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Abstract

Block-and-hole polyhedra can be derived from a bar-joint triangulation of a

polyhedron by a stepwise construction: select a set of non-overlapping disks

defined by edge-cycles of the triangulation of length at least 4; then modify

the interior of each disk by an addition or deletion operation on vertices and

edges so that it becomes either a rigid block or a hole. The construction has

a body-hinge analogue. Models of many classical objects such as the Sarrus

linkage can be modelled by block-and-hole polyhedra. Symmetry extensions

of counting rules for mobility (the balance of mechanisms and states of self-

stress) are obtained for the bar-joint and body-hinge models. The extended
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rules detect mechanisms in many cases where pure counting would predict

an isostatic framework. Relations between structures where blocks and holes

are swapped have a simple form. Examples illustrate the finer classification

of isostatic and near-isostatic block-and-hole polyhedra achievable by using

symmetry.

The present approach also explains a puzzle in standard models of mobil-

ity. In the bar-joint model, a fully triangulated polyhedron is isostatic, but

in a body-hinge version, it is heavily overconstrained. When the bodies are

panels with hinge lines intersecting at vertices, the overconstraints can be

explained in local mechanical terms, with a direct symmetry description. A

generalisation of the symmetry formula explains the extra states of self-stress

in panel-hinge models of block-and-hole polyhedra.

Keywords: symmetry, rigidity, mechanisms, block-and-hole polyhedra,

bar-joint frameworks, panel-hinge structures

1. Introduction

As structures poised between mobility and over-bracing, just-rigid iso-

static frameworks are of perennial interest in engineering applications (Maxwell,

1876; Bujakas and Rybakova, 1998; Stewart, 1965; Miura et al., 1985; Baker

and Friswell, 2009). Fully triangulated (strictly convex) polyhedra are guar-

anteed by the Cauchy-Dehn Theorem to be isostatic (Cauchy, 1813; Dehn,

1916). Furthermore, Gluck showed in 1975 that the graph of any triangulated

sphere is generically isostatic in 3-space (Gluck, 1975). Bar-joint frameworks

based on triangulated spheres therefore provide good starting points for ex-

ploration of isostatic and related structures. Indeed, removal of just one edge
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of such a framework is sufficient to give a finite mechanism (Maxwell, 1890).

One class of structures currently attracting attention in the literature

of rigidity is that of block-and-hole frameworks (Finbow-Singh et al., 2012;

Finbow-Singh and Whiteley, 2013; Cruickshank et al., 2015), which can

model situations such as geodesic domes pierced by windows, or open-ended

tubular tower-like structures. Mathematical work has concentrated on gen-

eral combinatorial characterisations of rigidity (Whiteley, 1988; Finbow-Singh

and Whiteley, 2013; Cruickshank et al., 2015). Work on applications needs to

reach an understanding of particular geometric realisations of such structures,

especially those with non-trivial symmetries. In these cases, pure counting

does not always reveal mechanisms, and indeed other types of ‘perforated

polyhedra’ (Fowler et al., 2016) may possess unexpected mechanisms that

are only understood by use of symmetry-extended counting rules.

Here we extend ‘counting with symmetry’ (Fowler and Guest, 2000; Guest

and Fowler, 2005; Connelly et al., 2009) to the mobility of block-and-hole

frameworks, and show that this approach can give useful information on

candidates for isostatic frameworks, and on properties of structures related

by swapping blocks and holes (Finbow-Singh et al., 2012).

We work with block-and-hole polyhedra, which we take here to be struc-

tures derived from a bar-joint triangulation of the sphere by selecting a set

of non-overlapping disks defined by cycles of length at least four composed

of edges of the triangulation, followed by modification of each disk so that it

becomes either a rigid block or a hole. Edges making up a chosen cycle are

not necessarily coplanar. With our definition, we are choosing to consider the

structures that can be formed by a series of independent hole-punching and
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block-rigidifying operations. This simplifies the symmetry arguments and

allows us to reach a general equation for mobility of block-and-hole polyhe-

dra (because vertices and edges at hole boundaries are restricted to trivial

rotational symmetries). We focus on ‘counting-isostatic’ block-and-hole poly-

hedra, where the standard mobility count m−s is equal to zero. However, the

approach is equally able to describe over-braced or under-braced block-and-

hole systems, where a swap of blocks and holes simply changes the sign of the

mobility count. In the symmetry-extended formulation, this swap may have

consequences for the finite or infinitesimal nature of predicted mechanisms.

Block-and-hole polyhedra may take various forms, as, for example, panel-

hinge frameworks (Katoh and Tanigawa, 2011) in the case where the vertices

of each block are coplanar and holes do not share any vertex. In such a

structure, blocks are flat panels that are connected in pairs along edges which

function as hinges that allow a rotational motion of one panel around the

other. Useful panel-hinge physical models of block-and-hole polyhedra can

be created with commercial kits (Polydron, 2016), as shown in figures in the

present paper. Switching between bar-joint and panel-hinge models brings

to light an interesting “puzzle”: the apparently equivalent panel-hinge model

has more states of self-stress. We explore the origin of these states, and show

that they can be counted, assigned symmetries and explained with a simple

localised mechanical model.

The structure of the paper is as follows. In §2 a bar-joint model of block-

and-hole polyhedra is described in terms of operations performed on an ini-

tially fully triangulated framework. A symmetry-extended counting rule is

given for the mobility of the bar-joint model. In §3 the corresponding panel-
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hinge model is presented and the symmetry-extended counting rule is derived

and the puzzling ‘extra’ states of self-stress are explained. In §4, examples

bring out the rich behaviour of different kinds of block-and-hole polyhedra,

all undetected by scalar counting. Finally, in §5 we discuss briefly how the

methods of this paper may be applied to other types of block-and-hole struc-

tures.

2. A bar-joint model for block-and-hole polyhedra

In our approach, we model any given block-and-hole polyhedron by a

series of successive applications of operations of two types to a bar-joint

triangulation of a topological sphere (which is not necessarily convex).

