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Abstract

Topological photonics started out as a pursuit to engineer systems that mimic fermionic single-particle
Hamiltonians with symmetry-protected modes, whose number can only change in spectral phase
transitions such as band inversions. The paradigm of topological lasing, realized in three recent experiments,
offers entirely new interpretations of these states, as they can be selectively amplified by distributed gain and
loss. A key question is whether such topological mode selection persists when one accounts for the
nonlinearities that stabilize these systems at their working point. Here we show that topological defect lasers
can indeed stably operate in genuinely topological states. These comprise direct analogues of zero modes
from the linear setting, as well as a novel class of states displaying symmetry-protected power oscillations,
which appear in a spectral phase transition when the gain is increased. These effects show a remarkable
practical resilience against imperfections, even if these break the underlying symmetries, and pave the way
to harness the power of topological protection in nonlinear quantum devices.

1. Introduction

Topological quantum devices aim to evoke states that display a unique response to external stimuli. The
underlying concepts were originally developed in a fermionic context, where they provide unified insights into
diverse phenomena that range from the quantum-Hall effect to the emergence of quasiparticles with
unconventional statistics [ 1, 2]. The robustness of the ensuing properties makes it desirable to replicate them in
other types of systems. This can be a considerable challenge since true topological protection requires
symmetries that constrain a system’s behaviour. In fermionic systems the underlying symmetries originate from
the anticommutation relations and therefore are exact, even in presence of interactions [3]. In bosonic systems,
however, much looser constraints apply. The first generation of bosonic analogues of fermionic topological
effects therefore required impressive feats of precision engineering to replicate the relevant single-particle
physics for photons [4-8], cold atomic gases [9], exciton polaritons [10-13] and sound [14, 15].

Only in very recent times it has been realized that the liberty afforded by bosonic systems also offers
opportunities for topological effects that transcend the electronic setting. Examples include squeezed light [ 16]
and weakly interacting bosonic systems characterized by a Bogoliubov theory [17-23]. The foundations for
genuinely bosonic devices were laid by taking symmetries from the fermionic single-particle context and
generalizing them to events that change the particle number, which classically represent gain and loss [24-27].

A key paradigm to test these ideas is the concept of a topological laser [26]. Lasing in topological defects and
cavities has been realized in photonic crystals [28, 29], which relied on conventional mode selection, and lasing
based on the analogy to topological insulators has also been put forward [30, 31]. Separately, distributed gain and
loss have been employed (beyond the conventional setting of distributed feedback lasers), e.g., in PT-symmetric
lasers [32—36], which exploit a spectral phase transition between conventional modes that then acquire different
weights on lossy and amplified regions. Both aspects are combined in the concept of topological mode selection
[26,27]. This aims to utilize an additional distinctive feature of topological modes besides their pinned energy,
namely that they display anomalous expectation values—typically, an unequal weight on two subspaces
associated with the underlying symmetries. This anomalous response permits to manipulate the life time of the
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Figure 1. Topological mode selection in laser arrays consisting of single-mode resonators grouped in dimers (enumerated by n1). The
intra-dimer couplings x and inter-dimer couplings ' are chosen to produce interfaces between regions of topologically different
band structures. (a) In the Su—Schrieffer—Heeger (SSH) model, the alternating couplings define a phase « (v > ’)and a phase 3

(k < k). The displayed defect state arises from two consecutive weak couplings, forming an interface between the two phases. (b) The
defect region can be extended, leading to a variant where the phases o and 3 function as selective mirrors that confine a defect state
with alarger mode volume. In both cases, the resulting defect states have preferential weight on the A sublattice (red) and can be
selected by distributed gain and loss. As illustrated in the right panels, in the linear regime the defect state acquires the effective gain G4
from the A sublattice, while the other modes acquire the average gain G in the system (G4 = G + 0.1, 5, £’ = 1, 0.7). We
demonstrate that this mode selection mechanism extends to the nonlinear conditions at the working point of a laser, where it stabilizes
robust zero modes and also enables alternative topological operation regimes with power oscillations.

topological modes by appropriate distributions of gain and loss, which results in a topological mechanism of
mode selection (see figure 1). Over the past months, three variants of these lasers have indeed been realized
[37-39], confirming the viability of this idea in practice. The topological mode selection realized in these
experiments directly addresses a precisely predetermined mode that exists without any further spectral phase
transitions, and from the outset makes optimal use of the provided gain.

Here, we show that these systems indeed offer both genuine as well as unique topological operation
conditions when one accounts for the nonlinearities that are indispensable to stabilize active systems at their
working point. In particular, besides confirming the possibility of lasing in a precisely-defined nonlinear
counterpart of conventional zero modes, we uncover topological phase transitions into states exhibiting
topologically protected power oscillations, not yet observed in experiments. As in conventional incarnations
of topology in electronic and photonic systems, these phase transitions can be associated with structural
rearrangements of spectral features, which now pertain to the excitation spectrum of the system.

These findings address key practical and conceptual challenges for the implementation and interpretation
of the topological mode selection mechanism to lasers. On first sight it would appear that nonlinearities
should degrade the effectiveness of this mechanism. Even when starting under ideal linear conditions, the
nonlinearities induce spatially varying loss and gain, which depends on the intensity profile of the mode across
the system. The resulting effective gain has the potential to disfavour the topological mode, in particular when
its mode volume is small. Nonlinearities can also induce dispersive effects that explicitly break the assumed
symmetries. Furthermore, even under ideal conditions where all symmetries are realized exactly, the
nonlinearities can render a topological state instable, and result in spontaneous symmetry-breaking and
nonstationary operating regimes. Conceptually, we identify operation conditions that expand the practical
scope of topological quantum devices and utilize nonlinear phenomena that enrich the underlying topological
physics.

To establish these conclusions we evaluate the nonlinear aspects for a paradigmatic, flexible resonator
arrangement and identify conditions under which topological lasing is possible. The model and its
symmetries are introduced in section 2. Section 3 describes the mode competition for the gain and loss
distributions for which topological mode selection was originally proposed. We find that this setting indeed
supports stationary lasing in topological modes over wide ranges of parameter space, but also opens up a
phase transition to an operation regime that exhibits topologically protected power oscillations. Section 4
describes modified gain distributions and a setup in which the zero mode has alarger mode volume, which
both offer additional means to control the operation conditions. Section 5 considers the role of disorder and
symmetry-breaking nonlinearities, which in large parts of parameter space turn out to be surprisingly tame,
but also can induce phase transitions to additional operation regimes. Paired with general considerations on
the stability of nonlinear systems, these results allow us to draw conclusions about the scope of topological
effects in classical nonlinear wave dynamics, which are described in our concluding section 6.
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2. Nonlinear topological laser arrays

2.1. Modelling laser arrays with saturable gain

The general design of the topological laser arrays studied in this work is shown in figure 1. The arrays can be
interpreted as chains of identical single-mode resonators, denoted by dots, which are coupled evanescently to
their nearest neighbors. Given this structure of the coupling it is convenient to divide the system into two
alternating sublattices A and B, and group neighbouring pairs of A and B sites into dimers. Denoting the
corresponding wave amplitudes on the nth dimer as A, and B,, their dynamical evolution is then governed by
the coupled-mode equations

.dA,

== [win + Vaa(lAuP]IA, + KuBy + KBu_1s (1a)
.dB, , .

