom(m− 1), (m)]

16: end for

Output The points and segments recorded in Anom(n)

We now turn to consider the problem of minimising the penalised cost we introduced in the previous section.
Unlike in the classical changepoint problem considered by [10], the penalised cost given by equation (1) can not
be minimised using a dynamic program, since the parameter θ0 is shared across multiple segments and typically
unknown. We therefore use robust statistics to obtain an estimate θ̂0 for θ0. Such robust estimates can be
obtained for a variety of models ([9] [13]). For example, the median, M -estimators, or the clipped mean can
be used to robustly estimate the mean. The inter quantile range, the median absolute deviation, or the clipped
standard deviation can be use to estimate the variance. Robust regression is available to estimate the parameters
of AR models.

Having obtained θ̂0, we then minimise

∑
t/∈∪[ŝi+1,êi]

C(xt, θ̂0) +

K̂∑
j=1

min
θ̂j

 êj∑
t=ŝj+1

C(xt, θ̂j)

+ β

 ,
as an approximation to (1). Since it can be expected that most data belongs to the typical distribution, θ̂0 should
be close to θ0. One might therefore expect that using this estimate will have little impact on the performance of
the method, which we also show theoretically for joint changes in mean and variance in Section 4.2.
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The approximation to the penalised cost can be minimised exactly by solving the dynamic programme

C(m) = min
0≤k≤m−l̂

[
C(m− 1) + C(xm, θ̂0), C(k) + min

θ̂

(
m∑

t=k+1

C(xt, θ̂)

)
+ β

]
, (3)

where C(m) is the cost of the most efficient partition of the first m observations and C(0) = 0. For example,
solving the dynamic programme

C(m) = min
0≤k≤m−2

[
C(m− 1) + log(σ̂2

0) +

(
xm − µ̂0

σ̂0

)2

,

C(k) + (m− k)

[
log

(
1

m− k

m∑
t=k+1

(
xt − x̄(k+1):m

)2)
+ 1

]
+ β

]
,

approximately minimises the penalised cost for joint epidemic changes in mean and variance defined in equation
(2). Similarly, we can minimise its point anomaly robust analogue by solving the dynamic programme

C(m) = min
0≤k≤m−2

[
C(m− 1) + log(σ̂2

0) +

(
xm − µ̂0

σ̂0

)2

,

C(k) + (m− k)

[
log

(
1

m− k

m∑
t=k+1

(
xt − x̄(k+1):m

)2)
+ 1

]
+ β,

C(m− 1) + 1 + log
(
γσ̂2

0 + (xm − µ̂0)2
)

+ β̃
]
,

where γ is a small constant ensuring that the argument of the logarithm will be larger than 0 (see Algorithm
1 for pseudocode). Adding the γσ̂2

0 term is necessary when order statistics are used to obtain µ̂0. Assuming

that the observations xt are independent and Normal, all sums
∑m
t=m−k+1

(
xt − x̄(m−k+1):m

)2
will be non-zero

with probability 1, meaning that in theory such a correction is not necessary for the other logarithmic term. In
practice, observations are of finite precision and adding γσ̂2

0 to the argument of the other logarithmic term, with
γ set to the level of rounding should be considered.

Solving the full dynamic program is at least O(n2). This lower bound can be achieved for the detection of joint
changes in mean and variance. However, we can prune the solution space by borrowing ideas from [15], provided
the loss function is such that adding a free changepoint will not increase the cost – a property which holds for
many commonly used cost functions such as the negative log-likelihood. Indeed, the following proposition holds:

Proposition 1 Let the cost function C(·, ·) be such that

c∑
t=a

C(xt, θ̂a:c) ≥
b−1∑
t=a

C(xt, θ̂a:(b−1)) +

c∑
t=b

C(xt, θ̂b:c)

holds for all a, b, and c such that a+ l̂ ≤ b < c− l̂. Then, if

C(k) +

m∑
t=k

C(xt, θ̂) ≥ C(m)

holds for some k < m− l̂, we can disregard k for all future steps m′ ≥ m+ l̂ of the dynamic programme.

Proof : Please see the Appendix. Note that the time after which an option can be discarded also depends on
the minimum segment length, something not considered by [15].

This results enables us to reduce the computational cost. In practice, we found that it was close to O(n)
for the detection of joint epidemic changes in mean and variance when the number of true epidemic changes
increased linearly with the number of observations.

4 Theory for Joint Changes in Mean and Variance

We now introduce some theoretical results regarding the consistency of CAPA. All proofs for the results in this
section can be found in the appendix. We establish that the consistency of CAPA can be viewed as a corollary of
the consistency of a statistical procedure minimising a penalised cost function to detect classical changepoints.
Consequently, we will begin by proving that method’s consistency for the detection of changes in mean and
variance in Section 4.1. To the best of our knowledge, no such result exists in the literature, which makes this
proof of independent interest. We then proceed to proving the consistency of CAPA in Section 4.2.
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4.1 Consistency of Classical Changepoint Detection

Consider the sequence x1, ..., xn ∈ Rn which is normally distributed with K ∈ N changepoints. The sequence
therefore satisfies xt = µ(t) + σ(t)ηt, where

ηt
i.i.d.∼ N(0, 1) and (µ(t), σ(t)2) =


(µ1, σ

2
1) t0 + 1 ≤ t ≤ t1,

...

(µK+1, σ
2
K+1) tK + 1 ≤ t ≤ tK+1.

Here 0 = t0 ≤ ... ≤ tK+1 = n denote the start of the series, the K changepoints, and the end of the series.
Changes in mean and variance can be of varying strength. To quantify this, we define the signal strength 4σ,k
of the change in variance at the kth changepoint to be

42
σ,k =

(√
σk
σk+1

−
√
σk+1

σk

)2

=
σk
σk+1

+
σk+1

σk
− 2.

We note that 42
σ,k is equal to 0 if, and only if, σk+1 = σk. We also define the signal strength 4µ,k of change in

mean at the kth changepoint to be

4µ,k =
|µk − µk+1|√

σkσk+1
.

Note that these two quantities can be combined into a global measure of signal strength 42
k = 42

σ,k + 1
24

2
µ,k for

the kth change (see Lemma 7 in the Appendix for details).
We now define the penalised cost C̃(xi:j , τ ′, β) of data xi:j under partition τ ′ = {i− 1, t̂′1, ..., t̂

′
K̂′
, j} to be

C̃(xi:j , τ ′, β) =

K̂′∑
k=0

C̃(x(t̂k+1):t̂k+1
) + K̂ ′β log(n)1+δ,

for δ, β > 0. Here β log(n)1+δ is a strengthened SIC-style penalty (Fryzlewicz [7]) for introducing an additional
changepoint. We estimate changepoints with a cost of segment xa:b

C̃(xa:b) = C̃(xa:b, {a− 1, b}) = (b− a+ 1)

(
log

(∑b
a(xt − x̄a:b)

2

b− a+ 1

)
+ 1

)
,

similar to the one we use to infer the location of epidemic changes in mean and variance. Since this leaves two
parameters to fit, we impose a minimum segment length of two for all partitions.

Assume that there exists some δ̃ > 0 such that tk − tk−1 ≥ log(n)1+δ+δ̃ for all k, which ensures that the
changepoints are sufficiently spaced apart to allow for their detection. Then, the following consistency result
holds for the inferred number and location of changepoints K̂ and t̂1, ..., t̂K̂ inferred by minimising C̃(x1:n, τ, β):

Theorem 1 Let x1, ..., xn follow the distribution specified above and the changes be such that 4k > 4 for some
4 > 0. Then ∀ε > 0 there exist constants A(β,4k, δ, ε) decreasing in 4k, B(β,4, δ̃, δ, ε) decreasing in 4, and
C such that

P
(
K̂ = K, |t̂i − ti| < A(β,4k, δ, ε) log(n)1+δ

)
≥ 1− Cn−ε

holds for all n ≥ B(β,4, δ̃, δ, ε).

Proof : Please see the Appendix.

4.2 Consistency of CAPA

The results we obtained in the previous section can be extended to prove the consistency of CAPA for the
detection of joint epidemic changes in mean and variance. As in the previous section, consider data x1, ..., xn
which is of the form xt = µ(t) + σ(t)ηt, where ηt ∼ N(0, 1). Since we now assume epidemic changes, we have

(µ(t), σ(t)2) =


(µ1, σ

2
1) s1 < t ≤ e1,

...

