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Abstract

Dose-escalation trials commonly assume a homogeneous trial population to identify a
single recommended dose of the experimental treatment for use in future trials. Wrongly
assuming a homogeneous population can lead to a diluted treatment effect. Equally, ex-
clusion of a subgroup that could in fact benefit from the treatment can cause a beneficial
treatment effect to be missed. Accounting for a potential subgroup effect (i.e. difference
in reaction to the treatment between subgroups) in dose-escalation can increase the chance
of finding the treatment to be efficacious in a larger patient population.

A standard Bayesian model-based method of dose-escalation is extended to account
for a subgroup effect by including covariates for subgroup membership in the dose-toxicity
model. A stratified design performs well but uses available data inefficiently and makes
no inferences concerning presence of a subgroup effect. A hypothesis test could poten-
tially rectify this problem but the small sample sizes result in a low powered test. As
an alternative, the use of spike and slab priors for variable selection is proposed. This
method continually assesses the presence of a subgroup effect, enabling efficient use of the
available trial data throughout escalation and in identifying the recommended dose(s). A
simulation study, based on real trial data, was carried out and this design was found to be
both promising and feasible.
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and slab.
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1 Introduction

The aim of a dose-escalation trial is to identify the recommended dose of an experimental
treatment to be used in later phase trials investigating the treatment’s efficacy. To maximise
the treatment’s chance of success in efficacy trials, it is important that the recommended dose
is optimal for the patient population. Despite this, time restrictions mean that selection of the
recommended dose is often based purely on toxicity data which are available relatively soon
after treatment. The toxicity data upon which decisions are based is usually a binary indicator
of whether a patient experienced a dose-limiting toxicity (DLT) in their first cycle of treatment.

A common assumption in dose-escalation trials is that toxicity increases monotonically with
dose of the treatment. Since the recommended dose is chosen based only on toxicity data, an
implicit assumption is that increasing toxicity leads to increased efficacy of the treatment. Us-
ing a Bayesian model-based design for dose escalation, the optimal dose can be referred to as
the TD1006 [1]. That is, the dose of treatment with probability 0 of causing a dose-limiting
toxicity in a patient within their first cycle of treatment. Bayesian model-based designs require
a model to be assumed for the dose-toxicity relationship. These designs can utilise available
trial data and prior knowledge to advise escalation and estimate the TD1006.

In standard dose-escalation trials, the trial population is assumed to be homogeneous [2] and a
single TD10086 is identified for the entire population. However, in a general patient population
this is unlikely to be the case. Variability between subgroups of patients in a population can
lead to differences in tolerance or efficacy of the treatment. Consequently, the benefit-risk ratio
of the treatment is impacted for subgroup members. When there is notable variability between
subgroups of a population, we refer to the presence of a subgroup effect. Often, the underlying
cause of variability is unknown but there can be visible or measurable indicators, referred to
as biomarkers, which can be used as intermediate markers of subgroup membership. Exam-
ples include ethnicity, pre-treatment or a genetic mutation. For example, presence of a KRAS
mutation in patients with non-small cell lung cancer indicates lower survival when treated with
Erlotinib and chemotherapy, than is usual for patients without the mutation [3].

The limited number of patients available for treatment in dose-escalation trials makes reliable
in-trial identification of relevant biomarkers unrealistic. Instead, cases where historical in-
formation is used to pre-define potential biomarkers of interest are considered. For example,
historical trials of the same treatment in another application, or of a treatment with similar ac-
tion being tested in the same application, can be used to identify a biomarker of interest.

Currently, historical data on potential subgroup effects is largely utilised in the specification
of trial inclusion criteria. These can be used to reduce the variability in the trial population in
order to justify an assumption of a homogeneous trial population. In doing this, the population
to whom the treatment could be made available is restricted. There is also a risk of excluding
patients who could in fact benefit from the treatment. This was the case for Cetuximab which
was initially tested in a restricted population of patients with colorectal cancer. It was later no-
ticed that patients excluded from the original trial could in fact benefit from the treatment [4].
As a consequence, further trials had to be carried out in the additional patient group.



On the other hand, inclusion of a subgroup (in the trial population) in which the treatment
is inefficacious could mask a treatment effect in the remaining population. Gefitinib for the
treatment of non-small cell lung cancer is an example where this was the case. On further in-
vestigation, the subgroup effect was identified and a reduced population who could benefit from
Gefitinib found [4]. In both the Cetuximab and Gefitinib examples, the error was highlighted
and adjusted for. Unfortunately there are potentially many similar cases for which the error has
not been realised. In addition, more efficient trials, which utilised fewer resources, could have
been implemented if a potential subgroup effect been accounted for at the initial design stage
of these trials.

It is becoming more common for potential subgroup effects to be considered in phase II and
IIT trials (aside from in exploratory analyses). In these so called enrichment trials, subgroup
effects are investigated in order to identify a subgroup of the population who appear most likely
to benefit from the treatment (see [5] for a short overview of such designs). This can lead to
exclusion of a subgroup of the patient population from the trial. In such a case, the dose used
in the trial was selected based on patients from the initial population and may therefore be
sub-optimal for the final population. In addition, administering different doses of the treatment
between subgroups might suffice, removing the need to completely exclude subgroups from the
trial. So, ideally, a TD1006 would be estimated in each subgroup, when this is necessary due
to presence of a subgroup effect. This could increase the chance of finding the treatment to be
efficacious in a larger patient population and is a step towards patient-specific dosing.

In Section 1.1, a description of a standard Bayesian model-based method of dose-escalation is
given and the general notation used in the remainder of the paper is introduced. This continues
into a brief review of alternative model-based dose-escalation designs. In Section 1.2, current
methods of accounting for a subgroup effect in clinical trials are discussed. The standard dose-
escalation trial design described in Section 1.1 is used as the underlying design for the proposed
methods of accounting for a potential subgroup effect in dose-escalation. The proposed meth-
ods are presented in Section 2 and compared through a simulation study in Section 3. The
paper concludes with a discussion of the methods, their limitations and possible extensions in
Section 4.

1.1 A Standard Bayesian Model-based Method of Dose-escalation

Bayesian model-based designs enable available prior and trial information to be utilised in
dose-escalation decisions. Using all of this available information in dose-escalation makes es-
calation decisions more efficient and also safer for patients involved in the trial. The approach
of Whitehead & Williamson [1] is a standard Bayesian model-based method of dose-escalation
which assumes a homogeneous trial population. Their method is described here and is the de-
sign underlying the methods presented in Sections 2.1 and 2.2 for accounting for a potential
subgroup effect, as well as being used as the baseline for comparison of the methods.

Dose set d of the experimental treatment is to be made available for administration to patients
in the dose-escalation trial. In reality, escalation using a model-based design is not constrained
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to this dose set but this is required for the purpose of simulation. Define the dose of treatment
administered to a patient as x € d, and d* as some fixed reference dose used to standardise dose
in the dose-toxicity model. The probability that a patient experiences a DLT given dose x of
the experimental treatment, 7(x), is of interest. Specifically, the value of x for which 7(x) = 6.
Escalation under the standard design, assuming a homogeneous trial population, proceeds as
follows;

1. Model the dose-toxicity relationship in the entire population by:

n(d
log{l—(—n()d)} = Bo + Pilog (;—*+1) where 7(d) = P(DLT|d). (1)
The transformed, standardised dose x/d* + 1 is considered in the assumed dose-toxicity
model to aid interpretation of the model parameters; f is the odds of toxicity at a zero
dose of the treatment.

2. Set a prior on the model parameters: This is achieved by specifying pseudo-data relating
to a prior proportion of DLTs occurring at two ‘prior’ doses. This prior data is weighted
to total, say 1/ 10™, of the planned sample size of the trial. Incorporating the pseudo-data
into the dose-toxicity model in the same way as trial data effectively induces beta priors
on the probability of toxicity at the two doses [6]. The prior proportion of DLTs at the
two prior doses can be elicited from clinical experts (as described in [1] for example).
Alternatively, the prior can be selected to control the operating characteristics of dose-
escalation. For example, specifying:

e The desired start dose for the trial as the lower of the two prior doses with prior
proportion of DLTs at this dose equal to 6.

e A dose at the top of the planned dose range as the other prior dose with prior pro-
portion of DLTs at this dose selected to control the rate of escalation under some
likely trial scenarios.

3. Allocate patients the dose (from set d) which, based on the prior and available trial data
at their time of recruitment into the trial:

. . : 1
e Maximises the patient gain, 7012’

e Within doses which satisfy the safety criterion, 7(d) < 6,

for unacceptable level of toxicity & and #(d) = 1/[1 + e~ (PotPilogw/d*+1)}] where
and Bl are the modal a posteriori (MAP) estimates of the model parameters. When
prior knowledge is incorporated into the dose-toxicity model as pseudo-data, the MAP
estimates are equivalent to the maximum likelihood estimates of the parameters and so
standard software can be used without the need for Markov Chain Monte Carlo (MCMC).

4. Stop escalation:

e For safety if, at any point in the trial, no available doses satisfy the safety criterion:
No recommended dose is declared.



e Once a maximum number of patients have been treated in the trial: The recom-
mended dose is declared as the estimated TD1006 for the entire population based
on data collected in the trial (i.e. not including prior pseudo-data). That is, the
dose which maximises the patient gain and satisfies the safety criterion (based on
the two-parameter dose-toxicity model of Equation 1), from the range of available
doses which are less than or equal to the maximum dose administered during the
trial.

