
1 
 

A Bayesian model to estimate the cutoff and the clinical utility of a biomarker assay 

 

1. Introduction 1 

 2 

The development of diagnostic tests using biomarkers is now an integral part of the drug discovery 3 

and development process. Biomarkers are used in enrichment to assist in patient selection and in the 4 

design of clinical trials [1]. In the field of oncology, for instance, biomarkers are used to develop tests 5 

aiming to identify and treat those who are more likely to respond and demonstrate a higher therapeutic 6 

benefit. The adaptation of these biomarkers based tests for classification purposes requires the 7 

assessment of the test performance and, perhaps even more importantly, their clinical utility.  8 

 9 

The evaluation of the diagnostic performance of a set of potential biomarkers is usually performed 10 

using Receiver Operating Characteristic (ROC) curves, which plot the true positive rate (sensitivity) 11 

versus the false positive rate (1-specificity) over all possible decision thresholds of the test. This is 12 

helpful in choosing the most discriminating marker or set of markers [2]. After choosing an accurate 13 

marker from a set of markers, an appropriate threshold, or cutoff value, must be determined such that 14 

it correctly classifies patients as required.  15 

 16 

Several strategies exist for selecting a cutoff value. These may be based on numerical results around 17 

the sensitivity and specificity, but may also include criteria based on biological or physiological 18 

information. Thus, optimal thresholds may vary depending on the underlying criteria [3]. Most 19 

commonly, the optimal cutoff is chosen as the one that optimizes a utility function. For example, the 20 

cutoff that maximizes the number of correctly classified patients or the cutoff that minimizes the 21 
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misclassification cost. Because a utility function also requires information about cost or benefit, which 22 

is not always available, the optimal cutoff value is found by using criteria related to ROC curves. 23 

Confidence intervals around the cutoff value are obtained either using the delta method or, most 24 

commonly, by employing bootstrapping, though the coverage probabilities can be far from the desired 25 

level [4]. 26 

 27 

ROC-based methods, however, do not provide information on the diagnostic accuracy for a specific 28 

patient. Particularly in situations where a diagnostic test is used for classification purposes, clinicians 29 

are mainly concerned with the predictive ability of the test, approaching the result of the test from the 30 

direction of the patients. The assessment of correct classifications can be facilitated by the use of 31 

positive and negative predictive values (PPV and NPV, respectively). These predictive values are 32 

functions of the accuracy of the test and the overall prevalence, and can be used to assess the clinical 33 

utility of a diagnostic test for classification purposes.  34 

 35 

Lunceford [5] discussed the estimation of the clinical utility of a biomarker assay in the context of 36 

predictive enrichment studies. The aim of his research was to select a cutoff on a potentially predictive 37 

biomarker that can be used as an enrollment criterion for patient selection. By implementing a 38 

Bayesian approach in estimating clinical utility measures he facilitates cutoff decision making, but 39 

without considering the actual cutoff estimation. 40 

 41 

In this paper, we are interested in estimating the cutoff and the clinical utility of a biomarker, but most 42 

importantly the uncertainty around the estimates of the parameters of interest. We propose a flexible 43 

Bayesian approach that can utilize prior information to estimate the cutoff of a biomarker and its 44 

credible interval. By modelling the probability of response with a step function using predictive 45 
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values, we obtain estimates for the cutoff as well as for the predictive values of the test. Bayesian 46 

analysis allows us to assign probability distributions to our prior beliefs for the parameters of interest 47 

and combine these with the data likelihood to yield a posterior probability distribution representing our 48 

updated belief.  49 

 50 

In section 2, we present the Bayesian model for estimating the cutoff of a (continuous or ordinal) 51 

biomarker for a binary outcome. The different prior specifications for the cutoff that we consider allow 52 

for some robustness of the method. The finite-sample performance of the proposed Bayesian approach 53 

is demonstrated through a series of simulations and compared with alternative frequentist methods like 54 

Maximum Likelihood approach and the PSI index in Section 3. We also present applications of our 55 

method in Section 4 on real data for a continuous biomarker and binary, as well as time-to-event 56 

endpoints. Finally, we conclude with a brief discussion. 57 

 58 

2. Methods 59 

2.1 Bayesian model for estimating the cutoff and its credible interval 60 

 61 

In this section we present a Bayesian model for estimating the posterior distribution of a cut-off value 62 

for a biomarker, as well as its predictive values. Let 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) ∈ ℝ denote the continuous 63 

biomarker measurements for n individuals and assume that X is available to be measured on all 64 

patients. Let 𝑌 = (𝑌1, 𝑌2, … , 𝑌𝑛) denote the binary response variable, where 𝑌𝒊 ∈ {0,1} for all 𝑖 =65 

