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Abstract
Topological photonics startedout as apursuit to engineer systems thatmimic fermionic single-particle
Hamiltonianswith symmetry-protectedmodes,whosenumber canonly change in spectral phase
transitions suchasband inversions.Theparadigmof topological lasing, realized in three recent experiments,
offers entirelynew interpretationsof these states, as they canbe selectively amplifiedbydistributed gain and
loss.Akeyquestion iswhether such topologicalmode selectionpersistswhenone accounts for the
nonlinearities that stabilize these systems at theirworkingpoint.Herewe show that topological defect lasers
can indeed stably operate in genuinely topological states.These comprise direct analogues of zeromodes
fromthe linear setting, aswell as anovel class of states displaying symmetry-protectedpoweroscillations,
which appear in a spectral phase transitionwhen the gain is increased.These effects showa remarkable
practical resilience against imperfections, even if these break theunderlying symmetries, andpave theway
toharness thepowerof topological protection innonlinearquantumdevices.

1. Introduction

Topological quantumdevices aim to evoke states that display a unique response to external stimuli. The
underlying concepts were originally developed in a fermionic context, where they provide unified insights into
diverse phenomena that range from the quantum-Hall effect to the emergence of quasiparticles with
unconventional statistics [1, 2]. The robustness of the ensuing propertiesmakes it desirable to replicate them in
other types of systems. This can be a considerable challenge since true topological protection requires
symmetries that constrain a system’s behaviour. In fermionic systems the underlying symmetries originate from
the anticommutation relations and therefore are exact, even in presence of interactions [3]. In bosonic systems,
however,much looser constraints apply. Thefirst generation of bosonic analogues of fermionic topological
effects therefore required impressive feats of precision engineering to replicate the relevant single-particle
physics for photons [4–8], cold atomic gases [9], exciton polaritons [10–13] and sound [14, 15].

Only in very recent times it has been realized that the liberty afforded by bosonic systems also offers
opportunities for topological effects that transcend the electronic setting. Examples include squeezed light [16]
andweakly interacting bosonic systems characterized by a Bogoliubov theory [17–23]. The foundations for
genuinely bosonic devices were laid by taking symmetries from the fermionic single-particle context and
generalizing them to events that change the particle number, which classically represent gain and loss [24–27].

A key paradigm to test these ideas is the concept of a topological laser [26]. Lasing in topological defects and
cavities has been realized in photonic crystals [28, 29], which relied on conventionalmode selection, and lasing
based on the analogy to topological insulators has also been put forward [30, 31]. Separately, distributed gain and
loss have been employed (beyond the conventional setting of distributed feedback lasers), e.g., in PT-symmetric
lasers [32–36], which exploit a spectral phase transition between conventionalmodes that then acquire different
weights on lossy and amplified regions. Both aspects are combined in the concept of topologicalmode selection
[26, 27]. This aims to utilize an additional distinctive feature of topologicalmodes besides their pinned energy,
namely that they display anomalous expectation values—typically, an unequal weight on two subspaces
associatedwith the underlying symmetries. This anomalous response permits tomanipulate the life time of the
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topologicalmodes by appropriate distributions of gain and loss, which results in a topologicalmechanism of
mode selection (see figure 1). Over the pastmonths, three variants of these lasers have indeed been realized
[37–39], confirming the viability of this idea in practice. The topologicalmode selection realized in these
experiments directly addresses a precisely predeterminedmode that exists without any further spectral phase
transitions, and from the outsetmakes optimal use of the provided gain.

Here, we show that these systems indeed offer both genuine as well as unique topological operation
conditions when one accounts for the nonlinearities that are indispensable to stabilize active systems at their
working point. In particular, besides confirming the possibility of lasing in a precisely-defined nonlinear
counterpart of conventional zeromodes, we uncover topological phase transitions into states exhibiting
topologically protected power oscillations, not yet observed in experiments. As in conventional incarnations
of topology in electronic and photonic systems, these phase transitions can be associated with structural
rearrangements of spectral features, which now pertain to the excitation spectrum of the system.

These findings address key practical and conceptual challenges for the implementation and interpretation
of the topologicalmode selectionmechanism to lasers. On first sight it would appear that nonlinearities
should degrade the effectiveness of thismechanism. Evenwhen starting under ideal linear conditions, the
nonlinearities induce spatially varying loss and gain, which depends on the intensity profile of themode across
the system. The resulting effective gain has the potential to disfavour the topological mode, in particular when
itsmode volume is small. Nonlinearities can also induce dispersive effects that explicitly break the assumed
symmetries. Furthermore, even under ideal conditions where all symmetries are realized exactly, the
nonlinearities can render a topological state instable, and result in spontaneous symmetry-breaking and
nonstationary operating regimes. Conceptually, we identify operation conditions that expand the practical
scope of topological quantumdevices and utilize nonlinear phenomena that enrich the underlying topological
physics.

To establish these conclusions we evaluate the nonlinear aspects for a paradigmatic, flexible resonator
arrangement and identify conditions under which topological lasing is possible. Themodel and its
symmetries are introduced in section 2. Section 3 describes themode competition for the gain and loss
distributions for which topological mode selection was originally proposed.We find that this setting indeed
supports stationary lasing in topological modes over wide ranges of parameter space, but also opens up a
phase transition to an operation regime that exhibits topologically protected power oscillations. Section 4
describesmodified gain distributions and a setup in which the zeromode has a largermode volume, which
both offer additional means to control the operation conditions. Section 5 considers the role of disorder and
symmetry-breaking nonlinearities, which in large parts of parameter space turn out to be surprisingly tame,
but also can induce phase transitions to additional operation regimes. Paired with general considerations on
the stability of nonlinear systems, these results allow us to draw conclusions about the scope of topological
effects in classical nonlinear wave dynamics, which are described in our concluding section 6.

