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Abstract—The robotic platform in this study is being used
for research into assisted tele-operation for common nuclear
decommissioning tasks, such as remote pipe cutting. It has dual,
seven-function, hydraulically actuated manipulators mounted on
a mobile base unit. For the new visual servoing system, the
user selects an object from an on-screen image, whilst the
computer control system determines the required position and
orientation of the manipulators; and controls the joint angles for
one of these to grasp the pipe and the second to position for
a cut. Preliminary testing shows that the new system reduces
task completion time for both inexperienced and experienced
operators, in comparison to tele-operation. In a second contri-
bution, a novel state-dependent parameter (SDP) control system
is developed, for improved resolved motion of the manipulators.
Compared to earlier SDP analysis of the same device, which
used a rather ad hoc scaling method to address the dead-zone,
a state-dependent gain is used to implement inverse dead-zone
control. The new approach integrates input signal calibration,
system identification and nonlinear control design, allowing for
straightforward recalibration when the dynamic characteristics
have changed or the actuators have deteriorated due to age.

I. INTRODUCTION

The need for nuclear decommissioning is increasing glob-
ally. Following the Fukushima disaster in 2011, Japan is clos-
ing most of its 54 reactors. In Europe, more than 50 reactors
are being closed in the next 10 years. Nuclear installations
have materials that present various radioactive and chemical
hazards; their architecture is often complex; and they were
not necessarily designed with the decommissioning problem
in mind. Hence, improved robotic operations are essential
for safety and efficiency, notably for access to areas of high
radiation where it is dangerous for human workers.

However, full autonomy of robotic systems is undesirable
due to the high-risk environment. Increased automation yields
complex interactions with the user and a reduction in situ-
ational awareness [1]. In fact, most robotic systems in the
nuclear sector are directly teleoperated, as originally was the
case for the robotic platform considered in the present article.
Here, two seven-function, hydraulically actuated manipulators
have been mounted on a mobile BROKK base unit [2].

Achieving accurate movement of such manipulators is a
challenge, even following lengthy training and practice. As
a result, many methods other than joystick control exist in the
literature. These include master-slave systems [3] and devices
that track user arm movement [4]. Various graphical interfaces
are also possible, such as systems in which an operator uses
a mouse to control a 6 degree–of–freedom (DOF) ring and

arrow marker to set end-effector position and orientation on
screen [5]. Such systems are only possible when the work
environment is already well-known, or where multiple fixed
sensors can combine to give detailed scene information.

Control methods that add a level of automation above
direct teleoperation are often termed assisted teleoperation [6].
However, as the level of assistance increases, the requirement
for scene information is also increased. Multiple stereo or 3D
cameras are often used, placed in different fixed positions to
observe the work environment from different angles. Unfor-
tunately, a multiple camera approach is not always practical
in a nuclear decommissioning context. In a nuclear envi-
ronment, electronics are easily damaged by radiation, hence
it is preferable to reduce the number of sensors and other
electronics, creating restrictions that need to be considered
when developing assisted teleoperation [7]. The fact that the
present BROKK system is necessarily mobile (via caterpillar
tracks) adds further constraints to the available data.

Although prevalent in many other industries, vision systems
are rare in the nuclear industry, except for those used simply
to allow for remote teleoperation. In one recent example, a
monocular vision system is used to control a manipulator to
fasten bolts onto a sealing plate for a steam generator [8]. The
robot operates by having a camera locate bolts around the
plate and subsequently moving to fasten these to a set torque
value. However, the system is limited in that it only looks for
hexagonal bolts on a specially designed, bespoke plate.

Hence, the aim of the present research is to reduce the
operator’s workload, speeding up task execution and reducing
operator-training time, whilst minimizing the introduction of
additional sensors and other components. As pointed out by
Katz et al. [9], the challenges associated with unstructured
environments are a consequence of the high-dimension of
the problem, including robotic perception of the environment,
motion planning and manipulation, and human-robot interac-
tions. Due to limited sensor data availability, a system that can
grasp generic objects, for example, could be unreliable. As a
result, the developed visual servoing approach is based on the
concept of multiple subsystems for common tasks under one
user interface: one subsystem for pipe cutting, one for pick
and place operations, and so on. This approach reduces the
complexity of the problem, potentially leading to improved
performance and reliability. Furthermore, cognitive workload
is generally reduced by tailoring the information shown to the
operator to one particular (decommissioning) task at a time.



