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1 Abstract 

2 Epidemiological models in animal health are commonly used as decision-support tools to 

3 understand the impact of various control actions on infection spread in susceptible populations.  

4 Different models contain different assumptions and parameterizations, and policy decisions 

5 might be improved by considering outputs from multiple models.  However, a transparent 

6 decision-support framework to integrate outputs from multiple models is nascent in 

7 epidemiology.  Ensemble modelling and structured decision-making integrate the outputs of 

8 multiple models, compare policy actions and support policy decision-making.  We briefly review 

9 the epidemiological application of ensemble modelling and structured decision-making and 

10 illustrate the potential of these methods using foot and mouth disease (FMD) models.  In case 

11 study one, we apply structured decision-making to compare five possible control actions across 

12 three FMD models and show which control actions and outbreak costs are robustly supported 

13 and which are impacted by model uncertainty.   In case study two, we develop a methodology for 

14 weighting the outputs of different models and show how different weighting schemes may 

15 impact the choice of control action.  Using these case studies, we broadly illustrate the potential 

16 of ensemble modelling and structured decision-making in epidemiology to provide better 

17 information for decision-making and outline necessary development of these methods for their 

18 further application.
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24 Introduction

25 Transboundary livestock diseases can have devastating animal-health and economic impacts 

26 because such diseases are highly contagious, with the potential for rapid spread across 

27 geographic boundaries.  Government agencies and livestock industries worldwide continue to 

28 develop and refine their policy and management actions in the face of such threats (e.g. Keeling 

29 et al., 2003; Schoenbaum and Disney, 2003; Tildesley et al., 2006; Willeberg et al., 2011; Yoon 

30 et al., 2006).  Similar challenges exist more broadly in animal and human health, for example 

31 malaria (Murray et al., 2014), tuberculosis (Suen et al., 2014), and dengue fever (Wilder-Smith 

32 and Macary, 2014; Shaman et al., 2016).  Decision-making when managing transboundary 

33 livestock diseases is complex; it must balance trade-offs amongst competing objectives, limited 

34 resources, and uncertainty in disease risk (Taylor, 2003).  A variety of tools that incorporate data 

35 from empirical studies, previous outbreaks, and expert opinion are used to support science-based 

36 decision-making (Green and Medley, 2002; Woolhouse, 2003; Keeling, 2005), particularly for 

37 diseases such as foot and mouth disease (FMD) in non-endemic countries.  Many tools used to 

38 understand the potential for infection spread and the effect of response actions on that spread 

39 inherently require an underlying predictive model of disease transmission (Kao, 2002;  

40 Woolhouse, 2003; Keeling, 2005; Garner and Hamilton, 2011; Mansley et al., 2011; Willeberg et 

41 al., 2011).

42 Given the complexity of disease ecosystems, it is difficult to describe all aspects of disease 

43 processes accurately within one model. Choices must be made regarding what to include and 

44 what to omit, how to implement specific processes, and how to parameterize them. Thus, model 

45 outputs upon which policy decisions are based differ owing to different modelling approaches, 

46 assumptions, and parameter estimates (Green and Medley, 2002).  These model differences are 
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47 often justifiable.  Different models may produce similar or quite different outputs that can all be 

48 considered plausible, where plausibility is often supported either from first principles and 

49 parameterization from known literature values in the absence of observed outbreak data or by the 

50 match between model outputs and the characteristics of observed outbreaks, when they are 

51 available.  Variability among models is valuable because it captures uncertainty in the system 

52 and outbreak scenario, but reconciling variability can be difficult (Green and Medley, 2002; 

53 Keeling, 2005).  Many fields, including weather forecasting, climate-change science, and 

54 medical science, use a diverse portfolio of models to indicate to decision-makers the amount of 

55 uncertainty in possible outcomes (Mangiameli et al., 2004; Palmer et al., 2004; Araujo and New, 

56 2007).  Thus, justified model diversity should be harnessed to produce cohesive policy 

57 recommendations from models, but this requires a method to incorporate potentially disparate 

58 outputs objectively from an ensemble of model outputs. 

59 The idea of integrating model outputs to achieve a transparent decision-support 

60 framework has a relatively long history in weather forecasting (Sanders, 1963; Gneiting and 

61 Raftery, 2005 ;), hydrology (Cloke and Pappenberger, 2009; Velázquez et al., 2010), and 

62 climate-change modelling (Orsolini and Doblas-Reyes, 2003; Benestad, 2004; Palmer et al., 

63 2004; Tebaldi and Knutti, 2007; Chandler, 2013). In medical sciences, multi-model approaches 

64 are used to assist physicians in making a medical diagnosis (Mangiameli et al., 2004; West et al., 

65 2005).  Examples of integrated approaches within the ecological literature are increasing (Niu et 

66 al., 2014) and include particle-filtering (Doucet et al., 2001) and Bayesian (Lindström et al., 

67 2015)  approaches to integrate multiple parameterizations of a single model; another approach is 

68 using integrated climate-change data to describe future environmental variables used as inputs 

69 into ecological models (Araujo and New, 2007; Barbet-Massin et al., 2009; Coetzee et al., 2009; 
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70 Thuiller et al., 2009; Maiorano et al., 2011).  The latter approach has been applied in 

71 epidemiology where integrated climate projections were used to generate future environmental 

72 variables that drive predictions of disease incidence (Palmer et al., 2004; Thomson et al., 2006; 

73 Guis et al., 2012). To date, however, multiple model approaches have been applied only to a 

74 limited extent in public health (Thomson et al., 2006; Shaman et al., 2016) and in agriculture 

75 (Catelaube and Terres, 2005).  Recent work suggests a way forward for multi-model, decision-

76 support frameworks in epidemiology and animal health.  This work focuses on ensemble 

77 modelling (Ward et al., 2007; Shaman and Karspeck, 2012; Lindström et al., 2015; Shaman et 

78 al., 2016) and structured decision-making (Shea et al., 2014; Probert et al., 2016), although 

79 available methods, at the time of writing, are at a preliminary stage. 

