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Abstract

In the early stages of drug development there is often uncertainty about the most
promising among a set of different treatments, different doses of the same treatment, or
combinations of treatments. Multi-arm multi-stage (MAMS) clinical studies provide an
efficient solution to determine which intervention is most promising. In this paper we dis-
cuss the R package MAMS that allows designing such studies within the group-sequential
framework. The package implements MAMS studies with normal, binary, ordinal, or time-
to-event endpoints in which either the single best treatment or all promising treatments
are continued at the interim analyses. Additionally unexpected design modifications can
be accounted for via the use of the conditional error approach. We provide illustrative
examples of the use of the package based on real trial designs.
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1. Introduction

Developing new medicines and health technologies is time-consuming and expensive. The
development of one novel treatment has been estimated to take 10–15 years and costs several
hundred million pounds on average (DiMasi, Hansen, and Grabowski 2003). Because early-
phase studies frequently evaluate treatments on short-term endpoints, uncertainty often exists
about which of a set of candidate treatments should be selected for testing in a confirmatory
phase III clinical trial. These candidates can be truly different medications but can also be
different doses of the same drug or different combinations of multiple drugs. The high failure
rate of phase III trials of around 50% (Arrowsmith 2011) combined with their substantial
cost (EFPIA 2012) make selecting an appropriate treatment for evaluation in phase III of
paramount importance.

Seamless phase II/III multi-arm clinical trials that compare several active treatments with a
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common control group are one potentially efficient solution to overcome this problem. These
seamless studies use the initial part of the study (phase II) to learn about all treatments while
an in-depth evaluation occurs only on the promising one(s) in the second part (phase III). The
design typically applied for such an endeavour is called multi-arm multi-stage (MAMS). Using
data accumulated across both parts of the trial implies that decisions about the superiority
of (a) treatment(s) will be reached in a more efficient manner than with separate trials for
phases II and III. Incorporating a series of interim analyses to allow early stopping either for
efficacy or to drop ineffective treatments early has recently received attention (e.g., Stallard
and Todd 2003; Stallard and Friede 2008; Bretz, Koenig, Brannath, Glimm, and Posch 2009;
Magirr, Jaki, and Whitehead 2012; Magirr, Stallard, and Jaki 2014).

While group-sequential designs found their way into standard software like R (R Core Team
2015), Stata (StataCorp, College Station, TX), and SAS (SAS Institute, Cary, NC) years ago
and are well established (Zhu, Ni, and Yao 2011), programs for adaptive methods are still
relatively rare. Here we give a brief overview of available software implementations focusing
on MAMS designs. Summaries of software for adaptive designs more generally can be found
in Bauer, Bretz, Dragalin, König, and Wassmer (2016) and the book chapters by Lee and
Chen (2012) and Tymofyeyev (2014).

At present, there are three relevant R packages for adaptive trials on CRAN. adaptTest
(Vandemeulebroecke 2009) implements four different adaptive tests for two-arm two-stage
designs. AGSDest (Hack, Brannath, and Brueckner 2015) computes estimates, p-values, and
lower one-sided confidence intervals for two-arm multi-stage designs, using the conditional
error principle to adjust for adaptations. The only package that allows the design of multi-arm
trials is asd (Parsons 2013). It provides a simulation function for multi-arm two-stage designs
with different selection rules at interim and uses p value combination methods (inverse normal
or Fisher’s combination test) for the outcome analysis (Parsons, Friede, Todd, Marquez,
Chataway, Nicholas, and Stallard 2012). We are not aware of any R package for adaptive
trials with more than two arms and more than two stages.

Stata modules for group-sequential designs are available (e.g., de Ullibarri 2013), but there
are no routines for more general adaptive methods, with the exception of nstage (Royston,
Bratton, Choodari-Oskooei, and Barthel 2014) and nstagebin (Bratton 2013) that both im-
plement MAMS designs. nstage has been available for several years (Barthel, Royston, and
Parmar 2009) and was recently updated (Bratton, Choodari-Oskooei, and Royston 2015).
This module differs from the MAMS package described in this paper in two principal ways.
Firstly, the theory behind the MAMS package is based on score statistics allowing continuous,
binary, ordinal, and time-to-event data to be used as the primary endpoints while nstage has
been developed explicitly for time-to-event endpoints. Secondly, the MAMS package focuses
on designs that strictly control the FWER in the strong sense. Similarly, nstagebin is only
applicable to designs with binary outcomes, and its focus is not on strong FWER control
either.

SAS does not offer any functionality for adaptive methods other than group-sequential: the
only adaptation that can be made with the procedures SEQDESIGN and SEQTEST is early
stopping. Extensions by means of user-written programs are of course possible. Chang (2014)
provides a wealth of SAS macros for general adaptive designs. A SAS macro ADCCT for two-
stage designs with two or three active groups and mid-course treatment selection (Koenig,
Brannath, Bretz, and Posch 2008) is available from https://cemsiis.meduniwien.ac.at/

user/koenig-franz/research/software/sas-macros-adcct.

https://cemsiis.meduniwien.ac.at/user/koenig-franz/research/software/sas-macros-adcct
https://cemsiis.meduniwien.ac.at/user/koenig-franz/research/software/sas-macros-adcct
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Besides implementations of adaptive designs in commonly used statistical software, there are
also a few commercial standalone packages that cover certain types of confirmatory adaptive
methods, most notably East (Cytel, Cambridge, MA) and ADDPLAN (ICON, Dublin, Ireland).
The latter has an additional module MC with a wide range of functions for MAMS designs,
including sample size and power calculations, treatment selection at interim, sample size
reassessment, performance analyses (e.g., selection probabilities of specific treatment arms),
closed testing, multiplicity-adjusted p values, and simultaneous confidence intervals.

