Accepted Manuscript

Robust sparse representation based multi-focus image fusion with
dictionary construction and local spatial consistency

Qiang Zhang, Tao Shi, Fan Wang, Rick S. Blum, Jungong Han

PII: S0031-3203(18)30213-9

DOI: 10.1016/j.patcog.2018.06.003
Reference: PR 6577

To appear in: Pattern Recognition

Received date: 31 October 2017

Revised date: 8 May 2018

Accepted date: 1 June 2018

Please cite this article as: Qiang Zhang, Tao Shi, Fan Wang, Rick S. Blum , Jungong Han , Robust
sparse representation based multi-focus image fusion with dictionary construction and local spatial
consistency, Pattern Recognition (2018), doi: 10.1016/j.patcog.2018.06.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.patcog.2018.06.003
https://doi.org/10.1016/j.patcog.2018.06.003

Highlight

1
1
1
1
1

A RSR model is introduced for multi-focus image fusion.

Local consistency among adjacent patches is considered in the fusion method.
A dictionary is constructed for RSR by using firow-sparsityo constraint.

The fusion method introduces few spatial artifacts to the fused image.

The fusion method has high computation efficiency.
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Abstract: Recently, sparse representation-based (SR) methods have been presented for the fusion of multi-focus images.
However, most of them independently consider the local information from each image patch during sparse coding and fusion,
giving rise to the spatial artifacts on the fused image. In order to overcome this issue, we present a novel multi-focus image
fusion method by jointly considering information from each local image patch as well as its spatial contextual information during
the sparse coding and fusion in this paper. Specifically, we employ a robust sparse representation (LR_RSR, for short) model
with a Laplacian regularization term on the sparse error matrix in the sparse coding phase, ensuring the local consistency among
the spatially-adjacent image patches. In the subsequent fusion process, we define a focus measure to determine the focused and
de-focused regions in the multi-focus images by collaboratively employing information from each local image patch as well as
those from its 8-connected spatial neighbors. As a result of that, the proposed method is likely to introduce fewer spatial artifacts
to the fused image. Moreover, an over-complete dictionary with small atoms that maintains good representation capability, rather
than using the input data themselves, is constructed for the LR_RSR model during sparse coding. By doing that, the
computational complexity of the proposed fusion method is greatly reduced, while the fusion performance is not degraded and
can be even slightly improved. Experimental results demonstrate the validity of the proposed method, and more importantly, it

turns out that our LR-RSR algorithm is more computationally efficient than most of the traditional SR-based fusion methods.

Key words: multi-focus image fusion, robust sparse representation, dictionary construction, spatial contextual information, spatial
consistency.
1. Introduction

Due to the limited depth of field of optical lenses in conventional cameras, it is not often possible
to obtain an image that contains all of the relevant objects in focus [1, 2]. As shown in Fig. 1, this issue
can be effectively addressed by multi-focus image fusion, in which several images with different focus
points (e.g., Fig. 1 () and Fig. 1(b)) are combined into a composite image (e.g., Fig. 1(c)) with
full-focus.

Suppose at least one of the input images provides a focused version of the scene, the focused
regions can be extracted from the given multi-focus input images and then preserved in the fused image,
while all of the defocused regions should be discarded [1]. In addition, the fusion algorithm should not

introduce any spatial artifacts or inconsistencies into the fused image. Finally, the fusion algorithm
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should have high computational efficiency, thereby facilitating real-world applications. In this paper,
we will address the fusion of multi-focus images by using a robust sparse representation (RSR) model
with dictionary construction and local spatial consistency, specifically designed to have high spatial

consistency and computational efficiency.

Fig. 1. llustration of multi-focus image fusion. (a) Source image with focus on the flower; (b) Source image with focus on the

clock; (c) Fused image with full-focus.

So far, many sparse representation-based (SR) methods have been presented for the fusion of
multi-focus images [1, 2, 3, 4, 5, 6, 7, 8, 9]. A thorough review of these methods can be found in [10].
Rather than being fixed in advance as those in the traditional multi-scale transforms (MSTs), most of
the over-complete dictionaries in SR are learned from a set of training images using some learning
methods, such as K-SVD [11]. Compared with the fixed basis functions, these over-complete
dictionaries contain richer basis atoms and are able to achieve more meaningful and stable
representations of the source images. For this reason, SR-based image fusion methods generally
outperform the traditional MST-based image fusion methods from both subjective and objective aspects
[3, 4].

However, most of the existing SR-based fusion methods advocate the patch-based implementation.
More specifically, each image patch is individually taken into account during sparse coding and fusion,
giving rise to the spatial artifacts on the fused image. In order to reduce the spatial artifacts, a sliding
window technology [3] is often employed in these methods, where the input images are divided into a
larger number of patches overlapped with a fixed number of pixels (usually one pixel) along the
horizontal and vertical directions, respectively. Owing to the overlap among image patches, the number
of input patches to be fused is greatly large, which results in a huge requirement of memory storage and
increase of computational complexity. In addition, some detailed information will be unavoidably lost
in the fused image because of the overlap [1, 5].

In fact, images have strong local correlations among spatially adjacent patches. More precisely,

for a multi-focus image, the spatially adjacent image patches are always synchronized in the sense that



these patches are either all in-focus or are all out-focus in most cases. Motivated by the observation, the

contextual information among spatially adjacent patches, instead of the sliding window approach, is

employed to reduce the spatial artifacts of the fused image in this paper. In addition, we pay special
attention to reducing the computational complexity of the proposed method in order to improve its
utility for real world applications.

