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Abstract  14 

There are a large number of investigations that estimate available soil phosphorous (P), 15 

but a paucity of global data on available soil P. One significant modern challenge is developing 16 

low cost, accurate approaches to predict available soil P that are useful to scientists around the 17 

world. We conducted a global meta-analysis using data on available soil P from 738 sites, 640 in 18 

the USA and 149 in 14 other countries. Four different methods of determining available soil P, 19 

New Zealand (NZ), acid oxalate, Bray and Mehlich 3 were represented in the dataset. Inputs 20 

evaluated for inclusion in the pedotransfer functions to predict available soil P were clay (C), fine 21 

silt, (FSi) coarse silt (CSi), very fine sand (VFS), fine sand (FS), medium sand (MS), coarse sand (CS), 22 

very coarse sand (VCS), organic carbon (OC), pH, calcium (Ca), magnesium (Mg), potassium (K), 23 
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iron (Fe), aluminum (Al), and manganese (Mn). Available soil P was estimated for: 1) the entire 24 

dataset, 2) only the USA, and 3) the non-USA dataset. The best models to estimate available soil 25 

P were obtained for the NZ method (using the co-variates C, FSi, CSi, VFS, MS, CS, OC, Fe, Al, Mn, 26 

Ca, Mg, and pH) and for the acid oxalate method (using the co-variates C, FSi, Fe, Al, Mn, Ca, and 27 

Mg). Although estimation of available soil P determined with the acid oxalate method was poor 28 

for the entire dataset, good estimates were obtained for the USA and non-USA datasets 29 

separately. Models for the Bray and Mehlich 3 methods only predicted available soil P well for 30 

the non-USA dataset. Using pedotransfer function models to estimate available soil P could 31 

provide an efficient and cost effective way to estimate global distributions of a soil property that 32 

is important for a number of agricultural and environmental reasons. 33 

 34 
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 36 

1. Introduction 37 

Soil phosphorus (P) is essential to living organisms and often a limiting factor for plant 38 

growth and biomass production in forests, grasslands, and croplands (Trichet et al., 2009; Smith 39 

et al., 2015). It is also a limiting element for algal growth, thus contributing to eutrophication and 40 

subsequent effects on ecosystem services associated with freshwater (Carpenter et al., 2008). 41 

Soil P is among the most limited nutrients in the soil system because much of it is in forms 42 

that are not available to plants. This has resulted in the soil P cycle being strongly affected by 43 

human management and land use, especially in agricultural areas where P has been used 44 

intensively to fertilize the soils in industrialized agricultural systems to boost the availability of P 45 
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to crops (Bryant et al., 2006). The use of P fertilizers has resulted in large soil P surpluses in 46 

countries such as China, India, and the United States (West et al., 2014) as well as parts of Europe 47 

(Lemercier et al., 2008, Follain et al., 2009), creating a risk of ecosystem contamination. 48 

Moreover, P is indispensable in physiological and biochemical processes (Simpson et al., 2011). 49 

Hence, the availability of P controls the growth and development of crops (Wyngaard et al., 50 

2016).  51 

In soils, P is derived mainly from weathering of the primary mineral apatite (Zhou et al., 52 

2018) and the addition of inorganic and organic fertilizer. Total P content is high in most soils, 53 

however, only a small portion (about 13%; Sayers et al., 2008) is available for agricultural plants 54 

and microorganisms, because most P is bound strongly in soil particles and incompletely 55 

weathered material or is occluded as a secondary mineral. It is estimated that worldwide soil P 56 

content (0-50 cm) is 3.6±3 Pg in labile form, 8.6±6 Pg in organic form, 12.2±8 Pg in occluded form, 57 

and 3.2±2 Pg in secondary pools (Yang et al., 2013). The average total P in soils ranges from 200 58 

mg/kg in older/highly weathered soils to 800 mg/kg in younger/less developed soils (Ijaz et al., 59 

2017); the average amount of organic P in soils ranges between 30% and 65% of the total P 60 

(Condron and Tiessen, 2005). The concentration of P in the soil solution is influenced by 61 

interactions between physical, chemical and biological processes (Hinsinger, 2013; Messiga et al., 62 