In this manuscript we introduce the R package MAMS (Jaki, Magirr, and Pallmann 2017),
which is an implementation of the methods proposed in Magirr et al. (2012), Jaki and Magirr
(2013), and Magirr et al. (2014). It facilitates the design of MAMS trials in which all promising
treatments are selected at a series of interim analyses. This has not been possible so far
in R for designs involving more than two arms and stages. Other convenient features of
MAMS are that unplanned design modifications are smoothly adjusted for, and it can use a
parameterisation of effect sizes that does not require any knowledge about the variability in
advance. A step-down variant where either the most promising treatment or all promising
treatments can be selected at interim is available, too.

In Section 2 we give an overview of the methodology described in Magirr et al. (2012) and
the ideas to allow for unexpected design modifications (Magirr et al. 2014). In Section 3 we
highlight a few computational aspects of the package. Section 4 provides examples of the
use of the package based on real trials focusing on the interpretation of the results before we
conclude with a discussion in Section 5.

2. The underlying methodology

We consider the situation where K treatments are compared to a common control group
(indexed by zero). Of interest is to test if treatment k is superior to control, which formally
corresponds to

H01 : µ1 ≤ µ0, . . . , H0K : µK ≤ µ0 ,

where µk is the mean response of a patient on treatment k = 0, 1, . . . ,K. Observations of the
primary endpoint are modelled as normally distributed random variables with equal known
variance, σ2, but potentially different mean levels, µ0, . . . , µK . At up to J time points the
data accumulated so far will be analysed and each treatment arm either continued or stopped.
If all experimental arms are stopped, the trial terminates. We denote the number of subjects
on control during the first stage by n and the number of observations on arm k up to stage j

by r
(j)
k n. Often equal numbers of observations on each experimental treatment are assumed

so that r
(j)
1 = . . . = r

(j)
K = r(j). To allocate an equal number of subjects to each treatment

and each stage, r(j) = r
(j)
0 = jr(1), for example.

2.1. Designing the study

To decide which treatments are continued and which are stopped at each analysis time point,
comparative Z statistics are defined as
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, k = 1, . . .K ; j = 1, . . . , J ,

where µ̂k is the mean measurement on treatment k = 0, . . . ,K and σ denotes the known

standard deviation. At stage j recruitment to treatment k is stopped for futility if Z
(j)
k

≤ lj , i.e., the corresponding test statistics is below a pre-defined lower boundary value lj .
Similarly we can reject the null hypothesis of non-superiority of treatment k over control if

the corresponding test statistic exceeds an upper boundary, Z
(j)
k > uj . In the event that one

or more treatments are shown to be superior to control, the trial stops. If lj < Z
(j)
k ≤ uj

further patients are recruited to each remaining treatment k and control. We set the final
boundary value lJ = uJ to enforce a decision about every superiority hypothesis at the end
of the trial.

To determine the boundaries (lj , uj), j = 1, . . . , J we require that the familywise error rate
(FWER), defined as

P (reject at least one true H0k, k = 1, . . . ,K),

be controlled at a pre-specified level α. This probability can analytically be found as a J
dimensional integral that depends on the boundaries, l1, . . . lJ−1, u1, . . . , uJ and how subjects
are allocated to the arms and stages. The latter is usually pre-specified, leaving 2 × J − 1
unknowns when finding the FWER of a design. To determine the boundary values to ensure
FWER control different approaches can be taken. The first is to determine the boundaries to
satisfy some optimality criterion subject to controlling the FWER as described in Wason and
Jaki (2012). The second approach is to utilise an error-spending approach as described in Lan
and DeMets (1983). The third approach pre-specifies functions that relate the boundaries to
the final critical value, lj = g(uJ), uj = f(uJ) j = 1, . . . , J − 1, leaving one equation and
one unknown. The third option is explicitly implemented in the MAMS package while it can
be used as the basis for the other two ideas as well; this would require the user to write a
suitable optimisation routine.

To obtain the required sample size, the least favourable configuration (LFC, Dunnett 1984)
can be utilised. The power under the LFC is, without loss of generality, defined as the
probability to reject H01 given µ1 − µ0 = δ and µk − µ0 = δ0 for k = 2, . . . ,K where δ is an
effect that, if present, we would like to detect with high probability and δ0 is an effect that,
if present, would not be of interest.

In addition to the standard parameterisation of the effect sizes in terms of δ and δ0, the MAMS
package implements a slightly non-standard parameterisation. The interesting treatment
effect, p, that if present we would like to find with high probability and an uninteresting
effect, p0 are both parameterised as P (Xk > X0) where Xi denotes the random response on
treatment i, i.e., the probability of a randomly selected person on treatment k observing a
better outcome than a random person on control. As a consequence p = 0.5 implies that both
the experimental treatment and control perform equally well. We utilise this parameterisation
as no knowledge about the variance, σ2, is required. To obtain p from the traditional effect

size, δ, one can simply use p = Φ
(

δ√
2σ2

)
.
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2.2. Dealing with unexpected design modifications

In the previous Section we have outlined how a MAMS design can be determined. Unfortu-
nately, certain aspects of the design are often quite difficult to specify a-priori, and it is well
known that deviations from the planned design, such as changing the sample size or dropping
treatment arms, can compromise the operating characteristics of the design, and in particular
FWER and power, dramatically. It is therefore useful to be able to adjust the design to
account for such unexpected deviations. Here we will outline the underlying methodology to
do so, which is described comprehensively for MAMS designs in Magirr et al. (2014).

The first ingredient to allow design modifications is the conditional error principle (Müller and
Schäfer 2004). It utilises the conditional probability of rejecting H0k under the null hypothesis
given a design and the data observed so far, called the conditional error. The conditional error
principle then states that a new design controls the FWER if the conditional error of this
design does not exceed the conditional error of the original design. As a consequence the
conditional error approach can be used to adjust for design modifications within each of the
pairwise comparisons contrasting one experimental arm against control.