80 Ensemble modelling (EM) combines model outputs to produce collectively a depiction of 

81 future states including uncertainty from several potential sources. Single-model ensembles use a 

82 single model structure but allow for different starting conditions and parameterizations whose 

83 outputs are combined to produce probability distributions of modelled outcomes (Tebaldi and 

84 Knutti, 2007).  The mean of the probability distribution is the expected outcome, and credible 

85 intervals quantify uncertainty in the outcome.  Two different single-model EM methods have 

86 been developed and applied in an epidemiological context to seasonal influenza (Shaman and 

87 Karspeck, 2012) and FMD (Lindström et al., 2015).  Multi-model ensembles incorporate outputs 

88 from a set of structurally different models, referred to as an ensemble, that can incorporate 

89 different underlying processes and contribute to the uncertainty estimate (Tebaldi and Knutti, 

90 2007).  These methods are in development for epidemiology (e.g. Shaman et al., 2016), but we 

91 later present a preliminary case study addressing this methodological gap.
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92 Structured decision-making (SDM) is a framework for analysing decisions by breaking 

93 them into component parts (Clemen, 1997). In doing so, the key impediments to making a 

94 decision are identified and effort can be focused on reducing uncertainty about relevant 

95 components. The goal is to identify the decision that mathematically maximizes (or minimizes) 

96 the specified objectives. By using a multi-model ensemble approach to SDM, uncertainty about 

97 underlying mechanisms and parameters may be incorporated in the decision process. SDM 

98 focuses on uncovering consensus as well as tradeoffs between underlying 

99 mechanisms/parameters (represented by different models) and choice of objectives.  Hence, 

100 SDM is a method that uses the component parts of decision-making to organize or partition 

101 uncertainty across models and objectives into a format in which major sources of uncertainty can 

102 be identified and addressed.  It has been used to facilitate decision-making in diverse fields such 

103 as organizational learning, the use and management of natural resources, adaptive management 

104 for pest control or biodiversity (Argyris and Schön, 1978; Hollings, 1978; Walters, 1986; Lee, 

105 1993; Shea and Management, 1998; Parma, 1999; Shea et al., 2002; Williams et al., 2007; 

106 Williams, 2011; Keith et al., 2011; Williams et al., 2011) and recently in animal health (Probert 

107 et al., 2016).

108 Methodological development integrating EM and SDM is needed to create human- and 

109 animal-health decision-support frameworks that integrate multiple model results (Karemer et al., 

110 2016; Lessler et al., 2016). A few studies have shown multiple model outputs side-by-side 

111 (Murray et al., 2012; Smith et al., 2012; Probert et al., 2016) or have truly integrated outputs 

112 from multiple parameterizations of a single model (Shaman and Karspeck, 2012; Lindström et 

113 al., 2015).  However, these approaches are not well-established and methods are lacking to deal 
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114 with integration of multiple, policy-informative simulation models with complex model 

115 structure.  

116 Our goal in this paper is to illustrate the potential of a combined multi-model EM and SDM 

117 approach and encourage further work in this area. We present two illustrative case studies; one 

118 highlighting the implementation of multi-model EM for an SDM scenario using a mock FMD 

119 outbreak simulated in Cumbria, UK, and one focusing on how to incorporate models with 

120 varying levels and types of plausibility into ensemble results by weighting the contribution of 

121 different models in an objective fashion using a mock FMD outbreak simulated in The Midlands 

122 and Wales, UK. We use an ensemble of FMD models that have been developed by a number of 

123 FMD-free countries that are engaged in preparedness planning (Ferguson et al., 2001; Keeling et 

124 al., 2001; Morris et al., 2001; Garner and Beckett, 2005; Harvey et al., 2007; Stevenson et al., 

125 2013) because of the large economic losses associated with previous outbreaks. We first briefly 

126 describe the situation with FMD modelling. We then apply EM and SDM approaches to illustrate 

127 how they can be used to integrate the outputs from multiple models and inform policy and 

128 outbreak management in the two case studies. However, we stress that our goal is not to provide 

129 specific recommendations with respect to FMD and that our results should not be taken as a 

130 broad policy recommendation.  Instead our goal is to illustrate how EM and SDM approaches 

131 could be more broadly applicable to both human- and animal-disease preparedness planning and 

132 response.  We focus on FMD models because this is where our expertise lies and because it is an 

133 important transboundary livestock disease with appropriate existing model results that were 

134 available to us.  In conclusion, we discuss the logistics of a fuller integration of EM and SDM 

135 and the potential benefits to disease response and preparedness planning.

136
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137 Foot and mouth disease models

138 We focus here on stochastic, spatially-explicit simulations of FMD, which comprise the 

139 majority of models used to inform FMD policy in the last decade, e.g. AusSpread (Garner and 

140 Beckett, 2005; Beckett and Garner, 2007), the Central Veterinary Institute model (CVI, Backer 

141 et al., 2012), Exodis FMD (DEFRA, 2005), InterSpread Plus (Morris et al., 2001; Stevenson et 

142 al., 2013), the North American Animal Disease Spread Model (NAADSM, Harvey et al., 2007), 

143 and the Warwick model (Keeling et al., 2001; Tildesley et al., 2006). While each of these models 

144 simulates the spread of disease between geographical locations where groups of animals are 

145 managed as a single unit (i.e. farms), they differ in the way infection and disease transmission is 

146 implemented. Many of these models incorporate multiple, specific pathways of transmission and 

147 are generally designed to reflect the environment, production and marketing systems of the 

148 source country for the model. Transmission pathways of infectious diseases mostly depend on 

149 the biology of the disease and are similar within different countries. However, these models also 

150 have built in flexibility that means they can be reparameterized or restructured and thus many of 

151 them can and have been used for other countries or diseases.  Examples of transmission 

152 mechanisms include livestock shipments, feed truck deliveries, wind borne movement and fence 

153 line contact. These models are often parameterized from empirical data collected during the 

154 course of FMD outbreaks in other countries, survey data and expert opinion. Models of this type 

155 include AusSpread, InterSpread Plus, and NAADSM. Other livestock disease models, such as 

156 CVI and Warwick, use phenomenological spatial kernels to represent a convolution of specific 

157 transmission pathways where the spatial kernel describes the neighbourhood of influence of an 

158 infectious location and the risk of disease transmission generally decreases as a function of 

159 distance from the focus of infection.  The risk of infection is therefore based upon the location, 
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160 size and species composition of each premises as well as the distance between them. The 

161 parameters of the spatial kernel can be estimated based upon historical data (Keeling et al., 2001, 

162 Hayama et al., 2013).  Exodis-FMD uses a mixture of spatial kernels and specific transmission 

163 pathways.  In the interest of brevity, we do not describe further details of the models, but present 

164 a summary (Table 1) and rely on this summary, their policy relevance and peer-reviewed status 

165 as sufficient justification of the models since the work proposed here does not depend directly on 

166 the exact details of the models. 