(µK , σ
2
K) sK < t ≤ eK ,

(µ0, σ
2
0) otherwise.

Here, µ0 and σ2
0 are the typical mean and variance respectively and K is the number of epidemic changepoints.

The variables sk and ek denote the starting and end point of the kth anomalous window respectively. We impose
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log(n)1+δ+δ̃ ≤ ek−sk ≤ O(
√
n) and sk+1−ek > log(n)1+δ+δ̃ for some δ̃ > 0. Treating the sk and ek like classical

changepoints allows us to extend the definitions of 4σ, 4µ, and 4 to the epidemic changepoint model.
The following consistency result then holds for a partition (ŝ1, ê1, ..., ŝK̂ , êK̂) inferred by CAPA using a

minimum segment length of two and β log(n)1+δ for some δ > 0 as penalty for both point anomalies and
epidemic changepoints.

Theorem 2 Let x1, ..., xn follow the distribution specified above and the changes be such that 4k > 4 for some
4 > 0. Then ∀ε > 0 there exist constants A(β,4k, δ, ε) decreasing in 4k, B(β,4, δ̃, δ, ε) decreasing in 4, and
C such that

P
(
K̂ = K, |êk − ek| < A(β,4k, δ, ε) log(n)1+δ, |ŝk − sk| < A(β,4k, δ, ε) log(n)1+δ

)
≥ 1− Cn−ε

holds for all n ≥ B(β,4, δ̃, δ, ε).

Proof : Please see the Appendix.

5 Simulation Study

To assess the potential of CAPA, we compare its performance to that of other popular anomaly and changepoint
methods on simulated data. In particular, we compare with PELT as implemented in [14], a commonly used
changepoint detection method, luminol ([19]), an algorithm developed by LinkedIn to detect segments of atypical
behaviour, as well as BreakoutDetection ([11]) which was introduced by Twitter to detect changes in mean in a
way which is robust to point anomalies.

The simulation study was conducted over simulated time series each consisting of 5000 observations, for which
the typical data follows a N(0, 1) distribution. Epidemic changepoints start at a rate of 0.0005 (corresponding to
an average of about 2.5 epidemic changes in each series), with their length being i.i.d. Pois(30) distributed. In
each anomalous segment the data is again normally distributed, with the means being i.i.d. N(0, a2) distributed
and standard deviations i.i.d. Γ(1/b, 1/b) distributed. We used

1. a = 1 and a = 10 for weak and strong changes in mean respectively

2. b = 1 and b = 10 for weak and strong changes in mean respectively

We compared the performance of the four methods in the presence of both strong and weak changes in mean
and/or variance. We also repeated the analysis with 10 i.i.d. N(0, 102) distributed point anomalies occurring at
randomly sampled points in the typical data. The comparison of these methods is made using the three different
approaches we detail below.

5.1 ROC

We obtained ROC curves for the four methods. For BreakoutDetection and PELT, we considered detected
changes within 20 time points of true changes to be true positives and classified all other detected changes as
false positives. For luminol and CAPA, we considered detected starting and end points of epidemic changes to be
true positives if they were within 20 observations of a starting and end point respectively. The results regarding
the precision of true positives in Section 5.2 suggest that the results in this section are robust with regard to the
choice of error tolerance. We set the minimum segment length to ten for PELT, CAPA, and BreakoutDetection.
To obtain the ROC curves we varied the penalty for epidemic segments in CAPA, the penalty in PELT, the
threshold in luminol, and the beta parameter of BreakoutDetection.

The resulting ROC curves, as well as examples of realisations of the data for the scenario of weak and
strong changes in mean can be found in Figures 2 and 3 respectively. The results for joint changes in mean
and variance, as well as changes in variance can be found in the supplementary material. We see that CAPA
generally outperforms PELT, even in the absence of point anomalies. This is due to it having more statistical
power, by exploiting the epidemic nature of the change. This becomes particularly apparent when the changes
are weak. CAPA also outperform BreakoutDetection and luminol for epidemic changes in mean, the scenario for
which these methods were developed. Moreover, the performance of CAPA is barely affected by the presence of
point anomalies, unlike that of the non-robust methods. This observation remained true when we repeated our
analysis with N(0, 10002) distributed point anomalies. The ROC curves for these additional simulations can be
found in the supplementary material.

5.2 Precision

We also investigated the precision of the true positives for the four methods. We compared the mean absolute
distance between detected changes (i.e. true changes which had a detected changes within 20 observations) and
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(a) No point anomalies (b) No point anomalies

(c) Point anomalies present (d) Point anomalies present

Figure 2: Data examples and ROC curves for weak changes in mean for CAPA (black), PELT (red), Breakout-
Detection (green), and luminol (blue).
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(a) No point anomalies (b) No point anomalies

(c) Point anomalies present (d) Point anomalies present

Figure 3: Data examples and ROC curves for strong changes in mean for CAPA (black), PELT (red), Breakout-
Detection (green), and luminol (blue).
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Mean Variance Point anomalies CAPA PELT BreakoutDetection luminol

weak - - 1.79 1.50 3.40 9.91
weak - 10 1.72 2.27 3.75 10.70

strong - - 0.16 0.61 5.38 15.99
strong - 10 0.19 0.67 4.68 15.60

- weak - 1.41 1.43 4.60 9.87
- weak 10 1.31 1.89 4.49 10.76
- strong - 0.33 0.73 5.19 12.03
- strong 10 0.33 0.79 5.17 11.29

weak weak - 1.16 1.30 4.00 11.40
weak weak 10 1.22 1.63 4.00 11.30

strong strong - 0.09 0.56 3.78 16.31
strong strong 10 0.09 0.58 3.77 15.71

Figure 4: Precision of true positives measured in mean absolute distance for CAPA, PELT, luminol, and Break-
outDetection

(a) With epidemic changes (b) Stationary data

Figure 5: Runtime of CAPA (black), PELT (red), BreakoutDetection (green), and luminol (blue)

the nearest estimated change across all the 12 scenarios. We used the default penalties for all methods (i.e. the
default threshold for luminol and the BIC for PELT and CAPA) except BreakoutDetection, where we found
that the default penalty returned no true positives at all for many scenarios. We therefore used the results we
obtained when deriving the ROC curves to set the beta parameter to an appropriate level for each case.

The results of this analysis can be found in Figure 4. We see that CAPA is generally the most precise one.
Moreover, its precision is not too strongly affected by the presence of point anomalies, unlike that of PELT,
whose performance is significantly deteriorated by anomalies, especially when the signal is weak. The reason for
this is that PELT fits additional changes in the presence of anomalies, which results in shorter segments. This
leads to less accurate parameter estimates, which results in poorer estimates for the location of the changepoint.
CAPA does not face this problem since the parameter of the typical distribution is shared across all segments.
This remains true when the point anomalies are are a lot stronger, as can be seen in the supplementary material.

5.3 Runtime

Finally, we investigated the relationship between the runtime of the 4 methods and the number of observations.
Our comparison is based on data following a distribution identical to the one we used in Sections 5.1 and 5.2.
Since this type of data favours PELT and CAPA, because the expected number of changes increases with the
number of observations, we also compared the runtime of the four methods on stationary N(0, 1) data, which
represents the worst case scenario for these methods.
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Figure 5 displays the average speed over 50 repetitions for the two cases. When comparing the slopes between
10000 and 50000 datapoints we note that it is very close to 2 for BreakoutDetection in both cases as well as CAPA
and PELT for stationary data, suggesting quadratic scaling. In the presence of epidemic changes however, that
slope is 1.26 for CAPA – 1.14 even between 25000 and 50000 datapoints – thus suggesting near linear runtime.

6 Application to Kepler Light Curve Data

(a) 62.8 days (b) 62.9 days (c) 63.0 days

Figure 6: CAPA applied to the light curve of Kepler 1132 preprocessed using different periods.