Secondly, to ensure FWER control over all comparisons, the closure principle (Marcus, Peritz,
and Gabriel 1976) can be utilised. In order to apply the closure principle to the family of
null hypotheses, H1, . . . ,HK (omitting the index 0 for brevity), local hypothesis tests for all
intersection hypotheses, HI = ∩Kk=1 HK , are found. The elementary hypothesis Hk can then
be rejected at level α if and only if all HI containing Hk can be rejected at level α.

3. Computational aspects of the MAMS package

After a brief description of the underlying methodology we will now highlight some of the
computational aspects that have been used in the implementation of the MAMS package. The
first notable aspect is the computation of the FWER and power, which do not have a closed-
form solution. Instead an integral of dimension J (the number of stages) over multivariate
normal distributions needs to be evaluated. The multivariate normal densities are evaluated
using the package mvtnorm (Genz, Bretz, Miwa, Mi, Leisch, Scheipl, and Hothorn 2015),
which utilises the algorithms of Genz and Bretz (2009). The outer integrals are solved using
quadrature and the midpoint rule. The number of points used for the quadrature can be
controlled with the argument N, but the default will hardly ever have to be changed by the user.
The computational complexity in solving the FWER and power constraint lies in the number
of stages rather than the number of treatment arms. Consequently, the implementation used
in the package is efficient for any number of treatment arms provided that the number of
stages is small. For designs with more than two stages, however, computing a design might
take several minutes.

When computing the power of the design we use a “divide and conquer” strategy. In order to
determine the power it is necessary to find the probability of stopping which, by construction,
could happen at any stage. To simplify the computation, it is helpful to observe that it
is still only possible to stop at exactly one of the stages. As a consequence it is possible
to find the probability of stopping at each stage separately and simply sum over all these
probabilities in order to find the overall power. To determine the sample size required to
achieve a pre-specified power a simple loop is used. To potentially speed computation up
further it is possible to set the starting value of the loop via nstart. This is particularly
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helpful as it is well known that the maximum sample size of a design with interim analyses
will not typically be smaller than the equivalent fixed-sample design for continuous endpoints.
In a similar manner, the loop is terminated at a maximum value for the sample size, which
is by default 3 times the sample size of the equivalent fixed-sample design with all other
parameters unchanged, but this can be overridden by specifying a value for nstop.

4. Applications

In this Section we showcase some uses of the MAMS package and how to interpret the corre-
sponding R output. The TAILoR study (Pushpakom, Taylor, Kolamunnage-Dona, Spowart,
Vora, Garćıa-Fiñana, Kemp, Whitehead, Jaki, Khoo, Williamson, and Pirmohamed 2015)
serves as the motivating example, and so we consider a design that evaluates three different
experimental treatment arms against control, using a one-sided type I error rate of 5% and
90% power. The interesting effect size is set to p = 0.65, which corresponds to an effect of
δ = 0.545σ on the traditional scale. The uninteresting treatment effect is chosen as p0 = 0.55
(δ0 = 0.178σ). MAMS allows the user to choose whichever parameterisation they prefer for
specifying the effect sizes.

4.1. A single-stage design

Designing studies including finding the boundaries of the design and the required sample size
can be achieved with the function mams. The parameters of the function correspond to the
definition in Section 2 so that K, e.g., specifies the number of experimental treatments that
are to be compared to control, and J the number of stages. We begin by considering a single-
stage design (J=1), which corresponds to a design based on a standard Dunnett test (Dunnett
1955) involving K=3 experimental treatments. We use equal allocation between treatment
arms, which is specified via r=1 for the experimental arms and r0=1 for control.

R> library("MAMS")

R> m1 <- mams(K=3, J=1, p=0.65, p0=0.55, r=1, r0=1, alpha=0.05, power=0.9)

An overview of the design is displayed with print(m1) or summary(m1) or simply m1.

R> m1

Design parameters for a 1 stage trial with 3 treatments

Stage 1

Cumulative sample size per stage (control): 79

Cumulative sample size per stage (active): 79

Maximum total sample size: 316

Stage 1

Upper bound: 2.062

Lower bound: 2.062
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The output produced specifies the number of patients required on control and each treatment
arm as well as the boundaries of the design. A total of 316 patients, 79 on control and 79 on
each of the 3 experimental treatments, are required for this study. The null hypothesis for
treatment k can be rejected if the corresponding test statistic is larger than 2.062.

The same design can also be specified on the scale of traditional effect sizes rather than
probabilities, by setting p and p0 to NULL and specifying values for delta, delta0, and sd.
The output will be exactly the same as for m1.

R> m1d <- mams(K=3, J=1, p=NULL, p0=NULL, delta=0.545, delta0=0.178, sd=1,

+ r=1, r0=1, alpha=0.05, power=0.9)

In the remainder of this Section we will specify all effect sizes on the probability scale, but
converting them is straightforward in R:

R> pnorm(0.545/sqrt(2))

[1] 0.6500195

R> qnorm(0.65) * sqrt(2)

[1] 0.5449254

4.2. Multi-stage designs with different boundary shapes

Since only a single stage was used in this initial example, no form of the boundaries had to be
specified. For multi-stage designs the shape of the lower and upper boundary can be defined
via the arguments lshape and ushape. These arguments can either invoke the pre-defined
shapes following Pocock (1977), O’Brien and Fleming (1979) or the triangular test (Whitehead
1997) using options "pocock", "obf", or "triangular", respectively. Alternatively a constant
value (option "fixed") can be specified. Finally, custom boundaries can be defined as a
function that requires exactly one argument for the number of stages and returns a vector of
the same length. The lower boundary shape must be non-decreasing while the upper boundary
shape must be non-increasing to ensure reasonable trial designs are found.