167 Within the context of FMD (and we suspect for other disease systems as well) the lack of a 

168 decision-support framework for integrating model outputs means that often a single model is 

169 used by analysts and policy makers or when multiple models are used their integration is 

170 informal. Although these informal integrations are generally regarded as appropriate, decision-

171 making could be improved by more formal methods and transparency in how multiple model 

172 outputs are combined through EM and SDM.

173 The first steps of a multi-model approach were begun as part of the “QUADS” series of 

174 comparison studies (Dubé et al., 2006; Roche et al., 2014, Roche et al., 2015) in which results 

175 were compared for standardized scenarios across a suite of FMD models (AusSpread, CVI, 

176 Exodis FMD, InterSpread Plus, and NAADSM). The QUADS studies found that model results 

177 were similar across many--but not all-- of the scenarios considered; the QUADS studies also 

178 improved the understanding of individual models by highlighting the importance of model 

179 assumptions that generated outputs that differed from the rest of the model suite.  This type of 

180 comparison was critical because it provides a logical starting point for fuller integration of 

181 outputs, e.g. EM and SDM.  To illustrate EM and SDM, we focus on the models used in the 

182 QUADS studies plus one additional model (Warwick).  
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183

184 Case study one: Structured decision-making

185 Uncertainty in model outputs given a particular control action is sometimes of more 

186 interest than the predicted number of infected locations or epidemic duration (Yoon et al., 2006).  

187 The ensemble of model outputs encapsulates this uncertainty about the spatiotemporal dynamics 

188 of infection spread, which may be a limiting step in the decision process. SDM assists decision-

189 making by incorporating this uncertainty while mathematically determining optimal management 

190 decisions given specified objectives (Shea et al., 2014). The first step in an SDM approach is to 

191 formalize the objectives, i.e. the fundamental goals that managers are trying to achieve through 

192 their actions. The objectives, e.g. minimizing loss of livestock, minimizing epidemic duration, 

193 minimizing economic costs, then provide a common measure by which to evaluate control 

194 actions implemented in each model in the ensemble. 

195 For relatively simple decision-analysis problems, the objectives can be evaluated by 

196 generating a simulation experiment to project the outcome of all possible combinations of 

197 control actions and models under consideration.  Because our goal is to provide a perspective on 

198 the use of SDM in epidemiology, we direct readers interested in more detailed methods to 

199 Probert et al. (2016).  In this case study, we focus on three FMD models where the needed 

200 outputs were available to us: AusSpread, NAADSM, and Warwick (Table 2).  Within the case 

201 studies, we anonymize model names because our focus is on ensemble methods and not model 

202 comparison.  We illustrate SDM with a simple simulation experiment for a landscape consistent 

203 with Cumbria, UK (details in Appendix A) that determines the mathematically optimal decision 

204 for a given objective among five possible control actions in response to an FMD outbreak: 1) 

205 culling of infected premises (IPs) only; 2) culling of IPs and those that have been identified as at 
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206 risk because they have had contact with IPs (contact tracing); 3) culling of all farms within 3 km 

207 of IPs in addition to IP culling; 4) vaccination of all farms within 3 km of IPs in addition to IP 

208 culling; and 5) vaccination of all farms within 10 km of IPs in addition to IP culling. The model 

209 outputs depend strongly on multiple factors specific to the scenario investigated here, such as 

210 underlying farm demography, the level of efficiency in the implementation of control strategies 

211 and constraints on control resources.  Hence, policy recommendations from the case study are 

212 specific to this scenario.

213 The output of each simulation was summarized with respect to three measures of the 

214 outbreak: 1) the economic cost (see description in Appendix A) in terms of the re-imbursement 

215 payments to producers for culled animals only, assuming that vaccinated animals are not 

216 subsequently culled owing to vaccination (vaccinate-to-live); 2) the economic cost in terms of 

217 the re-imbursement payments to producers for culled and vaccinated animals (i.e. assuming that 

218 vaccinated animals will also be subsequently culled owing to vaccination); and 3) the duration of 

219 the epidemic from the first detected case to the last animal culled or vaccinated, which would 

220 reflect the economic costs associated with the disruption of trade due to export bans.  Particularly 

221 with respect to the vaccinate-to-live strategies, we highlight that these strategies have a number 

222 of other impacts (e.g. on animal movement, trading bans and animal welfare) that are not 

223 specifically captured in the outbreak measures used.   The outcome of each control action was 

224 simulated within the three models and the optimal action was taken as that which minimized the 

225 outbreak duration (Table 2) or economic cost (Table 3).  See Appendix A for details of the 

226 simulations.  

227 Here, all three FMD models predict the lowest mean cost due to livestock culled if a 10-

228 km ring vaccination action was applied – thus, although each model predicts different numbers 
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229 of cattle culled (Figure 1), the decision that minimizes that outcome is robust to model 

230 uncertainty. In contrast, if the objective was to minimize the duration of the outbreak – i.e. 

231 because of the larger economic costs of trade restrictions – the three models in the ensemble 

232 made differing predictions of the best control action: both models 1 and 2 recommended a 3-km 

233 culling ring, whereas model 3 recommended a 10-km vaccination ring (Table 2). This highlights 

234 that the important distinction is whether the transmission dynamics are more likely to behave like 

235 those of models 1 and 2 or like model 3, but distinguishing between models 1 and 2 would not 

236 affect the decision about the action to take. In the absence of empirical evidence supporting one 

237 model over another, policy-makers might set the initial policy as that which minimizes the 

238 expected objective with respect to model uncertainty; here, 3-km ring culling is the preferred 

239 option if the three models are given equal weight. If there is support for unequal weighting of 

240 projection models, this can easily be incorporated into the proposed framework by taking a 

241 weighted average of projected outcomes (i.e. an expectation relative to a probability model with 

242 unequal weights on projection models) (McDonald-Madden et al., 2010; Shea et al., 2014).  