This article focuses on pipe cutting as an illustration of the
generic approach, since this is a common repetitive task in
nuclear decommissioning. The user selects the object to be
cut from an on-screen image with a mouse click, whilst the
computer control system determines the required position and
orientation of the manipulators in 3D space, and calculates
the necessary joint angles i.e. for one manipulator to grasp
and stabilise the selected object and the other to position
for a cutting operation. The approach is similar to Kent et
al. [10], who use a single manipulator with two 3D cameras.
By contrast, we have dual manipulators on a mobile platform,
and use a single camera. Marturi et al. [7] discuss some of
the challenges involved in a nuclear context, and the results
of a related pilot study. In all these cases, it is clear that, to
improve task execution speed and accuracy, high performance
control of nonlinear manipulator dynamics is required.

In this regard, conventional identification methods for
robotic systems include, for example, maximum likeli-
hood [11], Kalman filtering [12] and inverse dynamic iden-
tification model with least squares (IDIM-LS) [13]. Refined
Instrumental Variable (RIV) algorithms [14] are also used,
sometimes in combination with State-Dependent Parameter
(SDP) [2] and inverse dynamic models [15]. SDP models are
estimated from data within a stochastic state-space framework
and take a similar structural form to linear parameter-varying
systems [16]. The parameters of SDP models are functionally
dependent on measured variables, such as joint angles and
velocities in the case of manipulators. Such models have
been successfully used for control of a KOMATSU hydraulic
excavator [17], while [18] further demonstrates the advantages
of the SDP approach, in comparison to IDIM-LS methods.

In comparison to a typical machine driven by electric
motors, hydraulic actuators generally have higher loop gains
and lightly-damped, nonlinear dynamics [19]. The manipu-
lators used in the present research have been represented
using physically-based equations [20]. However, the present
article instead focuses on the identification of a relatively
straightforward SDP model. In contrast to earlier SDP control
of the same device [2], a new model structure is identified,
one that provides estimates of the dead-zone and angular
velocity saturation, in a similar manner to the friction analysis
of Janot et al. [18]. This model facilitates use of an Inverse
Dead-Zone (IDZ) [21] controller, which is combined with
conventional Proportional-Integral-Plus (PIP) methods [22]. In
contrast to reference [23], the present work considers resolved
motion, within the context of the vision system.

Section II briefly introduces the robotic platform, section III
describes the vision system and section IV the SDP control
methodology. This is followed by the experimental results and
conclusions in sections V and VI respectively.

II. ROBOTIC PLATFORM

The BROKK–40 consists of a moving vehicle, hydraulic
tank, remote control system and manipulator. The latter is
linked via a bespoke back-plate to two HYDROLEK–7W
manipulators (Fig. 1). The unit is electrically powered, with an

Fig. 1. BROKK–HYDROLEK (further images: https://tinyurl.com/yd3bvslo).

on-board hydraulic pump to power the caterpillar tracks and,
by means of hydraulic pistons, the manipulators. Each manip-
ulator has 6 DOF with a continuous jaw rotation mechanism.
The end-effectors can be equipped with a variety of tools, such
as hydraulic crushing jaws. The manipulator joints are fitted
with potentiometer feedback sensors, allowing the position of
the end-effector to be determined during operation [2].

An input device, such as a joystick, is connected to a
PC running a graphical user interface (GUI) developed by
the authors with National Instruments (NI) Labview software.
The PC transmits information to a NI Compact Fieldpoint
Real-Time controller (CFP) via an Ethernet connection. The
platform has some similarity to the Hitachi system [24]. The
Hitachi consists of two hydraulic manipulators on a tracked
vehicle. However, it is teleoperated with a rather complex
user interface. This complexity arises from the many cameras
and sensors on the Hitachi, as well as from the teleoperated
control system. By contrast, the assisted teleoperation system
developed below is designed to keep the user engaged and in
control at all times, whilst being as straightforward as possible.