1, … , 𝑛. is the response indicator (e.g. 𝑌𝑖 = 0 denotes the non-responders and 𝑌𝑖 = 1 the responder 66 

subjects). We do not make assumptions about the distribution of the biomarker 𝑋 and by convention it 67 
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will be assumed that high values of the marker 𝑋 are associated with increased probability of response 68 

to a treatment.  69 

 70 

We assume that the probability of response 𝑝 can be modeled by a step function (Figure 1), in terms of 71 

positive predictive value (PPV) and negative predictive value (NPV) of the biomarker assay. The 72 

Positive Predictive Value (PPV) is defined as the conditional probability of response given a positive 73 

test result, i.e.  𝑃(𝑦 = 1|𝑇+). Conventionally, for potential cutoff 𝑐𝑝 ∈ ℝ, the test is positive, 𝑇+, if 74 

the biomarker exceeds the cutoff, 𝑋 ≥ 𝑐𝑝, and is negative otherwise. Similar statements apply for the 75 

Negative Predictive Value (NPV) which is defined as the conditional probability that an individual is a 76 

non-responder given a negative test result, i.e.  𝑃(𝑌 = 0|𝑇−) = 𝑃(𝑌 = 0|𝑋 ≤ 𝑐𝑝). The model is 77 

specified in the following way: 78 

𝑌|𝑋 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) 79 

 80 

  𝑝(𝑥) = 𝑃(𝑌 = 1|𝑋 = 𝑥) =  {   
𝑝1 = 𝑃(𝑌 = 1|𝑋 ≤ 𝑐𝑝),   for 𝑥 ≤ 𝑐𝑝 

 
𝑝2 = 𝑃(𝑌 = 1|𝑋 > 𝑐𝑝),   for 𝑥 > 𝑐𝑝   

               (2.1) 81 

 82 

The 𝑝1=1- NPV expresses the probability of response given X is below the cutoff value 𝑐𝑝 and 83 

𝑝2=PPV expresses the probability of response given that X is greater than 𝑐𝑝. 84 

 85 

[Figure 1 about here] 86 

 87 

Logistic regression can be used for decision making, i.e. to classify a subject as responder or not, only 88 

in conjunction to a probability threshold, i.e. 𝑝 = 0.5 [6]. However, the advantage of using the step 89 

function is that the cutoff is a parameter of the model and therefore a Bayesian approach can be 90 

applied. The strong assumption we make that the probability of response can be modeled by a step 91 



5 
 

function is probably not always reflecting the reality. However, it may serve as an approximating 92 

model in cases where there are two populations that have a pronounced difference in the response rate. 93 

It follows from literature on misspecified models [7] ,[8] that even, if the model is misspecified the 94 

estimates of the assumed step function are consistent for the parameter values for which the assumed 95 

model minimizes the distance from the true distribution in terms of Kullback-Leibler (KL) divergence 96 

[9].  97 

 98 

2.1.1 Prior specification  99 

 100 

In a Bayesian setup, the idea is to represent the uncertainty about the parameters by a prior 101 

distribution. Prior information can take into account subjective beliefs about the values of the 102 

parameters of the model. This external information can be historical information from experiments, 103 

experts opinion or literature findings. A Bayesian approach can thus be useful as it allows flexibility 104 

combining the available prior knowledge on test characteristics with new data. Importantly, incorrect 105 

prior information can lead to unreliable posterior estimates, and therefore great attention should be 106 

paid to the choice of the prior. On the other hand, if good prior information is available then the gain is 107 

in the precision of the estimates. 108 

 109 

Here, the parameters 𝑝1, 𝑝2 and the cutoff are assumed to have probability distributions reflecting the 110 

uncertainty in their parameters values. For the probabilities of response 𝑝1 and 𝑝2, we consider 111 

distributions that the support set is the interval (0,1). Furthermore, we require that 𝑝2 > 𝑝1. The 112 

simplest case is to assign uniform priors, i.e. 113 

𝑝1 ~ 𝑈𝑛𝑖𝑓(0,1)  and  𝑝2 ~ 𝑈𝑛𝑖𝑓(𝑝1, 1)             (2.2) 114 

Other options may include Truncated Normal or Beta distributions.  115 
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 116 

For the cutoff 𝑐𝑝, we can consider an informative prior, if prior information is relevant and an 117 

uninformative prior, when there is no information available, usually expressed by a uniform 118 

distribution. Finally a weighted sum of informative and non-informative priors can be considered to 119 

acknowledge potential prior-data conflict. We propose here a two-component mixture of priors, which 120 

allow for robustness. The first component of the mixture prior is the informative part which expresses 121 

the subjective belief we have and is derived from prior experiments, animal data or literature. Then 122 

second component, is the weakly (or non-) informative part that ensures robustness against potential 123 

prior-data conflict. We characterize a prior distribution as weakly informative if the information that 124 

provides is intentionally weaker than whatever actual prior knowledge is available. 125 