Other authors, such as Neuenschwander et al. [7], have assumed the same two-parameter dose-
toxicity model for dose-escalation. Their approach differs in specification of escalation rules
for the trial (Step 3). Whitehead & Williamson [1] themselves suggest alternative escalation
rules in addition to that described here but the patient gain has been chosen as it is the most
ethical option. Addition of the safety constraints in a similar manner to Babb et al. [8] controls
the rate of escalation, improving the safety of the trial for the patients involved.

Alternative dose-toxicity models have been suggested; the continual reassessment method (CRM)
of O’Quigley et al. [9] uses a one-parameter power model which accurately estimates the
TD1006 but does not effectively model the entire dose-toxicity relationship. Goodman et
al. [10], among others, have proposed modifications on the CRM to reduce the aggressiveness
of escalation. Other Bayesian model-based designs have been proposed which aim to optimise
escalation, although these are often considered unethical as they do not account for the needs
of patients [11, 12]. Reviews of dose-toxicity models and available methods of dose-escalation
are provided in [2] and [13].

Most Bayesian model-based dose-escalation trial designs have the same foundations and so the
methods presented in this paper could be adjusted for the use of an alternative dose-toxicity
model or escalation rules. A two-parameter model was selected in this case as being more
suitable than a one-parameter model for comparison of the dose-toxicity relationship between
subgroups. This is because, although the subgroup effect may not affect the recommended dose
itself, differences in the shape of the dose-toxicity curves between subgroups may indicate a
subgroup effect that will be more obvious in later trials with different endpoints. As with any
Bayesian trial design, simulation should be carried out prior to implementation. Simulations
should consider a range of potential data scenarios as well as reasonable prior settings.

1.2 Current Methods of Accounting for Subgroup Information in Clini-
cal Trials

The most straight-forward way to account for a subgroup effect in dose-escalation is to stratify
by subgroup membership and carry out independent dose-escalation in each subgroup. This
has been done in practice (e.g. [14]) but is inefficient (in its use of information for identifying
a dose for escalation and estimating the TD1000), especially if there is in fact no underlying
subgroup effect. Wijesinha et al. [15] and O’Quigley et al. [16] propose using additional terms
in the dose-escalation model to account for subgroup membership. In this way, some informa-
tion is shared between subgroups during escalation. Babb et al. [17] use a similar method but



consider a continuous biomarker; their design is demonstrated in [18].

Neuenschwander et al. [19] present an approach for subgroup based escalation in a setting
where pooling of data is deemed inappropriate but sharing of information between subgroups
is desirable. This setting is different to the one considered in this paper where data come from
an overall population with a suspected subgroup effect. Guo and Yuan [20] present a two-stage
design with data pooled in the first stage. In the second stage, toxicity and efficacy data are
used together with covariate information to recommend patient-specific doses. Novel bridging
methods have been developed in relation to dose-finding studies (e.g. [21,22]). These methods
aim to address a related but different question to subgroup based escalation.

In current practice, it is more common for a subgroup effect to be investigated in later phase
trials. Such designs use hypothesis testing at an interim point in the trial to identify subgroup(s)
of the population that react favourably to treatment and, hence, are felt worth pursuing for
further investigations of the experimental treatment [4,23,24].

2 Proposed Methods of Accounting for Subgroup Informa-
tion in Dose-escalation

When the trial population is truly homogeneous, a standard method of dose-escalation (such
as that of [1] described in Section 1.1), which does not account for a potential subgroup ef-
fect, is suitable. However, this design is not appropriate when there is uncertainty around the
assumption of a homogeneous population. We compare the standard design (which assumes a
homogeneous population) to two alternative methods of dose-escalation which account for sub-
group membership throughout escalation. The first of these (presented as Method 1 in Section
2.1) extends the dose-toxicity model to include terms for subgroup membership. The dose-
toxicity method used is effectively a different parameterisation of that presented by O’Quigley
et al. [16]. The second method (presented as Method 2 in Section 2.2) is the novel method
presented in this manuscript.

Say that patients entering the trial can be reliably classified as being in one of two distinct,
clearly identifiable subgroups based on the presence or absence of a pre-defined biomarker.
The treatment is expected to be more toxic in biomarker positive patients than in the remaining
biomarker negative patients. Let [ be an indicator of subgroup membership which is equal to
1 for a biomarker positive patient and O for a biomarker negative patient.

2.1 Method 1: Include Terms for Subgroup Membership

In this method, the standard two-parameter dose-toxicity model from Equation 1 is extended to
include terms for subgroup membership. This enables escalation decisions to be made which
account for subgroup membership. Hence, making the dose administered to patients better
suited to them. A consequence of allowing escalation to differ between subgroups is that the
safety stopping criterion can come into play for one or both subgroups. Escalation under this
method proceeds as follows;



1. Model the dose-toxicity relationship using the four-parameter logistic model:

og {2 = ot prtog (1) + 1 {Brt putoe (3 +1) ) @

where n(d) = P(DLT|d,L).

If historical evidence of a subgroup effect led to strong belief of its impact on either the
intercept or slope parameter of the dose-toxicity model, then one of the additional terms
could be removed and the resulting three-parameter model used in place of the four-
parameter model. However, with a lack of information on the expected impact of the
subgroup effect on the dose-toxicity relationship, the four-parameter dose-toxicity model
is able to capture potential variability in both parameters.

2. Set a prior on the model parameters: This can be achieved in a similar manner to that for
the standard design by specifying pseudo-data on two prior doses for the biomarker posi-
tive subgroup and two prior doses for the biomarker negative subgroup. The pseudo-data
for each subgroup is weighted to, say 1/10", of the planned sample size in that subgroup.

3. Allocate patients the dose (from set d) which, based on their subgroup membership, the
prior and available trial data at their time of recruitment into the trial:

.. . . 1
e Maximises the patient gain, GO

e Within doses which satisfy the safety criterion, #(d) < 0,

for unacceptable level of toxicity O and for MAP estimates of the model parameters ﬁo,
B1, B> and B3 with #(d) = 1/(1 + e~ PotPrlogl/d" +1)+ T {r+Bslog(x/d"+1)}]).

4. Stop escalation:

e For safety in a subgroup if, at any point in the trial, no available doses satisfy the
safety criterion for that subgroup: No recommended dose is declared in that sub-
group. Escalation continues in the other subgroup using the two-parameter model
of Equation 1 fitted to data from patients in the remaining subgroup only.

e Once a maximum number of patients have been treated in the trial:

— If one subgroup stopped for safety: The recommended dose is declared in the
remaining subgroup as the estimated TD1008 based on data collected in the
trial (i.e. not including prior pseudo-data). That is, the dose which maximises
the patient gain and satisfies the safety criterion (based on the two-parameter
dose-toxicity model of Equation 1 fitted to the data from patients in that sub-
group only), from the range of available doses which are less than or equal to
the maximum dose administered to patients in the respective subgroup during
the trial.

— If neither subgroup stopped for safety: A recommended dose is declared in
each subgroup as the estimated TD1006 based on data collected in the trial
(i.e. not including prior pseudo-data). That is, the dose which maximises the



patient gain and satisfies the safety criterion (based on the four-parameter dose-
toxicity model of Equation 2) from the range of available doses which are less
than or equal to the maximum dose administered to patients in the respective
subgroup during the trial.

By including covariates for subgroup membership in the dose-toxicity model, this method of
dose-escalation enables recommended doses to be subgroup specific. A TD10086 is estimated
in each subgroup (unless one or both subgroups stop for safety). When these recommenda-
tions differ between subgroups, then it is expected that a significant subgroup effect has been
observed. When the recommendations are the same between subgroups, this could be down to
there truly being no significant subgroup effect. On the other hand, it could be a result of the
discrete dose set or insufficient sample size in the trial to detect a difference.

Although the dose recommended for treatment of members of both subgroups in future trials
might be the same, the subgroup effect may become clear in the longer-term, or when efficacy
outcomes are investigated. Even exploratory inferences could be beneficial to obtain an idea
of whether a subgroup effect was observed in the dose-escalation trial, aiding design of future
trials. The use of a hypothesis test to achieve this was considered but found to be low-powered.
In addition, there is no consideration in this method that there may be no subgroup effect. If
this is in fact the case, then this method uses data inefficiently throughout escalation and in
identifying the final recommended doses.

2.2 Method 2: Fully Bayesian Method Using Spike and Slab Priors for
Variable Selection

This method is based on the four-parameter dose-toxicity model given in Equation 2. In Method
1, the four-parameter dose-toxicity model was used throughout escalation and no inference over
presence or absence of a subgroup effect was made. It would be more efficient to decide at each
escalation step, based on data available at that time, whether the two- or four-parameter dose-
toxicity model is more suitable. Ideally the entire dose-toxicity curve would be considered in
this test; the frequentist alternative which can achieve this using hypothesis testing is too low-
powered to be practical.

The Bayesian alternative that we propose overcomes these problems to some extent by using
spike and slab priors on the model terms for subgroup membership (3, and 3 in Equation 2).
A spike and slab prior is effectively a two-component mixture prior. One component is usually
a normal prior with high variance which makes up the ‘slab’ part of the prior. The other part
is the ‘spike’ component which is selected as a distribution which has a large mass at zero.
We choose to use a Dirac delta function, &y (a point mass at zero), which results in a sparsity
inducing spike and slab mixture prior. Figure 1 gives an example of a potential mixture prior
on 3 composed of a normal slab and Dirac delta function spike. The result of using these spike
and slab priors is that a positive probability is placed on the probability of the term being equal
to zero. Based upon this, spike and slab priors can be used in choosing the model.
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Figure 1: Example of a mixture prior on 3 composed of a normal slab and Dirac delta function
spike.