We now apply CAPA to the Kepler light curve data, with the aim of detecting exoplanets via the so called
transit method ([30]). As described in Section 1, this approach consists of repeatedly measuring a star’s brightness
for a certain period of time, thus obtaining a so called light curve. Periodically recurring dips in the measurements
then point towards the transit of a planet causing a small eclipse. Since the signal of transiting planets is known to
be weak, we amplify it by exploiting its periodic nature. If the period of an orbiting planet were known, the signal
of its transit could be strengthened by considering all data points to have been gathered at their measurement
time modulo that period. We would thus obtain an irregularly sampled time series which we can transform into
a regularly sampled time series by binning the data into equally sized bins of length approximately equal to
the measurement interval of the Kepler telescope and taking the average within each bin. We could then apply
CAPA to this preprocessed data, which would exhibit a stronger signal for any planet with the associated period.
Detecting the signal for such a planet involves detecting a collective anomaly with a reduced mean. However
we need to do this whilst being robust to the point anomalies in the data, and the potentially other collective
anomalies associated with planets with different periods. The results obtained by applying this method, using
the default penalties of our software implementation of CAPA, to the light curve of Kepler 1132 using a period
of 62.8, 62.9, and 63.0 days can be found in Figure 6. We note that using a period of 62.9 days results in a
promising dip, which is not present when using 62.8 or 63 days as period.

Given a light curve, the periods of exoplanets orbiting the corresponding star (if any are present) are obviously
not known a priori. We can, however, apply the above approach for a range of periods, given the fact that the
cost of running CAPA is comparable to that of binning the data. Since transits appear as periods of reduced
mean, we record the strength of the strongest change in mean as defined by maxk (4µ,k) and estimated using
the sample mean and variance in the collective anomalies, and the estimated means and variance of the typical
distribution. We expect this quantity to be largest for the periods of exoplanets. We identified the strength of
the strongest change in mean for all periods from 1 day to 200 days with increments of 0.01 days for the light
curve of Kepler 1132. The result of this analysis can be found in Figure 7. Note that the largest change in mean
is recorded at a period of 62.89 days. As with spectral methods, we also observe resonance of the main signal
at integer fractions of that period. This result is consistent with the existing literature, which considers Kepler
1132 to be orbited approximately every 62.892 days by the exoplanet Kepler 1132-b whose radius is about 2.5
times that of the earth ([20]).

We also applied CAPA to the light curves of other stars with confirmed exoplanets and were able to detect their
transit signal at the right period. A more detailed exposition of these results can be found in the supplementary
material.
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Figure 7: The strongest change in mean, as measured by maxk (4µ,k), detected by CAPA for the lightcurve of
Kepler 1132. All periods from 1 to 200 days at 0.01 day increment were examined
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8 Appendix: Proofs

This Appendix contains proofs for all the results in this papers. Proofs for Lemmata we use can be found in the
supplementary material.

8.1 Proof of Proposition 1

Let m′ ≥ m+ l̂. We have

C(m) +

m′∑
t=m+1

C(xt, θ̂(m+1):m′) + β ≤ C(k) +

m∑
t=k

C(xt, θ̂(k+1):m) +

m′∑
t=m+1

C(xt, θ̂(m+1):m′) + β

≤ C(k) +

m′∑
t=k+1

C(xt, θ̂(k+1):m′) + β,

which shows that the cost of choosing k will always be larger than that of choosing m. We can thus disregard k.
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8.2 Proof of Theorem 1

Before proving this theorem, we introduce some notation. We define the cost of a segment xi:j under the true
partition {0, t1, ..., tK , n} and true parameters to be

C(xi:j) =

j∑
t=i

log(σ(t)2) +

j∑
t=i

η2
t .

Note that this cost is additive, i.e. for a < b − 1 < b + 1 < c we have C(xa:c) = C(xa:b) + C(x(b+1):c), whilst the

fitted cost satisfies the inequality C̃(xa:c) ≥ C̃(xa:b) + C̃(x(b+1):c).

We also define the residual sum of squares Yi:j =
∑j
k=i(ηk − η̄i:j)2. Finally, we will work on the event sets

E1, E2, E3, E4, E5, and E6 which we define below using notation a := a(i, j) = j − i+ 1

E1 :=
{
aη̄2
i:j < 4(1 + ε) log(n), 1 ≤ i ≤ j ≤ n

}
,

E2 :=
{
Yi:j ≤ a− 1 + 2

√
(a− 1)(2 + ε) log(n) + (4 + 2ε) log(n), 1 ≤ i ≤ j ≤ n

}
,

E3 := {Yi:j ≥ c(a, n)(a− 1), 1 ≤ i < j ≤ n} ,

E4 :=

{∑tk+1
t=tk−1(xt − x̄(tk−1):(tk+1))

2

σ
2/3
k σ

4/3
k−1

> n−ε,

∑tk+2
t=tk

(xt − x̄tk:(tk+2))
2

σ
4/3
k σ

2/3
k−1

> n−ε, 1 ≤ k ≤ K − 1

}
,

E5 :=

{
(xtk − xtk+1)2

σkσk−1
> n−ε, 1 ≤ k ≤ K

}
,

E6 :=
{
Yi:j ≥ a− 1− 2

√
(a− 1)(2 + ε) log(n), 1 ≤ i ≤ j ≤ n

}
,

where c(a, n) < 1 satisfies
a

2
· c(a, n)− 1− log(c(a, n))

2
= (2 + ε) log(n).

Note that c(a, n) is guaranteed to exits by the intermediate value theorem. Indeed, the function f(x) = x− 1−
log(x) is continuous and satisfies f(1) = 0 and f(x) → ∞ as x → 0+. The motivation for these events is as
follows: E1 bounds the error in the estimates of the mean, while E2, E3, and E6 bound the error in the estimates
of the variance. E5 and E4 are needed to prevent the existence of segments length two and three respectively in
which the observations lie to close to each other, which would encourage the algorithm to erroneously fit them
in a short segment of low variance. We write E = ∩Ei.

We are now in a position to prove the following lemmata:

Lemma 1 (Yao 1988) P(E1) > 1− K̃1n
−ε, for some constant K̃1.

Lemma 2 P(E2) > 1−K̃2n
−ε, P(E3) > 1−K̃3n

−ε, P(E4) > 1−K̃4n
−ε, P(E5) > 1−K̃5n

−ε, P(E6) > 1−K̃6n
−ε,

and P(E7) > 1− K̃7n
−εfor some constants K̃2,K̃3,K̃4, K̃5, K̃6, and K̃7.

Lemma 3 There exists a constant C̃1 such that Yi:j − a − a log(Yi:j/a) ≤ C̃1 log(n) holds on E for all 1 ≤ i <
j ≤ n.

Lemma 4 Let i, j be such that there exists some k such that tk−1 < i < j ≤ tk. The following holds given E :

0 ≤ C (xi:j)− C̃ (xi:j) ≤ C̃2 log(n).

Lemma 5 Let i, j be such that ∃k such that tk−1 = i < j ≤ tk or tk−1 < i < j = tk + 1. The following then
holds given E

C (xi:j)− C̃ (xi:j) ≤ C̃3 log(n)

Lemma 6 Let a, b, c ∈ τ for some partition τ of xi,j such that ∃k such that tk−1 < a < b < c ≤ tk. Then,

C̃ (xi:j , τ, β)− C̃ (xi:j , τ−b, β) ≥ 3

4
β log(n)1+δ,

where τ−b = τ \ {b} holds on E for large enough n.

Lemma 7 For all α > 0, there exists a constant κ̃(4k, α, δ, ε) decreasing in 4k such that C̃ (xi:j)− (C (xi:tk) +
C
(
x(tk+1):j

)
) ≥ α log(n)1+δ holds on E if j − tk = tk + 1− i ≥ κ̃(4k, α, δ, ε) log(n)1+δ and j ≤ tk+1, i > tk−1 for

all n > 2.
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We now define κ̃k = 2κ̃(4k, 3β, δ, ε), noting it decreases in 4k, and the set of partitions

B :=
{
{0, t′1, t′2, ..., t′K , n} | |t′k − tk| ≤ κ̃k log(n)1+δ 1 ≤ k ≤ K

}
,

which are within κ̃k log(n)1+δ of the true partition.
We will show that, for large enough n, the optimal partition lies in B given the event set E. Given the

probability of E, this proves Theorem 1. Our approach will consist of showing that the cost of a partition τ /∈ B
is higher than that of the true partition with the true parameters (see Proposition 4). We will achieve this by
adding free changes to τ thus splitting up the series into multiple sub-segments each containing a single true
changepoint and κ̃k log(n)1+δ points either side of it. This also defines a projection of τ onto the partitions of
the sub-segments. We define the set of partitions

Bk :=
{
{i− 1, t′k, j} | |t′k − tk| ≤ κ̃k log(n)1+δ

}
for segments xi:j for which there exist a k such that: tk−1+1 ≤ i ≤ tk−κ̃k log(n)1+δ < tk+κ̃k log(n)1+δ ≤ j ≤ tk+1

as an analogue of B for the whole of x.
If τ /∈ B, there must be at least one sub-segment for which the projection of τ does not lie in Bk. We will show

in Proposition 3, that the cost of the true partition using the true parameters is at least O(log(n)1+δ) lower than
that of the projection of τ on such a segment. We will also show in Proposition 2 that the projections of τ which
are in Bk have a cost which is at most O(log(n)) lower than that of the true partition with true parameters.