Figure 1.Topologicalmode selection in laser arrays consisting of single-mode resonators grouped in dimers (enumerated by n). The
intra-dimer couplingsκ and inter-dimer couplings k¢ are chosen to produce interfaces between regions of topologically different
band structures. (a) In the Su–Schrieffer–Heeger (SSH)model, the alternating couplings define a phaseα (k k> ¢ ) and a phaseβ
(k k< ¢). The displayed defect state arises from two consecutive weak couplings, forming an interface between the two phases. (b)The
defect region can be extended, leading to a variant where the phasesα andβ function as selectivemirrors that confine a defect state
with a largermode volume. In both cases, the resulting defect states have preferential weight on theA sublattice (red) and can be
selected by distributed gain and loss. As illustrated in the right panels, in the linear regime the defect state acquires the effective gainGA

from theA sublattice, while the othermodes acquire the average gain Ḡ in the system (G G 0.1A = +¯ , , 1, 0.7k k¢ = ).We
demonstrate that thismode selectionmechanism extends to the nonlinear conditions at the working point of a laser, where it stabilizes
robust zeromodes and also enables alternative topological operation regimeswith power oscillations.
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2.Nonlinear topological laser arrays

2.1.Modelling laser arrayswith saturable gain
The general design of the topological laser arrays studied in this work is shown infigure 1. The arrays can be
interpreted as chains of identical single-mode resonators, denoted by dots, which are coupled evanescently to
their nearest neighbors. Given this structure of the coupling it is convenient to divide the system into two
alternating sublatticesA andB, and group neighbouring pairs ofA andB sites into dimers. Denoting the
correspondingwave amplitudes on the nth dimer asAn andBn, their dynamical evolution is then governed by
the coupled-mode equations

A

t
V A A B B ai

d

d
, 1n

A n A n n n n n n n, ,
2
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where s n,w (s A B,= ) are the bare resonance frequencies of the isolated resonators, nk is the intra-dimer
coupling between theA andB site in the nth dimer, and nk¢ is the inter-dimer coupling between theB site in the
n 1-( )st dimer and theA site in the nth dimer1. The effective complex potentials [40]
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model nonlinear saturable gain of strength gs and background loss sg , where the real constants Ss andαs are the
self-saturation coefficient and the linewidth-enhancement (or anti-guiding) factor, respectively.

2.2. Topological features andmode selection in the linear regime
For identical passive resonators s n AB,w wº with vanishing gain and loss (g 0s sg= = ) and an alternating
coupling sequence nk kº , nk k¢ º ¢, the array is an incarnation of the celebrated Su–Schrieffer–Heeger (SSH)
model [41, 42]. Thismodel displays a symmetric band structure with a gap of size 2 k kD = - ¢∣ ∣around the
central frequency ABw , which induces two topological phasesα (where k k> ¢) andβ (where k k< ¢). At a
physical interface between these phases one encounters a localized defectmode (see figure 1(a))whose
frequency AB0 wW = is pinned to the centre of the gap.Due to its topological origin thismode persists formore
complicated interface configurations, whichwewill exploit to change itsmode volume as shown infigure 1(b).
There, the terminating dimer chains operate as topologicalmirrors while the defectmode extends uniformly
over the central part of the system.

Exact zeromode quantization requires that the system is terminated on afixed sublattice (here theA
sublattice), which then contains onemore site than the other sublattice (hereB), so that overall the system
supports an odd number ofmodes. An intimately related principal feature of this topologicalmode is that it only
occupies themajority sublattice A (so thatB= 0), in contrast to all other states in the systemwhich have equal
weight on both sublattices (A B ;=∣ ∣ ∣ ∣ see the appendix for a short proof of these spatial features). The defect
mode can therefore be addressed by sublattice-dependent gain and loss, which results in a simple and robust
mode selectionmechanism that employs the topological origin of themode. Assuming that the gain and loss are
linear (Ss= 0) and do not break the symmetry of the frequency spectrum ( 0sa = ), the topologicalmode then
acquires the effective gain G gA A Ag= - on theA sublattice, while all bulkmodes acquire the average effective
gain G g g 2A B A Bg g= + - -¯ ( ) (see the right panels infigure 1). The topological protection persists because
the effective non-hermitianHamiltonian exhibits a non-hermitian charge-conjugation symmetry
H HAB z AB z*w s w s- = - -( ) ( ) (with the Paulimatrix zs operating in sublattice space), which stabilizes any
complex eigenvalues nW positioned on the axis Re n ABwW = [26, 27, 43–46].

2.3. Nonlinear extension of charge-conjugation symmetry
While this linearmechanismdescribes an initial competitive advantage of the defectmode if G GA > ¯ , and allows
it to dynamically switch on if G 0A > and the intensity is still small, this does not describe the quasi-stationary
operation regimewhere themedium saturates in response to amuch larger intensity. This saturation is critical
for the stabilization of any laser at its working point, where themediumprovides just asmuch energy as the
lasingmode loses through radiative and absorptive processes.

1
These couplings can always bemade positive by a suitable 2 gauge transformation.
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The nonlinearmodification (2) of themodel includes the saturation dynamics and allows us to address the
key challenges for topological lasing described in the introduction. (i)The self-saturation quantified by Ssmakes
the effective gain or loss nonuniform across thewhole system, while at the same time favouringmodes with a
largemode volume. (ii)The linewidth-enhancement factorαs induces symmetry-breaking terms in the gain and
loss, whichwe can comparewith linear symmetry-breaking via disorder in the bare resonance frequencies s n,w .
(iii)The system admits a dynamical counterpart of the non-hermitian charge-conjugation symmetry that
extends to the nonlinear case [47], described next, whichwill allow us to identify a range of topological and
nontopological operation regimes.

This dynamical counterpart of the non-hermitian charge-conjugation symmetry can be phrased in terms of
the following general property of the coupled-mode equations (1). For any set of parameters

g S, , , , , ,s n n n s s s s,w k k g a¢( ) and an arbitrarily chosen reference frequency ABw , any solution t
t
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of themodel with parameters replaced by g S2 , , , , , ,s n AB s n n n s s s s, ,w w w k k g a= - ¢ -( ˜ ). This property turns into
a dynamical symmetry if s n AB,w w= , 0sa = (hence, the same conditions as observed for the non-hermitian
charge-conjugation symmetry in the linear case).

To define the resulting operation regimeswe henceforth set the reference frequency to 0ABw º , which can
always be achieved through a gauge transformation t t texp i ABwY  Y -( ) ( ) ( ).We then can distinguish self-
symmetric stationary states t t tconstY = Y =( ) ˜ ( ) ( ), whichwe interpret as nonlinear topological zeromodes
[Z], time-dependent versions of such self-symmetric states [S], as well as the notable class of twistedmodes
where t T t2Y + = Y( ) ˜ ( ) [T]. The twistedmodes are automatically periodic, t T tY + = Y( ) ( ), and hence
lead to stable power oscillations of period T 2. Finally, we can also encounter stationary and time-dependent
lasingmodes that spontaneously break the dynamical symmetry, which automatically occur in pairs tY( ),

tỸ( ) [P].
To discriminate between these types ofmodeswe utilize the correlation functions

C t t t t a, 4max max= áY Y + ñ( ) ∣ ( )∣ ( ) ∣ ( )

C t t t t b. 4max max= áY Y + ñ˜( ) ∣ ˜ ( )∣ ( ) ∣ ( )

For periodicmodes tmax will be chosen such that C I0 max=( ) coincides with the intensitymaximumover a
period. For stationarymodes tmax is arbitrary and Imax is to be interpreted as the stationary intensity. Self-
symmetricmodes are characterized by coinciding correlation functions, C t C t=˜( ) ( ). For twistedmodes the
correlation functions alternate with an offsetT 2, hence C t C t T 2= +˜( ) ( ) and in particular C T I2 max=˜( ) .
For symmetry-breakingmodes, the two correlation functions do not bear any simple relation but are
constrained by C t Imax<˜( ) for all t.