One operation generates a hole by removal of a vertex vh along with its

incident edges from the original triangulation. The other operation generates

a block by identifying a vertex vb of degree d(vb) ≥ 4 in the original trian-

gulation and duplicating it (coning over the neighbours of vb); this forms a

[d(vb)]-bipyramid, which is guaranteed to be isostatic in generic geometry by

Gluck’s theorem (Gluck, 1975). We choose a position for the duplicate vertex

(and slightly perturb the position of vb if necessary) in such a way that the

coned system is in fact isostatic in 3-space.

2.1. Scalar and symmetry-extended counting rules

A 3D bar-joint framework with b bars and j joints has m mechanisms and

s states of self-stress and obeys the Maxwell Rule (Maxwell, 1864; Calladine,

1978)

m− s = 3j − b− 6. (1)
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hole block

Figure 1: Construction of a hole and a rigid block (a panel) from a bar-joint triangulation
of the sphere.

In the symmetry extension (Fowler and Guest, 2000) for a bar-joint frame-

work with point group G, the counting equation becomes

Γ(m)− Γ(s) = Γ(j)× ΓT − Γ(b)− (ΓT + ΓR), (2)

or, in terms of the underlying graph with v vertices and e edges:

Γ(m)− Γ(s) = Γ(v)× ΓT − Γ(e)− (ΓT + ΓR). (3)

In the terminology of mathematical group theory, each Γ in these equations

is the character of a group representation of G. A group representation of G

is a homomorphism from G to the general linear group of some vector space,

and the character of the representation associates to each group element the

trace of the corresponding matrix. In applied group theory, what is called a

character in the mathematical formulation is usually called a representation,

and the trace under an operation is called the character, and this is the

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

terminology we will use below. In this applied context, the Maxwell Rule

(1) is simply the character of the symmetry equation (2) under the identity

operation. For point groups in 3-space and their irreducible representations,

we will use the standard Schoenflies and Mulliken notations, respectively

(Altmann and Herzig, 1994; Atkins et al., 1970).

In our equations, Γ(m) and Γ(s) are the representations of the mecha-

nisms and states of self-stress of the framework. For any set of objects q,

Γ(q) is the permutation representation of q; that is, the entry of the represen-

tation Γ(q) corresponding to a group element x ∈ G is equal to the number

of objects in the set that remain unshifted by the symmetry operation x. In

addition, ΓT and ΓR are three-dimensional translational and rotational rep-

resentations, respectively. Two representations that will be useful later are

Γ0 and Γε, respectively the totally symmetric and determinantal representa-

tions: Γ0 is the symmetry of an object that is preserved under all symmetry

operations; Γε is the symmetry of an object that is preserved under all proper,

and reversed under all improper symmetry operations. Useful relations are

Γε × Γε = Γ0 and ΓR = ΓT × Γε.

All the representations in (2) and (3) can be computed by standard ma-

nipulations of the character table of the group G (Altmann and Herzig, 1994;

Atkins et al., 1970). Note that Γ(m)−Γ(s) is typically a reducible represen-

tation, i.e., a linear combination in which those irreducible representations

that occur with positive coefficients describe symmetries of mechanisms, and

those with negative coefficients describe symmetries of states of self-stress.

The equation m − s = 0 is a necessary but not sufficient condition for

a structure to be isostatic. (A structure can have mechanisms and states of
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self-stress that cancel in the count.) The symmetry extension can be seen

as a set of additional necessary conditions, one for each class of operations

in the point group. This is typically more informative than the scalar rule,

which is just the character of (2) under one operation. We refer to those

mechanisms and states of self-stress that cannot be detected using the scalar

rule (1) but are revealed by the symmetry-extended counting rule (2) as

symmetry-detectable.

2.2. Symmetry aspects of the construction

The construction described above yields a bar-joint framework that differs

from the original triangulation in two obvious respects: the presence of blocks

and of holes. In symmetry terms, the effect in (3) of deleting a set of vertices

{vh} and their incident edges {eh} at the hole sites is to subtract a term

Γ(vh) × ΓT − Γ(eh) from Γ(m) − Γ(s). Likewise, the addition of vertices

{vb} and their edges {eb} at the block sites adds a term Γ(vb)× ΓT − Γ(eb)

to Γ(m) − Γ(s). Typically the process of creation of blocks and holes will

reduce the overall symmetry; calculations of the various representations are

understood to take place in the smaller point group appropriate to the block-

and-hole system.

Given that by construction we start from an isostatic structure, the total

mobility of the bar-joint block-and-hole structure is given by the difference

term:

[Γ(m)− Γ(s)]BH = [Γ(vb)− Γ(vh)]× ΓT + [Γ(eh)− Γ(eb)]. (4)

This is our main working equation. It will be used to deduce the mobility
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properties of all the various block-and-hole structures to be described in the

examples below.

Some remarks follow straightforwardly.

(i) The trace of symmetry equation (4) under the identity operation is

simply the scalar count, and hence

(m− s)BH = 3(|vb| − |vh|) + (|eh| − |eb|),

or in terms of vertices vh1 , . . . , vb1 , . . . with degrees dh1 , . . . , db1 , . . .,

(m− s)BH =

|vh|∑

i=1

(dhi − 3)−
|vb|∑

i=1

(dbi − 3),

consistent with the fact that the structure would retain its isostatic

count m − s = 0 if all blocks and holes were based on triangles: the

isostatic count persists for all symmetry operations, since Γ(vX)×ΓT =

Γ(eX) for each set of trivalent vertices with their associated edges (X

= b or h), and hence (Γ(m)− Γ(s))BH vanishes in this case.

(ii) As much of the interest in block-and-hole frameworks lies in their poten-

tial as isostatic structures, it seems useful to define a notion of balance

for bar-joint block-and-hole frameworks.