Take 75 to be a latent indicator function which indicates inclusion (when equal to 1, and is zero
otherwise) of the variable 3, in the dose-toxicity model. The resulting spike and slab prior on
B> can be written as:

Ba|y> ~ 1N(0,03) + (1 — 1) .

The decision over whether 3, is required in the model, based on available data, can be based
on its probability of inclusion in the model, w,. This can be estimated by placing a Bernoulli
prior on 9 such that:

P(12) = wy (1—wp) 7%,

Similarly, we can consider a latent indicator function 3 and probability of inclusion w3 on f33.
Assume that wy is independent of w3 and, as such, a prior setting of w, = w3 = 0.5 implies a
prior belief that one of the two predictors for subgroup effect is significant in the model (see
Chapter 10 of [25]). If instead w, or w3 were set equal to 1, then the corresponding term would
be forced into the model with a normal prior (the slab component of the prior corresponding
to that term) placed on it. This is effectively done for By and B; which are required in the
dose-toxicity model.

A range of algorithms exist for implementing Bayesian model selection using spike and slab
priors in the linear regression setting (e.g. [26—28]). Authors such as Wagner & Duller [29]
and Tiichler [30] have extended these methods to the logistic regression setting. The applica-
tions of Bayesian variable selection for logistic regression models is wide-ranging; Wagner &
Duller [29] aim to identify relevant risk factors for bleeding while Genkin et al. [31] is con-
cerned with text categorisation. Methods which deal with multivariate regression and ANOVA
are also available (e.g. [32]) which have application in selection of variables relating to gene
expression.

When spike and slab priors are used, there is a form of in-built decision making process over



whether the additional terms are required in the model. Once the relevant variables have been
identified, the selected model is fitted to the data and escalation decisions can be made based
upon this. Escalation decisions now occur in two stages; choosing the model and model fitting.
An alternative to having these two steps in escalation would be to use posterior modal parame-
ter estimates from the spike and slab model in selecting the dose for escalation. The parameter
estimates obtained from this alternative method would be shrunk towards zero, hence not re-
flecting presence of a subgroup effect to its full extent. It is for this reason that we chose not to
use it.

Escalation under this method proceeds as follows;

1. Model the dose-toxicity relationship using the four-parameter logistic model:

log{1f<—7‘:()d>} = Bo+PBilog (5 +1)+L {B+Balog (- +1) .

where ©(d) = P(DLT|d,L;).

The terms 3y and B; will always be included in the model used for escalation. However,
spike and slab priors are specified on 3, and B3 and so one or both of these terms could
be set to zero in the model for escalation.

2. Set a prior on the model parameters: Pseudo-data of the same form used in Method 1 is
used to define the priors.

Model fitting: Fit pseudo-data to the four-parameter logistic regression model of Equa-
tion 2. The resulting coefficient estimates are used to derive the slab component of
the priors on the four parameters of the dose-toxicity model. The prior weight of
the spike component for each parameter is also specified; this will be zero for
and f; and greater than zero for the terms for subgroup membership, 8, and 5. For
the prior, we choose to include 3, and B3 in the model, regardless of their value (i.e
whether it is greater than or less than the prior inclusion probability).

3. Escalation follows the two-step process:

Choosing the model: Fit the spike and slab model using MCMC. After removing burn-
in iterations, find w, and wj (the probability that each term was included in the
dose-toxicity model which is always 1 for By and B but varies for 8, and f33). If the
inclusion probability of the parameter is greater than some pre-specified boundary,
then that term will be non-zero in the fitted model. Otherwise it is equal to zero for
this model update.

Model fitting: Allocate patients the dose which, based on their subgroup membership
(if relevant), the prior and available trial data at their time of recruitment into the
trial:

.. . . 1
e Maximises the patient gain, ) —6)%

e Within doses which satisfy the safety criterion, #(d) < J,
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for unacceptable level of toxicity § and #(d) = 1/[1 e~ (PotBrlogl/d"+ D4y} \yhere
y is the term(s) for subgroup membership identified for inclusion in the model dur-
ing variable selection. The estimates P, 1, and potentially 3, and/or B, are the
MAP estimates of the dose-toxicity model parameters.

4. Stop escalation:

e For safety in a subgroup if, at any point in the trial, no available doses satisfy the
safety criterion for that subgroup: No recommended dose is declared in that sub-
group. Escalation continues in the other subgroup using the two-parameter dose-
toxicity model of Equation 1 fitted to data from patients in that subgroup only.

e Once a maximum number of patients have been treated in the trial:

— If one subgroup stopped for safety: The recommended dose is declared in the
remaining subgroup as the estimated TD1008 based on data collected in the
trial (i.e. not including prior pseudo-data). That is, the dose which maximises
the patient gain and satisfies the safety criterion (based on the two-parameter
dose-toxicity model of Equation 1 fitted to the data from patients in that sub-
group only), from the range of available doses which are less than or equal to
the maximum dose administered to patients in the respective subgroup during
the trial.

— If neither subgroup stopped for safety: Carry out the variable selection step,

« If both B, and 33 are equal to zero: The data are pooled and a single recom-
mended dose is declared for the entire population as the estimated TD1006
based on data collected in the trial (i.e. not including prior pseudo-data).
That is, the dose which maximises the patient gain and satisfies the safety
criterion (based on the two-parameter dose-toxicity model of Equation 1),
from the range of available doses which are less than or equal to the maxi-
mum dose administered during the trial.

« If B, and/or B3 is non-zero: As in Method 1, a recommended dose is de-
clared in each subgroup as the estimated TD1006 based on data collected
in the trial (i.e. not including prior pseudo-data). That is, the dose which
maximises the patient gain and satisfies the safety criterion (based on the
four-parameter dose-toxicity model of Equation 2), from the range of avail-
able doses which are less than or equal to the maximum dose administered
to patients in the respective subgroup during the trial.

The overall set-up of this method is relatively similar to the previous methods. However, before
model fitting can occur in Step 3, the model must be chosen (and a relevant prior specified).
The use of spike and slab priors mean that the model used in choosing the model is not con-
jugate and so MCMC is required, making Method 2 more computationally complex than the
previous methods.

The use of spike and slab priors on the terms for subgroup membership enables escalation de-
cisions to be founded on the most relevant model based on all data available at that stage of the
trial. This makes escalation more efficient and so can be beneficial for patients. In addition,
by considering whether each variable should be included in the model, the entire dose-toxicity
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curve is compared between subgroups. This is in comparison to looking merely at point esti-
mates of the dose recommended in each subgroup, as done in Method 1.

In this method there is no formal test of whether a subgroup effect was observed and so the
decision over the presence or absence of a subgroup effect is exploratory. This exploratory
conclusion, together with historical information and clinical expertise on the expected subgroup
effect, may be suitable to decide whether a subgroup effect should be accounted for in later
phase trials. Alternatively, a hypothesis test could be carried out on the final trial data with no
adverse effect on escalation, although this has the aforementioned issues.

3 Simulation Study

Data from the single-agent paediatric dose-escalation trial reported by Nicholson et al. [14] was
used as the basis for the simulation study presented in this section. In the reported trial, Nichol-
son et al. used stratification to account for a potential subgroup effect and escalation proceeded
in each subgroup under an ‘up and down’ design (see [33] for an example of such a design). In
this trial, biomarker positive patients had experienced a specific line of prior treatment which
the biomarker negative patients had not. The decision to stratify by this prior treatment came
from evidence obtained in adult trials of the treatment.

The data obtained in the trial is given in Table 1, both by subgroup membership and as the
pooled data. Based upon the algorithmic design and definition of the recommended dose spec-
ified by Nicholson et al., the maximum tolerated doses were identified as 215 and 180mg/m?
in the biomarker negative and biomarker positive subgroups, respectively. Now, had the two-
parameter dose-toxicity model in Equation 1 been employed during the course of the trial, the
data obtained and resulting recommended doses are likely to have been different. This trial data
is used in this manuscript as a basis for the simulation study; no attempt is made to re-evaluate
the outcomes of the trial reported by Nicholson et al.. The parameter estimates resulting from
fitting the dose-toxicity model in Equation 1 to the data give a TD16 in the biomarker positive
subgroup that is very similar to that under the algorithmic design at 181mg/m>. However, in
the biomarker negative subgroup the TD16 is 244mg/m? under the model-based approach. It is
the TD16 that we aim to identify in the simulation study in the remainder of this section.

[Table 1 to be placed here]

This simulation study is presented to illustrate the dose-escalation methods described in Section
2. We compare the methods of dose-escalation which account for subgroup information to the
baseline method; the standard Bayesian model-based method of dose-escalation presented in
Section 1.1. The simulation setting and scenarios are detailed in Section 3.1. In Section 3.1.1,
step-by-step implementation (including sections of R code) of the proposed method of dose-
escalation which accounts for subgroup information through use of a spike and slab prior is
provided.
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3.1 Simulation Study Design

The dose set available for the trial was specified as that used by Nicholson et al. [14], d =
{100, 150,180,215, 245, 260}mg/m2. The recommended dose from adult trials was 200mg/m?;
this was selected as the reference dose used to standardise doses in the dose-toxicity model. The
starting dose for the trial was taken as the lowest available dose of 100mg/m? and we speci-
fied 8 = 0.16 and set the unacceptable probability of toxicity, for use in the safety criterion, as
0 = 0.35. So, we aimed to identify the dose, from those available, which was less than or equal
to the maximum dose administered in the trial and had posterior probability of causing a DLT
in a patient closest to 0.16 but less than 0.35.