3. Ideal topological lasing

3.1.Operation regimes
Wefirst consider lasing under the ideal conditions underwhich topologicalmode selectionwas originally
conceived. This requires laser arrayswith exact non-hermitian charge-conjugation symmetry ( 0s n AB,w wº = ,

0sa = ) and gain confined to theA sublattice (gAfinite and variable by the pumping, while gB= 0).We consider
resonator-independent self-saturation coefficients and scale the amplitudesA andB such that S S 1A B= = . The
operation of the system then depends on the balance between the gain and the linear background losses, which
we here assume to be resonator-independent and denote as A B ABg g g= º .

Figure 2 provides an overview of the resulting operation regimes. Over a large part of the parameter space,
the laser operates in a stable zeromode, which is quickly approached over time irrespective of initial conditions.
In the phase diagram (panel a), this region is indicated by the label Z.When the gain/loss ratio is increased the
zeromode becomes unstable and is replaced by a twistedmodeT1, which results in lasingwith power
oscillations. Aswe show in section 3.2, this change comes about in a topological phase transition. Upon a small
further increase of the gain/loss ratio themodeT1 starts to compete with a second twistedmodeT2. Bothmodes
sustain stable lasingwith power oscillations of different amplitude and period, where the choice ofmode
depends on the initial conditions.

Panels (b)–(c) infigure 2 examine the key characteristics of the lasingmodes as one varies the gain forfixed
background losses γAB= 0.1, which covers all described regimes. The gain-dependence of the sublattice-
resolved intensities I AA

2= ∣ ∣ and I BB
2= ∣ ∣ can be interpreted as light–light curves. IA displays a characteristic

kink as one crosses the laser threshold gA ABg= and enters stationary operation in the zeromode Z,while IB
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initially remains negligible. Upon increasing the gain, the stationary operation regime is replaced by lasing in the
twistedmodeT1, which from its onset displays afinite periodTwhile the amplitude of its power oscillations (of
periodT 2) increase smoothly (see the shaded intensity ranges). The second twistedmode sets inwith a slightly
smaller period, but covers very similar intensity ranges (indicated by the dashedwhite lines).

Panel (d) infigure 2 verifies the symmetry-protected nature of these states throughout thewhole range of
gain. For the self-symmetric zeromode Z, this is evidenced by its characteristic property C I0 max=˜( ) . The
twistedmodes are not self-symmetric, C I0 max<˜( ) , but display their hallmark property C T I2 max=˜( ) .

These features are further corroborated by the examples ofmodes shown infigure 3. As shown in panel (a),
allmodes clearly inherit their profile from the linear defect state offigure 1(a). For the stationarymode, the
intensity IB on theB sublattice is very small and practically negligible. For the twistedmodes, IB is of the order of
the associated power oscillations. Note that the intensities on both sublattices oscillate out of phase (see panel b),
and so do the correlation functionsC(t) and C t˜( ) (panel c), as required by their twisted nature. Furthermore, the
periodT 2 of the power oscillations in I tA B, ( ) is indeed half of that of the amplitude oscillations exhibited by the
amplitude correlation functions.

3.2. Topological excitations and phase transition
The fact that wefind awell-defined set of lasingmodes professes that the described topological states are very
stable, at least as long as one stays away from the phase transition between the operation regimes. This can be

Figure 2.Topological lasing regimes for the SSH array of figure 1(a) pumped on theA sublattice (finite gain gA atfixed gB= 0, with
amplitudes scaled such that S S 1A B= = ) under conditions that preserve the symmetries in the linear case ( s n AB,w w= , 0sa = ),
demonstrating operation in topological states over thewhole parameter range. (a)Phase diagramof stable quasi-stationary operation
regimes depending on the gain gA and background losses A B ABg g g= º , where lasing requires gA ABg> . Over thewhole gray region
labelled Z, the system establishes stationary lasing in a topological zeromode. In the orange region, this is replaced by operation in a
twisted topologicalmode T1 displaying power oscillations. In the pink region an additional twisted state T2 exists, whose selection then
depends on the initial conditions. The remaining panels analyze the lasing characteristics for varying gain gA along the line γAB= 0.1
(blue arrow in the phase diagram). (b) Sublattice-resolved intensities IA (red) and IB (blue), including shaded intensity ranges for the
power oscillations of T1 and dashed lines indicating the corresponding ranges for T2. (c)Amplitude oscillation periodT (equalling
twice the period of power oscillations for twisted states, see figure 3). (d)Correlation function C t˜ ( ) at t T0, 2= , where
C T I2 max=˜ ( ) reveals the topological nature of the states (see text). As illustrated for the examples infigure 3, all states inherit the
intensity profile of the linear defectmode fromfigure 1(a).

Figure 3.Topologicalwave features of representative lasing states at parameters indicated bybluedots infigure 2 (gA= 0.2 forZ, gA=
0.5 forT1 andT2). (a) Intensity distributions over the array, shownbothas spikes and as diskswith area proportional to intensity,
substantiating the relationof these stabilized states to the linear defect state fromfigure 1(a). (b), (c)Timedependence of the sublattice-
resolved intensities IA(t) and IB(t) (red andblue) andof the correlation functionsC(t), C t˜ ( ) (orange and brown). The alternating
correlations C t T C t2+ =˜ ( ) ( ) verify the twisted nature of the statesT1 andT2,while C t C t const= =( ) ˜ ( ) verifies that the stateZ is
a topological zeromode.
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ascertained by a linear stability analysis, which results in a complex Bogoliubov excitation spectrum nw . For a
time-periodicmode, a similar analysis can be carried out based on a Bogoliubov–Floquet propagator F of
excitations over an oscillation period, whose eigenvalues arewritten as Texp in nl w= -( ). These excitation
spectra reveal intriguing topological features, which are illustrated infigure 4 for the three examplemodes of
figure 3, and infigure 5 at the phase transition between the operation regimes.We here describe the resulting
phenomenology, while the technical details are recapitulated in the appendix. The key feature of this discussion
is the concept of topological excitations that are pinned to symmetry-protected positions, in analogy to
Majorana zeromodes in fermionic systemswith charge-conjugation symmetry [1, 2] and zeromodes in
periodically driven systems [48, 49].