Proposition 2 Let i, j ∈ N , be such that there exists a k such that: tk−1 + 1 ≤ i < tk < j ≤ tk+1, then there
exists a constant C̃4 such that given E,[

C (xi:j) + β log(n)1+δ
]
− C̃(xi:j , τ, β) ≤ C̃4 log(n)

for all valid partitions τ of the form τ = {i− 1, t̂, j}, if n is large enough.

Proof of Proposition 2: The following cases are possible:
Case 1: t̂ = tk. Then:[

C (xi:j) + β log(n)1+δ
]
− C̃(xi:j , {i− 1, t̂, j}, β) = C (xi:j)−

[
C̃(xi:tk) + C̃(x(tk+1):j)

]
≤ 2C̃2 log(n),

where the inequality follows from Lemma 4.
Case 2: t̂ = tk + 1. Then:[

C (xi:j) + β log(n)1+δ
]
− C̃(xi:j , {i− 1, t̂, j}, β)

= C (xi:j)−
[
C̃(xi:(tk+1)) + C̃(x(tk+2):j)

]
≤ (C̃2 + C̃3) log(n),

where the inequality follows from Lemmata 4 and 5.
Case 3: t̂ > tk + 1. Then:[

C (xi:j) + β log(n)1+δ
]
− C̃(xi:j , {i− 1, t̂, j}) ≤ C (xi:j) + 2β log(n)1+δ − C̃(xi:j , {i− 1, tk, t̂, j}, β)

= C (xi:j)−
[
C̃(xi:tk) + C̃(x(tk+1):t̂) + C̃(x(t̂+1):j)

]
≤ 3C̃2 log(n),

where the first inequality follows from the fact that introducing an unpenalised changepoint reduces cost and the
second is a consequence of Lemma 4.

Case 4: t̂ = tk − 1. Symmetrical to case 2.
Case 5: t̂ < tk − 1. Symmetrical to case 3.
This finishes our proof.

Proposition 3 There exists a constant n4(β, δ, ε), such that ∀i, j for which ∃k such that tk−1 + 1 ≤ i ≤ tk −
κ̃k log(n)1+δ < tk + κ̃k log(n)1+δ ≤ j ≤ tk+1

C̃(xi:j , τ, β)−
[
C (xi:j) + β log(n)1+δ

]
≥ 1

3
β log(n)1+δ

holds for all τ /∈ Bk given E and n > n4(β, δ, ε).

Proof of Proposition 3: Consider τ ′ /∈ Bk. We consider the following three cases and denote H :=
d 1

2 κ̃k log(n)1+δe, noting that it is larger than κ̃(4, 3β, δ, ε) log(n)1+δ.

14



Case 1: |τ ′| = 2. We have τ ′ = {i− 1, j}. Hence:

C̃(xi:j , τ ′, β) ≥ C̃(xi:(tk−H)) + C̃(x(tk−H+1):(tk+H)) + C̃(x(tk+H+1):j)

≥C̃(xi:(tk−H)) + C(x(tk−H+1):(tk+H)) + 3β log(n)1+δ + C̃(x(tk+H+1):j)

≥2β log(n)1+δ − 2C̃2 log(n) +
[
C (xi:j) + β log(n)1+δ

]
,

where the second inequality follows from the definition of H and Lemma 7 and the third from Lemma 4.
Case 2: |τ ′| = 3. We have τ ′ = {i− 1, tk +L, j}, where |L| > κ̃k log(n)1+δ. We assume L > 0, the other case

being very similar. We have:

C̃(xi:j , {i− 1, tk + L, j}, β) = C̃(xi:(tk+L)) + C̃(x(tk+L+1):j) + β log(n)1+δ

≥C̃(xi:(tk−H−1)) + C̃(x(tk−H):(tk+H)) + C̃(x(tk+H+1):(tk+L))− C̃2 log(n) + C(x(tk+L+1):j) + β log(n)1+δ

≥3β log(n)1+δ − 3C̃2 log(n) +
[
C (xi:j) + β log(n)1+δ

]
,

where the inequalities follow from of the definition of H as well as Lemmata 7 and 4.
Case 3: |τ ′| ≥ 4. Let τ ′ = {a1, a2, ..., a|τ ′|}, where a1 = i − 1 and a|τ ′| = j. There must exist a l ∈

{2, ..., |τ ′| − 1}, such that al−1 < tk and al+1 > tk + 1. We thus have:

C̃(xi:j , τ ′, β) = (|τ ′| − 3)β log(n)1+δ +

 l−2∑
m=1

+

|τ ′|−1∑
m=l+1

[C̃(xam+1,am+1
)
]

+ C̃(x(al−1+1):al+1
, {al−1, al, al+1}, β)

≥ (|τ ′| − 2)β log(n)1+δ +

 l−2∑
m=1

+

|τ ′|−1∑
m=l+1

[C(xam+1,am+1
)
]

+ C(x(al−1+1):al+1
)− (|τ ′| − 3)C̃2 log(n)− C̃4 log(n)

= C(xi:j , τ, β) + β log(n)1+δ + (|τ ′| − 3)β log(n)1+δ −
[
(|τ ′| − 3)C̃2 + C̃4

]
log(n),

by Lemma 4 and Proposition 2. This finishes the proof.

Proposition 4 There exists a constant ñ5(β, δ,4, δ̃, ε) decreasing in 4 such that given E, we have

C̃(x1:n, τ, β)−
[
C(x1,n) +Kβ log(n)1+δ

]
≥ 1

4
β log(n)1+δ

for all τ /∈ B if n ≥ ñ5(β, δ,4, δ̃, ε).

Proof of Proposition 4: First, consider the special case K = 0. For this case, τ /∈ B implies that K̂ ≥ 1.
We have

C̃(x1:n, τ, β) ≥ C̃(x1:n, {0, n}, β) + K̂
3

4
β log(n)1+δ ≥ C(x1:n) + K̂

3

4
β log(n)1+δ − C̃2 log(n),

where the first inequality follows from Lemma 6 and the second from Lemma 4.
Next assume K ≥ 1. Let τ /∈ B. We now introduce free changepoints l0, l1, ..., lK to break up the series

into multiple sub-series with one true changepoint each. We impose l0 = 0, lK = n, |lk − tk| > 4κ̃k log(n)1+δ

for 0 < k ≤ K and |lk − tk+1| > 4κ̃k log(n)1+δ for 0 ≤ k < K. We also require that τ ∪ {l0, ..., lK} is a

valid partition (i.e. one which has segments of length at least two) and that there exists a k̂ such that τk̂ :=
τ ∩ {lk̂−1 + 1, lk̂−1 + 2, ..., lk̂} /∈ Bk̂. We are guaranteed to find such points l0, l1, ..., lK if n is such that

log(n)1+δ+δ̃ ≥ 12κ̃k log(n)1+δ,

which is satisfied if n > ñ5(β, δ,4, δ̃, ε), where ñ5(β, δ,4, δ̃, ε) decreases in δ. Indeed, we can choose points near
the middle of the true segments which are not in τ , or by select points in τ if the former is impossible because
there are too many point in τ near the middle of some segment.