2015). P adsorption and desorption are complex processes that depend on the charge 63 

characteristics of the mineral and organic surfaces and the concentration and forms of P in the 64 

soil solution (Haygarth et al. 2005). These processes are highly pH dependent, as this alters both 65 

the characteristics of the phosphate ions in solution and the charge characteristics of the soil 66 

surfaces. In soils with high aluminum (Al) and iron (Fe) oxide contents P may be strongly bound 67 
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to mineral surfaces. However, in soils rich in carbonates (CaCO3) both surface reactions between 68 

P and precipitation of P-CaCO3 compounds occur (von Wandruszka, 2006) and various Ca-69 

phosphate minerals form (Beauchemin et al., 2003), making the P unavailable to plants (Haygarth 70 

et al., 2013).  71 

Since P is often a limiting soil factor for plant growth and excess P can have negative 72 

impacts on the environment, better ways to estimate soil P levels and spatial distribution would 73 

be useful to help scientists and stakeholders manage this important element, especially in 74 

developing nations (Borggaard et al., 2004, Krause et al., 2016). This latter point is extremely 75 

important because of the lack of resources to conduct frequent and thorough soil 76 

characterizations in these areas (Khaledian et al., 2017a, b). One option for estimating available 77 

soil P contents is to use pedotransfer functions. These consist of equations or sets of equations 78 

that allow the value of a soil property to be estimated from other properties that can be 79 

determined with simpler, faster, more efficient and/or less expensive techniques or that is 80 

already available due to previous work. Pedotransfer functions have usually been developed 81 

from multiple linear regression (MLR) models. Recently some functions have been developed 82 

using genetic algorithms (GA) to optimize the coefficients that may have been utilized in MLR 83 

(Hosseini et al., 2016; Khaledian et al., 2017a).  84 

There have been previous attempts to develop pedotransfer functions related to available 85 

soil P, however, these have been limited in their geographic extent. Kleinman et al. (1999) 86 

developed a pedotransfer function to estimate available soil P using 59 soil samples in the USA 87 

and achieved R2=0.91 for multivariate pedotransfer functions containing Al, Fe, soil organic 88 

matter, and pH as input variables. Likewise, researchers in the UK (Withers et al., 2017, R2 from 89 
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0.64-0.87), Brazil (Valadares et al., 2017b, R2 = 0.73 and 0.94), Scandinavia (Mundus et al., 2017, 90 

R2 ranged from 0.46 to 0.83 using a Mitscherlich equation) and Iran (Seilsepour et al., 2008, 91 

R2=0.92; Keshavarzi et al., 2016, R2= 0.61 for training set and R2= 0.50 for testing set; Hosseini et 92 

al., 2017, R2 from 0.77-0.91) estimated available soil P based on several soil properties. However, 93 

in each of these studies the samples came from a limited geographic distribution and focused on 94 

a single available soil P test. Other studies involving pedotransfer functions for P-related issues 95 

have focused on soil phosphate adsorption capacity (Borggaard et al., 2004), available phosphate 96 

ions (Achat et al., 2011), phosphate adsorption-desorption curves (Peña and Torrent, 1990; 97 

Scheinost and Schwertmann, 1995), P mobilization (Borda et al. 2010), or remaining P (Cagliari et 98 

al., 2011). With the exception of Borggaard et al. (2004), which included a wide geographic range 99 

of samples (Canada, Denmark, Ghana, and Tanzania), these were all local (field scale) or regional 100 

(single country or a portion of a country) studies. 101 

In this paper we aim 1) to provide the first pedotransfer functions for the global estimation of 102 

available soil P, utilising a dataset that consisted of available soil P from world-wide locations and 103 

2) to evaluate pedotransfer functions for multiple soil P tests for the global data and national 104 

data sets from the global, USA, and non-USA locations.  105 

 106 

2. Materials and Methods 107 

2.1. Data Collection 108 

We collected data using the USA Natural Resources Conservation Services (NRCS) and 109 

National Cooperative Soil Survey (NCSS) database (http://ncsslabdatamart.sc.egov.usda.gov/) 110 

targeting the collection of data generated between 2000 and 2014. This process resulted in 738 111 

http://ncsslabdatamart.sc.egov.usda.gov/
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available soil P samples, 640 in the USA and 149 in other nations; Afghanistan, Canada, Chile, 112 

