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Abstract: On the basis of plastic limit analysis, this paper proposes a novel, simple and unified interaction 
equation (N-M) for Concrete-filled Steel Tube (CFST) columns subjected to combined compression and bending. 
A unique feature of the new N-M equation is that the single equation is valid for a range of columns that can be 
solid, hollow, circular, polygonal, short or long. The single equation can also apply to columns under both room 
and elevated temperatures. Validations against independent laboratory test, analytical and numerical results are 
carried out to assess the accuracy and applicability of the equation. The new equation agrees well with most of 
the results used in the comparisons. It can be concluded that the simple and unified equation can be used in 
practical design with sufficient accuracy. 
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1 Introduction 

Consideration of fire resistance is one of the most important design aspects in designing un-protected load 
bearing structural members, such as concrete filled steel tube (CFST) columns. On the basis of experiments and 
numerical simulations, various design formulas have been proposed in the last few decades for estimating fire 
resistance of CFST columns. The approaches to derive these formulas have great impact on their accuracy and 
applicability, as, in most cases, the formulas were developed from a numerical fitting process through parametric 
regression. 

CFST columns are normally designed for supporting axial compression. However, a CFST column may 
also support significant bending caused by uneven distribution of stresses over its cross-section. Extensive 
research has been carried out mainly for columns subjected to compression, as briefly reviewed below. 

Design formulas for calculating load bearing capacity and fire resistance time of CFST columns were 
developed on the basis of experimental and numerical studies by, e.g., Kodur[1-3] who conducted extensive 
parametric analysis and proposed formulas for estimating fire resistance time of solid circular and square CFST 
columns under axial load. Using Eurocode 4[4], Wang and Kodur[5] developed an approach for evaluating squash 
load and rigidity of solid CFST columns at elevated temperature. Li et al.[6] proposed a formula for calculating 
bearing capacity of solid circular CFST columns under fire on the basis of parametric analysis and regression; 
Han et al.[7, 8] calculated strength index of circular and rectangular solid CFST columns based on the results of 
parametric and experimental studies, and proposed also a formula for calculating thickness of fireproof materials. 
Tan and Tang[9] applied Rankine method to analyze reinforced and plain solid CFST columns at elevated 
temperature; Using an average temperature approach, Yu et al.[10] proposed a unified approach for calculating 
fire resistance of solid and hollow CFST columns having circular and polygonal cross sections; Espinos et al.[11, 

12] presented a simple calculation method for evaluating fire resistance of circular and elliptical solid CFST 
columns under axial load based on Eurocode 4[4], where the concept of equivalent temperature was adopted. He 
and Zhong[13] used finite element analysis to calculate thickness of fireproof materials of CFST columns. Yin 



and Zha[14] adopted the limit analysis method in the study of fire performance of CFST columns under axial 
load; and Chung et al.[15] used a similar numerical method in the study of fire performance of square CFST 
columns under eccentric compression. 

From the above review and to the authors’ best knowledge, the current calculation formulas were all 
developed individually for specific section profiles and separate sets of design equations have to be used for 
columns subjected to room and elevated temperatures. These formulas are normally lengthy and complex, 
requiring introduction of many modification factors from empirical studies. In this paper, a much simple design 
formula is proposed for plastic limit analysis of solid and hollow CFST columns that can be circular and 
polygonal and are subjected to combined axial compression, bending and elevated temperature. We first present 
the N-M interaction curves of various CFST sections by the limit analysis method, from which a unified N-M 
equation for short CFST columns under combined loads is proposed and verified by comparing with the 
numerical results from full plastic limit analyses. After considering the effect of initial imperfections and global 
instability, the formula is extended to study long CFST columns under room temperature. The N-M interaction 
curves of long CFST columns are obtained next and compared with those from existing design formulas, 
independent numerical calculations and available experimental results. Finally, a unified calculation formula that 
is applicable to both long and short CFST columns under normal and elevated temperatures is developed on the 
basis of the average temperature approach. 

 
2 Unified N-M interaction equation of short CFST columns under combined axial and 

bending loads 
2.1 limit analysis method for calculating fire resistance of CFST 

At the limit state, the steel tube is fully yielded and the concrete in compression reaches its strength limit. 
As adopted in Eurocode 4[4], it is assumed that the steel and concrete interactions and the tensile strength of the 
concrete are negligible. Therefore, they will not be considered in the calculations throughout this paper.   

