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Abstract 

In recent years, driven by the need to downsize to the molecular level, advances in 

technology has made the manufacture of nanoscale devices possible. In this thesis I will 

investigate the theoretical electronic and thermal properties of a carbon based class of 

nanoscale materials by examining the possibility of using fullerenes and 

decachlorofullerenes as building blocks towards viable molecular scale devices. In 

particular I have looked at ways to enhance the electronic communication between 

fullerenes through introducing exohedral varients, which I found to have a positive 

effect on the electronic and thermoelectric properties. The methods used in this work 

are based on density functional theory, combined with quantum transport calculations 

using Greens functions.  

Fullerenes are promising building blocks for nano-scale electronics, as they have 

relatively large spherical surface area and are geometrically symmetric. If fullerene-

based thermoelectricity is to become a viable technology, then fullerenes exhibiting 

both positive and negative Seebeck coefficients will be needed and therefore I also 

calculate the thermoelectric properties of the naturally occurring fullerene C60 known 

as the buckyball together with an exohedral example namely C50Cl10. 

C60 is known to have a negative Seebeck coefficient of S which varies in the range of -

18 to -23 µV/K and therefore in this thesis I address the challenge of identifying a 

fullerene with a positive-Seebeck-coefficient. I investigated the thermoelectric 

properties of single-molecule junctions of the exohedral fullerene C50Cl10 connected to 

gold electrodes and found that it has a positive Seebeck coefficient. Furthermore, in 
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common with C60, the Seebeck coefficient can be increased by placing more than one 

C50Cl10 in series.  

For a single C50Cl10, I find S=+8 µV/K and for two C50Cl10’s in series I find S=+30 

µV/K. I also find that the C50Cl10 monomer and dimer have power factors of 0.5×10-5 

W/m.K2 and 6.0×10-5 W/m.K2 respectively. These results demonstrate that exohedral 

fullerenes could provide a new class of thermoelectric materials with desirable 

properties, which complement those of all-carbon fullerenes, thereby enabling the 

boosting of the thermovoltage in all-fullerene tandem structures.  

I calculate the structural and electronic and thermoelectrics properties of carbon 

nanotube peapods. In contrast with carbon-only peapods, the magnitude of this effect 

is sensitive to the orientation and spacing of the fullerenes and exohedral fullerenes 

as a consequence, a rotation or translation of the C50Cl10 can cause the zero-bias 

electrical conductance to switch, as a result of that the new possibilities of engineering 

the transport properties of carbon nanotube peapods. 
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Chapter 1 

1.1. Introduction 

 

Carbon is an element which can form a number of different allotropes ranging from 

amorphous to crystalline. Diamond and fullerenes are common allotropic forms which 

are purely crystalline in nature. Carbon is the sixth element of the periodic table and 

listed as the first element at the top of column IV and its name came originally from 

Latin carbo which means coal and its symbol is C. It is the fourth most abundant 

chemical element in the universe by mass after hydrogen, helium, and oxygen. Each 

carbon atom has six electrons; the first two electrons occupy the 1s orbital revolving 

around nucleus which has six protons and six neutrons. They are strongly bound 

electrons whereas the remaining four are valence electrons in the next energetic orbitals 

which are 2s, 2p are more weakly bound , as shown in Figure1.1[1,2]. Carbon atoms 

with sp2-hybridisation (for more information about carbon sp-hybridisation see [1]) will 

form either fullerenes (zero-dimension), carbon nanotubes CNT (one-dimension), 

graphene (two-dimensions) or graphite and diamond (three-dimensions) [2,4]. 
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Figure 1.1 Carbon atom which has six electrons, two electrons in 1s orbital which are called 

core electrons and the rest four electrons occupied the 2s 2p orbital which called valence 

electrons. 

 

Carbon has received a huge interest due to the discovery and synthesis of fullerenes and 

the subsequent identification of carbon nanotubes and graphene, which has led to 

intensive experimental and theoretical studies making this field of research one of the 

most exciting areas in materials science [5,6,7,8]. 

Using geometry to fold a graphene sheet one can produce the atomic structure of the 

fullerenes and carbon nanotubes studied in this thesis and therefore I will now give a 

short introduction to graphene. 

 

Graphene 

 Graphene is an sp2-hybridised state of carbon and the valence electrons occupy the 

2s2 and 2p2 orbitals which form covalent bonds [9]. The formation of sp2 hybridised 

bonds is illustrated in Figure 1.1a below. 

 

 

 

Figure 1.1a The shape of the sp2-hybridised orbitals.[1] 
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The wave functions of the outer electrons can mix with each other and the occupation 

of 2s2 and 2p2 orbitals leads to the formation of covalent bonds forming between the 

carbon atoms. 

Graphene has revealed some unique electric and physical properties since it was 

isolated in 2004, for instance high mobility of carriers at room temperature and 

potential for a wide range of applications. Graphene is a single layer of carbon atoms 

which can form a two-dimensional honeycomb crystal structure (hexagonal lattice) 

[9]. 

The graphene lattice 

Graphene has a honeycomb lattice represented in Figure 1.2 using a ball-and-stick 

model. The balls represent carbon atoms and the sticks symbolize the σ-bonds 

between atoms. The carbon-carbon bond length is approximately aC−C ≈ 1.42 Å. The 

honeycomb lattice can be characterized as a Bravais lattice with a basis of two atoms, 

indicated as A and B in Figure 1.2, and these contribute a total of two π electrons per 

unit cell to the electronic properties of graphene. The underlying Bravais lattice is a 

hexagonal lattice and the primitive unit cell can be considered an equilateral 

parallelogram with side 𝑎 = √3 𝑎𝐶−𝐶 = 2.46 Å. The primitive unit vectors as defined 

in Figure 1.4 are  

𝑎1 = (
√3 𝑎

2
,
𝑎

2
) ,              𝑎2 = (

√3 𝑎

2
,
𝑎

−2
)                                                                  1.1 
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With |a1| = |a2| = a. Each carbon atom is bonded to its three nearest neighbours and 

the vectors describing the separation between a types A atom and the nearest 

neighbour type B atoms as shown in Figure 1.2 are 

𝑅1 = (
 𝑎

√3
, 0),     𝑅2 = (−

 𝑎

2√3
, −
𝑎

2
),    𝑅3 = (−

 𝑎

2√3
,
𝑎

2
)                                       1.2  

With |R1| = |R2| = |R3| = aC−C. 

 

 

 

 

 

 

 

Figure. 1.2 The honeycomb lattice of graphene. The primitive unit cell is the equilateral 

parallelogram (dashed lines) with a basis of two atoms denoted as A and B. 

 

 
 

The planar honeycomb structure of graphene has been observed experimentally and is 

shown in Figure 1.3. Graphene can be considered the mother of carbon the sp2-

hybridised allotropes. As illustrated in Figure 1.3, wrapping graphene into a sphere 

produces fullerenes, folding into a cylinder produces carbon nanotubes. As a result, 
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understanding the electronic properties of graphene is of central importance in 

explaining, for example, the electronic properties of carbon fullerenes. 

 

Figure 1.3 Two-dimensional graphene can be considered the building block of several carbon 

allotropes in all dimensions, including the zero-dimensional fullerene C60 (buckyball) and  

one dimensional nanotubes. 

 

  

In graphene, the 2s orbital interacts with the 2px and 2py orbitals to form three sp2 

hybrid orbitals with the electron arrangement shown in Figure 1.1. The sp2 

interactions result in three bonds called σ-bonds, which are the strongest type of 

covalent bond. The σ-bonds have the electrons localized along the plane connecting 
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carbon atoms and are responsible for the great strength and mechanical properties of 

graphene and CNTs. The 2pz electrons forms covalent bonds called π-bonds, where 

the electron cloud is distributed normal to the plane connecting carbon atoms. The 2pz 

electrons are weakly bound to the nuclei and, hence, are relatively delocalized. These 

delocalized electrons are the ones responsible for the electronic properties of graphene 

and CNTs and as such will occupy much of our attention. 

 

Carbon Nanotubes 
 

The carbon nanotube (CNT) was discovered accidentally by Sumio Iijima in 

1991[7,12]. There are two families of CNTs, namely single-wall CNTs and multi-wall 

CNTs (MWCNT). A single-wall CNT is a hollow cylindrical structure of carbon 

atoms with a diameter that ranges from about 0.5 to 5 nm and lengths of the order of 

micrometres to centimeters. A MWCNT is similar in structure to a single-wall CNT 

but has multiple nested or concentric cylindrical walls with the spacing between walls 

comparable to the interlayer spacing in graphite, approximately 0.34 nm. Carbon 

nanotubes are considered 1D nanomaterials as electrons move along their length 

confined within the 1 dimensional CNT walls[9]. 

 

Chirality in carbon nanotubes 
 

Chirality is the key concept used to identify and describe the different configurations 

of CNTs and their resulting electronic band structure. Since the concept of chirality is 
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of fundamental importance I will introduce the concept before discussing how it is 

applied to describe CNT structure. The term chirality is derived from the Greek term 

for hand, and it is used to describe the reflection symmetry between an object and its 

mirror image. Formally, a chiral object is an object that is not superimposable on its 

mirror image; and conversely, an achiral object is an object that is superimposable on 

its mirror image.  

                            a) Chiral               b) Armchair           c) Zigzag  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
     Figure 1.4 The three types of single-wall CNT: (a) A chiral CNT, (b) an armchair CNT, and 

(c) a zigzag CNT. 
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Buckyballs 

The fullerenes can be used as an electric insulator because the absence of electronic 

coupling between the molecules. The molecules in fullerenes are held together by 

covalent bonds and the force existing between individual molecules is due to weak van 

der Waals forces which give it a soft and slippery texture. The brittleness of fullerenes 

is due to the weak crystalline structure resulting from covalent bonds which can form 

between the molecules. The smallest fullerene discovered exists as small buckyball 

clusters in which no two pentagons are sharing a common edge. There are many 

members of buckyballs clusters but the most stable is the buckyball C60, which is similar 

to a soccer ball having twenty hexagons and twelve pentagons. C60 is a naturally 

occurring material found in soot and coal. The first fullerene C60 was synthesized in 

1985 by R. Smalley, R. Curl, J. Heath, S. C. O'Brien, and Kroto at Rice University 

[13.14,15]. Figure 1.5 shows fullerene C60.  

 

 

 

 

 

Figure 1.5 Structure of fullerene C60, which contains pentagonal and hexagonal rings. The bond 

lengths between a hexagon and a pentagon are 1.45 Å and between two hexagons 1.4 Å.   

 



15 
 

C60 molecules represent one of the purest forms of carbon known, with no dangling 

bonds that would directly interact with its surroundings. 

C60 satisfies the isolated pentagon rule IPR, fullerenes are kinetically much more stable than 

their pentagon counterparts, and consists of hexagons and 12 pentagons. Due to presence 

of adjacent pentagons C60 has unusual properties and high curvature. One unique 

property of C50Cl10 is that they are highly soluble in organic solvents and hybridized 

carbon atoms are have sp3 carbon bonds with chlorine. C60 has additional magnetic, 

electronic and mechanical properties due to high curvature of molecular structure. 

C50Cl10 was found, isolated and identified from the soot of graphite arc-discharge in the 

presence of CCl4, but the yield is very low. C50 includes members that belonging to 

fullerene family along with smaller non IPR fullerenes. CCl4 graphite results in 

formation of C56 and C54 and these components can be changed under methanol and mild 

conditions [21].  

 

 

Figure 4.1 Optimized geometries for C50
 D5h fullerene C50

 (left), optimized geometries for 

exohedral-fullerene C50Cl10 (middle) and fullerene C60 (right) 
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C50 is the isomeric structure of carbon, which about 271 classical fullerene isomers of 

C50, that is optimized after using functional theory of first principle density. The 

exohedral subsidization of fullerenes is C50Cl10 and when bonds are removed 

chemically, they are known as open cage fullerenes. Electronic and spectroscopic 

properties of C50 reveal the derivatives that are presented as C50Cǀ10 (see their 

optimized in figure 1.7). The ground state of C50 has a D3 (with six pentagon 

adjacencies) symmetry and a spheroid shape that is highly aromatic and the singlet 

nanoaromatic is presented as D5hC50 (with five pentagon adjacencies). The isomers of 

C50 are D5h and D3. Chemical properties of C50 make it susceptible to additional 

reactions including chlorination, dimerization and polymerization. The active sites for 

chemical reactions are explained as pentagon- pentagon functions D5h and C50. It also 

has high electronic affinity that makes it an electron acceptor in photovoltaic 

applications [20].  

 

In this thesis I shall examine exohedral fullerenes and adding some changes in fullerenes 

to formed from exohedral fullerenes, namely C50, C60 and C50Cl10. These nano-sized 

objects could be used as anchor groups in molecular electronic circuits and or utilised 

as thermoelectric materials. 

Fullerenes and carbon nanotubes are fundamental building blocks for engineering 

exotic nanostructures such as carbon nanotube peapods (CNPs). CNPs are of interest, 

because nanostructures with tailored electronic properties promise to underpin a range 

of future low-power and high-density devices. This suggests that it may be fruitful to 

look beyond carbon-only CNPs for engineering transport properties of CNTs and 

therefore in this thesis, we explore an alternative class of CNPs formed by 
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encapsulating C50Cl10 as a figure 1.8. I demonstrate that of new classes of CNT 

peapods with switchable electronic properties.  

 

Figure 1.8 Optimized geometries for C50Cl10⊥@CNT) left and right and C50Cl10║@CNT in the 

middle 

 

 

1.2. Molecular Electronics 

The major topic of this thesis is to investigate the electronic and thermoelectric 

properties of some isolated fullerenes [22] and then calculate the quantum transport 

properties of fullerenes and exohedral fullerenes. A huge amount of research work has 

already been directed in to finding a reliable technique to manipulate electronic 

components on a molecular scale and use molecules as an active region to design the 

electronics devices in 1959 when Richard Feynman presented a talk entitled "There's 

plenty of room at the bottom," where, he discussed the possibility of manoeuvring 

substances atom by atom. Based these motivational studies scientists made ways to 

create new structures with improved properties, dependent upon their size and 

miniaturization [23]. In 1965, Gordon Moore predicted in his so-called Moore’s law 
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[24], stating that the number of transistors per chip would double every 18-24 months 

and furthermore he suggested that the trend could be continuing for ten years [25]. 

However, it lasted for nearly four decades with rapid development and it lasted for 

nearly four decades with rapid development. Then, the transistor becomes the essential 

building block of all electronic devices and becomes recognised as one of the most 

important inventions of the last centuries. The transistor is now a few tens of nanometers 

in size. This trend and this astonishing development has led to densities of more than 

two billion transistors per CPU in modern commercial processors, the size of each 

transistor is not more than few nanometres [26,27]. This gives manufactures 

possibilities to produce smaller and faster devices with more energy efficient but one of 

the biggest obstacles in molecular electronics remains to find a reliable method to 

contact each end of the molecule to the electrodes, presenting a good challenge to 

research workers. Over the past few years, many studies have been directed to 

investigate the electronic properties of molecules using several techniques, such as 

break junction, scanning probe tips, nanoprobes and nanolithography [28-31]. The 

molecular electronics field is used to bridge the gap between physics and chemistry and 

hence allows theory and experiment to work side-by-side. This led to establish 

collaboration between theory and experiment in two senses, firstly it is very difficult for 

researchers to measure the size because the molecule’s size is too minute and it is even 

difficult to study the behaviour of molecules from the point of view of the orientation 

or connection to electrodes. However, this can be resolved by modelling the structure 

using Density Functional Theory and providing an explanation of the experimental data 

from theoretical calculations. Secondly theorists can predict the molecular structure 

before the experiment is carried out. Furthermore, the molecular electronics field might 
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lead to synthesis and discovery of new materials. Therefore, the most versatile and 

promising materials of interest recently are carbon based low dimensional materials 

such as graphene and its derivatives for example fullerenes and carbon nanotubes.  

 

1.3. Outline of the thesis 

This thesis strives to demonstrate predictions with a family of carbon structures and 

thus investigate the electronic and thermoelectric properties of some of them. 

Furthermore, I will examine one of these structures to design a sensing device. 

One of the main result is that the direct conversion of temperature difference to electric 

voltage and the conversion of electric voltage into temperature difference is known as 

thermoelectric effect. A thermoelectric device is used for this purpose which creates 

voltage when there is temperature difference on each side. Similarly, the temperature 

difference is created when electric voltage is applied to it. The temperature difference 

causes the charge carriers to move and diffuse from the hot side to the colder side. 

Generally, this effect is used to measure temperature difference, generate electricity or 

to change the temperature of an object.  

The thermoelectric effect is associated with three separate effects namely the Seebeck 

effect, Peltier effect and Thomson effect and sometimes it is generally known as Peltier-

Seebeck effect. Joule heating, on the other hand describes the heat which is generated 

because of passing current. However, the Joule heating is not thermodynamically 

reversible contrary to Peltier-Seebeck and Thomson effects.  
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As a build up of this thesis the first step is the introduction of fullerenes and their 

electronic and thermoelectric properties. In Chapter 2 and 3, I will introduce the theory 

starting discussion on Density Functional Theory and SIESTA DFT package. After, 

Green’s Function, methods used for quantum transport calculations are introduced. 

Next, overview on scattering theory, in Chapter 4, I will use these two methods to study 

and compare between C50, C60 and C50Cl10 molecules and their electronic properties. 

Then, in chapter 5, I will describe my research work on C60 and C50Cl10 which will 

present some of the results on the conductance of C60 and C50Cl10 molecule against the 

changes in the system geometry and how they are employed in electronic devices. 

Afterwards the thermoelectric properties of single, double C60-s and C50Cl10-s have been 

described where we observed an increase or decrease of thermopower when going from 

one to two fullerenes and towards the end I will provide a thermoelectric material with 

a positive Seebeck coefficient of opposite sign to that of C60. Finally, in Chapter 6, I 

will summarize findings and conclusions then give recommendations for future research 

work in this topic. One interesting study would be using buckyballs and exohedral 

buckyballs in peapods systems, as in the appendix, which should increase their 

electronic communication. 
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Chapter 2 

Density Functional Theory 

 

2.1. Introduction 

Density Functional Theory (DFT) is widely used by physicists and chemists to 

investigate the ground-state properties of interacting many-particle systems such as 

atoms, molecules and crystals. It is actually a computational quantum mechanical 

modelling method and it is used to transform the many-body system into one of non-

interacting fermions in an effective field. Typically the many-body system is used for 

those physical problems pertaining to microscopic level systems and these systems are 

generally made of numerous interacting particles. In other words, the electrical 

properties of many interacting particle systems can be described as a function of the 

ground-state density of the system [32,33]. DFT is a reliable methodology which has 

been applied to a large variety of molecular systems with a huge number of books and 

articles in the literature giving detailed descriptions of the principles of DFT and its 

application [32-37]. The importance of DFT can also be recognised by the fact that the 

1998 Nobel Prize in Chemistry was awarded to Walter Kohn for his development of 

density functional theory. The beginnings of DFT were founded upon the Thomas-

Fermi model back in the 1920s which provided the basic steps to obtain the density 

functional for the total energy based on wavefunctions [32,37-39]. Further improvement 

was made by Hartree, Dirac, Fock and Slater and nearly four decades after the Thomas-

Fermi work. The Hohenberg-Kohn theorems and Kohn-Sham method further paved the 

foundations [32,34,35,38-42].  
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In this chapter a brief introduction to DFT is given outlining the main formalism as a 

method of finding the solution of the non-relativistic many-particle time independent 

Schrödinger equation (TISE), since the properties of a many-electron system can be 

determined by using functionals of the electron density. A brief summary of the DFT 

code ‘SIESTA’ has also been discussed which have been used extensively throughout 

this research work as a theoretical tool to optimise the structures. 

 

 

2.2. The Schrödinger Equation and Variational Principle 

If the analytic solution of Schrodinger equation cannot be found then a mathematical 

trick known as the variational principle is used that allows estimating the energy of the 

ground state of a system. Any given non-relativistic many particles system can be 

described by the time independent, non-relativistic Schrödinger equation: 

 H𝛹𝑖(𝑟1, 𝑟2, … , 𝑟𝑁, 𝑅⃗⃗1, 𝑅⃗⃗2, … , 𝑅⃗⃗𝑀) = 𝐸𝑖𝛹𝑖(𝑟1, 𝑟2, … , 𝑟𝑁, 𝑅⃗⃗1, 𝑅⃗⃗2, … , 𝑅⃗⃗𝑀)         (2.1) 

here H represents time-independent Hamiltonian operator of a system consisting of N-

electrons and M-nuclei which describes the interaction of  particles with each other, 

where 𝛹𝑖 is the wavefunction  of the 𝑖𝑡ℎ state of the system and 𝐸𝑖 is the numerical value 

of the energy of the 𝑖𝑡ℎ state described by 𝛹𝑖. The Hamiltonian operator of such a system 

can be written as a sum of five terms given by [33,34,43]: 
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H = −
ℏ2

2𝑚𝑒
∑∇𝑖

2

𝑁

𝑖=1

⏞        
𝑇𝑒

−
ℏ2

2𝑚𝑛
∑∇𝑛

2

𝑀

𝑛=1

⏞      

−

𝑇𝑛

1

4𝜋𝜀𝑜
∑∑

1

|𝑟𝑖 − 𝑅⃗⃗𝑛|
𝑍𝑛𝑒

2

𝑀

𝑛=1

𝑁

𝑖=1

⏞                
𝑈𝑒𝑛

+
1

4𝜋𝜀𝑜

1

2
∑∑

𝑒2

|𝑟𝑖 − 𝑟𝑗|

𝑁

𝑖≠𝑗

𝑁

𝑖=1

⏞        
𝑈𝑒𝑒

+
1

4𝜋𝜀𝑜

1

2
∑ ∑

1

|𝑅⃗⃗𝑛 − 𝑅⃗⃗𝑛′|
𝑍𝑛𝑍𝑛′𝑒

2

𝑀

𝑛≠𝑛′

𝑀

𝑛=1

⏞                      
𝑈𝑛𝑛

 

     (2.2) 

here 𝑖 and 𝑗 denote the N-electrons while 𝑛 and 𝑛′ run over the M-nuclei in the system 

𝑚𝑒 and 𝑚𝑛 are the mass of electron and nucleus respectively 

𝑒 and 𝑍𝑛 are the electron and nuclear charge respectively 

𝑟𝑖⃗⃗⃗  and 𝑅⃗⃗𝑛 represent the position of the electrons and nuclei respectively, and 𝛻𝑖
2 is the 

Laplacian operator which is defined in Cartesian coordinates as:  

𝛻𝑖
2 =

𝜕2

𝜕𝑥𝑖
2 +

𝜕2

𝜕𝑦𝑖
2 +

𝜕2

𝜕𝑧𝑖
2 

In (2.2), the first two terms, namely 𝑇𝑒 and 𝑇𝑛  represent the kinetic energy of electrons 

and nuclei respectively while the last three terms represent the potential part of the 

Hamiltonian. The 𝑈𝑒𝑛 term defines the attractive electrostatic interaction between 

electrons and nuclei. The electron-electron,𝑈𝑒𝑒 and nuclear-nuclear, 𝑈𝑛𝑛 describe the 

repulsive part of the potential respectively [32,34,37,40,44].  

