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Abstract

Network science has been a growing subject for the last three decades, with sta-

tistical analysis of networks seing an explosion since the advent of online social

networks. An important model within network analysis is the stochastic block

model, which aims to partition the set of nodes of a network into groups which

behave in a similar way. This thesis proposes Bayesian inference methods for

problems related to the stochastic block model for network data. The presented

research is formed of three parts. Firstly, two Markov chain Monte Carlo samplers

are proposed to sample from the posterior distribution of the number of blocks,

block memberships and edge-state parameters in the stochastic block model. These

allow for non-binary and non-conjugate edge models, something not considered in

the literature.

Secondly, a dynamic extension to the stochastic block model is presented which

includes autoregressive terms. This novel approach to dynamic network models

allows the present state of an edge to influence future states, and is therefore named

the autoregresssive stochastic block model. Furthermore, an algorithm to perform

inference on changes in block membership is given. This problem has gained some

attention in the literature, but not with autoregressive features to the edge-state

distribution as presented in this thesis.

Thirdly, an online procedure to detect changes in block membership in the au-

toregresssive stochastic block model is presented. This allows networks to be

monitored through time, drastically reducing the data storage requirements. On

top of this, the network parameters can be estimated together with the block
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memberships.

Finally, conclusions are drawn from the above contributions in the context of

the network analysis literature and future directions for research are identified.
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1. Introduction

Networks are ubiquitous in modern life: physical networks including roads, rails

and pipes carry goods and services. Virtual networks, including telecommunica-

tions and the internet, enable sharing of files and messages. Social networks, both

online and offline, describe the connections between people and animals. The field

of network science is very broad, covering problems such as route-finding on a road

network, designing telecommunications networks robust to the failure of connec-

tions or finding the most influential member of a social network. The field can

be broadly divided based on the characteristics of the network under study. For

example, in the network flow problem, the network is considered fixed (the roads

are already in place) and an optimal route is sought. In the robust telecommu-

nications example, the network is being designed (where should the intersections

be placed?). Finally, in social network analysis, often the network structure is un-

known and needs to be inferred to answer questions such as influence. This leads

to quite different sub-fields of study.

This thesis is concerned with problems such as the latter example: data are

recorded on a network of individuals and the structure of this network is to be

inferred. Such problems occur in the sub-field of complex systems, where under-

standing the interactions between individual parts of a system lead to system-level

behaviour. Furthermore, the structure of these interactions, and how such struc-

ture came about, is key to understanding such complex systems. For this, network

modelling arose as a subject in its own right, dividing into two main classes: sta-

tistical and mathematical. Mathematical models in this domain aim to explain
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1. Introduction

a mechanism under which the network was generated, e.g. small-world networks

Watts and Strogatz (1998), whereas statistical models aim to fit a probabilistic

model with all the power of assessing fit using statistical inference procedures. The

line between mathematical and statistical model is blurred but the literature on

both has remained mainly distinct over the past two decades.

Much of the early work on network modelling focused on static networks, where

information about a network is collected at one point in time, or is summarised

to yield a single piece of information between pairs of individuals. A popular and

well studied statistical model is the stochastic block model (SBM). This divides

the set of nodes into groups, such that nodes in the same group have a similar

behaviour in terms of their edge-states. Example application areas for the SBM

include determining the friendship groups in social network analysis (Wang and

Wong, 1987; Snijders and Nowicki, 1997; Zhao et al., 2011; Newman and Reinert,

2016) and separating the regions of the brain into a number of functional groups

(Négyessy et al., 2006a).

In recent years, models for dynamic networks have been developed. These extend

static network analysis and models to consider the state of networks through time.

An interesting problem is thus to determine if a change in structure has occurred

in the network.

This thesis is concerned with changes in the structure of a network. The topic lies

at the intersection of network modelling, dynamic network models and changepoint

detection. This chapter reviews the fields of network modelling for both static and

dynamic networks, and introduces the contributions of each chapter and their

position within the statistical literature.

1.1. Modelling networks

The modelling of networks mainly falls into two types: mathematical or statis-

tical (Kolaczyk, 2009). In this thesis “mathematical models” refers to a class of

models concerning network growth. In such growth models, the observed network

2



1. Introduction

is assumed to be generated by some simple probabilistic rule with a small set of

parameters. The estimation of such parameters from an observed network can

indeed be viewed as a statistical problem, however the term “statistical models”

refers to models designed to explain observed data. As such, statistical models

allow for standard statistical tools such as goodness of fit tests and the evalua-

tion of explanatory power of variables on the formation of edges within a network.

This section reviews the literature on both these areas, with a focus on statistical

models. Before proceeding with the review, firstly the mathematical concept of a

network is defined and notation is introduced.

1.1.1. Notation and definitions

Networks are often conceptualised as mathematical graphs. In such a framework,

the interactions of a network are denoted by edges, while the individuals or entities

performing the interactions are designated as nodes. A static network N , consist-

ing of a set of nodes V and a set of edges E , is written N = (V , E). Statistical

analysis of a network N involves models for the generation of the edges in E . For

ease of reference, let ij denote the edge between nodes i and j. Furthermore,

denote by Eij the state of edge ij in network N ; this is considered random and

is the quantity to be modelled. Networks with values for the edges can be viewed

as weighted graphs, so in the above notation, the weight of edge ij is the value of

Eij.