III. VISION SYSTEM

The vision system is largely based on off–the–shelf com-
ponents and image processing algorithms, that have been
integrated and adapted for this application [25]. A Microsoft
Kinect is mounted between the two manipulators, giving a
view of the workspace directly to the front. Although orig-
inally developed for gaming applications, the Kinect is now
widely for robotics research. It couples a standard camera with
a structured light depth sensor, allowing both colour and depth
data to be used and combined. Placing the camera between
the manipulators provides an intuitive system for the human
operator. A live video stream is displayed on the GUI as the
mobile base unit is positioned and stabilised. The colour and
depth images are aligned and converted to grayscale. To reduce
the size of the image and computational complexity, as well
as to only present useful information to the operator, all areas
that are either out of reach of the system or that have no depth
data available, are removed. This leaves the image with only
the reachable objects (Fig. 2).



Fig. 2. Preliminary image processing: (a) original and (b) simplified image.

A. Edge Detection

Three copies of the image are created, each with a different
contrast level, adjusted via the GUI. Two copies are set using
sliders and the third is adjusted to a pre-set mid value. These
three images, together with the original, are forwarded to the
edge detection algorithm. Since the working environment is
likely to be poorly lit, this approach lessens the impact of
shadows and highlights, and is found to capture more detail
in practice (Fig. 3). The four images are passed through a
canny edge detection algorithm [26] in MATLAB. The canny
algorithm has been shown to perform better than other edge
detection algorithms in most situations, albeit at a relatively
high computational cost [27]. Reliable detection of solid edges
is a key requirement here. A third slider on the GUI determines
the sensitivity threshold, allowing for adjustments to which
edges are detected. The images are combined and the edges
dilated to improve clarity. The three sliders on the GUI update
the image in real-time, hence allowing the operator to make
adjustments, potentially removing superfluous edges or filling
in missing edges, without having to reposition the system.

B. Object Selection

An object is selected with a mouse. A colour screengrab
with the selected item highlighted is shown, providing visual
confirmation. In the case of a pipe, the user proceeds to click
on the point they determine the manipulator should grasp, and
then the location of the cutting operation. At this stage, the
selected positions for grasp and cut are snapped to the major
axis of the object i.e. the centre line of the pipe, determined
using the MATLAB Image Processing Toolbox. The cutter
path is perpendicular to the major axis, and also takes a pre-
set distance from the centreline. Hence, any orientation of pipe
can be addressed and, since depth data are available, the pipe
does not even have to be in one plane. To reduce the possibility
of collisions, and to help position the gripper in the target
orientation, the end-effector is first moved to a position in
front of the target; once it has reached a set error tolerance for
that position, it is moved to the final grasp position. Although
more sophisticated collision avoidance algorithms are available
in the literature, this pragmatic approach ensures that the end-
effector always moves directly forward onto the pipe to grasp
it, and is found to work very well in practice. Of course, the
operator retains the option to immediately return to full tele-
operation when the unexpected arises.

Fig. 3. Edge detection: (a) original and (b) combining four contrasts.

C. Real–Time Implementation

Target locations above refer to pixel coordinates and depth
values. However, to be used as Inverse Kinematics (IK) solver
arguments, these are converted into the manipulator coordinate
system. A trigonometric approach is taken. The number of
pixels in the Kinect image is 640×480, while the camera field
of view is 57◦ horizontal and 43◦ vertical. Using the angle and
the depth data, ‘real world’ coordinates relative to the camera
origin are determined. For the Kinect, points on a plane that
are parallel to the sensor have the same depth value and this
defines the trigonometric identity. At this stage, the coordinates
are relative to the camera centre. A translation is used to
convert these into a usable form [25]. No analytical IK solution
exists for this manipulator design, hence the present work
utilises the Jacobian transpose to determine target angles [28].
The algorithms behind the vision system are all implemented
in MATLAB. However, the interface to the robotic actuators
is via NI Labview, with these elements connected via TCP-
IP locally. This architecture would allow for the GUI to be
implemented on one PC and the Labview manipulator control
to be performed on another for remote operation. Finally, the
Labview control software moves the joints to the set points
provided by MATLAB, as discussed below.