 

The Born-Oppenheimer approximation known as the clamped nuclei approximation can 

be applied due to the fact that about 99.9% of atom's mass is concentrated in the nucleus 

(for example, the hydrogen nucleus weighs approximately 1800 times more than an 

electron) and the nuclei can be considered as a fixed point relative to the electrons 
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hovering around the nucleus. In this case, if the nuclei of the treated atoms are fixed, 

their kinetic energy is zero and they do not contribute to the full wavefunction anymore. 

The outcome of this assumption is that the Hamiltonian of the electron system reduces 

the Hamiltonian to the electronic Hamiltonian H𝑒𝑙𝑒 which in the fixed nuclear picture 

can be rewritten as [32,34,37,44-46]:  

 

H𝑒𝑙𝑒 = −
ℏ2

2𝑚𝑒
∑∇𝑖

2

𝑁

𝑖=1

⏞        
𝑇𝑒

−
1

4𝜋𝜀𝑜
∑∑

1

|𝑟𝑖 − 𝑅⃗⃗𝑛|
𝑍𝑛𝑒2

𝑀

𝑛=1

𝑁

𝑖=1

⏞                
𝑈𝑒𝑛

+
1

4𝜋𝜀𝑜

1

2
∑∑

𝑒2

|𝑟𝑖 − 𝑟𝑗|

𝑁

𝑖≠𝑗

𝑁

𝑖=1

⏞              
𝑈𝑒𝑒

  

    

 

(2.3) 

      

For such a system, the Schrödinger equation for ‘clamped-nuclei’ is given as 

                      H𝑒𝑙𝑒𝛹𝑒𝑙𝑒 = 𝐸𝑒𝑙𝑒𝛹𝑒𝑙𝑒                                            (2.4) 

𝛹𝑒𝑙𝑒 depends on the electron coordinates, while the nuclear part enters only 

parametrically and does not explicitly appear in 𝛹𝑒𝑙𝑒.  

 

The wavefunction itself is not an observable quantity while its modulus squared can be 

written as: 

𝑛( 𝑟 ) = |𝛹(𝑟1, 𝑟2, … , 𝑟𝑁)|
2 ∫𝑑𝑟1 𝑑𝑟2…𝑑𝑟𝑁               (2.5) 

 

The virtue of density functional theory is that it expresses the physical quantities in terms of 

the ground-state density. The electronic density of a general many body state, characterized 

by a wave function ...),...,( 21 irrr , is defined as  
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2

2132 ...),...,(......)( ii rrrdrdrdrr =                                                   (2.6) 

 

This represents the probability that electrons 1, 2,….., N are found in the volume 

elements 𝑑𝑟1, 𝑑𝑟2… . . 𝑑𝑟𝑁. Since by their nature electrons are indistinguishable, this 

probability is unchangeable if the coordinates of any two electrons (here i and j) are 

swapped [43]: 

 

|𝛹(𝑟1, 𝑟2, … 𝑟𝑖, 𝑟𝑗 , … , 𝑟𝑁)|
2
= |𝛹(𝑟1, 𝑟2, … 𝑟𝑗 , 𝑟𝑖, … , 𝑟𝑁)|

2
            (2.7) 

 

Since electrons are fermions with spin of a half then 𝛹 must be antisymmetric with 

respect to the interchange of the spatial and the spin coordinates of any two electrons: 

 

𝛹(𝑟1, 𝑟2, … 𝑟𝑖, 𝑟𝑗 , … , 𝑟𝑁) = −𝛹(𝑟1, 𝑟2, … 𝑟𝑖, 𝑟𝑗 , … , 𝑟𝑁)              (2.8) 

 

A logical consequence of the probability interpretation of the wavefunction is that the 

integral of equation (2.6) over the full range of all variables equals one. Therefore the 

probability of finding the N-electron anywhere in space must be unity, 

 

∫…∫|𝛹(𝑟1, 𝑟2, … , 𝑟𝑁)|
2

𝑑𝑟1 𝑑𝑟2…𝑑𝑟𝑁 = 1      (2.9) 

 

 

A wavefunction which satisfies equation (2.9) is a normalized wavefunction.  
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Hartree and Hartree-Fock etc. are the theories which have been developed to solve the 

Schrödinger equation since it has no exact solution. These theories were based on an 

important theoretical principle called the variational principle of the wavefunction 

where a suitable trial wave-functions 𝛹𝑇𝑟𝑖 is used. This principle is useful to study the 

ground state, but is not very useful for the study of excited states. When a system is in 

the state 𝛹𝑇𝑟𝑖, the expectation value of the energy is given by [32-37,40,43]: 

 

〈𝐸𝑇𝑟𝑖〉 =
∫𝛹𝑇𝑟𝑖 H 𝛹𝑇𝑟𝑖 

∗ 𝑑𝑟

∫𝛹𝑇𝑟𝑖  𝛹𝑇𝑟𝑖
∗  𝑑𝑟

      (2.10) 

 

This means the energy is obtained from the expectation value of the Hamiltonian 

operator from any 𝛹𝑇𝑟𝑖 (presumed wave-function) which is an upper bound to the true 

ground-state energy 𝛹𝐺𝑆. If 𝛹𝑇𝑟𝑖  is normalized according to equation (2.9), and 

𝛹𝑇𝑟𝑖 equals to the ground state (𝛹𝑇𝑟𝑖 = 𝛹𝐺𝑆). This means 𝐸𝑇𝑟𝑖 equals to the exact 

ground state energy 𝐸𝐺𝑆, now we can rewrite equation (2.10) for the ground state as: 

 

〈𝐸𝐺𝑆〉 = ∫𝛹𝐺𝑆 H 𝛹𝐺𝑆 
∗ 𝑑𝑟      (2.11) 

 

The normalized 𝛹𝑇𝑟𝑖   can show that 𝐸𝑇𝑟𝑖 > 𝐸𝐺𝑆 or 𝐸𝑇𝑟𝑖 = 𝐸𝐺𝑆. Therefore the best 

choice of 𝐸𝑇𝑟𝑖 is the one in which 𝐸𝑇𝑟𝑖 is minimized [34,35,37]. 
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2.3. The Thomas-Fermi (T-F) Model 

 

For obtaining information about the electronic structure the earliest attempts to use the 

electron density rather than the wavefunction were made when quantum mechanics was 

emerging itself. The work of Llewellyn Thomas in 1926 and Enrico Fermi in 1928 was 

the earliest attempts who created independently the same idea of trying to construct a 

model to approximate the kinetic and potential energy as a function of the electron 

density. The T-F model is a quantum mechanical model defined by the energy function 

for the ground state level of the system with a specific number of orbitals in the atom 

and particular charge. Therefore, it is the first attempt to use the electron density instead 

of the wavefunction to solve the ground state Schrödinger equation for many body 

systems [38,39,43,47,48]. Despite the fact that electrons are distributed non-uniformly 

in an atom, it is assumed that they are distributed uniformly (based on the uniform 

electron gas) in each small element of volume ΔV locally, while the electron density 

𝑛( 𝑟 ⃗⃗⃗) could be varied from ΔV to the next. By using this approximation for the kinetic 

energy which is given by: 

 

𝑇𝑇−𝐹[𝑛( 𝑟 ⃗⃗⃗)] = 𝐶𝐹∫[𝑛( 𝑟 ⃗⃗⃗)]
5/3  𝑑𝑟          (2.12) 

 

Here CF is constant and is given by  

𝐶𝐹 =
3

10
 (3𝜋2)2/3 = 2.8712  

𝑛( 𝑟 ⃗⃗⃗) represents the electron density 

An approximation can also be proposed to determine the internal potential energy 𝑈𝑒𝑛  

http://en.wikipedia.org/wiki/Llewellyn_Thomas
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due to the attractive interaction of N-electrons with M-nuclei: 

 

𝑈𝑒𝑛 = ∫𝑛( 𝑟 ⃗⃗⃗) 𝑉𝑛( 𝑟 ⃗⃗⃗)  𝑑𝑟   (2.13) 

 

where 𝑉𝑛( 𝑟 ⃗⃗⃗) is the potential energy of an electron due to the nucleus electric field 

(external potential) and is given by: 

𝑉𝑛( 𝑟 ⃗⃗⃗) = −
1

4𝜋𝜀𝑜
∑∑

1

|𝑟𝑖 − 𝑅⃗⃗𝑛|
𝑍𝑛𝑒

2

𝑀

𝑛=1

𝑁

𝑖=1

            (2.14) 

 

here 𝑍 and 𝑒 are electron number and the electron charge approximately. The 

approximate electron-electron repulsive energy is given by: 

 

                                                         𝑈𝑒𝑒 =
1

4𝜋𝜀𝑜

1

2
𝑒2∫

𝑛( 𝑟 ⃗⃗⃗)𝑛( 𝑟′⃗⃗⃗⃗ )

|𝑟 − 𝑟′⃗⃗⃗⃗ |
 𝑑𝑟 𝑑𝑟′⃗⃗⃗⃗           (2.15) 

 

The equations (2.12), (2.13) and (2.15) with 𝑈𝑛𝑛  term give the T-F model: 

 

  𝐹𝑇−𝐹[𝑛( 𝑟 ⃗⃗⃗)] = 𝑇𝑇−𝐹 + 𝑈𝑒𝑛 + 𝑈𝑒𝑒 + 𝑈𝑛𝑛            (2.16) 

The fourth term 𝑈𝑛𝑛 in equation (2.16) is the nuclear-nuclear repulsion and it is an 

important determined constant in both cases either the nuclei are binding or not, for M-

nuclei in the system, it is given by [32,34,38,39,43]: 

𝑈𝑛𝑛 =
1

4𝜋𝜀𝑜

1

2
∑ ∑

1

|𝑅⃗⃗𝑛−𝑅⃗⃗𝑛′|
𝑍𝑛𝑍𝑛′

𝑀
𝑛≠𝑛′

𝑀
𝑛=1 𝑒2                               (2.17)  
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2.4. The Hohenberg-Kohn Theorems 

DFT is based on Hohenberg-Kohn theorems proposed by Hohenberg and Kohn in 1964 

where the electron density 𝑛( 𝑟 ⃗⃗⃗) is used to calculate the ground state energy [37,48,49]. 

Theorem (1) states that for any interacting many particle system with an applied external 

potential 𝑉𝑒𝑥𝑡( 𝑟 ⃗⃗⃗), the density is uniquely determined. In other words, it demonstrates 

that the density 𝑛( 𝑟 ⃗⃗⃗) may be used instead of the potential as a basic function uniquely 

characterising the system, and be stated as the ground state density  𝑛𝐺𝑆( 𝑟 ⃗⃗⃗) which 

uniquely determines the potential up to an arbitrary constant [37,41,48,50]. This 

theorem is proven for densities with non-degenerate ground states and the proof is 

elementary and by contradiction.  Let us consider two different external potentials 

𝑉𝑒𝑥𝑡( 𝑟 ⃗⃗⃗) (1)and 𝑉𝑒𝑥𝑡( 𝑟 ⃗⃗⃗) (2) which differ by more than a constant and yield the same 

ground state density 𝑛𝐺𝑆( 𝑟 ⃗⃗⃗). Clearly the above two potentials correspond to distinct 

Hamiltonians which are 𝐻𝑒𝑥𝑡[( 𝑟 ⃗⃗⃗)] (1) and 𝐻𝑒𝑥𝑡[( 𝑟 ⃗⃗⃗)] (2), these Hamiltonians give rise 

to distinct wavefunctions which are 𝛹𝑒𝑥𝑡[( 𝑟 ⃗⃗⃗)] (1) and 𝛹𝑒𝑥𝑡[( 𝑟 ⃗⃗⃗)] (2) .  

 

Since the ground state is same and according to the variational principle there is no 

wavefunction that gives energy less than that of  𝛹𝑒𝑥𝑡[( 𝑟 ⃗⃗⃗)] (1) for 𝐻𝑒𝑥𝑡[( 𝑟 ⃗⃗⃗)] (1), that 

is: 

                       〈𝐸(1)〉 = ∫𝛹(1) 𝐻(1) 𝛹(1)
∗  𝑑𝑟 <  ∫𝛹(2) 𝐻(2) 𝛹(2)

∗  𝑑𝑟           (2.18) 

For non-degenerate ground state and because of the identical ground state densities for 

two Hamiltonians, the equation (2.18) becomes: 
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∫𝛹(2) 𝐻(1) 𝛹(2)
∗  𝑑𝑟 = ∫𝛹(2) 𝐻(2) 𝛹(2)

∗  𝑑𝑟⏞            

〈𝐸(2)〉

+ ∫{[𝑉𝑒𝑥𝑡( 𝑟 )](1) −

[𝑉𝑒𝑥𝑡( 𝑟 )](2)} 𝑛𝐺𝑆( 𝑟 ⃗⃗⃗) 𝑑𝑟  

 (2.19) 

 

By exchanging the labels in equation (2.19), we have: 

∫𝛹(1) 𝐻(2) 𝛹(1)
∗ 𝑑𝑟 = ∫𝛹(1) 𝐻(1) 𝛹(1)

∗  𝑑𝑟⏞            

〈𝐸(1)〉

+ ∫{[𝑉𝑒𝑥𝑡( 𝑟 )](2) −

[𝑉𝑒𝑥𝑡( 𝑟 )](1)} 𝑛𝐺𝑆( 𝑟 ⃗⃗⃗) 𝑑𝑟  

 (2.20) 

 

Adding (2.19) and (2.20) gives: 

〈𝐸(1)〉 + 〈𝐸(2)〉 <  〈𝐸(2)〉 + 〈𝐸(1)〉        (2.21) 

This clearly shows a contradiction and therefore the theorem has been proven by 

reductio ad absurdum. 

 

Theorem (2) provides a variational ansatz for obtaining 𝑛( 𝑟 ⃗⃗⃗), i.e. searching for 𝑛( 𝑟 ⃗⃗⃗) 

so as to minimise the energy. It states that, in terms of the density 𝑛( 𝑟 ⃗⃗⃗), a universal 

functional for the energy 𝐸[𝑛( 𝑟 ⃗⃗⃗)] can be defined. The exact ground state energy of the 

system in particular (𝑉𝑒𝑥𝑡( 𝑟 )) is the global minimum value of this functional and the 

density 𝑛( 𝑟 ⃗⃗⃗) which minimizes the functional and represents the exact ground state 

density 𝑛𝐺𝑆( 𝑟 ⃗⃗⃗) [32]. Proof (2), the first theorem states that the total energy of system 

is a functional of the density 𝑛( 𝑟 ⃗⃗⃗) and is given by [32,37,41,48,50]:  
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       𝐸𝑡𝑜𝑡𝑎𝑙[𝑛( 𝑟 ⃗⃗⃗)]

= 𝑇𝑖𝑛𝑡[𝑛( 𝑟 )] + 𝑈𝑒𝑒[𝑛( 𝑟 )]⏟      
=𝑧𝑒𝑟𝑜,   𝑓𝑜𝑟 

𝑛𝑜𝑛−𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑛𝑔 
𝑠𝑦𝑠𝑡𝑒𝑚

⏞                   

𝐹𝐻−𝐾[𝑛( 𝑟 )]

+ ∫𝑉𝑒𝑥𝑡( 𝑟 )  𝑛( 𝑟 ) 𝑑𝑟 
    (2.22) 

 

In this equation the kinetic energy is given by the first two terms ( 𝐹𝐻−𝐾[𝑛( 𝑟 )]) as 

(𝑇𝑖𝑛𝑡) and the electron-electron interaction energy (𝑈𝑒𝑒) is the same for the whole 

system. Thus 𝐹𝐻−𝐾[𝑛( 𝑟 )] is a universal functional, described as the Holy Grail of 

density functional theory. Assuming that the system is in the ground state, the energy 

can be uniquely defined by the ground state density  𝑛𝐺𝑆( 𝑟 ⃗⃗⃗) such as: 

                      〈𝐸𝐺𝑆〉 = 〈𝐸[𝑛𝐺𝑆( 𝑟 )]〉 = ∫𝛹𝐺𝑆 𝐻𝐺𝑆 𝛹𝐺𝑆
∗  𝑑𝑟       (2.23) 

 

According to the variational principle any different density will correspond to a higher 

energy because the ground state energy corresponding to the ground state density is the 

minimum energy: 

         〈𝐸𝐺𝑆〉 = 〈𝐸[𝑛𝐺𝑆( 𝑟 )]〉 = ∫𝛹𝐺𝑆  𝐻𝐺𝑆 𝛹𝐺𝑆
∗  𝑑𝑟 <  ∫𝛹 𝐻 𝛹∗  𝑑𝑟         

                                                  = 〈𝐸[𝑛( 𝑟 )]〉 = 〈𝐸〉 

      (2.24) 

  

In (2.22) the total energy can be minimized with respect to variations in the density 

function when the functional 𝐹𝐻−𝐾[𝑛( 𝑟 )] is known. This leads to finding the exact 

ground state properties of the system since for most practical calculations, the direct 
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minimization will not provide the ground state energy, but by the simpler procedure due 

to Kohn-Sham. 

 

 

2.5. Kohn-Sham Method and Self-Consistent Field SFC 

This is well known that DFT avoids the interacting many particle problem. However 

over the interacting system the non-interacting system has one great advantage since 

finding the ground-state energy for such system is relatively easier. In 1965, Kohn and 

Sham discovered the possibility to replace the original Hamiltonian of the system by an 

effective Hamiltonian (𝐻𝑒𝑓𝑓) of the non-interacting system in an effective external 

potential 𝑉𝑒𝑓𝑓( 𝑟 ). This gives rise to the same ground state density as the original 

system. The Kohn-Sham method is considered as an ansatz because there is no clear 

recipe for calculating this. However it is a lot easier to solve than the non-interacting 

problem. Hohenberg-Kohn theory is applicable to both interacting and non-interacting 

systems. The Kohn-Sham method is based on the Hohenberg-Kohn universal density 

[37,40,41,51]: 

 𝐹𝐻−𝐾[𝑛( 𝑟 ⃗⃗⃗)] = 𝑇𝑖𝑛𝑡[𝑛( 𝑟 )] + 𝑈𝑒𝑒[𝑛( 𝑟 )]                      (2.25) 

 

For non-interacting electrons the Hohenberg-Kohn functional is reduced to only the 

kinetic energy. The energy functional of the Kohn-Sham ansatz 𝐹𝐾−𝑆[𝑛( 𝑟 ⃗⃗⃗)], in contrast 

to (2.22), is given by: 
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𝐹𝐾−𝑆[𝑛( 𝑟 ⃗⃗⃗)] = 𝑇𝑛𝑜𝑛[𝑛( 𝑟 )] + 𝐸𝐻𝑎𝑟𝑡[𝑛( 𝑟 )] + ∫𝑉𝑒𝑥𝑡( 𝑟 )  𝑛( 𝑟 ) 𝑑𝑟 

                                                     +𝐸𝑥𝑐[𝑛( 𝑟 )]             (2.26) 

 

𝑇𝑛𝑜𝑛 is the kinetic energy of the non-interacting system and is different from 𝑇𝑖𝑛𝑡  (for 

interaction system) in equation (2.22), while 𝐸𝐻𝑎𝑟𝑡 is the classical electrostatic energy 

or classical self-interaction energy of the electron gas associated with density 𝑛( 𝑟 ). 

The fourth term 𝐸𝑥𝑐 is the exchange-correlation energy functional and given by: 

      𝐸𝑥𝑐[𝑛( 𝑟 )] = 𝐹𝐻−𝐾[𝑛( 𝑟 ) −
1

2
∫
𝑛( 𝑟1 )𝑛( 𝑟2 )

|𝑟1 − 𝑟2|
𝑑𝑟1𝑑𝑟2

⏞                
𝐸𝐻𝑎𝑟𝑡[𝑛( 𝑟 )]

− 𝑇𝑛𝑜𝑛[𝑛( 𝑟 )] 
     (2.27) 

 

In equation (2.26) the first three terms can be cast into functional form. In contrast, 

however there is no exact functional form for 𝐸𝑥𝑐. Recently much research work has 

been directed into finding a better approximation to 𝐸𝑥𝑐. Currently, the functionals can 

investigate and predict the physical properties of a wide range of solid state systems and 

molecules. For the last three terms in equation (2.26), we take the functional derivatives 

to construct the effective single particle potential 𝑉𝑒𝑓𝑓( 𝑟 ): 

 

𝑉𝑒𝑓𝑓( 𝑟 ) = 𝑉𝑒𝑥𝑡( 𝑟 ) +
𝜕𝐸𝐻𝑎𝑟𝑡[𝑛( 𝑟 )]

𝜕𝑛( 𝑟 )
+
𝜕𝐸𝑥𝑐[𝑛( 𝑟 )]

𝜕𝑛( 𝑟 )
           (2.28) 
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Now, this potential can be used to give the Hamiltonian of the single particle: 

𝐻𝐾−𝑆 = 𝑇𝑛𝑜𝑛 + 𝑉𝑒𝑓𝑓            (2.29) 

The Schrödinger equation becomes pretty simple when this Hamiltonian is used: 

[𝑇𝑛𝑜𝑛 + 𝑉𝑒𝑓𝑓]𝛹𝐾−𝑆 = 𝐸𝛹𝐾−𝑆                      (2.30) 

Equation (2.30) is known as Kohn-Sham equation. The ground state density 𝑛𝐺𝑆
𝐾−𝑆( 𝑟 ) 

corresponds to the ground state wavefunction 𝛹𝐺𝑆
𝐾−𝑆 which minimizes the Kohn-Sham 

functional subject to the orthonormalization constraints ⟨𝛹𝑖|𝛹𝑗⟩ = 𝛿𝑖𝑗; it is found by a 

self-consistent calculation [32,35,45,52].  