 126 

As discussed by Schmidli et.al [10], since one of the mixture components is usually vague, mixture 127 

priors will often be heavy tailed and therefore robust. Let  𝑔1 be the probability density function (pdf) 128 

of the uninformative component and 𝑔2 the pdf for the informative part. The mixture prior can be 129 

expressed as: 130 

                                             𝑐𝑝 = 𝑤 𝑔1 + (1 − 𝑤) 𝑔2                                         (2.3)     131 

with                𝑤 ~ 𝐵𝑒𝑡𝑎(1,1) 132 

The weight parameter 𝑤 will be updated at each iteration by the Bayesian model as described in 133 

section 3.  134 

 135 

2.1.2. Prior specification for constrained positive predictive value 136 

 137 

In this section, we present the case where the objective is to estimate a cutoff associated with a 138 

targeted clinical utility value by controlling the PPV of the test. For example, we might be interested 139 
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in the posterior distribution of the cutoff expected to yield a PPV between 70% and 100% or a 1-NPV 140 

to be between 0 and 20%. Whether a cutoff that yields a pre-specified predicted value exists would of 141 

course depend on the relationship between the biomarker and the response. The idea is then to 142 

incorporate the restriction on the predictive values via the prior information and require that only 143 

information on the pre-specified domain are acceptable. In that case, the constraints can be controlled 144 

through priors, e.g.  145 

𝑝1 ~ 𝑈𝑛𝑖𝑓(0, 𝑝2)  and  𝑝2 ~ 𝑈𝑛𝑖𝑓(0.7,1) 146 

It is worth noting that even if the parameter is constrained such that the actual desired range is not 147 

achievable e.g. 𝑝2 ∉ (0.7, 1), the method will result in the cut-point that is as close as possible to 148 

achieve this constraint (i.e. the mass of the posterior density is on the lower bound of the constrained 149 

interval) 150 

 151 

2.1.3.  Posterior distribution 152 

 153 

The posterior distribution of interest is formulated as  154 

              𝑓(𝑐𝑝, 𝑝1, 𝑝2|𝑥, 𝑦) ∝ 𝐿(𝑝1, 𝑝2, 𝑐𝑝|𝑥, 𝑦) × 𝑓(𝑝1) × 𝑓(𝑝2) × 𝑓(𝑐𝑝)                  (2.4) 155 

where 𝐿(𝑝1, 𝑝2, 𝑐𝑝|𝑥, 𝑦) is the likelihood function of the data and 𝑓(∙) denotes the density of the prior 156 

and 𝑓(∙ |𝑥, 𝑦) the posterior density of the distribution of the parameters. 157 

 158 

2.1.4. Maximum Likelihood Estimation  159 

 160 

The log likelihood of the model described in section 2.1 is given by 161 

 162 

  𝑙𝑜𝑔 𝐿 = 𝐿(𝑝1, 𝑝2, 𝑐𝑝|𝑥, 𝑦) =  ∑ 𝑦𝑖 𝑙𝑜𝑔(𝑝)𝑛
𝑖=1 + (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑝)  163 

 164 

with p as stated in (2.1) and 𝑛 denotes the total sample size. The log likelihood function becomes  165 
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𝑙𝑜𝑔𝐿 = ∑ 𝑦𝑖 𝑙𝑜𝑔(𝑝1)

𝑛1

𝑖=1

+ (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑝1) + ∑ 𝑦𝑖 𝑙𝑜𝑔(𝑝2)

𝑛2

𝑖=1

+ (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑝2) 166 

Where 𝑛1, 𝑛2 denote the sample size for the population that has  𝑋 ≤ 𝑐𝑝 and 𝑋 > 𝑐𝑝 respectively. 167 

The maximum likelihood estimates 𝑐𝑝̂, 𝑝1̂ and 𝑝2̂ are obtained by first minimizing – 𝑙𝑜𝑔𝐿 with respect 168 

to 𝑝1 and 𝑝2, for given 𝑐𝑝 and then maximizing the resulting profile likelihood with respect to 𝑐𝑝. One 169 

can see that 𝑝1̂ and 𝑝2̂ are just the average response rates in the subsamples {𝑥𝑖  ≤ 𝑐𝑝̂} and {𝑥𝑖 > 𝑐𝑝̂} 170 

where 𝑥𝑖 are the observed values of 𝑋 (see the appendix for a similar argument for the population 171 

parameters). 172 

 173 

3. Simulation Study 174 

 175 

In this section we examine the bias of the estimated cutoff under different distributional  assumptions 176 

for the biomarker 𝑋 via simulations. We compared the proposed Bayesian method with two frequentist 177 

approaches; the Maximum Likelihood Estimator (MLE) and the Predictive Summary Index (PSI) [11]. 178 