China, Costa Rica, Denmark, Ghana, Guatemala, Mongolia, Nigeria, Poland, Puerto Rico, Russia 113 

and Spain (14 countries) (Figure 1).  114 

The following information was available for each sampling point: clay (C), fine silt (FSi), 115 

coarse silt (CSi), very fine sand (VFS), fine sand (FS), medium sand (MS), coarse sand (CS), very 116 

coarse sand (VCS), organic carbon (OC), pH, calcium (Ca), magnesium (Mg), potassium (K), Fe, Al, 117 

and manganese (Mn). Soil texture was determined with sieve and pipette (NRCS analysis code 118 

3A1a). Soil OC was measured with acid dichromate digestion and FeSO4 titration (analysis code 119 

6A1c). Soil pH was determined using a 1:1 water to soil ratio (analysis code 4C1a2a). Fe, Al, and 120 

Mn were determined with ammonium oxalate extraction (analysis codes 6C9b, 6G12b, and 6D5b, 121 

respectively). Ca, Mg, and K were determined as NH4OAC extractable bases (analysis codes 6N2e, 122 

6O2d, and 6Q2b, respectively). Four different approaches for determining available P were 123 

investigated, the New Zealand (NZ) (analysis code 6S4), acid oxalate (analysis code 4G2), Bray 124 

(analysis code 4D3a1) and Mehlich 3 (analysis code 4D6a1) methods.  125 

Prior to data analysis, observations were grouped into categories depending on their 126 

location. Owing to the large number of potential variables being evaluated to create the 127 

pedotransfer functions, particular attention was given to determining variables that were related 128 

to available soil P. Therefore, before obtaining the pedotransfer formula, we omitted the 129 

variables that did not have a significant effect on estimation of soil P using a stepwise regression 130 

model.  131 

 132 

2.2. Statistical Methods - Data analysis. 133 
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After selecting the variables that most influenced the prediction of available soil P, we tested 134 

the fit of linear (y = ax + c) and nonlinear quadratic regression (y = ax² + bx + c) formulas for 1) 135 

the entire dataset, 2) the USA, and 3) the other countries (14 countries). Following that, the 136 

formulas were optimized by genetic algorithms, and finally the fitted graphs prepared by test 137 

samples. All analysis was performed using XLSTAT publisher (Data Analysis for Microsoft Excel, 138 

Addinsoft, Paris, France)  139 

Genetic algorithms solve complex optimization issues based on natural genetics; see 140 

Holland (1975) for details and Cropper and Comerford (2005) and Johari et al. (2010) for soil 141 

science applications. The algorithm used included three basic operators: the selection, crossover 142 

and mutation (Cieniawski et al., 1995) (Figure 2). Genetic algorithms are based on the concept of 143 

evolution by natural selection as solutions are evolved in a stochastic, iterative manner. The 144 

algorithm procedure consists of the following steps (Nelson and Odeh, 2009): 1. Start at initial 145 

time (t= 0); 2. Initialize a population of individuals (rules) P(t); 3. Evaluate the fitness of each 146 

individual by evaluating how well a rule predicts the distribution using a random subset of 147 

observations (training dataset) and save the best individuals in a rule archive; 4. Test against 148 

fitness criterion and terminate this rule archive if the criterion is met; otherwise 5. Increase time 149 

counter; 6. Create a new set of individuals using the rule archive and random generators; 7. Apply 150 

heuristic operators to population; 8. Go back to 3. 151 

For all methods and datasets about 70% of the data was randomly selected to train the 152 

models and the remaining data (around 30%) was used as a validation dataset. The one exception 153 

was the data for the other countries determined with the Mehlich 3 method, which only had 12 154 

samples. Therefore, the entire other countries Mehlich 3 dataset was used for full-cross 155 
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validation in this one instance. Finally, in order to find the influential variables in different 156 

subsets, the correlation (Pearson) of variables was considered. Significant differences were 157 

considered at a p<0.05.  158 

 159 

3. Results 160 

To find the best regression model(s) to predict soil P by different extraction methods, six 161 

regression equations (linear and non-linear equations) were evaluated for all datasets. Table 1 162 

gives the values of the fit indictors with the pedotransfer formulas. The NZ method had promising 163 

R2 and RMSE values for all evaluated datasets (Table 1); however, a more accurate model was 164 

produced for the USA than for the entire dataset and the other locations’ data (Table 1). The 165 

formulas for linear regression in Table 1 indicate that when predicting available soil P around the 166 

globe, the importance of Al, Fe and Mn should be considered, because higher R2 and RMSE values 167 

were achieved when including them. The most influential variables in the nonlinear and linear 168 

regression is Al (Table 2). In the USA, Al and Fe played influential roles in estimating available soil 169 