In the case of dynamic networks, a time index is introduced to the notation

as N (t) = (V(t) , E(t)), denoting that the set of nodes or edges can change over

time. Research presented in this thesis mainly concerns dynamic networks on a

fixed set of nodes. As such, networks of the form N (t) = (V , E(t)) are of interest.

For ease of reference, an edge is always considered to exist between two nodes,

whereas the edge-state may not. For example, in a dynamic social network the

edge-states may represent if two people are in conversation. Under such a setting,

the edge-state for a given pair can take values of true or false (people can either

3



1. Introduction

be in conversation or not). By allowing every edge to exists, the phrase “the edge

between nodes i and j switches state from true to false” is comprehensive.

Some graph-theoretic terms carry over into network modelling: in the case of

binary edge-states, the degree of a node is the number of edges in state one for

which i is an end-node. Furthermore, the size of a binary network is the number of

edges in state one. A degree sequence is the (ordered) list of degrees {di : i ∈ V}.

The types of interaction can vary also. In some cases the interaction process

may allow for self-interactions. These are called self-loops. Symmetric interactions,

such as “is friends with”, create symmetric networks. In symmetric networks the

edge-states have the following relationship: Eij = Eji for all i 6= j. If a network is

symmetric with no self-loops, then it is modelled as a simple graph. On the other

hand, interactions may have a concept of direction, such as “node i sends node j

an email”; such networks are modelled as directed graphs.

For a given network N , it is convenient to consider the adjacency matrix. This

is the matrix of edge-states E. If a network contains symmetric edge-states, then

E is a symmetric matrix. Furthermore, if there are no self-loops in N , then E has

0 values on the diagonal.

1.1.2. Mathematical models for networks

A mathematical model for a network is mainly concerned with the mechanisms that

gave rise to the network via simple rules with few parameters. As such they can

be referred to as network growth models. There is an extensive literature on these

models, mainly in the domain of statistical physics. Generally, a mathematical

model takes some parameters θ which drive some growth mechanism.

The observed network N is used to estimate θ, then comparisons between theo-

retical network features under θ and features of the observed graph are compared.

Examples of network features of interest include average degree, the number of

transitive triples (complete sub-graphs on three nodes) and average shortest path

length. The topics’ breadth is down to the wide choice in growth mechanisms.

4



1. Introduction

Since this thesis is mainly concerned with statistical models, only a few major

mechanisms are reviewed here.

The first growth model to appear in the literature is arguably the simple random

graph (Gilbert, 1959; Erdos and Rényi, 1960). In such a model, the set of N

nodes, V , is fixed and binary edge-states are assigned to the edges. In one version

of the model, given the nodes, the edge-states are drawn uniformly with some

probability p. An alternative version (which is easier to generalise), chooses a

network at random from the set of all networks containing a given number of

edges. The generalised Erdős-Rényi model chooses a network uniformly at random

among among a set of networks with a given set of properties. This generalises

the original model since the number of edges is such a property. Another common

property is the degree sequence, hence N is chosen from the set of networks with

a set degree sequence {d1, d2, . . . , dN}. Interest may lie in some counts of arbitrary

sub-graphs called “motifs” for example, the number of connected triples (complete

sub-graphs on three nodes).

The following procedure demonstrates the ideas behind the mathematical mod-

elling paradigm. To analyse a given network N , firstly a property or properties P

are chosen and calculated as p̂ = p(N ) for each p ∈ P . Secondly, the theoretical

properties are calculated for the set of graphs obeying P . Finally, p̂ is compared

to its theoretical value. For most properties of interest, the theoretical values are

non-analytic, and hence MCMC algorithms to draw from the set of networks obey-

ing P have been developed. This is a whole literature in itself, but key algorithms

are given in Kolaczyk (2009). For the case of general motifs, first an underlying

network generation model must be assumed, then the theoretical distribution for

motif counts calculated. This quantity is non-analytic and difficult to approxi-

mate, even for the simple Erdős-Rényi model (Picard et al., 2008). Furthermore,

without a robust theoretical distribution for motif counts, the use of p-values for

model fit is difficult to justify.

The small-world model was popularised by Watts and Strogatz (1998). Such
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1. Introduction

networks have the following properties: (i) most nodes have few neighbours, (ii)

the neighbourhoods of two neighbours has a large intersection, (iii) the average of

the shortest path between any two nodes grows logarithmically in the number of

nodes. The work of Watts and Strogatz (1998) classified networks based on the

clustering coefficient and shortest path length. The clustering coefficient measures

the tendency for nodes to group together into clusters and attempts to measure

(i) and (ii) in the above list. If nodes group together, then the intersection of the

neighbourhoods of two nodes in the same group will contain many nodes. The

clustering coefficient is defined as the ratio of the number of triplets of nodes

with all possible edges to the number of triplets of nodes with two possible edges.

This can be seen in a graph as the number of triangles divided by the number of

connected triplets.