At the level of scalar counting, a bar-joint block-and-hole framework

with a zero count (m−s)BH will be called counting-isostatic. The count

of zero can be achieved in various ways. A case in which |vh| = |vb| and

|eh| = |eb| will be called counting-balanced. The special case in which
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every hole vertex has a corresponding block vertex of the same degree

will be called strongly counting-balanced.

At the level of counting with symmetry, more situations are possible.

Not all structures with m − s = 0 have Γ(m) − Γ(s) = 0. A zero

representation (Γ(m) − Γ(s))BH implies that neither mechanisms nor

states of self-stress are detectable by symmetry. We will call this case

symmetry-counting-isostatic, or symmetry-isostatic for short. A way

to achieve vanishing of (Γ(m) − Γ(s))BH is to have Γ(vb) = Γ(vh) and

Γ(eb) = Γ(eh). This case is symmetry-counting-balanced, or symmetry-

balanced. A specific way to ensure this symmetry balance is to start

with a counting-balanced structure and to choose {vh} and {vb} such

that the two sets of vertices and the two sets of edges {eh} and {eb} span

the same combinations of orbits of the point group of the derived struc-

ture (Fowler and Quinn, 1986). By analogy with the symmetry-free ter-

minology, we will call this case strongly symmetry-counting-balanced, or

simply strongly symmetry-balanced.

The point of this hierarchy of definitions is that counting with symme-

try is intrinsically more discriminating than scalar counting. In partic-

ular:

(a) Symmetry-isostatic implies counting-isostatic;

(b) Symmetry-balanced implies counting-balanced;

(c) Strongly symmetry-balanced implies strongly counting-balanced.

Within each stack of scalar or symmetry counting, strongly balanced
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implies balanced implies isostatic. The gap between symmetry and

simple counting at each level can lead to cases where a bar-joint frame-

work is isostatic according to counting but has symmetry-detectable

mechanisms and states of self-stress (see examples below).

(iii) Both symmetry-extended and scalar mobility equations are evidently

anti-symmetric with respect to exchange of blocks and holes. With

the scalar equation, the prediction is simply that the excess of mech-

anisms over states of self-stress will be reversed. With the symmetry-

extended equation, the prediction is more subtle: symmetries of ex-

cess mechanisms and states of self-stress will be swapped and this may

lead to physically distinguishable consequences. Given the symmetry

rules governing finiteness of mechanisms (Guest and Fowler, 2007), the

change in symmetry may lead to blocking of mechanisms in one case

but not the other. Examples given later illustrate these possibilities.

3. A panel-hinge model for block-and-hole polyhedra

Consider a 3D structure consisting of rigid bodies connected in pairs by

joints that allow various degrees of freedom. Such a structure with m mech-

anisms and s states of self-stress obeys the well-known Kutzbach-Grübler

mobility criterion (Grübler, 1917; Kutzbach, 1929). This scalar counting

equation can be extended to a symmetry relation by using the concept of a

contact polyhedron C, in which bodies are associated with vertices and joints

with edges. The general approach is described elsewhere (Guest and Fowler,

2005).
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For the particular case of a body-hinge structure consisting of p bodies

and h hinges, where each hinge allows only one relative degree of freedom

between the two bodies it connects, the standard Kutzbach-Grübler counting

relation is

m− s = 6p− 5h− 6 (5)

and the symmetry-extended form of this relation is

Γ(m)− Γ(s) = (ΓT + ΓR)× [Γ(v, C)− Γ‖(e, C)]− (ΓT + ΓR) + Γh. (6)

The representation Γ‖(e, C) refers to vectors along edges of C, and Γh refers

to the freedoms associated with the hinges. Further details are available

elsewhere (Guest and Fowler, 2005; Fowler et al., 2016).

Up to this point, we have been using a bar-joint framework model for

block-and-hole structures which can be analysed using the Maxwell Rule.

There is a corresponding body-hinge framework, which can be formed from

the bar-joint framework as follows: replace each [d]-bipyramid by a d-sided

‘panel’ and each remaining triangular face by a triangular panel; connect the

panels together by hinges that allow rotational motion about the line of the

edge of the underlying triangulation of the sphere.

‘Panel’ here has the intuitive definition used in the engineering context: a

rigid body with boundary defined by a cycle of hinges and/or hole edges. In

the mathematical literature it is usually considered that panels are planar,

with coplanar hinge lines, but coplanarity is not assumed in the construction

used in the present work. Instead, a panel in this paper only has the special

property that successive hinge edges on its boundary always lie on inter-
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secting lines. The key non-generic feature implied by the use of a spherical

triangulation in our underlying construction is that the hinge lines between

panels around a vertex all pass through that vertex. A surprising consequence

of this is discussed below.

3.1. The puzzle of additional states of self-stress in panel-hinge structures

As we are switching between different representations of frameworks based

on triangulations, it is useful to note a potentially confusing distinction be-

tween a polyhedron constructed from panels and hinges and the same poly-

hedron rendered as a bar-joint framework. This distinction extends to the

corresponding physical models of the derived block-and-hole polyhedra. In

short, the panel-hinge models have more states of self-stress. We show here

that these can be characterised by number and symmetry, and we provide a

mechanical explanation of their localised nature.

3.1.1. Scalar counting

To discuss the differences between the panel-hinge and constructed bar-

joint models of a block-and-hole framework, it is useful to define a set of

objects related to a given ‘full’ polyhedron (one where all faces are blocks).

Call this polyhedron P . It has f faces, e edges and v vertices.

The first object, PH, is the panel-hinge structure based on P , with rigid

panels for faces of P , and hinges along edges of P . The second is BAR, a

bar-joint framework with bars along edges of P and joints at vertices of P .