P, while including Mn in the regression achieved higher coefficients in the other nations’ 170 

equations. The R2 values for all nonlinear models in the three datasets (R2=0.78, 0.82 and 0.84 171 

for the entire dataset, the USA, and the other nations, respectively) were better than for the 172 

linear models, but the linear regression for the USA was also promising (R2= 0.77). 173 

The acid oxalate method had higher R2 and lower RMSE values for the linear regressions 174 

for the entire dataset and the USA locations, and for both the linear and nonlinear regressions 175 

for the other country locations. However, R2 and RMSE values for the non-linear regression were 176 

not significant for the USA dataset (Table 1). Al played an important role in predicting available 177 
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soil P in almost all the formulas. The importance of Ca, Al and Mn in the entire dataset and Ca, 178 

Mg and Al in other parts of the world is clear (Table 1, 2). The nonlinear and linear models 179 

(R2=0.62 and 0.85) for other countries and the linear (R2=0.60) and nonlinear (R2=0.42) models 180 

for the USA showed promising results, but the entire dataset models did not. Linear regression 181 

models estimated available soil P better than the nonlinear regression models for the entire 182 

dataset (Table 1). Nevertheless, accuracy indicators (R2 and RMSE, Table 1) showed that the input 183 

variables could not adequately predict available soil P using the entire dataset.  184 

Results from the Bray and Mehlich 3 methods showed that apart from the USA dataset 185 

for the Mehlich 3 method and the other country locations for the Bray method, the R2 and RMSE 186 

values for the other regressions were not promising (Table 1, 2). 187 

 188 

4. Discussion 189 

Compared to previous work, the study has considered samples from a wide geographic 190 

distribution. The fact that available P across a wide range of soil and environmental settings could 191 

be predicted using a number of relatively stable soil properties, such as sand, silt, and clay, along 192 

with other soil properties that could potentially change over shorter time periods, such as pH, 193 

extractable Ca, and total organic carbon provides the opportunity to make rapid regional and 194 

global assessments of P availability, something that is of use to both agricultural and 195 

environmental planners. Although different methods have been developed to test for available 196 

soil P, often because of the different soil conditions and properties that are encountered and 197 

different crops that are produced in various parts of the world, relationships with good predictive 198 
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ability were developed for both the NZ and acid oxalate available P methods. However, 199 

relationships for the Mehlich 3 test were poorer.  200 

The pedotransfer functions allowed identification of the key variables controlling P 201 

availability for large scale assessments. Except for the Bray method, at least one of Al, Fe, and 202 

Mn were used in all the pedotransfer functions to predict available soil P (Table 1),  indicating the 203 

importance of these variables. Available soil P is known to be closely related to the concentration 204 

of Fe and Al (Vincent et al., 2012; Seguel et al., 2015) as Al and Fe oxides are the main phosphate 205 

adsorbents in soils (Borggaard, 1990, 2002). Borggaard et al. (2004) found close relationships 206 

between amounts of adsorbed phosphate and soil contents of some forms of Al and Fe and 207 

created pedotransfer functions for predicting adsorbed phosphate from Al and Fe oxide contents 208 

that were quantified by selective extractions. The relationship between available soil P and Fe 209 

was weaker in this study than for Al, agreeing with the findings of Karlsson et al. (2008) and 210 

Turner et al. (2003).  211 

Soil texture is another important factor for predicting available soil P in the pedotransfer 212 

functions (Table 1). Texture can substantially affect the chemical characteristics of soil, including 213 

the formation of stable P-Al-organic matter bonds and P leaching from soil (Negassa and 214 

Leinweber, 2009; Sugihara et al., 2012), which in turn is linked to plant available P. The influence 215 

of fine particles such as C, FSi and CSi were important in all pedotransfer functions except those 216 

for the Mehlich 3 method (Table 1). Clay content was significantly correlated to P in almost all 217 

the models, as P can be adsorbed on the surfaces of clay minerals (Shen et al., 2011; Ulén and 218 

Snäll, 2007). Clay mineralogy is also important for determining the P-sorption capability of clays. 219 

Clay minerology was not a variable investigated in this study and represents a potential direction 220 
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of future research. For the Mehlich 3 method, coarse soil texture components, such as CS, VCS 221 

and CSi were important in the prediction equations for the USA dataset. This may be because soil 222 

texture is important in determining P leaching from soils through its influence on soil hydrology 223 