In an Erdős-Rényi network model, the clustering coefficient is small, together

with a short average shortest path length (ASPL). For example, with N nodes and

probability of an edge appearing p, such that Np > 1, the clustering coefficient is

p and ASPL grows as O(logN) in the limit N → ∞ (Bollobás, 1998). However,

in small-world networks, the clustering coefficient is large with a small ASPL.

The mechanism to generate a small-world network as given by Watts and Stro-

gatz (1998) is as shown in Algorithm 1.1. In the first stage a regular lattice

network is created. This ensures the network starts with a high clustering coeffi-

cient. Secondly, by “rewiring” edges at random (avoiding already existing edges

and self loops), the ASPL is greatly reduced. As β → 1, a Watts-Strogatz network

approaches an Erdős-Rényi network. For the case of β = 0, the Watts-Strogatz

algorithm yields a lattice: each node has exactly K neighbours and consecutive

nodes share K − 2 neighbours. In this case, the clustering coefficient is 3(K−2)
4(K−1)

which approaches 3
4

for large K whilst the ASPL is exactly N
2K

. For the case where

β ∈ (0, 1), the ASPL decreases quickly with β, whilst the clustering coefficient re-

mains close to the value at β = 0 and can be shown to be asymptotically equal to

3(K−2)
4(K−1)

(1−β)3. Hence, for a large range of β values, the Watts-Strogatz algorithm
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produces small-world networks.

Algorithm 1.1 The generation of a small world network via the Watts-Strogatz
algorithm.

Require: Number of nodes N , mean degree K, β ∈ [0, 1].
Start with node set V = {1, . . . , N} and an empty edge set E .
Label N nodes as 1, . . . , N .
for i = 1, , . . . , , N do

For nodes j such that i− j = 1, , . . . , , K mod N , add ij to E .
end for
for i = 1, , . . . , , N do

for j = i, , . . . , , N do
With probability β choose a node k ∈ {j : j 6= i, ij 6∈ E} 6= i.
Delete ij from E .
Add ik to E .

end for
end for
return Network N = (V , E).

Another popular mathematical model for networks is the preferential attachment

model. The mechanism generating such networks is often dubbed “the rich get

richer”. A well-known algorithm for generating a preferential attachment network

is described by Albert and Barabási (2002). To generate a network, start with a

single edge between two nodes n1 and n2. At each step, a new node ni is added,

and an edge between ni and nj (j < i) is created with probability proportional to

the degree of nj. In such a way, the more edges incident to a node, the more likely

it will receive an edge from a new node. This is made concrete in Algorithm 1.2. As

such, networks generated from Algorithm 1.2 are likely to contain some nodes with

very high degrees, or hubs. Another property of the Albert and Barabási (2002)

model is the degree distribution: it is scale-free. Specifically P[d(ni) = k] ∝ k−3.

The ASPL can be shown to be asymptotically logN
log logN

.

1.1.3. Statistical network models

In Section 1.1.2, some famous mathematical models for generating networks were

reviewed. These models have been used to compare against real-world networks.

For example, co-authorship networks as analysed by Newman (2001, 2004b) with

7
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Algorithm 1.2 The generation of a scale-free network via the Barabási–Albert
algorithm.

Require: Number of nodes N, initial number of connected nodes N0.
Start with node set V = {1, . . . , N0} and empty edge set E = ∅.
for i = 2, . . . , N0 do

for j < i do
Add ij to E .

end for
Set the degree di = N0 − 1.

end for
for i = N0 + 1, . . . , N do

Add node i to V .
for j < i do

Add ij to E with probability pij =
dj∑
k<i dk

.

end for
Update the degrees of nodes 1, . . . , i.

end for
return Network N = (V , E) and the degree sequence {di : i ∈ V}.

network properties such as average degree, ASPL and clustering coefficient re-

ported and discussed.

In this section, some statistical models are reviewed. The change in focus be-

tween statistical and mathematical models is on estimation and representation:

models must be able to be fit to the data and allow exploration of the effects that

explain the data. None of the mathematical models are suited to this.

Three main categories of statistical model have been developed over the last few

decades: exponential random graph models (ERGMs), latent space models, and

stochastic block models (SBMs). These each mirror classical statistical methods:

the ERGM can be viewed as a generalised linear model, latent space models use

both observed and latent variables to model the probability of edge-states in the

manner of classic latent space models, and SBMs are, at their heart, a mixture

model.

Firstly, a review of ERGMs is presented. The Exponential Random Graph

Model (ERGM) uses global properties of a graph to model the edges in a net-

work and, hopefully, capture phenomena at the node level (Anderson et al., 1999).

ERGMs have their origins in the social sciences with the so called p1 and p∗ mod-
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1. Introduction

els (Wasserman and Pattison, 1996). These are special cases of the more general

ERGM which itself is analogous to classical generalised linear models (GLMs).