IV. CONTROL SYSTEM

The SDP model is yk = wT
kpk, with SDP parameter vector,

pk = [a1 {χk} · · · an {χk} b1 {χk} · · · bm {χk}]T

and wT
k = [yk−1 · · · − yk−n vk−1 · · · vk−m]. Here vk and

yk are the input voltage and joint angle respectively, while
ai {χk} and bj {χk} are n and m state dependent parameters
i.e. functions of a non-minimal state vector χk. The hydraulic
manipulator model is identified in three stages:

Step 1. Open-loop step experiments using the manipulator
suggest that a first order linear difference equation, i.e.,

yk = −a1yk−1 + bτvk−τ (1)

provides an approximate representation of individual joints,
with the time delay τ depending on the sampling interval ∆t.

Step 2. The values of {a1, bτ} are not repeatable for
experiments with different input magnitudes. However, SDP
analysis of experimental data suggests that n = m = 1,
a1 = −1 is time invariant and bτ {χk} = bτ {vk−τ} is a
static nonlinear function [23].
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Fig. 4. Top left: state-dependent parameter plotted against input magnitude
(i.e. steady state voltage to NI-CFP, v∞), showing RIV estimates bτ for in-
dividual experiments (circles) and optimised SDP bτ {χk} (solid). Top right:
IDZ approximation, showing angular velocity qk (◦/∆tc, ∆tc = 0.05s)
against input i.e. bτ {χk}×v∞/∆tc (thin solid) and linearised model (thick
red trace); dead-zone and velocity limits are highlighted (dashed). Lower:
illustrative SDP model evaluation, showing yk(

◦) against time (s).
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Fig. 5. Schematic diagram of the control system, in which C, IDZ, SNL
and LD represent the (linear) Controller, Inverse Dead-Zone control element,
Static NonLinearity and Linear Dynamics, respectively.

Step 3. Finally, bτ {vk−τ} is parameterized, here using ex-
ponential functions for the nonlinearity. To illustrate using the
right hand side ‘shoulder’ joint, denoted J2, with ∆t = 0.01s
and τ = 15, RIV estimates bτ for step input experiments of
varying magnitudes are shown in Fig. 4, demonstrating the
clear state-dependency on the input. The mechanistic inter-
pretation is straightforward: using equation (1) with a1 = −1,
yields bτvk−τ = yk −yk−1 i.e. bτvk−τ represents a smoothed
estimate of the differenced sampled output and bτvk−τ/∆t
provides an estimate of the angular velocity, hence identifying
the dead-zone and velocity saturation limits. As a result,
denoting q {vk} = bτ {vk} × vk, the SDP model for J2 is,

yk = yk−1 + q {vk−τ} (2)

with constraints ymin < yk < ymax, where ymin = −13.8◦ and
ymax = 63.6◦ are hardware limits and,

q {vk} = (1− α1) e
α2(α3−vk) for vk < α3

q {vk} = 0 for α3 ≤ vk ≤ α6 (3)
q {vk} = (1− α4) e

α5(vk−α6) for vk > α6

For J2, α̂i = [−0.295, 1.356,−1.330, 0.389, 1.771, 1.312].
To obtain these estimates, experimental data are compared
with the model response and the mean sum of the least
squares output errors are used as the objective function for

fminsearch in MATLAB. Here, (α2, α5) are curve coefficients;
α1/∆t = −29.5◦/s and α4/∆t = 38.9◦/s provide minimum
and maximum angular velocity saturation limits; and α3 =
−1.33V to α6 = 1.31V is the dead-zone. These objective
estimates compare closely with equivalent values obtained
from extensive prior ad hoc experimental work.

Similar SDP model forms are identified for each joint
of both manipulators. In the case of Joints 1–3 (azimuth
yaw, shoulder pitch and elbow pitch), these yield satisfactory
evaluation results (Fig. 4), including for experiments involving
simultaneous movement of all joints. However, the two joints
closest to the end-effector (Joints 4–5: forearm roll and wrist
pitch), yield inconsistencies in the time-delay and this is the
subject of on-going research. For the present article, a slightly
different parameterisation is utilised for J4: see [25].