Assuming that a CFST is subjected to ISO-834 standard fire. The temperature field of the CFST is non-
uniform and time dependent, which can be calculated from a heat transfer analysis by using COMSOL 
Multiphysics. More details of the heat transfer model for CFST columns in fire are described in Wang et al.[16] 
and Yu et al.[17], which were validated by experimental results. The temperature dependent material properties 
can be taken from Eurocode 4[4] or Lie[18], the latter has been adopted by Chinese Design Codes[19] (GB 50936-
2014). For the cross section shown in Fig.1, at a given time instance, the ultimate axial force, NT, and the ultimate 
moment, MT, can be calculated, respectively, as 

                       
(1) 

                           
(2) 

where the moment, MT, is taken about the x-axis;  and  denote the total area, the area in 
compression and the area in tension of the steel, respectively; , ,  and  are the respective total 
area, area in compression, area in tension and hollow area of the concrete; and  are, respectively, 
the strength of steel and concrete at location (x, y) where temperature is T. 
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 Figure 1 CFST section under fire subject to compression and bending 

Eqs.(1) and (2) can be used to describe three ultimate loading cases, including: (a) MT=0 and NT<0, i.e., 
the column is subjected to uniaxial tension; (b) MT=0 and NT>0, i.e., the column is subjected to uniaxial 
compression; and (c) MT≠0 and NT=0, i.e., the column is subjected to pure bending. Thus, the load bearing 
capacities calculated from these three cases are, respectively, tensile bearing capacity, compressive bearing 
capacity and bending bearing capacity. 

 

2.2 Calculation of N-M interaction curves 

Consider first a series of circular CFST columns with different section profiles. The diameter of the steel 
tube, D, is from 200 to 1200 mm; the thickness of the steel tube, t, is from 3 mm to 18 mm. The hollow ratio of 
the section , which is defined as the ratio of the central hollow area and the total area enclosed by the outside 
boundary of the section, i.e., , is from 0.0 to 0.65, the grade of steel ranges from Q235 to Q460 
and the concrete are the commonly-used C30 to C80, where the numbers after C denote cube compressive 
strength of the concrete, fcu, in MPa. For octagonal and square CFST columns, the non-circular sections are 
transformed to their equivalent circular sections having the same cross-sectional areas as their respective non-
circular originals. The transformation is based on an equivalence approach that has been successfully used 
previously in similar applications by the authors[20] . Table 1 presents six chosen values for each of the five 
design parameters within the ranges described above. Since considering a full combination of all possible designs 
in Table 1 requires extensive computational effort, the uniform design experimentation method is used to select 
representative designs from Table 1 for calculations. Thus, the number of designs to be calculated is reduced 
from the combinations shown in Table 1 to those shown in Table 2. In Tables 1, fy is yield strength of steel and 
fc

’ denotes characteristic value of cylinder compressive strength of concrete, which can be converted from fcu, 
i.e., fc

’=0.8 fcu
[21]. 

Table 1 The design parameters of CFST sections under fire 

Design parameters 
Options 

1 2 3 4 5 6 
Equivalent diameter ( /mm) 200 400 600 800 1000 1200 
Equivalent thickness ( /mm) 3 6 9 12 15 18 

Hollow ratio   0 0.25 0.35 0.45 0.55 0.65 

Steel grade (fy /MPa) Q235 Q295 Q345 Q390 Q420 Q460 

y
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(235) (295) (345) (390) (420) (460) 

Concrete grade (fc
’/MPa)  

C30 
(24) 

C40 
(32) 

C50 
(40) 

C60 
(48) 

C70 
(56) 

C80 
(64) 

Table 2 Uniform design table for 5 factors and 6 levels with 6 runs  

Column 
number 

Optimally selected values of the parameters from the options in Table 1 
Equivalent diameter 

of steel tube  
Equivalent thickness 

of steel tube  
Hollow 

ration  Steel grade 
Concrete 

grade 
1 200mm 9mm 0.00 Q390 C40 
2 400mm 18mm 0.45 Q345 C80 

3 600mm 3mm 0.65 Q420 C60 

4 800mm 12mm 0.55 Q235 C30 

5 1000mm 6mm 0.25 Q295 C70 

6 1200mm 15mm 0.35 Q460 C50 

 