It is considered that, upon entry to the trial, patients were reliably identified as being either
biomarker positive or biomarker negative. Patients were recruited in cohorts of size 2 through-
out the trial. Each cohort consisted of one biomarker positive and one biomarker negative
patient unless one subgroup has stopped escalation early, in which case both patients in the
cohort were from the remaining subgroup. The maximum number of patients to be treated in
the trial was 60. If neither subgroup stopped escalation early, then this would be made up of
30 patients from each subgroup. In the case of the baseline method, escalation continued until
60 patients had been treated in the trial unless the trial stopped early for safety. Although this
might not be realistic, it was used in the simulation study to enable comparison of the methods
with a fixed amount of information.

The prior was specified such that it was worth 1/10" of the planned sample size. That is, a total
of 6 prior patients consisting of 3 on each subgroup. We specified the same prior data in both
subgroups. This was done to aid comparability of the methods but could of course be altered
for use in a real trial. After running a range of potential pseudo-data specifications (details of
these are given in Appendix A) the prior data specification selected is presented in Table 2.
Under this prior specification, the dose-toxicity model advises a start dose of 100mg/m? (i.e.
fitting only the pseudo data to the dose-toxicity model, the escalation rule advises a dose of
IOOmg/m2 for escalation). In addition, under the scenario of no DLTs, the chosen prior leds
to reasonable paced escalation with no skipped doses. Upon observation of a DLT at a low
dose, it was felt likely for the model to re-escalate within the specified maximum trial size.
Clearly these properties differ between the baseline approach and an approach which considers
potential subgroup effect. For comparability between methods, our chosen prior is acceptable
under both settings.

[Table 2 to be placed here]

In the simulation study, toxicity data were generated from the four-parameter dose-toxicity
model given in Equation 2. The parameter values of By and f8; used for data generation were
the mean estimates obtained from a frequentist model fit to Equation 1 using the pooled trial
data (given in Table 1). The parameter values for 3, and 3 were varied depending upon the
simulated scenario. A ‘true’ probability of DLT refers to the probability of DLT based upon the
dose-toxicity model and parameter values from which data were simulated. Similarly, a ‘true’
recommended dose refers to the dose, from the discrete set available for the trial, which has
estimated probability of causing a DLT in a patient closest to the TD16 (from those estimates
less than 0.35) based upon the model and parameter values from which data were simulated.
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Simulations for all methods were carried out using R [34]. Method 2 required the addition of
a model selection step in the escalation procedure compared to the other methods. This step
was carried out using the BoomSpikeSlab package [35] which is based on variable selection for
logistic regression models as described by Tiichler [30]. Given that we had no outside infor-
mation to suggest otherwise, the default settings were used for most parameters required by the
functions called from BoomSpikeSlab. Running the Markov Chain for 20,000 iterations and
removing 5,000 as burn-in was found to be suitable for convergence. We set the prior inclusion
probability for B, and 3 equal to 0.5; this is a relatively non-informative setting. We specified
that a parameter was non-zero in the fitted model if it had posterior probability of inclusion in
the model greater than 0.25. The effect of the prior inclusion probability and probability for
inclusion of the terms in the model were investigated. Results of this investigation are given in
the sensitivity analysis presented in Appendix B along with investigations into specification of
the underlying model.

Results are presented for the following six scenarios based on estimates from 1,000 simulated
trials under the given scenario and method. The true probabilities of toxicity at each available
dose for each of the scenarios are given in Table 3. Further scenarios were run and the results
were consistent with those presented here:

1. No subgroup effect: This scenario is included for comparison of the methods when the
‘true’ recommended dose is the same for both subgroups. This could arise when the
population is truly homogeneous, or when the biomarker considered in the trial is not the
cause of the subgroup effect observed in the trial.

2. A small subgroup effect: Causing only one dose level difference in true recommended
doses between subgroups. This scenario is included to investigate the sensitivity of the
methods to small differences in tolerance to the treatment between the subgroups.

3. A medium subgroup effect: Causing two dose level difference in true recommended
doses between subgroups. This scenario, and the next, is included to investigate the sen-
sitivity of the methods to varying degrees of subgroup effect.

4. A medium subgroup effect: Causing three dose level difference in true recommended
doses between subgroups.

5. A large subgroup effect: No safe dose in the biomarker positive subgroup and a true rec-
ommended dose in the biomarker negative subgroup in the middle of the available dose
range.

6. No safe dose in either subgroup: This scenario is included to demonstrate the effective-
ness of the safety criterion when there are no safe doses in either subgroup.

[Table 3 to be placed here]
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3.1.1 Implementation in R

The first step in implementing the proposed dose-escalation method which utilises spike and
slab priors to account for subgroup information is the same as for any trial; specify the design
parameters. These are: the doses available for administration in the trial (Doses), the reference
dose (Dref), the ‘target’ probability of DLT (0) and an unacceptable probability of DLTSs (J).

Next the prior pseudo-data is specified: subgroup membership, dose, number of patients as-
sumed to experience DLTs and number without DLTs. The availability of relevant historical
data and clinical experience of the trial drug will influence how this prior pseudo-data is spec-
ified. Be this to reflect clinical knowledge, or to control operating characteristics of the trial,
or a combination of the two. Simulations are required to evaluate the operating characteristics
of the prior to confirm suitability of the selection; graphical and visual methods for calibrating
priors have been described [36,37]. In our case, the prior was chosen to control escalation,
and was selected to have a weight of 1/ 10™ of the total trial sample size with the same prior
assumed for both subgroups.

> PriorData <— data.frame(cbind(c(0, 0, 1, 1),

+ c(100, 260, 100, 260),
+ c(1/3, 1/2, 1/3, 1/2),
+ c(5/3, 1/2, 5/3, 1/2)))

> colnames(PriorData) <— c¢(’Subgroup’, 'Dose’, 'DLTs’, 'noDLTs’)
> PriorData
Subgroup Dose DLTs noDLTs
0O 100 0.3333333 1.666667
260 0.5000000 0.500000
100 0.3333333 1.666667
260 0.5000000 0.500000

B W N =
—_—— O

The specified prior implies we have 3 pseudo patients in the biomarker negative subgroup with:

e 2 pseudo patients treated at 100mg/m? with 1/3 of them having a toxicity and 5/3 having
no toxicity.

e | pseudo patient treated at 26(.ng/m2 with 1/2 of them having a toxicity and 1/2 having
no toxicity.

Similarly for the biomarker positive subgroup. Note that fractions of patients are possible for
the prior pseudo-data specification which allows the strength of the prior to be chosen freely.

The model parameters must now be defined. As with the prior specification, there is no defini-
tive method of specifying these parameters and, as they impact on the operating characteristics
of the trial, simulation should be carried out to identify suitability parameter values. Malsiner-
Walli & Wagner [38] discuss the specification of spike and slab priors for variable selection. In
our case, the prior inclusion probabilities were specified as 1 for By and ; (which are always
included in the model) and 0.5 for 3, and f33. The inclusion bounds for 3, and 33 were specified
as 0.25.

At this stage the prior pseudo-data is used to obtain the spike and slab prior using the function
‘SpikeSlabPrior’ from R package BoomSpikeSlab [35].
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> library (BoomSpikeSlab)

> PriorX <— data.frame(cbind(rep(1, 12),

+ rep(log(Doses/Dref + 1), each = 2),

+ rep(c(0, 1), length.out = 12),

+ rep(log(Doses/Dref + 1), each = 2)xrep(c(0, 1),

+ length.out = 12)))

> PriorY <— as.matrix(PriorX) %+% PriorBeta

> PriorSpec <— SpikeSlabPrior(x = as.matrix(PriorX), y = PriorY,

+ prior.inclusion.probabilities = PIP)

MAP estimates of ﬁo, [31 , 32 and 33, are obtained using function ‘glm’ and then used to identify
the recommended dose for escalation as that which:

1

e Maximises the patient gain, R@)—0)2

e Within doses which satisfy the safety criterion, 7(d) < 0,

for &(d) = 1/[1+ e—{Bo+Bilog(/d"+1)+y) | where y is the term(s) for subgroup membership iden-
tified for inclusion in the model during variable selection.

The prior that we specified leads to a dose of 100mg/m? being recommended for administration
to the first cohort of subjects (whether biomarker positive or biomarker negative). Now, say that
the first cohort is composed of two patients, one biomarker positive and one biomarker negative,
with a DLT observed in the biomarker positive patient but not in the biomarker negative patient.
The data matrix is updated to contain both prior pseudo-data and observed responses.

> Data

[,1]
[1.] 0
[2,] 0
[3.] 1
[4.] 1
[5.] 0
[6.] 1

[,2]
100
260
100
260
100
100

[,3]
0.3333333
0.5000000
0.3333333
0.5000000
0.0000000
1.0000000

[.4]
1.666667
0.500000
1.666667
0.500000
1.000000
0.000000

The posterior inclusion probabilities of the model parameters are updated using the function
‘logit.spike’ based on the updated data matrix (Data) and the four parameter logistic regression
model (Model4para), By + filog (3 +1) + 14 {fo + Bslog (= +1) }.