(Negassa and Leinweber, 2009). 224 

The importance of Ca and Mg in the entire dataset and in other parts of the world for the 225 

acid oxalate method is interesting, given that the acid oxalate method is typically used in acidic 226 

soils. This could be because the acid oxalate method causes excessive solubilization of non-labile 227 

P pools, (Six et al., 2012; Valadares et al., 2017a), as e.g. Ca-P, therefore Ca shows amongst the 228 

predictor variables because Ca from Ca-P is being released into solution. Mg is probably a 229 

predictor variable given that Ca and Mg have similar chemical behavior in soils (Havlin et al., 230 

2005). 231 

In our study soil OC was used in the pedotranfer functions for all available soil P methods, 232 

except for the acid oxalate method. Soil OC can influence available soil P by providing binding 233 

sites (Kang et al., 2009), and the transformation of organic P strongly influences overall P 234 

bioavailability in soils (Shen et al., 2011). Yang et al. (2013) note that organic P is a major part of 235 

the global soil P pool. 236 

It is clear that agricultural practices will have a significant influence over available P and, 237 

as we have not included them as variables in our work, will be one of the major sources of 238 

uncertainty in the study. Given that fertilizer application accounts for 42 % of total P inputs to 239 

agricultural ecosystems, or 25 % of total plant P uptake in fertilized soils (Wang et al., 2010), 240 

fertilizer inputs of P are likely to account for a meaningful amount of the variation not explained 241 

by the pedotransfer models presented here. Therefore future attempts to develop available P 242 
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pedotransfer functions may benefit from finding a way to account for fertilizer inputs. Our 243 

pedotransfer functions also did not incorporate crops, something that represents a limitation for 244 

the equations. 245 

 246 

5. Conclusions 247 

This research fills a clear gap in our ability to estimate available soil P at a global scale. 248 

Pedotransfer functions were developed for the common available soil P tests for global datasets 249 

Non-linear functions provided the best predictions of available soil P for global and non-global 250 

datasets. Including fertilizer and soil management practices may improve these predictions 251 

further. 252 

Our work has demonstrated that the development of pedotransfer functions for available 253 

soil P over large areas using routinely collected soil survey data is possible. This could help 254 

address issues such as food security by providing initial estimates of soil fertility and global 255 

environmental concerns related to available soil P.   256 

 257 
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Figure 1. The location of sites that supplied data for this study. 
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Figure 2. A flowchart showing how genetic algorithms function. 
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Table 1. Performance indices for each model (R2, RMSE, regression method and P Value) with their equations.  