Since introducing free changes reduces the cost we then have

C̃(x1:n, τ, β) ≥
K∑
k=1

C̃(x(lk−1+1):lk , τk, β) = C̃(x(lk̂−1+1):lk̂
, τk̂, β) +

∑
k 6=k̂

C̃(x(lk−1+1):lk , τk, β)

≥ C(x1:n, τ, β) +
1

3
β log(n)1+δ − (K − 1)C̃4 log(n),

where the second inequality follows from Propositions 2 and 3. This finishes the proof.
Proof of Theorem 1: B contains the true partition with fitted parameters which is cheaper than the true

partition with true parameters. Proposition 4 shows that conditional on E the true partition with true parameters
will be cheaper than all τ /∈ B fo n > ñ5(β, δ,4, δ̃, ε). The optimal partition must therefore be in B, given event
set E. This proves Theorem 1, since Lemmata 1 and 2 imply that P(E) ≥ 1−(K̃1 +K̃2 +K̃3 +K̃4 +K̃5 +K̃6)n−ε.
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8.3 Proof of Theorem 2

In order to prove this result, we will use the following notation in this section: We define C̃E (x1:n, τE , β, µ, σ) to
be the cost of an epidemic partition τE = {ŝ1, ê1, ...ŝK̂ , êK̂} under a penalty β log(n)1+δ and inferred parameters
of the typical distribution µ, σ. We define CE (x1:n, β, µ, σ), to be the cost under the true partition using the true
parameters for the epidemic segments and µ, σ as estimates for the parameters of the typical distribution. We
also define the set of epidemic partitions

BE =
{
{ŝ1, ê1, ..., ŝK , êK} | |êk − ek| < κ̃k log(n)1+δ, |ŝk − sk| < κ̃k log(n)1+δ

}
as an epidemic equivalent of B. Finally, we note that we can extend the definition of the event set E to epidemic
changepoints by treating the sk and ek like classical changepoints.

We will begin by proving a simplified version of the theorem in which we run our epidemic changepoint
detection algorithm without allowing for epidemic changes of length one in variance only and imposing that each
segment of the data allocated to the typical distribution is of length at least two. The reason for this is that this
allows us to define an equivalent non-epidemic partition, whose segments must be of length at least two, for each
epidemic partition. We also begin by assuming that the parameter of the typical distribution is known.

This simplified version captures the main ideas of the full proof. We will proceed to showing that the result
also holds when the typical mean and variance are unknown. This will be followed by a proof of the full result
by means of introducing and proving the consistency of a modified version of the classical changepoint detection
algorithm described in the previous section which also allows for segments of length one.

For now, we assume that all segments are of length at least two and that the true parameters µ0 and σ0 are
known. This allows us to use the fact that the cost of the true epidemic partition using the true parameters is
exactly the same as the cost of the corresponding true non-epidemic partition using the true parameters with
twice the penalty. We can therefore prove the following proposition, as a corollary of Proposition 4.

Proposition 5 There exists a constant ñ6(β, δ,4, δ̃, ε), decreasing in 4 such that for all τ ′E /∈ BE

C̃E (x1:n, τ
′
E , β, µ0, σ0)− CE (x1:n, β, µ0, σ0) ≥ 1

5
β log(n)1+δ/2

holds on E for large enough n > ñ6(β, δ,4, δ̃, ε).

Proof of Proposition 5: We note that

C̃E (x1:n, τ
′
E , β, µ0, σ0) ≥ C̃

(
x1:n, τ

′
E ∪ {0, n},

1

2
β

)
+
β

2

K̂∑
k=2

I{sk = ek−1} log(n)1+δ,

because using fitted parameters instead of µ0 and σ0 for segments allocated to the typical distribution under τ ′E
can only reduce the cost. Additionally, two epidemic changes correspond to three classical changepoints if their
end and starting points coincide. Moreover,

CE (x1:n, β, µ0, σ0) = C (x1:n) +Kβ log(n)1+δ.

Therefore:

C̃E (x1:n, τ
′
E , β, µ0, σ0)− CE (x1:n, β, µ0, σ0)

≥ C̃
(
x1:n, τ

′
E ∪ {0, n},

1

2
β

)
+
β

2

K̂∑
k=2

I{sk = ek−1} log(n)1+δ −
[
C (x1:n) + 2K

β

2
log(n)

]
.

This leaves two possibilities. If τ ′E ∪ {0, n} /∈ B then the above will exceed

1

4
β log(n)1+δ,

by proposition 4. Since τ ′E /∈ BE , the only way we can have τ ′E ∪ {0, n} ∈ B is if there exists a k such that
sk = ek−1. In that case the difference will exceed

1

2
β log(n)1+δ − (2K + 1)C̃4 log(n),

by Proposition 2. This finishes the proof.
We can now use this proposition to prove Theorem 2 in the same way we used 4 to prove Theorem 1.
Proof of Theorem 2: Proposition 5 proves Theorem 2 as Lemmata 1 and 2 imply that P(E) ≥ 1− (K̃1 +

K̃2 + K̃3 + K̃4 + K̃5 + K̃6)n−ε.

We now introduce the following lemma about the distribution of the median and inter-quantile range. It will
allow us to prove Theorem 2 when the true parameters are unknown.
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Lemma 8 There exists a constants K̃8, D1, and D2 such that for large enough n

P

(
|µ̂− µ0| ≤ D1σ0

√
log(n)

n
,

∣∣∣∣ σ̂2

σ2
0

− 1

∣∣∣∣ ≤ D2

√
log(n)

n

)
≥ 1− K̃8n

−ε

We can use this Lemma above to introduce a new event E7 stating that the estimated parameters are close
to the true parameters.

E7 :=

{
|µ̂− µ0| ≤ D1σ0

√
log(n)

n
,

∣∣∣∣ σ̂2

σ2
0

− 1

∣∣∣∣ ≤ D2

√
log(n)

n

}
.

This event bounds the effect of using the estimated typical parameters instead of the true parameters for the
cost of the true distribution with true non-typical parameters. Indeed, the following lemma holds:

Lemma 9 There exists a constant C̃7 such that given E and E7 and n large enough we have:

C̃E (x1:n, β, µ̂, σ̂)− CE (x1:n, β, µ0, σ0) ≤ C̃7 log(n).

We can use this lemma to prove the following extension of Proposition 5 to the case when the typical
parameters are inferred.

Proposition 6 There exists a constant ñ7(β, δ,4, δ̃, ε) decreasing in 4 such that for all τ ′E /∈ BE

C̃E (x1:n, τ
′
E , β, µ̂, σ̂)− CE (x1:n, β, µ̂, σ̂) ≥ 1

5
β log(n)1+δ/2

holds on E ∩ E7 for n > ñ7(β, δ,4, δ̃, ε).

Proof of Proposition 6: We note that, as before,

C̃E (x1:n, τ
′
E , β, µ̂, σ̂) ≥ C̃

(
x1:n, τ

′
E ∪ {0, n},

1

2
β

)
+
β

2

K̂∑
k=2

I{sk = ek−1} log(n)1+δ

CE (x1:n, β, µ, σ) = C (x1:n) +Kβ log(n)1+δ,

Therefore we now have

C̃E (x1:n, τ
′
E , β, µ̂, σ̂)− CE (x1:n, β, µ̂, σ̂)

≥ C̃
(
x1:n, τ

′
E ∪ {0, n},

1

2
β

)
+
β

2

K̂∑
k=2

I{sk = ek−1} log(n)1+δ −
[
C (x1:n) + 2K

β

2
log(n)1+δ

]
− C̃7 log(n),

by applying Lemma 9. The rest of the proof is identical to that of Proposition 5, with an added O(log(n)) term.
In order to be able to extend Proposition 6 to the case in which we allow epidemic changes of length one

in variance only, as well as segments of the typical distribution which are of length one, we will prove the
consistency of the following adaptation of the algorithm detecting classical changepoints we introduced in the
previous section. We now let the segment costs be

C̃(xi:j) = C̃(xi:j , {i− 1, j}) =


(t̂k+1 − t̂k)

(
log

(∑t̂k+1

t̂k+1
(xt−x̄(t̂k+1):t̂k+1

)2

(t̂k+1−t̂k)

)
+ 1

)
i < j,

min
{

log(σ̃2) + (xi−µ̃)2

σ̃2 , 1 + log(γσ̃2 + (xt − µ̃)2)
}

i = j,

where |µ̃− µk′ | ≤ D1σk′
√

log(n)
n and | σ̃

2

σ2
k′
− 1| < D2

√
log(n)
n for k′ either k − 1,k, or k + 1, when i belongs to the

kth segment. Given E7 the range of allowed σ̃2 and µ̃ is therefore guaranteed to contain the estimated typical
parameters σ̂2 and µ̂ when applied to x. The algorithm can obviously not be implemented in practice, as it
requires knowledge of the true parameters. It is nevertheless a consistent method.