243 There are many ways to arrive at unequal weights for projection models, ranging from goodness-

244 of-fit to historical or contemporary surveillance data to expert opinion (McDonald-Madden et al., 

245 2010; Shea et al., 2014).  We present a novel approach to assessing model weights below.

246 Model uncertainty need not be the only factor limiting decision-making (Probert et al., 

247 2016).  The mathematically optimal decision is a consequence of interactions between the 

248 underlying model dynamics and the management objective.  Table 3 illustrates the dependency 

249 of the least costly control action, with outcomes averaged over the three FMD models, for two 

250 different management objectives (i.e. measures of epidemic outcome).  Clearly, when 

251 vaccination has a low cost (i.e. compensation is only required for infected and not for vaccinated 
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252 animals – vaccinate-to-live) an aggressive vaccination approach is favoured in all models.  

253 However, if producers must be compensated for vaccinated animals (vaccinate-to-die), then 

254 limited culling minimizes costs. Vaccination may incur additional costs not considered here, 

255 such as longer trade bans (Paarlberg et al., 2008; Anonymous, 2014) and, as seen above, more 

256 aggressive ring culling results in the shortest outbreaks, when averaged across all models (Table 

257 2). Thus, by taking an ensemble approach, we can highlight consensus recommendations and the 

258 sensitivity of model output to the formulation of objectives that might have been confounded 

259 with model choice in a single model analysis (Probert et al., 2016).  Total economic costs are 

260 arguably a more complete, and perhaps preferable, objective.  However, their calculation 

261 requires a sophisticated economic analysis taking into account decisions made by trading 

262 partners that may itself have significant uncertainty.  The specification of a full economic model 

263 for outbreak costs is beyond the scope of the current analysis, but we address the dependence of 

264 the analysis on alternative objectives in the General Discussion.

265

266 Case study two: Model weighting 

267 In case study one, the contribution of each model was equally weighted and its influence 

268 spread uniformly (see also Murray et al., 2012; Smith et al., 2012). Here, we illustrate the 

269 application of the Bayesian Reliability Ensemble Average (BREA) method (Tebaldi et al., 2005) 

270 to epidemiology, which can take into account multiple influences on model weights (see 

271 Appendix B and Lindström et al., 2015 for technical details). The original BREA method 

272 estimates model weights based on agreement with observed data (bias criterion) and consensus 

273 between models (convergence criterion), which down-weights outliers. In the original climate 

274 change application of BREA (Tebaldi et al., 2005), the main quantity of interest was the 
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275 estimated current and future mean temperature.  The framework was set up to allow for 

276 correlation between current and future temperature estimates, so that, for example, a model that 

277 under-predicts current mean temperatures might also do so for future mean temperatures. The 

278 BREA climate change example is analogous to the epidemiological problem where instead of 

279 current and future mean temperatures we substitute an outbreak quantity under the implemented 

280 control strategy and an alternative control strategy that a policy maker would like to compare 

281 (Lindström et al., 2015).  This approach is easily expandable to consider multiple outbreaks and 

282 multiple, alternative control actions in epidemiological applications.  

283 A major advantage is that BREA produces easily interpretable probability distributions for 

284 outbreak quantities (e.g., size, duration, economic costs) under two or more different control 

285 actions. The BREA framework promotes straightforward communication of uncertainty in 

286 outcomes and the effect of control actions rather than just the most likely outcome (Wade, 2000) 

287 or an equally-weighted, average outcome (as in Case Study 1). The BREA method is also 

288 technically appealing because it can be used for applications where relatively small amounts of 

289 data are available and model fitting-to-data is not required (Lindström et al., 2015). The 

290 weightings in the BREA method can be based on summary statistics (e.g. number of infected 

291 premises, outbreak duration, economic costs), which allows integration of models for which 

292 outputs are not necessarily of the same format (e.g. temporal or spatial scale). Thus, we 

293 anticipate that the BREA method will be broadly applicable in veterinary epidemiology.  

294 Our case study incorporated simulations from a QUADS scenario outbreak consistent with 

295 the Midlands counties and Wales in the UK performed with five models: NAADSM, AusSpread, 

296 CVI, Exodis FMD, InterSpread Plus, and we further added the Warwick model to the ensemble. 

297 We used outbreak duration as the quantity of interest and focused on comparison of two control 
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298 actions from the QUADS studies (Roche et al., 2014; 2015): IP culling (scenario S0 in the 

299 QUADS studies: stamping out) and IP culling plus suppressive, prospective vaccination within 

300 one km around IPs (scenario V6 in the QUADS studies). See Appendix B for more details on the 

301 simulations. The original QUADS studies were based on standardized scenarios for model 

302 comparison as opposed to actual outbreak data. Thus, we were unable to implement the bias 

303 criterion aspect of estimated weights for this case study.  Instead, we focus on comparison 

304 between equal-weighting as in Case Study 1 and weighting using the convergence criterion to 

305 down-weight outliers. We discuss the role of the bias criterion in estimating weights in the 

306 General Discussion below.

307 Figure 2 shows the mean individual-model outputs as well as the marginal posterior 

308 probabilities (probability distributions) of outbreak duration under the two considered weighting 

309 schemes: equal-weighting and weighting based on the convergence criterion (see Appendix B 

310 and Lindström et al., 2015 for technical details). Depending on the weighting scheme, the 

311 expected outbreak duration (posterior mean and 95% central credibility interval) is reduced by 

312 44.5 [-4.2, 104.3] or 32.8 [0.2, 88.2] days when vaccination is implemented with equal-

313 weighting and convergence-weighting respectively. When implementing the convergence 

314 criterion for weighting, the distributions are shifted towards the centre of the ensemble compared 

315 to equal-weighting. This formally down-weights outliers, providing a more conservative estimate 

316 of the reduction in duration with vaccination, which here indicates a positive effect of 

317 vaccination in the Midlands counties and Wales scenario. However, the probability distributions 

318 corresponding to either weighting scheme are wide, with estimated reduction ranging from little 

319 (or no) effect to several months. This stems from the discrepancy among the model predictions, 

320 and demonstrates the hazard of relying on a single model to inform policy.   
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321 As the number of outbreaks and control actions considered increases, the complexity of 

322 estimating convergence-weighting increases and would be extremely difficult to justify without a 

323 BREA-like approach.  Returning to an issue raised in the Introduction, the assumption in this 

324 case study is that the weighting of models differs based on their similarity with other models.  