The PSI estimates the optimal cutoff by maximizing the difference in predictive values for all possible 179 

cutoffs 𝑐 and is expressed as 𝑃𝑆𝐼 = max
𝑐

{𝑃𝑃𝑉(𝑐) + 𝑁𝑃𝑉(𝑐) − 1}. The PSI is derived in the target 180 

(patient) population as a measure of the goodness of the predictability in a diagnostic test, thus, is a 181 

more comprehensive measure than the Youden index [12] in a clinical setting. For the latter approach, 182 

the confidence intervals are calculated by the bootstrap method by resampling the data 𝐵 = 500 times, 183 

calculating the 𝑃𝑆𝐼𝑗̂  per sample 𝑗 = 1, … , 𝐵. and then taking 𝛼/2 and 1 − 𝛼/2  quantiles of the 𝑃𝑆𝐼𝑗̂  to 184 

construct a (1 −  𝛼) 100% CI. For the Bayesian approach, the credible intervals are obtained by using 185 

the empirical 𝛼/2 and 1 − 𝛼/2 quantiles of the posterior distribution (quantile method). A level of 186 

𝛼 = 0.05 was used for both methods. 187 

 188 
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We include in our results the Maximum Likelihood Estimator (MLE) of the parameters 𝑝1, 𝑝2, 𝑐𝑝 189 

together with the 95% Confidence Intervals (CI) as a comparison. In general, maximum likelihood 190 

methods do not perform well when parameter estimates are on the boundary of the parameter space 191 

[13], leading to some non-convergence issues. On the other hand, Bayesian inference via MCMC 192 

algorithms permits full posterior inference even in the absence of asymptotic normality [14] and have 193 

no issues with parameter estimates on the boundary. In our simulation we did not anticipate any 194 

optimization issues regarding the optimization with the ML method. 195 

 196 

We simulated 10 000 datasets on which we applied all methods. We also report the coverage 197 

probability and the width of the credible and confidence intervals over the simulation runs. The 198 

analysis for the MLE and PSI estimation was done in R version 3.3.3 [15]. The 10 000 datasets were 199 

generated in R (for the MLE and PSI estimation) and then exported to SAS version 9.4 (SAS Institute 200 

Inc., Cary, NC, USA) (for the Bayesian estimation), such that the analysis was consistent for all the 201 

methods. For the PSI method the R-package “OptimalCutpoints” [16] was used and for the profile 202 

MLE the R-library “bbmle” [17]. 203 

 204 

The posterior computation was done by using Markov Chain Monte Carlo (MCMC). In our analysis 205 

we used the Metropolis-Hastings [18], [19] iterative sampling method to approximate the posterior 206 

distribution and get posterior estimates for the parameters in (2.4). Posterior computation was 207 

conducted using PROC MCMC procedure in SAS. The burn-in consisted of 10 000 iterations, and 50 208 

000 subsequent iterations were used for posterior summaries. Convergence of the MCMC chain was 209 

checked for randomly selected number of iterations, using diagnostic plots and the Gelman-Rubin 210 

convergence statistic as well as visually via trace plots, sample autocorrelations and kernel density 211 

plots. The SAS and R code can be found in the appendix. 212 
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 213 

3.1 Simulation Setting 214 

3.1.1 Generating data using a step function and a logistic function 215 

 216 

The true model that was used to generate the binary outcome 𝑦 has one biomarker 𝑋. We consider six 217 

different simulation scenarios, each with 𝑛 = 200,  and 𝑛 = 50. Furthermore, we assumed that the 218 

biomarker 𝑋 follows different distributions as shown in Table 1. Each component of the response 219 

vector 𝑦 is viewed as a realization of a Bernoulli random variable with probability of success 𝑝, i.e. 220 

𝑦|𝑋 ~𝐵𝑒𝑟𝑚𝑜𝑢𝑙𝑙𝑖(𝑝). In scenarios 1-4 and 6 the generating model has response probability 𝑝 221 

expressed as a step function, with 𝑝(𝑋) =  {
𝑝1, 𝑖𝑓 𝑋 ≤ 𝑐𝑝
𝑝2, 𝑖𝑓 𝑋 > 𝑐𝑝

, whereas in scenario 5 the generating 222 

model is a logistic model with probability of response 𝑝 =
𝑒𝑋𝛽

1+𝑒𝑋𝛽.  223 

 224 

The primary purpose of including scenario 5 is to investigate the behavior of the Bayesian method 225 

(together with the MLE and the PSI method), when the fitted model is divergent from the true 226 

underlying model. For this scenario, the true 𝑐𝑝, 𝑝1 and  𝑝2 are not defined by the data generating 227 

mechanism. In fact, it is known (see e.g. [7],[8]) that the estimated parameters from the Bayesian and 228 