To prove this, we need to define a last event set E8 which controls the newly introduced segments of length
one:

E8 :=
{
|xt − µk+1| ≥ σkn−2+ε, |xt − µk−1| ≥ σkn−2+ε, 1 ≤ t ≤ n

}
,

We can prove the following probability bounds

Lemma 10 There exists a constant K̃8 such that P(E8) ≥ 1− K̃8n
−ε
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We can now prove the following proposition, adapted from Proposition 4 for this modified penalised cost
approach:

Proposition 7 There exists a constant ñ7(β, δ,4, δ̃, ε) such that given E ∩ E8, we have

C̃(x1:n, τ, β)−
[
C(x1,n) +Kβ log(n)1+δ

]
≥ 1

5
β log(n)1+δ

for all τ /∈ B if n ≥ ñ7(β, δ,4, δ̃, ε)

Proof of Proposition 7: Identical to the proof of Proposition 4. We just need to replace Lemma 4 by

Lemma 11 There exists a constant C̃ ′2 such that if i, j are such that there exists some k such that tk−1 < i ≤
j ≤ tk, then given E ∩ E7 and n large enough

C (xi:j)− C̃ (xi:j) ≤ C̃ ′2 log(n).

to also account for the newly added segments of length one. We can now prove that

Proposition 8 There exists a constant ñ8(β, δ,4, δ̃, ε) decreasing in 4 such that for all τ ′E /∈ BE

C̃E (x1:n, τ
′
E , β, µ̂, σ̂)− CE (x1:n, β, µ̂, σ̂) ≥ 1

5
β log(n)1+δ/2

holds on E ∩ E7 ∩ E8 for n > ñ8(β, δ,4, δ̃, ε).

holds even when we allow for epidemic changes of length one in variance only and do not impose that segments
allocated to the typical distribution have to be of length at least two.

Proof of Proposition 8: Identical to the proof of Proposition 6 using Proposition 7 instead of Proposition
4.

Proof of Theorem 2: Proposition 8 proves Theorem 2 since Lemmata 1, 2, 8, and 10 show that P(E ∩E7 ∩
E8) ≥ 1− (K̃1 + K̃2 + K̃3 + K̃4 + K̃5 + K̃6 + K̃7 + K̃8)n−ε.
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9 Supplementary Material

9.1 Proofs of Lemmata

Lemma 1 (Yao 1988) P(E1) > 1− K̃1n
−ε, for some constant K̃1.

Proof of Lemma 1: See [35].

Lemma 2 P(E2) > 1−K̃2n
−ε, P(E3) > 1−K̃3n

−ε, P(E4) > 1−K̃4n
−ε, P(E5) > 1−K̃5n

−ε, P(E6) > 1−K̃6n
−ε,

and P(E7) > 1− K̃7n
−εfor some constants K̃2,K̃3,K̃4, K̃5, K̃6, and K̃7.

Proof of Lemma 2: We note that Yi:j ∼ χ2
a−1. [16] proved that

P
(
−2
√
kx ≤ χ2

k − k ≤ 2
√
kx+ 2x

)
≥ 1− 2e−x.

Therefore:

P
(
−2
√

(a− 1)(2 + ε) log(n) ≤ Yi:j − (a− 1) ≤ 2
√

(a− 1)(2 + ε) log(n) + 2(2 + ε) log(n)
)
≥ 1− 2n−(2+ε).

A Bonferroni correction therefore gives P(E2 ∩ E6) > 1− 2n−ε.
We can derive the following Chernoff bound for k ≥ 1 and 0 ≤ c̃ < 1:

P
(
χ2
k ≤ kc̃

)
= P

(
exp

[
θ(χ2

k − kc̃)
]
≥ 1
)
≤ E

(
exp

[
θ(χ2

k − kc̃)
])

= e−kc̃θE
(
eθχ

2
k

)
= e−kc̃θ

(
1

1− 2θ

)k/2
,

holds for all θ < 0. Setting θ = 1
2 (1− 1

c̃ ) we thus get

P
(
χ2
k ≤ kc̃

)
≤ exp

(
−k

2
(c̃− 1− log(c̃))

)
.

Thus if we let c(a, n) < 1 be such that

a

2
· c(a, n)− 1− log(c(a, n))

2
= (2 + ε) log(n),

and write c := c(a, n) for simplicity, we have

P (Yi:j ≤ c(a− 1)) ≤ exp

(
−a− 1

2
(c− 1− log(c))

)
≤ exp

(
−a

4
(c− 1− log(c))

)
= n−(2+ε),

for a ≥ 2. A Bonferroni correction then gives P(E3) > 1− n−ε.
Next we note that

σkηtk+1 + µk+1 − µk − σkηtk√
σk+1σk

∼ N
(
µk+1 − µk√
σk+1σk

,
σ2
k+1 + σ2

k

σk+1σk

)
.

Consequently, we have that:

P
(
|σk+1ηtk+1 + µk+1 − µk − σkηtk |√

σk+1σk
≤ n−ε

)
≤
√

2σk+1σk
π(σ2

k+1 + σ2
k−1)

n−ε ≤
√

1

π
n−ε.

A Bonferroni correction then gives P(E5) > 1−K/
√
πn−ε.

Finally, we have:

xt − x̄tk:(tk+2) ∼

N
(

2µk−2µk+1

3 ,
4σ2

k+2σ2
k+1

9

)
t = tk,

N
(
µk+1−µk

3 ,
2σ2

k+5σ2
k+1

9

)
t = tk + 1, tk + 2,

which means that

(xt − x̄tk:(tk+2))
2 ≥

4σ2
k + 2σ2

k+1

9
n−ε, t = tk,

(xt − x̄tk:(tk+2))
2 ≥

1σ2
k + 5σ2

k+1

9
n−ε, t = tk + 1, tk + 2,
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holds with probability exceeding 1− 3n−ε. Adding up the three inequalities then gives

tk+2∑
t=tk

(xt − x̄tk:(tk+2))
2 ≥

12σ2
k+1 + 6σ2

k

9
n−ε ≥ 2σ

4/3
k+1σ

2/3
k n−ε.

By a similar argument,
tk+1∑
t=tk−1

(xt − x̄(tk−1):(tk+1))
2 ≥ 2σ

2/3
k+1σ

4/3
k n−ε

must also hold with probability 1− 3n−ε. A Bonferroni correction then gives P(E4) ≥ 1− 6Kn−ε. This finishes
our proof.

Lemma 3 There exists a constant C̃1 such that Yi:j − a − a log(Yi:j/a) ≤ C̃1 log(n) holds on E for all 1 ≤ i <
j ≤ n.

Proof of Lemma 3: Consider the function f(x) = x−a−a log(x/a). This function decreases monotonically
on (0, a) and increases monotonically on (a,∞). Since E2 and E3 bound Yi:j from above and below respectively

we only have to show that Yi:j − a− a log(Yi:j/a) ≤ C̃1 log(n) holds for the bounds in order to prove the lemma.

Part 1: Upper bound: By E2 there exist constants M and M ′ such that Yi:j ≤ a+M
√
a log(n)+M ′ log(n).

Substituting this upper bound for Yi:j gives:

Yi:j − a− a log

(
Yi:j
a

)
≤M

√
a log(n) +M ′ log(n)− a log

(
1 +

M
√
a log(n) +M ′ log(n)

a

)
. (4)

Case 1: a ≤ log(n). In that case we can bound equation (4) by

M
√
a log(n) +M ′ log(n) ≤ (M +M ′) log(n).

Case 2: a ≥ log(n). We can use the fact that log(1 + x) ≥ x− x2, ∀x > 0 to bound equation (4) by

(M
√
a log(n) +M ′ log(n))2

a
≤ (M +M ′)2 log(n).

Part 2: Lower bound: E3 implies that Yi:j ≥ c(a, n)(a− 1). Substituting this bound gives

Yi:j − a− a log

(
Yi:j
a

)
≤ a(c(a, n)− 1− log(c(a, n))− c− a log

(
a− 1

a

)
≤ 4(4 + ε) log(n) + a log

(
a

a− 1

)
≤ 4(4 + ε) log(n) +

a

a− 1
≤ 4(4 + ε) log(n) + 2.