325 Models with lower weights in this context are not eliminated from the ensemble (instead they are 

326 down-weighted); and incorporating some influence of these models on the integrated predictions 

327 is justified given that their similarity (convergence) with other models in this case study differs 

328 under different control actions (e.g. in Figure 2 the green and cyan models are outliers under 

329 different control scenarios).  Similarly if we had been able to include the bias-weighting in this 

330 case study, models would be further weighted with respect to their predictions of observed 

331 outbreak statistics (see Lindstrom et al., 2015 for a single-model example with both bias- and 

332 convergence-weighting).

333 General Discussion

334 Given the differences among modelling approaches, they sometimes appear to be in 

335 competition with one another (Kao, 2002; Woolhouse, 2003; Keeling, 2005; Garner and 

336 Hamilton, 2011). We suspect this competition largely comes from limited funding and 

337 constraints on how much model uncertainty can currently be incorporated into policy 

338 recommendations so that often a single model informs policy. However, model differences can 

339 be important characterizations of different risks in an outbreak, and uncertainty in these risks 

340 should be propagated to the evaluation of alternative actions.  There is also growing interest in 

341 collaboration among different modelling teams (Dubé et al., 2007; Gloster et. al., 2010; Sanson 

342 et al., 2011) that serves to enhance emergency preparedness and builds confidence in model 

343 results.  Ensemble approaches provide a way to use models representing different assumptions in 
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344 a complementary framework, thus emphasizing the potential for models to be mutually 

345 informative while propagating uncertainty in epidemic processes to the evaluation of actions.  

346 Case Study 1 using SDM, and Case Study 2 using BREA produce qualitatively similar 

347 results: that the addition of ring vaccination with a relatively smaller radius results in shorter 

348 outbreaks (~30 days shorter) in expectation; but, the BREA analysis highlights that strong 

349 variation in outcomes within and between model projections results in very weak evidence that 

350 this intervention will differ from simple IP culling.  However, our goal is not to recommend 

351 particular control actions for FMD, but to illustrate how control recommendations can be 

352 integrated across multiple models and objectives. Model predictions of the effectiveness of 

353 control will be highly dependent upon logistical capacities and it is therefore important to stress 

354 that the control strategies predicted to be optimal in this analysis according to the SDM approach 

355 may change as culling and vaccination capacities are varied. This phenomenon has been 

356 investigated in detail elsewhere for the Warwick model (Tildesley et al. 2006). 

357 SDM, as illustrated in Case Study 1, focuses on the issues associated with the choice of 

358 objective and the potential for tradeoffs when multiple objectives are considered. One obvious 

359 choice of objective is total economic costs, as is reducing the risk of adverse events (Gerber et 

360 al., 2007). In the 2001 UK FMD outbreak, implementation of specific control actions was 

361 influenced by several factors throughout the epidemic, including the availability of resources, the 

362 perceived likelihood of spread and public perception of the impact of interventions (Andersen 

363 2002).  Hence, objectives associated with animal welfare (e.g. number of animals impacted), 

364 maintenance of culturally important lifestyles (e.g. number of family farms impacted), 

365 environmental damage (e.g. arising from the burial or burning of carcasses) and crisis fatigue 

366 (e.g. duration of the control period) may better reflect the objectives of the many stakeholders in 
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367 this decision.  Exact specification of these objectives may only be possible with retrospective 

368 analysis in which data on direct outbreak costs as well as trade and additional other impacts are 

369 available.  In response situations and for more open-ended preparedness planning scenarios, 

370 information on costs not directly associated with control actions can be difficult to specify. In 

371 these situations, direct measurements of the outbreak such as the number of animals infected, the 

372 number of premises infected and outbreak duration along with associated costs of these actions 

373 may be all that is available.  Thus, there are multiple objectives that may be desirable to consider 

374 and understanding how tradeoffs among them interact with model uncertainty is the goal of SDM 

375 and of benefit in decision-making.

376 In contrast to SDM, BREA focuses on how to integrate multiple weighting schemes.  

377 Bias-weighting has been used for several single-model ensembles (Murray et al., 2012; Shaman 

378 and Karspeck, 2012; Lindström et al., 2015), and the next steps are to implement these 

379 methodologies for the type of multi-model ensembles illustrated in Case Study 2.  Bias-

380 weighting, based on the match of model predictions to observed data, is clearly an important way 

381 to incorporate the plausibility of models into an integrated policy recommendation.  However, it 

382 should not be the sole consideration in all circumstances. Our experience is that models often 

383 perform differently in different situations, and there is no single best model in terms of prediction 

384 accuracy in all settings.  Thus when considering alternative future control actions, i.e. for which 

385 observed data are unavailable, weighting based on bias relative to past observations alone may 

386 unnecessarily down-weight models that are more plausible for alternative control actions.  

387 Convergence-weighting, based on the match of model predictions to each other, is a 

388 complementary approach.  The assumption here is that models that incorporate appropriate 

389 mechanisms, for example because they are based on established first principles, should behave 
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390 similarly.  The incorporation of both bias- and convergence-weighting captures the tradeoff 

391 between bias and precision in ensemble forecasts or predictions and would be our recommended 

392 approach.  Because BREA methods are Bayesian, expert opinion in the form of priors can also 

393 be included (Kuhnert et al., 2010).  