MLE method, are consistent for the ones that minimize the Kullback-Leibler divergence between the 229 

fitted (step) model and the true (logistic) model. We give details on the limiting population parameter 230 

in the Appendix. 231 

 232 

In scenario 4, we explore the case that the biomarker 𝑋 is ordinal. The data were generated in the 233 

following way; Assuming 𝑋~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 7, 𝜎2 = 1) as in scenario 1, we calculate the quartiles of 𝑋 234 

that form the four levels of the ordinal variable (the lowest quartile corresponds to category 𝑋 = 1 and 235 
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the 4th quartile to 𝑋 = 4). Each component of the response  𝑌  is a realization from a Bernoulli random 236 

variable with  𝑝(𝑋) =  {
𝑝1, 𝑖𝑓 𝑋 = 1,2
𝑝2, 𝑖𝑓 𝑋 ≥ 3

 .  237 

 238 

Moreover, we are interested to address the case that the true generating model has two cutoffs and the 239 

fitted model assumes only one cutoff (scenario 6 in Table 1). To simulate data for this scenario, 240 

scenario 6, we assumed that 𝑝(𝑋) = {

𝑝1,             𝑖𝑓 𝑋 ≤ 𝑐𝑝1     
 𝑝2,      𝑖𝑓  𝑐𝑝1 < 𝑋 ≤ 𝑐𝑝2

𝑝3,             𝑖𝑓 𝑋 > 𝑐𝑝2     
. If the data indicate the existence of 241 

two cut-off values, this might indicate the existence of two subgroups with different response 242 

probabilities. For the scenarios 2 and 6, we assumed that the biomarker 𝑋 follows a mixture of two 243 

normal distributions expressed as 𝑋~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 𝜇1 , 𝜎2 = 𝜎2
1) + 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 𝜇2 , 𝜎2 = 𝜎2

2). 244 

 245 

[Table 1 about here] 246 

 247 

3.2. Simulation Results  248 

 249 

This section describes the simulation results regarding the finite sample properties of the estimators 250 

from the Bayesian method, the PSI index and the ML. In our results, we chose to report the Bayesian 251 

posterior mean, as we consider it an adequate measure to summarize the posterior density and we 252 

found that the cutoffs were generally similar whatever estimate kept from the posterior distribution 253 

among the mode, median or mean. In Table 2 and Table 3 we report the Bias of estimators for 𝑐𝑝 254 

(Table 2), 𝑝1, 𝑝2 (Table 3) for scenarios 1-4 based on 10 000 simulation runs. Coverage probability 255 

and interval width of the confidence and credible intervals are shown in Table 4 and Table 5.  256 

 257 
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For the Bayesian method, we also report results for four different prior specifications. The first, the 258 

naïve case, corresponds to a uniform prior (UP) in the interval of the range of the biomarker 259 

measurements. Note here that with a uniform prior, it is well known [20] that, the Bayesian posterior 260 

mode corresponds to the ML estimator. Other priors we considered are a perfect informative prior 261 

(denoted as IPP), an imperfect informative prior (denoted as IPN) and two mixture priors (MixP and 262 

MixN) each with two components; a weighted sum of a uniform and informative prior (UP+IPP) and a 263 

uniform and imperfect informative prior (UP+IPN) respectively. More specifically, for the IPP prior, 264 

we assume a distribution for which the true cutoff lies in an interval of high probability, whereas for 265 

the IPN prior the true cutoff lies in one of the tails of the distribution. An illustration of the IPP and 266 

IPN priors used for scenario 1 can be found in Figure 2. Obviously, when the prior does not include 267 

the true value of the cutoff, then the posterior estimates are expected to be biased for finite sample 268 

sizes. The priors for 𝑝1, 𝑝2 were taken as uniform distributions as given by (2.2). 269 

 270 

[Figure 2 about here] 271 

 272 

Regarding the estimation of the cutoff 𝑐𝑝, in scenarios 1-4, results in Table 2 show that estimators 273 

using all three methods behave similarly in terms of bias, resulting in nearly unbiased estimators. The 274 

Bayesian method gives a much better coverage than the MLE and PSI methods for the scenarios where 275 

the marker is continuous (Table 4). For the PSI method in scenarios 1 and 3, the bias of the estimate of 276 

𝑐𝑝 is far too high in absolute terms (see Table 2). Additionally, the coverage of the bootstrapped 277 

confidence interval is far from the nominal level and the interval width is much wider compared to the 278 

other methods. The Bayesian method performs either the same or better compared to MLE and PSI in 279 

terms of bias and coverage both in case of the continuous and the ordinal biomarker.  280 
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 281 

For all priors that we considered, the resulting estimators are on average unbiased for both 𝑛 = 200 282 

and 𝑛 = 50. As expected, with the robust mixture prior and the informative prior, estimates have the 283 

smallest bias on average. The IPP prior gives a smaller interval width with the mixture prior second. 284 