The next two are derived from BAR: they are TRI, a bar-joint framework

based on the triangulation derived from P by coning every face of P of size

greater than three, and CON, the bar-joint framework found by applying

13
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BAR                     TRI                       CON

panel
hinge

bar
joint

cone double cone

face

P                                                       PH    

Figure 2: A set of objects related to the polyhedron P: a panel-hinge model of P (PH); a
bar-joint model of the polyhedron (BAR); a fully triangulated bar-joint polyhedron (TRI);
a double-cone construction of a bar-joint model with blocks for all faces (CON).

our construction to P to convert all faces of P to rigid blocks. CON is

constructed by adding another cone to every vertex of TRI that corresponds

to a face centre of P (or, equivalently, by double-coning every non-triangular

face of P). Schematically, for some face of P , the objects in the sequence

have local structure as shown in Fig. 2.

We are interested in the difference in mobility count (m− s) between PH

and CON. The observation is that PH has extra states of self-stress com-

pared to CON. We can calculate the differences, using TRI as a convenient
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intermediate,

(m− s)PH − (m− s)CON = ∆, (7)

(m− s)CON − (m− s)TRI = ∆1, (8)

(m− s)TRI − (m− s)BAR = ∆2, (9)

described in an ad hoc notation where (m−s)OBJ refers to the mobility count

of object OBJ. ∆, ∆1 and ∆2 are negative integers, because coning introduces

more states of self-stress than mechanisms. Noting that Maxwell’s rule gives

∆1 = ∆2 = −
∑

r>3

(r − 3)fr, (10)

where fr is the number of faces of size r in polyhedron P , and the mobility

(m− s)TRI = 0, since the TRI structure is a triangulation of the sphere and

hence generically isostatic, we have a relation between the mobilities of CON

and BAR

(m− s)CON = −(m− s)BAR = ∆1 = ∆2, (11)

and hence

∆ = (m− s)PH − (m− s)CON = (m− s)PH + (m− s)BAR. (12)

Combining the counting rules (1) and (5), we find (since here p = f , h = e)

∆ = (6f − 5e− 6) + (3v − e− 6) = −3v. (13)
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Hence, the general counting result is that a panel-hinge polyhedron where

all faces are blocks has 3v ‘extra’ states of self-stress compared to a corre-

sponding bar-joint framework made by double coning all the non-triangular

faces of P to make a block-and-hole polyhedron without holes.

To see how this count of three states of self-stress per vertex is modified

in the non-trivial case where the block-and-hole polyhedron has some blocks

and some holes, take the simplest case, where holes are based on independent

(pairwise non-adjacent) faces of P . Consider the constructions PH and CON

as operating locally, face-by-face on some fixed subset of faces of the original

polyhedron P : P will then have block faces and hole faces. We will use the

notation PH′, BAR′ and CON′ to indicate structures where fixed subsets of

faces of P have been modified to give holes and blocks.

The scalar counting argument is clear. Each independent single hole of

size r changes the mobility count of the panel-hinge structure by −6+5r and

the mobility count of the constructed framework by −6 + 2r, and hence the

introduction of each hole adds 3r to the (negative) quantity ∆ (now defined

as a difference between PH′ and BAR′), equivalent to removal from the vertex

count of the number of vertices of P in the hole boundary. The general result

for block-and-hole polyhedra constructed with orbits of isolated holes is that

∆ is equal to −3vb, where vb counts the vertices of the panel-hinge structure

that are not in any hole boundary:

(m− s)PH′ − (m− s)CON′ = −3vb. (14)

16
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3.1.2. Counting with symmetry

The counting result (14) can be given a symmetry-extended form by com-

bining previous expressions. In the case of a panel-hinge framework, the mo-

bility criterion (6) can be modified to take account of the known form of the

contact polyhedron, C, and the simple form of the freedoms of the hinges.

The vertices of C are the centres of panels, which are (all, or a subset of)

faces of an underlying polyhedron P , and the edges of C run perpendicular

to those of the polyhedron, so Γ(v, C) = Γ(f, P ), Γ‖(e, C) = Γ⊥(e, P ), and

Γh = Γ(e, C) = Γ(e, P ), where f and e may refer to appropriate subsets of

faces and edges. Hence, for the panel-hinge framework PH modelling the

block-and-hole polyhedron, the mobility representation is

[Γ(m)− Γ(s)]PH = (ΓT + ΓR)× (Γ(f)− Γ⊥(e)− Γ0) + Γ(e). (15)

The symmetry version of the scalar equation for ∆ is naturally defined as

Γ(∆) = [Γ(m)− Γ(s)]PH − [Γ(m)− Γ(s)]CON (16)

For the trivial case of the polyhedron with all faces rigid panels, scalar equa-

tion (12) becomes an alternative definition of the representation of the dif-

ference ∆, through

Γ(∆) = [Γ(m)− Γ(s)]PH + [Γ(m)− Γ(s)]BAR (17)

17
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and hence

Γ(∆) = ΓT×(Γ(f)−Γ⊥(e)+Γ(v))−2(ΓT+ΓR)+ΓR×(Γ(f)−Γ⊥(e)). (18)

The proof strategy in this section on counting with symmetry will be to com-

pare mobilities of PH and various bar-joint derivatives, first in the absence of

holes, and then with holes, to find the effects on the difference term Γ(∆) of

their introduction. We expect that the complicated expression (18) for Γ(∆)

will collapse to something quite simple, given the scalar result (13).

The symmetry-extended Euler Theorem for polyhedra (Ceulemans and

Fowler, 1991) gives an expression for Γ⊥(e)

Γ⊥(e) = Γ(f) + Γ(v)× Γε − (Γ0 + Γε), (19)

and hence all face and edge terms cancel from (18) to give

Γ(∆) = −Γ(v)× ΓR. (20)

This matches the counting result that three local states of self-stress are

present for each vertex of the ‘full’ (hole-free) panel-hinge structure, when

compared to the mobility count for the constructed bar-joint framework.

To track how Γ(∆) changes on introduction of some specified set of iso-

lated holes (i.e., holes based on pairwise non-adjacent faces of P), we check

how the terms in (16) change when PH becomes PH′ and CON becomes

CON′. Removal of panels from PH reduces both the set of contributing

18
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panel centres and the set of panel perimeter edges. Hence,

[Γ(m)− Γ(s)]PH′ − [Γ(m)− Γ(s)]PH =

(ΓT + ΓR) (Γ(f)PH′ − Γ(f)PH − Γ⊥(e)PH′ + Γ⊥(e)PH)

+ (Γ(e)PH′ − Γ(e)PH).