𝐸𝐻𝑎𝑟𝑡 and 𝐸𝑥𝑐 can be accurately determined in DFT where a self-consistent field 

procedure is used. However 𝑉𝑒𝑓𝑓 cannot be calculated until the correct ground state 

density is known. In addition to that the correct density cannot be obtained from the 

Kohn-Sham wavefunctions until equation (2.30) is solved with the correct 𝑉𝑒𝑓𝑓. 

Therefore the circular problem can be solved by carrying out a self-consistent cycle as 

shown in figure 2.1 [34,43,53]. 
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Figure 2.1 A Schematic illustration of the self-consistent DFT cycle. 

 

The procedure is shown in figure 2.1, where the first step is to generate the pseudo-

potential. The pseudo-potential represents the electrostatic interaction between the 

valence electrons and the nuclei and core electrons. The basis set with a selected kinetic 

energy cutoff to be inserted in the basis set is built up in the next step. This is needed to 

expand the density functional quantities. 
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The energy functional is fully determined if the density is known. A trial electronic 

density 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (𝑟) is made as an initial guess to calculate the following quantity: 

                                    𝐺 = 𝐸𝐻𝑎𝑟𝑡[𝑛
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (𝑟)] + 𝐸𝑥𝑐[𝑛

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (𝑟)]                  (2.31) 

 

𝝏𝑮

𝝏𝒏𝒊𝒏𝒊𝒕𝒊𝒂𝒍 (𝒓⃗⃗)
 and the effective potential 𝑉𝑒𝑓𝑓 are then calculated and the later is used to 

solve the Kohn-Sham equation (2.30). This leads to find the electron Hamiltonian and 

after that it is diagonalised in order to find the eigenfunctions and the new electron 

density 𝑛𝑛𝑒𝑤(𝑟) . Hopefully, this 𝑛𝑛𝑒𝑤(𝑟) will be closer to true ground state and is 

checked. 

 

The end of the loop is, for self-consistency, if this new updated electron density 𝑛𝑛𝑒𝑤(𝑟) 

agrees numerically with the density 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (𝑟) used to build the Hamiltonian at the 

beginning of the SCF cycle. After exit, all the desired converged quantities, such as the 

total energy, the electronic band structure, density of states etc. are calculated. 

Otherwise, the new density 𝑛𝑛𝑒𝑤(𝑟) does not agree with the starting density 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙  (𝑟), 

one generates a new input density and starts another SCF cycle: build the new density-

dependent Hamiltonian, solve and compute the density, and check for self-consistency 

[34,48,54].  

A complicated many-body system can be mapped onto a set of simple non-interacting 

equations exactly if the exchange correlation functional is known according to Kohn-

Sham approach. However, the exchange-correlation functional is not known exactly so 

approximations need to be made. 
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2.6. The Exchange-Correlation Potential 

Although DFT is very reliable and proven method, but for kinetic energy functional and 

the exchange-correlation functional in terms of the density it still uses an approximation. 

Much research work has been directed to find reliable expressions for those functionals. 

The Local Density Approximation (LDA) are the most commonly exchange-correlation 

functional approximations, which depends only on the density. The more complicated, 

however are Generalised Gradient Approximation (GGA), which includes the 

derivative of the density and also contains information about the environment and hence 

it is semi-local. 

 

Local Density Approximation (LDA) 

It is possible to calculate the functional 𝐸𝑥𝑐 functional in a homogenous electron gas to 

approximate the many body particle problem as a simpler system based on Kohn-Sham 

method [42]. By slowly varying the density of a system, the  𝐸𝑥𝑐 functional at point 

𝑟 can be considered as acting in a uniform density. 𝐸𝑥𝑐 can be represented by a uniform 

electron gas 𝐸𝑥𝑐
ℎ𝑜𝑚𝑜[𝑛( 𝑟 )] with a density 𝑛( 𝑟 ).  

 

LDA typically will not work for those systems which are dominated by electron-

electron interactions. An assumption, however is made that the density is considered a 

constant in the local region around any considered position and it is given by [37,43]: 

 

𝐸𝑥𝑐
𝐿𝐷𝐴[𝑛( 𝑟 )] = ∫𝐸𝑥𝑐

ℎ𝑜𝑚𝑜[𝑛( 𝑟 )]𝑛( 𝑟 )𝑑𝑟    (2.32) 
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It is possible to split the exchange-correlation energy 𝐸𝑥𝑐
ℎ𝑜𝑚𝑜[𝑛( 𝑟 )] into two terms such 

as the sum of the exchange 𝐸𝑥
ℎ𝑜𝑚𝑜[𝑛( 𝑟 )] and the correlation energies 𝐸𝑐

ℎ𝑜𝑚𝑜[𝑛( 𝑟 )] 

which can be found separately as: 

 

𝐸𝑥𝑐
ℎ𝑜𝑚𝑜[𝑛( 𝑟 )] = 𝐸𝑥

ℎ𝑜𝑚𝑜[𝑛( 𝑟 )] + 𝐸𝑐
ℎ𝑜𝑚𝑜[𝑛( 𝑟 )]         (2.33) 

 

The first term can be found analytically. It is well known (see [37,43]) and is given 

by: 

 

𝐸𝑥
ℎ𝑜𝑚𝑜[𝑛( 𝑟 )] = − 

3

4
 (
3𝑛( 𝑟 )

𝜋
)1/3          (2.34) 

 

However, (𝐸𝑐
ℎ𝑜𝑚𝑜[𝑛( 𝑟 )]) cannot be obtained analytically, but numerical methods can 

be used to calculate it accurately. The most common and accurate method was proposed 

by Ceperly and Alder (CA) [55] using quantum Monte-Carlo simulations. There are 

several different interpretations of the Monte Carlo data, for example, the most used 

was calculated by Perdew and Zunger (PZ), who fitted this numerical data to an 

analytical expression and obtained [56,57]: 

 

𝑬𝒄
𝒉𝒐𝒎𝒐[𝒏( 𝒓⃗⃗ )] =

{
 

 
−0.048 + 0.031 𝑙𝑛(𝑟𝑜) − 0.0116 𝑟𝑜 + 0.002 𝑙𝑛(𝑟𝑜)     𝑖𝑓 𝑟𝑜 < 1

     
  

                −
0.1423

(1 + 1.9529 √𝑟𝑜 + 0.3334 𝑟𝑜
                                       𝑖𝑓 𝑟𝑜 > 1

}
 

 

    (2.35) 

 

here 𝑟𝑜 is the average distance between the electrons in the homogenous electron gas 

and defined as (
3

4𝜋𝑛
)1/3. 
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It can be seen that the LDA is a simple and well known powerful functional and is 

considered to be accurate for graphene and carbon nanotubes or where the electron 

density is not rapidly changing. In case of atoms with d and f orbitals, a larger error is 

expected. This functional to some extent has many pitfalls, for example the band gap in 

semiconductors and insulators is usually not accurate with a large error (typically in the 

range of 0.5 to 2eV or 10-30%). Therefore, it is highly advisable to seek better 

functionals [56,58,59]. 

 

 

Generalized Gradient Approximation (GGA) 

All systems are considered as the homogenous systems in LDA, but the real systems 

are inhomogeneous. A step may be taken beyond the LDA and extend it by including 

the derivative information of the density into the exchange-correlation functional in 

order to take this into account. This is done by including the gradient and the higher 

spatial derivatives of the total charge density (|𝛻𝑛( 𝑟 )|, |𝛻2𝑛( 𝑟 )|, …) into the 

approximation. Such a functional is called the generalized gradient approximation 

(GGA). It has to be calculated along with the correlation contributions using numerical 

methods because there is no closed expression for the exchange part of the functional. 

Exactly as in the case of the LDA many parameterizations exist for the exchange-

correlation energies in the GGA [60-63]. 

 

The proposed functional form which is presented by Perdew, Burke and Ernzerhof 

(PBE) [60] is discussed in this section. There are two separate expressions in this 

parameterization, the first expression is the exchange 𝐸𝑥
𝐺𝐺𝐴[𝑛( 𝑟 )] and is given by: 
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𝐸𝑥
𝐺𝐺𝐴[𝑛( 𝑟 )] = ∫𝑛( 𝑟 ) 𝐸𝑥

ℎ𝑜𝑚𝑜[𝑛( 𝑟 )] 𝐹𝑥(𝑠)𝑑𝑟 ,          (2.36) 

 

𝐹𝑥(𝑠) = 1 + 𝜅 −
𝜅

(1+𝜇𝑠2)/𝜅
  

 

𝐹𝑥(𝑠) is called the enhancement factor, 

𝜅 = 0.804, 𝜇 = 0.21951   

𝑠 = |𝛻𝑛( 𝑟 )/2𝑘𝑠𝑛( 𝑟 )| is the dimensionless density gradient, where 𝑘𝑠 = √
4 𝑘𝑇−𝐹

𝜋𝑎𝑜
  and 

𝑘𝑇−𝐹 =
(12/𝜋)1/3

√𝑟𝑠
 is the Thomas-Fermi screening wavenumber whereas 𝑟𝑠 is the local 

Seitz radius. 

 

The second expression is the correlation energy 𝐸𝑥
𝐺𝐺𝐴[𝑛( 𝑟 )] and given by: 

 

𝐸𝑐
𝐺𝐺𝐴[𝑛( 𝑟 )] = ∫(𝐸𝑐

ℎ𝑜𝑚𝑜[𝑛( 𝑟 )] + 𝜒 [𝑛( 𝑟 )])𝑑𝑟 ,          (2.37) 

  

𝜒 [𝑛( 𝑟 )] =
𝑒2

𝑎𝑜
 𝛾 𝑙𝑛 (1 +

𝛽

𝛾
 𝑡2  

1+𝐴𝑡2

1+𝐴𝑡2+𝐴2𝑡4
) ,  

𝐴 =
𝛽

𝛾
 [ 𝑒

(
𝐸𝑐
ℎ𝑜𝑚𝑜[𝑛( 𝑟⃗⃗⃗ )]

𝛾
)−1
 ]−1     

              

where 𝛾 = (1 − 𝑙𝑛(2)/𝜋2, 𝑡 = |𝛻𝑛( 𝑟 )/2𝑘𝑇−𝐹𝑛( 𝑟 )| is another dimensionless 

density gradient, 𝛽 = 0.066725,  and 𝑎0 =
ℏ

𝑚𝑒2
 . 
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The two most commonly used approximations for the approximation of exchange-

correlation energies in the DFT are LDA and GGA as discussed above. There are 

several other functionals, which go beyond LDA and GGA. However, there is not a 

single robust theory of the validity of these functionals. It is determined via testing the 

functional for various materials over a wide range of systems and comparing results 

with reliable experimental data. 

 

 

2.7. SIESTA  

In this research work all calculations were carried out by the implementation of DFT in 

the SIESTA code. SIESTA is an acronym derived from the Spanish Initiative for 

Electronic Simulations with Thousands of Atoms. It is used to obtain the relaxed 

geometry of the structures discussed here and also to carry out the calculations to 

investigate their electronic properties.  It is a self-consistent density functional theory 

technique and to perform efficient calculations it uses norm-conserving pseudo-

potentials and a Linear Combination of Atomic Orbital Basis set (LCAOB). For more 

theoretical details, the reader is referred to [64]. There are two different modes to 

perform DFT simulations using SIESTA [65,66]. One mode is a conventional self-

consistent field diagonalisation method to solve the Kohn-Sham equations and the 

second is by direct minimization of a modified energy functional [67]. This section will 

describe some of SIESTA’s components and how they are implemented within the code.   
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The pseudo-potential approximation  

The distribution of the valence electrons in any system is a very good description of 

physical properties of that system. The spread of electrons around the nucleus are 

generally categorized as core and valence electrons. Investigating the electronic 

properties is typically expensive in terms of time and computer memory for a system 

containing a large number of atoms containing complex potentials. It is possible to 

reduce the number of electrons involved in the simulation by introducing an 

approximation known as a pseudo-potential or effective potential. This way an effort is 

made to replace the complicated effects of the motion of the non-valence electrons (core 

electrons) of an atom and the nucleus by pseudo-potential. Actually the core electrons 

do not participate in chemical bonding since they are spatially localised about the 

nucleus, and there is a weak overlap of their wavefunctions with the core electron 

wavefunctions from neighbouring atoms. Only the valence electrons contribute to the 

formation of the molecular orbital because only these electron states overlap in most 

systems. It is therefore understandable to assume that the core electrons can be removed 

and replaced by pseudo-potential. The coulombic potential term for the core electrons 

in Schrodinger equation is replaced by a modified effective potential term. Fermi in 

1934 and Hellmann in 1935 introduced the first pseudo-potential approximation [66-

69]. Some advantages of using pseudo-potentials in the computational calculations are 

discussed here. It can be used:  

 

 

http://en.wikipedia.org/wiki/Core_electron
http://en.wikipedia.org/wiki/Atom
http://en.wikipedia.org/wiki/Coulomb%27s_law
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- To reduce the number of the electrons which are participating in the calculations 

by not considering the core electrons for calculations and this significantly 

reduces both time and memory required to run the ab-initio simulation.   

 

- To reduce the total energy scale by not considering the core electrons from 

calculation making the numerical calculation of energy differences between 

atomic configurations much more stable.   

 

- To exactly match the true valence wave-functions outside of the core or cut-off 

radius 𝒓𝒄, but are nodeless inside, and replacing the true valence wave-functions 

by pseudo-wavefunctions. These pseudo-wavefunctions can be expanded using 

a much smaller number of the plane wave basis states.      

 

- To add easily the relativistic effects into the pseudo-potential whilst further 

treating the valence electrons non–relativistically. 

 

When the Kohn-Sham equation is solved, firstly the energy eigenvalues for the pseudo-

potential must be matched those that would be found from the real potential in order to 

obtain a reasonable pseudo-potential. Secondly, the long range effect of the pseudo-

potential must be the same as that of the real potential. This is resolved by ensure that 

the two potentials are coincided outside of the core radius (𝒓𝒄).  

 

The pseudo-potential is different than the real potential within the core radius and how 

once the Kohn-Sham equation is solved using the pseudo-potential, the resulting 
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pseudo-wavefunction will not match the real wavefunction inside 𝒓𝒄. The pseudo-

potential is constructed in such a way that there are no radial nodes in the pseudo-

wavefunction inside the core region, and clearly that the pseudo-wavefunctions and 

pseudo-potential coincide with their real corresponding outside of the core region, as 

shown in figure 2.2 . 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Schematic illustration of the comparison between a wavefunction in the 

Coulomb potential of the nucleus (dashed blue) and the one in the pseudo-potential 

(red). The real wavefunction and pseudo-wavefunction match above a certain cutoff 

radius 𝒓𝒄 (the core radius). 

 

The pseudo-potentials are considered within the scheme of the orthogonalized plane 

wave (OPW) atomic calculations. The obtained pseudo-potentials are strongly repulsive 

near the nuclei and the corresponding wavefunctions generally present the correct shape 

outside of the atomic core and differ from the correct eigenfunctions by a normalization 

factor [68]. In 1979, D. R. Hamann, M. Schlüter, and C. Chiang proposed a model (HSC 

model) to avoid these problems and allows to obtain pseudo-wavefunctions which are 

the same as the real wavefunctions outside of a chosen core radius (𝒓𝒄) and the 

eigenvalues agree with the real energy eigenvalues. This property is well-known as 
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norm-conservation which assures that electrostatic potential caused by pseudo and real 

charge densities are equal when 𝒓 > 𝒓𝒄 (outside of the core radius) [69]. There is a 

special type of ab-intio pseudo-potential which is the norm-conserving pseudo-potential 

(Pseudo-potentials with angular momentum dependence) in their fully non-local 

(Kleinman-Bylander,1982) form, which is used within SIESTA code [66,67]. For an 

isolated atom, the true all-electron valence wavefunctions can be expressed as: 

𝛹𝑛𝑙𝑚
𝑅−𝑆( 𝑟 ) =

1

𝑟
𝑅𝑛𝑙
𝑟𝑎𝑑𝑖𝑎𝑙( 𝑟 )𝑌𝑙𝑚

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙( 𝑟 )           (2.38) 

 

here 𝑛, 𝑙 𝑎𝑛𝑑 𝑚 are the quantum numbers, where 𝑛 = 1,2, …. , 𝑙 = 0,… . , 𝑛 − 1 and 

𝑚 = −𝑙,… . , 𝑙. In equation 2.38, the first term is the radial harmonic wavefunction and 

second term is the spherical harmonic wavefunction. The first part 𝑅𝑛𝑙
𝑟𝑎𝑑𝑖𝑎𝑙 is the 

solution to the radial Schrödinger equation which contains the all-electron potential 

𝑉𝑛𝑙
𝑎𝑙𝑙−𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛, it includes all interactions with the remaining core and valence electrons 

in the atom. The radial Schrödinger equation can be written as [70]: 

−
1

2
 
𝜕2

𝜕𝑟2
𝑅𝑛𝑙
𝑟𝑎𝑑𝑖𝑎𝑙( 𝑟 ) + [ 

𝑙(𝑙 + 1)

2𝑟2
+ 𝑉𝑛𝑙

𝑎𝑙𝑙−𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛( 𝑟 )] 𝑅𝑛𝑙
𝑟𝑎𝑑𝑖𝑎𝑙( 𝑟 )

= 𝜀𝑛𝑙
𝑟𝑎𝑑𝑖𝑎𝑙𝑅𝑛𝑙( 𝑟 ) 

 (2.39) 

 

From equation (2.39) the size of the system will reduce by removing the core electrons 

and replacing all of the electrons potential (𝑉𝑛𝑙
𝑎𝑙𝑙−𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛) by the pseudo-potential (𝑉𝑛𝑙

𝑃𝑆), 

whilst the valence electrons feel the same interaction as if they were still present. This 

will change the solution of (2.39) to the radial pseudo-wavefunction (𝑅𝑛𝑙
𝑃𝑆). The logical 

steps of finding this pseudo-potential are firstly to construct the pseudo-wavefunctions 
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from the all-electron wavefunction and then secondly to determinate the pseudo-

potential by taking the inverse of the radial Schrödinger equation given by:  

 

𝑉𝑃𝑆 = 𝜀𝑛𝑙
𝑃𝑆 −

𝑙(𝑙 + 1)

2𝑟2
+

1

2𝑟𝑅𝑛𝑙
𝑃𝑆  

𝜕2

𝜕𝑟2
 (𝑟𝑅𝑛𝑙

𝑃𝑆)  (2.40) 

          

Now there is a need to explain how the radial pseudo-potential is calculated, although 

there are many different ways of parameterising the pseudo-wavefunction.  

Troullier-Martine method is another pseudo-potential used in SEISTA which is applied 

[70,71], where the pseudo-wavefunction is defined when 𝒓 > 𝒓𝒄  as a function of a 

polynomial in 𝒓𝟐: 

             𝑃( 𝑟 ) = 𝑎𝑜 + 𝑎2 𝑟
2 + 𝑎4 𝑟

4 + 𝑎6 𝑟
6 + 𝑎8 𝑟

8 + 𝑎10 𝑟
10𝑎12 𝑟

12              (2.41) 

and it is shown as the following equation: 

 

𝑅𝑛𝑙
𝑃𝑆 = {

𝑅𝑛𝑙
𝑟𝑎𝑑𝑖𝑎𝑙          𝑖𝑓 𝑟 > 𝑟𝑐

 𝑟𝑙 𝑒𝑝( 𝑟 )        𝑖𝑓 𝑟 < 𝑟𝑐
  (2.42) 

 

The following conditions (the conditions must be obeyed by the radial part of the 

pseudo-wavefunction, equation 2.43) must be satisfied by pseudo-potentials to be 

classified as norm-conserving pseudo-potentials:  

1- The valence eigenvalues of the true all-electron potential and the pseudo-

potential are the same. It is a certain condition which guarantees that for single 

atomic configuration, the true all-electron potential and the pseudo-potential 

will give the same eigenenergies :  
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                                                     𝜀𝑛𝑙
𝑟𝑒𝑎𝑙 = 𝜀𝑛𝑙

𝑃𝑆
                   (2.43) 

 

The valence eigenfunctions of the true all-electron potential and the pseudo-potential 

must be same for a chosen core radius (𝒓𝒄) and when 𝒓 > 𝒓𝒄. This condition is a 

guarantee that in the bonding region (core region) and away from the core, the 

wavefunctions match as well: 

 

𝑅𝑛𝑙
𝑟𝑒𝑎𝑙  = 𝑅𝑛𝑙

𝑃𝑆     𝑤ℎ𝑒𝑛    𝑟 > 𝑟𝑐                      (2.44) 

 

The pseudo-wavefunction should be smooth and nodeless in order to obtain a smooth 

pseudo-potential. This can be achieved by taking the first four derivatives continuous 

at the cutoff radius (𝒓𝒄) for the pseudo-wavefunction. 

 

[
𝑑𝑖𝑅𝑛𝑙( 𝑟 )

𝑑𝑟𝑖
]
𝑟=𝑟𝑐

 = [
𝑑𝑖𝑅𝑛𝑙

𝑃𝑆( 𝑟 )

𝑑𝑟𝑖
]
𝑟=𝑟𝑐

,      ∀ 𝑖 = 1,… ,4 

 

 

2- The total charge of the true and pseudo all-electron eigenfunctions when 𝒓 < 𝑟𝒄 

are the same.  