394 While EM and SDM methods individually facilitate the incorporation of multiple models 

395 into decision-making, we advocate the development of methodologies that combine both 

396 approaches by combining multiple objectives and weighting schemes.  This is feasible within the 

397 BREA framework and methods development is underway to expand the BREA framework with 

398 bias- and convergence-weighting to multiple summary statistics.  Multiple summary statistics are 

399 often correlated, and this must be appropriately taken into account.  However, different summary 

400 statistics have different information content if not fully correlated.  Thus, using a combination of 

401 summary statistics will further improve predictions (as more information can be used) while 

402 more fully incorporating tradeoffs among objectives and multiple weighting schemes.  This 

403 overall framework is highly flexible and can be applied in both preparedness and response 

404 settings with potential expansion to address questions beyond alternative controls.  Analogous 

405 with climate change in which the goal is to capture current and future climate characteristics, 

406 BREA could use current outbreak data to predict future outbreak characteristics, such as final 

407 size and duration for proposed response scenarios.  Further, this overall framework can be 

408 extended to allow for adaptive decision-making; i.e. as with model weights in EM, real-time 

409 observation may result in increased support for a subset of models within the ensemble and thus 

410 decisions might be made with greater weight on the outputs of that subset (Williams et al., 2007; 

411 Williams, 2011; Williams et al., 2011).  As a given outbreak progresses, observations may 

412 increasingly support the predictions of one model over the others, setting the stage for an 
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413 adaptive management approach ( Williams et al., 2007; Williams et al., 2011; Williams, 2011; 

414 Shea et al., 2014) that shifts from the initial action that is robust to model uncertainty, to an 

415 action that is conditionally optimal for the best supported model.

416 There are many potential benefits to a combined EM and SDM approach simply in terms 

417 of the integration across models and objectives for more straightforward policy 

418 recommendations.  Additionally, ensemble methods have improved prediction over single 

419 models in other areas of science (Palmer, et al., 2004; Gneiting and Raferty, 2005; Velazquez et 

420 al., 2010; Niu, et al. 2014).  Our experience has been that the primary hurdles to integrating 

421 multiple models are not technical but logistical.  Choice of plausible models to include in the 

422 ensemble is key as an ensemble of poor models can only produce poor predictions.  The 

423 individual models are complicated, so organizing collaboration among modeling groups or 

424 training individuals to work across multiple models is both critical and challenging.  For many 

425 transboundary animal diseases, including FMD, the data are international and confidential in 

426 nature and often government owned.  Thus, negotiating international access and agreements for 

427 data sharing with modeling groups is also a challenge. A final challenge is developing an 

428 appropriate pipeline that works across different models for implementing standardized scenarios 

429 and standardized outputs of individual models for use in the ensemble model.  We find that a 

430 formal feedback stage including all individual modeling groups is key to resolving differences in 

431 interpretation of implementation (scenarios and parameters) because the models generally work 

432 differently.  Such a pipeline is important for improving the efficiency with which ensemble 

433 results are produced.  Once ensemble results are confirmed, straightforward visualizations of 

434 results can be produced for decision-makers that illustrate the benefit of reducing modeling 

435 uncertainty given outbreak measures of interest (such as Tables 2 and 3) and that illustrate the 
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436 relative benefit of different control actions while integrating across models and incorporating our 

437 uncertainty in predictions (such as Figure 2).  Our experience has been that both modeling 

438 groups and data owners are fundamentally interested in collaboration and quickly see the 

439 benefits of EM and SDM approaches, but patience and persistence are needed to successfully 

440 develop the type of consortium needed to implement this framework.

441

442 Conclusions

443 Because an integrated EM and SDM framework will evaluate the outcomes of all models in an 

444 ensemble across multiple objectives, they are useful to highlight control actions that are robust to 

445 existing model uncertainty, identify the key differences among models in the ensemble that must 

446 be clarified to resolve uncertainty in the best action, and illustrate trade-offs among the 

447 objectives of management.  Although we were motivated here by our experience with FMD 

448 models, the proposed framework is broadly applicable to most, if not all, transboundary animal 

449 diseases.  Full development of this framework will take time, but it is a good investment because 

450 of the role of models in policy and the complexity of integrating outputs from multiple models.  

451 Clearly, there is a need to more strongly engage policy makers in development and use of more 

452 science-based processes to integrate model recommendations both to inform policy and to 

453 overcome constraints such as data collection and data sharing.  Although many challenges exist 

454 to the development of ensemble approaches for models of livestock and other diseases, their 

455 successful application in weather forecasting and other predictive sciences provide strong 

456 evidence for the importance of pursuing similar approaches in disease modelling.

457
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675 Appendix A - Methods for Case 1: Structured decision-making

676 For each of the 15 combinations of five control actions and three models (AusSpread, 

677 NAADSM, and the Warwick model), we generated 100 stochastic simulations of an FMD 

678 outbreak on a simulated landscape of 8000 farms.  Farm sizes, composition (proportions sheep 

679 and cattle), and spatial distribution were chosen to be consistent with the Cumbria region of the 

680 UK.  We chose the Cumbria region because of its relevance for the 2001 UK FMD outbreak, and 

681 because the models used in this example were already parameterized for an FMD outbreak in 

682 this region.  During the UK 2001 outbreak, Cumbria was severely affected, with between 20 and 

683 30 farms reporting infection per day at the peak of the outbreak and animals on up to 150 farms 

684 being pre-emptively culled in an attempt to control the outbreak. This resulted in a maximum of 

685 48,000 animals being culled per day in Cumbria alone. Vaccination was not used in 2001 for a 

686 number of reasons, not least of which was that there was insufficient capacity at the time to carry 

687 out a sustained vaccination campaign (Andersen 2002). Since 2001, vaccination has been 

688 considered as part of the UK FMD contingency plan, with DEFRA estimating that at most 

689 35,000 animals could be vaccinated per day nationwide during a future FMD epidemic 

690 (Tildesley et al. 2006). In this paper we are considering a localised outbreak in Cumbria from a 

691 single source and with this in mind we assume a conservative daily culling capacity of 50 farms 

692 per day and a maximum vaccination capacity of 10,000 animals per day. Our objective in this 

693 section of the paper is to explore the effectiveness of structured decision making in determining 

694 the effectiveness of control, and it would be naïve to assume that the optimal strategy will be 

695 consistent as capacities are increased. 