P[E = e] =
1

J
exp

(∑
h∈H

θhgh(e)

)
, (1.1)

where gh are functions counting the number of times configuration h appears in

e. Equation (1.1) shows the general form of the ERGM, an exponential family

form, for the joint distribution of the adjacency matrix E. The ERGM is based

on configurations or sub-graphs within the network: for example, the appearance

of edges or triangles or k-stars (a set of k edges sharing the same end-node). The

hope is that simple structures can explain the observed adjacency matrix e. In

Equation (1.1), the configurations of interest are denoted by the set H. For each

configuration h, there is an indicator function gh, which counts the number of

times configuration h appears in the adjacency matrix e. If θh is non-zero, then

the Eij are dependent for all i, j in configuration h. This is the main appeal of the

ERGM: a certain dependency structure on the appearance of edges in the network

can be imposed through a small number of configurations. A further draw of

the ERGM framework is the ease with which additional information X on the

network can be included, simply specify the conditional distribution of E on X

in exponential form with the addition of statistics g depending on e and x. For

example, if covariate information on the nodes is available as a vector x with xi

the data about node i, then a simple model would be to include additive effects:

g(e,x) =
∑

i�j eij(xi + xj). In this case, the log-odds of the edge ij appearing in

the network increases with the covariate values for i and j. Second order terms

can be included by comparing the values of xi and xj. In the simplest case, x is

discrete and a matching criteria can be used: g(e,x) =
∑

i�j eijI[xi + xj].

The simplest such ERGM assumes that each edge appears independently, with

some probability θij for nodes i and j. As such the functions gh for configuration

including more than two nodes has θh = 0 and the model reduces to: P[E = e] ∝

exp
(∑

i�j θijeij

)
. Obviously this model is overly flexible: there is a parameter for

9



1. Introduction

each data point. Setting each θij = θ makes the further assumption that edges are

independent and identically distributed and, in this case, the Erdős-Rényi model

is recovered with P[E = e] ∝ exp(θM(e)).

Although the ERGM has been demonstrated as a very flexible model, being able

to incorporate covariate and dependency structures into the model, it does suffer

from some problems. The configurations to include must be chosen carefully, since

they easily conflict, leading to correlated estimates. For example, the number of

triangles will be correlated to the number of edges since the number of edges is at

least three times the number of triangles.

The work of Frank and Strauss (1986) posit ERGMs including only terms for

the number of triangles and some k-stars (notice this includes the simple model of

counts for edges and triangles since an edge is a 1-star). This model is simpler than

the full model in Equation (1.1) which should lead to more interpretable results. In

practise however, this model yields poor fit to real data due to model degeneracy

(Handcock et al., 2003). To overcome such an issue, more terms could be included,

but this leads to a large model. Various attempts to rectify this include making

a parametric assumption on the k-star terms (Snijders et al., 2006; Robins et al.,

2007).

Although the ERGM allows many potential specifications, fitting the model to

data is a challenge. The maximum likelihood estimates for θ in Equation (1.1)

are well defined for appropriate models, but the estimation is non-trivial due to

the normalisation term J . This term is only available for trivial ERGMs since

it involves summing over all networks on N nodes for each possible θ: clearly

a large problem. A pseudo-likelihood procedure can be used, however, Snijders

et al. (2006) show in simulation studies that maximising the likelihood can lead

to unbounded estimates or false maxima. A Markov chain Monte Carlo maxi-

mum likelihood procedure is available (Hunter and Handcock, 2006) which is the

preferred method to fit ERGMs. However, unlike GLMs, the theory of ERGMs

is not well established, with no asymptotic results available for a wide range of
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ERGMs. Recent research (Bhamidi et al., 2011; Chatterjee and Diaconis, 2013)

provides a framework for the asymptotic analysis of edge-and-triangle ERGMs,

and give proofs of model degeneracy. Therefore, despite the potential of such

models, ERGMs lack the theoretical underpinnings to be used with confidence.

The latent space models developed by Hoff et al. (2002); Handcock et al. (2007);

Hoff (2008a,b); Krivitsky et al. (2009) treat the nodes as exchangeable in the

absence of covariate information. This is motivated by the Aldous-Hoover theorem,

since if the elements Eij are exchangeable, then they can be expressed in the form:

Eij = h(µ, ui, uj, ξij)

with where h is a probability, µ a constant, ui, uj i.i.d. latent variables (with h sym-

metric in ui, uj) and ξij i.i.d. pair-specific effects. This still leaves much flexibility

via the specification of h. A popular approach is to let ξij be standard Gaussian

variates, µ to be augmented with covariate information and include latent terms u

through some function α. This leads to a probit-like model in Equation (1.2). The

choice of function α and the latent space U to which ui, uj belong determines the

latent effects of the model, analogous to the choice of configurations in the ERGM.

Letting ui, uj ∈ {1, , . . . , , κ} together with α(ui, uj) = muiuj for real valued mkl is

similar to the stochastic block model: if i and j are in groups k and l in the latent

space U , then the probit model increases by mkl. An interesting choice for α, U

comes from the social science principle of homophily, where similar individuals are

likely to associate with each other. In this case, α is chosen as a distance function

on the latent space U , such that nodes close together in latent space are more

likely to share an edge.

P[Eij = 1|Xij = xij] = Φ
(
µ+ x′ijβ + α(ui, uj)

)
(1.2)

Model fitting in the class of latent network models is achieved via a Bayesian

approach, due to the hierarchical nature of the model. Latent network models
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offer a variety of possible models but it can be difficult to interpret the latent

space and the nodes’ positions therein. Those models based solely on a distance-

based α can also suffer in estimation, since the likelihood is invariant to isometric

transformations of the latent space coordinates u.