∫ 𝑟2
𝑟𝑐

0

|𝑅𝑛𝑙
𝑟𝑒𝑎𝑙 ( 𝑟 )|

2
𝑑𝑟 = ∫ 𝑟2

𝑟𝑐

0

|𝑅𝑛𝑙
𝑃𝑆 ( 𝑟 )|

2
𝑑𝑟   𝑤ℎ𝑒𝑛    𝑟 < 𝑟𝑐  (2.45) 

 

By substituting equation (2.43) into the inverted Schrödinger equation (2.41) the 

unknown coefficient can be calculated which dives the explicit of the pseudo-potential 

as:  
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𝑉𝑛𝑙
𝑃𝑆 = {

𝑉𝑛𝑙
𝑟𝑒𝑎𝑙                                                                                    𝑖𝑓 𝑟 > 𝑟𝑐

𝜀𝑛𝑙
𝑃𝑆 −

(𝑙 + 1)𝑝′( 𝑟 )

2𝑟2
+
[𝑝′( 𝑟 ) + 𝑝′′( 𝑟 )]

2
                  𝑖𝑓 𝑟 < 𝑟𝑐

  (2.46) 

 

In equation (2.47) the pseudo-potential is defined as screened pseudo-potential as it 

includes effects of the core and the valence electrons. In order to make the resulting 

pseudo-potential reliable, it should be transferable (i.e. it is possible to use it in 

molecules and other complicated environments) and to achieve this, any screening from 

the valence electrons has to be removed by subtracting the Hartree and exchange-

correlation potentials. Therefore it is possible to write the ion pseudo-potential as: 

 

       𝑉𝑛𝑙
𝑖𝑜𝑛[𝑛𝑃𝑆( 𝑟 )] = 𝑉𝑛𝑙

𝑃𝑆[𝑛𝑃𝑆( 𝑟 )] − 𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛
𝑃𝑆( 𝑟 )] − 𝑉𝑥𝑐[𝑛

𝑃𝑆( 𝑟 )]           (2.47) 

 

 

Localised Atomic Orbital Basis Sets (LAOBs) 

The type of the basis function employed in the calculations is one of the most important 

aspects of the SIESTA code. It uses a basis set composed of localised atomic orbitals 

which compare well with other DFT schemes which may use a plane wavefunction 

basis set [66]. LAOBs provide a closer representation of the chemical bond; they can 

allow order-N calculations to be performed and also it gives a good base from which 

generate a tight-binding Hamiltonian. SIESTA uses confined orbitals, i.e. orbitals are 

constrained to be zero outside of a certain radius (cutoff radius 𝑟𝑐). This produces the 

desired sparse form of the Hamiltonian as the overlap between basis functions is 
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reduced. The atomic orbitals inside this radius are products of a numerical radial 

function and a spherical harmonic. 

 

The single-ζ (also called minimal) is the simplest form of the atomic basis set for an 

atom (labelled as I) which represents a single basis function per electron orbital and is 

given by the following equation: 

𝛹𝑛𝑙𝑚
I ( 𝑟 ) =

1

𝑟
𝑅𝑛𝑙
I ( 𝑟 ) 𝑌𝑙𝑚

I ( 𝑟 )                     (2.48) 

 

Here the single basis function 𝛹𝑛𝑙𝑚
I ( 𝑟 ) consists of two parts, the first part is the radial 

𝑅𝑛𝑙
I  and the second part is the spherical harmonic 𝑌𝑙𝑚

I . Minimal or single zeta basis set 

are constructed by using one basis function of each type occupied in the separate atoms 

that comprise a molecule. If at least one p-type orbital is occupied in the atom, then the 

complete set (3p-type) of the functions must be included in the basis set. For example, 

in the carbon atom, the electron configuration is 1𝑠2 2𝑠2 2𝑝2, therefore, a minimal basis 

set for carbon atom consists of 1𝑠, 2𝑠, 2𝑝𝑥, 2𝑝𝑦 and 2𝑝𝑧 orbitals which means the total 

basis functions are five as shown in table 2.1. 

 

Multiple-ζ are called higher accuracy basis sets and they are formed by adding another 

radial wavefunctions for each included electron orbital. Double basis sets are 

constructed by using two basis functions of each type for each atom. For carbon atom, 

a double zeta basis contains ten basis functions corresponding to ten orbitals which are 

1𝑠, 1𝑠′, 2𝑠, 2𝑠′, 2𝑝𝑥, 2𝑝𝑥
′ , 2𝑝𝑦, 2𝑝𝑦

′ , 2𝑝𝑧 and 2𝑝𝑧
′ . For further accuracy, polarisation 

effects are included in double-ζ polarised basis sets obtained by including 

wavefunctions with different angular momenta corresponding to orbitals which are 



50 
 

unoccupied in the atom. A polarization function is any higher angular momentum 

orbital used in a basis set which is unoccupied in the separated atom. For instance, the 

hydrogen atom has only one occupied orbital type that is 𝑠-type. Therefore, if p-type or 

d-type basis functions were added to the hydrogen atom they would be known as 

polarization functions. Carbon atoms with polarization functions include d-type and f-

type basis functions. 

H1/ 1s 

C6/ 1s, 2s, 2px2py2pz 

Cl17 / 1𝑠, 2𝑠, 2𝑝𝑥, 2𝑝𝑦, 2𝑝𝑧 ,3𝑠, 3𝑝𝑥, 3𝑝𝑦, 3𝑝𝑧 

Table 2.1 Examples of the radial basis sets functions per atom used in SIESTA code for 

different precisions of the split valence basis sets. 

 

 

The split valence basis set is formed when the core electrons (non-valence electrons) of 

an atom are less affected by the chemical environment than the valence electrons. Take 

carbon atom, for example, a split valence double zeta basis set would consist of a single 

1𝑠 orbital, along with 2𝑠, 2𝑠′and 2𝑝𝑥, 2𝑝𝑥
′ , 2𝑝𝑦, 2𝑝𝑦

′ , 2𝑝𝑧 , 2𝑝𝑧
′  orbitals, for a total of 17 

basis functions like Chlorine. The basis functions in a split valence double zeta basis set 

are denoted 

 1𝑠, 2𝑠, 2𝑠′, 2𝑝𝑥, 2𝑝𝑥
′ , 2𝑝𝑦, 2𝑝𝑦

′ , 2𝑝𝑧 ,2𝑝𝑧
′ , 3𝑠, 3𝑠′, 3𝑝𝑥, 3𝑝𝑥

′ , 3𝑝𝑦, 3𝑝𝑦
′ , 3𝑝𝑧 ,3𝑝𝑧

′  
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In case of molecules, molecular orbitals can be represented as Linear Combinations of 

Atomic Orbitals (LCAO-MO) given by: 

𝜑𝑖( 𝑟 ) = ∑𝑎𝜐𝑖

𝐿

𝜐=1

 𝛹𝜐( 𝑟 )  (2.49) 

 

where 𝜑𝑖 represents the molecular orbitals (basis functions), 𝛹𝜐 are atomic orbitals, 𝑎𝜐𝑖 

are numerical coefficients and L is the total number of the atomic orbitals.  

 

 

Basis Set Superposition Error Correction (BSSE) and 

Counterpoise Correction (CP) 

In the case of localized basis sets, as it is in SIESTA, there is basis set superposition error 

(BSSE) present and we have to correct for different basis sets of the two configurations. In 

quantum chemistry, calculations using finite basis sets are susceptible to BSSE. As the atoms 

of interacting molecules (or of different parts of the same molecule) approach one another, 

their basis functions overlap. Each monomer "borrows" functions from other nearby 

components, effectively increasing its basis set and improving the calculation of derived 

properties such as energy. If the total energy is minimized as a function of the system 

geometry, the short-range energies from the mixed basis sets must be compared with the long-

range energies from the unmixed sets, and this mismatch introduces an error. Other than using 

infinite basis sets, two methods exist to eliminate the BSSE. 
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In this research work the SIESTA implementation of DFT means that the BSSE occurs 

when using the linear combination of the atomic orbitals formalism which consists of a 

finite basis set centred on the nuclei, when atoms are close enough to each other so that 

their basis functions will overlap. This might cause artificial strengthening of the atomic 

interaction and artificial shortening of the atomic distances and therefore this can affect 

the total energy of the system.  

 

A technique to eliminate the BSSE in molecular complexes composed of two geometric 

configurations so-called the counterpoise correction (CP) scheme, was proposed by 

Boys and Bernardi in 1970 [72,74]. Suppose that two molecular systems labelled as 𝐴 

and 𝐵 are separated by a distance 𝑅. The overall energy of the supersystem ∆𝐸𝑖𝑛𝑡𝑒𝑟
𝐴𝐵  of 

the interaction may be expressed as [75]: 

 

 ∆𝐸𝑖𝑛𝑡𝑒𝑟
𝐴𝐵 (𝑅⃗⃗) = 𝐸𝐴𝐵(𝑅⃗⃗) − 𝐸𝐴 − 𝐸𝐵                    (2.50) 

 

where 𝐸𝐴and 𝐸𝐵 are the energies of the isolated subsystems.  

The form of equation 2.51 shows the counterpoise correction [72]. Figure 2.3 highlights 

the counterpoise correction for a dimer which are 𝐴 and 𝐵. 
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Figure 2.3 Illustrating the Counterpoise method to calculate the binding energy. (a) 

Represents the basis functions for total system where atoms are white colour and the 

basis functions of the atoms are black. (b) and (c) show the basis function for the 

individual monomers whereas (d) and (e) represent the counterpoise correction, every 

single molecule is evaluated with the same basis function as the total system in (a)[73]. 

 

Parts a, b and c in figure 2.3 represent the two isolated molecules with their individual 

and corresponding basis functions while the shaded gray atoms in parts d and e represent 

the ghost states (basis set functions which have no electrons or protons). The BSSE is 

obtained by recalculating using the mixed basis sets realised by introducing the ghost 

orbitals, and then subtracting the error from the uncorrected energy to calculate the 

binding energy 𝐸𝐵𝑖𝑛 given by: 

 

𝐸𝐵𝑖𝑛 = 𝐸𝑎 − (𝐸𝑑 + 𝐸𝑒)            (2.51) 

 

where 𝐸𝑎, 𝐸𝑑 and 𝐸𝑒 are the total energy of (a), (d) and (e) systems in figure 2.3, 

respectively. This is an important concept that has been successfully implemented in 

many systems to give reliable and realistic results [73,76,77]. 

 

 

Structure Optimisation 

In this thesis, the SIESTA code is used to obtain the ground state energy of different 

atomic configurations, and then obtain the relaxed structure of the systems. SIESTA 

can provide the energy as a function of the atomic coordinates (position of atoms). The 

structure optimisation which is also known as geometry optimisation contains three 
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options; relaxing atomic coordinates, allowing periodic cell shapes and volumes to 

change. For full optimisation, the three options can be employed together, which then 

will lead to the minimum energy of the atoms in the system and the equilibrium lattice 

parameters of the systems. Performing the relaxation of the atomic positions allows 

atoms to move until the residual force between all atoms is smaller than the required 

convergence tolerance in eV/Å. In structural optimisation the key quantity is the force 

which could be calculated numerically by taking the approximate numerical derivatives 

of the total energy with respect to the positions. This method is applied in SIESTA using 

the Hellmann-Feynman theorem [78]. Consider a Hamiltonian 𝐻(𝑅⃗⃗) which depends on 

position 𝑅⃗⃗ of an atom and |𝛹(𝑅⃗⃗)⟩ is the wavefunction, then the Schrödinger equation 

can be written as: 

 

                                                 𝐻(𝑅⃗⃗) |𝛹(𝑅⃗⃗)⟩ = 𝐸 |𝛹(𝑅⃗⃗)⟩                       (2.52) 

 

The Hellmann-Feynman theorem relates the derivative of the total energy which can be 

obtained by calculating the expectation value of the derivative of the Hamiltonian 𝐻(𝑅⃗⃗) 

with respect to 𝑅⃗⃗. This can be written as in the following: 

 

𝜕

𝜕𝑅⃗⃗
𝐸 =

𝜕

𝜕𝑅⃗⃗
⟨𝛹(𝑅⃗⃗)| 𝐻(𝑅⃗⃗) |𝛹(𝑅⃗⃗)⟩ = 

 

 

 

⟨
𝜕

𝜕𝑅⃗⃗
 𝛹(𝑅⃗⃗)| 𝐻(𝑅⃗⃗) |𝛹(𝑅⃗⃗)⟩ + ⟨ 𝛹(𝑅⃗⃗)|

𝜕

𝜕𝑅⃗⃗
𝐻(𝑅⃗⃗) |𝛹(𝑅⃗⃗)⟩ + ⟨ 𝛹(𝑅⃗⃗)| 𝐻(𝑅⃗⃗) |

𝜕

𝜕𝑅⃗⃗
𝛹(𝑅⃗⃗)⟩ =  
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𝐸 ⟨
𝜕

𝜕𝑅⃗⃗
 𝛹(𝑅⃗⃗)|𝛹(𝑅⃗⃗)⟩ + ⟨ 𝛹(𝑅⃗⃗)|

𝜕

𝜕𝑅⃗⃗
𝐻(𝑅⃗⃗) |𝛹(𝑅⃗⃗)⟩ + 𝐸 ⟨𝛹(𝑅⃗⃗)|

𝜕

𝜕𝑅⃗⃗
𝛹(𝑅⃗⃗)⟩ =  

 

𝐸 
𝜕

𝜕𝑅⃗⃗
 ⟨𝛹(𝑅⃗⃗)|𝛹(𝑅⃗⃗)⟩  +⏟            

⟨𝛹(𝑅⃗⃗)|𝛹(𝑅⃗⃗)⟩=1,
𝜕

𝜕𝑅⃗⃗
 ⟨𝛹(𝑅⃗⃗)|𝛹(𝑅⃗⃗)⟩=0

⟨ 𝛹(𝑅⃗⃗)|
𝜕

𝜕𝑅⃗⃗
𝐻(𝑅⃗⃗) |𝛹(𝑅⃗⃗)⟩ = ⟨ 𝛹(𝑅⃗⃗)|

𝜕

𝜕𝑅⃗⃗
𝐻(𝑅⃗⃗) |𝛹(𝑅⃗⃗)⟩ 

 

 

∴     
𝜕

𝜕𝑅⃗⃗
𝐸 = ⟨ 𝛹(𝑅⃗⃗)|

𝜕

𝜕𝑅⃗⃗
𝐻(𝑅⃗⃗) |𝛹(𝑅⃗⃗)⟩     (2.53) 

 

Since the acting force (F) is the derivative of the total energy with the respect to 𝑅⃗⃗ it 

can be written as:   

 

𝐹 = −
𝜕

𝜕𝑅⃗⃗
𝐸 = − ⟨ 𝛹(𝑅⃗⃗)|

𝜕

𝜕𝑅⃗⃗
𝐻(𝑅⃗⃗) |𝛹(𝑅⃗⃗)⟩  (2.54) 

 

Although, the wavefunction does depend on the atomic coordinates, due to 

normalisation, the terms containing the wavefunction derivatives with respect to 𝑅⃗⃗ 

vanish, yielding the Hellmann-Feynman theorem.  

   

 

 

 

 

 



56 
 

Chapter 3 

Green’s Function and Single Electron Transport 

 

3.1. Introduction 

In this chapter a theory of single particle transport is discussed, which forms the main 

numerical tool for studying transport through  buckyballs. The aim is to understand, the 

electrical and thermoelectrical properties of molecular junctions where a molecule (or 

sufficiently small structure) is bound to bulk electrodes. The coupling strength between 

the leads and the molecule is usually small compared to the intra-electrode or intra-

molecule bond strengths. The electronic properties are no longer well described by the 

band structure since this system is not periodic. Hence a general approach is needed to 

understand the scattering process in the electrode junction and the molecular bridge. 

This can be achieved through the Green's function formalism described below.  

 

First this chapter describes a brief overview of the Landauer formula. Following this, 

the simplest formula of a retarded Green's function for a one-dimensional tight binding 

chain is discussed. Afterwards the periodicity of this lattice at a single connection is 

broken to show that the Green's function is related directly to the transmission 

coefficient across the scattering region. Negligible interaction between carriers and the 

absence of inelastic processes are assumed in the method presented in this chapter.  
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3.2. The Landauer Formula 

The standard way to describe elastic transport phenomena in mesoscopic systems is the 

Landauer formula and is applicable for phase coherent systems, where to describe the 

electronic flow a single wavefunction is sufficient [79,80]. It relates the conductance of 

a mesoscopic sample to the transmission properties of electrons passing through it. The 

method used to calculate the transmission properties will be discussed later in this 

Chapter. 

 

 

Figure 3.1: A 1-dimensional mesoscopic scatterer connected to contacts by ballistic 

leads. The chemical potentials in the left and right contacts are 𝜇𝐿 and 𝜇𝑅 respectively. 

If an incident wave packet hits the scatterer from the left, it will be transmitted to the 

right with probability 𝑇 = |𝑡⃗|
2
= 𝑡⃗𝑡⃗

∗
 and reflected with probability 𝑅 = |𝑟⃗⃖|2 = 𝑟⃗⃖𝑟⃗⃖

∗
. 

Since incident electrons must be either reflected or transmitted, probability 

conservation implies 𝑅 + 𝑇 = 1. 

 

In figure 3.1 a 1-dimensional mesoscopic scatterer is connected to the two contacts, 

which behave as electron reservoirs, by means of two ideal ballistic leads. All inelastic 

relaxation processes are limited to the reservoirs [81]. The chemical potentials in the 

reservoir are 𝜇𝐿 > 𝜇𝑅 ⟹ 𝜇𝐿 − 𝜇𝑅 = 𝛿𝐸 = 𝑒𝛿𝑉 > 0, which are slightly different and 
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will drive electrons from the left reservoir to the right one. Initially, the solution for one 

open channel will be discussed (i.e. where only one electron is allowed to travel in a 

given direction). 

The first step is to analyse the incident electric current (𝛿𝐼𝑖𝑛) generated by the 

chemical potential difference to calculate the current in such a system: 

 

𝛿𝐼𝑖𝑛 = 𝑒𝑣𝑔
𝜕𝑛

𝜕𝐸
𝛿𝐸 = 𝑒𝑣𝑔

𝜕𝑛

𝜕𝐸
 (𝜇𝐿 − 𝜇𝑅)       (3.1) 

 

here 𝑒 is the electronic charge 

𝑣𝑔 is the group velocity  

𝜕𝑛/𝜕𝐸 is the density of states (𝐷𝑂𝑆) per unit length in the lead in the energy window 

defined by the chemical potentials of the contacts: 

 

𝐷𝑂𝑆 =
𝜕𝑛

𝜕𝐸
= 2(

𝜕𝑛

𝜕𝑘
 
𝜕𝑘

𝜕𝐸
)       (3.2) 

 

where the factor of 2 accounts for spin. 

In one dimension,𝜕𝑛 𝜕𝑘⁄ = 1 2𝜋⁄  and 𝜕𝑘 𝜕𝐸⁄ = 1/ℏ𝑣𝑔  which will simplify equation 

(3.1) to: 

𝛿𝐼𝑖𝑛 =
2𝑒

ℎ
(𝜇𝐿 − 𝜇𝑅) =

2𝑒2

ℎ
𝛿𝑉       (3.3) 

 

𝛿𝑉 is the voltage associated with the chemical potential mismatch. It is clear from 

equation (3.3) that in the absence of a scattering region, the conductance of a quantum 

wire with one open channel is  2𝑒
2

ℎ⁄  which is approximately 77.5 𝜇𝑆 (or alternatively 
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a resistance of 12.9𝑘Ω). Typically it appears on the circuit boards of everyday electrical 

appliances and therefore it can be said that it is reasonable quantity; 

 

Now the current collected in the right contacts (𝛿𝐼𝑜𝑢𝑡) will be, if a scattering region is 

considered: 

 

𝛿𝐼𝑜𝑢𝑡 = 𝛿𝐼𝑖𝑛 𝑇 =
2𝑒2

ℎ
 𝑇 𝛿𝑉 ⟹

𝛿𝐼𝑜𝑢𝑡

𝛿𝑉
=
2𝑒2

ℎ
 𝑇 = 𝒢       (3.4) 

 

This is the well-known Landauer formula that relates the conductance (𝒢) of a 

mesoscopic scatterer to the transmission probability (𝑇) of the electrons traveling 

through it. The linear response conductance is described by this, hence it only holds for 

small bias voltages, 𝛿𝑉 ≈ 0 and voltage different between electrode.  

 

Büttiker has generalized the above formula to the case of more than one open channel 

[80]. The transmission coefficient has been replaced by the sum of all the transmission 

amplitudes in this case which is describing electrons incoming from the left contact and 

arriving to the right contact. The Landauer formula that is equation (3.3) for the open 

channels hence becomes: 

 

𝛿𝐼𝑜𝑢𝑡

𝛿𝑉
= 𝒢 =

2𝑒2

ℎ
∑|𝑡𝑖𝑗|

2
=
2𝑒2

ℎ
𝑇𝑟𝑎𝑐𝑒 (𝑡𝑡ϯ)

𝑖𝑗

         (3.5) 

In equation (3.5) 𝑡⃗𝑖𝑗 is the transmission amplitude describing scattering from the 𝑗𝑡ℎ 

channel of the left lead to the 𝑖𝑡ℎ channel of the right lead. The reflection amplitudes 
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𝑟⃗⃖𝑖𝑗 can also be introduced with the definition of the transmission amplitudes which 

describe scattering processes where the particle is scattered from the 𝑗𝑡ℎ channel of the 

left lead to the 𝑖𝑡ℎ channel of the same lead. An 𝑆 matrix can be defined combining 

reflection and transmission amplitudes connecting states coming from the left lead to 

the right lead and vice versa: 

 

    𝑆 = (𝑟⃖ 𝑡
𝑡 𝑟

)                        (3.6) 

 

here 𝑟⃖ and 𝑡 describe electrons coming from the left, while 𝑟  and 𝑡  describe electrons 

coming from the right. Also 𝑟⃖, 𝑡, 𝑟 and 𝑡 are matrices for more than one channel, and 

could be complex (in the presence of a magnetic field for example) as suggested by 

equation (3.5). The 𝑆 matrix must be unitary; 𝑆𝑆ϯ = 𝐼 as required by charge 

conservation which a central object of scattering theory. In the linear response regime 

it is useful in describing transport. It is also useful in other problems, such as adiabatic 

pumping [82]. 

 

It is well known since the early 19th century that there is a strong connection between 

heat, current, temperature and voltage with the discovery of the Seebeck, Peltier and 

Thompson effects. Due to a temperature difference the electric current is produced 

described by Seebeck effect. Peltier and Thompson effects describe the heating or 

cooling of a current carrying conductor [83]. Due to a temperature ∆𝒯 and potential 

drop ∆𝑉 across the system, both charge and heat currents could be caused to flow.  
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For both the charge (I) and heat (𝒬) currents in the linear bias and temperature regime 

the generalised Landauer-Büttiker formulae is shown which is used to find an 

expressions of the thermoelectric coefficients of a two terminal device. A system 

consisting of a scattering region connected to two leads which are in turn connected to 

two electron reservoirs. According to a chemical potential 𝜇𝐿 and 𝜇𝑅, temperature 𝒯𝐿 

and 𝒯𝑅, and Fermi distribution function define each reservoir [83]: 

𝑓𝑖(𝐿, 𝑅) (𝐸) = (1 + 𝑒
𝐸−𝜇𝑖
𝑘BT 𝒯𝑖)−1 

        (3.7) 

 

It is reasonable to assume that the reservoirs are connected to the leads in a way such 

that there is no scattering at their interface, so all scattering effects are caused by the 

central scattering region. The right moving charge current of a single k-state emanating 

from the left reservoir can be written in terms of the number of electrons per unit length 

n, Fermi distribution 𝑓𝐿, group velocity 𝜈𝑔 and transmission coefficient T of the 

scattering region. (Here T represents the transmission probability, and  𝒯 is the 

temperature). 