1 dr = [WB,n + ‘/B,n(anl )]Bn + /inAn + Hn+1An+la (117)

where w; ,, (s = A, B)are the bare resonance frequencies of the isolated resonators, , is the intra-dimer
coupling between the A and Bsite in the nth dimer, and &/, is the inter-dimer coupling between the Bsite in the
(n — 1)st dimer and the A site in the nth dimer’. The effective complex potentials [40]

. 8a
Van(l4aP) = G+ ap| —A— — 4, 2
a(A4P) = (i aA)(l TSIAT vA) (2a)
. 8B
Ve n(IBa?) = (i + ap)| —L2— — 2b
.1 (1Ba?) = (i o@[ T SIET vB) (2b)

model nonlinear saturable gain of strength g, and background loss ~,, where the real constants S;and o are the
self-saturation coefficient and the linewidth-enhancement (or anti-guiding) factor, respectively.

2.2. Topological features and mode selection in the linear regime

For identical passive resonators w; , = wyp with vanishing gain andloss (g, = 7, = 0) and an alternating
coupling sequence k,, = &, k|, = K/, thearray is an incarnation of the celebrated Su—Schrieffer—Heeger (SSH)
model [41, 42]. This model displays a symmetric band structure with a gap of size A = 2|k — /| around the
central frequency wyp, which induces two topological phases o (where k > ') and 3 (where k < k’). Ata
physical interface between these phases one encounters alocalized defect mode (see figure 1(a)) whose
frequency 0y = wyp is pinned to the centre of the gap. Due to its topological origin this mode persists for more
complicated interface configurations, which we will exploit to change its mode volume as shown in figure 1(b).
There, the terminating dimer chains operate as topological mirrors while the defect mode extends uniformly
over the central part of the system.

Exact zero mode quantization requires that the system is terminated on a fixed sublattice (here the A
sublattice), which then contains one more site than the other sublattice (here B), so that overall the system
supports an odd number of modes. An intimately related principal feature of this topological mode is that it only
occupies the majority sublattice A (so that B = 0), in contrast to all other states in the system which have equal
weight on both sublattices (A| = |B|; see the appendix for a short proof of these spatial features). The defect
mode can therefore be addressed by sublattice-dependent gain and loss, which results in a simple and robust
mode selection mechanism that employs the topological origin of the mode. Assuming that the gain and loss are
linear (S; = 0) and do not break the symmetry of the frequency spectrum (a; = 0), the topological mode then
acquires the effective gain Gy = g, — -, on the A sublattice, while all bulk modes acquire the average effective
gain G = (g, + g — 74 — "p)/2 (see the right panels in figure 1). The topological protection persists because
the effective non-hermitian Hamiltonian exhibits a non-hermitian charge-conjugation symmetry
(H — wyp)® = —0,(H — wap) o, (with the Pauli matrix o, operating in sublattice space), which stabilizes any
complex eigenvalues €2, positioned on the axis Re €2, = wyp [26,27,43-46].

2.3. Nonlinear extension of charge-conjugation symmetry

While this linear mechanism describes an initial competitive advantage of the defect mode if G, > G, and allows
it to dynamically switch onif G; > 0 and the intensity is still small, this does not describe the quasi-stationary
operation regime where the medium saturates in response to a much larger intensity. This saturation is critical
for the stabilization of any laser at its working point, where the medium provides just as much energy as the
lasing mode loses through radiative and absorptive processes.

! These couplings can always be made positive by a suitable Z, gauge transformation.

3
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The nonlinear modification (2) of the model includes the saturation dynamics and allows us to address the
key challenges for topological lasing described in the introduction. (i) The self-saturation quantified by S, makes
the effective gain or loss nonuniform across the whole system, while at the same time favouring modes with a
large mode volume. (ii) The linewidth-enhancement factor o, induces symmetry-breaking terms in the gain and
loss, which we can compare with linear symmetry-breaking via disorder in the bare resonance frequencies w ,.
(iii) The system admits a dynamical counterpart of the non-hermitian charge-conjugation symmetry that
extends to the nonlinear case [47], described next, which will allow us to identify a range of topological and
nontopological operation regimes.

This dynamical counterpart of the non-hermitian charge-conjugation symmetry can be phrased in terms of
the following general property of the coupled-mode equations (1). For any set of parameters
(Ws,m> B m;, &> Y Qs Ss) and an arbitrarily chosen reference frequency wyg, any solution W(t) = (‘;g; ) can
be mapped onto a solution

3

J(t) = exp(ZiwABt)( AD) )

—B*(1)

of the model with parameters replaced by (&, = 2wsp — Won> K Ky 8> Vo — Qs Ss). This property turns into
adynamical symmetry if w, , = wyp, o = 0 (hence, the same conditions as observed for the non-hermitian
charge-conjugation symmetry in the linear case).

To define the resulting operation regimes we henceforth set the reference frequency to wyp = 0, which can
always be achieved through a gauge transformation W(¢) — W(t)exp(—iwspt). We then can distinguish self-
symmetric stationary states ¥(t) = W¥(t) = const(t), which we interpret as nonlinear topological zero modes
[Z], time-dependent versions of such self-symmetric states [S], as well as the notable class of twisted modes
where U(t + T/2) = U(t) [T]. The twisted modes are automatically periodic, ¥(t + T) = W(t),and hence
lead to stable power oscillations of period T'/2. Finally, we can also encounter stationary and time-dependent
lasing modes that spontaneously break the dynamical symmetry, which automatically occur in pairs W(¢),
U(t) [P].

To discriminate between these types of modes we utilize the correlation functions

C(t) = |<\Ij(tmax)|\11(tmax + t)) |) (40)
Ct) = [{(U(tma) [V (tmax + 1)) ]- (4b)

For periodic modes f,,,x will be chosen such that C(0) = I,,,, coincides with the intensity maximum over a
period. For stationary modes #,,,x is arbitrary and I,,,, is to be interpreted as the stationary intensity. Self-
symmetric modes are characterized by coinciding correlation functions, C(t) = C(t). For twisted modes the
correlation functions alternate with an offset T/2, hence C(t) = C(t + T/2)andin particular C(T/2) = ILpay.
For symmetry-breaking modes, the two correlation functions do not bear any simple relation but are
constrained by C(t) < I,y forall .