> SSposterior <— logit.spike (formula =
prior

PriorSpec ,

order = FALSE)
SSposterior _summary

+
> SSposterior _summary <— summary(SSposterior ,
+
>

(Intercept)
log (Doses/Dref+1)

Subgroup

log (Doses/Dref+1): Subgroup

mean
—8.430
—5.580
—1.650
—-0.217
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data =

Data ,

sd
9.06

14.40
8.25

12.10

Model4para ,

niter

mean.inc sd.inc

—8.430
—5.580
—4.150
—-0.514

= 20000)
burn = 5000,

inc.prob
9.06 1.000
14.40 1.000
12.70 0.397
18.70 0.421



The output shows that the resulting posterior inclusion probabilities for 3, and 33 were 0.397
and 0.421 in this case. Both of the posterior inclusion probabilities are greater than the specified
inclusion bounds for 8, and 33 of 0.25. This means that MAP estimates of the co- efficients will
be obtained using function ‘glm’ with a model which includes terms with coefficients Bo, ﬁl,
[32 and Bg The dose recommended for the next cohort will therefore depend on the patients
subgroup membership.

If, instead, the inclusion bound had been specified as 0.4 instead of 0.25 for 3, and 3. Then, in
this case, the posterior inclusion probability for B, was less than 0.4 but that for 33 was greater
than 0.4. In this case, the MAP estimates for recommending a dose for escalation would be
based on a three parameter model: By + filog (5 + 1) + 1, {Bo+ Pslog (5 +1) }.

Once data from the next cohort is observed, the posterior inclusion probabilities are found and
based on these, the coefficient estimates are updated. Updated estimates are used to recommend
the next dose for escalation dependent on the subgroup membership of the patient. This process
repeats until the maximum number of subjects have been treated in the trial.

3.2 Simulation Study Results

The standard Bayesian model-based dose-escalation trial design described in Section 1.1 (based
on the assumption of a homogeneous trial population) is used as the baseline method for com-
parison of the proposed dose-escalation methods described in Section 2, which account for a
potential subgroup effect. When recommended dose(s) are referred to, these are the frequen-
tist estimates; they are obtained by fitting the relevant logistic regression model to the trial data
only (i.e. not including prior pseudo-data). The prior used for the simulation study was selected
to control the operating characteristics of the trial; it was not based on real trial data. For this
reason, it is not appropriate for the prior data to affect the final outcome of the trial. If, however,
the prior was selected based on historical data, then it may be desirable to consider this data
in identifying the recommended dose(s) from the trial. Even in such a setting, a frequentist
estimate might be used to reduce the subjectivity of decisions made from the dose-escalation
trial that could impact on future trials of the treatment.

From Table 4 it can be seen that in Scenarios 1-4, where there was a tolerated dose available
for each subgroup, most trials ran to the maximum number of patients with less than 10% of
trials stopping early for safety in one subgroup. In these scenarios, the average proportion
of toxicities observed overall was between 12 and 16%. Although the average proportion of
toxicities observed was fairly consistent across scenarios in the biomarker negative subgroup
(under Methods 1 and 2), that in the biomarker positive subgroup increased as the true subgroup
effect increased. This is in part due to the higher toxicity levels of all available doses.

[Table 4 to be placed here]

The average proportion of toxicities observed in the biomarker negative subgroup under the
baseline method decreases for Scenario 1 through 5, while that in the biomarker negative group
increases. This is for no difference in the number of patients treated between subgroups. This
contrasting proportion of DLTs observed in the two subgroups demonstrates that across simu-
lated trials most biomarker negative patients were being underdosed, with an average of only
3% experiencing DLTs in Scenario 5. This contrasts with the average of 49% of biomarker
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positive patients treated experienced DLTs in this scenario and hence many were likely over-
dosed.

It can also be seen that in Scenario 5 under the baseline method, an average of 26.28 patients
were treated in the biomarker positive subgroup per trial despite there being no tolerated dose
in this subgroup. This is compared to around 7 biomarker positive patients treated under the
methods which accounted for a subgroup effect. It is the ability of the methods which account
for a potential subgroup effect to stop for safety in one subgroup but continue escalation in the
other that leads to this advantage.

The reduced number of patients treated in the biomarker positive subgroup under Methods 1
and 2 in Scenario 5, and the sample sizes observed for both subgroups in Scenario 6, show that
the stopping criterion for safety is effective. It had the effect of reducing the overall average
sample size from 60 to below 19 when there was no tolerated dose in either subgroup. In that
scenario (Scenario 6), all methods were comparable, with around 90% of trials correctly iden-
tifying that there was no tolerated dose in either subgroup (Table 5). The baseline method was
comparable to the alternative in this case because its underlying assumption, that there was no
subgroup effect, was correct.

In Scenario 1, the bulk of recommended doses by all methods are split between 180mg/m? and
215mg/m?. This is not completely unexpected as the true TD16 for this scenario is 206mg/m?
which falls between the two but being slightly closer to 215mg/m?. The true recommended
doses, along with the probability of toxicity for all scenarios are given in Table 3. The locations
of the recommended doses in Scenario 1 were also similar across all methods. This suggests
that when a suitable number of patients are treated in each subgroup (with 30 appearing to be
suitable), the recommended dose is identified with a reasonable level of accuracy, even when
there is no subgroup effect.

[Table 5 to be placed here]

Now consider the locations of recommended doses from Scenarios 2-5 (Table 5). As the sub-
group effect increased, the baseline method got progressively worse. This is because, under
the baseline method, the assumption is that all observations arise from the same population;
the resulting recommended dose is effectively a compromise between the true recommended
doses from the two subgroups. The most undesirable outcome from the baseline method arises
from Scenario 5 where the true recommended dose in the biomarker negative subgroup was
215mg/m? and there was no tolerated dose in the biomarker positive subgroup. In 17% of trials
the baseline method stopped for safety in both subgroups, and in the remaining trials it identi-
fied the recommended dose for the entire population as 100mg/m?. This means that 83% of the
time a dose which had ‘true’ DLT rate 0.02 (expected to be inefficacious) and 0.42 (undesirably
toxic) in the two subgroups was recommended for further testing.

Method 1, which considers a potential subgroup effect throughout escalation and in dose rec-
ommendation, performed much better than the baseline. This suggests that 30 patients, with
the levels of variability observed here, are suitable to identify a recommended dose in a homo-
geneous population with reasonable accuracy. As previously discussed, ideally we would like
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some idea of whether a subgroup effect was in fact observed.

Method 2 was designed to avoid this problem and did so successfully. Only small differences in
recommended dose locations were seen between the baseline method and Method 2 in Scenario
1, with a conclusion of no subgroup effect under Method 2 66.6% of the time. In the presence
of a medium subgroup effect (as in Scenarios 3 and 4), the spike and slab priors were effective
in identifying a subgroup effect. The proportion of times a subgroup effect was correctly identi-
fied in Scenarios 3 and 4 was 57.7% and 92.7%, respectively. Although the recommended dose
locations from Method 2 were similar to those from Method 1, Method 2 has the advantage of
providing exploratory information concerning the presence of a subgroup effect. In addition
to the simulation results presented in this manuscript, Method 2 was run with a maximum of
120 patients per subgroup. From these results we were able to conclude that given a suitable
number of patients, this method provides good estimation of the recommended dose in each
subgroup.

Allowing early stopping for accuracy

Although a total of 30 patients (or more) in each subgroup is desirable, it is not always fea-
sible. Along with the stopping rules which were used in the previous simulations (for safety
in a subgroup or having treated the maximum number of patients in each subgroup), we now
include one for accuracy. That is, the trial can stop for accuracy in a subgroup if a minimum of
5 patients have been treated at the dose advised for administration to the next cohort of patients
and the 95% credible interval around the estimate of that dose is less than 5 (as used in [39]).
We compare the impact of this stopping rule on Methods 1 and 2. The baseline design is not
considered here because we have already confirmed that it is not suitable when a subgroup ef-
fect is present. In a homogeneous population, the effect of stopping rules is similar to that seen
in one subgroup for Method 1.

Introducing the stopping rule for accuracy was effective in reducing the sample size of the trial;
this can be seen from the operating characteristics of the methods presented in Table 6. In Sce-
narios 1-4, where there was a tolerated dose in each subgroup, the average number of patients
in the trial was between 45 and 51 in both methods. Even based on these reduced sample sizes,
the locations of the recommended doses were still compacted around the true recommended
dose; this can be seen in Table 7 for both methods. Table 8 shows the reasons that trials stopped.

[Table 6, 7, 8 to be placed here]

We see that in Scenario 1, under both methods, 45-49% of trials stopped early for accuracy in
both subgroups. In Method 1, for Scenarios 2-5, the proportion of trials which stopped early for
accuracy was consistently around these values when there was a tolerated dose in the subgroup.
In Method 2, the proportion of trials which stopped for accuracy in the biomarker negative
subgroup increased as the true subgroup effect increased, while decreasing in the biomarker
positive subgroup. The reason for this large discrepancy was model selection identifying the
presence of a subgroup effect; it was therefore better able to estimate the dose-toxicity curve in
the biomarker negative subgroup due to the spread of data. On the other hand, the high uncer-
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tainty surrounding the estimation of the dose-toxicity curve in the biomarker positive subgroup,
caused by a lack of data at higher doses, leds to a reduced number of trials stopping for accu-
racy as the subgroup effect increased.