1.1.4. The stochastic block model

Lastly, the stochastic block model (SBM) is reviewed. This is the basis of the

research presented in this thesis and, as such, a more rigorous introduction is

given for the SBM. The SBM was first posed by Holland et al. (1983); Fienberg

et al. (1985); Wasserman and Anderson (1987) as a random graph model. In these,

the nodes are split into clusters or blocks, and, given the block memberships, the

edge-states are generated from a mixture model. The mixture weights for a given

edge-state are determined by the block membership of the end nodes. The main

assumption under the SBM is the node-set V can be partitioned into κ blocks such

that any node belongs to only one block. Furthermore, edge-states are assumed

independent of other edge-states, given the block memberships. Letting E be an

adjacency matrix for a network and z denote the block memberships, such that

zik = 1 if node i is assigned to block k and zik = 0 otherwise, then the SBM may

be written in hierarchical form in Equation (2.1).

Z = z|ω ∼ Multinomial(z|ω)

Θkl = θkl ∼ Beta(θkl|αkl)

Eij = eij|θ, z ∼ Bernoulli
(
eij|θzizj

) (1.3)

The general form of the SBM has been well studied (Airoldi et al., 2005; Hastings,

2006; Picard et al., 2007; Daudin et al., 2008; Ambroise and Matias, 2012) including

maximum likelihood and variational inference procedures. Other authors from

statistical physics refer to the SBM as a community detection problem (Newman,

2004a; Girvan and Newman, 2002; Clauset, 2005). A full review of community

methods including the SBM can be found in Fortunato (2010). Notice that, in
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this case, “community” normally refers to a block structure where a node is more

likely to share an edge with a node in the same block than one in another block

(θkk ≥ θkl). The most popular fitting procedure in the statistical physics literature

is the maximisation of modularity. Modularity according to Girvan and Newman

(2002) measures the difference between connectivity between blocks and within

blocks. Specifically, let Mkl(z,E) =
∑

i�j EijI[zik = 1, zjl = 1] be the counts of

edges between block k and l under the block membership vector z. Then the

modularity of z is:

Q(z,E) =
κ∑
k=1

Mkk

M
−
(∑κ

l=1Mkl

M

)2

.

Maximising modularity with respect to z yields block structures where the density

of edges within blocks is higher than between blocks. Notice that modularity

maximising methods do not perform inference on the parameters θ, they only

recover the block structure z. It has been argued that modularity maximisation

is biased compared to maximum likelihood estimation (Bickel and Chen, 2009)

although recent work has shown its equivalence to a restricted form of the SBM

(Newman, 2016).

A specific form of the SBM, dubbed the affiliation model, has been studied in

depth by Snijders and Nowicki (1997); Nowicki and Snijders (2001); Copic et al.

(2009). In this case, the parameters θ are reduced to either between-block and

within-block parameters as θkk = θw and θkl = θb for k, l ∈ {1, . . . , κ}. The

above references discuss technical issues such as fitting the affiliation model and

the model degeneracy when all blocks are of the same size.

The classic SBM makes the assumption that the number of communities, κ, is

known a priori. This can be considered too restrictive. Various methods have

been considered to estimate the number of blocks within a network, and is an

active research area. These include likelihood based methods using the Bayesian

information criteria and its derivatives (Daudin et al., 2008; Latouche et al., 2012;

Wang et al., 2017; Saldaña et al., 2017), information based methods using minimum
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description lengths (Peixoto, 2013), sequential testing by embedding successive

block models with increasing κ (Lei, 2016) and cross validation (Chen and Lei,

2016). These methods all fit an SBM model with a given κ, then do a post-hoc

analysis to find an appropriate “final” κ.

An alternative approach is to let κ be random, and infer κ together with the

block assignments z and parameters θ. Extending the SBM by allowing κ to vary

leads to the Infinite Relational Model (IRM) (Mørup and Schmidt, 2013). The

IRM extends the model hierarchy of the SBM by placing a prior on κ. Specifically

in the case of the IRM, a joint prior is placed on κ, z. This takes the form of the

Chinese Restaurant Process (CRP) (Gershman and Blei, 2012). On top of this,

the parameters θ can be integrated out of the SBM model, leading to efficient

collapsed Gibbs sampling algorithms (Mørup et al., 2011; Mørup and Schmidt,

2012, 2013; McDaid et al., 2013)

The IRM extends the SBM by placing a CRP prior on the number of blocks

and block memberships. The CRP is a form of Dirichlet process used in clustering

(Antoniak, 1974; Anderson, 1991; Escobar and West, 1995; Rasmussen, 2000; Neal,

2000). To cluster a set of points e1, . . . , eN , the CRP assigns each point sequen-

tially. Firstly, following the derivation of Gershman and Blei (2012), e1 forms a

cluster labelled 1. After i − 1 points are assigned, suppose there are κi clusters.

Then, ei is assigned to cluster k proportional to the number of points in cluster k

(for k = 1, . . . , κi) or ei starts a new cluster with probability γ (a model parame-

ter). This process is exchangeable, so the partition defined by the CRP does not

depend on the order in which the vertices are assigned to clusters (Gershman and

Blei, 2012). The CRP has a similar property to the preferential attachment model

in Section 1.1.2: a large cluster is more likely to gain new points. As such, the

CRP tends to create partitions where one part is much larger than the others.