Methods Locations 
Training 

Set 

Validation 

Set 

Range Regression 

method 
R2 RMSE P-value Equation 

NZ 

The Whole World 129 55 96.0 

Linear 0.69 14.59 0.00 

NZ = 66.73+3.83E-02*CSi-0.73*VFS-

0.11*CS+8.93*Fe+37.30*Al+1.58E-

02*MN+0.16*Ca-4.29E-02*Mg-7.44*pH 

Non-Linear 0.78 13.42 0.00 

NZ = 61.86+1.55*CSi-2.31*VFS-

37.26*Fe+91.39*Al+1.71E-02*Mn-

0.40*Ca+0.36*Mg-7.34*pH-3.67E-

02*CSi^2+5.46E-02*VFS^2+17.11*Fe^2-

23.05*Al^2+1.78E-07*Mn^2+5.92E-

03*Ca^2-3.50E-03*Mg^2+0.15*pH^2 

The USA 

95 40 96.0 

Linear 0.77 12.84 0.00 
NZ = 20.64+0.13*C-0.67*VFS+0.43*MS-

0.68*CS+0.37*OC+15.14*Fe+39.66*Al 

Alaska, California, Idaho, Maine, Massachusetts, 

Michigan, Minnesota, Montana, Nebraska, New 

Hampshire, New York, Oregon, Texas, Utah, Vermont, 

Washington and Wisconsin 

Non-Linear 0.82 11.48 0.00 

NZ = 44.13+6.29E-02*C-

4.48*VFS+1.12*MS-1.29*CS+2.021*OC-

3.91*Fe+75.10*Al-3.54E-

03*C^2+0.12*VFS^2-2.24E-

02*MS^2+2.77E-02*CS^2-3.867E-

02*OC^2+3.96*Fe^2-19.45*Al^2 

The Other Locations 

34 15 92.0 

Linear 0.79 13.36 0.00 
NZ = 96.69+6.41E-02*C+0.62*FSi-

0.13*MS+1.63E-02*MN-12.91*pH 

Chile, Costa Rica, Denmark, Guatemala, Nigeria, 

Puerto Rico and Russia 
Non-Linear 0.84 14.05 0.00 

NZ = -5.45+1.12*C-

1.37*FSi+0.43*MS+0.03*Mn+18.80*pH-

9.20E-03*C^2+3.04E-02*FSi^2-1.14E-

02*MS^2-1.81E-06*Mn^2-2.53*pH^2 

Acid 

Oxalate 

The Whole World 

236 102 1195.6 

Linear 0.40 165.50 0.00 

Acid Oxal = 263.56-3.43*C-

4.77*FSi+119.24*Fe+220.28*Al+5.07E-

02*Mn 

Non-Linear 0.39 185.30 0.00 

Acid Oxal = 59.74-

2.18*C+5.03*FSi+198.87*Fe+568.73*Al+

1.86E-02*Mn-1.09E-02*C^2-5.38E-

02*FSi^2-38.46*Fe^2-

232.38*Al^2+5.79E-06*Mn^2 

The USA 

214 91 5825.8 

Linear 0.60 561.64 0.92 

Acid Oxal = -96.20-

5.12*C+6.21*FSi+914.60*Al+0.23*Mn+4

.77*Ca 
Alabama, Alaska, California, Colorado, Connecticut, 

Delaware, Florida, Georgia, Hawaii, Idaho, Illinois, 
Non-Linear 0.42 296.78 0.92 

Acid Oxal = -50.03-

6.32*C+5.52*FSi+1063.51*Al+0.42*Mn+
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Indiana, Iowa, Maine, Maryland, Massachusetts, 

Michigan, Minnesota, Mississippi, Montana, Nebraska, 

Nevada, New Hampshire, New Jersey, New Mexico, 

New York, North Carolina, North Dakota, Ohio, 

Oklahoma, Oregon, Pennsylvania, South Carolina, 

South Dakota, Tennessee, Texas, Utah, Vermont, 

Virginia, Washington, West Virginia, Wisconsin and 

Wyoming 

3.11*Ca+3.44E-02*C^2-4.62E-02*FSi^2-

463.31*Al^2-4.60E-05*Mn^2+6.92E-

03*Ca^2 

The Other Locations 
28 12 705.1 

Linear 0.62 110.20 0.00 
Acid Oxal = 39.19-

4.80*C+1175.29*Al+8.33*Ca-4.08*Mg 

Chile, China, Costa Rica, Denmark, Ghana, Guatemala, 

Poland and Puerto Rico 
Non-Linear 0.85 91.40 0.00 

Acid Oxal = 33.46-

2.26*C+1276.51*Al+7.39*Ca+1.46*Mg-

3.52E-02*C^2-112.11*Al^2-4.10E-

02*Ca^2-4.01E-02*Mg^2 

Bray 

The Whole World 

101 43 91.9 

Linear 0.27 19.70 0.00 

Bray1 = 22.52+1.71E-03*C+7.90E-

02*FSi+0.12*CSi+0.68*FS+0.72*CS+2.19

*OC-5.10*pH 

Non-Linear 0.31 19.00 0.00 

Bray1 = 98.09-1.04*C-0.60*FSi-

0.40*CSi+1.25*OC-16.99*pH+9.84E-

03*C^2+1.01E-02*FSi^2+6.45E-

03*CSi^2+6.43E-02*OC^2+1.00*pH^2 
The USA 68 28 72.3 Linear 0.00 9.62 0.00 Bray1 = 42.02-5.78*pH 
Alaska, Delaware, Hawaii, Illinois, Louisiana, Montana, 