                                   𝐼𝑘
+ = 𝑛𝑒𝜈𝑔(𝐸(𝑘)) 𝑇(𝐸(𝑘))  𝑓𝐿(𝐸(𝑘))                               (3.8)                  

    

By summing over all positive k states and converting to the integral form the total charge 

current from the right moving states can be found,  where n = 1/L for the density of 

electrons and 𝜈𝑔 =
1

ℏ
 
𝜕𝐸(𝑘)

𝜕𝑘
. 

 

𝐼𝑘
+ =∑𝑒 

1

𝐿
 
1

ℏ
 
𝜕𝐸(𝑘)

𝜕𝑘
 𝑇(𝐸(𝑘)) 𝑓𝐿(𝐸(𝑘)) =

𝑘

 ∫
2𝑒

ℎ
 𝑇(𝐸)

+∞

−∞

𝑓𝐿(𝐸) 𝑑𝐸         (3.9) 
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For the left moving states: 

 

𝐼𝑘
− = ∫

2𝑒

ℎ
 𝑇(𝐸)

+∞

−∞

𝑓𝑅(𝐸) 𝑑𝐸 

 

      (3.10) 

The total current moving to the right is hence: 

 

𝐼 = 𝐼+ − 𝐼− = 
2𝑒

ℎ
∫  𝑇(𝐸)
+∞

−∞

(𝑓𝐿(𝐸) − 𝑓𝑅(𝐸)) 𝑑𝐸 

 

      (3.11) 

The famous Landauer- Büttiker formula is given in equation (3.11).  

 

For the heat / energy current, a similar derivation can be carried out of the same system 

by starting with the relation 𝒬 = 𝐸𝑛𝜈𝑔 rather than 𝐼 = 𝑛𝑒𝜈𝑔. The result contains two 

extra energy terms, however. 

 

𝒬 = 𝒬+ − 𝒬− = 
2

ℎ
∫  𝑇(𝐸)
+∞

−∞
((𝐸 − 𝜇𝐿)𝑓𝐿(𝐸) − (𝐸 − 𝜇𝑅)𝑓𝑅(𝐸)) 𝑑𝐸 (3.12) 

where:   

𝑓𝐿(𝐸) = [1 + 𝑒

𝐸−𝜇−
∆𝜇
2

𝑘𝑏(𝒯+
∆𝒯
2
)]

−1

,     𝑓𝑅(𝐸) = [1 + 𝑒

𝐸−𝜇+
∆𝜇
2

𝑘𝑏(𝒯−
∆𝒯
2
)]

−1

   (3.13) 

    

and    𝜇𝐿 =  𝜇 +
∆𝜇

2
, 𝜇𝑅 =  𝜇 −

∆𝜇

2
   (3.14) 
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3.3. One-Dimension 

It is useful to calculate the scattering matrix for a simple one-dimensional structure 

before presenting the generalized methodology to give a clear outline of the 

methodology used in this thesis. In the derivation Green's functions is used, so for a 

simple one dimensional discretised lattice, the form of Green’s function is discussed 

first (section perfect 1D lattice). Afterwards the calculations for the scattering matrix of 

a one-dimensional scatterer will be discussed (section 1D scattering). 

 

Perfect One-Dimensional Lattice 

The form of the Green’s function for a simple infinite one-dimensional chain with on-

site energies (𝜀𝑜) is discussed in this section, along with hopping parameters (−𝛾) as 

shown in Figure 3.2. 

 

 
 

Figure 3.2: Tight-binding approximation of a one-dimensional periodic lattice with on-

site energies 𝜀𝑜 and couplings−𝛾. 

 

The Hamiltonian is constructed with the on-site energies (𝜀𝑜) along the diagonal and is 

of infinite extent, and the hopping elements (−𝛾 ) along the first off-diagonal. The 

Hamiltonian in matrix form is given as:  
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𝐻 =

(

 
 
 
 
 

•
•
0
0
0
0
0
0

     

•
•
•
0
0
0
0
0

  

0
•
𝜀𝑜
−𝛾∗

0
0
0
0

  

0
0
−𝛾
𝜀𝑜
−𝛾∗

0
0
0

  

0
0
0
−𝛾
𝜀𝑜
−𝛾∗

0
0

  

0
0
0
0
−𝛾
𝜀𝑜
•
0

  

0
0
0
0
0
•
•
•

    

0
0
0
0
0
0
•
•

  

)

 
 
 
 
 

                                      (3.15) 

 

Within the tight-binding approximation and substituting equation (3.15) and the 

wavefunction into the Schrödinger equation (𝐸 − 𝐻)𝛹(𝑧) = 0: 

 

 

(

 
 
 
 
 

•
•
•
•
•
•
•
•

        

•
•
−𝛾∗

0
0
0
•
•

  

•
•

(𝐸 − 𝜀𝑜)
−𝛾∗

0
0
•
•

  

•
•
−𝛾

(𝐸 − 𝜀𝑜)
−𝛾∗

0
•
•

  

•
•
0
−𝛾

(𝐸 − 𝜀𝑜)
−𝛾∗

•
•

  

•
•
0
0
−𝛾

(𝐸 − 𝜀𝑜)
•
•

  

•
•
0
0
0
−𝛾
•
•

        

•
•
•
•
•
•
•
•

  

)

 
 
 
 
 

(

 
 
 
 
 

 

•
•

𝛹(𝑧−1)
𝛹(𝑧)
𝛹(𝑧+1)
𝛹(𝑧+2)
•
•

 

)

 
 
 
 
 

=

(

 
 
 
 
 

•
•
0
0
0
0
•
•

 

)

 
 
 
 
 

                (3.16) 

 

For row ′𝑧′ of the hamiltonian (𝐻) the Schrödinger equation can be written as: 

  

    −𝛾∗Ψ(𝑧−1) + (𝐸 − 𝜀𝑜)Ψ(𝑧) − 𝛾Ψ(𝑧+1) = 0                                  (3.17) 

 

For any function Ψ(𝑧) to be a wave function it must satisfy the Schrödinger equation 

given above in (3.17). The wavefunction for this perfect lattice takes the form of a 

propagating Bloch state (equation (3.18)), normalised by its group velocity (𝑣𝑔) in order 

for it to carry unit current flux. After substituting into equation (3.17) (assuming that 

𝛾 = 𝛾∗, if 𝛾 is real), it leads to one-dimensional energy dispersion relation  given in 

equation (3.19)): 
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       Ψ(𝑧) =
1

√𝑣𝑔
𝑒𝑖𝑘𝑧                             (3.18) 

       𝐸 = 𝜀𝑜 − 2𝛾 cos 𝑘                 (3.19) 

 

The quantum number (𝑘) is introduced which is commonly referred to as the 

wavenumber. The retarded Green’s function ℊ(𝑧, 𝑧′) is the solution to an equation very 

similar to that of the Schrödinger equation and is closely related to the wave-function: 

 

(𝐸 − 𝐻) ℊ(𝑧, 𝑧′) = 𝛿(𝑧,𝑧′)   ⇒ 

−𝛾∗ℊ(𝑧 − 1, 𝑧′) + (𝐸 − 𝜀𝑜) ℊ(𝑧, 𝑧
′) − 𝛾 ℊ(𝑧 + 1, 𝑧′) = 𝛿(𝑧,𝑧′)            (3.20) 

 

Here  

𝛿(𝑧,𝑧′) = 1,         𝑖𝑓 𝑧 = 𝑧
′  

𝛿(𝑧,𝑧′) = 0,         𝑖𝑓 𝑧 ≠ 𝑧
′ 

 

The response of a system at a point 𝑧 due to an excitation at a point 𝑧′ describes the 

retarded Green’s function, ℊ(𝑧, 𝑧′). Such an excitation is expected to give rise to two 

waves, traveling outwards from the point of excitation, with amplitudes ℬ and 𝒟 as 

shown in figure 3.3. 
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Figure 3.3: The structure of Retarded Green's Function of an infinite one-dimensional 

lattice. The excitation at 𝑧 = 𝑧′causes wave to propagate left and right (the blue modes 

are the open channels) with amplitudes ℬ  and 𝒟  respectively, while the red represent 

the decaying modes.  

 

These waves can be expressed as: 

 

ℊ(𝑧, 𝑧′) = {
𝒟 𝑒𝑖𝑘𝑧 ,            𝑧 > 𝑧′

ℬ 𝑒−𝑖𝑘𝑧,          𝑧 < 𝑧′
                                   (3.21) 

 

This solution satisfies equation (3.20) at every point, except at 𝑧 = 𝑧′. The Green's 

function must be continuous (equation (3.22)) to overcome this, so the two equations 

are equated at 𝑧 = 𝑧′  

 

            [ℊ(𝑧, 𝑧′)]𝐿𝑒𝑓𝑡 = [ℊ(𝑧, 𝑧
′)]𝑅𝑖𝑔ℎ𝑡                             (3.22) 

      ℬ𝑒−𝑖𝑘𝑧
′
= 𝒟𝑒𝑖𝑘𝑧

′
                              (3.23) 

      ℬ = 𝒟𝑒2𝑖𝑘𝑧
′
                                               (3.24) 

Substituting equation (3.11) into (3.21) gives: 
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 ℊ(𝑧, 𝑧′) = {
𝒟 𝑒𝑖𝑘𝑧                                              ,        𝑧 ≥ 𝑧′

𝒟𝑒2𝑖𝑘𝑧
′
𝑒−𝑖𝑘𝑧 = 𝒟𝑒𝑖𝑘𝑧

′
𝑒𝑖𝑘(𝑧

′−𝑧),        𝑧 ≤ 𝑧′
                      (3.25) 

 

A re-writing of the equation (3.25) of these reveals a useful symmetry: 

 

ℊ(𝑧, 𝑧′) = {
𝒟𝑒𝑖𝑘𝑧

′
𝑒𝑖𝑘(𝑧−𝑧

′),                𝑧 ≥ 𝑧′

𝒟𝑒𝑖𝑘𝑧
′
𝑒𝑖𝑘(𝑧

′−𝑧),        𝑧 ≤ 𝑧′
     (3.26) 

 

It is simply clear that the power of complex exponent is always positive, therefore the 

latter equation can be written such as: 

 

  ℊ(𝑧, 𝑧′) = 𝒟𝑒𝑖𝑘𝑧
′
𝑒𝑖𝑘|𝑧

′−𝑧|,           ∀𝑧                                     (3.27) 

 

The Green’s equation (3.20) should be considered to define the constant 𝒟. 𝐻 can be 

written as −
ℏ2

2𝑚
∇2, or −

ℏ𝑣𝑔

2𝑘
∇2 (where 𝑣𝑔 = 

ℏ𝑘

𝑚
 is the group velocity), and substitute in 

the Green’s function (3.26), hence: 

 

(𝐸 +
ℏ𝑣𝑔

2𝑘

𝜕2

𝜕𝑧2
) (𝒟𝑒𝑖𝑘𝑧

′
𝑒𝑖𝑘|𝑧

′−𝑧|) = 𝛿(𝑧,𝑧′)                      (3.28) 

 

If the function is integrated over a small distance, centred on 𝑧′, of width 2𝜔+, then:

  

∫ (𝐸 +
ℏ𝑣𝑔

2𝑘

𝜕2

𝜕𝑧2
) (𝒟𝑒𝑖𝑘𝑧

′
𝑒𝑖𝑘|𝑧

′−𝑧|)
𝑧′+𝜔+

𝑧′−𝜔+
𝑑𝑧 = 1       (3.29) 
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𝒟𝑒𝑖𝑘𝑧
′

(

 
 
𝐸∫ 𝑒𝑖𝑘|𝑧

′−𝑧| 𝑑𝑧
𝑧′+𝜔+

𝑧′−𝜔+

⏞            
=𝒁𝒆𝒓𝒐

+∫
ℏ𝑣𝑔
2𝑘

𝜕
2

𝜕𝑧2
𝑒

𝑖𝑘|𝑧′−𝑧|

 𝑑𝑧
𝑧′+𝜔+

𝑧′−𝜔+

)

 
 
= 1       (3.30) 

    

𝒟𝑒𝑖𝑘𝑧
′
(
ℏ𝑣𝑔
2𝑘

𝜕

𝜕𝑧
𝑒

𝑖𝑘|𝑧′−𝑧|

)

𝑧′−𝜔+

𝑧′+𝜔+

= 𝒟𝑒𝑖𝑘𝑧
′
(
ℏ𝑣𝑔
2𝑘

𝑖𝑘𝑒

𝑖𝑘|𝑧′−𝑧|

)

𝑧′−𝜔+

𝑧′+𝜔+

= 1       (3.31) 

    

𝒟𝑒𝑖𝑘𝑧
′ ℏ𝑣𝑔
2𝑘

2𝑖𝑘 = 1⟹ 𝒟𝑒𝑖𝑘𝑧
′
=

1

𝑖ℏ𝑣𝑔
       (3.32) 

             

 

 

 

hence the retarded Green's function: 

ℊ𝑅(𝑧, 𝑧′) =
1

𝑖ℏ𝑣𝑔
𝑒𝑖𝑘|𝑧−𝑧

′|       (3.33) 

 

From differentiating the dispersion relation the group velocity was founded which can 

be given as: 

 

𝑣𝑔 =
1

ℏ

𝜕𝐸(𝑘)

𝜕𝑘
=
2𝛾𝑠𝑖𝑛𝑘

ℏ
     (3.34) 
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However an alternate solution can be found to this problem [81,84,85]. Above, the 

retarded Green's function, ℊ𝑅(𝑧, 𝑧′) has been shown. The advanced (or source) Green's 

function, ℊ𝐴(𝑧, 𝑧′), is an equally valid solution: 

 

ℊ𝐴(𝑧, 𝑧′) =
−1

𝑖ℏ𝑣𝑔
𝑒−𝑖𝑘|𝑧−𝑧

′| =
𝑖

ℏ𝑣𝑔
𝑒−𝑖𝑘|𝑧−𝑧

′| 
         

(3.35) 

 

The retarded Green's function describes outgoing waves from the excitation point (𝑧 =

𝑧′), however the advanced Green's function describes two incoming waves that 

disappear at the excitation point. The retarded Green's function is used in this work and 

for the sake of simplicity, the 𝑅 is dropped from its representation. So ℊ(𝑧, 𝑧′) 

=ℊ𝑅(𝑧, 𝑧′).  

 

 

 

One-Dimensional Scattering 

Consider the case where two pieces of one dimensional tight binding semi-infinite leads 

are connected by a coupling element (−𝛼). As shown in figure 3.4 both leads have equal 

on-site potentials (𝜀𝑜) and hopping elements (−𝛾). This system is deceptive because, 

though it looks simple, all one-dimensional setups can be reduced back to this topology. 

Therefore the analytical solutions for the transmission and reflection coefficients would 

be very valuable.  
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Figure 3.4: Simple tight-binding model of a one dimensional scatterer attached to one 

dimensional leads. 

 

 

The Hamiltonian for this structure takes the form of an infinite matrix. 

 

𝐻 =

(

 
 
 
 
 

•

•

0

0

0

0

0

0

     

•

•

−𝛾∗

0

0

0

0

0

  

0

−𝛾

𝜀𝑜
−𝛾∗

0

0

0

0

  

0

0

−𝛾

𝜀𝑜
−𝜶∗

0

0

0

  

0

0

0

−𝜶

𝜀𝑜
−𝛾∗

0

0

  

0

0

0

0

−𝛾

𝜀𝑜
−𝛾∗

0

  

0

0

0

0

0

−𝛾

•

•

    

0

0

0

0

0

0

•

•

  

)

 
 
 
 
 

= (
𝐻𝐿

𝑉𝑐
†

𝑉𝑐
𝐻𝑅
) 

         

(3.36) 

 

𝐻𝐿 and 𝐻𝑅 denote Hamiltonians for the leads which are the semi-infinite equivalent of 

the Hamiltonian shown in equation (3.7) and 𝑉𝑐 denotes the coupling parameter. For 

real 𝛾, the dispersion relation corresponding to the leads introduced above was given in 

equation (3.19) and the group velocity was given in equation (3.32): 

 

𝐸(𝑘) = 𝜀𝑜 − 2𝛾 cos 𝑘                                   (3.37) 

and 

𝑣𝑔 =
1

ℏ

𝜕𝐸

𝜕𝑘
 

         

(3.38) 

 



71 
 

The Green's function of the system needs to be defined in order to obtain the 

scattering amplitudes and can be written as: 

 

(𝐸 − 𝐻)𝐺 = 𝐼 ⟹  𝐺 = (𝐸 − 𝐻)−1                       (3.39) 

 

Equation (3.39) is singular if the energy 𝐸 is equal to an eigenvalue of the Hamiltonian 

𝐻. To circumvent this problem, it is practical to consider the limit: 

𝐺∓ = lim
𝜂⟶0

(𝐸 − 𝐻 ∓ 𝑖𝜂)−1          

(3.40) 

 

here 𝜂 is a positive number and 𝐺− (𝐺+) is the retarded (advanced) Green's function. 

Only the retarded Green's functions is used in this thesis and hence choose the positive 

sign. The retarded Green's function for an infinite, one dimensional chain with the same 

parameters is defined in equation (3.37): 

 

ℊ𝑚𝑙 =
1

𝑖ℏ𝑣𝑔
𝑒𝑖𝑘|𝑚−𝑙|       (3.41) 

the labels of the sites in the chain are 𝑚, 𝑙. The appropriate boundary conditions need 

to be defined in order to obtain the Green's function of a semi-infinite lead. The chain 

must terminate at a given point (𝑖𝑜) in this case, the lattice is semi-infinite, so that all 

points for which 𝑖 ≤ 𝑖𝑜 are missing. To mathematically represent this condition it can 

be achieved by adding a wavefunction to the Green's function. The wave-function is: 
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 Ψ𝑚𝑙
𝑖𝑜 = −

𝑒𝑖𝑘(2𝑖𝑜−𝑚−𝑙)

𝑖ℏ𝑣𝑔
            (3.42) 

 

At the boundary (𝑚 = 𝑙 = 𝑖𝑜 − 1) the Green's function is the sum of equations (3.41) 

and (3.42) ( ℊ𝑚𝑙 = ℊ𝑚𝑙
∞ +Ψ𝑚𝑙

𝑖𝑜 ) will have the following simple form: 

 

ℊ𝑖𝑜−1,𝑖𝑜−1 = −
𝑒𝑖𝑘

𝛾
       (3.43) 

 

In case of decoupled leads (𝛼 = 0) the total Green's function of the system will simply 

be given by the decoupled Green's function: 

 

ℊ =

(

 
 
−
𝑒𝑖𝑘

𝛾
0

0 −
𝑒𝑖𝑘

𝛾 )

 
 
= (

ℊ𝐿 0
0 ℊ𝑅

)       (3.44) 

 

If the interaction is switched on, then in order to obtain the Green's function of the 

coupled system (𝐺). Now Dyson's equation is used: 

 

𝐺 = (ℊ−1 − 𝑉)−1                             (3.45) 

 

the operator 𝑉 describing the interaction connecting the two leads will have the form: 

 

𝑉 = (
0 𝑉𝑐

𝑉𝑐
† 0

) = (
0 𝛼
𝛼∗ 0

)       (3.46) 
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The solution to Dyson's equation, equation (3.45) reads: 

 

𝐺 =
1

𝛾2𝑒−2𝑖𝑘 − 𝛼2
(
−𝛾𝑒−𝑖𝑘 𝛼

𝛼∗ −𝛾𝑒−𝑖𝑘
)       (3.47) 

 

In this case the remaining step is to calculate the transmission (𝑡) and reflection (𝑟⃖) 

amplitudes from the Green's function equation given in equation (3.47). The Fisher-Lee 

relation can be used for this purpose which relates the scattering amplitudes of a 

scattering problem to the Green's function of the problem and it reads [81,86]: 

 

𝑟⃖ = 𝐺1,1𝑣𝑔 − 1                                   (3.48) 

and 

𝑡 = 𝐺1,2𝑣𝑔𝑒
𝑖𝑘                                         (3.49) 

 

These amplitudes correspond to particles incident from the left. If those particles are 

considered coming from the right then similar expressions could be recovered for the 

transmission (𝑡) and reflection (𝑟) amplitudes. 

 

After having the full scattering matrix the Landauer formula equation (3.4) can be used 

to calculate the zero bias conductance. The procedure (by which this analytical solution 

for the conductance of a one-dimensional scatterer) was found can be generalized for 

more complex geometries. So to briefly summarize the steps: 
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1. In the first step the Green's function was calculated describing the surface sites 

of the leads.  

2. From Dyson's equation the total Green's function in the presence of a scatterer 

is obtained.  

3. The Fisher-Lee relation gives the scattering matrix from the Green's function. 

4. The zero-bias conductance can be found using the Landauer formula. 

 

It must be noted that the setup considered in this section looks simple but it is quite 

general as well. By using a technique called decimation all types of scattering regions 

can be reduced back to the case of two one dimensional leads. 

 

3.4. Generalization of the Scattering Formalism 

A more generalized approach to transport calculations following the derivation of 

Lambert et al are discussed in this section [87-89]. In the first step the surface Green's 

function of crystalline leads is computed, then to reduce the dimensionality of the 

scattering region the technique of decimation is introduced and finally by means of a 

generalization of the Fisher-Lee relation the scattering amplitudes are recovered. 

 

Hamiltonian and Green's Function of the Leads 

Firstly the term lead needs to be defined and it can be defined as, in general, it is a 

perfect crystalline object that acts as a perfect wave-guide for carrying excitations from 

reservoirs to the scattering region. A general semi-infinite crystalline electrode of 

arbitrary complexity is discussed in this section. The structure of the Hamiltonian is a 
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generalization of the one-dimensional electrode Hamiltonian in equation (3.15) because 

of the fact that the leads are crystalline. Figure 3.5 shows the general system. 