(21)

Likewise, conversion of blocks within CON to holes reduces the set of con-

tributing cone vertices, and the set of ‘spoke’ edges in the cones, removing

one double cone per hole. Hence,

[Γ(m)− Γ(s)]CON′ − [Γ(m)− Γ(s)]CON =

(ΓT + ΓR) (Γ(f)CON′ − Γ(f)CON − Γ⊥(e)CON′ + Γ⊥(e)CON)

+ (Γ(e)CON′ − Γ(e)CON).

(22)

Notice that the faces of PH transform as single coning vertices of CON, and

that the changes in edges for a given hole involve respectively one copy of

the perimeter edges but two copies of the spokes. Note also that since the

holes are isolated in our construction, we need not distinguish between Γ(e)

and Γ⊥(e) for edges on hole perimeters as such edges have at best local Cs

symmetry.

Collapsing terms, we obtain the representation Γ(∆∆) which describes

the change induced in Γ(∆) by the holes, as

Γ(∆∆) = (ΓR − ΓT)× Γ(fh)− (ΓT + ΓR − Γ0)× Γ(ep,h) + 2Γ(es,h) (23)

where fh is the set of faces of P replaced by holes, ep,h is the set of perimeter
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edges bounding holes, es,h is the set of spoke edges in a triangulation of the

holes, (and vh will be used for the set of vertices in hole perimeters). Further

simplification is not necessary as we can show by evaluating characters that

this expression is consistent with the intuition that Γ(∆) will have the form

Γ(∆) = −ΓR × Γ(v − vh) (24)

where the only vertices to be counted in the permutation representation are

those that are not on the perimeter of any hole. The ‘extra’ states of the

panel-hinge model of a block-and-hole polyhedron therefore span Γ(∆).

The proof of (24) is straightforward. The only symmetry elements on

which hole centres, edges or vertices can lie are the identity, rotational axes

(hole centres only) and mirror planes. Under the identity, the trace of Γ(∆∆)

is a contribution of 0 − 5r + 2r = −3r per hole of size r. Under a rotation

Cn, all perimeter and spoke edges shift, and the trace of ΓR − ΓT vanishes,

so the total trace is zero. Under reflections, there are three subcases: a hole

that is bisected by a mirror plane may be (i) of odd size, (ii) of even size

with 2 perimeter edges cut by the plane, or (iii) of even size with 2 perimeter

vertices in the plane. The trace of Γ(∆∆) has a contribution of +1 in case

(i), 0 in case (ii) and +2 in case (iii). Hence, the traces coincide with those

of −ΓR × Γ(vh) for all operations, and (24) is proved.

Figure 3 illustrates the mechanical argument for the association of the

‘extra’ states of self stress with local rotations. The key is that all the hinge

lines associated with panels around a vertex meet at a common point, the

vertex itself.
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(a) (b)

(c) (d) (e)

(c′) (d′) (e′)

Figure 3: A depiction of the extra local states of self-stress in a panel-hinge block-and-
hole polyhedron. At a vertex, edges and panels come together so that a continuous ring of
material is formed, although of infinitesimal extent. This ring is shown in isometric view
in (a), and along a radius of the underlying object in (b): four potential ‘cut’ lines are
shown. An independent set of three states of self-stress is here visualized by considering
the shape the ring would take up if cut to relieve the internal stresses. In (c)–(e) the ring
is cut in just one place, while in (c′)–(e′) the ring is cut in four places; it is clear from this
that (d′) and (e′) form a pair, with one state of self-stress just the rotated version of the
other. These states of self-stress are intrinsic: they cannot be relieved by bending around
the hinges intersecting at the vertex.
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In principle, the subtractive nature of the mobility criteria, in both scalar

and symmetry-extended forms, implies that we could have cancelling mech-

anisms and extra states of self-stress that do not show up in the count of −3

per vertex. However, the fact that the symmetry result −Γ(v)×ΓR is a com-

bination of irreducible representations with all negative coefficients implies

that any such ‘hidden’ sets of mechanisms and states of self-stress would be

equi-symmetric as well as equal in size.

4. Examples

In the examples that follow, we refer to isostatic block-and-hole frame-

works, meaning that the structure is isostatic considered as a bar-joint frame-

work; the panel-hinge analogue would have additional stresses of the type

described in §3.1. The illustrations in this section often include Polydron

(hence panel-hinge) models, because they are easy to build and understand

at a glance, even when the analysis is actually made in terms of a bar-joint

model.

4.1. Symmetry-isostatic frameworks

4.1.1. Strongly counting-balanced examples

It is straightforward to construct examples of strongly counting-balanced

block-and-hole frameworks that are symmetry-isostatic. A belted [k]-bipyramid

is a doubly coned [k]-prism (see Figure 4(a) for a Schlegel diagram). When

all square faces are capped, this structure becomes a triangulated sphere,

the belted and braced [k]-bipyramid (Figure 4(b)). A block-and-hole bar-

joint framework can be made by alternate deletion and duplication of the
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equatorial vertices; the correponding panel-hinge structure (Figure 4(c)) has

alternate central blocks and holes.

Consider the D3h-symmetric structure in Figure 4(c). The three holes

span the O3h orbit of the group (a set of three objects that are exchanged by

the principal C3 rotation and fixed by the horizontal σh mirror plane). The

three blocks span a second copy of the same orbit. Hence, the framework is

actually strongly symmetry-balanced, with

Γ(vh) = Γ(vb) = A′1 + E ′

and

Γ(eh) = Γ(eb) = A′1 + A′2 + 2E ′ + A′′1 + A′′2 + 2E ′′,

giving (Γ(m)−Γ(s))BH = 0 A similar result would be obtained for the corre-

sponding derivatives of any [4p + 2]-bipyramidal structure where equatorial

blocks and holes alternate. All are strongly symmetry-balanced in the point

group D(2p+1)h.