This finishes the proof.

Lemma 4 Let i, j be such that there exists some k such that tk−1 < i < j ≤ tk. The following holds given E :

0 ≤ C (xi:j)− C̃ (xi:j) ≤ C̃2 log(n).

Proof of Lemma 4: This lemma bounds the reduction in cost we can obtain by using a mean and variance
fitted to a segment rather than the true mean and variance of the segment. The left bound follows from the fact
C̃ (xi:j) fits the mean and variance to minimise the log likelihood on the segment xi:j . The right bound follows
from Lemma 3 and E1. Indeed,

C (xi:j)− C̃ (xi:j) = (j − i+ 1) log(σ2
k) +

j∑
t=i

η2
t − (j − i+ 1)

(
log

(
σ2
kYi:j

j − i+ 1

)
+ 1

)
= a ¯ηi:j

2 + Yi:j − a log

(
Yi:j
a

)
− a ≤

(
C̃1 + 4 + ε

)
log(n),

which finishes the proof.

Lemma 5 Let i, j be such that ∃k such that tk−1 = i < j ≤ tk or tk−1 < i < j = tk + 1. The following then
holds given E

C (xi:j)− C̃ (xi:j) ≤ C̃3 log(n)
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Proof of Lemma 5: This Lemma is very similar to Lemma 4, except that we slightly relax the constraint
that all the data has to be located between two changepoints. This is needed because of the minimum segment
length of two. We will prove this lemma for the case where tk−1 = i, the other case being very similar. We
consider 3 cases:

Case 1: j = tk−1 + 1. We have that:

C (xi:j)− C̃ (xi:j) = log(σ2
k) + log(σ2

k−1) + η2
tk−1

+ η2
tk−1+1 − 2 log

(
(xtk+1 − xtk)2

4

)
− 2

≤ (8 + 2ε) log(n)− 2 log

(
(xtk+1 − xtk)2

4σk−1σk

)
− 2 ≤ (8 + 4ε) log(n) + 2 log(4)− 2,

where the first inequality follows from E1 and the second from E5.
Case 2: j = tk−1 + 2. We have:

C (xi:j)− C̃ (xi:j) = 2 log(σ2
k) + log(σ2

k−1) +

tk−1+2∑
t=tk−1

η2
t − 3 log

(∑tk−1+2
t=tk−1

(xt − x̄(tk−1):(tk−1+2))
2

3

)
− 3

≤ 2 log(σ2
k) + log(σ2

k−1) + (12 + 3ε) log(n)− 3 log

(
n−εσ

4/3
k σ

2/3
k−1

3

)
− 3

= (12 + 6ε) log(n) + 3 log(3)− 3,

where the inequality follows from E1 and E4.
Case 3: j > tk−1 + 2. We have:

C (xi:j)− C̃ (xi:j) ≤
[
C
(
xi:(i+1)

)
− C̃

(
xi:(i+1)

)]
+
[
C
(
x(i+2):j

)
− C̃

(
x(i+2):j

)]
≤ (8 + 4ε) log(n) + 2 log(4)− 2 + C̃2 log(n),

where the second inequality follows from case 1 and Lemma 4.

Lemma 6 Let a, b, c ∈ τ for some partition τ of xi,j such that ∃k such that tk−1 < a < b < c ≤ tk. Then,

C̃ (xi:j , τ, β)− C̃ (xi:j , τ−b, β) ≥ 3

4
β log(n)1+δ,

where τ−b = τ \ {b} holds on E for large enough n.

Proof of Lemma 6: This lemma applies Lemma 4 to show that removing false positives reduces the overall
cost.

C̃ (xi:j , τ, β)− C̃ (xi:j , τ−b, β) = C̃
(
x(a+1):b

)
+ C̃

(
x(b+1):c

)
− C̃

(
x(a+1):c

)
+ β log(n)1+δ

≥ C
(
x(a+1):b

)
+ C

(
x(b+1):c

)
− C

(
x(a+1):c

)
+ β log(n)1+δ − 2C̃2 log(n) ≥ 3

4
β log(n)1+δ,

for large enough n.

Lemma 7 For all α > 0, there exists a constant κ̃(4k, α, δ, ε) decreasing in 4k such that C̃ (xi:j)− (C (xi:tk) +
C
(
x(tk+1):j

)
) ≥ α log(n)1+δ holds on E if j − tk = tk + 1− i ≥ κ̃(4k, α, δ, ε) log(n)1+δ and j ≤ tk+1, i > tk−1 for

all n > 2.

Proof of Lemma 7 : This lemma shows that not having an estimated changepoint near a true changepoint
leads to high costs. Let j − tk = tk + 1− i = D. We have:

1

2D

j∑
t=i

(xt − x̄i:j)2 =
σ2
kYi:tk + σ2

k+1Y(tk+1):j

2D
+

1

4

(
µk + σkη̄i:tk − µk+1 − σk+1η̄(tk+1):j

)2
.

Now E2 implies that

σ2
kYi:tk + σ2

k+1Y(tk+1):j

2D
≥
σ2
k + σ2

k+1

2D

(
D − 1− 2

√
(D − 1)(2 + ε) log(n)

)
= σkσk+1

(
1 +
42
σ,k

2

)(
1− 1

D
− 2

√
(2 + ε) log(n)

D

)
.
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Moreover,

1

4

(
µk + σkη̄i:tk − µk+1 − σk+1η̄(tk+1):j

)2
=

1

4
σkσk+1

(
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]
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[
1

4
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√
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4

√
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√
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4
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1
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4

√
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D

(
42
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,

where the second inequality follows from E1 and the third from the AM-GM inequality. Combining the above
two bounds shows that,

1

2D

j∑
t=i

(xt − x̄i:j)2 ≥ σkσk+1

(
1 +
42
σ,k

2
+
42
µ,k

4

)(
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D
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√
(2 + ε) log(n)

D

)
.

We can now use this to prove the Lemma. We have

C̃ (xi:j)− (C (xi:tk) + C
(
x(tk+1):j

)
)

≥ 2D log

(
1

2D

j∑
t=i

(xt − x̄i:j)2

)
+ 2D −D log(σ2

k)−D log(σ2
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= 2D log
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1

2Dσkσk+1

j∑
t=i

(xt − x̄i:j)2

)
+ 2D − Yi:j − 2Dη̄i:j .

We note that E1 and E2 imply that

2D − Yi:j − 2Dη̄i:j ≥ 1− 2
√

2(2 + ε)D log(n)− (4 + 2ε) log(n)− (8 + 2ε) log(n).

Moreover,

2D log

(
1

2Dσkσk+1

j∑
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)
≥ 2D log
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)
+ 2D log
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)
.

Ergo, C̃ (xi:j)− (C (xi:tk) + C
(
x(tk+1):j

)
) is bounded below by

2D

[
log

(
1 +
42
k

2

)
+ log

(
1− 1
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− 4

√
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D

)
+

1

2D
−
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log(n)

D
− (6 + 2ε)

log(n)

D

]
.

Noting that both terms in the product increase in D and 4k as well as in a and n if we set D = a log(n)1+δ

finishes our proof.

Lemma 8 There exists a constants K̃8, D1, and D2 such that for large enough n

P

(
|µ̂− µ0| ≤ D1σ0

√
log(n)

n
,

∣∣∣∣ σ̂2

σ2
0

− 1

∣∣∣∣ ≤ D2

√
log(n)

n

)
≥ 1− K̃8n

−ε

Proof of Lemma 8: Without loss of generality, we assume that µ0 = 0 and σ0 = 1. Since µ̂ and σ̂ only
depend upon x(0.25n),x(0.5n), and x(0.75n) it is sufficient to show that there exists a constant D3 such that

P

(
|x(cn) − qc| < D3

√
log(n)

n

)
≥ 1− n−ε,

where qc is the cth quantile of the normal, holds for c = 0.25, 0.5, 0.75.
In order to do so, we first define y(i) to be the ith largest observation belonging to the typical distribution.