 

 
 

Figure 3.5: Schematic representation of a semi-infinite generalized lead. States 

described by the Hamiltonian 𝐻𝑜 are connected via a generalized hopping matrix 𝐻1. 

The direction z is defined to be parallel to the axis of the chain. One can assign for each 

slice a label z. 

 

 

A Hamiltonian for each repeating layer of the bulk electrode (𝐻𝑜), and a coupling matrix 

are used to describe the hopping parameters between these layers (𝐻1) instead of site 

energies. 

 

For such a system the Hamiltonian has the form: 

 

𝐻 =

(

 
 
 
 
 

•
•
0
0
0
0
0
0

     

•
•

𝐻1
†

0
0
0
0
0

  

0
𝐻1
𝐻𝑜

𝐻1
†

0
0
0
0

  

0
0
𝐻1
𝐻𝑜

𝐻1
†

0
0
0

  

0
0
0
𝐻1
𝐻𝑜

𝐻1
†

0
0

  

0
0
0
0
𝐻1
𝐻𝑜

𝐻1
†

0

  

0
0
0
0
0
𝐻1
•
•

    

0
0
0
0
0
0
•
•

  

)

 
 
 
 
 

       (3.50) 
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where 𝐻𝑜 and 𝐻1 are in general complex matrices and the only restriction is that the full 

Hamiltonian (𝐻) should be Hermitian. The first goal is to calculate the Green's function 

of such a lead for general 𝐻1 and 𝐻𝑜 in this section. To calculate the Green's function it 

is necessary to calculate the spectrum of the Hamiltonian by solving the Schrödinger 

equation of the lead: 

 

𝐻1
†Ψ(𝑧−1) + 𝐻𝑜Ψ(𝑧) + 𝐻1Ψ(𝑧+1) = 𝐸Ψ(𝑧)                (3.51) 

 

the wave-function Ψ(𝑧) describes the layer 𝑧. The system is infinitely periodic in the 𝑧 

direction only, so the on-site wavefunction Ψ(𝑧), can be represented in Bloch form; 

consisting of a product of a propagating plane wave and a wavefunction (Φ(𝑘)), which 

is perpendicular to the transport direction (𝑧). If the layer Hamiltonian (𝐻𝑜), has 

dimensions 𝑀 ×𝑀 (or in other words consists of 𝑀 site energies and their respective 

hopping elements), then the perpendicular wavefunction (Φ(𝑘)), will have 𝑀 degrees of 

freedom and take the form of a 1 × 𝑀 dimensional vector. So the wavefunction Ψ(𝑧), 

takes the form: 

 

Ψ(𝑧) = √𝑛(𝑘)𝑒
𝑖𝑘𝑧Φ(𝑘)                             (3.52) 

 

In equation 3.52 𝑛𝑘 is an arbitrary normalization parameter. If equation 3.52 is 

substituted into the Schrödinger equation given in (3.51), it will yield: 

 

  (𝐻𝑜 + 𝑒
𝑖𝑘𝐻1 + 𝑒

−𝑖𝑘𝐻1
† − 𝐸)Φ(𝑘) = 0                            (3.53) 
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The eigenvalues [𝐸 = 𝐸𝑙(𝑘)], where 𝑙 = 1,…… ,𝑀 needs to be calculated after 

selecting values of k to find the band structure for such a problem. In this case, 𝑙 denotes 

the band index. There will be 𝑀 solutions to the eigenvalue problem for each value of 

𝑘, and so 𝑀 energy values. Therefore it is relatively simple to build up a band structure 

by selecting multiple values for 𝑘.  

 

The problem is approached from the opposite direction is a scattering problem; instead 

of finding the values of 𝐸 at a given 𝑘, the values of 𝑘 is found at a given 𝐸. The wave 

vectors are obtainedby introducing the function and the energy is the input: 

 

  𝜃(𝑘) = 𝑒
−𝑖𝑘𝑧Φ(𝑘) → Φ(𝑘) = 𝑒

𝑖𝑘𝑧𝜃(𝑘)                                  (3.54) 

 

and when it is combined with (3.53): 

 

(
−𝐻1

−1(𝐻𝑜 − 𝐸)

𝐼

   
−𝐻1

−1𝐻1
†

0

)(
Φ(𝑘)

𝜃(𝑘)
) = 𝑒𝑖𝑘 (

Φ(𝑘)

𝜃(𝑘)
)       (3.55) 

 

The equation (2.55) will yield 2𝑀 eigenvalues (𝑒𝑖𝑘𝑙) and eigenvectors (Φ(𝑘𝑙)), of size 

𝑀 for a layer Hamiltonian (𝐻𝑜) of size 𝑀 ×𝑀. According to their propagating or 

decaying nature and whether they are left going 𝑧 ⟶ −∞ or right going 𝑧 ⟶ ∞ these 

states can be sorted into four categories. If it has a real value of 𝑘𝑙, and is decaying a 

state is propagating if it has an imaginary value of 𝑘𝑙. If the imaginary part of the wave 
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number is positive then it is a left decaying state, if it has a negative imaginary part it is 

a right decaying state. According to the group velocity of the state the propagating states 

are sorted as defined in (4.56): 

 

𝑣𝑔
𝑘𝑙 =

1

ℏ

𝜕𝐸𝑘,𝑙
𝜕𝑘

       (3.56) 

 

It is a right propagating state if the state has positive group velocity (𝑣𝑔
𝑘𝑙), otherwise it 

is a left propagating state. They have been summarised in table 3.1: 

  

Table 3.1: Sorting the eigenstates into left and right propagating or decaying states 

according to the wave number and group velocity. 

 

 

 

 

 

From onwards the wave numbers (𝑘𝑙) which belong to the left propagating/decaying 

set of wave numbers will be denoted by 𝑘̅𝑙 for convenience, and the right 

propagating/decaying wave numbers will remain plainly 𝑘𝑙. Therefore, Φ(𝑘𝑙) is a wave-

function which is associated to a “right" state and  Φ(𝑘̅𝑙) is associated to a “left" state. 

Hence there must be exactly the same number (𝑀) of left and right going states if 𝐻1 is 

invertible. For singular 𝐻1, the matrix in (3.55) cannot be constructed, since it relies of 

the inversion of 𝐻1. To overcome this problem, however any one of several methods 

can be used. In the first method the decimation technique is used to create an effective, 

non-singular 𝐻1 [10]. In another technique a singular 𝐻1 is populated with small random 

numbers, hence introducing an explicit numerical error. This technique is quite 
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reasonable as the introduced numerical error can be as small as the numerical error 

introduced by decimation. Another solution is to rewrite equation (3.55) such that there 

is no need to invert 𝐻1: 

 

(
−(𝐻𝑜 − 𝐸)

𝐼

   
−𝐻1

†

0

)(
Φ(𝑘)

𝜃(𝑘)
) = 𝑒𝑖𝑘 (

𝐻1

0

   
0

𝐼
) (
Φ(𝑘)

𝜃(𝑘)
)       (3.57) 

 

However, solving this generalized eigen-problem is more computationally expensive. 

Any of the aforementioned methods work reasonably in tackling the problem of a 

singular 𝐻1 matrix, and so can the condition that there must be exactly the same number 

(𝑀) of left and right going states, whether 𝐻1 is singular or not. 

 

At a given wave number (𝑘) the solutions to the eigen-problem equation (3.53) will 

form an orthogonal basis set. The eigenstates (Φ(𝑘𝑙)) obtained by solving the eigen-

problem equation (3.55) at a given energy (𝐸), however will not generally form an 

orthogonal set of states. This is crucial, because when constructing the Green's function 

the non-orthogonality is to be dealt with. It is, therefore, necessary to introduce the duals 

to Φ(𝑘𝑙) and Φ(𝑘̅𝑙) in such a way that they obey: 

 

  Φ̃(𝑘𝑖)
† Φ(𝑘𝑗) = Φ̃(𝑘̅𝑖)

† Φ(𝑘̅𝑗) = 𝛿𝑖𝑗                             (3.58) 

 

This yields the generalized completeness relation: 
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∑Φ̃(𝑘𝑙)
† Φ(𝑘𝑙) =∑Φ̃(𝑘̅𝑙)

† Φ(𝑘̅𝑙) = 𝐼

𝑀

𝑙=1

𝑀

𝑙=1

 

         

(3.59) 

  

After getting the whole set of eigenstates at a given energy, it becomes possible to 

calculate the Green's function first for the infinite system and then, by satisfying the 

appropriate boundary conditions, for the semi-infinite leads at their surface. The Green's 

function can be built from the mixture of the eigen-states Φ(𝑘𝑙) and Φ(𝑘̅𝑙) since it 

satisfies the Schrödinger equation when 𝑧 ≠ 𝑧′, it: 

 

ℊ(𝑧, 𝑧′) =

{
 
 

 
 ∑Φ(𝑘𝑙)𝑒

𝑖𝑘𝑙(𝑧−𝑧
′) 𝜔𝑘𝑙

†

𝑀

𝑙=1

, 𝑧 ≥ 𝑧′

∑Φ(𝑘̅𝑙)𝑒
𝑖𝑘̅𝑙(𝑧−𝑧

′) 𝜔𝑘̅𝑙
†

𝑀

𝑙=1

, 𝑧 ≤ 𝑧′

       (3.60) 

 

In (3.60) the 𝑀-component vectors 𝜔𝑘𝑙 and 𝜔𝑘̅𝑙 are to be determined. The structural 

similarities between (3.60) and equation (3.21) and also that all the degrees of freedom 

in the transverse direction are contained in the vectors Φ(𝑘) and 𝜔𝑘.  

The task now is to obtain the ω vectors. As for a 1d Greens function, the equation (3.60) 

must be continuous at z = z′and should fulfill the Green's equation (3.20).  

The first condition is expressed as: 

 

∑Φ(𝑘𝑙)𝜔𝑘𝑙
† =∑Φ(𝑘̅𝑙)𝜔𝑘̅𝑙

†

𝑙=1

𝑀

𝑙=1

       (3.61) 
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and the second: 

 

∑[(𝐸 − 𝐻𝑜)Φ(𝑘𝑙)𝜔𝑘𝑙
† + 𝐻1𝑒

𝑖𝑘𝑙𝜔𝑘𝑙
† + 𝐻1

†Φ(𝑘̅𝑙)𝑒
−𝑖𝑘̅𝑙𝜔𝑘̅𝑙

† ]

𝑀

𝑙=1

= 𝐼 

 

∑[(𝐸 − 𝐻𝑜)Φ(𝑘𝑙)𝜔𝑘𝑙
† + 𝐻1Φ(𝑘𝑙)𝑒

𝑖𝑘𝑙𝜔𝑘𝑙
† +𝐻1

†Φ(𝑘̅𝑙)𝑒
−𝑖𝑘̅𝑙𝜔𝑘̅𝑙

† + 𝐻1
†𝑒−𝑖𝑘𝑙𝜔𝑘𝑙

†

𝑀

𝑙=1

− 𝐻1
†𝑒−𝑖𝑘𝑙𝜔𝑘𝑙

† ] = 𝐼 

 

∑[𝐻1
†Φ(𝑘̅𝑙)𝑒

𝑖𝑘̅𝑙𝜔𝑘̅𝑙
† − 𝐻1

†Φ(𝑘𝑙)𝑒
−𝑖𝑘𝑙𝜔𝑘𝑙

† ]

𝑁

𝑙=1

+∑[(𝐸 − 𝐻𝑜) + 𝐻1𝑒
𝑖𝑘𝑙 +𝐻1

†𝑒−𝑖𝑘𝑙]

𝑀

𝑙=1

Φ(𝑘𝑙)𝜔𝑘𝑙
† = 𝐼 

 

and since, from the Schrödinger equation (3.49), it is known that: 

 

∑[(𝐸 − 𝐻𝑜) + 𝐻1𝑒
𝑖𝑘𝑙 + 𝐻1

†𝑒−𝑖𝑘𝑙]

𝑀

𝑙=1

Φ(𝑘𝑙) = 0       (3.62) 

This yields to: 

 

∑𝐻1
† [Φ(𝑘̅𝑙)𝑒

𝑖𝑘̅𝑙𝜔𝑘̅𝑙
† +Φ(𝑘𝑙)𝑒

−𝑖𝑘𝑙𝜔𝑘𝑙
† ]

𝑁

𝑙=1

= 𝐼       (3.63) 
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Now by making use of the dual vectors defined in equation (3.58). Multiplying equation 

(3.63) by Φ̃(𝑘𝑝) yields: 

 

∑Φ̃(𝑘𝑝)
†

𝑀

𝑙=1

Φ(𝑘̅𝑙)ω𝑘̅𝑙
† = ω𝑘𝑝

†
       (3.64) 

 

similarly multiplying by Φ̃(𝑘̅𝑝)
†

 gives: 

 

∑Φ̃(𝑘̅𝑝)
†

𝑀

𝑙=1

Φ(𝑘𝑙)ω𝑘𝑙
† = ω𝑘̅𝑝

†
       (3.65) 

 

Using the continuity equation (3.61) and equations (3.64) and (3.65), the Green's 

equation (equation (3.61)) becomes: 

 

∑∑𝐻1
† (Φ(𝑘̅𝑙)𝑒

−𝑖𝑘̅𝑙Φ̃(𝑘̅𝑙)
† −Φ(𝑘𝑙)𝑒

−𝑖𝑘𝑙Φ̃(𝑘𝑙)
† )

𝑀

𝑝=1

𝑀

𝑙=1

Φ(𝑘̅𝑝)𝜔𝑘̅𝑝
† = 𝐼       (3.66) 

 

From which it follows: 

∑[𝐻1
† (Φ(𝑘̅𝑙)𝑒

−𝑖𝑘̅𝑙Φ̃(𝑘̅𝑙)
† −Φ(𝑘𝑙)𝑒

−𝑖𝑘𝑙Φ̃(𝑘𝑙)
† )]

−1
𝑀

𝑙=1

=∑Φ(𝑘̅𝑝)𝜔𝑘̅𝑝
† =∑Φ(𝑘𝑝)ω𝑘𝑝

†

𝑀

𝑝=1

𝑀

𝑝=1

 

      (3.67) 

 

This immediately gives us an expressions for ω𝑘
†
: 
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    ω𝑘
† = Φ̃(𝑘)

† 𝜈−1                              (3.68) 

where  𝜈 is defined as: 

 

𝜈 =∑𝐻1
† (Φ(𝑘̅𝑙)𝑒

−𝑖𝑘̅𝑙Φ̃(𝑘̅𝑙)
† −Φ(𝑘𝑙)𝑒

−𝑖𝑘𝑙Φ̃(𝑘𝑙)
† )

𝑀

𝑙=1

       (3.69) 

The wave number (𝑘) refers to both left and right type of states. Substituting equation 

(3.68) into (3.60) the Green’s function of an infinite system is yielded: 

ℊ𝑧,𝑧′
∞ =

{
 
 

 
 ∑Φ(𝑘𝑙)𝑒

𝑖𝑘𝑙(𝑧−𝑧
′)Φ̃(𝑘𝑙)

† 𝜈−1
𝑀

𝑙=1

, 𝑧 ≥ 𝑧′

∑Φ(𝑘̅𝑙)𝑒
𝑖𝑘̅𝑙(𝑧−𝑧

′)Φ̃(𝑘̅𝑙)
† 𝜈−1

𝑀

𝑙=1

, 𝑧 ≤ 𝑧′

       (3.70) 

As with the one dimensional case it is required to add a wave function to the Green's 

function in order to satisfy the boundary conditions at the edge of the lead in order to 

get the Green's function for a semi-infinite lead. The Green's function must vanish at a 

given place ( 𝑧 = 𝑧𝑜), is a boundary condition here. In order to achieve this we add: 

△= − ∑ Φ𝑘̅𝑙𝑒
𝑖𝑘̅𝑙(𝑧−𝑧𝑜)Φ̃(𝑘̅𝑙)

†  Φ(𝑘𝑝)𝑒
𝑖𝑘𝑝(𝑧𝑜−𝑧)Φ̃(𝑘𝑝)

†

𝑀

𝑙,𝑝=1

𝜈−1     (3.71) 

To the Green's function, equation (3.70), ℊ = ℊ∞ +△. This yields the surface Green's 

function for a semi-infinite lead going left: 

ℊ𝐿 = (𝐼 − ∑ Φ(𝑘̅𝑙)𝑒
−𝑖𝑘̅𝑙  Φ̃(𝑘̅𝑙)

†  Φ(𝑘𝑝)𝑒
𝑖𝑘𝑝  Φ̃(𝑘𝑝)

†

𝑀

𝑙,𝑝=1

)𝜈−1       (3.72) 

 

and going right: 
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ℊ𝑅 = (𝐼 − ∑ Φ(𝑘𝑙)𝑒
𝑖𝑘𝑙  Φ̃(𝑘𝑙)

†  Φ(𝑘̅𝑝)𝑒
−𝑖𝑘̅𝑝  Φ̃(𝑘̅𝑝)

†

𝑀

𝑙,𝑝=1

)𝜈−1     (3.73) 

Using the numerical approach in equation (3.55), a versatile method has been yielded 

for calculating the surface Green's functions (equations (3.72) and (3.73)) for a semi-

infinite crystalline electrode. The next step is to apply this to a scattering problem. 

 

Effective Hamiltonian of the Scattering Region 

For a given coupling matrix between the surfaces of the semi-infinite leads, the Dyson 

equation (3.45) can be used to calculate the Green's function of the scatterer. However, 

the scattering region is not generally described simply as a coupling matrix between the 

surfaces. Therefore, it is useful to use the decimation method to reduce the Hamiltonian 

down to such a structure [90-92]. Some other methods have been developed as 

discussed in [93,94], but in this thesis the decimation method is used.  

 

Consider again the Schrödinger equation: 

 

∑𝐻𝑖𝑗Ψ𝑗 = 𝐸Ψ𝑖
𝑗

       (3.74) 

If separated from the equation (3.74) the 𝑑𝑡ℎ degree of freedom in the system: 

 

𝐻𝑖𝑑Ψ𝑑 +∑𝐻𝑖𝑗Ψ𝑗 = 𝐸Ψ𝑖   ,

𝑗≠𝑑

            𝑖 ≠ 𝑑       (3.75) 

 

Now the component Ψ𝑑 can be examined by using the latter equation when 𝑗 = 𝑑; 
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𝐻𝑑𝑑Ψ𝑑 +∑𝐻𝑑𝑗Ψ𝑗 = 𝐸Ψ𝑑
𝑗≠𝑑

        (3.76) 

 

From equation (3.76) Ψ𝑑 can be expressed as: 

Ψ𝑑 =∑
𝐻𝑑𝑗Ψ𝑗

𝐸 − 𝐻𝑑𝑑
𝑗≠𝑑

       (3.77) 

 

If equation (3.77) is substituted into equation (3.75) then: 

 

∑[𝐻𝑖𝑗 +
𝐻𝑖𝑑𝐻𝑑𝑗

𝐸 − 𝐻𝑑𝑑
]

𝑗≠𝑑

Ψ𝑗 = 𝐸Ψ𝑖  ,       𝑖 ≠ 𝑑           (3.78) 

 

This is an effective Schrödinger equation where the number of degrees of freedom is 

decreased by one compared to (3.74). Hence a new effective Hamiltonian (𝐻̃) can be 

introduced such as: 

 

𝐻̃𝑖𝑗 = 𝐻𝑖𝑗 +
𝐻𝑖𝑑𝐻𝑑𝑗

𝐸 − 𝐻𝑑𝑑
 

   (3.79) 

 

Produced by simple Gaussian elimination this Hamiltonian is the decimated 

Hamiltonian showing a notable feature of being energy dependent, which suits the 

method presented in the previous section very well [82]. The Hamiltonian describing 

the system in general would take the form without the decimation method: 
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𝐻 = (

𝐻𝐿 𝑉𝐿 0

𝑉𝐿
† 𝐻𝑠𝑐𝑎𝑡 𝑉𝑅

0 𝑉𝑅
† 𝐻𝑅

) 
         

(3.80) 

 

Here, 𝐻𝐿 and 𝐻𝑅 denote the semi-infinite leads, 𝐻𝑠𝑐𝑎𝑡𝑡 denotes the Hamiltonian of the 

scatterer and 𝑉𝐿 and 𝑉𝑅 are the coupling Hamiltonians, which couple the original 

scattering region to the leads. After decimation, we produce an effectively equivalent 

Hamiltonian: 

𝐻 = (
𝐻𝐿 𝑉𝑐

𝑉𝑐
† 𝐻𝑅

)            (3.81) 

 

𝑉𝑐 denotes an effective coupling Hamiltonian, which now describes the whole scattering 

process. 

 

Similar to the one-dimensional case now the same steps can be applied; using the Dyson 

equation (equation (3.45)). Hence, the Green's function for the whole system is 

described by the surface Green's functions (equations (3.72) and (3.73)) and the 

effective coupling Hamiltonian from equation (3.81): 

 

𝐺 = (
ℊ𝐿
−1 𝑉𝑐

𝑉𝑐
† ℊ𝑅

−1
)

−1

= (
𝐺00 𝐺01
𝐺10 𝐺11

) 
         

(3.82) 

  

 

Scattering Matrix 
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We now proceed to the calculation of the scattering amplitudes. A generalization of the 

Fisher-Lee relation [86,88,95], assuming that states are normalized to carry unit flux, 

will give the transmission amplitude from the left lead to the right lead as: 

 

𝑡ℎ𝑙 = Φ̃(𝑘ℎ)
† 𝐺𝑅𝐿

ℎ𝑙𝜈𝐿
ℎ𝑙Φ(𝑘𝑙) √|

𝜐ℎ
𝜐𝑙
|       (3.83) 

 

In this case Φ(𝑘ℎ) is a right moving state vector in the right lead and Φ(𝑘𝑙)is a right 

moving state vector in the left lead. The corresponding group velocities are denoted 𝜐ℎ 

and 𝜐𝑙 respectively. The reflection amplitudes in the left lead similarly reads: 

 

𝑟⃖ℎ𝑙 = Φ̃(𝑘̅ℎ)
† (𝐺𝐿

ℎ𝑙𝜈𝐿
ℎ𝑙 − 𝐼)Φ(𝑘𝑙) √|

𝜐ℎ
𝜐𝑙
| 

         

(3.84) 

 

Here Φ(𝑘̅ℎ) is a left moving state vector in the left lead and Φ(𝑘𝑙) is a right moving 

state vector in the left lead. In both cases, 𝜈𝑔𝐿 is the 𝜈 operator defined by equation 

(3.69) for the left lead.  