North Carolina, Oklahoma, Pennsylvania, South 

Dakota, Tennessee, Vermont and Virginia 

Non-Linear 0.28 12.42 0.00 Bray1 = 124.16-35.31*pH+2.56*pH^2 

The Other Locations 

34 14 91.9 

Linear 0.64 18.74 0.09 

Bray1 = 131.27-0.70*C-0.29*FSi-

1.27*CSi+1.27*VCS+2.40*OC+3.96*Mg-

17.63*pH 

Canada, Ghana, Nigeria, Poland, Costa Rica and 

Guatemala 
Non-Linear 0.89 12.35 0.09 

Bray1 = 779.56-2.02*C+4.11*FSi-

3.51*CSi+2.48*VCS+25.30*OC-

21.12*Mg-247.63*pH+1.37E-02*C^2-

9.95E-02*FSi^2+0.13*CSi^2-3.76E-

02*VCS^2-

5.64*OC^2+0.75*Mg^2+19.69*pH^2 

Mehlich 

The Whole World 

83 35 86.1 
Linear 0.23 24.75 0.00 

Mehlich = 12.09-32.35*Al-

0.41*Ca+24.58*K 

Non-Linear 0.44 17.40 0.00 

Mehlich = 2.92+9.06*Al+1.89*Ca-

5.35*K-20.02*Al^2-4.45E-

02*Ca^2+11.57*K^2 

The USA 
74 31 86.1 

Linear 0.63 19.06 0.044 
Mehlich = -8.60+0.77*CSi+1.63*CS-

1.49*VCS-1.15*OC-2.14*Mg+21.96*K 
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California, Connecticut, Delaware, Iowa, Kansas, 

Michigan, Mississippi, Nevada, New Mexico, North 

Dakota, Oregon, Vermont, West Virginia and Wyoming 

Non-Linear 0.62 13.29 0.044 

Mehlich = -0.17-3.77E-02*CSi+1.46*CS-

1.89*VCS+0.18*OC-

3.82*Mg+40.47*K+0.02*CSi^2+2.48E-

02*CS^2-1.58E-02*VCS^2-

0.07*OC^2+4.30E-02*Mg^2-7.169*K^2 
The Other Locations 12 - 76.6 Linear 0.36 23.76 0.044 Mehlich = 44.99-41.36*Al 
Costa Rica and Poland Non-Linear 0.38 24.70 0.044 Mehlich = 49.93-79.664*Al+30.46*Al^2 

Note: clay (C), fine silt (FSi), coarse silt (CSi), very fine sand (VFS), fine sand (FS), medium sand (MS), coarse sand (CS), very coarse sand (VCS), total organic carbon (OC), extractable iron (Fe), 

extractable aluminum (Al), extractable manganese (Mn), extractable calcium (Ca), extractable magnesium (Mg) and extractable potassium (K) 
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Table 2. Correlation (Pearson) between soil co-variates and extraction methods for different datasets. Significant differences are indicated as p < 0.05* 

and p <0.01**. ns, not significant   

Methods Locations C FSi CSi VFS FS MS CS VCS OC PH Ca Mg K Fe Al Mn 
NZ The Whole 

World 
- - 0.04ns -0.06ns - - -0.08ns - - -0.39** -0.18** -0.22** - 0.61** 0.72** 0.30** 

The USA -0.07ns - - -0.07ns - 0.03ns 0.03ns - 0.36** - - - - 0.68** 0.81** - 

The Other 
Locations 

0.35** 0.60** - - - -0.35** - - - -0.45** - - - - - 0.61** 

Acid 
Oxalate 

 

The Whole 
World 

-0.12* 0.27** - - - - - - - - 
 

- - 0.47** 0.46** 0.20** 

The USA -0.03ns 0.22** - - - - - - - - 0.08ns - - - 0.57** 0.43** 

The Other 
Locations 

-0.23ns - - - - - - - - - 0.21ns 0.05ns 
 

- 0.66** - 

Bray The Whole 
World 

-0.22** -0.23** -0.27** - 0.36** - 0.17* 
 

0.13ns -0.20* - - - - - - 

The USA - - - - - - - - - -0.34** - - - - - - 

The Other 
Locations 

-0.42** -0.31* -0.28* - - - - 0.09 ns 0.20ns -0.22ns - -0.09ns - - - - 

Mehlich The Whole 
World 

- - 
 

- - - - - - - 0.28** 
 

0.43** - -0.11ns - 

The USA - - 0.26** - - - 0.06ns -0.03ns -0.03ns - - 0.13ns 0.56** - - - 

The Other 
Locations 

- - - - - - - - - - - - - - -0.60* - 

 

Note: clay (C), fine silt (FSi), coarse silt (CSi), very fine sand (VFS), fine sand (FS), medium sand (MS), coarse sand (CS), very coarse sand (VCS), total organic carbon (OC), extractable iron (Fe), 

extractable aluminum (Al), extractable manganese (Mn), extractable calcium (Ca), extractable magnesium (Mg) and extractable potassium (K) 

 

 

 