696 For all simulations we assumed an initial period of undetected spread for 10 days prior to 

697 the first detected case. Parameterizations for NAADSM and AusSpread were based on those 
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698 described in Sanson et al. (2011). The parameterization used in the Warwick model was as in 

699 (Tildesley et al., 2008). The reimbursement costs to farmers were calculated as 1000£ per cattle 

700 and 100£ per sheep and are based upon estimates of market prices of cattle and sheep in the UK 

701 during the 2001 outbreak.

702

703 Appendix B - Methods for Case 2: Determining ensemble weights

704 Application of Bayesian Reliable Ensemble Average Method to Epidemiology

705 We here describe the BREA method used in Case study 2.  For a fuller exposition on BREA 

706 methods in epidemiology including both bias and convergence criteria, we refer readers to 

707 Lindström et al. (2015).

708 One of the key aspects of the BREA method is that weights, expressed as a precision 

709 parameter λi, are estimated jointly with the parameters of interest.  In the original climate-change 

710 application of the BREA method (Tebaldi et al., 2005), the main quantity of interest was the 

711 estimated current and future mean temperature, denoted μ and  respectively. The relationship Î_

712 between these quantities (included in the analysis as random variables) and simulated current and 

713 future mean temperatures (denoted Xi and Yi, respectively) for each model  was given by 𝑖

714  (0.1)
( )

( ) ( )( )
1

1

~ Normal ,

~ Normal ,

i i

i i i

X

Y X

µ λ

ν β µ θλ

−

−+ −

715 The parameter β  is included to allow for correlation between current and future temperature 

716 estimates, so that, for example, a model that under-predicts current mean temperatures might also 

717 do so for future mean temperatures.  Further, θ is included to allow for different levels of 
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718 discrepancy between projections of current and future temperatures, e.g. model simulation 

719 outputs may be more similar for current than for future temperature projections.  

720 The BREA climate-change example is analogous to the epidemiological problem where, 

721 instead of current and future mean temperatures, we substituted an outbreak summary statistic 

722 (e.g., number of culled animals, number of vaccine doses administered, outbreak duration) under 

723 two different control actions. For equal-weighting of models, we estimated a single precision 

724 parameter , common for all models, i.e.  , and for weights based on the λ̂ 1 2
ˆ

nλ λ λ λ= =… =

725 convergence criterion we estimated λi for each model i. For the latter we also implemented a 

726 hierarchical approach similar to Smith et al. (2009) with  that estimates 𝜆𝑖~𝐺𝑎𝑚𝑚𝑎(𝑘𝜆,𝑘𝜆 𝑚𝜆)
727 hyperparameters kλ (shape) and mλ (mean) of λ in the analysis (Lindström et al., 2015). This 

728 corresponds to the assumption that the models in the ensemble come from a population of 

729 possible models, and the outbreak quantities of interest for this population are estimated. This 

730 approach reduces the sensitivity to which models are included or excluded in the analysis (Smith 

731 et al., 2009).  Defining the gamma distribution by mλ allows us to specify a prior for a 

732 hyperparameter that corresponds to  in the equal-weighting analysis. λ̂

733 The method proposed by Tebaldi et al. (2005) also includes observed mean temperature, X0, 

734 in the analysis as ( )00
1~ Normal ,X µ λ −  where λ0 is the precision of natural variability in 

735 temperature. In climate modelling, it is reasonable that λ0 is known, and it might also be the case 

736 for some data-rich diseases that variability in outbreak size or duration is known. However, in 

737 other cases such as FMD, natural variability in outbreak summary statistics is unknown. Thus, 

738 we included  as an estimated parameter for the natural variability in the 𝜆0~𝐺𝑎𝑚𝑚𝑎 (𝑎𝜏,𝑏𝜏)

739 outbreak summary statistic in the epidemiological application of BREA (Lindström et al., 2015). 
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740 The stochastic simulations used for projection provided a mean simulated summary statistic, but 

741 also a range of the summary statistic. In the absence of a sufficient number of observed 

742 outbreaks to quantify λ0, we estimated λ0 based on variability in the simulated projections via the 

743 hierarchical parameters, .𝑎𝜏,𝑏𝜏

744 Because the BREA method is a Bayesian approach, priors need to be specified for all 

745 random variables. Where possible, we implement the same, vague priors as used by Tebaldi et al. 

746 (Tebaldi et al., 2005) and specified  and , i.e. a 𝑃(𝜇) = 𝑃(𝜈) = 𝑃(𝜃) ∝ 1 𝑃(𝛽) = 𝐺𝑎𝑚𝑚𝑎(𝑎𝛽,𝑏𝛽)

747 gamma distribution with shape  and rate , with . For the analysis of equal 𝑎𝛽 𝑏𝛽 𝑎𝛽 = 𝑏𝛽 = 0.001

748 weights, we implemented the prior , with . For the model  𝑃(𝜆) = 𝐺𝑎𝑚𝑚𝑎(𝑎𝜆,𝑏𝜆)  𝑎𝜆 = 𝑏𝜆 = 0.001

749 with different weights, we implemented a hierarchical model, similar to Smith et al. (Smith et al., 

750 2009), and specified , i.e. a gamma distribution with shape  and mean 𝜆𝑖~ 𝐺𝑎𝑚𝑚𝑎(𝑘𝜆,𝑘𝜆 𝑚𝜆) 𝑘𝛽

751  By using this parameterization, we may express the prior on , which is the corresponding 𝑚𝜆. 𝑚𝜆

752 parameter to  in the equal-weight analysis. Thus, by using  for 𝜆 𝑃(𝑚𝜆) = 𝐺𝑎𝑚𝑚𝑎(𝑎𝑚,𝑏𝑚) 𝑎𝑚 =

753 , we may ensure that potential differences observed between the two weighting 𝑏𝑚 = 0.001

754 schemes are not the result of different priors. We also specified  for 𝑃(𝑘𝜆) = 𝐺𝑎𝑚𝑚𝑎(𝑎𝑘,𝑏𝑘) 𝑎𝑘

755 , thus allowing for a wide range of shapes of the hierarchical distribution. = 𝑏𝑘 = 0.001

756 Because duration is inherently positive, we specify our model on the log-scale to fit with the 

757 assumptions of Eq. 0.1. That is,  and  are interpreted as the mean log-duration, and μ and ν iX iY

758 are the corresponding ensemble quantities. In Figure 2, we present the marginal distribution of 

759 these quantities, i.e. integrating over all other parameters in Eq 0.1, including model weights .  𝜆𝑖

760 However, for transparency we transform all quantities and parameter estimates back to the 



35

761 original scale (rather than the log-transformed duration) with days as unit. As such, our results 

762 are presented for the geometrical mean duration.