 

Similarly we can define the scattering amplitudes for particles coming from the right: 

 

𝑡ℎ𝑙 = Φ̃(𝑘̅ℎ)
† 𝐺𝐿𝑅

ℎ𝑙𝜈𝑅
ℎ𝑙Φ(𝑘̅𝑙) √|

𝜐ℎ
𝜐𝑙
| 

         

(3.85) 
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          𝑟ℎ𝑙 = Φ̃(𝑘ℎ)
† (𝐺𝑅

ℎ𝑙𝜈𝑅
ℎ𝑙 − 𝐼)Φ(𝑘̅𝑙) √|

𝜐ℎ
𝜐𝑙
|       (3.86) 

 

Here the definitions are identical, but for the obvious notation that what was left in the 

previous case is now right and vice versa. 

 

So now a scattering matrix can be built and it is possible to calculate the conductance, 

using the Landauer formula (3.5) presented in section xx. 𝐻1 and 𝐻𝑠𝑐𝑎𝑡𝑡 is very general 

and since this method is valid for any choice of the Hamiltonians 𝐻𝑜. 

Calculation in Practice 

So far in this chapter the method presented is quite reasonable, and has been used in 

many areas of mesoscopic transport in the last decade. It has been successfully applied 

to molecular electronics [88,96,97], spintronics [88,98] and mesoscopic 

superconductivity [99-101]. For finite bias employing the non-equilibrium Green's 

function technique the same method has also been extended [102]. A Hamiltonian, 

which describes the system, can be created manually or can be an output of a numerical 

calculation, such as HF, DFT code or density functional tight-binding method. 

 

 

3.5. Generic Features of the Transmission Coefficient 

Before continuing, with the use of simple toy models, it would be useful to briefly study 

a few key features that might have been expected to see in the more complicated 

transport curves of real systems. For this, the decimation method described in equation 
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(3.75) has been used to reduce the discussed systems down to an effective Hamiltonian 

with the structure shown in figure 3.4. From there, it is simply a matter of using the 

Green's function (equation (3.47)) to calculate the transmission coefficient using 

equation (3.49) and then the transmission probability. Three features will be studied: 

Breit-Wigner Resonances [103], Fano Resonances [104,105] and antiresonances due to 

quantum interference [106,107]. 

 

Breit-Wigner Resonance 

The simplest feature to understand is the Breit-Wigner resonance. This is a Lorentzian 

peak in the transmission probability which occurs when the energy of the incident wave 

resonates with an energy level within the scatterer. Figure 3.6 shows the simplest 

example of such a system. Two one-dimensional semi-infinite crystalline chains with 

site energies (𝜀𝑜) and hopping elements (– 𝛾) are coupled to a scatting region with a 

single site energy (𝜀1) by hopping elements (–𝛼). 

 

 

Figure 3.6: Simple model to study Fano resonance. Two one-dimensional semi-infinite 

crystalline chains coupled to a scatting region of site energy 𝜀1by hopping elements –𝛼. 

 

 

The red line in figure 3.9 shows the transmission probability for this system when 𝜀𝑜 =

𝜀1 = 0, 𝛾 = 0.1 and 𝛼 = 0.01. The width of the resonance is defined by the coupling 

component 𝛼 and its location by the site energy 𝜀1. Typically, the scatterer has many 
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energy levels, but in a sufficiently weakly coupled system, they are easy to identify. 

Resonances corresponding to the HOMO and LUMO levels of the system are most 

notable because the Fermi energy, and therefore the conductance of the scatterer, is 

usually between these two peaks. In general, if the coupling element (−𝛼) is large, the 

resonances are wider and the conductance is larger. 

 

Fano Resonance 

Fano resonances occurs  when a continuum of states interacts with a bound state (the 

resonant process) and the two states interfere [108]. For example, when the energy (𝐸) 

of the incident electron is close to an energy level of a side group of a molecule a Fano 

resonance appears. A toy-model approximation is shown in figure 3.7. Two one-

dimensional semi-infinite crystalline chains with site energies (𝜀𝑜) and hopping 

elements (– 𝛾) are coupled to a scatting region with two site energies 𝜀1 (site one) and 

𝜀2 (site two). Site one binds to the leads with hopping elements (–𝛼). Site two, the side-

group, is bound to site one by hopping element (–𝛽).  

 
 

Figure 3.7: Simple model to study Fano resonances. Two one-dimensional semi-infinite 

crystalline chains coupled to a scatting region of site energy (𝜀1) by hopping elements 

(– 𝛼). An extra energy level (𝜀2) is coupled to the scattering level by hopping element 

(– 𝛽). 
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In figure 3.9 the green curve shows the transmission probability for this system when 

𝜀1 = 0, 𝜀2 = 0.5, 𝛾 = 0.1 and 𝛼 = 𝛽 = 0.01. The shape of the curve closely resembles 

that of the Breit-Wigner curve (Figure 3.9, red), except that a Fano resonance occurs at 

𝐸 ≈ 𝜀2.  

 

Fano resonances have been shown to be tuneable via the molecular side groups [105] 

or gate voltages [109] and have been shown to give the molecules interesting 

thermoelectric properties [89,110]. 

 

Anti-Resonance 

When the system is multibranched and destructive interference occurs between 

propagating waves at the nodal point an anti-resonance also appears in the transmission 

probability. In figure 3.8 a simple example is shown. Two one-dimensional semi-

infinite crystalline chains with site energies (𝜀𝑜) and hopping elements (−𝛾) are coupled 

to two non-interacting scatting regions with site energies 𝜀1 (site one) and 𝜀1 (site two) 

by the hopping parameter (– 𝛼).  

 

Figure 3.8: Simple model to study antiresonances. Two one-dimensional semi-infinite 

crystalline chains coupled to two independent scatting regions of site energies 𝜀1 and 

𝜀2, by hopping elements (– 𝛼). 

 

When 𝜀𝑜 = 𝜀1 = 0, 𝜀2 = −0.5, 𝛾 = 0.1 and 𝛼 = 0.01 the blue curve in figure 3.9 

shows the analytical transmission probability for this system. Corresponding to the site 
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energies of each scatterer as expected the curve shows two Breit-Wigner peaks at 𝐸 =

0 and 𝐸 = 0.5. Where the transmission probability drops to 𝑇(𝐸) ≈ 0 the antiresonance 

occurs between these points 𝐸 = 0.25. This drastic change in electron transmission is 

utilised in quantum interference effect transistors (QuIET) [111], data storage [112] and 

molecular switches [113]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Transmission coefficients for the systems describe in sections Breit –Wigner 

(Red), Fano (Green) and Anti (Blue) Resonances. 

 

 

  



93 
 

Chapter 4  

  
Transport through molecular junctions formed from 

monomers or chains of C50, C60 or C50Cl10  

 

4.1. Introduction 

In this thesis, I address the possibility of using fullerenes and exohedral fullerenes as 

building blocks in molecular electronics devices. To examine this question I have 

looked at possibilities to enhance the electronic communication between the 

buckminsterfullerene and Decachlorofullerene. The methods used in this work are 

based on density functional theory followed by Green’s functions quantum transport 

calculations.  

 

C60 and C50 are the isomeric structure of carbon, whereas exohedral fullerene C50Cl10 is 

obtained when bonds are removed chemically by addition of Cl, to yield open cage 

fullerenes (see their optimized in figure 4.1). 

 

In this chapter, I compute the transmission coefficient , transport properties, the 

thermopower of these structures. The work below is a systematic theoretical study of 

electron transport through molecular bridges attached via C50, C60 and C50Cl10 anchor 

to flat gold electrodes. The C50, C60 and C50Cl10 were oriented with a C-C bond between 

a hexagon and a pentagon facing the substrate. 
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The focus of this chapter is the comparison between the fullerene C60 and the exohedral-

fullerene C50Cl10 which consists of a smaller fullerene C50 surrounding by 10 equatorial 

chlorines. In a molecular junction using gold lead as electrodes, direct bonding between 

the molecule and the could lead to clearly defined contact geometries and the stronger 

binding which will enhance conductance.  

 

4.2. Computational Methods 

To undertake a comparative study of their electronic properties, when placed between two 

gold electrodes, we used the density functional theory (DFT) code SIESTA [114] which 

employs Troullier-Martins pseudopotentials [115] to represent the potentials of the atomic 

cores, and a local atomic-orbital basis set. A double-zeta polarized basis set was used for 

all atoms and the generalized gradient approximation (GGA-PBE) for the exchange and 

correlation functionals [116,117]. The Hamiltonian and overlap matrices were calculated 

on a real-space grid defined by a plane-wave cut-off of 250 Ry. Each molecule was relaxed 

to the optimum geometry until the forces on the atoms were smaller than 0.02 eV/Å and in 

case of the isolated molecules, a sufficiently-large unit cell was used.  

 
4.3. DFT Calculation and Numerical Simulation  

 
Optimized geometries and Binding Energy 

 
The ground state energy of the total system is calculated using SIESTA and is denoted 

𝐸𝐴𝐵
𝐴𝐵, The energy of each monomer is then calculated in a fixed basis, which is achieved 

by the use of ghost atoms in SIESTA. Hence the energy of the individual 
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buckminsterfullerene in the presence of the fixed basis is defined as 𝐸𝐴
𝐴𝐵 and another 

one is 𝐸𝐵
𝐴𝐵.  

The binding energy is then calculated using the following equation: 

 

 

 

Figure 4.2 DFT calculation of the binding energy as a function of distance between two C50, C50Cl10. 

 

For the dimers, I varied the distance between two molecules from 1.2 to 5 Å and 

computed their binding energy as a function of distance. As shown in figure 4.2, for a 

C60 dimer, the optimum separation of the C60s is 3.5 Å and the binding energy is (~-

0.05 eV), while for the C50 and C50Cl10 dimer, the optimum separation is 3.2 Å and the 

binding energy is (~-0.03 eV). 

 

Transmission Coefficient. 

As previously described, the Green’s function formalism is used to calculate the single 

electron transport properties and to do this I use the transport package Gollum, which 

 Binding Energy = 𝐸𝐴𝐵
𝐴𝐵 − 𝐸𝐴

𝐴𝐵 − 𝐸𝐵
𝐴𝐵                                                                       (4.1) 
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is based upon equilibrium transport theory. It calculates the transmission coefficients 

T(E) for electrons of energy E and the temperature dependence to calculate 

thermoelectric properties uses the  Fermi distribution function defined as  

f(E, T) = [e(E−EF)/kBT + 1]−1              (4.2) 

where kB is the Boltzmann constant.   

 

 

For the DFT calculations presented in this Chapter, I have used a Generalised Gradient 

Approximation (GGA) with a double zeta polarized basis set and an energy cutoff of 

250 Ry to define the real space grid. During all my calculations the fullerenes and 

exohedral fullerenes between the electrodes were relaxed with a 0.02 eV/Å force 

tolerance. The electrodes were fixed in their relaxed configuration to obtain more 

systematic results and to facilitate the effect of the different bonding sites of the 

molecule to the gold surface without having to use excessively large lead surfaces in 

periodic boundary conditions in one direction. 

To investigate the stability of the transport properties against a movement of fullerenes 

and exohedral fullerenes out of the equilibrium C50, C60 or C50Cl10 electrode separation 

conductance curves were obtained to find the relaxed molecule to lead separation of r 

= 2.2 Å for monomers placed between two gold <111> electrodes, as shown in Figures 

4.6.  
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Figure 4.6 : The C50, C60 
and C50Cl10 were oriented with a C-C bond between a hexagon and a 

pentagon facing the substrate with respect to the flat gold leads. A single C50, C60 or C50Cl10 

attached to Au <111> surfaced electrodes, r=2.2 Å and is fixed with periodic boundary 

conditions PBC applied in all three direction. 

 

To investigate the dependence of the conductance on the orientation of  monomers, 

dimers and trimers, the Hamiltonian of the system was obtained from the DFT 

calculations and passed onto to Gollum for the transport calculations.  

The zero basis transmission curves for dimer and trimer C50, C60 and C50Cl10 molecules 

at the equilibrium dimer and trimer distances are plotted on Figure 4.7, 4.9, 4.12 and 

4.14. 

To investigate the effects of the separation d  between buckyballs upon the tranport, I 

have plotted the transmission curves as a function of  E-EF  for various seperations 

between the C50, C60 or C50Cl10 dimers and trimers, for each geometrical configuration. 

Results are shown in figures 4.8, 4.10, 4.11, 4.13, 4.15 and 4.16.  

 

 

          

r  r  r  r  
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Figure 4.7: A geometry for C50-bare (dimers). Red arrows indicate moving variables, whereas blue arrows 

indicate fixed distances. Z is the electrode separation, r=2.2 Å and is fixed, d is varied from (1.6 -5.0) Å. 

 

 

Figure 4.8: DFT caculations of transmission coeffecients as a function of energy T(E) for varied configuration of 

dimer C50-bare (black) and (blue) for optimum configuration. r=2.2 Å and is fixed, d is varied from (1.6 -5.0) Å. 

 

 
 

 

 

d  

r  r  

Electron transmission T(E) 

Z  



99 
 

 

Figure 4.9: A geometry for C50-bare (Trimers). Red arrows indicate moving variables, whereas blue arrows 

indicate fixed distances. Z is the electrode separation, r=2.2 Å and is fixed, d is varied from (1.6 -5.0) Å.  

 

 

Figure 4.10: DFT caculations of transmission coeffecients as a function of energy T(E) for varied configuration of 

trimer C50-bare (black) and (blue) for optimum configuration. r=2.2 Å and is fixed, d is varied from (1.6 -5.0) Å. 

 

 

 

Z  

d  d  

r  r  
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Figure 4.11:  DFT caculations of transmission coeffecients as a function of energy T(E) for single C50-bare (black 

dots), the optimum configuration of C50 dimer (red dots) and C50 trimer (blue line). r=2.2 Å and is fixed, d is 

varied from (1.6 -5.0) Å. 

 

The curves corresponding to the optimum geometries are summarised in Figure 4.11 

for the monomer, dimer and trimer C50. To interpret the curves I will refer to the 

positions of the transmission peaks relative to (E-EF) = 0.0 eV. The highest occupied 

molecular orbital (HOMO) levels are below the Fermi energy and the lowest 

unoccupied molecular orbital (LUMO) levels are above the Fermi energy. Since these 

define the relevant energies for transport, I will concentrate only on the peaks located 

close to (E-EF) = 0.0 eV.  

Fig. 4.11 shows that for bare C50 the monomer has at least a two-orders of magnitude 

higher transmission coefficient at the Fermi energy than the dimer and trimer. 

Furthermore, the LUMO resonance is rather broad and the transmission near the Fermi 

energy is close to unity. For the dimer and trimer, LUMO peaks in their transmission 

curves are located between 0.1 and 0.2 eV for the dimer (red curve and arrow) and the 
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trimer (blue curve and arrow). Furthermore the peaks are stable i.e. do not shift over 

many configurations as show in Figures 4.8 and 4.10. One might have expected that the 

transmission of the trimer at (E-EF) = 0.0 eV would be lower than that of the dimer, but 

the since the LUMO resonance moves closer to (E-EF) = 0.0 eV this is not the case.   

These results are now compared to those for the case of C50Cl10 monomer, dimer and 

trimer in figures 4.12, 4.13 , 4.14 and 4.15. The optimumised results are shown in Figure 

4.16. 

 

Figure 4.12: A geometry for C50Cl10 (Dimers). Red arrows indicate moving variables, whereas blue arrows 

indicate fixed distances. Z is the electrode separation, r=2.2 Å and is fixed, d is varied from (1.6 -5.0) Å. 

 

 

 

 

d  

r  r  
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Figure 4.13: DFT caculations of transmission coeffecients as a function of energy T(E) for varied configuration of 

dimer C50Cl10 (black) and (green) for optimum configuration.  

 

 

Figure 4.14: A geometry for C50Cl10 (trimer). Red arrows indicate moving variables, whereas blue arrows indicate 

fixed distances. Z is the electrode separation, r=2.2 Å and is fixed, d is varied from (1.6 -5.0) Å. 
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Figure 4.15: DFT caculations of transmission coeffecients as a function of energy T(E) for varied configuration of 

trimer C50Cl10 (black) and (green) for optimum configuration. 

 
Figure 4.16: Below the caculation of T(E) for single C50Cl10 (black dots), the optimum configuration of C50Cl10 

dimer (red dots) and C50Cl10 trimer (green line). 

Here the general trend is that at energies that do not coincide with the transmission 

resonance at the Fermi energy, T(E) decreases as the number of units increases. 

However in contrast with  bare C50, the resonance peaks for the dimer and trimer are 

located around the Fermi energy (E-EF) = 0.0 eV. The peaks are again stable i.e. do not 

shift over many different configurations as shown in Figures 4.13 and 4.15. In the 
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C50Cl10 molecule the energy levels are almost degenerate due to the overlap of the 

Chlorine and Carbon levels resulting in the possibility of high conductance as the 

number of units increases. 

Figure 4.17 summarises the above results and includes the case of the tetramer to further 

illustrtae the trends with increasing number of fullerenes.  

 
 

Figure 4.17 (Up) DFT caculations of transmission coeffecients as a function of energy T(E) for single C50-bare (black 

dots), C50 dimer (red dots) and C50 trimer (blue line). Below the caculation of T(E) for single C50Cl10 (black dots), 

C50Cl10 dimer (red dots) and C50Cl10 trimer (green line). 

 

For comparison, I have calculated the the zero bias transmission for the monomer, dimer 

and trimer for the case of the buckminster fullerene C60 in figures 4.18and 4.19 the 

transmission curves as a function of the seperation between the C60 for each geometrical 

configuration where a geometry for C60 dimer and trimer. The distance between C60 and 

electrodes r =2.2 Å is fixed, d is varied between 1.6  and 5.0 Å. Again we see that bthere 

is a braod LUMO resonance near the Fermi energy. 
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Figure 4.18: DFT caculations of transmission coeffecients as a function of energy T(E) for varied configuration of 

dimer C60 (black) and (red) for optimum configuration.  

 

Figure 4.19: DFT caculations of transmission coeffecients as a function of energy T(E) for varied configuration of 

trimer C60 (black) and (blue) for optimum configuration.  

 

4.4. Summary 

I addressed the question of using fullerenes and exohedral fullerenes as possible 

building blocks in molecular electronics devices. Experimentally buckyballs were 

already suggested as potential high stability anchor by Martin et al. [119].  
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The C50Cl10 should have distinct properties to those of other fullerenes. The exohedral 

fullerene C50Cl10 provides slightly charged in C50Cl10 to that C50 and C50Cl10 is an 

insulator. Furthermore, the fan of ten chlorine atoms stabilise the C50 and HOMO – 

LUMO energy gap of C50 ≈ C60. 

In all cases the transport is dominated by the LUMO resonances. The conductance of the 

monomer is approximately Go, while that of the bare C50 dimers and trimers is substantially 

lower. . On the other hand, due to the presence of LUMO resonances near the Fermi energy, 

the conductances of  C60 or C50Cl10 dimers and trimers are predicted to be significantly 

higher than those of bare C50. It is worth noting that C60 and C50Cl10 are stable fullerenes, 

but the bare C50 is an unstable fullerene and can only be studied theoretically.  

 

Having discussed their electrical conductance, in the next chapter, the thermopower 

of the above junction will be studied, which provides information about slope of the 

transmission function near the Fermi energy.  
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Chapter 5 

 
Thermoelectric Properties of C60 and C50Cl10 

 
Motivation 

During the past few years, several groups have explored the thermoelectric properties 

of single-molecules placed between nanogap electrodes, driven both by a desire to 

understand fundamental thermoelectric effects at the nanoscale and by an expectation 

that knowledge of thermoelectricity at the single-molecule level will underpin the 

design of new high-performance thin-film materials. 

The recent joint theory/experimental papers “Engineering the thermopower of C60 

molecular junctions,” Nano Lett., vol. 13, no. 5, pp 2141-2145, (2013), “Molecular 

design and control of fullerene-based bi-thermoelectric materials,” Nature Mater. 15, 

289–293 (2016) and my recent theory paper “Identification of a positive- Seebeck-

Coefficient exohedral fullerene,” NanoScale., vol. 8, no. 28, pp 13597-602, (2016) 

demonstrate that fullerenes exhibit surprising thermoelectrical effects, which can be 

controlled by mechanical manipulation. However for these effects to be utilised in 

practical devices, fullerenes exhibiting a positive Seebck coefficient are needed. My 

study below reveals that this obstacle is overcome by exohedral fullerenes, which 

provide a new class of materials, with thermoelectric properties which complement 

those of endohedral and all-carbon fullerenes. 
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5.1. Introduction 

Tuning the thermoelectric properties of single molecules is of great interest, because 

they are potential building blocks for new materials with enhanced electrical and 

thermal functionality. When a single molecule is connected across a nano gap between 

two electrodes, whose temperatures differ by an amount ΔT, the resulting voltage 

difference ΔV=-S ΔT is determined by the Seebeck coefficient (S) of the junction.  This 

molecular-scale Seebeck effect has stimulated a recent outpouring of fundamental 

research aimed at controlling and increasing the efficiency of the effect using 

combinations of mechanical, electrostatic, chemical and electrochemical gating [120-

142]. 

As an example of such control, recent scanning tunnelling microscope (STM) 

experiments [129] measured the conductance and thermopower of C60 molecules and 

found that compared with a single C60, the Seebeck coefficient could be almost doubled 

by placing C60s in series to form dimers. These experiments suggest that thin molecular 

films of fullerenes may be excellent thermoelectric materials. However to build a usable 

all-fullerene device, it will necessary to boost the thermovoltage in a tandem 

arrangement, by placing materials with Seebeck coefficients of opposite signs in series. 