As the coupled-mode equations describe the dynamics of a complexwave, the stability spectra contain twice
asmany excitations as there are states in the linear system. These excitations are constrained by an independent
spectral symmetry, forcing them to obey Re 0nw = or to occur in pairs nw , n n*w w= -˜ (equivalently, the
Bogoliubov–Floquet eigenvalues nl are either real or form complex-conjugated pairs n n*l l=˜ ). A state is stable
if all physical excitations decay, Im 0nw < (hence 0nl <∣ ∣ ). An exception is theU(1)Goldstonemode pinned
at 00w = ( 10l = ), which arises from the arbitrary choice of the global phase of thewavefunctionΨ. This phase
can diffuse due to quantumnoise, which results in the finite linewidth of the emitted laser light. Furthermore, in
the Floquet case an additional pinned eigenvalue 1tl = arises from the arbitrary choice of the reference time t0
for any solution t t0Y +( ). Let us now examine how this general picture ismodified by topological excitations.

As illustrated infigure 4, the symmetries of the topological states allow us to systematically deconstruct their
excitation spectrum. For the stationary zeromode Z, we can distinguish excitations that preserve the self-
symmetry, denoted as n,w+ , from excitations that break the self-symmetry, denoted as n,w- . The latter contain
theGoldstonemode 0,0w =- , and in our setting describe themore slowly decaying excitations. Notably, in the
considered systemboth sets of spectra contain an odd number of excitations (equalling the number of
resonators in the laser array).

As further illustrated in the figure, for the twisted states T1 andT2we can relate the eigenvalues n n
2l l= ¢ to

the eigenvalues of a twisted half-step propagator F ¢ that characterizes propagation of excitations over half a
periodT 2 (see the appendix for the exact definition of this propagator). This reduced spectrum contains a

Figure 4. Stability excitation spectra of the representative states illustrated in figure 3. For the stationary state Z this represents the
Bogoliubov spectrumω, which separates into excitations w that preserve or break the symmetry. This separation further verifies its
zeromode character (see text), while Im 0w < , apart from theU(1)Goldstonemode at 0w = ] affirms that the state is stable. For the
periodically oscillating states T1 andT2, this represents the Bogoliubov–Floquet stability spectrumλ (top, green) and the spectrum l¢
of the half-step propagator (bottom, red). Both spectra are confined by the unit circle in the complex plane, demonstrating that these
states are stable. The symmetry-protected excitations pinned to 1l¢ =  further verify the twisted nature of these states.

Figure 5.Topological phase transition between the zeromode regimeZ and the twistedmode T1, at gA= 0.291 along the line γAB=
0.1 (seefigure 2). At the transition twoBogoliubov excitations T2,w p=- and , , w w= -- -˜ aremarginally stable, whereT is the
period of the emerging twistedmode T1. Alongwith theU(1)Goldstonemode, they allmap onto Floquet–Bogoliubov excitations

1l = for this emergingmode. Away from the transition, these excitations split into two degenerate excitations 1t0l l= =
associatedwith theU(1) and time-translation freedoms, and a decaying excitation fl related to the amplitude stabilization of the
power oscillations. (Note that at the transition another pair of excitations is almost unstable, whichwill give rise to the twisted
mode T2.)
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mode pinned at 1tl¢ = , which arises from time-translation invariance, and amode pinned to 10l¢ = - , which
originates from theU(1)Goldstonemode. This configuration of excitations for propagation over half a period
constitutes a distinctive topological signature of the twistedmodes.

The described features become are further illuminatedwhen one inspects the phase transition between the
zeromode regime and the twisted state T1. In the general setting of nonlinear optical systems [50, 51], this
transition corresponds to aHopf bifurcation, which here however occurs in a symmetry-constrained setting.
Figure 5(a) shows the Bogoliubov spectrum at the transition, where a pair of symmetry-breaking excitations
with , , w w= -- -˜ crosses the real axis and thereby destabilizes the zeromode. This pair of excitations
combines to display the oscillatory time dependence of the emerging twisted state T1, whose initial oscillation
frequency is given by T2 ,p w= -∣ ∣. Different combinations of these two excitations amount to a time-
translation of these resulting oscillations. Notably, at the transition the Bogoliubov–Floquet spectrumof this
emergent state is given by Texp in nl w= -( ), as is illustrated infigure 5(b).

Note that upon thismapping the destabilizing excitations , , w w= -- -˜ map to 1, , l l= =- -˜ . For the
twistedmode, they therefore constitute two excitations that right at the transition are both degenerate with the
U(1)Goldstonemode. Departing from the transition into the twisted state regime (figure 5(c)), these excitations
split into two separate real eigenvalues tl and fl . Of these, tl describes the time-translation freedom and
therefore remains degenerate with theU(1)Goldstonemode. The eigenvalue fl , on the other hand, is associated
with perturbations of thefinite amplitude of the power oscillations. These perturbations decay due to the
nonlinear feedback, so that 1fl <∣ ∣ , guaranteeing that the oscillations are stable. Thismechanism gives rise to

the aforementioned topological excitations 10l¢ = - , 1tl¢ = in the half-step propagator, which remain a robust
signature of the twisted state evenwhen onemoves far away from the transition, as we already have seen in the
examples offigure 4.

4.Modified operation conditions

To verify the versatility and resilience of the laser arraywe consider twoways tomodify themode competition
between the different states in the system. To facilitate the comparisonwith ideal conditions, figure A1 in the
appendix provides a condensed summary offigures 2–4.

4.1.Modified gain distribution
Figure 6 examines the role of the gain distribution via the addition offinite gain gB= 0.1 on theB sublattice,
which amounts to a reduction of the gain imbalance. In the linearmodel, the additional gain does not affect the
defect state, which sees the effective gainGA, but increases the effective gain Ḡ of all the other states in the system
(see figure 1). In the nonlinearmodel, the additional gainmodifies the operation regimes in parts of the region

Figure 6.Role of reduced gain imbalance, obtained under the same conditions as infigures 2–4 (see alsofigure A1), butwith finite gain
gB= 0.1 on theB sublattice. For gAB Bg < the parameter space now also contains a region (dark orange) supporting additional pairs of
symmetry-breakingmodes P. As illustrated for themarked example, thesemodes have substantial weight on theB sublattice, while
their independent correlation functionsC(t) and C t˜ ( ) show that they spontaneously break the symmetry. For suchmodes the
Bogoliubov–Floquet spectrum containsmany eigenvalues close to the unit circle, indicating their high sensitivity under parameter
changes. As shown in the top panels for the cross-section nowplaced at γAB= 0.2, the remaining parameter space supports the same
robust topological lasingmodes as observed for gB= 0 (twistedmodes T1 andT2 and stationary topologicalmodes Z, as illustrated by
themarked examples).
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gAB Bg < , where the losses are not strong enough to suppressmodeswith substantial weight on theB sublattice.
Besides additional twistedmodes, this region then become populated by oscillating pairs of symmetry-breaking
modes P. As shown for an example in thefigure, thesemodes extend over thewhole system and display
substantial weight on both sublattices. The Bogoliubov–Floquet spectrumof any two partnermodes are
identical, but they cannot be further deconstructed as for the topological states. The position of the eigenvalues
close to the unit circle reflects a reduced robustness of these symmetry-breakingmodes against parameter
variations.