In the following example we calculate a two-stage design investigating three experimental
treatments. Triangular boundaries are used with a cumulative sample size ratio of r=1:2

between first and second stage, i.e., the interim analysis is scheduled after half of the maximum
number of patients have been recruited and their outcome observed, and twice as many
subjects on control as on the experimental arms, as specified by r0=c(2, 4).

R> m2 <- mams(K=3, J=2, p=0.65, p0=0.55, r=1:2, r0=c(2, 4), alpha=0.05,

+ power=0.9, ushape="triangular", lshape="triangular")

R> m2

Design parameters for a 2 stage trial with 3 treatments
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Stage 1 Stage 2

Cumulative sample size per stage (control): 76 152

Cumulative sample size per stage (active): 38 76

Maximum total sample size: 380

Stage 1 Stage 2

Upper bound: 2.359 2.225

Lower bound: 0.786 2.225

The cumulative sample sizes at stages 1 and 2 are given in tabular form in the R output.
The trial may be stopped after the first analysis, either for futility (if all the Z statistics are
less than 0.786) or superiority (if at least one Z statistic exceeds 2.359). In all other cases
the trial is to be taken to the second stage where additional patients are randomised to any
experimental treatment whose Z statistic falls between the boundary values of the first stage
and control. A critical value of 2.225 is used at the second analysis to decide whether a
treatment shall be deemed superior to control or not.

Our next example involves three treatment arms in a three-stage design with equal numbers of
subjects added at every stage as well as balance of sample size between control and treatment
groups; this requires us to specify the cumulative sample sizes as r=1:3 and r0=1:3. To
illustrate the versatility of the function mams, we do not use any of the pre-defined boundary
shapes. Instead we implement a fixed lower bound of zero (with lshape="fixed" and lfix=0)
and an upper boundary where the first-stage critical value is three times as large as the final
critical value. To achieve this, ushape is specified as a function that returns the vector (3, 2,
1) (return(x:1)).

R> m3 <- mams(K=3, J=3, p=0.65, p0=0.55, alpha=0.05, power=0.9, r=1:3,

+ r0=1:3, ushape=function(x) return(x:1), lshape="fixed", lfix=0)

R> m3

Design parameters for a 3 stage trial with 3 treatments

Stage 1 Stage 2 Stage 3

Cumulative sample size per stage (control): 27 54 81

Cumulative sample size per stage (active): 27 54 81

Maximum total sample size: 324

Stage 1 Stage 2 Stage 3

Upper bound: 6.125 4.083 2.042

Lower bound: 0.000 0.000 2.042

The maximum total sample size is considerably lower than with design m2 (324 versus 380),
and so is the critical value at the final stage (2.042 versus 2.225). These feigned advantages
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come, however, at the cost of very large upper boundary values at stages 1 and 2 (6.125 and
4.083) that make it extremely hard to stop the trial early, so this is unlikely to be a useful
design in practice. On a related note, if a design should not allow stopping for one of efficacy
or futility at all, we can achieve this by setting lfix=-Inf or ufix=Inf, respectively.

We compare the boundaries of our “own” design m3 with those of the corresponding standard
designs (Pocock, O’Brien-Fleming, triangular) graphically using the plot function that comes
with the MAMS package. First we have to compute the boundaries of the standard designs
for J=3 stages and sample size allocations as in m3. Notice that the computation of designs
with more than 2 stages can take several minutes.

R> poc <- mams(K=3, J=3, p=0.65, p0=0.55, r=1:3, r0=1:3, alpha=0.05,

+ power=0.9, ushape="pocock", lshape="pocock")

R> obf <- mams(K=3, J=3, p=0.65, p0=0.55, r=1:3, r0=1:3, alpha=0.05,

+ power=0.9, ushape="obf", lshape="obf")

R> tri <- mams(K=3, J=3, p=0.65, p0=0.55, r=1:3, r0=1:3, alpha=0.05,

+ power=0.9, ushape="triangular", lshape="triangular")

Then we plot the boundaries with identical scaling of the vertical axes (using the argument
ylim) to make the graphs visually comparable:

R> par(mfrow=c(2, 2))

R> plot(poc, ylim=c(-5, 7), main="Pocock")

R> plot(obf, ylim=c(-5, 7), main="O'Brien-Fleming")
R> plot(tri, ylim=c(-5, 7), main="Triangular")

R> plot(m3, ylim=c(-5, 7), main="Self-designed")

Figure 1 displays the shapes of all four designs. We see that the triangular design has
clearly the narrowest boundaries (and therefore the highest chances of stopping the trial
early) whereas the self-designed variant leads to extraordinarily high upper boundary values
at the first two interim analyses.

4.3. Evaluating the properties of a design

To evaluate the properties of a particular design via simulation, the function mams.sim can
be employed. It allows for flexible numbers of subjects per arm and stage in the form of a
J × (K + 1) matrix nMat. In addition to the upper and lower boundaries (u and l), a vector
of true success probabilities (pv) is required (or alternatively a vector of true effect sizes
(deltav) and a standard deviation (sd)). The parameter ptest allows to specify rejection of
which hypotheses should be counted in the power calculation. We evaluate the properties of
the two-stage design m2 under the global null hypothesis (i.e., a true effect size of p = 0.5 or
δ = 0 for all treatments) with 100,000 simulation runs.

R> m2sim <- mams.sim(nsim=1e5, nMat=t(m2$n * m2$rMat), u=m2$u, l=m2$l,

+ pv=rep(0.5, 3), ptest=1:2)

R> m2sim
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Figure 1: Stopping boundaries for a three-arm three-stage design using the methods of Pocock
(top left), O’Brien-Fleming (top right), the triangular test (bottom left), and our own design
with a fixed lower bound of zero and an upper bound whose first-stage critical value is three
times as large as the final one (bottom right).