To this end, we employ a robust sparse representation (LR_RSR, for short) model with a
Laplacian regularization term on the sparse error matrix during the sparse coding phase, which
adequately considers the local consistency among the spatially-adjacent image patches. In the
subsequent fusion process, we collaboratively employ information from each local image patch as well
as those from its spatial neighbors to determine the focused and de-focused regions in the multi-focus
images. By doing that, the spatial artifacts in the fused image may be obviously suppressed. Moreover,
owing to the joint use of sparse errors from multiple spatially adjacent patches, a non-overlapping
division of input images, rather than an overlapping division way as in most of SR-based fusion
methods, may be adopted during the fusion process. This greatly reduces the requirement of memory
storage and computational complexity of the proposed fusion method.

In addition, we will employ a learned dictionary with only a fixed small number of atoms but
maintaining good representation capability, rather than the input data themselves as in [1], for the
LR_RSR model during sparse coding. This will further greatly reduce the computational complexity of
the proposed method, while the fusion performance is not degraded and even slightly improved.
Experimental results demonstrate that the proposed method introduces fewer spatial artifacts to the
fused images than most state-of-the-art methods. Especially, it is also shown to have higher
computational efficiency than some traditional SR-based fusion methods.

In summary, the main contributions of this paper are as follows.

(1) We present a multi-focus image fusion algorithm based on a robust sparse representation (RSR)
model, in which the spatial consistency among image patches is adequately considered during
sparse coding and fusion. This is clearly different from most of the existing SR-based fusion
methods, which usually treat each image patch independently.

(2) We employ a robust sparse representation (LR_RSR) model with a Laplacian regularization on the
sparse error matrix during sparse coding. To the best of our knowledge, it is the first time that the

Laplacian regularization is incorporated to SR-based image fusion. Moreover, we construct an



over-complete dictionary with small atoms while maintaining good representation capability for

the LR_RSR model.

(3) We jointly employ local information (i.e., sparse reconstruction errors obtained by LR_RSR) of
each image patch along with those from its spatially adjacent neighbors to determine the focused
and defocused regions within an input multi-focus image during the fusion process.

The rest of the paper is organized as follows. Section 2 briefly reviews the SR-based fusion
methods. Section 3 details the dictionary construction for RSR model. Section 4 describes the proposed
fusion method in detail. Experimental results and conclusions are given in Section 5 and Section 6,
respectively.

Notations
Throughout the paper, a vector is denoted by a lower-case letter, and a matrix is denoted by a

capital letter. All elements of vectors and matrices are real-valued. Given a vector x and a matrix X,

some notations used in this paper are listed in Table 1.

Table 1. List of vector and matrix related notations.

Symbols Definition

x(i) the i-th entry of the vector x

X (i, J) the (i, j) -th entry of the matrix X

X(i,) the i-th row of the matrix X

X0 the j-th column of the matrix X

Il I-norm of the vector x, i.e., ||x|, :,,ai X2 (i)

HX Ho,z lo2-norm of the matrix X, i.e., the number of the non-zero rows in the matrix X
X1, I o-norm of the matrix X, i.e., X[, =&, faj X2, j)

HX Hz‘o I, 0-norm of the matrix X, i.e., the number of the non-zero columns in the matrix X
X1 I,1-norm of the matrix X, i.e., X[, = aj a X i

X1l Frobenius-norm of the matrix X, i.e., |X], = fa” X2, j)

X1, |, -norm of the matrix X, i.e., the maximum absolute value of the entries in the matrix X
((‘j)T transpose of a vector or a matrix

2. Related work

To date, numerous fusion algorithms have been presented for multi-focus images [12, 13, 14],
wherein multi-scale transform-based (MST-based) image fusion algorithms are one of the most popular
choices [15]. Various MST-based fusion methods have been discussed over the years, ranging from the
early wavelet [16] and pyramid [17] transforms to the recently developed multi-scale geometric
analysis approaches, such as curvelet [18], contourlet [19], and shearlet [20].

As a result of several successful applications in computer vision and image processing, sparse



representation (SR) has also attracted more attention in multi-sensor image fusion, including
multi-focus image fusion, in recent years [1-9, 21-24]. For example, in [3], Yang and Li first introduced
SR [25] into image fusion, where the |,-norm of the SR coefficient vector (i.e., the sum of the absolute
values of SR coefficients) was employed as the activity level for each local image patch and the fused
image was constructed using a maximum selection fusion rule. A SR model with dictionary learning
was presented for multi-focus image fusion in [2], where the correlation between the sparse
representation coefficients of input image patch and the pooled features obtained in the dictionary
learning phase, instead of the simple |, - orl,-norm of the representation coefficient vector, was used
as the activity level. In [4], a general image fusion framework was presented by combing MST and SR
to simultaneously overcome the drawbacks of the MSR-based and SR-based fusion methods. They also
presented an adaptive SR (ASR) model for simultaneous image fusion and denoising [21]. In [6], a
group sparse presentation (GSR) model was presented to exploit the intrinsic structure among the
atoms in different groups and applied to medical image fusion, where the non-zeros elements are forced
to occur in clusters (i.e., group-sparsity) rather than appear randomly. Almost all these SR-based fusion
methods are performed in a patch-based way. Alternatively, a newly merged convolutional SR (CSR)
model was introduced to image fusion [5], which aims to achieve the SR of an entire image rather than
a local image patch.

In [1], a robust SR (RSR) model was first presented to extract the detailed information in a set of
multi-focus images by using a so-called sparse reconstruction error, instead of the conventional
least-squared reconstruction error. Then a multi-task RSR (MRSR) model was presented for
multi-focus image fusion by imposing a joint constraint on the reconstruction errors across all tasks. In
the MRSR-based fusion method, information from each local image patch and those from its spatial
neighbors (referred to as its spatial contextual information) were collaboratively employed to
determine the focused and de-focused regions. Owing to the use of spatial context, block artifacts in the
fusion results are greatly reduced and sometimes can even be eliminated.