For use in network modelling, the CRP is used as a prior distribution on the

block membership of nodes. In the above formulation, nodes are treated as points

while blocks are treated as parts in the partition. In this way, the number of blocks
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and the block memberships are treated as unknown a priori. With this prior, the

SBM is extended to the IRM in Equation (1.4)

The IRM can be written as:

κ, z ∼ CRP(γ)

θkl ∼ Beta(α)

Eij|z ∼ Bernoulli
(
θzizj

) (1.4)

The posterior distribution of z can be found using a collapsed Gibbs sampler

(Mørup and Schmidt, 2013). Note that under such an inference procedure, the

θ parameters are treated as nuisance parameters and are integrated out of the

model.

So far, only binary edge-states have been considered. This is reflected in the

literature, with arbitrary edge-states considered only recently (Jiang et al., 2009;

Mariadassou et al., 2010; Ambroise and Matias, 2012). The generalisation to

arbitrary edge-states is simple, given the block memberships z, the edge-state

E are assumed independent, and the distribution, G, of Eij depends on zi, zj

and some parameters θ. These are the core assumptions of the SBM shown in

Equation 1.5.

(Eij ⊥⊥ Ei′j′) |z for all i, i′, j, j′ ∈ V

g(Eij|z) = g(Eij|Zi, Zj,θ)

(1.5)

For example, when considering edge-states representing count data, a Poisson

distribution may be used for G (Mariadassou et al., 2010) or a Normal distribution

for real-valued edge-states (Wyse and Friel, 2012).

Other authors consider non-binary data within the IRM model (i.e. an unknown

number of blocks). Wyse and Friel (2012) and McDaid et al. (2013) extend the IRM

to consider both Bernoulli and Poisson distributed edge-states with a collapsed

Gibbs sampler for inference on κ, z similar to work by Mørup and Schmidt (2013).
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1.2. Dynamic stochastic block models

There is a vast literature on dynamic network models, including dynamic exten-

sions of the models introduced in Section 1.1.3. Early work in the field started with

continuous-time Markov processes with edge-independence (Wasserman, 1980a,b)

and stochastic actor oriented models (Snijders and van Duijn, 1997; Snijders et al.,

2010). For a full overview see the review paper by Holme (2015). This thesis

focuses on dynamic extensions to the stochastic block model, and thus a more

comprehensive review of this field is given in this section.

Multiple temporal extensions of the stochastic block model exist. These can be

classified in one important way: how the data are collected. In point-process-like

models, edge-state data is assumed to be collected with a time-stamp. As such,

data sets come in the form of a list of edges with a time point. For example, the list

(is, js, ts) for s = 1, . . . , S represents the S observed edges, with the sth observed

edge at time ts between nodes is and js. In snapshot models, the edge-state of all

edges is collected at predetermined observation times. As such, a series of network

“snapshots” are taken at times say t0, t1, . . . , tS, hence, the data comes in the form

of a list of adjacency matrices E0,E1, . . . ,ES.

Point process models for dynamic networks consider data in the form of instan-

taneous interactions between the nodes, such as sending an email. The stochastic

block model with point process data aims to divide the nodes of the network based

on their behaviour over time. Letting Eij(t) be the time-dependent edge-state for

the pair of nodes i and j, a point process model, F (λ), is placed on Eij(t) with

some parameters λ. The standard form of the stochastic block model can be

applied by letting the parameter λ depend on the block membership of nodes i

and j. For example, consider a network of employees at a company and data on

when a pair of employees exchange emails. A block structure could form between

the departments of the company, such that the rate of email exchange between

employees in the same department is higher than across departments.

Research on point process stochastic block models includes the use of Cox’s
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multivariate hazard model with time-dependent covariates (Butts, 2008; Vu et al.,

2011; Perry and Wolfe, 2013). These are Poisson process models with random

intensity functions. Another special case of the Poisson process is the Hawkes

process. A Hawkes process is a self-exciting point process, whereby the intensity

function increases at times close to a point. In this way, the existence of a point

makes future points more likely. Specifically, an impulse function is added to the

intensity function in a region close to points. In the network case, a multivariate

Hawkes process can be used to model the edge-states. Specifically each edge Eij(t)

has a rate function λij(t). In the Hawkes process case, an impulse can be added

to all intensity functions λ(t) when a point in a single edge is witnessed. Hawkes

process models with the SBM have been developed by multiple authors including

Blundell et al. (2012), where there is a Hawkes process per pair of blocks (rather

than pair of nodes). In this way an edge-state Eij(t) follows a Hawkes process with

parameters determined by the end-nodes. Furthermore, Blundell et al. (2012) use

the IRM rather than the SBM, allowing inference to be performed on the number

of blocks as well as the underlying processes. Cho et al. (2013) extend the Hawkes

process idea further by allowing both a temporal relationship in events (via a

Hawkes process) and a spatial component (via a spatial Gaussian mixture model).