3.1deal topological lasing

3.1. Operation regimes

We first consider lasing under the ideal conditions under which topological mode selection was originally
conceived. This requires laser arrays with exact non-hermitian charge-conjugation symmetry (w; , = wip = 0,
o = 0) and gain confined to the A sublattice (g4 finite and variable by the pumping, while g5 = 0). We consider
resonator-independent self-saturation coefficients and scale the amplitudes A and B such that Sy = Sz = 1. The
operation of the system then depends on the balance between the gain and the linear background losses, which
we here assume to be resonator-independent and denote as v, = 75 = V5

Figure 2 provides an overview of the resulting operation regimes. Over a large part of the parameter space,
the laser operates in a stable zero mode, which is quickly approached over time irrespective of initial conditions.
In the phase diagram (panel a), this region is indicated by the label Z. When the gain/loss ratio is increased the
zero mode becomes unstable and is replaced by a twisted mode T, which results in lasing with power
oscillations. As we show in section 3.2, this change comes about in a topological phase transition. Upon a small
further increase of the gain/loss ratio the mode T starts to compete with a second twisted mode T,. Both modes
sustain stable lasing with power oscillations of different amplitude and period, where the choice of mode
depends on the initial conditions.

Panels (b)—(c) in figure 2 examine the key characteristics of the lasing modes as one varies the gain for fixed
background losses v, = 0.1, which covers all described regimes. The gain-dependence of the sublattice-
resolved intensities I, = |A]?and Iy = |B|? can be interpreted as light-light curves. I, displays a characteristic
kink as one crosses the laser threshold g, = ~,, and enters stationary operation in the zero mode Z, while I

4
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Figure 2. Topological lasing regimes for the SSH array of figure 1(a) pumped on the A sublattice (finite gain g, at fixed gz = 0, with
amplitudes scaled such that §4 = Sp = 1) under conditions that preserve the symmetries in the linear case (ws,, = wip, & = 0),
demonstrating operation in topological states over the whole parameter range. (a) Phase diagram of stable quasi-stationary operation
regimes depending on the gain g, and background losses v, = 73 = 7,5, where lasing requires g, > +, . Over the whole gray region
labelled Z, the system establishes stationary lasing in a topological zero mode. In the orange region, this is replaced by operation in a
twisted topological mode T displaying power oscillations. In the pink region an additional twisted state T, exists, whose selection then
depends on the initial conditions. The remaining panels analyze the lasing characteristics for varying gain g, along theline 45 = 0.1
(blue arrow in the phase diagram). (b) Sublattice-resolved intensities I, (red) and I (blue), including shaded intensity ranges for the
power oscillations of T; and dashed lines indicating the corresponding ranges for T,. (c) Amplitude oscillation period T'(equalling
twice the period of power oscillations for twisted states, see figure 3). (d) Correlation function C(t) at t = 0, T /2, where

C(T/2) = Ipay reveals the topological nature of the states (see text). As illustrated for the examples in figure 3, all states inherit the
intensity profile of the linear defect mode from figure 1(a).
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Figure 3. Topological wave features of representative lasing states at parameters indicated by blue dots in figure 2 (g4 = 0.2 for Z, g4 =
0.5 for Ty and T,). (a) Intensity distributions over the array, shown both as spikes and as disks with area proportional to intensity,
substantiating the relation of these stabilized states to the linear defect state from figure 1(a). (b), (c) Time dependence of the sublattice-
resolved intensities I;(£) and I(f) (red and blue) and of the correlation functions C(#), C(t) (orange and brown). The alternating
correlations C(t + T/2) = C(t) verifythe twisted nature of the states T, and T,, while C(t) = C(t) = const verifies that the state Z is
atopological zero mode.

initially remains negligible. Upon increasing the gain, the stationary operation regime is replaced by lasing in the
twisted mode T, which from its onset displays a finite period T while the amplitude of its power oscillations (of

period T /2) increase smoothly (see the shaded intensity ranges). The second twisted mode sets in with a slightly
smaller period, but covers very similar intensity ranges (indicated by the dashed white lines).

Panel (d) in figure 2 verifies the symmetry-protected nature of these states throughout the whole range of
gain. For the self-symmetric zero mode Z, this is evidenced by its characteristic property C(0) = I.. The
twisted modes are not self-symmetric, C(0) < I,y but display their hallmark property C(T/2) = Lpay.

These features are further corroborated by the examples of modes shown in figure 3. As shown in panel (a),
all modes clearly inherit their profile from the linear defect state of figure 1(a). For the stationary mode, the
intensity Iy on the B sublattice is very small and practically negligible. For the twisted modes, I3 is of the order of
the associated power oscillations. Note that the intensities on both sublattices oscillate out of phase (see panel b),
and so do the correlation functions C(t) and C(t) (panel c), as required by their twisted nature. Furthermore, the
period T'/2 of the power oscillations in I 5(¢) is indeed half of that of the amplitude oscillations exhibited by the
amplitude correlation functions.

3.2. Topological excitations and phase transition
The fact that we find a well-defined set of lasing modes professes that the described topological states are very
stable, at least as long as one stays away from the phase transition between the operation regimes. This can be
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Figure 4. Stability excitation spectra of the representative states illustrated in figure 3. For the stationary state Z this represents the
Bogoliubov spectrum w, which separates into excitations w. that preserve or break the symmetry. This separation further verifies its
zero mode character (see text), while Im w < 0, apart from the U(1) Goldstone mode at w = 0] affirms that the state is stable. For the
periodically oscillating states T, and T», this represents the Bogoliubov—Floquet stability spectrum ) (top, green) and the spectrum \’
of the half-step propagator (bottom, red). Both spectra are confined by the unit circle in the complex plane, demonstrating that these
states are stable. The symmetry-protected excitations pinned to \’ = +1 further verify the twisted nature of these states.

away

"2 Rew 2

Figure 5. Topological phase transition between the zero mode regime Z and the twisted mode T}, at g4 = 0.291 along the line y,5 =
0.1 (see figure 2). At the transition two Bogoliubov excitations w_, = 27/T and &_ , = —w._ , are marginally stable, where T'is the
period of the emerging twisted mode T;. Along with the U(1) Goldstone mode, they all map onto Floquet—Bogoliubov excitations

A = 1for this emerging mode. Away from the transition, these excitations split into two degenerate excitations Ay = A\, = 1
associated with the U(1) and time-translation freedoms, and a decaying excitation )y related to the amplitude stabilization of the
power oscillations. (Note that at the transition another pair of excitations is almost unstable, which will give rise to the twisted

mode T5,.)

ascertained by a linear stability analysis, which results in a complex Bogoliubov excitation spectrum w,. Fora
time-periodic mode, a similar analysis can be carried out based on a Bogoliubov—Floquet propagator F of
excitations over an oscillation period, whose eigenvalues are written as A\, = exp(—iw, T). These excitation
spectra reveal intriguing topological features, which are illustrated in figure 4 for the three example modes of
figure 3, and in figure 5 at the phase transition between the operation regimes. We here describe the resulting
phenomenology, while the technical details are recapitulated in the appendix. The key feature of this discussion
is the concept of topological excitations that are pinned to symmetry-protected positions, in analogy to
Majorana zero modes in fermionic systems with charge-conjugation symmetry[1, 2] and zero modes in
periodically driven systems [48, 49].