Despite its great advances in terms of the performance, MRSR is computationally expensive,
especially when the number of spatially adjacent patches of each image patch gets increased. In
addition, the data is directly employed as the dictionary in the MRSR model. With an incremental size
of each input image, the computational complexity of MRSR increases again, eventually leading the

fusion algorithm to be computationally unaffordable for real world applications.



Similar to that in [1], we also consider the spatial context among image patches during the fusion
process in this paper. But differently, we pay special attention to reducing the computational
complexity of the proposed fusion method.

3. Dictionary construction for RSR model

Owing to the obvious superiority of RSR over the traditional SR [25], we also employ the RSR
model [1] to achieve the sparse coding of each image patch. In addition to the RSR model, the
employed over-complete dictionary also plays an important role for the fusion performance and
computation efficiency of a multi-focus fusion method. In [1], the data themselves were simply
employed as the dictionary during the sparse coding. Despite its excellent performance, the downside
of such an approach is that the computational burden can be excessive for larger images if the number
of dictionary atoms is propositional to the image size.

Alternatively, we will present a simple but efficient dictionary construction method for RSR. For

that, we will first construct a set of data samples (or image patches), denoted by a matrix

of size n2N, which are randomly selected from a set of training images.
Here, n denotes the dimension of each data sample and N denotes the total number of image
patches. Each column y, TR" of the matrix Y represents a data vector (i.e., a training image patch).
Then we will find an optimal subset of the data samples set Y , rather than the whole set Y , to form
the dictionary D =[y, ¥ ...y, JIR™ where i,i,,...i, 1{1,2,..,N}, such that any column from

Y can be well reconstructed by the subset D .
We will achieve this goal by first formulating the problem as the following robust "row-sparsity"
optimization problem, similar to that in [26].

rTX1’iEn||X||0’2 +1|E[,, st Y=YX+E. 1)

Here, X =[X,X,,...Xy]TR"™ is the representation coefficient matrix to be sought, and each of its

columns X T R" denotes the representation coefficients for the data y;. Note that YX denotes the

authentic information contained in the data samples Y . E TR™" is the sparse error matrix and

denotes the corruptions or outliers within the data samples Y . The parameter />0 is to balance the
effects of the two components in (1) and is experimentally set to 30 in this paper.

Similar to that in [27], the input training image patches themselves are also employed as the



dictionary in (1). However, the goal of [27] is to achieve the sparse coding for the input data using a |, -
or I; -norm minimization constraint, while our goal is to construct a dictionary for the RSR model by
selecting only a small number of image patches with sufficient representation capability from the input
training patches. Therefore, a "row-sparsity” (i.e., lo,-norm minimization) constraint is employed in
2).

When solving (1), the optimal solution of the representation coefficient matrix X~ may be
incentivized to have some fizerosd rows because of the firow-sparsityo (i.e., lo,-norm minimization)
constraint, which means that the corresponding data samples in the matrix Y are not used to reconstruct
any data samples during the coding and thus cannot be selected as the dictionary atoms. In contrast, the
data samples corresponding to the finon-zeroso rows in the matrix X~ have been used to reconstruct
the other data samples. In fact, those data samples corresponding to the rows with larger energies (i.e.,
those row vectors with larger I,-norm values) get higher weights during the coding phase, and can thus
be deemed to be more important. Therefore, we will select those data samples corresponding to the row

vectors of the optimal matrix X~ with the M largest I,-norm values as the dictionary atoms, i.e.,

D=1y, ¥, %, 1 With  [XCDL 2[X G, 22X G 2|

XGR), J s bipendy . Here,  we

experimentally set M to 128 or 256, which is far smaller than the total number of data samples N .
Next, we discuss the details of solving (1), which is a non-convex optimization problem and can
be relaxed to the following convex one

min|X|,, + 7[E],, st Y =YX+E. 0

The optimization problem in (2) is convex and can be solved by various methods. Here, we adopt the
linearized alternating direction method with an adaptive penalty (LADMAP) [28, 29] considering that
LADMAP has high computational efficiency and a convergence guarantee for such convex
optimization problems as in (2). In addition, LADMAP can also ensure each sub-problem mentioned in
(2) to have a closed-form solution. In LADMAP, an augmented Lagrangian function is first constructed

by introducing a Lagrange multiplier to remove the equality constraint as

. m
=], + F]E],, +(V.Y X ~E)+ 2|y -vx - Ef
2 : 3)
m
+

= min|x|,, + [E],, + 2

HY “vx —E+Y
m

F

where V is a Lagrange multiplier and m is a penalty parameter. <A, B) denotes the Euclidean inner



product of the matrices A and B. Then the objective function in (3) is alternately minimized with
respect to X and E, respectively, by fixing one or the other. Algorithm 1 gives the optimization

algorithm for dictionary construction.