Moreover, with the IPP prior we get more precise estimates while obtaining the same or better 285 

coverage compared to the other prior specifications. 286 

 287 

[Table 2 about here] 288 

[Table 3 about here] 289 

 290 
To see how the prior affects the estimation, we calculate the absolute difference between the estimated 291 

and true value of the cutoff over the simulation runs and we present the results for the Bayesian 292 

method for scenario 1 for all different prior specifications as shown in Figure A.1 in the Appendix. In 293 

Figure A.1, we see that the absolute difference between the estimate and the true value of 𝑐𝑝 was on 294 

average below 10%. As for the predictive values, we discuss our findings for 𝑛 = 200 and show the 295 

results for the estimate of the cutoff. Detailed figures for the predictive values for 𝑛 = 50 can be found 296 

in Table A.1 and Table A.2 in the Appendix.  297 

 298 

As shown in Table 3 and Table 5, all methods performed well with good coverage and very small bias 299 

for both 𝑝1 and 𝑝2. The bias of the estimates for the predictive values 𝑝1 and 𝑝2, was always below 1% 300 

for all scenarios. Coverage probabilities for the credible intervals reach the nominal value for the 301 

Bayesian and the ML method but is not always the case for the estimation of 𝑝2 when using the PSI 302 

index as seen, for example, in scenario 1 and scenario 3, where the coverage probability for the PSI 303 



14 
 

method is far from the nominal (Table 5). The length of the credible interval (for the Bayesian 304 

method) was similar to the confidence interval for the MLE and always narrower compared to PSI. 305 

 306 

[Table 4 about here] 307 

[Table 5 about here] 308 

 309 
For scenario 5 where the true model is generated assuming a logistic response curve, we estimated the 310 

cutoff and the corresponding probabilities of response by applying the Bayesian method as well as the 311 

MLE and the PSI approaches. In that case, the true cutoff is not directly defined by the data generating 312 

mechanism. However, the population parameters are defined by minimizing the KL divergence 313 

between the true (logistic) and the assumed (step) model as discussed in section 2.1 and more detailed 314 

in the Appendix. The results of the distribution of the estimates of the parameters for scenario 5 for the 315 

three methods are shown in boxplots in Figure 3. 316 

 317 

In this scenario, the Bayesian estimates are more consistent and have a smaller variability compared to 318 

the MLE and the PSI method. As can be seen from the boxplots, the ML and the PSI methods result in 319 

heavy tailed distributions for all the parameters and especially for the estimate of the cutoff. The 320 

estimates concerning the cutoff and the predicted values obtained with the PSI method, differ 321 

significantly as compared to the other two methods. This is partially due to the fact that the PSI 322 

optimizes a different utility function than the Bayesian and the ML approach. While the Bayesian and 323 

the ML methods use the likelihood as an objective function, the PSI method seeks to maximize the 324 

difference between predictive values (PPV- (1-NPV)) 325 

 326 

[Figure 3 about here] 327 
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 328 

For scenario 6, the generating model assumes that there exist two cutoff values and three response 329 

probabilities 𝑝1, 𝑝2, 𝑝3 respectively. The Bayesian model we fit to estimate the cutoff and the 330 

corresponding predictive values, assumes that there is only one cutoff value. For simplicity we used an 331 

UP prior for the Bayesian method. The results of the fitted model are shown in Figure 4. Focusing on 332 

the estimate of 𝑐𝑝, we analyzed the results in more detail. We checked whether the obtained posterior 333 

distribution was bimodal, and if so, we reported the two modes. To check for bimodality, i.e. if the 334 

posterior density function has two peaks, we used the Hartigan’s dip test for unimodality [21]. A p-335 

value less than 0.05 is taken to indicate non-unimodality (it means at least bimodality). 336 

 337 

[Figure 4 about here] 338 

 339 

Figure 5 shows the distribution of the estimated cutoffs when posterior density is judged to be 340 

unimodal (5 733 out of 10 000 simulations) and when it is found to be a bimodal posterior distribution 341 

(4 267 out of 10 000 simulations). Looking across all simulations we see that the cutoff is somewhere 342 

between the two true cutoffs. When only a single mode is identified there is a clear tendency to be 343 

close to the second true cutoff 𝑐𝑝2 = 10. When two modes are found, the underlying two true cutoffs 344 

are estimated reasonably well despite the model misspecification.  345 

 346 

[Figure 5 about here] 347 

 348 

 349 

4. Application 350 
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4.1. The prostate cancer data 351 

 352 

We consider the prostate specific antigen (PSA) study of 12 000 men aged 50–65, which was a 353 

randomized study with a beta-carotene group as the treatment group vs. a placebo group. A substudy 354 

reported by Etzioni et al. [22] analyzed serum levels of total PSA (on the log scale) for 683 subjects. 355 