Fig. 5 shows the control system, in which dk is the desired
joint angle, uk is the PIP control input, vk is the voltage to the
NI-CPF computer, qk is the angular velocity and yk is the joint
angle. Whilst previous research has utilised the SDP model for
nonlinear pole assignment [2], the present article develops a
rather simpler IDZ approach. Selecting a control sampling rate
∆tc = 0.05s as a compromise between satisfactory reaction
times and a relatively low order control system, Fig. 4 shows
the linearised relationships for vk and qk in the range (i) vmin to
α̂3 and (ii) α̂6 to vmax in the negative and positive directions of
movement, respectively. For J2, vmin = −2.2 and vmax = 1.75,
selected since they yield an angular velocity ≈ 20◦/s in either
direction, and it seems unlikely that faster movement would be
desirable in practice. This approximation of the SNL element
of Fig. 5 is defined as follows (cf. equations (3)),

q {vk} = sn (vk − α̂3) for vk < α̂3

q {vk} = 0 for α̂3 ≤ uk ≤ α̂6 (4)
q {vk} = sp (vk − α̂6) for vk > α̂6

where sn = q {vmin} /(vmin − α̂3) and sp = q {vmax} /(vmax −
α̂6). Adapting from e.g. [21], the IDZ control element is,

vk = uk/sn + α̂3 for uk < −β

vk = 0 for − β ≤ uk ≤ β (5)
vk = uk/sp + α̂6 for uk > β

where β = 0.05 is a ‘chatter’ coefficient. Eqns. (5) aim to
cancel the dead-zone and allow use of linear control methods.
For J2 with ∆tc = 0.05, τ = 3 and hence, using standard
methods [22], based on the model (1) with b3 = −a1 = 1, the
PIP control algorithm takes the following incremental form,

uk = uk−1 − g1(uk−1 − uk−2)− g2(uk−2 − uk−3)

− f0(yk − yk−1) + kI(dk − yk) (6)

with constraints umin < uk < umax, in which umin = −2.5
and umax = 2.5 are introduced to avoid potential integral-
wind up problems, and the control gains g1, g2, f0 and kI
are determined by e.g. conventional Linear Quadratic (LQ)
optimisation. Finally, two standard implementation forms of
the PIP controller are investigated below, a feedback and
forward path form [22].



TABLE I
JOYSTICK TELEOPERATION AND VISION-BASED CONTROLLER, SHOWING

THE TIME (SECONDS) TO COMPLETE A GRASPING TASK.

Inexperienced operator Experienced operator
Teleoperation Visual servoing Teleoperation Visual servoing

122 31 57 20
Failed 22 64 21
148 27 68 20

V. RESULTS

A cardboard tube is used as the target pipe for the pre-
liminary experiments, so that if anything went wrong the
manipulators would knock it out of the way without causing
damage to the robot or laboratory. The operator selects the
tube, and the manipulator grasps and moves as though cutting
through it (presaging the use of appropriate laser cutting
tools in future research). Tests were successfully repeated
from various random starting positions. Since the new system
actuates all the joints in parallel, significantly faster task
completion times are acheived, in comparison to conventional
teleoperation via joystick control, as illustrated by Table I.
Here, an operator uses the joystick to grasp the tube three
times. The same user subsequently operates the new vision
system three times. An inexperienced user received just 15
minutes training with the joysticks, whilst an experienced user
was already familiar with the system. These initial tests are
clearly quite limited in scope. Nonetheless, the results provide
an indication of the potential for improved performance using
the developed approach, compared to the type of teleoperated
system presently used on nuclear sites.