763 Simulations

764 Case study 2 focuses on a mock outbreak of FMD in a subpopulation of farms from the 

765 UK, consisting of the Midlands counties and Wales. AusSpread, the CVI model, Exodis FMD, 

766 InterSpread Plus, and NAADSM had already simulated outbreaks as part of the QUADS studies 

767 (Roche et al., 2014; 2015).  We simulated the Warwick model for the same initial conditions, 

768 underlying demography, and control measures as the QUADS studies scenarios (as given in 

769 Roche et al., 2015).  Table B1 summarizes the simulation data of the models used in the BREA 

770 analysis for Case Study 2.

771 Vaccinations included all species and were assumed to start 14 days after first detection.  

772 Simulations started after the silent-spread phase, thus excluding transmission via animal 

773 shipments, and all models, scenarios, and replicates were seeded with the same 20 infected 

774 farms, of which one was detected. Further details on the assumptions can be found in Roche et 

775 al. (2014; 2015). 
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Figure 1.  The distribution of predicted cattle culled for 100 realizations of each combination of 

control action (rows) and model (columns).



Figure 2. The expected predicted outbreak duration in days under control actions with infectious 

premises culling (A) and with vaccination in addition (B) and the difference from using 

vaccination (C). Coloured, dashed lines indicate the mean projection of each individual model, 

consistently coloured across the three panels. The marginal posterior probabilities of the 

ensemble analysis with equal weights (black lines) and convergence weighting (grey lines) are 

indicated and were calculated as described in Appendix B.



Table 1. Summary of FMD model properties. All models are stochastic, spatially explicit, state–transition models. IP: infected 

premises, DC: dangerous contact, CP: contiguous premises.

model transmission via control measures references

AusSpread Specific pathways

Quarantine, movement ban by zone or entire region, 

forward & backward tracing, IP, DC, and/or CP culls, 

vaccination, surveillance

Garner and Beckett, 2005;

Beckett and Garner, 2007

CVI Spatial kernel
Regulating transports, DC tracing,  IP culls, ring culling, 

ring vaccination

Backer et al., 2012

Exodis-FMD

Mix of spatial 

kernel and 

specific pathways

Movement ban, protection & surveillance zones, culling 

of IP, DC, and/or contiguous, ring culling, welfare 

culling and vaccination, implemented by county.

DEFRA, 2005

InterSpread 

Plus
Specific pathways

Quarantine, movement ban by zone or entire region, 

forward & backward tracing, IP, DC and/or CP culls, 

vaccination, surveillance

Morris et al., 2001;

Martinez-Lopez et al., 2009a; 

2009b;

Yoon et al., 2006;

Stevenson et al., 2013



NAADSM Specific pathways
Movement ban by entire region, forward tracing, IP, 

DC, and/or CP culls, vaccination, surveillance 

Harvey et al., 2007

Warwick Spatial kernel Movement bans, IP, DC, and/or CP culls, vaccination
Keeling et al., 2001;

Tildesley et al., 2006



Table 2.  Mean predicted duration (days) of outbreak for each model and control action.  Shading 

indicates the action resulting in the shortest predicted outbreak duration for each model. 

Numbers in parentheses indicate the 10th and 90th quantiles of the distribution of outcomes.  The 

“average” row gives results for an equally weighted mixture of the distributions resulting from 

each model.

culling only culling and vaccination

infected

premises1

contact 

tracing2

3-km ring 

culling3

3-km 

vaccination4

10-km 

vaccination5

Mean predicted duration (days):

Model 1 151 (39, 396) 98 (37, 182) 42 (23, 74) 69 (38, 101) 69 (34, 110)

Model 2 135 (59, 245) 137 (52, 243) 17 (11, 27) 116 (48, 213) 110 (45 ,205)

Model 3 65 (27, 107) 42 (27, 56) 69 (29, 111) 43 (23, 64) 38 (24, 49)

average 117 (36, 222) 92 (33, 187) 43 (13, 93) 76 (30, 159) 72 (29 ,128)

1 culling of infected premises only

2 culling of infected premises and those identified as dangerous contacts 

3 culling in a 3-km ring around infected premises, including infected premises

4 vaccination in a 3-km ring around infected premises and culling of infected premises

5 vaccination in a 10-km ring around infected premises and culling of infected premises



Table 3.  Model-averaged predicted cost for each objective (rows) and control action (columns).  

Predicted costs are given in millions of pounds (£). Numbers in parentheses indicate the 10th and 

90th quantiles of an equally weighted mixture distribution of the outcomes of the three models. 

Shading indicates the action with lowest mean predicted cost for each objective.

                   culling only               .      culling and vaccination

objective infected

premises1

contact 

tracing2

3-km ring 

culling3

3-km 

vaccination4

10-km 

vaccination5

Predicted costs in millions of pounds (£)

vaccinate-to-live 11.0 (2, 19) 8.8 (2, 18) 10.6 (3, 20) 5.1 (2, 9) 4.5 (2, 8)

vaccinate-to-die 11.0 (2 ,19) 8.8 (2, 18) 10.6 (3, 20) 23.8 (7, 44) 90.3 (22, 156)

1 culling of infected premises only

2 culling of infected premises and those identified as dangerous contacts 

3 culling in a 3-km ring around infected premises, including infected premises

4 vaccination in a 3-km ring around infected premises and culling of infected premises

5 vaccination in a 10-km ring around infected premises and culling of infected premises



Table B1.  Underlying data for Figure 2.  Expected outbreak duration (log-transformed) under 
control actions with infectious premises culling (X) and with vaccination in addition (Y).

Model 1 2 3 4 5 6

X 5.0097    5.7874    4.7045    4.9517 5.1512    4.7702    

Y 4.7761    5.0168    4.3199    4.7196 5.0105    4.7035    
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