As the coupled-mode equations describe the dynamics of a complex wave, the stability spectra contain twice
as many excitations as there are states in the linear system. These excitations are constrained by an independent
spectral symmetry, forcing them to obey Re w, = 0 or to occur in pairs w,, &, = —w (equivalently, the
Bogoliubov—Floquet eigenvalues ), are either real or form complex-conjugated pairs X, = \¥). A state is stable
ifall physical excitations decay, Im w,, < 0 (hence|)\,| < 0). An exception is the U(1) Goldstone mode pinned
at wy = 0 (A\g = 1), which arises from the arbitrary choice of the global phase of the wavefunction W. This phase
can diffuse due to quantum noise, which results in the finite linewidth of the emitted laser light. Furthermore, in
the Floquet case an additional pinned eigenvalue )\, = 1 arises from the arbitrary choice of the reference time t,
for any solution W(f + t;). Let us now examine how this general picture is modified by topological excitations.

As illustrated in figure 4, the symmetries of the topological states allow us to systematically deconstruct their
excitation spectrum. For the stationary zero mode Z, we can distinguish excitations that preserve the self-
symmetry, denoted as w; ,,, from excitations that break the self-symmetry, denoted as w_ ,,. Thelatter contain
the Goldstone mode w_ ; = 0, and in our setting describe the more slowly decaying excitations. Notably, in the
considered system both sets of spectra contain an odd number of excitations (equalling the number of
resonators in the laser array).

As further illustrated in the figure, for the twisted states T, and T, we can relate the eigenvalues A\, = A% to
the eigenvalues of a twisted half-step propagator F’ that characterizes propagation of excitations over halfa
period T /2 (see the appendix for the exact definition of this propagator). This reduced spectrum contains a
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Figure 6. Role of reduced gain imbalance, obtained under the same conditions as in figures 2—4 (see also figure A1), but with finite gain
gs= 0.1 on the Bsublattice. For -, < g the parameter space now also contains a region (dark orange) supporting additional pairs of
symmetry-breaking modes P. As illustrated for the marked example, these modes have substantial weight on the B sublattice, while
their independent correlation functions C(t) and C(t) show that they spontaneously break the symmetry. For such modes the
Bogoliubov—Floquet spectrum contains many eigenvalues close to the unit circle, indicating their high sensitivity under parameter
changes. As shown in the top panels for the cross-section now placed aty4,p = 0.2, the remaining parameter space supports the same
robust topological lasing modes as observed for gz = 0 (twisted modes T, and T, and stationary topological modes Z, as illustrated by
the marked examples).

mode pinned at \; = 1, which arises from time-translation invariance, and a mode pinned to Ay = —1, which
originates from the U(1) Goldstone mode. This configuration of excitations for propagation over halfa period
constitutes a distinctive topological signature of the twisted modes.

The described features become are further illuminated when one inspects the phase transition between the
zero mode regime and the twisted state T. In the general setting of nonlinear optical systems [50, 51], this
transition corresponds to a Hopf bifurcation, which here however occurs in a symmetry-constrained setting.
Figure 5(a) shows the Bogoliubov spectrum at the transition, where a pair of symmetry-breaking excitations
with @, = —w_, crosses the real axis and thereby destabilizes the zero mode. This pair of excitations
combines to display the oscillatory time dependence of the emerging twisted state T, whose initial oscillation
frequencyis given by 27 /T = |w_,]. Different combinations of these two excitations amount to a time-
translation of these resulting oscillations. Notably, at the transition the Bogoliubov—Floquet spectrum of this
emergentstate is given by A\, = exp(—iw, T), asisillustrated in figure 5(b).

Note that upon this mapping the destabilizing excitations & , = —w_, mapto A_, = A_, = 1.Forthe
twisted mode, they therefore constitute two excitations that right at the transition are both degenerate with the
U(1) Goldstone mode. Departing from the transition into the twisted state regime (figure 5(c)), these excitations
split into two separate real eigenvalues \; and \r. Of these, \; describes the time-translation freedom and
therefore remains degenerate with the U(1) Goldstone mode. The eigenvalue Ay, on the other hand, is associated
with perturbations of the finite amplitude of the power oscillations. These perturbations decay due to the
nonlinear feedback, so that | \;| < 1, guaranteeing that the oscillations are stable. This mechanism gives rise to

the aforementioned topological excitations \; = —1, \; = 1in the half-step propagator, which remain a robust
signature of the twisted state even when one moves far away from the transition, as we already have seen in the
examples of figure 4.

4. Modified operation conditions

To verify the versatility and resilience of the laser array we consider two ways to modify the mode competition
between the different states in the system. To facilitate the comparison with ideal conditions, figure Al in the
appendix provides a condensed summary of figures 2—4.

4.1. Modified gain distribution

Figure 6 examines the role of the gain distribution via the addition of finite gain g5 = 0.1 on the B sublattice,
which amounts to a reduction of the gain imbalance. In the linear model, the additional gain does not affect the
defect state, which sees the effective gain G,, but increases the effective gain G of all the other states in the system
(see figure 1). In the nonlinear model, the additional gain modifies the operation regimes in parts of the region

7



I0OP Publishing New J. Phys. 20 (2018) 063044 S Malzard and H Schomerus

20

~T, only [ =12

1,2 max [~

(=]
T
A
~

&4~ V4B
Iyp »
N\
[€0]
T

T only
/A

0

| 0 I 0Bt

1

0y, 05 Og —yp 05 0g,— 5 05
T, 50 prAnAANANANAN 50 /\/\/\/\
I, =1 N
L (S
cu. L
000000 ! 0 0
50 pANANANANANA 50 /\/W
atlllll,, 3 <
(SN
craikd, i, ™ [
Hivee0e000ss | 0 0
10 10 ="~ 0r
‘ 2 &) 3
= [y r
alllllh,. < B paal,
.......... 0 0 01 .
0 t 50 0 t 50 -2 Rew 2

Figure 7. Role of increased mode volume, obtained for the laser array with topological mirrors illustrated in figure 1(b). Here we
consider ideal lasing conditions with variable gain g, and backgroundloss v, = 75 = 7,45, at vanishing gain g = 0 on the B sublattice.
The representation of the data is the same as in figure 6. The resulting operation regimes closely resemble those of the SSH laser array
under corresponding conditions (see figures 2—4, summarized in figure A1), with a phase of stationary zero mode lasing supplemented
by phases with one or two twisted modes displaying power oscillations. The intensities of these modes have increased, which reflects
their larger mode volume, as illustrated in more detail for the three examples marked Z, T; and T».