As expected, the stopping rule for accuracy did not come in to play in a subgroup in which there
was no tolerated dose (as in the biomarker positive subgroup in Scenario 5 and both subgroups
in Scenario 6). This was down to the stopping rule for safety being met.

4 Discussion

In this paper, we demonstrated methods which extend a traditional dose-toxicity model used
in dose-escalation to account for a potential subgroup effect by including terms for subgroup
membership. In doing so, the assumption of a homogeneous trial population is removed, re-
ducing the risk of a missed or masked treatment effect due to variability between subgroups of
the population. The dose-escalation methods presented which account for a potential subgroup
effect follow a similar procedure to the standard Bayesian model-based design to which they
were compared. In this way, after the initial set-up of the trial, they should be no more difficult
to employ.

Simulation results showed that accounting for subgroup membership in dose-escalation can
increase the safety of escalation. Importantly, Methods 1 and 2 had the ability to stop early
for safety in a subgroup if there was no tolerated dose, reducing the number of overdoses rec-
ommended for use in future trials. Simulation results showed that the novel method, which
used spike and slab priors on the terms for subgroup membership (presented as Method 2),
was reasonably good at identifying the presence of an underlying subgroup. The recommended
dose locations from Method 2 were similar to those from Method 1 but with the advantage of
providing exploratory information concerning the presence of a subgroup effect. Also, when
there was no identifiable subgroup effect, escalation and identification of the recommended
dose makes better use of available data than Method 1.

The methods were initially compared with a total of 30 patients available for treatment in each
subgroup. Although such a sample size would be desirable, it is not always feasible. The use
of a stopping rule for accuracy demonstrated that an overall sample size of 45-50 was suitable
for Methods 1 and 2 to identify a recommended dose with a relatively small loss in accuracy
under the scenarios investigated.

As with standard Bayesian model-based designs, the proposed method is flexible and practical
since available doses and cohort sizes, among other design factors, can be altered throughout
the trial. The optimal setting with cohorts of size two, consisting of one biomarker positive and
one biomarker negative patient (unless one subgroup had stopped for safety), was considered.
This could be altered but the more unevenly distributed the patients are between subgroups,
the worse the model selection algorithm in Method 2 will perform. The proposed methods can
allow for different values of 0 to be used in each subgroup, if required. In practice it is also
still possible for the clinical team to over-ride the model decision based on any available data.
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Simulations were based on the scenario that patients could be reliably divided into two disjoint
subgroups. For some biomarkers, such as pre-treatment, this will be the case. There may be
other biomarkers of interest, such as those defined based on assay results, which have lower
accuracy. Accuracy of the biomarker decreases the performance of the proposed methods will
get closer to the method which does not account for subgroup membership.

We specified a Dirac delta function for the ‘spike’ component of the prior on the terms for sub-
group membership. Alternative choices include use of a normal distribution with large mass
at zero and a double exponential model (or Lasso, see [40] for details). Although a mixture
of normal distributions results in a continuous prior, it is one which is not sparsity inducing.
As a result, a straight-forward decision concerning whether a term should be included in the
model cannot be made. Bernardo et al. [41] compare a range of prior settings, including those
mentioned, and obtain no clear conclusion over the ‘better’ sparsity inducing prior.

A method related to Bayesian variable selection is Bayesian model averaging [42]. Although
such methods would be feasible with the small number of parameters in our model, we wish
to obtain a clear decision over whether the terms for subgroup membership should be included
in the model. For this reason, we choose to use variable selection. Bayes factor or penalized
regression are other alternative methods which reduce the challenges involved in specifying the
spike and slab prior and related inclusion probabilities. These methods may be of interest for
future investigation but were not included in this manuscript as they are not fully Bayesian and,
hence, do not readily allow incorporation of prior information.

The methods discussed in this manuscript only have the potential to highlight subgroup effects
between the two pre-defined subgroups of the population. It could be beneficial to extend this
to the ordinal setting (similar to that of [43]). However, the sample size in dose-escalation
trials is usually too small to consider identification of a subgroup effect, with suitable power,
within the trial. Rogatko et al. [44] propose extending the search for the optimal dose, and
consideration of a subgroup effect, beyond dose-escalation. This can also help account for
population changes and longer-term endpoints in the identification of an optimal dose.
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Number of DLTs observed by dose (mg/mz) Recommended dose (mg/mz) based on
100 [ 150 [ 180 | 215 | 245 | 260 | Total | Algorithmic design | Model-fit to data

I, =0 subgroup [ 0/5 [ 0/4 [ 0/4 [ 0/6 [ 2/7 [ 1/1 ] 3/27 215 244
I, =1subgroup | 1/6 [ 04 | 0/8 | 2/4 | - | - [ 3/22 180 181
| Pooleddata [ 1/11]0/8 [0/12[2/10 [ 2/7 [ 1/1 || 6/49 | - | 206 |

Table 1: Toxicity data observed in the dose-escalation trial reported in [14], given by subgroup
membership and as the pooled data. Also given is the recommended dose declared from the
trial based on escalation by an algorithmic design in each subgroup, and the TD16 (given a
continuous range of doses) based on fitting the dose-toxicity model in Equation 1 to the data.

Prior pseudo-data DLT outcomes by dose (mg/m?)
100 \ 260
I =0 subgroup || 1/6 (2) 172 (1)
I} =1 subgroup || 1/6 (2) 1/2 (1)
| Pooleddata [ 1/6 (4) | 1(2) |

Table 2: Prior pseudo-data setting used in the simulation study given in terms of the prior pro-
portion of DLTs observed at the lower and higher prior dose with the number of prior patients
considered at that dose given in brackets. Pseudo-data is presented by subgroup (totalling 3
patients worth of data per subgroup) and overall (totalling 6 patients worth of data).

P(DLT|d, I, = 0) P(DLT|d, I, = 1)

Scenario| 100 150 180 215 245 260 100 150 180 215 245 260
002 006 010 018 028 033 002 006 010 018 028 033
002 006 010 018 028 033 002 008 014 026 038 045
002 006 010 018 028 033 003 013 024 042 058 0.65
002 006 010 018 028 033 009 036 060 081 090 093

0.02 0.06 0.10 0.18" 0.28 0.33 0.42 0.90 0.97 0.99 1.00 1.00
0.38 0.67 0.79 0.88 0.93 0.94 0.38 0.67 0.79 0.88 0.93 0.94

b wWIN |-

Table 3: Simulated probability of DLT at each dose (in mg/m?) under each simulation scenario,
given for each subgroup. Grey cells highlight dose-pairs with probability of causing a DLT in
a patient greater than 0.35. The ‘X’ marks the dose with probability of toxicity closest to 0.16,
in cases where there is a tolerated dose.
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Escalation Average number patients Average proportion toxicities
Scenario method Overall [, =0 1I.=1 | Overal I;=0 1I,=1
Baseline 59.94 29.97 29.97 0.12 0.12 0.12

1 1 58.59 29.45 29.14 0.12 0.14 0.15
2 58.97 29.49 29.48 0.12 0.14 0.13

Baseline 60.00 30.00 30.00 0.12 0.10 0.15

2 1 58.79 29.42 29.37 0.13 0.14 0.15
2 58.96 29.48 29.48 0.13 0.13 0.15

Baseline 60.00 30.00 30.00 0.13 0.08 0.19

3 1 58.36 29.57 28.80 0.14 0.13 0.18
2 58.04 29.34 28.71 0.14 0.14 0.19

Baseline 59.67 29.84 29.84 0.16 0.05 0.27

4 1 56.40 29.36 27.04 0.14 0.14 0.23
2 56.38 29.45 26.93 0.15 0.14 0.24

Baseline 52.55 26.28 26.28 0.26 0.03 0.49

5 1 35.87 29.30 6.57 0.19 0.14 0.70
2 36.39 29.57 6.82 0.19 0.14 0.69

Baseline 18.88 9.44 9.44 0.55 0.55 0.56

6 1 17.31 8.92 8.39 0.55 0.67 0.68
2 18.57 9.32 9.26 0.54 0.66 0.66

Table 4: Average number of patients treated per trial in total and in each subgroup, average
proportion of toxicities observed per trial in total and in each subgroup.