It is assumed that the columns are subjected a combined axial compression and bending under elevated 
temperature. Applying equations (1) and (2) repeatedly for all the possible combinations listed in Table 2 for 
every 10 minutes intervals up to 4 hours, the ultimate bending moment, tension and compression of all the cases 
are obtained, from which the N-M curves of the columns are plotted. To save space and without loss of generality, 
Figs 2, 3 and 4 show the curves of selected columns specified in Table 2 for solid (No. 1) and hollow (No. 6) 
columns having circular, square and octagonal sections. Equivalent diameter  and thickness  are used 
when the sections are not circular.  

  
a) No.1（Solid）     b) No. 6（Hollow） 

Figure 2 Calculation results of the N-M interaction curve for circle-CFST 

  
a) No.1（Solid）     b) No. 6（Hollow） 
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Figure 3 Calculation results of the N-M interaction curve for octagonal-CFST 

  
a) No.1（Solid）     b) No. 6（Hollow） 

Figure 4 Calculation results of the N-M interaction curve for square-CFST 
In the above figures, the outmost curves (black) are the N-M curves of the respective columns under room 

temperature. The curves are plotted then at 10 minutes intervals, from the right to left, until 240 minutes fire 

exposure time is reached. It is evident from the figures that all the curves follow a similar pattern that may be 

defined approximately by a mathematical equation. It is worth noting that the curves in the above figures are 

calculated by using the material properties provided by Eurocode 4[4]. The calculated N-M curves using Lie’s[18] 

material model, which are not presented here, showed the same pattern. 

2.3 Unified N-M interaction equation and validation 

It has been observed that the N-M interaction curves shown in Figs 2-4, though for different columns subject 
to different temperature, are geometrically similar, and may be approximately represented by a quadratic 
equation of M and N. Thus, from the observation, we assume that (a) all N-M interaction curves can be defined 
by a quadratic equation; and (b) the curves always pass through points ( ,0), (0, ) and (0, ), 
representing, respectively, the three special ultimate loading cases mentioned in Section (2.1). Hence, we propose 
the following simple N-M interaction equation applicable to both normal and elevated temperature. 

                            
(3) 

where , ——axial force and bending moment on a section, where compression is defined as positive  

——ultimate compressive strength (positive) 

——ultimate tensile strength (negative)  

——ultimate bending moment. 
To verify the accuracy of equation (3) in representing the N-M interaction curves calculated from Eqs. (1)

and (2), we include all the results shown in Fig.2 and those from Eqs. (1) and (2) for the design combinations 

in Table 2 by plotting  against  in Fig.5, respectively, for the 

circular, square and octagonal sections. 
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a) circle-CFST             b) octagonal-CFST          c) square-CFST 

Figure 5 Verification of the unified N-M interaction equation of CFST under fire	

In each of the figures (a-c), a total of 3150 points are plotted, which are calculated from the combination of 
the 6 uniform designs shown in Table 2, at every 10 minutes intervals up to 4 hours and the 21 points used in 
constructing each of curves in Figures 2-4. It is clear from Fig.5 that almost all the data are concentrated along 
the line X=Y, which means that the results calculated from Eqs. (1) and (2) for all the sections studied in 
Section 2.2 agree well the simple Eq.(3), though the results from the square sections are slightly less satisfactory 
due to its small number of sides. In other words, Eq.(3) can be used as the N-M interaction equation for both 
circular and polygonal CFST sections subjected to room and elevated temperatures. 

3 Unified N-M interaction equation and global stability of long columns  
3.1 N-M interaction equation of long columns under room temperature 

For a pin supported long column having a mid-height deflection  caused by a transverse load, the 

deflection will further increase if an axial compressive force, N, is applied at the ends. From elastic buckling 

analysis, the final mid-span deflection is[22] 

                                     

(4) 

where Ncr is the critical bucking load of the column. Thus, the mid-span bending moment is[22]: 

                 

(5) 

where M is the moment caused by the transverse loading;  is called coefficient of equivalent bending 

moment, the value of which is normally taken from design codes in practical design[23]. 