Algorithm 1: Optimization of RSR with firow-sparsityd constraint

Input: Sampling data and parameter /
Output: Representation coefficient and error matrices X and E
Initialize®: , , , , ,e=10"
while not converged do

(1) Fix X and update E:

) i ) il ) if?
et =min J|E], + v -vx B+ | =minLjg], + ]y -vxi-E+ Y @)
E 12 mi. EomT 2 m|.
This sub-optimization problem has the following closed-form solution [30]:
&(|G (i), - 11 m') _
g o N—2——LG(,i), if||GC)|, 24/ m
EMG)=1 GG, D, |GG, : ®)
:' 0, otherwise
oy
where G=Y -YX' +V—j .
m
(2) Fix E and update X:
- m i 41 v/ 2_ - £
X1 =min|X],,+ 2l -YX! -EF s F-TmeHm (X)), ®)

j ) ) il
where f(X)=""|v -yx-gin+ Y
2 m

. To solve (6), the quadratic term f (X) can be replaced by its first order
e

approximation at the previous iteration by adding a proximal term [31], i.e.,
B, f(x!)[
hm’

b

2

xj*lzrginuxumﬂ%”’j“x-XJ'HZF+<DXf(xi),x-xi>:mxionHL2+ X - X1+ NG

E

where /1 issetto A=|Y|l asin [31]. D, f(X') is the partial differential of f(X)with respect to X, and is

o BRVIT: . .
computed by D, f (X ’) =mYTaYX! =Y +E" - 56 Then (6) has the following close-form solution [30]:

¢
63 . 190
TelHG, -7 5o 1
X (i) = - “H(,), if|HG,)), 2 , 8
( ) : HH(I,:) ‘2 H Hz hmi ( )
[ 0, otherwise
. -
where H=X1-2yTgyxi-y+Ein- Y3
h ¢ m
(3) Update the multiplier V: V" =Vi+p (Y —YX o Ei*l)
@) Update :m™=min(rm' m,,)
(5)  Check the convergence conditions: [ -YX ™ - £/ F/HYHF te X=X celEM-E ce

end while

4. RSR-based multi-focus image fusion with local spatial consistency

In this section, we will first present a RSR model with Laplacian regularization (LR_RSR, for
short) considering the local spatial consistency among image patches and then discuss how we apply it
to the fusion of multi-focus images.

4.1 RSR with Laplacian regularization (LR_RSR)

"The initial values of these parameters are set as suggested in [30].



Given the over-complete dictionary D TR™ constructed in the previous section, the existing

RSR model in [1] can be computed by

nX],iQ X[, + I||E||2’0 st. Y=DX+E, 9

where is the observed data matrix (e.g., a multi-focus image in this paper),

and each of its columns is a data vector (e.g., an image patch) y, IR". X TR and E™ denote

the representation matrix and error matrix, respectively.

Y = DX + E

Fig. 2. lllustration of the decomposition of RSR on a multi-focus image (Credit to [1]). Y denotes an image focused on the

flowerpot. DX denotes a fully defocused version of the original and E contains the details of the flowerpot.

The RSR model in (9) can be directly applied to the fusion of multi-focus images similar to many
of the traditional SR-based fusion methods. Especially, as shown in Fig. 2, a multi-focus image can be
decomposed into a blurred or fully-defocused entity plus a detailed entity, denoted by the reconstructed
matrix DX and the error matrix E , respectively, by using the RSR model. In other words, the error
matrix E, rather than the representation coefficients, contains the high frequency details in the
multi-focus image and can thus be used to determine the focus measure of each multi-focus input
image [1].

However, as shown in (9), the traditional RSR model considers each local image patch
independently with no consideration of the local spatial consistency among image patches. As a result
of that, some spatial artifacts will be easily introduced to the fused image in the subsequent fusion
processing. In fact, images have strong local correlations among spatially adjacent patches. More
exactly, for a multi-focus image, the spatially adjacent image patches have similar focus information,
i.e., these patches are all in-focus or are all out-focus in most cases. Accordingly, they will also have
similar sparse errors in the RSR model.

Motivated by the above observation, we present a new sparse representation model (LR_RSR, for



short) by integrating a Laplacian regularization with respect to the sparse error matrix with the
traditional RSR model in this paper as

min IX|l, + £[E|,, + Ltr(ELET) st. Y =DX+E, (10)
where f and /, are two positive trade-off parameters to balance the three components. The
Laplacian regularization term tr(ELE") is defined by

tr(ELET):%é”"E(:,i)—E(:,j)||§ W, . (11)

The weight w; implies the similarity between the i-th and j-th image patch and is computed by

£ oy
exp-1 120 if y andy. are spatially adjacent
Wij:{Ir P a2 0 y, andy, are spatially adj _ 12)
T ¢ B
T 0, otherwise

S is a scalar parameter and is experimentally set to /0.5 in this paper. Based on these weights, an
affinity matrix W TR"™ with W(i,j)=w; and a diagonal degree matrix D"™ with
D(i,i) = éjW(i, j) are constructed. Then the Laplacian matrix L in (11) is computed by L=D-W .

In general, the spatially adjacent patches with similar appearances will have similar representation
coefficients as well as sparse errors in the RSR model. Accordingly, it might be more reasonable to
introduce two Laplacian regularization terms with respect to the representation coefficient matrix and
the sparse error matrix in (10), respectively. However, in this paper, the focus information of each local
patch in a multi-focus image is determined by its sparse errors rather than its representation coefficients.
Therefore, in (10), only one Laplacian regularization term with respect to the sparse error matrix is
introduced for simplicity.

The Laplacian regularization with respect to sparse error matrix in the proposed LR-RSR model

ensures the local consistency among the spatially-adjacent image patches. More specifically, each

column vy, inthe observed matrix Y in (10) denotes an image patch to be considered when LR-RSR
is applied to multi-focus image fusion in our revised manuscript. The corresponding column E(;,i) in
the error matrix E denotes the sparse error for the i-th image patch. As shown in (12), if two spatially

adjacent image patches y, and Y; have similar appearances, the weight

¢, Wwill be assigned to a

high value. Then the difference between E(:,i) and E(:, j) will be forced to be a small value by

minimizing the Laplacian regularization term tr(ELE") in (10). In the subsequent fusion process, the



two image patches will thus be seen as both in-focus or both out-focus. As a result of that, the spatial

artifacts introduced into the fused image will be reduced to some extent.