In the remainder of parameter spacewe encounter the same topological operation regimes as in the ideal
case, with the boundary between zeromodes and twistedmodes now shifted to larger losses. Themodes
themselves display the same features as before, as illustrated for variable gain gA along the line γAB= 0.2. The
threshold to stationary lasing again gives rise to amarked increase of intensity on theA sublattice, while the
power oscillations of the twisted states at larger gain display very similar periods and relative amplitudes as
before. The threemarked examples verify that these topologicalmodes still inherit theirmode profile from the
linear defect state, and display the required topological correlations and excitations that can only change in phase
transitions.

4.2.Modifiedmode volume
Figures 7 and 8 examine themodified setup offigure 1(b), where the defect region is extended. In the linear
system, the terminating regions act as selectivemirrors for a zeromodewith an increasedmode volume, which
remains confined to theA sublattice.Moreover, because of its increased length the system also supports a larger
number of extended states that compete for the gain. Infigure 7 the gain on theB sublattice is set to gB= 0, while
infigure 8we have gB= 0.1.

In the ideal case gB= 0 (figure 7), the resulting operation regimes closely resemble those of ideal lasing in the
SSH laser array (figures 2–4). The parameter space is divided into a regionwith a topological zeromodeZ and
regionswith one or two twistedmodes T1 andT2. Each of thesemodes can nowbe involved in the topological
phase transitionwith the stationary zeromode, with a crossover point g 0.59, 0.17A ABg» » . Themodes
continue to show all the required topological signatures in their correlation functions and stability excitation
spectra.However, they all nowdisplay a largermode volume, which is inherited from the profile of the zero
mode in the linear case (seefigure 1(b)). As a consequence, the output power of thesemodes (quantified by the
intensities IA and IB) has increased.

Compared to the situation in the SSH laser array infigure 6, themodification of the gain imbalance
examined infigure 8 now affects amuch larger range of parameters, reaching up to g2AB Bg . This can be
attributed not only to the larger number of competing states, but also to the larger propensity of the zeromode to
hybridize with such states in the central region, which on its ownwould constitute a topologically trivial system.
In this regimewe indeed encounter a very large number of additional solutions, which are all close to instability
and therefore very sensitive to parameter changes, as demonstrated by the Bogoliubov–Floquet spectrumof the
statemarked P. Furthermore, an additional twistedmode appears close to the phase boundary of the zeromode,
and indeed drives its instability along parts of this boundary (see the properties of themodes along the cross-
section at γAB= 0.2). In the remaining range of parameters, the systemoperates in analogousways as before,

Figure 7.Role of increasedmode volume, obtained for the laser array with topologicalmirrors illustrated infigure 1(b). Here we
consider ideal lasing conditions with variable gain gA and background loss A B ABg g g= º , at vanishing gain gB= 0 on the B sublattice.
The representation of the data is the same as in figure 6. The resulting operation regimes closely resemble those of the SSH laser array
under corresponding conditions (see figures 2–4, summarized infigure A1), with a phase of stationary zeromode lasing supplemented
by phases with one or two twistedmodes displaying power oscillations. The intensities of thesemodes have increased, which reflects
their largermode volume, as illustrated inmore detail for the three examplesmarkedZ, T1 andT2.
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with topologicalmodes that display a larger output powerwhen compared to the SSH laser array with
analogously reduced gain imbalance (figure 6).

5. Robustness of operation conditions

Typical bosonic systems are subject to fabrication imperfections and residual internal and external dynamics,
whichmay ormay not break the assumed symmetries. For our laser arrays (1)with saturable gain (2), these
deviationsmanifest themselves as linear static perturbations in the bare resonator frequencies s n,w and the
couplings nk , nk¢ , and the symmetry-breaking nonlinearities quantified by the linewidth-enhancement factors
αs.We therefore consider the case of coupling disorder (with perturbations Wr1n nk k= +¯ ( ),

Wr1n nk k¢ = ¢ + ¢¯ ( )) and onsite disorder (with perturbations WrA n AB n,w w= + , WrB n AB n,w w= + ¢), where rn,
rn¢ are independent randomnumbers uniformly distributed in 1 2, 1 2-[ ], and compare the effects with the
case of afinite linewidth-enhancement factor A Ba a= aswell as A Ba a= - .

5.1. Coupling disorder
As a notable feature, the spectral and nonlinear dynamical symmetries of the considered laser arrays remain
preserved if all perturbations are restricted to the couplings. This type of disorder does not affect the symmetry-
protected spectral position of the defectmode in the linearmodel, and also preserves the classification of
topological states in the nonlinear extensionwith saturable gain.

As shown forW= 0.1 infigure B1 in the appendix, small tomoderate levels of coupling disorder have a
practically negligible effect on themain operation regimes of the laser array. Such levels should be easily
attainable inmany applications, as they are well within the requirements to engineer any band structure effects
in the first place. Only atmuch larger strengths the fundamental effects of disorder become discernible. As
shown infigure 9, this can result in disorder-strength-dependent phase transitions thatmodify the operation
regimes in parts of parameter space, with the details generally depending on the disorder realization.Here, we
havefixed the background losses to γAB= 0.1, and instead vary the disorder-strength for four fixed, randomly
selected coupling profiles. In all cases, new operation regimes emerge only for very strong disorder
W 0.3 0.5 - , so that the parameter space remains dominated by the zeromode and the two twisted states.

We further illustrate these emerging regimes infigure 10, which corresponds to the disorder configuration of
figure 9(a)withW= 0.5. As seen in this example, coupling disorder of this level canmake all states visibly
asymmetric and push the power-oscillating twisted state T1 into regions that previously supported the stationary
zeromode Z, which however still dominates large parts of parameter space. Even though here this twisted state
has a period similar to T2 in the clean case, it traces back to the state T1when the disorder-strength is
adiabatically reduced. The state labelled T2¢ , on the other hand, appears in a disorder-strength-dependent phase

Figure 8. Interplay ofmode volume and gain imbalance. Same asfigure 7, but for finite gain gB= 0.1 on theB sublattice, and the cross-
section through parameter space shifted to γAB= 0.2. Compared to the corresponding conditions in the SSH laser array (figure 6), a
larger range of parameters now supports amultitude of additional states. At the representative pointmarked P, this includes a pair of
symmetry-breaking oscillating states, whose power oscillations aremodulated. The features of these symmetry-breaking states are not
very robust, as indicated by their Bogoliubov–Floquet stability spectra, which displaymany slowly decaying excitations. These
modifications are restricted to the range of parameters that previously displayed the twisted states T1 andT2 (nowonly seen for large
enough gain), but does not affect the operation in the zeromodeZ. Along the cross-section γAB= 0.2, we enter only briefly enter this
modified regime, in a regionwhere there is only one extra, twisted, state, which destabilizes the zeromode.
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transition, and therefore cannot be traced back to any state in the clean system. Both twisted states become
vulnerable to symmetry-breaking instabilities as one approaches conditions where the gain/loss ratio is large,
gA ABg . In the given disorder realization, the twistedmodeT1 undergoes a period-doubling bifurcation into a
pair of symmetry-breakingmodes P1, which goes alongwith a noticeable increase of weight on theB sublattice.
The second twistedmode T2¢ also bifurcates into a pair of symmetry-breakingmodes, but these turn out to be
aperiodic.