Simulated error rates based on 1e+05 simulations

Prop. rejecting at least 1 hypothesis: 0.049

Prop. rejecting first hypothesis (Z_1>Z_2,...,Z_K) 0.017

Prop. rejecting hypotheses 1 or 2: 0.034

Expected sample size: 244.737

The probability of rejecting at least one hypothesis is 0.049, and since we simulated under
the global H0, this corresponds to a FWER of 5% as desired. The power to reject the first
hypothesis when it has the largest estimated effect is 0.017, and the power to reject either H1

or H2 or both of them (as specified by ptest=1:2) is 0.034. The expected number of patients
required for the trial under the global H0 is 244.7 in contrast to the maximum required of
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380.

The function mams.sim is also useful to simulate and compare expected sample sizes of dif-
ferent designs. We illustrate this for the designs poc, obf and tri (whose boundaries are
shown in Figure 1) under the LFC of the alternative, i.e., one treatment’s effect size equals
p = 0.65 whereas the effect sizes for all other treatments are equal to p0 = 0.55, using 100,000
simulation runs.

R> pocsim <- mams.sim(nsim=1e5, nMat=t(poc$n * poc$rMat), u=poc$u, l=poc$l,

+ pv=c(0.65, rep(0.55, 2)), ptest=1)

R> obfsim <- mams.sim(nsim=1e5, nMat=t(obf$n * obf$rMat), u=obf$u, l=obf$l,

+ pv=c(0.65, rep(0.55, 2)), ptest=1)

R> trisim <- mams.sim(nsim=1e5, nMat=t(tri$n * tri$rMat), u=tri$u, l=tri$l,

+ pv=c(0.65, rep(0.55, 2)), ptest=1)

Similarly, we can obtain the design properties under the global null hypothesis by setting
pv=rep(0.5, 3). Table 1 summarises minimum, maximum, and expected sample sizes of the
three designs. We see that under both the LFC and the global H0 the triangular design is
expected to require the lowest number of patients. On the other hand, O’Brien-Fleming has
the lowest minimum and maximum but the highest expected sample size under the LFC of
all three designs. Under the global H0 both the Pocock and O’Brien-Fleming designs have
expected sample sizes that are very close to their respective maxima.

Design Minimum Maximum Expected (LFC) Expected (H0)

Pocock 165 396 232.5 385.7
O’Brien-Fleming 140 336 258.9 334.0
Triangular 170 408 217.2 222.3

Table 1: Minimum, maximum, and (simulated) expected sample sizes of three-stage designs
involving three experimental treatment arms with Pocock, O’Brien-Fleming, and triangular
boundaries under the least favourable configuration of the alternative (LFC) and the global
null hypothesis (H0).

4.4. A step-down design

A direct improvement over the basic design can be achieved by using a step-down version of the
test. The function stepdown.mams implements such a design that selects at interim either all
promising treatments (selection="all.promising") or only the best performing treatment
(selection="select.best") from those whose test statistics are between the upper and
lower boundaries (Stallard and Todd 2003). If the trial is stopped early, making a selection
becomes obsolete, but note that we consider stopping boundaries as non-binding. The step-
down procedure makes use of closed testing, as described in Section 2.2 and Magirr et al.
(2014).

Wereuse the three-arm two-stage design m2 with 76 and 38 observations in stage 1 and cumu-
lative sample sizes at stage two of 152 and 76 on control and active treatments, respectively.
The sample size of the study can be specified through the matrix nMat that has J rows and
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K columns where the first column contains the values for the control group. A lower bound-
ary can be set via lb, and we set it to 0.786 as in the original design. We can then choose
how much of the total familywise error we want to spend at each stage using the argument
alpha.star, and we choose to spend, in line with the triangular test, α∗1 = 0.026 at the first
interim analysis, with the remaining α level being used at the second analysis. We compare
the selection rules all.promising and select.best:

R> m2.all <- stepdown.mams(nMat=matrix(c(76, 152, rep(c(38, 76), 3)),

+ nrow=2, ncol=4), lb=m2$l[1], alpha.star=c(0.026, 0.05),

+ selection="all.promising")

R> m2.best <- stepdown.mams(nMat=matrix(c(76, 152, rep(c(38, 76), 3)),

+ nrow=2, ncol=4), lb=m2$l[1], alpha.star=c(0.026, 0.05),

+ selection="select.best")

The output for all intersections and stages is verbose, therefore we summarise only the upper
boundary values in Table 2 with the full output provided in Appendix A. One can see that
the option to proceed with more than one promising treatment comes at the cost of higher
stopping boundaries for the intersection hypotheses at stage 2. So in order to reject the global
null hypothesis at the second stage, a test statistic needs to exceed 2.23 while it only needs
to be larger than 2.17 if only the best arm is chosen at the interim analysis. The boundaries
are the same for the elementary hypotheses H1, H2, and H3 as well as for the intersection
hypotheses H12, H13, and H23 because the sample sizes were chosen to be equal in all active
treatment arms. A graphical display of the stopping boundaries using the plot function is
shown in Figure 2.

R> par(mfrow=c(1, 2))

R> plot(m2.all, main="Select all promising", col=c(1, 1, 2, 1, 2, 2, 4))

R> plot(m2.best, main="Select the best", col=c(1, 1, 2, 1, 2, 2, 4))
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Figure 2: Stopping boundaries for a three-arm two-stage step-down design with selection of
all promising treatments at interim (left) or just the single best treatment (right).
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Hypotheses Stage 1 Stage 2 (best) Stage 2 (all)

H1, H2, H3 1.94 1.71 1.72
H12, H13, H23 2.21 2.02 2.06
H123 2.36 2.17 2.23

Table 2: Upper boundaries for the elementary (H1, H2, H3), intersection (H12, H13, H23),
and global (H123) hypotheses of a three-arm two-stage step-down design involving selection
of either the single best or all promising treatments at interim.