Algorithm 2: Optimization of LR_RSR using LADMAP

Input: Observed data , over-complete dictionary D, and parameters /Z, , /,

Output: Representation coefficient and error matrices X and E
Initialize: , , , , ,e=10°

while not converged do
(1) Fix E and update X:

2

X =min|X| N VT =min|X], + g(X)
X 1 9 m . X 1 g !

2

j Syl
where g(X)=i Y -DX - E’ +V—,
2 m

E

(15)

. Similar to that in solving (6), this sup-optimization problem can be solved by

replacing the quadratic term g(X) with its first order approximation at previous iteration and a proximal term, i.e.,

. 2
. am 2 o am B,g(x’)
X% = min| X, + = Hx-XJHF+<ng(x1),x—xl>_mmexH1+Tx-x1+7
i =Y I? I J—JTéJ J+1Vj(.~?
where f, is setto A =|Y|, and ng(X ) is computed by ng(X )—mD 2DX'-Y+E g
Q +
has the following closed-form solution [32]:
) a 3 ) ) )
XJ=s | gX D EDX) -y +EM -8,
e Mg m 3

where the threshold function S,(x) is defined as
éx-t, ifx>t
S,(\)=1x+z, ifx<-t.
? 0, otherwise

(2) Fix X and update E:

N 112
e = min AL+ L(ELE") + T -0x -+ | =minlel, +h@),
F

. YA
J J
where h(E) = Ltr(ELE") +%HY -DX'"-E +Lj
m

E

1
+=
2

S\ 112
E™ = min 4[], +%HE - EJ’Hi +<DEh(E"), E- Ei> = mEinhL:HEHM E-E! +DEr;7(ZEJ)

E

(1)

. Thus it

(1"

(18)

19)

. Similarly, this sub-optimization problem can be solved by

(20)

where A, is set to h2:1.02(212\\L\\i+/77]) as suggested in [33]. DEh(E’) is computed by

D hEN=2LEL-m %Y -DX'™-E! +VF;'8 . Thus it has the following closed-form solution [30]:
Sl 71
E"G0) =§WQ“)‘ "IQCOL= 4 1n, (21)
:’ 0, otherwise
where Q=E! —LEh(Ej) .
hZ
(3) Update the multiplier V: V" =VI+n/ (Y -DX ™™ -E}")
(4) Update : m*"= min(r/77J . mmax)
(5) Check the convergence conditions: HY -DXM-gi" F/HY | ee X=X ’HD ¢ e,HE“1 - EJHE te
end while
Similar to the case in the previous section, the non-convex optimization problem in (10) can be

solved as follows. First, it is relaxed to the following convex problem



min X[, + #|E[,, + £tr(ELE") st Y =DX+E. (13).

Then an augmented Lagrangian function is constructed by introducing a Lagrange multiplier to remove

the equality constraint as

. m
I =min| X+ £ [E],, + £tr(ELET) + (V.Y - DX - )+~ - DX - E|L

2 : (14)
vV DX -E+2

. m
= min X[, + £ |E],, + Lir(ELE)+ :

2

F
Finally, the optimization problem can be solved by using the LADMAP method [28, 29]. Algorithm 2
provides the optimization of LR_RSR in detail.

Fig. 3. Illustration of the validity of the Laplacian regularization term in the LR_RSR model. (a) An image with focus on the

flower; (b) Sparse errors obtained using the traditional RSR model; (c) Sparse errors obtained using the LR-RSR model.

Fig.3 illustrates the validity of the Laplacian regularization term in the LR_RSR model. As shown
in Fig. 3(b), parts of the clock regions also have higher sparse errors by using the traditional RSR
model in addition to the flower regions. As a result of that, parts of the clock regions in Fig. 3(a) will be
mistakenly determined to be in-focus in the subsequent fusion process by using the RSR model, thus
introducing some spatial artifacts to the fused image. In contrast, as shown in Fig. 3(c), only the
focused flower regions are forced to have high sparse errors and will be determined to be in-focus by
using the LR-RSR model.

Furthermore, the introduction of the Laplacian regularization does not increase the computational
complexity of the LR_RSR model. Similar to the traditional RSR, the major computational complexity

of LR_RSR is the updating of the matrix X in (16), which requires computing the product of three



matrices. As a result, LR_RSR has the same computational complexity as RSR. MRSR may also

ensure the spatial consistency among image patches to some extent by imposing a joint sparsity

constraint (i.e. l,,-norm minimization) on the reconstruction errors across all tasks. However, the joint

sparsity constraint increases the computational complexity of MRSR.
More specifically, suppose the data matrix Y and dictionary D have sizes of n3N and

n3M , respectively. Then the coefficient matrix X has size M 3N . Thus, the computational
complexities of RSR and LR_RSR are both O(rnNM?) by further considering the number of
iterations r needed for convergence. While, the computational complexity of MRSR is about
O(rnKNM?) | where K denotes the number of spatially adjacent patches for each image patch to be

considered. Here, the number of dictionary atoms M, for all types of features in the MRSR model are
assumed to be the same, i.e., M, =M, =---=M,_, =M . For this reason, we will apply LR_RSR to
multi-focus image fusion in the following subsection.
4.2 Multi-focus image fusion based on LR_RSR

In this subsection, we will discuss the proposed multi-focus image fusion method in detail. In
addition to LR_RSR, we will define a new focus measure by jointly employing information (i.e., the
sparse errors obtained by LR_RSR) from each image patch along with information from the
spatially-adjacent neighbors in the proposed fusion method to further reduce the introduction of spatial

artifacts in the fused image.
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Fig. 4. Diagram of the proposed fusion method.