The dataset is described in [2] and [23] where you can find additional details about the study, which 356 

was analyzed from a non-Bayesian perspective. The primary scientific question under investigation 357 

was whether PSA could be used to diagnose prostate cancer, and was found that the total PSA is a 358 

significant predictor of the occurrence of cancer with fairly good accuracy. Albeit the good diagnostic 359 

ability of the marker PSA, we are interested in estimating a cutoff that takes into account the clinical 360 

benefit of this marker. 361 

 362 

In this paper, we considered response to a treatment as the outcome of interest but the method can be 363 

used also when we refer to diagnostic tests, where the outcome is presence of disease or not. We 364 

analyzed the data described above by applying our Bayesian method to estimate the cutoff related with 365 

disease rates. Probabilistic statements are derived for the optimal cutoff as well as the predictive 366 

values of the marker (logPSA). We assume a uniform prior for the cutoff in the interval (0,100) and 367 

priors for the predictive values defined as in (2.2). We also report the ML estimator and the PSI index.  368 

 369 

Figure 6 shows the posterior distributions for the cutoff (left panel) and the predictive values 𝑝1 and 𝑝2 370 

(middle and right panels respectively). The MLE of the cutoff was found equal to 3.65 with 95% CI 371 

(3.62-3.69), while the posterior median was 3.66 with 95% credible interval (2.44-3.95). The PSI 372 

index which, we remind that maximizes a different objective function, estimates the optimal cutoff to 373 

be 37.66 with 95% bootstrapped CI (7.90-43.30). At that cut-off the PPV and 1-NPV was equal to 1 374 
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and 0.32 respectively. The Bayesian posterior mean for 𝑝1 and 𝑝2 were found equal to 0.17 with 95% 375 

credible interval (0.13-0.22) and 0.73 with 95% credible interval (0.61-0.79) respectively. The MLE 376 

for 𝑝1was 0.18 with 95% confidence interval (0.15-0.21) and for 𝑝2 was 0.75 with 95% confidence 377 

interval (0.68-0.81). 378 

 379 

[Figure 6 about here] 380 

 381 

4.2. Application on survival data: Weibull model for melanoma data 382 

 383 

To illustrate that the proposed approach is useful for more complex settings we consider identifying 384 

the appropriate cutoff for a time to event endpoint. For the following applications on time to event 385 

data, we assume the following let 𝑇𝑖 denote the event time for subject 𝑖. Due to censoring, instead of 386 

observing 𝑇𝑖, we observe the bivariate vector (𝑚𝑖𝑛(𝑇𝑖, 𝐶𝑖),  ∆𝑖) where ∆𝑖= 𝐼(𝑇𝑖 ≤ 𝐶𝑖) with 𝐼 the 387 

indicator function and 𝐶𝑖 is the censoring time. 388 

 389 

The data used are the melanoma dataset available from the R package timereg [24]. The data consist 390 

of measurements made on patients with malignant melanoma and patients with a thick tumor are 391 

thought to have an increased chance of death from melanoma, thus the objective is to estimate a cut-392 

off value on (the log scale of) the tumor size such that the patients below and above the cutoff have a 393 

pronounced difference in their hazard rates. We run the analysis using the R package MHadaptive [25] 394 

and we used uniform priors for all the parameters. The R-code is available upon request from the 395 

author. 396 

 397 
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To set up the model in the survival setting, the thickness of the tumor on the log scale is denoted by 𝑋,  398 

𝑇 denotes time to death and is assumed to have a Weibull distribution with shape parameter 𝑟 and 399 

scale parameter 𝜆. The assumption is that, based on the thickness of the tumor, we can estimate a 400 

cutoff 𝑐𝑝 such that the two groups defined by 𝑐𝑝, have different hazard functions. Therefore, the shape 401 

and scale parameter for the patients that thickness of their tumor is below 𝑐𝑝 is 𝑟1 and 𝜆1 respectively 402 

and accordingly, 𝑟2 and 𝜆2 for those patients with 𝑋 > 𝑐𝑝.  403 

  𝑇|𝑋~ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑟, 𝜆)  with   𝑟 = {
𝑟1,    𝑖𝑓 𝑋 ≤ 𝑐𝑝
𝑟2,   𝑖𝑓 𝑋 > 𝑐𝑝

  and    𝜆 = {
𝜆1,    𝑖𝑓 𝑋 ≤ 𝑐𝑝
𝜆2,   𝑖𝑓 𝑋 > 𝑐𝑝

 404 

 405 

Figure 7 (A) shows the posterior densities for the cutoff, the shape and scale parameters. We took the 406 

medians of the posterior densities as point estimates for each parameter. In Figure 7 (B) we plot the 407 

survival curves, estimated with the Kaplan-Meier estimate, for the patients bellow and above the 408 

posterior cutoff estimate, which was taken as the posterior mean equal to 𝑐𝑝̂ = 5.38  with 95% 409 

credible interval (5.07- 5.86). At the same figure we plot the survival curves for the Weibull model in 410 

dashed lines. As seen from the plot, the survival probability decreases with higher tumor thickness 411 

value. To test whether the survival curves for the patients below and above the estimated cutoff value 412 

differ significantly, we applied the log-rank test which showed that there is a significant difference in 413 

survival (p<<0.05). Figure 7 (C) shows the hazard function for the two groups by plugging in the 414 

estimated shape and scale parameters, i.e. the hazard function for the Weibull model becomes  ℎ(𝑡) =415 