5.2.Onsite disorder
For onsite disorder, the strict classification of states by symmetry breaks down, and only the distinction between
stationary states and power-oscillating states (aswell as aperiodic and chaotic states) persists in a precise sense.
However, as shown forW= 0.1 infigure B2 in the appendix, the effects of small tomoderate levels of onsite
disorder are again barely noticeable, just as in the case for coupling disorder. Furthermore, as shown infigure 11,
even for relatively strong disorder the states can typically be traced back to their symmetry-respecting
predecessors, which allows us to retain the previous labelling. The disorder tends to expand the regime of
stationary lasing originating frommodeZ at the expense of the power-oscillatingmodes, while only occasionally
leading to transitions into new operation regimes. Figure 12 illustrates this resilience against strong disorder for
the disorder configuration offigure 11(a)withW= 0.5. For this disorder configuration the stationary lasing
regime originating frommodeZ is barely affected. Amongst the power-oscillating states, themode originating
fromT1 is pushed into a smaller part of parameter space, so that the instability phase transition now involves the
modes originating fromZ andT2. Themain visible consequence of broken symmetry is amodulation of the
power oscillations, which now acquire the same periodT as the complex-amplitude oscillations, while the two

Figure 9.Disorder-driven phase transitions for the SSH laser array as infigures 2–4, but withfixed γAB= 0.1 and variable strengthW
of coupling disorder. Each panel corresponds to one randomly selected disorder configuration, with perturbed couplings

Wr1n nk k= +¯ ( ), Wr1n nk k¢ = ¢ + ¢¯ ( ) obtained from a fixed realizations of uniformly distributed randomnumbers
r r, 1 2, 1 2n n¢ Î -[ ]. Zeromode lasing persists at all disorder strengths. Twisted states remain robust forweak tomoderate disorder,
while phase transitions to other operating regimes can appear when the disorder is very strong.

Figure 10.Effect of strong coupling disorder for the SSH laser array as infigures 2–4, with the disorder configuration offigure 9(a) at
W= 0.5. For this realization the regime of zeromode lasing is slightly reduced in favour of the power-oscillating twistedmode T1,
while the twisted state T2 has been replaced by another twistedmode T2¢ , which appears in a disorder-strength-dependent phase
transition. As gain is further increased, T1 undergoes a period-doubling bifurcation to a symmetry-breaking pair of states P1, while T2¢
is replaced by an aperiodic pair P2¢ (forwhich the Floquet–Bogoliubov stability spectrum is not defined). Allmodes display visible
distortions of theirmode profile, and the symmetry-breaking pairs display noticeable amplitude on theB sublattice.
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correlation functionsC and C̃ exhibit different oscillation amplitudes. Notably, the spatial intensity profiles of
the states are still only slightlymodified—indeed, they are affectedmoreweakly than in the case of coupling
disorder.

5.3. Symmetry-breaking nonlinearities
Similarly to the case of weak coupling and onsite disorder wefind that the lasing regimes are also highly resilient
against realistic symmetry-breaking nonlinearities, giving rise to practically negligible effects for

0.1A Ba a= = . As shown infigure 13, even atmuch larger symmetry-breaking nonlinearities 0.5A Ba a= =
only smallmodifications are observed. The effects of the nonlinearities are still small enough to preserve the
division into stationary and power-oscillating states, even though the broken symmetry oncemore prevents the
precise topological characterization of these states. The symmetry-breaking terms againmodulate the power
oscillations, which is displayedmore clearly for themode originating fromT2. The Bogoliubov spectra show that
the states remain highly stable as long as one stays away from the clearly defined phase transitions. As shown in
figure 14, this practical robustness also persists for a staggered arrangementwith 0.2A Ba a= - = , which
breaks the non-hermitian charge-conjugation symmetry already in the linear regime.

That this robustness persists both for symmetry-breaking onsite disorder and nonlinearities can be
attributed to the spectral isolation of the defectmode in the linearmodel. This isolation suppresses anymatrix
elements of hybridizationwith extendedmodes in a perturbative treatment. Note that in the linear case, this
spectral isolation is increased by the favourable gain imbalance, as seen from the position of the complex
resonance frequencies in thefigure 1. Furthermore, disorder can turn the extendedmodes into localized ones,
thereby decreasing theirmode volume.

Figure 11.Robustness against onsite disorder in analogy tofigure 9, but for randomly selected disorder configurationswith perturbed
bare frequencies WrA n AB n,w w= + , WrB n AB n,w w= + ¢, r r, 1 2, 1 2n n¢ Î -[ ].While this type of disorder breaks the symmetries, the
states can typically be tracked to large values of disorder. Themode originating from the zeromode Z persists at all disorder strengths,
and at weak tomoderate disorder extends into regions of larger gain. This happens at the expense of the originally twistedmodes,
which in panel the configuration of (c) are replaced by new power-oscillatingmodesX1,X2 when the disorder becomes strong.

Figure 12.Effect of strong onsite disorder in analogy to figure 10, for the disorder realization of figure 11(a) atW= 0.5. Even though
the disorder breaks the symmetry, all states can be traced back to their disorder-free predecessors. The stationary lasing regime
originating from the zeromode Z is barely affected. Themode originating fromT1 is pushed into a smaller part of parameter space, so
that the instability phase transition now involves themodes originating fromZ andT2. The power-oscillations of the originally twisted
states aremodulated to clearly display the periodT of underlying amplitude oscillations. Themode profiles of all states are only slightly
distorted.
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6.Discussion and conclusions

The pursuit of topological effects in photonic systems ismotivated by the desire to achieve robust features in
analogy to fermionic systems, which in the bosonic setting requires a dedicated effort to evoke the required
symmetries. The concept of a topological laser emerged from the realization that anomalous expectation values
facilitate the selection of topological states by linear gain and loss. Our investigation of topological laser arrays
shows that these concepts seamlessly extend to the nonlinear setting, which accounts for the effects that stabilize
active systems in their quasi-stationary operation regimes.We uncovered large ranges in parameter space that
favour topological operation conditions, of whichwe encountered two types—stationary lasing in self-
symmetric zeromodes, and lasing in twisted states displaying symmetry-protected power oscillations. The
topological nature of these states can be ascertained by their characteristic spatialmode structure, and on a
deeper level by distinctive properties of their correlation functions and linear excitation spectra. These features
also uncover topological phase transitions inwhich zeromodes and twisted states interchange their stability.
Encouragingly, the operation conditions can be tuned by changing the gain and loss distribution and themode
volume, while remaining remarkably robust underweak tomoderate linear and nonlinear perturbations, even if
these break the underlying symmetry.