Tap < &g Where thelosses are not strong enough to suppress modes with substantial weight on the B sublattice.
Besides additional twisted modes, this region then become populated by oscillating pairs of symmetry-breaking
modes P. As shown for an example in the figure, these modes extend over the whole system and display
substantial weight on both sublattices. The Bogoliubov—Floquet spectrum of any two partner modes are
identical, but they cannot be further deconstructed as for the topological states. The position of the eigenvalues
close to the unit circle reflects a reduced robustness of these symmetry-breaking modes against parameter
variations.

In the remainder of parameter space we encounter the same topological operation regimes as in the ideal
case, with the boundary between zero modes and twisted modes now shifted to larger losses. The modes
themselves display the same features as before, as illustrated for variable gain g4 along theline v,z = 0.2. The
threshold to stationary lasing again gives rise to a marked increase of intensity on the A sublattice, while the
power oscillations of the twisted states at larger gain display very similar periods and relative amplitudes as
before. The three marked examples verify that these topological modes still inherit their mode profile from the
linear defect state, and display the required topological correlations and excitations that can only change in phase
transitions.

4.2. Modified mode volume

Figures 7 and 8 examine the modified setup of figure 1(b), where the defect region is extended. In the linear
system, the terminating regions act as selective mirrors for a zero mode with an increased mode volume, which
remains confined to the A sublattice. Moreover, because of its increased length the system also supports a larger
number of extended states that compete for the gain. In figure 7 the gain on the B sublattice is set to gg = 0, while
in figure 8 we have gz =0.1.

In the ideal case gg = 0 (figure 7), the resulting operation regimes closely resemble those of ideal lasing in the
SSH laser array (figures 2—4). The parameter space is divided into a region with a topological zero mode Zand
regions with one or two twisted modes T; and T,. Each of these modes can now be involved in the topological
phase transition with the stationary zero mode, with a crossover point g, ~ 0.59, ~,; ~ 0.17. The modes
continue to show all the required topological signatures in their correlation functions and stability excitation
spectra. However, they all now display a larger mode volume, which is inherited from the profile of the zero
mode in the linear case (see figure 1(b)). As a consequence, the output power of these modes (quantified by the
intensities I, and Iz) has increased.

Compared to the situation in the SSH laser array in figure 6, the modification of the gain imbalance
examined in figure 8 now affects a much larger range of parameters, reaching up to v, S 2g;. This can be
attributed not only to the larger number of competing states, but also to the larger propensity of the zero mode to
hybridize with such states in the central region, which on its own would constitute a topologically trivial system.
In this regime we indeed encounter a very large number of additional solutions, which are all close to instability
and therefore very sensitive to parameter changes, as demonstrated by the Bogoliubov—Floquet spectrum of the
state marked P. Furthermore, an additional twisted mode appears close to the phase boundary of the zero mode,
and indeed drives its instability along parts of this boundary (see the properties of the modes along the cross-
sectionatysg = 0.2).In the remaining range of parameters, the system operates in analogous ways as before,

8



I0OP Publishing New J. Phys. 20 (2018) 063044 S Malzard and H Schomerus

0.5 40 20
=12
. N L A Imax
= Q <
! = = =
5 74 L g =0
L L 0 0 I 0 L
0 V4B 0.5 0.g4= 74505 0 g4= 74805
30 30
MAAAANAA
T ””” = x POOOOOOK
¢ S
ctakLLLL e
0 0
30 30
MNANNNN/]
T ””” s f o BOCOOOXN
S
e s~
o 0
40 40
P .
3 9
S
0 0
z 5 sp--------- o
q o S Y wA Sy
S SR Ep e e
B 11111 PP i B
........ 0 0 02
0 t 50 0 t 50 -2 Re w 2

Figure 8. Interplay of mode volume and gain imbalance. Same as figure 7, but for finite gain g = 0.1 on the B sublattice, and the cross-
section through parameter space shifted to 45 = 0.2. Compared to the corresponding conditions in the SSH laser array (figure 6), a
larger range of parameters now supports a multitude of additional states. At the representative point marked P, this includes a pair of
symmetry-breaking oscillating states, whose power oscillations are modulated. The features of these symmetry-breaking states are not
very robust, as indicated by their Bogoliubov—Floquet stability spectra, which display many slowly decaying excitations. These
modifications are restricted to the range of parameters that previously displayed the twisted states T; and T, (now only seen for large
enough gain), but does not affect the operation in the zero mode Z. Along the cross-section y45 = 0.2, we enter only briefly enter this
modified regime, in a region where there is only one extra, twisted, state, which destabilizes the zero mode.

with topological modes that display a larger output power when compared to the SSH laser array with
analogously reduced gain imbalance (figure 6).

5. Robustness of operation conditions

Typical bosonic systems are subject to fabrication imperfections and residual internal and external dynamics,
which may or may not break the assumed symmetries. For our laser arrays (1) with saturable gain (2), these
deviations manifest themselves as linear static perturbations in the bare resonator frequencies w; , and the
couplings &, #,,, and the symmetry-breaking nonlinearities quantified by the linewidth-enhancement factors
a,. We therefore consider the case of coupling disorder (with perturbations s, = 7(1 + Wr),

k! = R'(1 + Wr}))and onsite disorder (with perturbations wy , = wip + Wiy, Wp., = wip + Wr,), wherer,,,
r) are independent random numbers uniformly distributed in [—1/2, 1/2],and compare the effects with the
case of a finite linewidth-enhancement factor ay = agaswellas ay = — .

5.1. Coupling disorder

As anotable feature, the spectral and nonlinear dynamical symmetries of the considered laser arrays remain
preserved if all perturbations are restricted to the couplings. This type of disorder does not affect the symmetry-
protected spectral position of the defect mode in the linear model, and also preserves the classification of
topological states in the nonlinear extension with saturable gain.

As shown for W= 0.1 in figure B1 in the appendix, small to moderate levels of coupling disorder have a
practically negligible effect on the main operation regimes of the laser array. Such levels should be easily
attainable in many applications, as they are well within the requirements to engineer any band structure effects
in the first place. Only at much larger strengths the fundamental effects of disorder become discernible. As
shown in figure 9, this can result in disorder-strength-dependent phase transitions that modify the operation
regimes in parts of parameter space, with the details generally depending on the disorder realization. Here, we
have fixed the background losses to y45 = 0.1, and instead vary the disorder-strength for four fixed, randomly
selected coupling profiles. In all cases, new operation regimes emerge only for very strong disorder
W 2 0.3 — 0.5, so that the parameter space remains dominated by the zero mode and the two twisted states.