Since C60 is found to have a negative Seebeck coefficient, in the present paper I address 

the challenge of identifying a fullerene with a positive Seebeck coefficient. Recent 

experiments on the endohedral fullerene [132] Sc3N@C80 demonstrated that the 

Seebeck coefficient of this material could be either positive or negative, depending on 

the applied pressure. Although this compound does not meet my challenge, because the 

sign of the Seebeck coefficient is variable, it does suggest that chemical modification 
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may solve the problem of identifying positive-Seebeck-coefficient fullerenes. Therefore 

in the present chapter I examine for the first time the possibility of controlling 

thermoelectricity in exohedral fullerenes. In particular, I study the exohedral 

decachlorofullerene C50Cl10, which is chemically stable and was first fabricated in 

milligram quantities in 2004 [143,144]. My aim is to explore the potential for 

thermoelectricity of molecular junctions formed from one or two decachlorofullerenes 

attached to gold electrodes and to determine if their properties can be controlled by 

mechanical gating. 

To compute the thermoelectric properties of such junctions, I note that in the linear-

response regime, the electric current I and heat current 𝑄̇ passing through a device is 

related to the voltage difference ∆V and temperature difference ∆T by [120]:  

 

(
𝐼
𝑄̇
) =

2

ℎ
(
𝑒2𝐿0

𝑒

𝑇
𝐿1

𝑒𝐿1
1

𝑇
𝐿2

)(
∆𝑉
∆𝑇
)                                                    (5.1)  

where T is the reference temperature and 

 

𝐿𝑛 = ∫ (𝐸 − 𝐸𝐹)
𝑛

∞

−∞

𝑇(𝐸) (−
𝜕𝑓(𝐸, 𝑇)

𝜕𝐸
)𝑑𝐸                                 (5.2) 

In this expression e=-|e| is the electronic charge,  𝑇(𝐸) is the transmission coefficient 

for electrons of energy E, passing through the molecule from one electrode to the other 

and 𝑓(𝐸, 𝑇) is Fermi distribution defined as 𝑓(𝐸, 𝑇) = [𝑒(𝐸−𝐸𝐹)/𝑘𝐵T + 1]−1 where 𝑘𝐵 

is Boltzmann’s constant.  

When  ∆𝑇 = 0, equation (5.1) yields for the electrical conductance 𝐺 = (
𝐼

∆𝑉
)∆𝑇=0 , 
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𝐺 =     
2𝑒2

ℎ
𝐿0                                                                                (5.3) 

Similarly when 𝐼 = 0, equation (5.1) yields for the Seebeck coefficient 𝑆 = −(
∆𝑉

∆𝑇
)𝐼=0, 

𝑆 =
−1

|𝑒|𝑇

𝐿1
𝐿0
                                                                      (5.4)  

whereas the Peltier coefficient (∏), and the electronic contribution to the thermal 

conductance (κe) are given by 

 Π =
−1

|𝑒|

𝐿1
𝐿0
                                                                                               (5.5) 

𝜅𝑒 =
2

ℎ𝑇
(𝐿2 −

(𝐿1)
2

𝐿0
)                                                                      (5.6) 

From the above expressions, the electronic thermoelectric figure ZTe =S2GT/κe is given 

by  

𝑍𝑇𝑒 =
(𝐿1)

2

𝐿0𝐿2 − (𝐿1)2
                                                                           (5.7) 

 

For E close to EF, if T(E) varies only slowly with E on the scale of kBT then these 

formulae take the form [120,121] 

 

𝐺(𝑇) ≈ (
2𝑒2

ℎ
)𝑇(𝐸𝐹),                                                                        (5.8) 

𝑆(𝑇) ≈ −𝛼|𝑒|𝑇 (
𝑑 𝑙𝑛𝑇(𝐸)

𝑑𝐸
)
𝐸=𝐸𝐹

,                                                       (5.9) 

𝜅𝑒 ≈ 𝛼𝑇𝐺,                                                                                             (5.10) 
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where 𝛼 = (
𝑘𝐵

𝑒
)
2 𝜋2

3
= 2.44.10−8 WΩK−2 is the Lorentz number. Equation (5.9) 

demonstrates that S is enhanced by increasing the slope of ln T(E) near E=EF.  

 

 

To compute their thermoelectric properties, when placed between two gold electrodes, I 

used the density functional theory (DFT) code SIESTA [145] which employs Troullier-

Martins pseudopotentials [146] to represent the potentials of the atomic cores, and a local 

atomic-orbital basis set. A double-zeta polarized basis set was used for all atoms and the 

generalized gradient approximation (GGA-PBE) for the exchange and correlation 

functionals [147,148]. The Hamiltonian and overlap matrices were calculated on a real-

space grid defined by a plane-wave cut-off of 250 Ry. Each molecule was relaxed to the 

optimum geometry until the forces on the atoms were smaller than 0.02 eV/Å and in case 

of the isolated molecules, a sufficiently-large unit cell was used.  

 

5.2. Results and Discussion 

For the dimers, I varied the distance between two molecules from 1.6 to 5 Å and computed 

their binding energy as a function of distance. As shown in figure 2, for a C60 dimer, the 

optimum separation of the C60s is 3.5 Å and the binding energy is (~-0.05 eV), while for 

the C50Cl10 dimer, the optimum C50Cl10 separation is 3.2 Å and the binding energy is (~-

0.03 eV). 
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Figure 5.1. DFT calculation of the binding energy as a function of distance between (Left) two C60 and 

(Right) two C50Cl10. The inset figures show the optimum structure for the dimer. 

 

Next, each relaxed molecule or dimer was placed between two gold <111> electrodes, as 

shown in Figures 3a and 3b. After geometry relaxation, the distance between each 

molecule and the gold electrode was found to be 2.2 Å. Figure 5.1, show optimum 

configurations of single and dimer C60 junctions, in which the distance between two C60s 

is d =3.5 Å and the distance between the C60s and electrodes is r=2.2 Å. To compute their 

thermoelectric properties, I used the quantum transport code Gollum [149], which 

combines the Hamiltonian provided by the DFT code SIESTA with a Green’s function 

scattering formalism.  Figure 5.2 shows the transmission coefficient T(E) as a function of 

energy E for the junctions in Figures 5.2a and 5.2b.  
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Figure 5.2. Left panel shows an example of an optimized junction configuration for the systems containing 

(a) single C60 and (b) a C60 dimer placed between two gold electrodes. Right panel, (c) shows a DFT 

calculation of their transmission coefficients T(E) as a function of energy  E relative to the DFT-predicted 

Fermi energy 𝐸𝐹
𝐷𝐹𝑇 . 

 

For both the monomer and the dimer, in agreement with ref [129], electrons near the Fermi 

energy transmit through the tail of the LUMO. Furthermore the dimer transmission (red 

line) is much smaller than that of the monomer, due to the increase in length of the 

molecular bridge, leading to a higher slope at the Fermi energy and a higher thermopower 

for the dimer. 

 

Figure 5.3a and 5.3b show the corresponding C50Cl10 junctions, whose optimum dimer 

separation is d=3.2 Å and optimum distance between the C50Cl10s and electrodes is r=2.2 

Å. Figure 5.3c shows the transmission coefficient T(E) of the monomer (blue) and dimer 

(red) and as expected the transmission of the dimer is lower than that of the monomer. 

Figure 5 shows a comparison between the transmission coefficients and corresponding 
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room-temperature electrical conductances of the C50Cl10 and C60 monomers and dimers, 

while Figures 5.6a-5.6d show the comparison between their room-temperature Seebeck 

coefficients (thermopower) S and power factors (σS2). 

 

 

Figure 5.3. Left panel shows an example of an optimized junction configuration for the systems 

containing (a) single and (b) dimer fullerene-C50Cl10 placed between two gold electrodes. Right panel, (c) 

shows DFT calculation of transmission coefficient as a function of energy for the structures in Figures 4a 

and 4b. 
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Figure 5.4 Shows the set of transmission coefficients as a function of energy for C50Cl10 dimers, where the 

black lines show T(E) for various distances d, ranging from  1.2 Å to 5 Å. The the green line shows T(E) at 

the optimum distance. 

 

 

Figure 5.5. The left column, (Figs a and c) show the of transmission coefficients T(E) between the 

monomers in Figures 3 and 4. The right column (Figs b and d) shows their room-temperature 

electrical conductance (G). 

 

 

 

 

 

 

 

         

  

 

 

 

 

 

         

  

 

 

 

 

 

         

  

 

 

 

a 

 

         

 



116 
 

Figure 5.6. The left column, Figures (a and c) show the room-temperature Seebeck coefficient 

(thermopower S) and power factor (σS2) over a range of Fermi energies EF relative to the DFT-

predicted Fermi energy EF
DFT for the monomers in Figures 3a and 4a. The right column, ( Figs b and 

d) shows the room-temperature Seebeck coefficient and power factor (σS2) for the dimers in Figures 3b 

and 4b.  

The optimum separation of d= 3.2 Å for the C50Cl10 dimer and d= 3.5 Å for the C60 

dimer is chosen for illustrative purposes. In the STM experiment of ref [129], in which 

the conductance and Seebeck coefficient of a C60 dimer was measured, one C60 

molecule was located on the gold substrate and the other was attached to the STM tip. 

The distance between them was then varied by varying the position of the STM tip and 

many hundreds of curves of conductance and Seebeck coefficient versus d were 

obtained.  These curves all differ, because the tip shape, the motion of the tip and the 

orientations of the molecules vary from measurement to measurement. Since these 

details are not known, this variation cannot be calculated. Nevertheless as an indication 

of how transport properties depend on the dimer separation d, figure 5.4 shows 

transmission curves for various values of d.  

 

It is well-known [120] that DFT can give an inaccurate value for the Fermi energy and 

therefore Figures 5.6a-5.6c show results for a range of Fermi energies EF relative to 

the DFT-predicted Fermi energy EF
DFT. Figure 5.6a demonstrates that both the 

magnitude and sign of Seebeck coefficient S is changed by replacing the C60 with 

C50Cl10. For example at the DFT-predicted Fermi energy EF
DFT, the Seebeck 

coefficient of single C60 is -21 µV/K and for C60 dimer, it increases to -56 µV/K. On 

the other hand the Seebeck coefficient of the single C50Cl10 is +8 µV/K and while for 

C50Cl10 dimer, it increases to +30 µV/K. 
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For a bulk material, the power factor P is defined by as 𝑃 = 𝑆2𝜎, where σ is the 

electrical conductivity. The notion of conductivity is not applicable to transport through 

single molecules, but to compare with literature values for bulk materials, I define σ =

GL/A, where L and A are equal to the length and the cross-sectional area of the 

molecule respectively. In what follows, for single (dimer) C60 the values L=1.13 (2.12) 

nm and A=2.1 nm2 are used, whereas for single (dimer) C50Cl10 I assign values L=1 

(1.85) nm and A=2.1 nm2.  From the results of Figure 5.6a and 5.6b, the 

temperature dependence of the power factors 𝑃 = 𝑆2𝐺𝐿/𝐴 computed using the 

DFT-predicted Fermi energy are shown in Figure 7c and 7d. These results show 

that C60 monomer and dimer have room-temperature factors of 8.8×10-5 W/m.K2 and 

6.3×10-5 W/m.K2 respectively, whereas the C50Cl10 monomer and dimer have power 

factors of 0.5×10-5 W/m.K2 and 6.0×10-5 W/m.K2 respectively. 
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Figure 5.7. The left column (Figs. a and c) show the Seebeck coefficients S and power factors σS2 as 

a function of temperature at DFT-predicted Fermi energy EF
DFT for the monomers in Figures 3a and 

4a. The right column, (Figs. b and d) show the Seebeck coefficient and power factors for the dimers in 

Figures 3b and 4b.  
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Figure 5.8. The left column, Figures (a and c) shows a comparison of electronic thermal conductance (ke) and 

electronic figure of merit (ZTe) as a function of temperature at DFT-predicted Fermi energy EF
DFT between the systems 

in Figures 3a and 4a. The upper panel, Figures (a and b) show the comparison of electronic thermal conductance (ke) 

the lower panel, Figures (c and d) show electronic figure of merit (ZTe) for the systems in Figures 3b and 4b.  

 

At present there are no experiments addressing the thermoelectric properties of 

exohedral fullerenes. Our intention is that this will be the first in the field and will 

stimulate a series of new experiments and theoretical studies in this direction. Indeed, 

I are already discussing this and other potential exohedral fullerenes with 

experimentalists in the Fullerene Factory in the Materials Department of Oxford 

University, but it will be another year before these are synthesised and measured. I’m 
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confident in my predictions and do calculate the power factor and the electron figure 

of merit ZTe. To calculate ZT, a separate study of phonon thermal transport needed. 

 

5.3. Summary 

 

In this chapter, I have computed that the thermopower and electronic contribution to the 

figure of merit ZT of molecular junctions and shown that they can be enhanced by the 

manipulation of inter-molecular interactions at ambient conditions. I have found that 

the exohedral fullerene C50Cl10 provides a thermoelectric material with a positive 

Seebeck coefficient of opposite sign to that of C60. Furthermore, in common with C60, 

the Seebeck coefficient can be increased by placing more than one C50Cl10 in series. For 

a single C50Cl10, I find S=+8 µV/K and for two C50Cl10’s in series I find S=+30 µV/K. 

These are comparable with the Seebeck coefficients of pristine C60, which I predict to 

be S=-21 µV/K and S=-56 µV/K for a C60 monomer and C60 dimer respectively. 

Fullerenes smaller than C60 are predicted to have unusual electronic and mechanical 

properties that arise mainly from the high curvature of their molecular surface [150-

156].  The above results suggest that thermoelectricity should be added to this list of 

fascinating properties and that exohedral fullerenes provide a new class of 

thermoelectric materials with desirable properties, which complement those of all-

carbon fullerenes. 
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Chapter 6 

 

Conclusion 

In conclusion, to build the concept in this thesis as a first step I introduced the methods 

used through my work. Starting with density functional theory and scattering theory of 

quantum transport, I discussed how to calculate electronic and thermoelectric properties 

of molecular systems. In particular, I have focused on the electronic and thermoelectric 

properties of buckyballs. First, I addressed the possible of use fullerenes as molecular 

electronic components and the possibility of using C60 and C50Cl10 as anchors for 

molecular junctions. Then, I discussed using them as actual thermoelectric devices and 

demonstrated that the exohedral fullerene C50Cl10 provides a thermoelectric material 

with a positive Seebeck coefficient of opposite sign to that of C60. Furthermore, in 

common with C60, the Seebeck coefficient can be increased by placing more than one 

C50Cl10 in series. Fullerenes smaller than C60 are predicted to have unusual electronic 

and mechanical properties that arise mainly from their molecular surface.  My thesis 

demonstrates that thermoelectricity should be added to this list of fascinating properties 

and that exohedral fullerenes provide a new class of thermoelectric materials with 

desirable properties, which complement those of all-carbon fullerenes. 

 

The field of molecular thermoelectrics is in its infancy and ongoing studies are needed 

to highlight how chemical modifications of molecules can be used to tune the 

thermopower and reverse its sign. C50Cl10 is only one of a large number of available 
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exohedral fullerenes and it remains to be seen what levels of performance are attainable. 

For C50Cl10, the change in sign arises because the Fermi energy is located above the 

LUMO resonance, whereas in C60, it is located below the LUMO resonance. The 

geometrical and electronics structure C50Cl10 is very different from that of C60 and 

therefore it is not possible to consider a smooth change, which connects the electronic 

structure of one with the other. For the future it would be of interest to study exohedral 

fullerenes obtained by adding eg metal atoms to the outside of the cage, without 

changing the number of carbon atoms. Since the Seebeck coefficient is an intrinsic 

property, studies of single molecules inform the design of thin film materials formed 

from monolayer of multi-layers of molecules. The increase in Seebeck coefficient for 

the dimer compared with the monomer suggests that performance can be increased by 

increasing the number of layers in such molecular films, at least until the film thickness 

reaches the inelastic scattering length.  

 

Having demonstrated fullerenes could also form unique molecular structures with non-

trivial shapes. Furthermore, buckyballs have the potential to overcome one of the 

biggest challenges in the molecular electronics which is how to connect the scatterer to 

the leads. Based on the above positive aspects of carbon fullerenes open a wide and 

unparalleled opportunity to be key components of future nanoelectronics devices such 

as nanofluidic devices or sub-10-nm circuitry, because there is a need to design new 

materials with a high Seebeck coefficient and a high thermoelectric figure of merit.  

The work presented in this thesis is only a beginning and there are many suggestions 

for future study. One interesting study would be an assessment of the transport 

properties when using buckyballs and exohedral buckyballs in peapods systems, as 
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outlined in the appendix, which should increase their electronic communication. 

Another would involve a study of defects in the cage structure, which are common 

features of networks of three-fold vertices [159] and in particular graphene [160]. It 

would also be of interest to study how transport properties change when alternative 

electrode materials are used such as platinum, palladium or iron [161,162] or even 

superconducting electrodes [163-165]. More recently, electroburnt graphene-based 

electrodes have been developed for molecular-scale electronics [166-169], which when 

combined with the fullerenes discussed in this thesis, may form a basis for future 

carbon-based electronic devices. Finally, for the purpose of computing the full 

thermoelectric figure of merit, it would be of interest to utilise methods for computing 

phonon transport through nanostructures [170,171] to obtain the contribution from 

phonons to the thermal conductance through fullerene-based molecular junctions. 

 

In appendix, I have presented a study of the electronic and thermoelectric properties of 

three kinds of nanotube (11,11) materials, carbon nanotube peapods. The calculation 

shows that for both the magnitude and sign on thermopower S are changed by 

introducing C50Cl10. In the (11,11) CNTs. I also found that electron transport is sensitive 

to the orientation of C50Cl10. Hopefully, my research will be widely read in the future, 

because there is a need to design new materials with a high Seebeck coefficient and a 

high thermoelectric figure of merit, this is an expanding and vibrant area of research.  
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Appendix 

 

Table. DFT calculation of the charge transferred between the chlorine atoms and fullerene C50 

 

 

 

 

 

 

                       

Figure. Optimize distance between one gold electrode <111> and Buckyballs found r = 2.2 A  

After geometry relaxation, the distance between each molecule and the gold electrode was 

found to be 2.2 Å. 

 

The Figures below show optimum configurations of single dimer, trimer and tetramer C50, 

C60 and C50Cl10 junctions, in which the distance between two C50s and C50Cl10s is d =3.2 

Å and the distance between C60 d =3.5 Å. The distance between them and the electrodes is 

r =2.2 Å. To compute their properties, we used the quantum transport code Gollum30, 

which combines the Hamiltonian provided by the DFT code SIESTA with a Green’s 

 Neutral With Cl ΔN 

C50 200 198.67 +1.32 

Cl10 70 71.318 -1.318 
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function scattering formalism.  Figures show the transmission coefficient T(E) as a 

function of energy E for the junctions. 

 

 

Figure. (Right) the cofigurations of the systems containing C50 (single, dimer, trimer and tetramer) attached to the gold 

electrods. (Left) DFT caculations of transmission coeffecients as a function of energy T(E) for optimum configuration of 

single C50 (black), dimer (red), trimer (blue) and tetramer (green). 

 

 

Figure. (Right) the cofigurations of the systems containing C50Cl10 (single, dimer, trimer and tetramer) attached to the 

gold electrods. (Left) DFT caculations of transmission coeffecients as a function of energy T(E) for optimum 

configuration of single C50Cl10 (black), dimer (red), trimer (blue) and tetramer (green). 
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Figure. (Right) the cofigurations of the systems containing C60 (single, dimer and trimer) attached to the gold electrods. 

(Left) DFT caculations of transmission coeffecients as a function of energy T(E) for optimum configuration of single 

C60 (black), dimer (red), trimer (blue) and tetramer (green). 

 

For all the monomer dimer, trimer and tetramer, in agreement with, electrons near the 

Fermi energy transmit through the tail of the LUMO. Furthermore, the dimer transmission 

(red line) is much smaller than and lower than that of the monomer (black line) and 

sequentially for trimer and tetramer, due to the increase in length of the molecular bridge, 

leading to a higher slope at the Fermi energy and a higher thermopower for the dimer, 

trimer and then tetramer. 
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Figure. Orientation of the C50Cl10 molecule with respect to the gold leads. Example 

transmission curves and Transmission coefficient as a function of orientation conductance for 

all orientations and binding sites as a function of the electrode separation in the case of a single 

C50Cl10. 

 

 

 

 

Figure. Theoretical approaching curves of the thermopower for a single C50Cl10 obtained by 

recalculating 𝑆 at a number of different 𝐸𝐹. Thermopower 𝑆 versus orientation different 

substrate distances 𝑧 at a value of 𝐸𝐹. 
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C50Cl10 Rotation at CNT (11,11): 

 
                                                                   

 

                                                          

 

                                                         

 

                      

𝜃

 
𝜃

= 15𝑜 

𝜃

= 30𝑜 
𝜃

= 45𝑜 

𝜃

= 60𝑜 
𝜃

= 75𝑜 

𝜃

= 90𝑜 

Figure 6.5 shows rotation of C50Cl10 within 

CNT (11,11) about z-axis with angles 𝜃 

from 0o to 90o (left) before relaxation 

and (right) after relaxation. 
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Peapods: 

                                                                                   

                                                                                                            

Figure 6.6 shows the encapsulation a wire of C50Cl10s within CNT (11,11) in z-axis and the change 

of angles with a rotation of C50Cl10 from angles 𝜃= 0o to angles 𝜃= 45o but 90o not change of 

angle after relaxation.  
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Band Structure 

 

Figure 6.7 The band structure of CNT (11,11) unit cell, CNT(11,11) bare and C50Cl10 within 

CNT(11,11) at different angles θ= 0,45,90. 
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Transmission  

                                                               

 

                                                                                                                                                                                           

Figure 6.8 Transmission coefficient and open channel for C50Cl10 within CNT (11,11) at 

θ= 0-90 with their angles change before and after relaxation  
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Transmission and open channels 

 

 
Figure 6.9 (right) Geometry of a CNT (11,11) bare and C50Cl10 @ CNT (11,11) in angles 

θ= 0, 45 and 90 (left) Zero bias transmission coefficient T(E) and open channel after relax. 
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Transmission and open channels for long CNT 

 

 

 

 

 

(a) 

CNT(11,11)-conductor 

CNT(22,0)-Semiconductor 

(b) 

(c) 

Bare CNT(11,11)-conductor 

Figure 6.10 (up) Geometry of a CNT (11,11) bare and dimer C50Cl10 within CNT  in conductor 

and semiconductor CNT (down) Zero bias transmission coefficient T(E) and open channel after 

relax 
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Thermoelectric Properties 

 
Figure 6.11 the room temperature thermopower S and the figure of merit ZT and their results 

using different values of EF.  

 