These findings raise the prospect to explore themuch simplified topologicalmode competition in awide
range of suitably patterned lasers with distributed gain and loss. The laser arrays considered here and in the

Figure 13.Effect of nonlinear symmetry-breaking on themodes of the SSH laser array shown infigure 2–4 (see also figure A1),
obtained by setting the linewidth-enhancement factor to 0.5A Ba a= = .Most properties of the states are only slightlymodified. The
twisted correlation function C T 2˜ ( ) are slightly smaller than Imax, while small independentmodulations appear in the time
dependence ofC(t), C t˜ ( ). For the state originating fromT2, this results in noticeablemodulations of the power oscillations, whose
period is doubled. There are also noticeable changes in the stability spectra (green), which can no longer be deconstructed as in the case
of exact symmetry.

Figure 14.Effect of staggerednonlinear symmetry-breaking on themodesof the SSH laser array shown infigures 2–4 (see alsofigureA1),
obtained by setting the linewidth-enhancement factor to 0.2A Ba a= - = so that thenon-hermitian charge-conjugation symmetry is
already broken in the linear regime.As infigure 13,most properties of the states are only slightlymodified.
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experiments [37–39] realize the required dynamical version of non-hermitian charge-conjugation symmetry by
providing two sublattices, a setting that directly extends to two- and three-dimensional geometries, including
systemswith flat bands [25, 47]. Alternatively, onemay also exploit orbital and polarization degrees of freedom
in suitably coupledmulti-mode cavities, or design photonic crystals with an equivalent coupled-mode
representation. By utilizing additional components that induce an imaginary vector potential (hence,
directionally biased coupling), themode competition in chains as studied here can bemodified towards
favouring a single extended states [52], which further optimizes themode volume. All these systems promise to
provide topological lasingmodeswith highly characteristic spatial and dynamical properties, which are
stabilized at aworking point that is spectrally well isolated from competing states in the system.

Looking beyond this symmetry class, it will beworthwhile to explore the role of nonlinear distributed gain
and loss in topological-insulator lasers [30, 31], where topological edge states align continuously along an edge
band. This is a scenario which has been predicted to bemore fragile against the carrier dynamics in themedium
[53], but is generally expected to benefit fromnon-hermitian effects, as has already been demonstrated for
complex and directed coupling [54]. It would therefore be desirable to classify in general which nonlinearly
extended dynamical symmetries can exist in these and other universality classes of topological systems, and
whether this leads to novel operation regimes as described here for the case of non-hermitian charge-
conjugation symmetry.
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AppendixA. Summary of results for reference

For reference, figure A1 summarizes the results offigures 2–4 for ideal topological lasing in the same format as
adopted in thefigures for the other operation conditions covered in this work.

Appendix B. Resilience against weak perturbations

Asmentioned in the section 5, weak tomoderate amounts of disorder have a negligible effect on the operations
regimes. This is illustrated for coupling disorder infigure B1 and for onsite disorder infigure B2, where in both
casesW= 0.1.

Figure A1.Overview of results for the ideal SSH laser, summarizing figures 2–4, for reference and comparisonwith the condensed
figures for other operation conditions in themain text.
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AppendixC. Bogoliubov theory

C.1. Preparations
Inmatrix form, the nonlinear evolution equations (1) can bewritten as

t
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where

K C3nm nm n n m n, 1d k d k= + ¢+ ( )

represents the couplings, while the resonance frequencies and nonlinear potentials (corresponding to
equation (2))have been promoted to diagonalmatrices,

, , C4A nm nm A n B nm nm B n, , , ,w d w w d w= = ( )
V V V V, . C5A nm nm A n B nm nm B n, , , ,d d= = ( )

Stationary states t texp i n
nY = - W Y( ) ( ) ( ) with real frequency nW are determined as self-consistent solutions of

the equation

H V , C6n
n n nW Y = + Y Y( [ ]) ( )( ) ( ) ( )

Figure B1. Effect ofweak couplingdisorder on theSSH laser array, obtained for a representative disorder realizationwithW=0.1 (see
figure 10 for the analogous resultswithW= 0.5). The results are virtually identical to those in the ideal system (summarized infigureA1).

Figure B2. Effect of weak onsite disorder on the SSH laser array for a representative disorder realizationwithW= 0.1 (seefigure 12 for
the analogous results withW= 0.5). As in the case of coupling disorder (figure B1), the results are virtually identical to those in the
ideal system (summarized in figure A1).
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while general periodic states of periodT fulfill

T exp i 0 C7jY = - Y( ) ( ) ( ) ( )

with a real phasej.
As in themain text, we set the reference frequency 0ABw = (afinite value can always be reinstated by

multiplying any solution by texp i ABw-( )). The property

H V H V C8z z, ,s n s s n s, ,
* s s+ = - +w a w a- -( ) ∣ ( ) ∣ ( )

with 1 0
0 1zs =

-( ) then results in themapping of solutions

t t , C9z, ,s n s s n s, ,sY = Yw a w a- -˜ ( )∣ ( )∣ ( )

see equation (3). For 0sa = , 0s n,w = , this becomes a statement for solutions within afixed set of parameters.
In the purely linear case with effective potentialsV g Gi iA A A Ag= - º( ) ,V g Gi iB B B Bg= - º( ) , we

encounter the conventional non-hermitian charge-conjugation symmetry H Hz z0 0*s s = - for the linear
Hamiltonian H H V0 = + [26, 27].We can then exploit thatK is an N N1+ ´( ) -dimensionalmatrix (as
there is onemoreA site thanB sites) to determine one zeromodewith K A 0T Z =( ) , B 0Z =( ) [55]. Thismode
obeys H GiZ

A
Z

0Y = Y( ) ( ), which above threshold (G 0A > ) describes an exponentially increasing state,
signifying the lack of feedback in the linear theory. In this linear case, the extended states still occur in pairs nY ,

nỸ with generally complex n n
*W = -W̃ , unless Re 0nW = , which describes additional self-symmetric states that

can occur via a spectral phase transition [43–46]. Using optical reciprocity, H HT
0 0= , the symmetry-breaking

states are constrained by the condition

H H A B0 , C10n z z n n n n z n n n0 0
2 2* *s s s= Y + Y = W + W Y Y = W + W -( ) ( ) ( )(∣ ∣ ∣ ∣ ) ( )† † †

hence A B=∣ ∣ ∣ ∣. Furthermore, from

G G G G G G H Hi i , C11n A B n n A B z A B n n n n n n n0 0 *sY + Y = Y + + - Y = Y - Y = W - W Y Y( ) [ ( )] ( ) ( ) ( )† † † † †

wefind that they all have the same life time, according to G G GIm 2n A BW = + º( ) ¯ . This confirms the
statements in section 2.2 andfigure 1.