With regard to the new control system, Table II compares
the feedback and forward path PIP-IDZ designs, together
with two pre-existing control systems, namely a linear PIP
controller and a PI algorithm that had been tuned by hand
to obtain a reasonable response for the preliminary vision
system testing. For the latter two cases, instead of IDZ control,
the dead-zone was addressed using a rather ac hoc input
scaling approach [2]. It is clear that the forward path PIP-IDZ
controller yields the best performance. Fig. 6 illustrates the
smooth, relatively fast closed-loop response of the joint angles
for this controller. It also demonstrates the accuracy of the SDP
simulation model. In this example, four manipulator joints are
simultaneously moved in the form of a sinusoid signal, where
the latter have been designed to approximately activate the
full robot joint space. The joint angles and input to the CFP
computer for the experimental data and SDP model are almost
visually indistinguishable in this example. It should be noted
that Table II is based on this type of sinusoid experiment (i.e.
simultaneous motion of four manipulator joints) but similar
results have also been obtained for various step changes in
the set point and for pipe grasp scenarios [25]. Finally, Fig. 7
shows an example of the manipulator moving to a target grasp
location. It shows small movements around the initial target
position, before proceeding to the final grasp. The time taken
to complete the movement shown in Fig. 7 is 5.4 seconds.

TABLE II
RESOLVED MOTION LABORATORY EXPERIMENTS, COMPARING PIP–IDZ

FORWARD PATH (FP) AND FEEDBACK (FB) CONTROLLERS, WITH LINEAR
PIP AND HAND–TUNED PI CONTROL: (I) AVERAGE EUCLIDEAN NORM
(OVERALL PERFORMANCE BASED ON END-EFFECTOR POSITION); (II)

MEAN SQUARE ERROR BETWEEN SET POINT AND ANGLE FOR EACH JOINT;
(III) VARIANCE OF END-EFFECTOR POSITIONAL ERRORS; AND (IV)

VARIANCE OF DIFFERENCED INPUT TO THE NI–CFP COMPUTER FOR EACH
JOINT (LOWER VALUE IMPLIES SMOOTHER ACTUATION).

Performance PIP-IDZ-FP PIP-IDZ-FB PIP-Old PI-old
Ave.Eucl.Norm 77 132 190 160

MSE–J1 5.7 17.8 56.8 20.5
MSE–J2 1.9 3.5 12.8 8.0
MSE–J3 5.6 12.0 64.0 81.9
MSE–J4 85.4 56.7 77.1 144.8
Var(E)–X 7.34 22.9 408 44.7
Var(E)–Y 17.5 89.4 158 132
Var(E)–Z 48.5 185.7 210 112

Var(CFP)–J1 0.02 0.38 0.03 0.03
Var(CFP)–J2 0.03 0.27 0.11 0.05
Var(CFP)–J3 0.27 0.49 0.04 0.05
Var(CFP)–J4 0.23 0.30 0.19 0.17

VI. CONCLUSIONS

This article has developed and evaluated a vision based
semi-autonomous object grasping system for a hydraulically
actuated, dual manipulator nuclear decommissioning robot.
The system presents a straightforward GUI to the operator,
who with just four mouse clicks can select target positions
for each manipulator to perform a pipe grasp and cut action.
Throughout the process, the user can view the live colour video
and terminate manipulator movements at any time. The system
was tested on a full scale hardware system in a laboratory en-
vironment. It is shown to work successfully, outperforming the
traditional joystick-based teleoperation approach. The system
keeps the user in control of the overall system behaviour but
significantly reduces user workload and operation time.

Further research is required to support these conclusions,
including additional experiments with more users, and par-
ticularly in relation to attaching suitable cutters and working
with real pipes and other objects. Future experiments include
using both manipulators to grasp the same object, in order to
move particularly heavy objects. In addition, one limitation of
the present prototype is the lack of a sophisticated collision
avoidance system i.e. to prevent the manipulators colliding
with each other or the work environment.

In a second contribution of the article, a new approach
to SDP modelling for manipulators has been described and
evaluated. The models obtained facilitate use of an IDZ
method for control system design. This is rather simpler
to implement than an earlier SDP approach and has the
advantage of combining the input signal calibration, system
identification and control system design steps, all based on a
relatively small data-set. This allows for rapid application to
each joint and straightforward recalibration when the dynamic
characteristics have changed due to age and use. Resolved
motion tests successfully demonstrate the efficacy of the new
control system.
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