Given the two input multi-focus images 1, and I; that are assumed to have been well



registered, the diagram of the proposed multi-focus image fusion algorithm based on LR_RSR is

shown in Fig. 4 and described as follows.

(1) Divide the input images 1, and I into N non-overlapping image patches of the same
size p,3p, pixels. Then two sets of image patches {IiA [i=0,4,...,N —l} and
{IiB [i=0,1,..,N —1} are obtained from images 1, and I, respectively.

(2) Re-order each image patch as a vector of dimension d = p,3p, and construct the data

matrices Y, =&Y\ Yy Yuafl @nd Yg =8Y5, V.. Ynafj for images 1, and Iy, respectively.

A B

and y; are vectors corresponding to the i-th image patches 1" and I,

Y, . of images |, and
I, respectively.
(8) Perform LR_RSR on Y, and Yg, respectively, using Algorithm 2 and then obtain their

corresponding representation coefficient matrices X,, X and error matrices E,, E;. In this step,

a globally-trained dictionary D is employed, which is constructed from a set of training image patches
by using Algorithm 1. As well, each image patch and one of its 8-connencted neighbors are seen as a
pair of spatially-adjacent image patches during the computation of Laplacian regularization in (10).

(4) Define a decision map (i.e., a matrix) C with the same size of source images by using the

sparse errors E, and E;. The values of the entries in the matrix C are in the range of [0,1]. /il0
indicates that the fused pixels are directly selected from the source image 1, , while fi00 means that
the fused pixels are directly selected from the source image |, . Otherwise, the fused pixels are the

weighted average of the source images |, and I;. This step is one of the most important
components in the proposed fusion method and will be further discussed soon in detail.

(5) Construct the finally fused image |- by using the decision map C as
I (mn)= IA(m,n)C(m,n)+IB(m,n)(l—C(m,n)), (22)
where 1. (m,n), 1,(m,n) and I,(m,n) denote the pixel values of the fused image I, input

image and input image 15 in location (m,n), respectively. Correspondingly, C(m,n) denotes



the (m,n) -th entry of the matrix (or the decision map)

In the following content, we will discuss the determination of the decision map in detail.

First, define an initial decision map Cj of the same size |, or I, and divide the decision
map Cj into N patches of size p,=3p, by using the same way as that in the division of source image
or ;. Then obtain a set of decision map patches or sub-matrices {Cii [i=01..,N —1} .

Secondly, assign each of its entries Cj(m,n) in the i-th decision map patch C; to fi10 or fi00 by

A
I i

comparing the focus measure value ,oiA of image patch with the focus measure value piB of

B
I i

image patch as

o e A
cimmy =5 PP

L (23)
i0, otherwise

Here, the focus measure value p;" is patch-based and is jointly determined by the sparse errors of

A
I i

image patch as well as its 8-connencted spatial-adjacent neighbors, denoted by G(1), as follows

PL =G, + &gy [EAG D (24)
Accordingly, the focus measure value p° is determined by using the same way, i.e.,

PP =IEa 0], * & piefEa .- @9
It should be noted that the sparse errors of current image patch and its spatially-adjacent neighbors,

instead of the only sparse error of current image patch, are jointly employed to define the focus

measure in (24) and (25). This will reduce spatial artifacts, as shown in Fig. 5(e).

Thirdly, reconstruct the decision map Cji by adding the patches{Cii [i=0,1,...,N —1} to Cj at

their original spatial positions in  Cj. This can be seen as the reverse process of the division of Cj.
Fourthly, refine the decision map Ci by removing some "holes" with small areas to obtain a new
decision map . Although the introduction of local consistency can reduce the artifacts to great
extent, some isolated regions in-focus are still inevitably mistaken as de-focused ones. Similarly, some
isolated regions out-focus are also mistakenly labeled as the focused ones. As a result of that, there will

be some "holes" in the decision map Cj. In this paper, those connected regions in Ci whose



numbers of entries are less than 5% of the total number of pixels in the input image are seen as isolated
regions and are thus removed. This is simply achieved by re-assigning the entry values within these

isolated regions as 1 minus their original values. The new decision map is thus computed by

é1-Ci(m,n), if (mn)TY,

Cii(m,n) =
i(mn) :'Ci(m,n), otherwise

(26)

where Y, denotes the isolated regions in the decision map Cj.

Finally, define some transitional regions between the focused regions and the defocused regions,
and then construct the final decision map . According to the decision map Cii, each input image

can be simply divided into two types of regions, i.e., focused regions and de-focused regions. For

example, i10 means focused regions while 06 means de-focused regions for image |, . In contrast, filo

and fi00 mean de-focused regions and focused regions, respectively, for image |, . However, as

discussed in [34], the de-focused imaging system can be characterized by a low-pass filtering system.
This indicates that it is a gradual process, rather than an abrupt process, from the focused (or
de-focused) regions to the de-focused (or focused) regions. In other words, it is reasonable to define a
transitional region between a focused region and a defocused region.

Therefore, in this paper, we will divide each multi-focus input image into three types of regions

(i.e., focused, de-focused and transitional regions), instead of two types of regions. We simply take
those patches in the decision map Ciji as transitional regions, denoted by ., , whose entries values

are different from those of one of its 8-connected spatial neighbors. For these transitional regions, the
fused image is computed as the weighted average of source images, instead of being simply selected
from one of the source images. Here, the weights are also computed by using the focus measure values

of these source image patches. Then the final decision map C is determined by

é 1 ifp2p® & (mn)T
1 A
_1_hi i
C(m,n) _%PiA el (mn)T : (27)
T o if o <pf & (mn)T

where the index i in p” or p° is determined by the index of image patch 1 or I° that the

location belongs to. By using the final decision map C, the fused image can be obtained by

using (22).