If initial imperfections are considered, which produce an additional deflection , the N-M interaction 

equation considering axial compression, bending and imperfection can be written as 

                           
(6) 

after considering Eqs.(3) and (5), where the coefficient of equivalent bending moment due to imperfections is 

assumed to be unit, as recommended by EN 1994-1-1:2004[23].  
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when  in Eq.(6),  represents the critical buckling load of the column with initial imperfection, 

, where  is the stability factor. Solving  from Eq.(6) yields  

                          
(7) 

Substitution of Eq.(7) into Eq.(6) yields the following N-M interaction equation of long CFST columns 

under room temperature 

      
(8) 

Equation (8) is complex and is not convenient for practical design applications. On the basis of the experience 

gained from the construction of Eq.(3) and the structure of Eq.(8), we assume that the N-M interaction equation 

of long CFST columns under room temperature takes the following simple form,  

                            
(9) 

To estimate the accuracy of Eq.(9) in comparison with Eq.(8), we compared the N-M interaction curves 

based on the calculations using Eqs.(8) and (9) for a range of slenderness ratios. The curves were also compared 

with those from independent calculations by Han[24, 25], as shown in Figs.6 and 7. From the figures, the N-M 

interaction curves from all the approaches have a reasonable good agreement. When the slenderness ratio 
, Eq.(9) is virtually identical to Eq.(8), while when the slenderness ratio is greater, the results from the 

two equations show some discrepancies, though they are not significant. Detailed comparisons have shown that 

the average difference between Eq.(9) and Eq.(8) is within 5.0%. However From the comparisons, it can be 

seen that Eq.(9) provides a more conservative design equation than Eq.(8) and the interaction curves are closer 

to the ones from Han’s[24, 25] numerical calculations than from the formulas proposed by the same authors. 

 

   

a)                         b)  

0M = N

0scNj scj 0v

( )( )( )0
0

0 0

0

1 1 1u sc sc t sc cr

sc

M N N N N
N

v
j j j

j
- - -

=

( )( )( )0 0 0

0 0 0cr

1 1 1
1 1 1 sc sc t sc cr

t sc

m

u

NN
N

N N N NM N N
M N N N

j j j
j

b - - -æ öæ öæ ö
= - - - -ç ÷ç ÷ç ÷
è øè øè ø

0 0 cr

= 1 1 1sc sc

u sc t

mM NN
M

N
NN N

jb j
j

æ öæ öæ ö
- - -ç ÷ç ÷ç ÷

è øè øè ø

40l <

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

 Eq.(8)
 Eq.(9)
 Han[24]-Formulas
 Han[24]-Numerical 

                     

M/Mu

N/
Nu

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

 Eq.(8)
 Eq.(9)
 Han[24]-Formulas
 Han[24]-Numerical 

            

M/Mu

N
/N
u

=10l =40l



   
c)                         d)  

Figure 6 N-M interaction curves of circular CFST columns with different slenderness ratios 

   
a)                         b)  

   
c)                    d)  

Figure 7. N-M interaction curves of square CFST columns with different slenderness ratios 
 

3.2 N-M interaction equation of long CFST columns under elevated temperature 

In this section, the N-M equation developed in the previous section for CFST columns under room 

temperature is extended to include columns under elevated temperature. 

Based on Eurocode 4, the authors, in their previous work[10], used average temperature of a CFST section 

in the calculation of ultimate axial load of the section under fire, i.e., 

                                             
(10) 

where
 
is the equivalent strength of steel at average temperature ; is the equivalent compressive 

cylinder strength of concrete at average temperature , and they are, respectively[10]: 

                                        (11) 
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  (12) 

In Eq.(11),  denotes the equivalent reduction factor of concrete strength as a function of average 

temperature which can be calculated by[10]: 

  (13) 

In Eq.(12),  denotes the reduction factor of steel strength, also, as a function of average temperature. 

Eurocode 4[4] and Lie (1993)[18] provide tables and piecewise equations for the reduction factors of steel strength 

and elastic modulus  under elevated temperature. For the convenience of the following calculations 

and design applications using Eurocode 4 and Chinese Design Codes (GB 50936-2014), two sets of formulas 

are proposed through curves fitting of the discrete points from Eurocode 4[4] and Lie (1993)[18], as shown in Fig. 