We further illustrate these emerging regimes in figure 10, which corresponds to the disorder configuration of
figure 9(a) with W=0.5. As seen in this example, coupling disorder of this level can make all states visibly
asymmetric and push the power-oscillating twisted state T into regions that previously supported the stationary
zero mode Z, which however still dominates large parts of parameter space. Even though here this twisted state
has a period similar to T, in the clean case, it traces back to the state T; when the disorder-strength is
adiabatically reduced. The state labelled T5, on the other hand, appears in a disorder-strength-dependent phase
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Figure 9. Disorder-driven phase transitions for the SSH laser array as in figures 2—4, but with fixed 7,5 = 0.1 and variable strength W
of coupling disorder. Each panel corresponds to one randomly selected disorder configuration, with perturbed couplings

kp = R(1 + Wr), K, = &'(1 + Wr.) obtained from a fixed realizations of uniformly distributed random numbers

Ty r,i € [—1/2, 1/2]. Zero mode lasing persists at all disorder strengths. Twisted states remain robust for weak to moderate disorder,
while phase transitions to other operating regimes can appear when the disorder is very strong.
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Figure 10. Effect of strong coupling disorder for the SSH laser array as in figures 2—4, with the disorder configuration of figure 9(a) at
W =0.5. For this realization the regime of zero mode lasing is slightly reduced in favour of the power-oscillating twisted mode T},
while the twisted state T has been replaced by another twisted mode T5, which appears in a disorder-strength-dependent phase
transition. As gain is further increased, T, undergoes a period-doubling bifurcation to a symmetry-breaking pair of states P, while T,
is replaced by an aperiodic pair P} (for which the Floquet-Bogoliubov stability spectrum is not defined). All modes display visible
distortions of their mode profile, and the symmetry-breaking pairs display noticeable amplitude on the B sublattice.

transition, and therefore cannot be traced back to any state in the clean system. Both twisted states become
vulnerable to symmetry-breaking instabilities as one approaches conditions where the gain/loss ratio is large,

g4 > 7,5 In the given disorder realization, the twisted mode T, undergoes a period-doubling bifurcation into a
pair of symmetry-breaking modes P, which goes along with a noticeable increase of weight on the B sublattice.
The second twisted mode T also bifurcates into a pair of symmetry-breaking modes, but these turn out to be
aperiodic.

5.2. Onsite disorder

For onsite disorder, the strict classification of states by symmetry breaks down, and only the distinction between
stationary states and power-oscillating states (as well as aperiodic and chaotic states) persists in a precise sense.
However, as shown for W= 0.1 in figure B2 in the appendix, the effects of small to moderate levels of onsite
disorder are again barely noticeable, just as in the case for coupling disorder. Furthermore, as shown in figure 11,
even for relatively strong disorder the states can typically be traced back to their symmetry-respecting
predecessors, which allows us to retain the previous labelling. The disorder tends to expand the regime of
stationary lasing originating from mode Z at the expense of the power-oscillating modes, while only occasionally
leading to transitions into new operation regimes. Figure 12 illustrates this resilience against strong disorder for
the disorder configuration of figure 11(a) with W= 0.5. For this disorder configuration the stationary lasing
regime originating from mode Z is barely affected. Amongst the power-oscillating states, the mode originating
from T, is pushed into a smaller part of parameter space, so that the instability phase transition now involves the
modes originating from Z and T,. The main visible consequence of broken symmetry is a modulation of the
power oscillations, which now acquire the same period T as the complex-amplitude oscillations, while the two
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Figure 11. Robustness against onsite disorder in analogy to figure 9, but for randomly selected disorder configurations with perturbed
bare frequencies wy , = wip + Wiy, wp,n = wip + Wri, 1, 15 € [—1/2, 1/2]. While this type of disorder breaks the symmetries, the
states can typically be tracked to large values of disorder. The mode originating from the zero mode Z persists at all disorder strengths,
and at weak to moderate disorder extends into regions of larger gain. This happens at the expense of the originally twisted modes,

which in panel the configuration of (c) are replaced by new power-oscillating modes X, X, when the disorder becomes strong.
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Figure 12. Effect of strong onsite disorder in analogy to figure 10, for the disorder realization of figure 11(a) at W= 0.5. Even though
the disorder breaks the symmetry, all states can be traced back to their disorder-free predecessors. The stationary lasing regime
originating from the zero mode Z is barely affected. The mode originating from T} is pushed into a smaller part of parameter space, so
that the instability phase transition now involves the modes originating from Z and T,. The power-oscillations of the originally twisted
states are modulated to clearly display the period T of underlying amplitude oscillations. The mode profiles of all states are only slightly
distorted.

correlation functions Cand C exhibit different oscillation amplitudes. Notably, the spatial intensity profiles of
the states are still only slightly modified—indeed, they are affected more weakly than in the case of coupling
disorder.

5.3. Symmetry-breaking nonlinearities

Similarly to the case of weak coupling and onsite disorder we find that the lasing regimes are also highly resilient
against realistic symmetry-breaking nonlinearities, giving rise to practically negligible effects for

oy = ag = 0.1. Asshown in figure 13, even at much larger symmetry-breaking nonlinearities ay = ag = 0.5
only small modifications are observed. The effects of the nonlinearities are still small enough to preserve the
division into stationary and power-oscillating states, even though the broken symmetry once more prevents the
precise topological characterization of these states. The symmetry-breaking terms again modulate the power
oscillations, which is displayed more clearly for the mode originating from T,. The Bogoliubov spectra show that
the states remain highly stable as long as one stays away from the clearly defined phase transitions. As shown in
figure 14, this practical robustness also persists for a staggered arrangement with oy = —ag = 0.2, which
breaks the non-hermitian charge-conjugation symmetry already in the linear regime.

That this robustness persists both for symmetry-breaking onsite disorder and nonlinearities can be
attributed to the spectral isolation of the defect mode in the linear model. This isolation suppresses any matrix
elements of hybridization with extended modes in a perturbative treatment. Note that in the linear case, this
spectral isolation is increased by the favourable gain imbalance, as seen from the position of the complex
resonance frequencies in the figure 1. Furthermore, disorder can turn the extended modes into localized ones,
thereby decreasing their mode volume.
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Figure 13. Effect of nonlinear symmetry-breaking on the modes of the SSH laser array shown in figure 2—4 (see also figure A1),
obtained by setting the linewidth-enhancement factor to ay = ap = 0.5. Most properties of the states are only slightly modified. The
twisted correlation function C(T /2) are slightly smaller than I,,, while small independent modulations appear in the time
dependence of C(), C(t). For the state originating from T, this results in noticeable modulations of the power oscillations, whose
period is doubled. There are also noticeable changes in the stability spectra (green), which can no longer be deconstructed as in the case
of exact symmetry.
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Figure 14. Effect of staggered nonlinear symmetry-breaking on the modes of the SSH laser array shown in figures 2—4 (see also figure A1),
obtained by setting the linewidth-enhancement factor to ay = —a = 0.2 so that the non-hermitian charge-conjugation symmetry is
already broken in the linear regime. As in figure 13, most properties of the states are only slightly modified.