Fig. 5. lllustration of decision maps obtained by different methods. (a) Source image with focus on the dclocké; (b) Source image
with focus on the dstudentd; (c) 6ldeald decision map; (d) Decision map obtained by using the sparse error of each single image
patch; (e) Decision map Ci obtained by using the joint sparse errors of each image patch and its neighbors, i.e., (23); (f)
Decision map Ciji obtained by performing éremoving holeso on (e), i.e., (26); (g) Final decision map C by using (27), in

which the gray regions denote the transitional regions.

Fig. 5 illustrates the decision maps obtained by different methods. As shown in Fig. 5(d), there are
many isolated patches or fiholeso in the decision map obtained by using the sparse error of each single
image patch. In contrast, as shown in Fig. 5(e), these fiholeso are greatly reduced by using the joint
sparse errors of each image patch and its spatially-adjacent neighbors. This demonstrates the
effectiveness of the proposed focus measures defined by (24) and (25). By further removing the
remaining fiholeso or isolated patches, the decision map can be closer to the éideald decision map.

4.3 Computational Complexity of the proposed fusion method
The computational complexity of the proposed fusion method is fully dependent on that of the

LR_RSR model. As discussed in Subsection 4.1, the computational complexity of LR_RSR is
O(rnNM?), where M and N denote the numbers of the dictionary atoms and input image patches,
respectively. n denotes the dimension of the dictionary atoms or input data. r is the number of iterations
needed for convergence. Accordingly, the computational complexity of the proposed fusion method is
also O(rnNM?), which demonstrates that the number of dictionary atoms has a greater impact
on the computational complexity of the proposed fusion method than other parameters.

When RSR and MRSR are applied to multi-focus image fusion, the input data themselves are
simply employed as the dictionary in [1]. That is to say, the number of dictionary atoms M equals that

of the data (or the input image patches) N in the RSR-based and MRSR-based fusion methods. As a

result of that, the computational complexities of RSR and MRSR fusion methods in [1] are in fact



about O(rN®) and O(rnKN?®) , respectively. Here K denotes the number of spatially adjacent

patches for each image patch to be considered. In addition, the number of dictionary atoms (e.g.,
256 in this paper) is usually smaller than the number of image patches N (e.g., 1200 for an image of
size 3203240) in the proposed fusion method. Therefore, the proposed fusion method has greatly
higher computation efficiency than the RSR-based and MRSR-based fusion method.

More importantly, due to the non-overlapping division of input images, the number of image
patches N in the proposed fusion method is also much smaller than those (e.g., about 76800 for an
image of size 3203240) in the traditional SR-based fusion methods, including the RSR-based one in
[1], where an overlapping division way is usually adopted. Therefore, the proposed fusion method also
has higher computational efficiency than those traditional SR-based fusion methods. This will be
verified in the experimental part.

5. Experimental results and analysis

In this section, several sets of experiments are performed to verify the feasibility of the proposed
multi-focus image fusion algorithm based on the LR_RSR. First, we discuss the validity of the
constructed dictionary by using Algorithm 1. Then we discuss the impacts of some parameters on the
fusion performance. Finally, several pairs of multi-focus images from two public databases are fused
by using the proposed method and some state-of-the-art methods to demonstrate the validity of the
proposed method.
5.1 Validity of the constructed dictionary

Here, we will discuss the impacts of different dictionaries on the fusion performance to show the
validity of the proposed dictionary construction method. For that, 20,000 patches of size 838 are
first randomly selected from a set of images with high resolution to construct the training data. These

images are downloaded from http://rOk.us/graphics/kodak. Afterward, two sets of dictionaries with

different parameters are constructed by using Algorithm 1. One set of dictionaries ( D,_, , D,.;o, Dy s
D,3: Dyeso s Dyasos Dyepand D,y » for short, respectively) are constructed by using the same
number of atoms (i.e., M=256) but different values of the parameter 7 (i.e., /=1, 10, 20, 30, 40, 50,
70, 100, respectively). The other set of dictionaries ( Dy, ;55 » Dyzoss+ Dywzsiz v Duzioza @00 Dy oopsg -
for short, respectively) are constructed by using the same value of 7 (i.e., £=30) but different

numbers of atoms (i.e., M=128, 256, 512, 1024, 2048, respectively). Finally, the multi-focus images in



the previous Fig. 5(a) and Fig. 5(b) are fused using the proposed fusion method but with different
dictionaries constructed above. In addition, the dictionary with 256 atoms learned by using the K-SVD

method for the traditional SR model ( D, , for short) and the normalized data themselves ( D,,, , for

data !
short) are also compared with our constructed dictionaries.

In order to subjectively evaluate the fusion performance by using different dictionaries, a fully
focused ('ideal’) image I is first created by visually extracting the focused regions from input images
Fig. 5(a) and Fig. 5(b). Then the fused images are compared with the ‘ideal’ image by using the mean
square error (Emse) and the difference coefficients (dDC). Smaller Emse and dDC values indicate
higher fusion performance.