8. Thus, the reduction factors of steel strength and elastic modulus of Eurocode 4[4] and Lie (1993)[18] can be 

calculated, respectively, by the following new formulas, i.e.,  

  (14) 

  (15) 

for Eurocode 4, and 

  (16) 

  (17) 

for Lie’s experimental results, where  is the average temperature of steel tube. More details of the average 

temperature approach can be found in Yu, et al [10]. 

 

a) Strength       b) Elastic modulus 

Figure 8.  Reduction factors of strength and elastic modulus for steel under elevated temperature 
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(18) 

where 
 
is the effective flexural stiffness under fire, . 

 
is the elastic 

modulus of steel at average temperature , which can be calculated by Eq.(15) or Eq.(17); 
 
is the 

equivalent elastic modulus of concrete at average temperature , which can be calculated by[10]: 

 
                               

(19) 

In Eq.(19),  denotes the reduction factor of concrete elastic modulus as a function of average temperature, 

which is calculated by[10]: 

  (20) 

According to Eurocode 4, the reduction factor using the buckling curve ‘c’ is: 

                         
(21) 

where ;  is the non-dimensional slenderness ratio under fire and is 

given by ; is the imperfection factor and, for buckling curve ‘c’,  is 0.49. 

The authors also proposed a unified formula[26] for CFST columns subjected to pure bending and elevated 

temperature, by which the bending capacity of a CFST section can be calculated by: 

                             
(22) 

where  is the confining coefficient at elevated temperature, i.e., ;  is the radius 

of a circular section or the radius of an equivalent circular section converted from a polygon. 

Hence, after considering ,  and  from, respectively, Eqs.(10), (22) and (21) and 

introducing them into Eq.(9), the unified N-M interaction equation for CFST columns under fire is written as: 

 
                    

(23) 

Eq.(23) is a simple and explicit N-M interaction equation that is applicable to a range of section profiles, 

including solid, hollow, circular, polygonal, and also for short and long columns. The proposed equation can be 

applied (but may not be limited) to predict load bearing capacity and fire resistance of CFST columns under 

combined compression and bending, when the following conditions are satisfied: (a) Fire resistance time: t ≤ 4h; 

(b) Hollow ratio is 0 ≤ ψ ≤ 0.65; (c) Normal weight plain concrete: C30–C80 and structural steel: Q235–Q460. 

4 Experimental verifications 

4.1 Validation of the unified N-M interaction equation for CFST columns under room temperature 
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Experimental results of solid CFST columns with circular and rectangular sections under combined loads 

at room temperature from other researchers are used here to verify the accuracy and applicability of Eq.(23) used 

for columns under room temperature. Tables 3 and 4 summarise the test results from [26]-[49] and compare the 

respective average ultimate compressive loads with those predicted from Eq.(23). The error analyses of the 

comparisons are shown in Fig. 9 where all the 98 circular members and 266 square members are included. For 

circular members, the average ratio and coefficient of variation of the test results, Ne, to the predictions, Nc, are 

0.921 and 0.148, respectively. For the rectangular members, they are respectively 0.977 and 0.160. The overall 

average of the ratios for both sections is 0.962. In Tables 3 and 4, e is loading eccentricity and r denotes the 

radius of a circular section or half length of the side parallel to the eccentricity of a rectangular section. 

Table 3 Comparisons of formula predictions and experimental results for circular CFST at room temperature 

NO. Ref. 

Geometric parameters Material Quantity Comparisons 

D/t λ e/r 
fy 

/Mpa 

fc’ 

/Mpa 

fcu 

/Mpa 
n Ne/Nc 

Average 

µ 

coefficient  

of variation 

1 [27] 33.2 12.2~84.2 0~1.20 248.9~329.3 ‒ 34.7~51.2 51 0.690~1.155 0.880 0.152 

2 [28] 33.2 16.0~48.0 0.24~1.20 277.3~313.6 ‒ 51.4 18 0.915~1.120 1.028 0.055 

3 [29] 22.5 16.3~41.8 0~1.18 360.0 ‒ 88.5 12 0.604~1.402 0.896 0.219 

4 [30] 24.0~28.3 14.0~60.0 0.20~0.60 352.0~358.0 ‒ 97.5~107.0 8 0.899~1.084 0.982 0.056 

5 [31] 63.5 31.8~91.4 0.24~0.71 218.0 67.4 ‒ 9 0.813~1.047 0.923 0.073 

Total ‒ 22.5~63.5 12.2~91.4 0~1.20 218.0~360.0 67.4 34.7~107.0 98 0.604~1.402 0.921 0.148 

Table 4 Comparison of formula predictions and experiments results for rectangular CFST at room temperature 

NO. Ref. 