6. Discussion and conclusions

The pursuit of topological effects in photonic systems is motivated by the desire to achieve robust features in
analogy to fermionic systems, which in the bosonic setting requires a dedicated effort to evoke the required
symmetries. The concept of a topological laser emerged from the realization that anomalous expectation values
facilitate the selection of topological states by linear gain and loss. Our investigation of topological laser arrays
shows that these concepts seamlessly extend to the nonlinear setting, which accounts for the effects that stabilize
active systems in their quasi-stationary operation regimes. We uncovered large ranges in parameter space that
favour topological operation conditions, of which we encountered two types—stationary lasing in self-
symmetric zero modes, and lasing in twisted states displaying symmetry-protected power oscillations. The
topological nature of these states can be ascertained by their characteristic spatial mode structure, and on a
deeper level by distinctive properties of their correlation functions and linear excitation spectra. These features
also uncover topological phase transitions in which zero modes and twisted states interchange their stability.
Encouragingly, the operation conditions can be tuned by changing the gain and loss distribution and the mode
volume, while remaining remarkably robust under weak to moderate linear and nonlinear perturbations, even if
these break the underlying symmetry.

These findings raise the prospect to explore the much simplified topological mode competition in a wide
range of suitably patterned lasers with distributed gain and loss. The laser arrays considered here and in the
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Figure Al. Overview of results for the ideal SSH laser, summarizing figures 2—4, for reference and comparison with the condensed
figures for other operation conditions in the main text.

experiments [37-39] realize the required dynamical version of non-hermitian charge-conjugation symmetry by
providing two sublattices, a setting that directly extends to two- and three-dimensional geometries, including
systems with flat bands [25, 47]. Alternatively, one may also exploit orbital and polarization degrees of freedom
in suitably coupled multi-mode cavities, or design photonic crystals with an equivalent coupled-mode
representation. By utilizing additional components that induce an imaginary vector potential (hence,
directionally biased coupling), the mode competition in chains as studied here can be modified towards
favouring a single extended states [52], which further optimizes the mode volume. All these systems promise to
provide topological lasing modes with highly characteristic spatial and dynamical properties, which are
stabilized at a working point that is spectrally well isolated from competing states in the system.

Looking beyond this symmetry class, it will be worthwhile to explore the role of nonlinear distributed gain
and loss in topological-insulator lasers [30, 31], where topological edge states align continuously along an edge
band. This is a scenario which has been predicted to be more fragile against the carrier dynamics in the medium
[53], but is generally expected to benefit from non-hermitian effects, as has already been demonstrated for
complex and directed coupling [54]. It would therefore be desirable to classify in general which nonlinearly
extended dynamical symmetries can exist in these and other universality classes of topological systems, and
whether this leads to novel operation regimes as described here for the case of non-hermitian charge-
conjugation symmetry.
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Appendix A. Summary of results for reference

For reference, figure A1 summarizes the results of figures 2—4 for ideal topological lasing in the same format as
adopted in the figures for the other operation conditions covered in this work.

Appendix B. Resilience against weak perturbations

As mentioned in the section 5, weak to moderate amounts of disorder have a negligible effect on the operations
regimes. This is illustrated for coupling disorder in figure B1 and for onsite disorder in figure B2, where in both
cases W=0.1.
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Figure B1. Effect of weak coupling disorder on the SSH laser array, obtained for a representative disorder realization with W= 0.1 (see
figure 10 for the analogous results with W= 0.5). The results are virtually identical to those in the ideal system (summarized in figure A1).
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Figure B2. Effect of weak onsite disorder on the SSH laser array for a representative disorder realization with W= 0.1 (see figure 12 for
the analogous results with W= 0.5). As in the case of coupling disorder (figure B1), the results are virtually identical to those in the
ideal system (summarized in figure A1).

Appendix C. Bogoliubov theory

C.1. Preparations
In matrix form, the nonlinear evolution equations (1) can be written as

Lo = Hvo + vivowe, we=(420), ()
dt B(1)
WA K VA 0
H= , V[¥] = , C2
(5} vom=(5 0) ©
where
Knm == é‘nm Kn + 6n,m+1/’€:1 (C3)
represents the couplings, while the resonance frequencies and nonlinear potentials (corresponding to
equation (2)) have been promoted to diagonal matrices,
WA, nm = 6nmwA,m WB,nm = 6nmwB,na (C4)
VA,nm - 5nm VA,m ‘/B,nm - 6nm ‘/B,n- (CS)

Stationary states U(¢) = exp(—if,t) ¥ with real frequency (2, are determined as self-consistent solutions of
the equation

QU = (H + V[ZW)T®, (C6)
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while general periodic states of period T fulfill
U(T) = exp(—ip)P(0) (C7)

with a real phase (.
As in the main text, we set the reference frequency wyp = 0 (a finite value can always be reinstated by
multiplying any solution by exp(—iwypt)). The property

(H + V)*|w5,”,a5 = —0,(H + V)Uz|—ws,n,—as (C8)

with o, = ((1) _O 1) then results in the mapping of solutions
‘i/(t) |—ws,n,—as = Uzlll(t) |ws,,,,(ysa (C9)

see equation (3). For a; = 0, w; , = 0, this becomes a statement for solutions within a fixed set of parameters.

In the purely linear case with effective potentials Vy = i(g, — 7,) = iGs, V3 = i(gy — ) = iGp, We
encounter the conventional non-hermitian charge-conjugation symmetry o, Hyo, = —Hj for the linear
Hamiltonian Hy = H + V [26,27]. We can then exploit that Kisan (N + 1) x N-dimensional matrix (as
there is one more A site than Bisites) to determine one zero mode with K' A% = 0, B4 = 0[55]. This mode
obeys HyW'?) = iGy ¥, which above threshold (G4 > 0) describes an exponentially increasing state,
signifying the lack of feedback in the linear theory. In this linear case, the extended states still occur in pairs \U,,
I, with generally complex 2, = — Q:’:, unless Re €2, = 0, which describes additional self-symmetric states that
can occur via a spectral phase transition [43—46]. Using optical reciprocity, Hy = H{, the symmetry-breaking
states are constrained by the condition