{ 

𝑟1

𝜆1
(

𝑡

𝜆1
)𝑟1−1,   𝑖𝑓 𝑋 ≤ 𝑐𝑝

𝑟2

𝜆2
(

𝑡

𝜆2
)𝑟2−1,    𝑖𝑓 𝑋 > 𝑐𝑝

 , with 𝑟1, 𝜆1, 𝑟2, 𝜆2 taken as the means of the posterior densities. 416 

 417 

[Figure 7 about here] 418 
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5. Discussion  

 419 

To enable targeted therapies and enhance medical decision making, biomarkers are increasingly used 420 

in diagnostic tests. When using quantitative biomarkers for classification purposes, defining a reliable 421 

cutoff value for the biomarker is a critical step in the drug development process, as the patient 422 

selection process in the subsequent development steps may depend on this value. Although 423 

classification probabilities, sensitivity and specificity, are considered more relevant to quantify the 424 

inherent accuracy of the test, predictive values quantify the clinical utility of the test. 425 

 426 

We have proposed a Bayesian method to estimate the cutoff value of a biomarker assay using the 427 

predictive values, and also determine the uncertainty around these estimates. We used a step function, 428 

which serves as an approximate model facilitating classification into two groups that have a 429 

pronounced difference in their response rates. The advantage of using the step function is that the 430 

cutoff and predictive values are parameters of the model. Even in the case that the assumption of a step 431 

function is strong and the model is misspecified, the estimates of the assumed step function are 432 

consistent for the parameter values for which the assumed model minimizes the distance from the true 433 

distribution in terms of Kullback-Leibler divergence [7], [8]. A more careful investigation of this 434 

approach is worth further exploration. 435 

 436 

As mentioned by a referee, one could alternatively use a standard classification algorithm, like for 437 

example logistic regression with a probability threshold of 𝑝 = 0.5. One could also choose 𝑝 such that 438 

the Brier score [26], a measure of accuracy of predictions, is minimized. These methods do not 439 

directly address the goal of population separation with regard to positive and negative predictive 440 

values. Moreover, they do not directly provide credible or confidence intervals for the parameters of 441 
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interest which was one of the major goals of the proposed method. Nevertheless, we have compared 442 

the Bayesian approach with these methods and found that the estimated parameters of 𝑐𝑝 are more 443 

biased compared to the Bayesian estimates. Detailed figures can be found in the Appendix. 444 

 445 

The proposed Bayesian approach allows for the estimation of the distribution of the cutoff for 446 

continuous and ordinal biomarkers and permits probabilistic statements about the cutoff values and, 447 

say, the response rates in the two groups. Together with the potential incorporation of prior 448 

information, this is deemed useful especially in the earlier phases of drug development. Results 449 

suggest that the proposed Bayesian method is very tractable in estimating the parameters of interest, 450 

resulting in point estimators (e.g. posterior mean) that are practically unbiased in all scenarios, for all 451 

prior constellations and sample size assumptions.  452 

 453 

In this article, we presented four different prior specifications, including uninformative, informative, 454 

and mixture priors. In all cases, estimation gave satisfying results. Especially when more accurate 455 

prior information is available, the estimated parameters are nearly unbiased with high precision and 456 

good coverage. We suggest a mixture prior that works well in practice, as it is robust towards potential 457 

prior-data conflict. For a dataset of 𝑛 = 200 observations, the Bayesian approach takes 6.3sec to run 458 

on a windows machine with processor Intel Xeon CPU E7-8867 v3 @ 2.5GHz, compared to 459 

frequentist approaches (MLE 0.15sec and for PSI 3.7sec together with the bootstrapped CI). Although 460 

the computational time for the proposed approach is increased, as is the case for Bayesian methods, is 461 

not prohibitive. 462 

 463 

The approach described in this article can be used as a basis for further investigation. The suggested 464 

method was applied to a single biological marker, but it can be generalized to multiple markers. One 465 
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way to deal with multiple markers is to estimate a composite score for each patient using a 466 

combination of markers (under some working model, for example, under the logistic model), and then 467 

consider this score as the new marker. Furthermore, it would be of great interest to consider the 468 

generalization of the method to estimate multiple cutoffs that can be used potentially for subgroup 469 

identification. In that case, model selection can be used to decide how many cut-offs (indicating the 470 

number of subgroups) the model can have according to the data. 471 
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