However, it is easy to see that the [4p]-bipyramidal structures with the

same block-hole alternation are finitely flexible, with a mechanism that de-

stroys symmetry about the C2p rotational axis and the horizontal mirror

plane of the D(2p)h point group (see Figure 4(d),(e) for the case p = 2).

Another easy way to achieve a strongly symmetry-balanced framework

is to use only regular orbits (Fowler and Quinn, 1986) of blocks and holes.

A framework with point group G where every block and hole has trivial

site symmetry has all block and hole orbits of size |G|, has representations

Γ(vh) = Γ(vb) and Γ(eh) = Γ(eb), and hence (Γ(m)− Γ(s))BH = 0.
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(a)

(b) (c)

(d) (e)

Figure 4: Structures derived from belted [k]-bipyramids. (a) Schlegel-like diagram of a
typical member of the belted bipyramid family. Hollow triangular and square symbols
indicate parts of a composite vertex. (b) The corresponding triangulated sphere, the
belted and braced [k] bipyramid with k = 6. (c) to (e) Polydron models of derived block-
and-hole polyhedra: (c) An isostatic example with k = 6 and point group D3h; (d) A
finitely flexible example with k = 8 and point group D4h; (e) shows a point on the path
of the mechanism of structure (d).
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Figure 5: A counting-balanced, but not strongly counting-balanced, block-and-hole frame-
work with two pentagonal blocks and two holes with perimeters 4 and 6, respectively. The
Schlegel diagram for the panel-hinge version shows the maximum possible C2v symmetry,
indicating the presence of a two-fold rotation and two perpendicular mirror planes.

4.1.2. Counting-balanced examples

There are also symmetry-isostatic block-and-hole frameworks which are

counting-balanced, but not strongly counting-balanced. One example of this

type is obtained by perturbing the block-and-hole framework shown in Fig-

ure 5 so that the mirror symmetry with respect to the σ2 plane (and hence

the half-turn symmetry) is destroyed, and only the mirror symmetry in the

σ1 plane survives. The perturbed framework is symmetry-balanced.

Another example of this type is shown in Figure 6. This block-and-hole

framework has only reflection symmetry, and is counting-balanced as a bar-

joint framework. In this case, the framework is symmetry-isostatic, but not

symmetry-balanced.
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Figure 6: A Polydron model of a block-and-hole structure of Cs (single reflection) symmetry
for which the bar-joint representation is counting-balanced and symmetry-isostatic.

(a) (b)

Figure 7: A C3-symmetric isostatic block-and-hole framework which is not counting-
balanced. (a) Polydron model and (b) Schlegel diagram of the panel-hinge structure.
To make the bar-joint counting-isostatic structure, each square panel would need to be
bicapped; the hollow triangles already being rigid.

4.1.3. Counting-isostatic examples

Finally, it is also easy to construct counting-isostatic bar-joint block-and-

hole frameworks that are not counting-balanced, but still symmetry-isostatic.

Consider, for example, the C3-symmetric counting-isostatic framework shown

in Figure 7. With three blocks and only one hole, it is not counting-balanced.

However, explicit calculations in the tabular form we have used before (see

Fowler and Guest (2000); Guest and Fowler (2005); Fowler et al. (2016) for

example) show that it is symmetry-isostatic (see Table 1).
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C3 E C3 C2
3

Γ(vb) 3 0 0
−Γ(vh) −1 −1 −1

2 −1 −1
×ΓT 3 0 0

6 0 0
Γ(eh) 6 0 0
−Γ(eb) −12 0 0
Γ(m)− Γ(s) 0 0 0

Table 1: The mobility representation for the bar-joint block-and-hole example in Fig. 7,
which is shown by calculation to be is equal to the zero representation.

σ2

σ1

Figure 8: A Schlegel-like diagram of a triangulated spherical polyhedron which yields the
Sarrus linkage in Figure 9(a) if the central vertex and the vertex ‘at infinity’ together with
their incident edges (shown in red) are removed, and each vertex to four green edges is
duplicated and coned over the same neighbours. Both the underlying polyhedron and the
Sarrus linkage have maximum symmetry C2v, as indicated. Note that swapping the roles
of green and red edges yields the Stewart platform in Figure 10.

4.2. Counting-isostatic but not symmetry-isostatic frameworks

We now consider examples of block-and-hole frameworks that are counting-

isostatic, but have symmetry-detectable mechanisms and states of self-stress.

4.2.1. Counting-isostatic examples

We begin with an example that is counting-isostatic, but not counting-

balanced. The eponymous Sarrus linkage may be obtained from the spherical
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(a) (b)

Figure 9: A Polydron model of the Sarrus linkage (a) and a point on the path of its
mechanism (b).

triangulation depicted in Figure 8 and is shown in Figure 9(a). It consists of

six panels connected by hinges, and the unique mechanism maintains top and

bottom platforms in parallel alignment. It serves as a means of converting

a partial circular motion into linear motion. Note that the Sarrus linkage

relies on triplets of mutually parallel hinges.

We can analyse either the panel-hinge structure or its bar-joint equivalent,

and will arrive at the same result, as in this case all vertices of the underlying

triangulated sphere are incident with a hole, and hence there are no ‘extra’

states of self-stress for the panel-hinge version. We use the bar-joint version

here. In full C2v symmetry, we have Γ(vh) = 2A1, Γ(vb) = 2A1+A2+2B1+B2,

Γ(eh) = 4A1 + A2 + 2B1 + 3B2, Γ(eb) = 4A1 + 4A2 + 4B1 + 4B2, and hence

Γ(m)−Γ(s) = A1−B1. This analysis detects the fully symmetric mechanism

that gives the linkage its defining property, and the counterbalancing B1 state

of self-stress (with the symmetry of a vector lying in the σ1 plane). Hence,

even in a geometry that is generic modulo the given C2v symmetry, the Sarrus

linkage would still move, though not with the desirable retention of parallel

top and bottom panels. (Note that the structure shown in Figure 6 has lost
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Figure 10: A Stewart platform obtained by swapping blocks and holes in the Sarrus linkage
shown in Figure 9(a). Open circles indicate pin joints; there are two hinge joints connecting
hexagonal and triangular panels.

one of the reflection planes and has become isostatic.)