4.5. Dealing with unforeseen design modifications

Two other functions of the package, new.bounds and stepdown.update, allow for unexpected
design modifications to be taken into account. The function new.bounds recalculates the
boundary values when the sample sizes achieved are not as planned in advance. We consider
again the two-stage design m2 where 76 patients were required per stage in the control arm
and 38 patients per stage for each of the three experimental treatment arms. Now assume
these requirements could not be met and the observed sample sizes at the interim analysis
were 75 for control and 40, 35, and 41 for the experimental treatments. We can recalculate
the final boundary value with new.bounds in which we specify the interim bounds u=2.359

and l=0.786 (as obtained for m2). The sample sizes as observed at stage 1 and planned for
stage 2 are given in the J × (K + 1) matrix nMat.

R> m2.nb <- new.bounds(K=3, J=2,

+ nMat=matrix(c(75, 152, 40, 76, 35, 76, 41, 76),

+ nrow=2, ncol=4), alpha=0.05, u=m2$u[1], l=m2$l[1], ushape="triangular",

+ lshape="triangular")

R> m2.nb

Design parameters for a 2 stage trial with 3 treatments

Stage 1 Stage 2

Upper bound: 2.359 2.224

Lower bound: 0.786 2.224

We find that as a result of the deviation from the planned sample size at the interim analysis,
the final boundary value has been lowered from 2.225 in the original m2 design to 2.224.

The function stepdown.update uses the conditional error approach to incorporate unplanned
sample size reassessment and/or treatment selection (e.g., elimination of treatment arms
due to safety issues) while maintaining control of the desired FWER. We once again base
this example on the original three-arm two-stage design but consider the step-down version
(m2.all) and assume there were some unforeseen design changes during the course of the
trial. Initially the sample sizes at interim were planned to be 76 for the control group and 38
per active treatment arm. At the interim analysis, we now wish to take into account three
deviations from the planned study. Firstly, we want to account for the deviation from the
desired sample size which, as in the previous example, turned out to be 75 for control and



14 MAMS: Designing Multi-Arm Multi-Stage Clinical Trials

40, 35, and 41 for the experimental treatments, which translates to nobs=c(75, 40, 35,

41) in the function stepdown.update. Secondly, treatment 2 has been dropped from the
study due to safety, so that only treatment arms 1 and 3 (selected.trts=c(1, 3)) are to
be continued. Finally, following a reassessment of the sample size, we wish to increase the
cumulative sample size at the second stage by 50% from 152 to 228 in the control arm and
76 to 114 in the active arms. We can specify this using nfuture=matrix(c(228, 114, 35,

114), 1, 4). Notice that since treatment arm 2 has already been abandoned, no additional
patients are recruited beyond the 35 already in the study. Further supposing the interim
evaluation yielded Z statistics of zscores=c(1.1, 0.9, 0.9), we can calculate the modified
design.

R> m2.update <- stepdown.update(current.mams=m2.all, nobs=c(75, 40, 35, 41),

+ zscores=c(1.1, 0.9, 0.9), selected.trts=c(1, 3),

+ nfuture=matrix(c(228, 114, 35, 114), nrow=1, ncol=4))

The complete output of m2.update is provided in Appendix B and we summarise it in Table
3 (column “Updated”). The boundaries for the elementary hypothesis H1 and H3 have been
slightly increased to account for the change in sample size while the boundary for H2 has been
slightly decreased. Similarly, the boundary for the intersection hypothesis involving only the
remaining treatments (H13) has been increased while the others have been decreased. No
change in the threshold for the global null hypothesis (H123) is observed in this example. As
before we can also illustrate the updated design using the plot function.

Hypothesis Initial Updated (cond. error)

H1 1.72 1.73 (0.088)
H2 1.72 1.71 (0.069)
H3 1.72 1.79 (0.058)
H12 2.06 1.92 (0.056)
H13 2.06 2.14 (0.051)
H23 2.06 1.90 (0.043)
H123 2.23 2.22 (0.041)

Table 3: Initial and updated upper boundaries (with conditional errors) for the elementary
(H1, H2, H3), intersection (H12, H13, H23), and global (H123) hypotheses of a three-arm two-
stage step-down design involving selection of all promising treatments at interim. Treatment
2 has been dropped at the interim analysis and the sample size for the remaining comparisons
increased.

4.6. Non-normal endpoints

Up to this point we have focused on normally distributed endpoints. Based on asymptotic
theory, MAMS can also handle non-normal endpoints by exploiting the asymptotic properties
of efficient score statistics (Jaki and Magirr 2013), as we will demonstrate for ordinal, binary,
and time-to-event outcome data.
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Ordinal and binary endpoints

Ordinal data consist of multiple different categories that have a natural order, which is com-
mon for quality-of-life scores, pain scores, and similar questionnaire-based outcomes. Our
illustration here is motivated by the ASCLEPIOS study (Whitehead 1993) and its example
analyses in Whitehead and Jaki (2009) and Jaki and Magirr (2013).

We design a MAMS trial with three experimental treatments and a control arm, one interim
analysis after half the patients have provided an outcome measure, and triangular boundaries
in a setting with an ordinal primary endpoint, under the assumption of proportional odds.
We expect that under control conditions the probabilities of falling into each of six categories,
ordered from best to worst, are 0.075, 0.182, 0.319, 0.243, 0.015, and 0.166. Suppose the
interesting effect is a doubling in the probability of falling into one of the two best categories
combined, from 25.7 to 51.4%, for any experimental arm. This corresponds to an odds ratio
(OR) of 3.06 and a log-OR of 1.12. The uninteresting effect shall be one quarter of the
interesting effect on the log-OR scale i.e., a log-OR of 0.28 or an OR of 1.32.