Geometric parameters Material Quantity Comparison result 

B/t λ e/r 
fy 

/Mpa 

fc’ 

/Mpa 

fcu 

/Mpa 
n Ne/Nc 

Average 

µ 

coefficient 

of variation 

1 [32] 50.0~60.0 10.4 0~0.40 324.4 ‒ 52.6 5 1.089~1.256 1.186 0.057 

2 [33] 24.0 90.1 0~1.00 384.7~386.3 34.0~37.4 ‒ 3 0.762~0.890 0.842 0.068 

3 [34] 21.7~25.0 81.8~94.3 0.10 350.0~370.0 51.8~78.6 ‒ 4 0.967~1.104 1.055 0.050 

4 [35] 34.7~54.7 59.1~93.3 0.19~0.24 269.0 65.0 ‒ 3 1.206~1.649 1.413 0.129 

5 [36] 64.0 20.6~40.1 0~0.63 230.0 ‒ 47.6~50 6 1.022~1.206 1.104 0.064 

6 [37] 19.2~25.0 13.9~50.0 0.33~1.00 282.0~314.0 ‒ 45.3~85.2 15 0.795~1.169 0.977 0.097 

7 [38] 40.0 20.6~40.1 0.31~0.63 316.0 ‒ 65.7 4 0.948~1.049 1.013 0.039 

8 [39] 30.9~51.7 25.3~72.4 0.28~0.58 316.6~319.3 ‒ 89.4 8 0.966~1.210 1.110 0.068 

9 [40] 23.5~51.3 10.4~23.7 0.30~6.16 194.0~339.1 ‒ 27.9~60.3 43 0.681~1.157 0.901 0.094 

10 [41] 26.5~47.7 13.6 0.26~9.17 330.7~484.4 ‒ 43.2~67.2 16 0.862~0.920 0.890 0.019 

11 [42] 20.5~36.5 45.0~75.1 0.21~0.86 321.1~330.1 ‒ 28.1~54.9 21 0.837~1.010 0.933 0.051 

12 [43] 49.1~135.8 10.4~41.6 0~0.32 340.1 ‒ 23.1 35 0.608~1.036 0.852 0.147 

13 [44] 66.7 40 0~0.30 303.5 ‒ 58.5 10 0.908~1.117 1.009 0.067 

14 [45] 17.8~50.0 13.8~59.1 0~1.00 242.0~320.0 ‒ 32.4~42.6 16 0.790~1.011 0.923 0.066 

15 [46] 36.3~69.4 25.0~50.7 0.23~0.82 316.6~319.3 ‒ 89.4 8 1.057~1.460 1.257 0.089 

16 [47] 73.3 12.4~45.5 0~0.55 327.0 ‒ 103~112 6 1.025~1.228 1.165 0.048 

17 [48] 20.3~24.0 36.6~127.3 0.13~1.00 313.0~386.0 ‒ 34.1~46.8 13 0.622~1.011 0.796 0.112 



18 [49] 33.3~56.6 34.6~52.0 0.61~11.09 340.0 ‒ 16.8~51.2 30 0.885~1.385 1.101 0.128 

19 [50] 52.6 9.0 0~1.00 340 ‒ 36.0 10 1.053~1.159 1.118 0.032 

Total ‒ 17.8~135.8 9.0~127.3 0~11.09 194.0~484.4 34.0~78.6 16.8~112 256 0.608~1.649 0.977 0.160 

 

  
a) Circular CFST       b) Rectangular CFST 

Figure 9 Comparison of the unified formula with the test results 
 

4.2 Validation of the unified N-M interaction equation for CFST columns under elevated temperature 

To verify the applicability of Eq.(23) under elevated temperature, Table 5 and Figure 10 present 

comparisons between Eq.(23) and the experimental results[7,8,51-52,54] or finite element analysis results[53,55] 

carried out by other researchers on circular and rectangular CFST sections subjected to eccentric compression 

and fire (ISO-834). Two sets of compressive bearing capacities, Nc1 and Nc2 are predicted from Eq. (23), 

respectively, using the reduction factors of steel strength and elastic modulus proposed based on Eurocode 4[4], 

i.e., using Eq.(14) and Eq.(15), and the ones from Lie’s (1993)[18] results, i.e., Eq.(16) and Eq.(17), the latter is 

adopted by GB 50936-2014[19]. 