In this case, swapping blocks and holes produces a physically different

picture. The swapped structure is a variant of the Stewart-platform (Stewart,

1965; Dasgupta and Mruthyunjaya, 2000) in a singular configuration (see

Figure 10). This swap does not lead to a pure panel-hinge structure, as the

hexagonal panel is now connected by hinges to the triangular panels, whereas

the square panel is connected by pins and bars to the rest of the structure.

However, the whole assembly can still be derived as a bar-joint framework

from a triangulation of the sphere by our deletion/coning construction, with

its mobility correctly accounted for, as again all vertices derived from the

triangulation are incident with holes. Symmetry counting in C2v using (4)

detects a distortive mechanism that would reduce the symmetry to Cs, and

also detects a totally symmetric state of self-stress. Hence the mechanism

of this platform cannot be guaranteed to be finite, and in fact it is only

infinitesimal.
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(a) (b)

Figure 11: A Polydron model of a finitely flexible panel-hinge structure with point group
C2v (a), and a point on the path of the mechanism (b).

4.2.2. Counting-balanced examples

Next we provide an example of a block-and-hole framework that is counting-

balanced, but still has a symmetry detectable mechanism and state of self-

stress (i.e., the framework is not symmetry-isostatic). Consider the C2v-

symmetric block-and-hole framework shown as a Polydron model in Fig-

ure 11. (See also Figure 5.) It is counting-balanced, but not strongly

counting-balanced, as it has two blocks (both 5-sided panels) and two holes

(with perimeters of length 4 and 6, respectively). The calculation of charac-

ters in Table 2 shows that this framework has a totally symmetric mechanism

and a corresponding state of self-stress of symmetry B1.

4.2.3. Strongly counting-balanced examples

Finally, the most interesting situation arises when the framework is max-

imally balanced at the non-symmetric level, in the sense that it is strongly

counting-balanced, but nevertheless has a symmetry-detectable mechanism

and state of self-stress. This situation can arise when the orbit partitions of

blocks and holes are mismatched, either in the distributions of orbit sizes, or

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

C2v E C2 σ1 σ2
Γ(vb) 2 0 2 0
−Γ(vh) −2 −2 −2 −2

0 −2 0 −2
×ΓT 3 −1 1 1

0 2 0 −2
Γ(eh) 10 0 2 4
−Γ(eb) −10 0 −2 0
Γ(m)− Γ(s) 0 2 0 2

Table 2: The mobility representation for the example in Fig. 11 is Γ(m)−Γ(s) = A1−B1.
The A1 mechanism is finite. A swap of blocks and holes yields a finitely flexible framework
whose motion preserves only the σ1 mirror symmetry.

of distinguishable orbits of the same size. Examples of both types are given

by the three ‘banana’ structures illustrated in Figure 12.

In case (a), selection of pairs of squares as respectively holes and blocks

yields inequivalent orbits of the same size; in case (b) holes are exchanged by

reflection in the symmetry plane, whereas the blocks are exchanged by the

C2 rotation. Again the orbits are of the same size, but are inequivalent. In

case (c) the blocks span two orbits of size 1, whereas the holes are related by

one of the symmetry planes and hence span one orbit of size 2. The explicit

calculations in Table 3 show the mobility representations in all three cases.

In case (a) the detected mechanism and state of self-stress each have the

symmetry of a rotation about an axis orthogonal to the principal axis. The

blocks and holes span complementary halves of a four-orbit of the parent

D4h group. A swap of blocks and holes leads to a change of setting of the

D2h subgroup induced by the choice of half-orbits, but not to physically

distinguishable mechanisms/states of self-stress.

Case (a) extends to the already mentioned case of belted [4k]-bipyramids,
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(a) (a′)

(b) (b′)

(c) (c′)

Figure 12: Polydron models of finitely flexible symmetric block-and-hole structures that
are strongly counting-balanced. For the structures in (a), (b) and (c), figures (a′), (b′)
and (c′) show a point on the path of the corresponding mechanism.
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Case (a)

D2h E C2(z) C2(y) C2(x) i σxy σxz σyz
Γ(vb) 2 0 2 0 0 2 0 2
−Γ(vh) −2 0 0 −2 0 −2 −2 0

0 0 2 −2 0 0 −2 2
×ΓT 3 −1 −1 −1 −3 1 1 1

0 0 −2 2 0 0 −2 2
Γ(eh) 8 0 0 0 0 0 0 0
−Γ(eb) −8 0 0 0 0 0 0 0
Γ(m)− Γ(s) 0 0 −2 2 0 0 −2 2

Case (b) Case (c)

C2h E C2 i σh
Γ(vb) 2 0 0 2
−Γ(vh) −2 −2 0 0

0 −2 0 2
×ΓT 3 −1 −3 1

0 2 0 2
Γ(eh) 8 0 0 0
−Γ(eb) −8 0 0 0
Γ(m)− Γ(s) 0 2 0 2

C2v E C2 σ1 σ2
Γ(vb) 2 2 2 2
−Γ(vh) −2 0 0 −2

0 2 2 0
×ΓT 3 −1 1 1

0 −2 2 0
Γ(eh) 8 0 0 0
−Γ(eb) −8 0 0 0
Γ(m)− Γ(s) 0 −2 2 0

Table 3: Calculations of mobility representations for the three structures shown as Poly-
dron models in Figure 12(a)-(c). Case (a): The mobility representation is (Γ(m) −
Γ(s))BH = B3g − B2g. A swap of blocks and holes yields the same representation with a
different labelling. Case (b): Here (Γ(m)−Γ(s))BH = Ag−Bg. The totally symmetric Ag

mechanism is finite. A swap of blocks and holes yields a framework with a Bg mechanism
(preserving Ci symmetry). This mechanism is not blocked by the Ag state of self-stress
associated with the caps. Case (c): Here (Γ(m) − Γ(s))BH = B1 − A2. The finite B1

mechanism reduces the symmetry of the structure from C2v to Cs. A swap of blocks and
holes leads to a finitely flexible framework whose motion preserves C2 symmetry.
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where blocks and holes belong to complementary orbits lying on either σv

or σd planes, giving one symmetry-detectable mechanism and one state of

self-stress for each k.