To find the boundary values and sample sizes, we can use the function ordinal.mams, which
is a wrapper for mams with additional inputs prob for the probabilities of falling into each cat-
egory (which must sum up to one), as well as or and or0 for the interesting and uninteresting
treatment effects, respectively, on the OR scale:

R> prob <- c(0.075, 0.182, 0.319, 0.243, 0.015, 0.166)

R> mord <- ordinal.mams(prob=prob, or=3.06, or0=1.32, K=3, J=2, alpha=0.05,

+ power=0.9, r=1:2, r0=1:2, ushape="triangular", lshape="triangular")

R> mord

Design parameters for a 2 stage trial with 3 treatments

Stage 1 Stage 2

Cumulative sample size per stage (control): 34 68

Cumulative sample size per stage (active): 34 68

Maximum total sample size: 272

Stage 1 Stage 2

Upper bound: 2.330 2.197

Lower bound: 0.777 2.197

The function ordinal.mams can also be used for binary endpoints as they are a simple special
case of ordinal data where prob has only two categories (success/failure, yes/no, etc.) and
the proportional odds assumption becomes obsolete.

Time-to-event endpoints

Another useful extension of MAMS is to event-time outcomes e.g., when the primary endpoint
is survival. In that case the effect sizes δ and δ0 must be specified in terms of log-hazard
ratios (log-HRs), which are assumed to be asymptotically normal, and the standard deviation
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is σ = 1. Sample sizes are expressed in terms of events (e.g., deaths), e, rather than numbers

of patients, n. As a consequence, we set r
(1)
k = 1 and r

(j)
k = e

(j)
0 /e

(1)
0 . The underlying

approximation should work well if the effect size is small, the number of allocated patients
patients per arm is equal at each stage, and there are few ties in relation to the number of
different event times.

Assume we want to design a MAMS trial with three experimental treatment arms and a
control, using triangular boundaries. One interim analysis is to be conducted upon observing

e
(1)
0 events in the control arm, set to half of the total number of events in that arm. Our

interesting effect size is a HR of 1.5, corresponding to a log-HR of 0.405, and the uninteresting
effect size is a HR of 1.1 i.e., a log-HR of 0.095.

We can calculate the boundary values and sample sizes with the function tite.mams, which
is another wrapper for mams with additional inputs hr and hr0 for the interesting and unin-
teresting treatment effects, respectively, on the HR scale:

R> mtite <- tite.mams(hr=1.5, hr0=1.1, K=3, J=2, alpha=0.05, power=0.9,

+ r=1:2, r0=1:2, ushape="triangular", lshape="triangular")

R> mtite

Design parameters for a 2 stage trial with 3 treatments

Stage 1 Stage 2

Cumulative number of events per stage (control): 81 162

Cumulative number of events per stage (active): 81 162

Maximum total number of events: 648

Stage 1 Stage 2

Upper bound: 2.330 2.197

Lower bound: 0.777 2.197

The sample size output here is given as the required number of events, which is obviously
smaller than the required number of patients. We refer to Whitehead (2001) for guidance
how to estimate the maximum total number of patients to be recruited.

5. Discussion

In this paper we have described the R package MAMS for designing multi-arm multi-stage
clinical trials, as well as some of the underlying statistical methodology. We have shown how to
design a study with the package’s basic function mams or its step-down variant stepdown.mams,
how to evaluate properties like the expected sample size and power of a design with mams.sim,
how to incorporate unforeseen changes using new.bounds and stepdown.update, and how
to use the functionality of MAMS for ordinal, binary, and time-to-event endpoints with
ordinal.mams and tite.mams. In addition to studying the numerical R output, it is of-
ten instructive to assess and compare designs using graphics, which can be accomplished with
the package’s automated plot function for the boundaries.
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All this provides a convenient toolkit for planning and adapting efficient and highly flexible
trials: inclusion of multiple experimental treatment arms increases the chances of a success;
interim analyses allow to eliminate futile treatments early on and to stop the trial as soon
as efficacy of any treatment is established; spontaneous design modifications (e.g., due to a
safety issue) or sample size reassessment are smoothly taken into account using the conditional
error principle. The theoretical foundations have been around for a few years (Magirr et al.
2012, 2014), but they will only make a real impact on how clinical trials are conducted if
user-friendly software is available and accessible. Given the limited range of adaptive design
software that has been published to date, we consider MAMS a big step forward. It is the
first package in R for adaptive trials with more than one active treatment group and at the
same time more than one interim analysis for various types of endpoints.

The functionality of MAMS is extendable beyond pre-defined methods; for example, the
design functions allow the user to implement arbitrarily shaped boundaries, with the only
restrictions that the lower boundary be non-decreasing and the upper one non-increasing. In
practice, however, it is often advisable to apply established methods whose properties are well
understood. Especially the triangular test of Whitehead (1997) is an appealing candidate:
although it may raise the maximum sample size in comparison to, e.g., the O’Brien-Fleming
design, it usually has a substantially lower expected sample size compared to other designs
(Wason and Jaki 2012).
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Müller HH, Schäfer H (2004). “A General Statistical Principle for Changing a Design Any
Time During the Course of a Trial.” Statistics in Medicine, 23(16), 2497–2508. doi:

10.1002/sim.1852.

O’Brien PC, Fleming TR (1979). “A Multiple Testing Procedure for Clinical Trials.” Biomet-
rics, 35(3), 549–556. doi:10.2307/2530245.

Parsons N (2013). asd: Simulations for Adaptive Seamless Designs. R package version 2.0,
URL http://CRAN.R-project.org/package=asd.

Parsons N, Friede T, Todd S, Marquez EV, Chataway J, Nicholas R, Stallard N (2012). “An
R Package for Implementing Simulations for Seamless Phase II/III Clinical Trials Using
Early Outcomes for Treatment Selection.”Computational Statistics & Data Analysis, 56(5),
1150–1160. doi:10.1016/j.csda.2010.10.027.