Linderman and Adams (2014) also propose an SBM with a Hawkes process in non-

observed networks, with the view to inferring both the network and its structure

through time. The above models all treat the edge-states as point processes,

however, research has also been done where the nodes are modelled rather than

the edges (Fox et al., 2016).

Point process models are appropriate for instantaneous interactions such as send-

ing emails or instant messages, but not so appropriate for interactions with a du-

ration such as phone calls or proximity. An alternative dynamic extension of the

stochastic block model assumes that data is available in the form of snapshots.

These snapshots record the state of all edges in the network at predefined times

t0, . . . , tS. A stochastic block model in this framework assigns nodes to blocks in
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such a way that the dynamics of the edges between nodes i and j depends on

the block membership of the pair i, j. Models in the literature mainly concern

binary edge-states but allow the block membership of nodes to change through

time. Therefore, given the block memberships zt at time t, the edge-states are

drawn from a Bernoulli SBM. On top of this, the block membership of nodes

follows some Markov process. In the works of Fu et al. (2009); Xing et al. (2010);

Yang et al. (2011); Xu and Hero (2014), the latent block memberships evolve as

a discrete time Markov chain. Specifically, Fu et al. (2009); Xing et al. (2010)

propose a mixed-membership SBM where the block memberships are represented

as a vector πit, with πkit denoting the amount to which node i belongs to block k

at time t. The parameter πit is drawn at each time point from a logistic-normal

distribution with mean µt and variance Σt. Dynamics are added to the block

memberships by assuming that these means µt evolve through time via an autore-

gressive Normal process. On top of this, the parameters governing edge-formation

are assumed to follow a similar construction. This choice of a logistic normal dis-

tribution makes parameter estimation difficult since no conjugate prior is available

and the authors appeal to variational inference. An alternative approach is pre-

sented in Yang et al. (2011), where the block memberships are allowed to change

over time, but are not mixed-membership. Therefore, a node can belong to only

one block per time, but can move between these blocks. In this way, the evolution

of block membership zt is modelled by a discrete time Markov chain with transi-

tion matrix A. As such, the probability that a node in block k remains in block k

in consecutive time points is Akk, and the probability of moving from block k to l

is Akl. Given the block memberships at time t, the edge-states are assumed to be

generated from a static SBM. A variational expectation maximisation algorithm

and a simulated annealing approach are presented to infer the block memberships

at each time, the edge-state probabilities and the transition matrix A. Xu and

Hero (2014) allow nodes to transition between blocks and the parameters of the

SBM to change through time. Specifically, given the block memberships zt at time
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t, the edge-states are drawn from a static SBM with parameter θt, where θkl is the

probability of an edge appearing between nodes in block k and l. The inference

procedure transforms θt to the real line (via a logit transform) to ψt. The ψt are

then treated as Gaussian variates with mean Aψt−1 and variance Σt for parame-

ters A and Σ. Given this structure, an extended Kalman filter is applied to get

approximate parameter estimates for θt at each time point, then a label switching

procedure is used to infer the block memberships zt. There is no explicit model

for node transitions.

More recent work by Matias and Miele (2017) extend the SBM by assuming

the block memberships evolve as a discrete-time Markov chain. Given the block

memberships at time t, the edge-states are drawn from a static stochastic block

model. The authors also consider non-binary edge-states; in this case, the edge-

state of ij at time t (Eijt) is drawn from a distribution G with a parameter θkl

if zit = k and zjt = l. A variational inference procedure is presented to find

the maximum likelihood estimates for the parameters θ and block membership zt

through time. Furthermore, the authors discuss model choice to determine the

number of blocks and allow for nodes to exit and enter the network during the

observation period. The authors discuss the problem of parameter identifiability

in this model, where a permutation of the block labels leads to the same inference.

As such it can be impossible to follow the path of a node through time, all that

can be recovered is the groups at each time point. This problem affects all the

models discussed above.

1.3. Contributions

This thesis consists of three chapters, each representing a contribution to the

literature. Chapter 2 considers the SBM with an unknown number of blocks and

arbitrary edge-states, Chapter 3 introduces a dynamic extension of SBM allowing

for autoregressive behaviour in the edge-states. This is named the autoregressive

stochastic block model (ARSBM). Chapter 4 considers online monitoring of block
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structure in the ARSBM together with inferring the fixed model parameters. This

section gives an overview of the contributions made in each of the above chapters.

In Chapter 2, two Markov chain Monte Carlo (MCMC) algorithms are presented

to draw samples from the posterior distribution of the number of blocks, block

memberships and edge-state parameters in a stochastic block model. Historically,

research for inference in the stochastic block model has mostly treated the number

of blocks as fixed. Of the research where the number of blocks κ is treated as

unknown, those which incorporate inference on κ into the main inference (such as

the infinite relational model), only conjugate models for the edge-states have been

considered. Furthermore, only the Chinese restaurant process prior is used. This

is shown to be a rather inflexible choice in Section 2.2.1.

Existing literature on determining the number of blocks in an SBM either uses

a model selection criteria or includes the number of blocks as a parameter in the

inference process. Both algorithms presented in Chapter 2 work in the latter frame-

work. Research in this domain has only considered edge-state models for which

conjugate priors are available. In such an approach, the edge-state parameters

can be integrated out of the model, reducing the variance in the inference process.