Table 2 and Table 3 present the fusion results obtained by using our proposed fusion method but
with different dictionaries. Table 2 shows that the fusion performance varies with the parameter /
and achieves the best when 7 is set to 30. Table 3 shows that better fusion performance can be
obtained when using our constructed dictionaries (i.e., the first 5 dictionaries in Table 3) than the

dictionaries D

data

and D, . Further, the dictionary D,,_,,, achieves the best fusion performance
among the mentioned dictionaries. This demonstrates that dictionaries with only a few atoms (e.g., 256),
carefully selected from among the 20,000 training data samples, have better representation capability
than dictionaries with more atoms. By imposing the "row-sparsity" constraint on the representation
coefficients, the data samples with the best representation capability can be selected from the training
data. In particular, the constructed dictionary D,,_,,, performs much better than the dictionary D, ,
although both of them have 256 dictionary atoms. This further demonstrates the effectiveness of our

proposed dictionary construction method.

Table 2. Fusion results using the dictionaries with different values of 7 .

Dictionary Dy D/ D/ D=0 Dy D=0 D=0 Do

Emse 24449 21839 21940 21929 22126 2.2205 2.2320 2.2344
dbC 0.0137 0.0128 0.0127 0.0127 0.0127 0.0128 0.0128 0.0129

Table 3. Fusion results using the dictionaries with different numbers of atoms M.

Dictionary | Dy D256 D=5z D102 D204 Dta Diso

Emse 21945 21929  2.2582  2.2966 25222 26676 3.0549
dbC 0.0128 0.0127 0.0129  0.0131 0.0138  0.0146 0.0150

5.2 Fusion parameter impacts
In this subsection, we still employ the input multi-focus images in Fig. 5(a) and Fig. 5(b) to test

the impacts of some parameters, including /£ and /£, in (10) or (13), in (12), and patch sizes



P, 3 p, , on the fusion performance.

Table 4. Fusion results by using the proposed method with different values of /Z, .

with £, =1,p, =Izpy =g s= \/(ﬁ 0.001 0.01 0.1 1 10 100 1000 10000
Emse 3.0279 27759 23954 21929 22105 2.3485 23535 2.9409
dDC 0.0154 0.0145 0.0135 0.0127 0.0127 0.0137 0.0138 0.0152
Table 5. Fusion results by using the proposed method with different values of s .
with L-4,-1p-p,-s | W2 03 0& 05 @5 67 10
Emse 29620 2.9613 2.3442 21929 23300 2.9573 2.9569
dDC 0.0151 0.0151 0.0133 0.0127 0.0132 0.0150 0.0150

Experimental results demonstrate that the fusion performance remains nearly unchanged when the
parameter /, is within the range of [0.001, 300]. When [/, is larger than 300, the fusion performance
will be greatly degraded. In contrast, the fusion performance varies continuously with the parameter

I, and is best when Z, is set to 1, which is shown in the Table 4. As shown in Table 5, the fusion

performance also varies with the parameter and achieves the best when is set to /0.5 .

Similar to those in the traditional SR and RSR fusion methods, better fusion results can be obtained

when the sizes of image patches are setto 838 . Therefore, we will set p, =p, =8, /£ =1/,=1 and

s=405 inthe following experiments.
5.3 Validity of the proposed fusion method

Several pairs of multi-focus images from two public databases are employed to thoroughly
demonstrate the validity of the proposed fusion method LR_RSR. Fig. 6 provides the ten pairs of
multi-focus  images  from  the  first database, which are  downloaded from

http://home.ustc.edu.cn/~liuyul. Fig. 7 illustrates the twenty pairs of multi-focus images from the

second database, which are downloaded from

https://www.researchgate.net/publication/291522937 Lytro Multi-focus _Image Dataset.

We will compare our proposed method LR_RSR with some state-of-the-art methods, including
SR [3], adaptive SR (ASR) [21], NSCT_SR [4], convolutional SR (CSR) [5], RSR [1], MRSR [1],
neighbor distance (ND) [12], NSCT [4], homogeneity similarity (HS) [35], image matting (IM) [36]
and deep convolutional neural network (DCNN) [37]. It should be noted that DCNN is a
deep-learning-based fusion method. The mutual information (MI) quality metric [38], gradient

preservation quality metric [39], two-phase congruency-based fusion quality metric ZN_CC [40]



and the Q.. metric [41] are employed to subjectively evaluate the different fusion methods. The
former two metrics MI and are used to evaluate the different fusion methods based on information
extraction, while the latter two metrics ZN_CC and Q. are used to evaluate different fusion methods

based on spatial consistency. Larger values of these metrics mean better fusion performance.

Fig. 6. Ten pairs of multi-focus images in the first database. The top row contains 10 input images with the focus on the left part,

and the bottom row contains the corresponding input images with the focus on the right part.

Fig. 7. Twenty pairs of multi-focus images in the second database. The first top row contains the first 10 input images with the
focus on the front part, and the second row contains the corresponding input images with the focus on the back part. The third
row contains the remaining 10 input images with the focus on the front part, and the bottom row contains the corresponding input

images with the focus on the back part.

Fig. 8 illustrates some fusion results on the first pair of multi-focus images in Fig. 6(al) and Fig.
6(b1) (i.e., Fig. 5(a) and Fig. 5(b)) obtained by using different fusion methods. In order to better
compare different fusion methods visually, in Fig. 9, we also provide the normalized difference images
[1] between each of the fused images in Fig. 8 and one of the input images in Fig. 6(b1).

As shown in Fig. 8, all of the fusion methods mentioned here seem to perform well for Fig. 6(al)
and Fig. 6(b1). However, a more careful comparison in Fig. 9 indicates that LR_RSR, DCNN and
MRSR perform better than others. As shown in Fig. 9(a) ~ Fig. 9(i), there are many residual errors
between each of the fused images and the input image Fig. 6(b1). This indicates that the fused images
obtained by these methods do not completely come from the focused regions of the input images and
thus introduce serious spatial artifacts, especially on the borders of the head of the student. In contrast,

the residual errors between each of the fused images obtained by the other three methods are greatly