In the nonlinear case, the relation between solutions at fixed parameters applies to stationary zeromodes

, C12Z ZY = Ỹ ( )( ) ( )

which nowmust be stabilized at an exactly vanishing frequency 0ZW = (see equation (C6)), and twistedmodes

T 2 0 . C13T TY = Y( ) ˜ ( ) ( )( ) ( )

For both cases, these definitions exploit theU(1) gauge freedom tomultiply any solution by an overall phase
factor exp ic( ). E.g., if a zeromode fulfills exp 2iZ ZcY = - Y¢ ¢( ) ˜( ) ( ) then exp iZ ZcY =  Y ¢( )( ) ( ) fulfills

equation (C12), and the same redefinition applies for a twistedmode T 2 exp 2i 0T TcY = - Y¢ ¢( ) ( ) ˜ ( )( ) ( ) .
Irrespective of these redefinitions, zeromodes always display a rigid phase difference of 2p between the
amplitudes on theA and theB sublattice, while twistedmodes always fulfill T 0Y = Y( ) ( ), i.e. they are periodic
modes (C7)with guaranteed 0j = .

C.2. Stability analysis
Given a reference solution tY( ) of the nonlinear wave equation (C1), we can analyse its stability by adding a
small perturbation
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and linearizing in u and v. This yields the Bogoliubov equation
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For a stationary state fulfilling equation (C6), we seek solutions of the form u t t uexp is n m s
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mw= W -( ) ( ) s A B,=( ), which follow from the eigenvalue equation
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For a periodic state (C7), we first integrate the Bogoliubov equation over a period, so that T U T 0y y=( ) ( ) ( ),
and then introduce the Bogoliubov–Floquet operator

F U Texp i , C24zj= S( ) ( ) ( )

whose eigenvalues are denoted as Texp im ml w= -( ). Here, the shift by the phase factorj plays a similar role as
the appearance of nW in equation (C22). In both cases, a solution is stable if all eigenvalues fulfill Im 0m w , so
that the associated perturbations do not grow over time.

In general, the BogoliubovHamiltonian displays the symmetry

. C25x x* Y = -S Y S( [ ]) [ ] ( )

In the stationary case, this yields a spectrum mw that is symmetric under reflection about the imaginary axis,
yielding pairs of eigenvalues mw , m m*w w= -˜ and individual purely imaginary eigenvalues m m*w w= - . This
includes aU(1)Goldstonemode

, 0, C26
n

n
0

0
*

y w= Y
-Y

=
⎛
⎝⎜

⎞
⎠⎟ ( )( )

( )

( )

which accounts for the free choice of the overall phase factor of a stationary solution. Analogously, the
Bogoliubov–Floquet spectrum contains complex-conjugate pairs of eigenvalues ml , m m*l l=˜ and individual
real eigenvalues m m*l l= . This again includes aU(1)Goldstonemode

t

t
, 1 C270

0*
y l=

Y
-Y

=
⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )( )

reflecting the free choice of the overall phase of any solution, and now also a time-translationGoldstonemode

t

t

d d

d d
, 1 C28t

t
*

y l=
Y
Y

=
⎛
⎝⎜

⎞
⎠⎟ ( )( )

that reflects the freedom to displace any solution tY( ) in time.

C.3. Topologicalmodes
To account for the possible symmetries of the nonlinear evolution equation (C1)we adapt the general
considerations of [47]. Themapping of solutions (C9) amounts to the property

, C29, ,s n s s n s, ,
*  Y = - Yw a w a- -( [ ]) ∣ [ ˜ ] ∣ ( )

0
0

. C30z

z


s
s

= ⎜ ⎟⎛
⎝

⎞
⎠ ( )
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Alongwith equation (C25), this property dictates that the Bogoliubov excitation spectra of the twomapped
solutionsΨ, Ỹ are identical. For 0sa = , 0s n,w = , we can use this to further deconstruct the excitation spectra of
topologicalmodes. For zeromodes (C12), we can distinguish symmetry-preserving excitations vA= uA,
v uB B= - , fulfilling

u H V u2 , C31m
m m

,
, ,w = + G -+

+ +( ) ( )( ) ( )

from symmetry-breaking excitations v uA A= - , vB= uB, fulfilling

u H V u , C32m
m m

,
, ,w = +-

- -( ) ( )( ) ( )

where the latter includes themode (C26), now expressed as u n,0 = Y-( ) ( ), 0,0w =- .
For twistedmodes (C13), we can factorize the Bogoliubov–Floquet propagator

F U T U T U T U T F2 2 2 2 , C33x x
2*   = = S S = ¢( ) ( ) ( ) ( ) ( )

F U T 2 , C34x¢ = S ( ) ( )
which defines the twisted half-step propagator F ¢. Its eigenvalues ml¢ determine the stability spectrum as

m m
2l l= ¢( ) . TheU(1)Goldstonemode (C27) fulfills T 2 0x

0 0y y= - S( ) ( )( ) ( ) , so that the associated
eigenvalue 10l¢ = - , while the time-translationmode (C28) fulfills T 2 0t

x Ty y= S( ) ( )( ) , so that 1tl¢ = .

C.4. A brief note on time evolution
The BogoliubovHamiltonian (C16) also naturally appears in an efficient numerical integration scheme of the
nonlinear wave equation (C1). For this wefirst introduce thewave equation in the doubled space,

i , , C350 *
F = F F = Y

Y
⎜ ⎟⎛
⎝

⎞
⎠˙ ( )

H V
H V

0
0

. C360
* *

 = +
- -

⎜ ⎟⎛
⎝

⎞
⎠ ( )

Using themid-point predictor

t t tH tV t t td 1 id id d 2 C37F + » - - F + F( ) ( [ ( )]) ( ) ( )

and linearizing in the exact sameway as in the stability analysis, we then obtain

t t t t td 1 i d 2 1 i 2 d 2 , C381
0  F + » + - - F-( ) ( ) [ ( ) ] ( ) ( )

which amounts to a second-order integrator akin to theCrank–Nicolson scheme.
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