Table 5 Comparisons with experimental or FEA results of circular and rectangular CFST under fire 

Type Ref. 

Serial Geometric parameters Material Ecc Fire time Load 

NO. Numbering 

Length of 

side 
Thickness Height fy 

/Mpa 

fc’ 

/Mpa 

fcu 

/Mpa 

e 

/mm 

T 

/min 

Ne(NFEA)  

/kN 

Nc1 

/kN 

Nc2 

/kN 
D(B)/mm t/mm L/mm 

Circular 

 CFST 

[51] 1 C-16 219.1 8.18 3810 350 31.9 ‒ 34 33 525 412.5 489.2 

[52] 

2 C159-6-3-30-20-20 159 6 3180 332.03 35.83  ‒ 20 32 169.0  222.3 266.1 

3 C159-6-3-30-20-40 159 6 3180 332.03 42.17  ‒ 20 16 337.0  606.9 573.2 

4 C159-6-3-90-20-20 159 6 3180 332.03 73.70  ‒ 20 34 272.0  241.3 304.6 

5 C159-6-3-90-20-40 159 6 3180 343.63 74.64  ‒ 20 11 544.0  899.5 845.8 

6 C159-6-3-30-50-20 159 6 3180 343.63 30.50  ‒ 50 29 126.4  188.2 214.8 

7 C159-6-3-30-50-40 159 6 3180 365.65 38.25  ‒ 50 23 252.8  295.6 309.3 

8 C159-6-3-90-50-20 159 6 3180 365.65 79.13  ‒ 50 30 194.0  219.4 261.9 

9 C159-6-3-90-50-40 159 6 3180 365.65 98.32  ‒ 50 16 388.0  560.6 539.5 
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[8] 

10 C1-2 478 8 3810 432.7 ‒ 41.3 71.7 32 2200.0  3056.8 3157.4 

11 C2-1 219 5 3810 432.7 ‒ 41.3 32.9 17 450.0  678.6 661.7 

12 C2-2 219 5 3810 432.7 ‒ 41.3 65.7 18 300.0  497.8 481.3 

13 C3-2 219 4.6 3810 381 ‒ 68.8 42 7 1007.0  1133.3 1099.7 

[53] 

14 S2 159 6 3180 275 30 ‒ 20.0  21.5  237.4  363.9 372.1 

15 S3 159 6 3180 275 30 ‒ 50.0  21.4  192.8  272.9 273.9 

16 S4 159 6 3180 275 30 ‒ 80.0  21.0  160.8  220.7 215.4 

17 S9 159 6 3180 275 60 ‒ 20.0  23.3  312.0  383.6 418.0 

18 S10 159 6 3180 430 60 ‒ 20.0  20.3  365.4  535.2 559.3 

19 S11 159 6 3180 630 60 ‒ 20.0  19.0  445.8  669.3 691.9 

Rectangular 

CFST 

[7] 
20 R-2 300×200 7.96 3810 340.6 ‒ 49 22.5 24 2233.0  1541.6 1571.7 

21 R-4 300×150 7.96 3810 340.6 ‒ 49 22.5 20 1853.0  1368.8 1336.4 

[54] 
22 RF-2 300×200 7.96 3810 340.6 ‒ 49 22.5  21 2233.0  1795.8 1752.5 

23 RF-6 300×150 7.96 3810 340.6 ‒ 49 22.5  18 1853.0  1535.7 1449.4 

[55] 