In case (b), holes and blocks each span one orbit. The mechanism is

totally symmetric and the state of self-stress is symmetric under inversion

only. A swap of blocks and holes gives a totally symmetric state of self-stress,

implying the possibility of blocking the mechanism (now of Bg symmetry).

In fact, the mechanism is clearly finite in the swapped framework.

In case (c), holes span a single orbit of size 2, but blocks span two of size 1.

The mechanism has the symmetry of a vector across the C2 axis, leading to Cs
symmetry in the distorted structure; the state of self-stress is anti-symmetric

with respect to both reflections, and therefore anti-symmetric in the lower

symmetry group, indicating that the mechanism is finite. A swap of blocks

and holes now leads to a physically distinct situation, with a C2-preserving

mechanism, also finite.

4.3. Some limitations of symmetry counting: block-and-hole towers.

A well-studied class of block-and-hole structures are the tower structures,

which contain a single block of size s and a single hole of size t, where the

block may be considered as the ‘ground’, and the hole as the ‘open top’ of

the tower (Finbow-Singh et al., 2012; Whiteley, 2014). A tower structure

is (strongly) counting-balanced iff the block and the hole are of the same

size, say s = t = k. A tower constructed from a k-gonal panel by adding l

layers of triangulated rings on top of it (as shown in Figure 13) is called a

[k, l]-tower. We can analyse the rigidity of [k, l]-towers within their largest
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(a) (a′)

(b) (b′)

Figure 13: (a),(b) Polydron models of flexible tower structures with a hexagonal block
and hole; (a′), (b′) points on the paths of the corresponding mechanisms.

35



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

possible symmetry group, Ckv.

Suppose first that k is even. If l is odd, we obtain (Γ(m) − Γ(s))BH =

B2 − B1, and hence the structure has a symmetry-detectable infinitesimal

mechanism and state of self-stress. This B2 mechanism is in fact finite and

deforms the triangular ring on the very top of the tower, reducing the point

group of the structure to C(k/2)v. See Figure 13(a) and (a′) for an illustration

of the case k = 6 and l = 3. Note that the structure actually has further

infinitesimal mechanisms, one for each of the layers 1, . . . l− 1. However, for

each i = 1, . . . , (l − 1)/2, the infinitesimal mechanism in the 2i-th layer has

an equi-symmetric state of self-stress in the (2i − 1)-th layer below it and

vice versa, and hence they all remain undetected by our working equation.

If both k and l are even, the [k, l]-tower is strongly symmetry-balanced,

and hence symmetry-isostatic. Nevertheless, the structure again has a finite

mechanism deforming the triangular ring on the very top of the tower. This

is illustrated in Figure 13(a) and (a′) for the case k = 6 and l = 2. However,

this mechanism is paired with an equi-symmetric state of self-stress in the

ring below it, and is hence undetectable with our working equation. In fact,

as above, any [k, l]-tower, where k and l are even, actually has an infinitesimal

mechanism and a state of self-stress for each of its layers. However, since l

is even, none of these infinitesimal mechanisms or states of self-stress can be

detected with our working equation.

Finally, it is easy to see that for all odd k, all [k, l]-towers with Ckv sym-

metry are strongly symmetry-balanced; in fact, these structures are isostatic.
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5. Conclusions

The symmetry counting approach, together with a simple construction as

bar-joint frameworks based on modification of spherical triangulations, has

been shown to extend the information available from pure scalar counting

for block-and-hole structures in typical cases. Symmetry also casts light on

differences between bar-joint and panel-hinge realisations of such structures.

Various extensions beyond the simplest version of the construction as

presented in §2 would be straightforwardly implemented.

For example, in the construction we focussed on the case where no holes

share a vertex of the original triangulation, but the symmetry mobility anal-

ysis also applies to at least the following more general structures. If two holes

meet in just a single vertex (or in a finite set of vertices), we can augment

the model by adding pin joints between the panels that meet at the vertices.

If we allow holes to share an edge, we can consider the edge to act as a bar

connecting the pin joints at the shared vertices.

The differencing technique for assigning Γ(m) − Γ(s) is also applicable

to over-braced and under-braced structures. In particular, we have used

symmetry methods to analyse the structures that have been called ‘perfo-

rated polyhedra’ (Fowler et al., 2016). Three basic examples are obtained

by the removal of six panels from the equator of a small rhombicuboctahe-

dron and choosing one of three mutual rotations of tropical and equatorial

layers. Although these can be treated (Fowler et al., 2016) using an explicit

calculation of Γ(m)− Γ(s) for a body-hinge structure, it would be perfectly

possible to apply a bar-joint rendering of each. The objects are over-braced,
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with a count m − s = −6, corresponding to seven states of self-stress and

a unique distortive mechanism. The underlying deltahedron in the present

block-and-hole approach is of course isostatic, and as there are six holes and

twelve blocks (all square faces of the body-hinge structure) the excess of

states of self-stress arises from the excess of blocks over holes, but symmetry

is needed to see that this net excess of 6 arises from 7 states of self-stress and 1

mechanism. The mechanism emerges in these particular examples as having

the symmetry of the xyz spherical harmonic. Arguably, the block-and-hole

approach gives a more transparent account of these intriguing structures.

There are many more examples that are covered by the block-and-hole

paradigm.
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