Recommended dose

Escalation Significant subgroup effect| I,=0 l,=1
Scenario Method 0 1 2 0 100 150 180 215 245 260 0 100 150 180 215 245 260
Baseline 1000 0 0| 0.01 0.01 0.05 0.49 0.36" 0.07 0.02 0.01 0.01 0.05 0.49 0.36" 0.07 0.02
1 1 0 951 49 0.02 0.02 0.11 039 033" 0.08 0.04 0.03 0.02 0.10 038 0.33" 0.09 0.04
2 666 298 36 0.03 0.01 0.09 0.40 0.36" 0.09 0.03 0.02 0.01 0.10 0.40 0.36" 0.08 0.03
Baseline 1000 0 0| 0.01 0.01 0.11 058 0.28" 0.02 0.00 0.01 0.01 011 0.58" 0.28 0.02 0.00
2 1 0 962 38 0.03 0.01 0.11 0.42 032% 0.07 0.04 0.02 0.03 0.25 0.49" 0.19 0.02 0.00
2 662 304 34 0.02 0.02 0.11 0.45 0.32% 0.06 0.03 0.02 0.03 0.20 0.50° 0.22 0.02 0.01
Baseline 1000 0 0| 0.00 0.01 0.34 0.59 0.06" 0.00 0.00 0.00 0.01 034" 0.59 0.06 0.00 0.00
3 1 0 945 55 0.02 0.02 0.13 036 0.32° 0.10 0.04 0.04 0.13 0.55" 0.26 0.01 0.00 0.00
2 423 511 66 0.03 0.01 0.17 041 0.26" 0.08 0.04 0.05 0.10 0.47% 0.35 0.03 0.00 0.00
Baseline 1000 0 0| 0.01 0.30 0.68 0.01  0.00% 0.00 0.00 0.01 0.30* 0.68 0.01 0.00 0.00 0.00
4 1 0 871 129 0.03 0.02 0.12 0.40 0.32% 0.08 0.03 0.11 0.76" 0.13 0.00 0.00 0.00 0.00
2 73 804 123 0.02 0.04 0.13 036 034" 0.09 0.03 0.11 0.74* 0.15 0.00 0.00 0.00 0.00
Baseline 1000 0 0| 0.17 0.83 0.00 0.00 0.00% 0.00 0.00] 0.17% 0.83 0.00 0.00 0.00 0.00 0.00
5 1 0 69 931 0.03 0.02 0.11 039 0.32% 0.09 0.04| 0.95* 0.05 0.00 0.00 0.00 0.00 0.00
2 7 62 931 002 002 o011 037 036 008 004 095 005 000 000 000 0.0 0.0
Baseline 1000 0 of o0.89 0.10 0.00 0.00 0.00 0.00 0.00] 0.89* 0.10 0.00 0.00 0.00 0.00 0.00
6 1 0 183 817|| 0.89" 0.10 0.00 0.00 0.00 0.00 0.00[ 0.91% 0.09 0.00 0.00 0.00 0.00 0.00
2 323 0 677] 0.90° 010 000 000 000 000 000f 090° 010 000 0.00 000 000 0.0

Table 5: Number of trials which identified a subgroup effect (0 = no subgroup effect, 1 =
significant subgroup effect, 2 = defaulted to subgroup effect after stopping for safety in one
subgroup) and proportion of times each dose was recommended by subgroup out of trials giving
a recommended dose (based on a frequentist calculation). Grey cells highlight dose-pairs with
probability of causing a DLT in a patient greater than 0.35. The ‘X’ marks the dose with
probability of toxicity closest to 0.16.
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Escalation || Average number patients | Average proportion toxicities
Scenario | method | Overall I, =0 [I,=1]|Overall I,=0 Iy=1
1 1 48.80 24.12  24.68 0.12 0.14 0.14
2 4736  23.70  23.66 0.11 0.13 0.12

2 1 4822 2439 2383 0.13 0.14 0.16
2 4790 2331 2459 0.12 0.13 0.15

3 1 4929 2499 2429 0.14 0.13 0.18
2 4777 2201  25.77 0.13 0.11 0.18

4 1 50.84 2451 2633 0.15 0.14 0.23
2 45.40 18.94 26.46 0.15 0.12 0.26

5 1 32.55 2558 6.97 0.19 0.14 0.68
2 26.87  20.03 6.84 0.20 0.12 0.71

6 1 19.19 9.45 9.74 0.53 0.65 0.66
2 18.80 9.13 9.66 0.53 0.67 0.65

Table 6: Average number of patients treated per trial in total and in each subgroup, average
proportion of toxicities observed per trial in total and in each subgroup, in simulations which
allow early stopping for accuracy.

Recommended dose

Escalation ,=0 l,=1

Scenario Method 0 100 150 180 215 245 260 0 100 150 180 215 245 260

1 1l 004 002 013 033 032° 008 009 003 001 014 035 034 006 0.08
2 0.03 0.01 0.11 0.43 0.26" 0.10 0.06 0.02 0.02 0.10 042 0.24% 0.12 0.07
1l 003 002 014 034 032° 006 009 003 003 024 043 023 002 0.02
2l 003 002 012 044 022° 010 007/ 003 003 023 048 017 005 0.02
1 0.02 0.03 0.12 035 0.32° 0.08 0.09 0.04 012 0.6 0.32 0.05 0.00 0.00
2l 002 002 o016 041 020° 011 007 005 010 045 036 004 001 0.00

4 il 003 001 013 035 031 007 009 o011 074 014 000 000 000 0.00
2
1
2
1
2

2

3

0.03 002 011 041 020° 0.3 010 012 074 014 000 000 000 0.0

002 002 012 038 029 009 007 094 006 000 000 000 000 0.00
002 002 011 043 025 011 007/ 093 007 000 000 000 000 0.0
0.89 011 000 000 000 000 000 088 012 000 000 000 000 0.00
090" 010 000 000 000 000 000/ 08 011 000 000 000 000 0.00

Table 7: Proportion of times each dose was recommended by subgroup out of trials giving
a recommended dose (based on a frequentist calculation), in simulations which allow early
stopping for accuracy. Grey cells highlight dose-pairs with probability of causing a DLT in a
patient greater than 0.35. The ‘X’ marks the dose with probability of toxicity closest to 0.16.
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Reason trial stopped
Escalation Iy=0 Iy=1

Scenario | method Safety Max Accuracy | Safety Max Accuracy
1 1 0.03 0.50 0.49 0.02 0.55 0.45
2 0.02 0.54 0.46 0.01 0.54 0.45

2 1 0.02 0.53 0.47 0.03 0.50 0.49
2 0.02 0.52 0.47 0.03 0.62 0.36

3 1 0.01 0.56 0.45 0.04 0.57 0.40
2 0.01 041 0.59 0.04 0.73 0.23

4 1 0.02 0.52 0.47 0.11 0.84 0.05
2 0.02 0.23 0.77 0.12 0.87 0.01

5 1 0.01 0.56 0.46 092 0.08 0.00
2 0.01 024 0.77 092 0.09 0.00

6 1 0.85 0.15 0.00 0.83 0.16 0.00
2 0.87 0.13 0.00 0.85 0.15 0.00

Table 8: Proportion of trials which stopped for safety, having treated the maximum number of
patients and for accuracy in each subgroup.
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A Prior specification

We chose to specify the prior to control the operating characteristics of the trial. This required
investigation of the likely escalation patterns of a range of prior settings. We specified no prior
subgroup effect (to aid comparison of the methods) and weighted the prior data to 1/10% of the
planned trial size. So, in selecting a prior we investigated priors consisting of 3 patients worth
of data under dose-escalation Method 1 in one subgroup.

In order to get a start dose of 100mg/m?, this is selected as the lower of the prior doses with
a prior probability of DLT equal to 0.16, the target toxicity level. The higher prior dose, the
prior proportion of toxicities at each dose and the weighting of patients at each dose were then
altered in the investigated prior settings. These are given in Table 9.

Prior | Prior pseudo-data DLT outcomes by dose (mg/m?)
setting 100 \ 150 \ 180 \ 215 \ 245 \ 260
1 Jweas | - | - [1305] - | - |

2 1/6 (1.5) | - - - - 1/3 (1.5)
3 1/6 (1.5) | - - - - 172 (1.5)
4 1/6 (1.5) | - - - - 2/3 (1.5)
5 1/6 (2) - - - - 173 (1)
6* 1/6 (2) - - - - 1/2 (1)
7 1/6 (2) - - - - 2/3 (1)
8 1/6 (1) - - - - 1/3 (2)
9 1/6 (1) - - - - 172 (2)

Table 9: Prior settings tested given in terms of the prior proportion of DLTs observed at each
prior dose and, in brackets, the number of prior patients considered at that dose out of the total
of 3 patients. The ‘*’ indicates the prior setting used in the simulation study.

Under the scenario in which no DLTs were observed during dose-escalation, prior settings 1
and 2 led to dose levels being skipped. Prior settings 5, 8 and 9 were also felt to escalate
too rapidly, requiring observation of only one patient at some doses before escalating. Further
scenarios were investigated in which a DLT was observed early on in the trial. Under prior
settings 3 and 4, observation of a single DLT led to de-escalation by two dose levels which
appeared overly cautious. Prior settings 6 and 7 de-escalated by only one dose level with
observation of a single DLT. Prior setting 6 was selected for use in simulations over setting 7
because under setting 7, re-escalation after observation of a DLT was considered potentially
too slow given the small number of patients available in the trial.

B Sensitivity Analysis

The purpose of the additional simulations presented here was to investigate the sensitivity of
the methods to different parameter values in the data generating dose-toxicity model. The
same parameter values used to generate data for both subgroups in Scenario 1 was used for
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the biomarker negative subgroup, resulting in a true recommended dose of 215mg/m? in this
subgroup in all cases. For the biomarker positive subgroup, the values of 3, and 33 were altered
to create different scenarios in a way that resulted in a true recommended dose of 150mg/m?
in each case. The resulting dose-toxicity curves are shown in Figure 2. The corresponding true
probability of DLT at each available dose is given in Table 10.

1.0

P(DLT|d)
0.6
|

0.4

0.2

0 50 100 150 200 250 300

Dose, d

Figure 2: The dose-toxicity curves used to generate data in additional Scenarios 7-11. Hori-
zontal lines are references at P(DLT|d) = 0.16 and 0.35. The solid black curve on each plot
represents that of the biomarker negative subgroup in all scenarios. The dose-toxicity curves
for the biomarker positive group in these scenarios are shown for Scenarios 7-11 by the dashed
red, green, dark blue, light blue and purple curves, respectively.