We note that y(cn−m) < x(cn) < y(cn+m), where m = O(K
√
n) is the number of points belonging to one of the
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anomalous windows. Since q(cn±m)/(n−m) − qc = O(Kn−
1
2 ), it is sufficient to show that there exists a constant

D4 such that

P

(
|y(a(n−m)) − qa| ≤ D4

√
log(n)

n

)
≥ 1− n−ε

for a = (cn±m)/(n−m). We note that

y(a(n−m)) ∼ Φ−1
(
U(a(n−m)),(n−m)

)
,

where Φ is the CDF of the normal distribution and Us,t the sth largest of t i.i.d. U(0, 1) random variables. The
following concentration inequality ([26]) applies to the uniform distribution

P
(√

n

v

∣∣∣Ur,n − r

n

∣∣∣ > t

)
≤ exp

(
− t2

3(1 + t
v

√
n)

)
,

where v2 = (r/n) (1− r/n) ≤ 1/4 by the AMGM inequality. This means that the event{∣∣Ua(n−m),(n−m) − a
∣∣ ≤ √ε√ log(n)

n

}
for the six values of a which are of interest to us holds with probability at least

1− 6 exp

−ε log(n)

(
3

4
+ 3

√
ε log(n)

n

)−1
 ,

by a Bonferroni correction, which is 1−O(n−ε). We note that this event implies that∣∣Φ(ya(n−m))− a
∣∣ = O

(√
log(n)

n

)
holds for all six a of interest, which will be confined to the interval [0.1, 0.9] for large enough n. Hence we must
also have ∣∣Φ−1(Φ(ya(n−m)))− Φ−1(a)

∣∣ = O

(√
log(n)

n

)
for large enough n. This finishes our proof.

Lemma 9 There exists a constant C̃7 such that given E and E7 and n large enough we have:

C̃E (x1:n, β, µ̂, σ̂)− CE (x1:n, β, µ0, σ0) ≤ C̃7 log(n).

Proof of Lemma 9: First of all we note that
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where the second inequality follows from E1 and the third from E7. Moreover,

CE (x1:n, β, µ0, σ̂)− CE (x1:n, β, µ0, σ0) =

K+1∑
i=1

si+1∑
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where the first inequality follows from expanding log(x) around x = 1 and E1, while the second inequality uses
E7 and E2.
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Lemma 10 There exists a constant K̃8 such that P(E8) ≥ 1− K̃8n
−ε

Proof of Lemma 10: Let k′ = k ± 1. Clearly, xt − µk′ ∼ N(µk − µk′ , σ2
k). Consequently,

P
(
|xt − µk′ | < n−(2+ε)σk

)
≤ 2n−(2+ε)σk

√
1

2πσ2
k

=

√
2

π
n−(2+ε).

A Bonferroni correction therefore gives P(E8) > 1−
√

8
πn
−ε.

Lemma 11 There exists a constant C̃ ′2 such that if i, j are such that there exists some k such that tk−1 < i ≤
j ≤ tk, then given E ∩ E7 and n large enough

C (xi:j)− C̃ (xi:j) ≤ C̃ ′2 log(n).

to also account for the newly added segments of length one.
Proof of Lemma 11: We have to consider two cases:
Case 1: i < j. The result holds by Lemma 4.
Case 2: i = j, with the proxy for segments of length one. We have:
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where the inequality follows from E1. We now bound the above for all choices of µ̃ and σ̃. First of all we consider
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Case 3: i = j, with the proxy for epidemic changes. We have:
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by E1. We again bound the above for all choices of µ̃ and σ̃. First of all we consider the case |µ̃ − µk| <
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Mean Variance Point anomalies CAPA PELT BreakoutDetection luminol

weak - 10 strong 1.71 2.98 3.70 9.91
strong - 10 strong 0.18 0.72 5.50 10.33

- weak 10 strong 1.26 2.15 4.59 9.99
- strong 10 strong 0.32 0.80 4.98 9.65

weak weak 10 strong 1.19 1.76 4.26 10.12
strong strong 10 strong 0.09 0.57 3.98 9.91

Figure 8: Precision of true positives measured in mean absolute distance for CAPA, PELT, luminol, and Break-
outDetection when strong poit anomalies are present

for large enough n. If
σ2
k

σ2
k′
< n4 the above is bounded by 4 log(n)− log(γ). Otherwise we have:
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for large enough n. This finishes the proof.

9.2 Further Simulation Study Results

The ROC curves for weak and strong changes in variance as well as for weak and strong joint changes in mean
and variance can be found in Figures 9, 10, 11, and 12. The ROC curves for all three types of collective anomalies
in the presence of strong point anomalies can be found in Figures 13, 14, and 15. The precision of true positives
when such point anomalies are present is compared in Figure 8. We note that CAPA is robust to such point
anoamlies, unlike PELT and luminol.

9.3 Application of CAPA to Further Stars

We applied the approach detailed in Section 6 to the light curves of five further stars with known exoplanets
([20]). Figure 16 depicts the largest detected change in mean as measured by maxk (4µ,k) per period for the five
stars. We found that the 20 periods exhibiting the largest change in mean correspond to integer fractions of the
orbital period of a known exoplanet in all cases. We thus observed no false positives. The results are summarised
in Figure 17. We note that not all planets appear in the 20 periods with largest change in mean. This is due
to the fact that their signal is weaker than the resonance of the signal of larger planets. CAPA can nevertheless
detect the transit signal of the missing planet at their orbital period, with the exception of Kepler 454-c. This
planet however was discovered by a different method than the transit method.
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(a) No point anomalies (b) No point anomalies

(c) Point anomalies present (d) Point anomalies present

Figure 9: Data examples and ROC curves for weak changes in variance for CAPA (black), PELT (red), Break-
outDetection (green), and luminol (blue).
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(a) No point anomalies (b) No point anomalies

(c) Point anomalies present (d) Point anomalies present

Figure 10: Data examples and ROC curves for strong changes in variance for CAPA (black), PELT (red),
BreakoutDetection (green), and luminol (blue).
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(a) No point anomalies (b) No point anomalies

(c) Point anomalies present (d) Point anomalies present

Figure 11: Data examples and ROC curves for weak changes in mean and variance for CAPA (black), PELT
(red), BreakoutDetection (green), and luminol (blue).
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(a) No point anomalies (b) No point anomalies

(c) Point anomalies present (d) Point anomalies present

Figure 12: Data examples and ROC curves for strong changes in mean and variance for CAPA (black), PELT
(red), BreakoutDetection (green), and luminol (blue).
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(a) Weak changes (b) Weak changes

(c) Strong changes (d) Strong changes

Figure 13: Data examples and effect of strong point anomalies on ROC curves for the detection of changes in
variance of CAPA (black), PELT (red), BreakoutDetection (green), and luminol (blue).
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(a) Weak changes (b) Weak changes

(c) Strong changes (d) Strong changes

Figure 14: Data examples and effect of strong point anomalies on ROC curves for the detection of changes in
mean of CAPA (black), PELT (red), BreakoutDetection (green), and luminol (blue).
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(a) Weak changes (b) Weak changes

(c) Strong changes (d) Strong changes

Figure 15: Data examples and effect of strong point anomalies on ROC curves for the detection of changes in
mean and variance of CAPA (black), PELT (red), BreakoutDetection (green), and luminol (blue).
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(a) Kepler 356 (b) Kepler 454

(c) Kepler 275 (d) Kepler 235

(e) Kepler 264

Figure 16: The strongest change in mean, as measured by maxk (4µ,k), detected by CAPA for the lightcurves
of five stars with known exoplanets. All periods from 1 to 200 days at 0.01 day increment were examined
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Star Planet Period Period (or integer fraction thereof) in top 20 modes

Kepler 275 Kepler-275-b 10.3007 No
Kepler 275 Kepler-275-c 16.0881 Yes
Kepler 275 Kepler-275-d 35.6761 Yes
Kepler 264 Kepler-264-b 40.806 Yes
Kepler 264 Kepler 264-c 140.101261 No
Kepler 356 Kepler 356-b 13.1216 Yes
Kepler 356 Kepler 356-c 4.6127 No
Kepler 454 Kepler 454-b 10.5738 Yes
Kepler 454 Kepler 454-c 523.90 No
Kepler 235 Kepler 235-b 3.340 Yes
Kepler 235 Kepler 235-c 7.824 No
Kepler 235 Kepler 235-d 20.0605 Yes
Kepler 235 Kepler 235-e 46.1836 Yes

Figure 17: Five stars orbited by known exoplanets and whether their period or an integer fraction thereof was
in the 20 periods with strongest change in mean according to CAPA.
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