24 2 300×200 3 1500 235 ‒ 30 37.5  11.2 1246.8  1340.6 1189.9 

25 3 300×200 3 1500 235 ‒ 30 45.0  11 1173.5  1284.2 1137.4 

26 4 300×200 3 1500 235 ‒ 30 60.0  10.4 1034.4  1178.0 1044.3 

27 5 300×200 3 1500 235 ‒ 30 75.0  10.1 946.0  1072.4 950.1 

28 6 300×200 3 1500 235 ‒ 30 90.0  9.8 876.6  976.7 864.7 

29 7 300×200 3 1800 235 ‒ 30 37.5  11.5 1164.5  1294.0 1151.2 

30 8 300×200 3 2100 235 ‒ 30 37.5  12.5 1139.1  1217.2 1090.8 

31 9 300×200 3 2400 235 ‒ 30 37.5  13.8 1110.6  1124.5 1022.7 

32 10 300×200 3 2700 235 ‒ 30 37.5  11 1080.0  1202.5 1079.6 

33 11 300×200 3 3000 235 ‒ 30 37.5  8 1047.8  1215.3 1142.4 

34 12 300×200 3 3300 235 ‒ 30 37.5  6.2 1014.0  1206.1 1163.1 

35 13 300×200 3 3600 235 ‒ 30 37.5  5 979.2  1188.4 1162.2 

36 18 300×200 3 1500 235 ‒ 30 37.5  22.5 809.6  890.6 879.1 

37 19 300×200 3 1500 235 ‒ 30 37.5  19.1 890.6  1001.5 958.3 

38 20 300×200 3 1500 235 ‒ 30 37.5  16.3 971.5  1113.9 1032.9 

39 21 300×200 3 1500 235 ‒ 30 37.5  13.7 1052.5  1232.6 1109.9 

40 22 300×200 3 1500 235 ‒ 30 37.5  11.5 1133.4  1329.7 1180.1 



  

a) Reduction factors based on Eurocode 4  b) Reduction factors from GB 50936-2014 

Figure 10. Comparisons of formula predictions with experimental or FEA results 

The detailed comparisons of the predictions, Nc1 and Nc2,, of Eq. (23) with the experimental results, Ne, or 

FEA results, NFEA, can be seen form Figure 10, where 19 circular members and 21 rectangular members are 

included. Using the steel strength reduction factors recommended by Eurocode 4, the average ratio and 

coefficient of variation of the experimental or FEA results to the predictions are 0.873 and 0.232, respectively. 

When the reduction factors recommended by Lie (1993)[18] and GB 50936-2014[19], the respective average ratio 

and coefficient of variation are 0.891 and 0.239. Although the selection of reduction factors has some influences 

on the calculation results, the discrepancies are generally within an acceptable range and all the predictions, i.e., 

Nc1 and Nc2, are comparable with the test or FEA results.  

The unified N-M interaction equation are also compared with simplified expressions proposed by Han[7, 8] 

for calculating fire resistance of CFST columns. The average ratio and coefficient of variation of the 

experimental or FEA results to the prediction calculated by Han’s formulas are 0.858 and 0.212, respectively, 

which has similar calculation accuracy to the results offered by Eq. (23). However, the unified N-M interaction 

equation proposed in this paper is much simpler and can apply to CFST columns under both room and elevated 

temperatures.  

It is worthwhile to note that the proposed unified formula covers a wider range of section profiles, while 

most published formulas work only for a specific section or loading case. In most of the cases we considered 

validations for sections that have either the most or the least number of sides commonly used in practical design, 

e.g., circular section (infinite number of sides) and rectangular sections (4 sides). The validations have shown 

that the predictions of Eq. (23) for 4 sided sections are less accurate than for the circular ones, which suggests 

that more accurate predictions are expected from sections having more sides. The comparisons shown in Figure 

5 for octagonal sections have demonstrated this expectation.  

 

5 Concluding remarks 

A novel, simple and unified explicit N-M interaction equation for predicting load bearing capacity and fire 

resistance of CFST columns under combined compression and bending has been developed in this paper. The 
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equations can be applied to a range of section profiles, including solid, hollow, circular, polygonal, and also for 

short and long columns. Only global stability was considered in the equation. 

The new equation was validated against available eccentrically loaded short and long CFST columns with 

circular and rectangular cross sections subjected to room and elevated temperatures, which all demonstrated that 

the much simpler N-M interaction equation provided comparable or even more accurate predictions to the load 

bearing capacities of CFST columns under room and elevated temperatures.  

Further work is needed to extend the interaction equation to include columns subjected to shear and 

torsional loadings. For bar-reinforced and other types of CFST columns, the applicability of the unified 

interaction equation needs future investigations and verifications. Reliability analysis on fire resistance of CFST 

columns under combined loadings is also needed. 
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