From the locations of the recommended doses for these additional scenarios, which are pre-
sented in Table 11, we can confirm that we have run a suitable number of simulations to be
relatively certain in our conclusions drawn, for the given setting. This is seen from the con-
sistency in the outcomes of the biomarker negative subgroup. The rest of this discussion is
focussed on operating characteristics in the biomarker positive subgroup.
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Parameter value P(DLT|d, I+=1)
Scenario Bo B1 B, Bs 100 150 180 215 245 260

1 -7.10 7.68 0.00 0.00 0.02 0.06 0.10 0.18" 0.28 0.33
7| -7.10 7.68 0.75 0.75 0.05 0.16" 0.28 0.45 0.60 0.66
8 -7.10 7.68 0.30 1.30 0.04 0.15" 0.26 0.44 0.59 0.66
9f -7.10 7.68 1.30 0.30 0.07 0.21% 0.34 0.51 0.64 0.70
10f -7.10 7.68 3.00 -3.00 0.10 0.19" 0.25 0.34 0.41 0.45
11 -7.10 7.68 -2.00 5.00 0.02 0.12" 0.28 0.54 0.74 0.81

Table 10: Parameter values and simulated probability of DLT at each dose (in mg/m?) and
simulation scenario in additional simulations, given for the biomarker positive subgroup. Dark
grey cells highlight dose-pairs with probability of causing a DLT in a patient greater than 0.35.
The ‘X’ marks the dose with probability of toxicity closest to 0.16, in cases where there is a
tolerated dose.

It is difficult to make any firm conclusions concerning the effect of each of the parameters on
the methods but it is clear that the overall comparisons between the methods which we have
already made stand in all cases. Despite the different parameter values used to generate data
in Scenarios 7 and 8, the resulting dose-toxicity curves were fairly similar over the dose range
of interest. This is likely to be the reason that the operating characteristics of these scenarios
are similar. Although the dose-toxicity curve for Scenario 9 is not greatly dissimilar to those
of Scenarios 7 and 8, there appeared to be an increased chance of stopping early. This could
be due to the value of 3, being greater than 33 because this observation was more evident in
Scenario 10 which had an even larger difference in parameter values. Scenario 11 resulted in
a dose-toxicity curve with low toxicity at low doses but then a sharp increase. The average
proportion of toxicities observed in the trial were therefore decreased and fewer trials stopped
for safety.
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Recommended dose

Escalation| Significant subgroup effect| ,=0 =1
Scenario Method| 0 1 2 0 100 150 180 215 245 260 0 100 150 180 215 245 260
Baseline 1000 0 0| 0.01 0.02 0.48 0.45 0.04* 0.00 0.00 0.01 0.02 048" 0.45 0.04 0.00 0.00
7 1 0 936 64 0.02 0.02 0.13 037 033* 0.09 0.04 0.05 021 058* 0.15 0.01 0.00 0.00
2 364 567 69| 0.02 002 021 037 029" 006 003 006 020 053 020 002 000 0.00
Baseline 1000 0 0| 0.01 0.02 0.42 052 0.04* 0.00 0.00 0.01 0.02 0.42* 0.52 0.04 0.00 0.00
8 1 0 928 72 0.03 0.01 0.11 0.41 033" 0.07 0.04 0.05 0.16 0.57% 0.21 0.01 0.00 0.00
2 399 540 61 0.02 0.02 0.19 039 0.28" 0.07 0.03 0.04 015 0.51% 0.27 0.03 0.00 0.00
Baseline 1000 0 0| 0.00 0.07 0.65 0.27 0.01% 0.00 0.00 0.00 0.07 0.65" 0.27 0.01 0.00 0.00
9 1 0 896 104 0.02 0.01 0.13 0.41 0.32% 0.07 0.04 0.10 0.40 0.45* 0.06 0.00 0.00 0.00
2 268 636 96 0.02 0.03 0.21 036 0.28" 0.07 0.04 0.09 033 046" 0.11 0.01 0.00 0.00
Baseline 1000 0 0| 0.01 0.08 0.42 0.41 0.07% 0.01 0.00 0.01 0.08 0.42% 0.41 0.07 0.01 0.00
10 1 0 860 140 0.02 0.01 0.14 0.40 0.31% 0.08 0.04 0.14 033 036" 0.14 0.03 0.00 0.00
2 336 535 129 0.03 0.03 0.18 037 0.29% 0.07 0.04 0.12 031 033" 0.19 0.04 0.00 0.00
Baseline 1000 0 0| 0.00 0.00 0.38 0.60 0.01% 0.00 0.00 0.00 0.00 0.38" 0.60 0.01 0.00 0.00
11 1 0 972 28 0.02 0.02 0.13 0.40 0.32% 0.08 0.04 0.01 0.08 0.65* 0.26 0.00 0.00 0.00
2 406 559 35 0.03 0.01 0.19 037 027% 0.09 0.04 0.02 0.08 0.57% 0.31 0.02 0.00 0.00

Table 11: Number of trials which identified a subgroup effect (0 = no subgroup effect, 1 =
significant subgroup effect, 2 = defaulted to subgroup effect after stopping for safety in one
subgroup) and proportion of times each dose was recommended by subgroup out of trials giv-
ing a recommended dose (based on a frequentist calculation), for Scenarios 7-11. Grey cells
highlight dose-pairs with probability of causing a DLT in a patient greater than 0.35. The ‘X’
marks the dose with probability of toxicity closest to 0.16.

B.1 Investigating Inclusion Probabilities

We investigated the effect of the prior inclusion probability of 3, and 3 and also the bound-
ary on the inclusion probability for inclusion of terms in the fitted model. The combinations
investigated are given in Table 12. The prior pseudo-data used in simulations was the same for
both subgroups and, hence, it may be counter-intuitive to place a high prior probability of in-
clusion on f3; and f33. Specification of these parameters will depend on available prior data and
operating characteristics of the design which should be investigated through simulation prior to
implementation.

Method | Prior || Prior inclusion probability | Boundary for inclusion
setting || B, | B3 of term in model

a 0.3 0.3 0.25

0.3 0.3 0.35

3 c 0.5 0.5 0.25

d 0.5 0.5 0.35

e 0.7 0.7 0.25

f 0.7 0.7 0.35

Table 12: Combinations of prior inclusion probability and boundary for inclusion of terms
included in the model investigated in Method 2.

As expected, the average number of patients and proportion of DLTs were very similar in
each of the inclusion probability settings. This confirms the safety criterion on escalation is
effective and that, in general, escalation is targeting suitable doses. The effect of the inclusion
probability parameters on the model choice also agreed with expectations. This can be seen
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from the number of trials which declared a significant subgroup effect in escalation, as shown in
Table 13 for prior settings 1 and 3. Increasing the prior inclusion probability of the parameters
led to the terms for subgroup membership being included in the model more often. Increasing
the bound for inclusion of a term in the model led to a decrease in how often the terms for
subgroup membership were considered in the model, and hence how many trials concluded
that a significant subgroup effect was present. Simulations were also run using boundary for
inclusion of 0.50 with performance consistent with observations already made.

Recommended dose

PIP Significant subgroup effect| I,=0 =1
Scenario setting 0 1 2 0 100 150 180 215 245 260 0 100 150 180 215 245 260
a 889 78 33 0.02 0.01 0.04 0.44 0.44* 0.04 0.01 0.01 0.00 0.05 0.44 0.44* 0.04 0.01
b 906 46 48| 0.02 0.01 0.05 0.48 0.39" 0.05 0.01 0.03 0.00 0.04 0.48 0.38" 0.06 0.01
1 c 732 244 24 0.02 0.01 0.06 0.43 0.41% 0.07 0.02 0.01 0.01 0.08 0.42 0.40" 0.06 0.02
d 827 140 33 0.02 0.01 0.06 0.45 0.39% 0.07 0.02 0.02 0.01 0.05 0.44 0.40" 0.07 0.02
e 287 668 45 0.03 0.01 0.10 0.43 032% 0.07 0.03 0.03 0.01 0.09 0.41 0.37° 0.07 0.02
f 535 431 34 0.02 0.01 0.07 0.41  0.39" 0.07 0.03 0.02 0.01 0.08 0.42 038" 0.07 0.02
a 636 307 57 0.02 0.01 0.20 051 0.20F 0.06 0.01 0.04 0.06 0.41% 0.46 0.03 0.00 0.00
b 743 207 50 0.02 0.01 0.22 053 0.17% 0.04 0.01 0.04 0.05 0.37% 0.50 0.04 0.00 0.00
3 c 429 514 57 0.02 0.00 0.14 0.44 0.30% 0.07 0.02 0.04 0.08 0.50" 0.35 0.04 0.00 0.00
d 560 386 54 0.02 0.01 0.18 0.48 0.23" 0.05 0.02 0.04 0.08 0.44* 0.41 0.03 0.00 0.00
e 133 819 48| 0.02 0.01 0.10 0.42 035" 0.08 0.03 0.03 0.09 0.57% 0.30 0.01 0.00 0.00
f 261 677 62 0.01 0.01 0.12 0.43 033" 0.08 0.02 0.05 0.08 0.57% 0.29 0.01 0.00 0.00

Table 13: Number of trials which identify a subgroup effect (0 = no subgroup effect, 1 =
significant subgroup effect, 2 = defaulted to subgroup effect after stopping for safety in one
subgroup) and proportion of times each dose was recommended by subgroup out of trials giving
a recommended dose (based on a frequentist calculation) in Method 2 a range of inclusion
probability settings. Grey cells highlight dose-pairs with probability of causing a DLT in a
patient greater than 0.35. The ‘X’ marks the dose with probability of toxicity closest to 0.16.
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