Pocock SJ (1977). “Group Sequential Methods in the Design and Analysis of Clinical Trials.”
Biometrika, 64(2), 191–199. doi:10.2307/2335684.

Pushpakom SP, Taylor C, Kolamunnage-Dona R, Spowart C, Vora J, Garćıa-Fiñana M, Kemp
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A. A step-down test

R> m2.all

Design parameters for a 2 stage trial with 3 treatments

Stage 1 Stage 2

Cumulative sample size (control): 76 152

Cumulative sample size per stage (treatment 1 ): 38 76

Cumulative sample size per stage (treatment 2 ): 38 76

Cumulative sample size per stage (treatment 3 ): 38 76

Maximum total sample size: 380

Intersection hypothesis H_{ 1 }:

Stage 1 Stage 2

Conditional error 0.0260000 0.05

Upper boundary 1.9400000 1.72

Lower boundary 0.7864987 1.72

Intersection hypothesis H_{ 2 }:

Stage 1 Stage 2

Conditional error 0.0260000 0.05

Upper boundary 1.9400000 1.72

Lower boundary 0.7864987 1.72

Intersection hypothesis H_{ 1 2 }:

Stage 1 Stage 2

Conditional error 0.0260000 0.05

Upper boundary 2.2100000 2.06

Lower boundary 0.7864987 2.06

Intersection hypothesis H_{ 3 }:

Stage 1 Stage 2

Conditional error 0.0260000 0.05

Upper boundary 1.9400000 1.72

Lower boundary 0.7864987 1.72

Intersection hypothesis H_{ 1 3 }:
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Stage 1 Stage 2

Conditional error 0.0260000 0.05

Upper boundary 2.2100000 2.06

Lower boundary 0.7864987 2.06

Intersection hypothesis H_{ 2 3 }:

Stage 1 Stage 2

Conditional error 0.0260000 0.05

Upper boundary 2.2100000 2.06

Lower boundary 0.7864987 2.06

Intersection hypothesis H_{ 1 2 3 }:

Stage 1 Stage 2

Conditional error 0.0260000 0.05

Upper boundary 2.3600000 2.23

Lower boundary 0.7864987 2.23

R> m2.best

Design parameters for a 2 stage trial with 3 treatments

Stage 1 Stage 2

Cumulative sample size (control): 76 152

Cumulative sample size per stage (treatment 1 ): 38 76

Cumulative sample size per stage (treatment 2 ): 38 76

Cumulative sample size per stage (treatment 3 ): 38 76

Maximum total sample size: 380

Intersection hypothesis H_{ 1 }:

Stage 1 Stage 2

Conditional error 0.0260000 0.05

Upper boundary 1.9400000 1.71

Lower boundary 0.7864987 1.71

Intersection hypothesis H_{ 2 }:

Stage 1 Stage 2

Conditional error 0.0260000 0.05

Upper boundary 1.9400000 1.71

Lower boundary 0.7864987 1.71

Intersection hypothesis H_{ 1 2 }:

Stage 1 Stage 2
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Conditional error 0.0260000 0.05

Upper boundary 2.2100000 2.02

Lower boundary 0.7864987 2.02

Intersection hypothesis H_{ 3 }:

Stage 1 Stage 2

Conditional error 0.0260000 0.05

Upper boundary 1.9400000 1.71

Lower boundary 0.7864987 1.71

Intersection hypothesis H_{ 1 3 }:

Stage 1 Stage 2

Conditional error 0.0260000 0.05

Upper boundary 2.2100000 2.02

Lower boundary 0.7864987 2.02

Intersection hypothesis H_{ 2 3 }:

Stage 1 Stage 2

Conditional error 0.0260000 0.05

Upper boundary 2.2100000 2.02

Lower boundary 0.7864987 2.02

Intersection hypothesis H_{ 1 2 3 }:

Stage 1 Stage 2

Conditional error 0.0260000 0.05

Upper boundary 2.3600000 2.17

Lower boundary 0.7864987 2.17

B. A design with unexpected modifications

R> m2.update

Design parameters for a 2 stage trial with 3 treatments

Stage 1 Stage 2

Cumulative sample size (control): 75 228

Cumulative sample size per stage (treatment 1 ): 40 114

Cumulative sample size per stage (treatment 2 ): 35 35

Cumulative sample size per stage (treatment 3 ): 41 114
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Maximum total sample size: 491

Intersection hypothesis H_{ 1 }:

Stage 1 Stage 2

Conditional error 0.0000000 0.08843773

Upper boundary 1.9400000 1.73000000

Lower boundary 0.7864987 1.73000000

Intersection hypothesis H_{ 2 }:

Stage 1 Stage 2

Conditional error 0.0000000 0.06896401

Upper boundary 1.9400000 1.71000000

Lower boundary 0.7864987 1.71000000

Intersection hypothesis H_{ 1 2 }:

Stage 1 Stage 2

Conditional error 0.0000000 0.05613374

Upper boundary 2.2100000 1.92000000

Lower boundary 0.7864987 1.92000000

Intersection hypothesis H_{ 3 }:

Stage 1 Stage 2

Conditional error 0.0000000 0.0576666

Upper boundary 1.9400000 1.7900000

Lower boundary 0.7864987 1.7900000

Intersection hypothesis H_{ 1 3 }:

Stage 1 Stage 2

Conditional error 0.0000000 0.0510653

Upper boundary 2.2100000 2.1400000

Lower boundary 0.7864987 2.1400000

Intersection hypothesis H_{ 2 3 }:

Stage 1 Stage 2

Conditional error 0.0000000 0.04326494

Upper boundary 2.2100000 1.90000000

Lower boundary 0.7864987 1.90000000

Intersection hypothesis H_{ 1 2 3 }:
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Stage 1 Stage 2

Conditional error 0.0000000 0.04115919

Upper boundary 2.3600000 2.22000000

Lower boundary 0.7864987 2.22000000
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