0 = Ui(o:Hy + Hj )V, = (Q + QD V0o T, = (Q, + QAP — |BP), (C10)
hence |A| = |B|. Furthermore, from
W (Gy + Gp)W, = iU [Gy + Gp + 0.(Ga — G, = U(Hy — HDY, = (Q, — QHV T, (C11)

we find that they all have the same life time, according to Im €2, = (G4 + Gg)/2 = G. This confirms the
statements in section 2.2 and figure 1.
In the nonlinear case, the relation between solutions at fixed parameters applies to stationary zero modes

V@ = FPD, (C12)

which now must be stabilized at an exactly vanishing frequency 2, = 0 (see equation (C6)), and twisted modes

v (T/2) = TT(0). (C13)
For both cases, these definitions exploit the U(1) gauge freedom to multiply any solution by an overall phase
factor exp(i). E.g., ifazero mode fulfills U®)" = exp(—2ix)¥“ then U@ = Lexp(iy) V¥’ fulfills
equation (C12), and the same redefinition applies for a twisted mode \II(T)/(T/ 2) = exp(— 2ix)\I/(T) ,(0).
Irrespective of these redefinitions, zero modes always display a rigid phase difference of +-7 /2 between the

amplitudes on the A and the B sublattice, while twisted modes always fulfill U(T') = W(0), i.e. they are periodic
modes (C7) with guaranteed ¢ = 0.

C.2. Stability analysis
Given areference solution W(#) of the nonlinear wave equation (C1), we can analyse its stability by adding a
small perturbation

§U(t) = u(t) + vi(t), u= “A(t)), (VA(t)), Cl4
() = u(®) + v, w (MB(t) ] N (Cl4)
and linearizing in u and v. This yields the Bogoliubov equation
ua (t)
.d ug(t)
—(t) = H[Y(t t), t) = > C15
SO0 = HE@Le 0, w0 =7 (€15)
va(t)
with the Bogoliubov Hamiltonian
H+T A
H[Y] = ( N I‘*)’ (C16)
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FA 0 AA 0
I = , A = , C17
(o nfa=(3 4 e
where
. 8
Iy = Oy + ap)| —=——— — , C18
A,nm nm( A)((l T SAlAn|2)2 ’VA] ( )
. 84
I5um = 6, + ag)| —2—— — R C19
B, ( B)((1 SHB.E) 'YBJ (C19)
. Saga A,
A = =By + ap)——2A " | C20
A,nm nm( A)(l T SAIAnIZ)Z ( )
. SBgBBr%
Ap i = —0pm(i + ap) ———=—"——. C21)
" "1+ SpIBAPY (
For a stationary state fulfilling equation (C6), we seek solutions of the form u; = exp(—if2,t — w,,t) us('"),
v, = exp(iQ2,t — wmt)vs(m) (s = A, B), which follow from the eigenvalue equation
W™ = (H[™] — Q, %)™, (C22)
where here and in the following we use the Pauli-like matrices
0010 10 0 O
10 0 01 101 0 O
Ex_looo’ E2_00—10 (€23)
0100 00 0 -1

For a periodic state (C7), we first integrate the Bogoliubov equation over a period, so that ) (T) = U (T)v(0),
and then introduce the Bogoliubov—Floquet operator

F = exp(iX; ) U(T), (C24)

whose eigenvalues are denoted as A, = exp(—iw,, T). Here, the shift by the phase factor ¢ plays a similar role as
the appearance of 2, in equation (C22). In both cases, a solution is stable if all eigenvalues fulfill Im w,, < 0,so0
that the associated perturbations do not grow over time.

In general, the Bogoliubov Hamiltonian displays the symmetry

(HIYD* = =S H[V]Z,. (C25)
In the stationary case, this yields a spectrum w,, that is symmetric under reflection about the imaginary axis,
yielding pairs of eigenvalues w,,, &y, = —uw, and individual purely imaginary eigenvalues w,, = —uj*. This
includes a U(1) Goldstone mode
gy
0) — =
1/1 (—\I/(n)*), Wo 01 (C26)

which accounts for the free choice of the overall phase factor of a stationary solution. Analogously, the
Bogoliubov—Floquet spectrum contains complex-conjugate pairs of eigenvalues \,, \,, = A\’ and individual
real eigenvalues \,, = X . This again includes a U(1) Goldstone mode

W(t)
© = ., Ao=1 C27
Y (q,*(t)) 0 (€27)
reflecting the free choice of the overall phase of any solution, and now also a time-translation Goldstone mode
dv/de
1) — oo =1 C28
v (d\If*/dt) ' (€28)

that reflects the freedom to displace any solution W(¢) in time.

C.3. Topological modes
To account for the possible symmetries of the nonlinear evolution equation (C1) we adapt the general
considerations of [47]. The mapping of solutions (C9) amounts to the property

(H [\Ij])*lws,,,,(ys =—-ZH [‘I’] Zlfws,,,,fasa (C29)
g, 0
zZ= (0 UZ). (C30)
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Along with equation (C25), this property dictates that the Bogoliubov excitation spectra of the two mapped
solutions U, ¥ are identical. For o, = 0, ws,, = 0, we can use this to further deconstruct the excitation spectra of
topological modes. For zero modes (C12), we can distinguish symmetry-preserving excitations v, = 14,

vg = —up, fulfilling

Wi gttt = (H + 2" — V)uthm, (C31)
from symmetry-breaking excitations vy = —uy, Vg = U, fulfilling
W tt™™ = (H + V)ul>m, (C32)

where the latter includes the mode (C26), now expressed as u(—% = ¥, ;= 0.
For twisted modes (C13), we can factorize the Bogoliubov—Floquet propagator

F=ZUXT/2)ZU(T/2) = Z5,U(T/2)X.ZU(T/2) = F'?, (C33)
F = Z%5,U(T/2), (C34)
which defines the twisted half-step propagator F’. Its eigenvalues )}, determine the stability spectrum as

Am = (A\))2. The U(1) Goldstone mode (C27) fulfills 1” (T /2) = — Z%,4)(0), so that the associated
eigenvalue \j = — 1, while the time-translation mode (C28) fulfills 1))(T /2) = Z¥,1)7(0),s0 that \, = 1.

C.4. A briefnote on time evolution
The Bogoliubov Hamiltonian (C16) also naturally appears in an efficient numerical integration scheme of the
nonlinear wave equation (C1). For this we first introduce the wave equation in the doubled space,

i = Hod, = (;'*) (C35)
H+V 0
= . C36
Mo ( 0 —H*- V*) (€30
Using the mid-point predictor
O(t + di) = (1 — idtH — idtV[P(t + dt/2)])D(¢) (C37)

and linearizing in the exact same way as in the stability analysis, we then obtain
Ot + dt) =~ (1 + iHdt/2)7[1 — iQH, — H)dt/2]1D(), (C38)

which amounts to a second-order integrator akin to the Crank—Nicolson scheme.
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