This leads to Gibbs sampling algorithms which concentrate on only the number of

blocks and block memberships of nodes. While these points are appealing, there

are some negatives: (i) only conjugate models can be considered for edge-states,

(ii) Gibbs samplers can get stuck in local modes. McDaid et al. (2013) improve

the Gibbs sampler by including some split-merge moves but still only applies to

conjugate models. In Chapter 2 a Dirichlet process MCMC and a reversible jump

MCMC algorithm are introduced which allow for any edge-state distributions (pro-

vided samples can be taken and a density computed). This greatly increases the

flexibility of the SBM with arbitrary edge-states. Specifically, in Section 2.6.2 a

negative binomial model with both parameters unknown is applied to the Enron

email data set to analyse the structure within an email network. This is not pos-

sible using conjugate models. A comparison was made to an SBM with a Poisson
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edge-state model, and the negative binomial finds additional structure, since the

model is more flexible. Furthermore, a discussion in Section 2.2.1 considers the

prior distribution of blocks and block memberships. Traditionally, this is taken as

a Chinese Restaurant Process (CRP) which jointly models the number of blocks

and block memberships. However, the CRP gives significant weight on block struc-

tures dominated by one larger block and multiple small blocks. In Section 2.2.1,

it is argued that the Dirichlet Multinomial Allocation (DMA) prior, first used in

cluster analysis (Green and Richardson, 2001), is a more flexible model for the

number of blocks and block memberships. Specifically, the DMA is a hierarchical

model allowing the number of blocks to be specified via an arbitrary distribution

with support on a subset of the positive integers. Following this, a prior is placed

on the block memberships given the number of blocks. As such, priors can be

constructed where the number of blocks can be modelled separately to the block

structures. These allow distributions where blocks are expected to be of equal size

without influencing the number of blocks; an impossibility under the CRP.

In Chapter 3, a dynamic network model is introduced as an extension of the

SBM. Research in this area has considered various dynamic extensions to the

SBM including point process models for instantaneous events and snapshot mod-

els for events with a duration. These two techniques are complimentary: in general

point process models fix block memberships for all time, but allow the rate of edge

appearance to depend on time. In snapshot models, block memberships are allowed

to change through time and generally the edge-state process has fixed parameters.

In the snapshot model literature, model hierarchies consider dynamic block mem-

berships, allowing nodes to change block membership over time. However, at each

time point the edge-states are considered independent of the past, given the block

memberships. This forces all dynamics into the unobserved block memberships.

Chapter 3 considers a snapshot model where autoregressive terms are included for

the edge-states, as such, this is named the autoregressive stochastic block model

(ARSBM). The ARSBM makes some important contributions: (i) by allowing
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autoregressive edges, a more realistic temporal model is provided, (ii) by setting

the model in a continuous time framework dealing with missing data or irregular

sampling is simple. The closest available method is the work of Matias and Miele

(2017), where dynSBM is proposed. This model sets the block-membership process

as a discrete-time Markov chain. Given the block memberships, at each time-point

the edge-states are drawn independently from a static SBM model. Compared to

Chapter 3, dynSBM cannot handle irregular sampling times without adaptation.

Furthermore, no autoregressive behaviour is possible for the edge-states. In the

ARSBM, the location of change points is inferred via a reversible jump Markov

chain Monte Carlo sampling algorithm. This yields a distribution over change

location, providing a quantification in uncertainty of the change points. Current

methods, including dynSBM only provide point estimates for block membership

and model parameters, or use a variational approximation technique. Such vari-

ational techniques are known to be over confident in their maximum likelihood

estimates, and thus the uncertainty in parameter estimates provided by current

methods is often underestimated (Blei et al., 2017), hence the ARSBM inference

is more honest in its parameter uncertainty when compared to currently available

methods for dynamic stochastic block models. The ARSBM allows more realistic

treatment of dynamic network data by explicitly allowing temporal dependence

on previous edge-states. On top of this, the problem of identifying evolutions

in block membership is considered; specifically, the problem of detecting if nodes

have changed group is tackled. This problem has been considered by other authors

both in a Bayesian (Fu et al., 2009; Yang et al., 2011; Xu and Hero, 2014) and

a frequentist context (Matias and Miele, 2017), yet these models do not allow for

autoregressive terms.

Finally in Chapter 4 a sequential Monte Carlo (SMC) procedure for the online

monitoring of block membership is considered for the ARSBM. Not only are the

block memberships tracked through time, the fixed parameters are also estimated.

To achieve this, a data augmentation scheme is utilised to allow the posterior
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distribution of parameters given the edge-states and block structures to be sepa-

rable. This scheme allows for an MCMC within particle filter algorithm (Storvik,

2002; Fearnhead, 2002). Specifically, a Gibbs sampler can be implemented to infer

the parameters through time in a rigorous manner within the SMC algorithm.

Therefore, the storage requirements of the algorithm are much smaller than the

RJMCMC algorithm of Chapter 3. This problem has been attempted (Fu et al.,

2009; Xing et al., 2010; Yang et al., 2011; Xu and Hero, 2014), but without the

inclusion of autoregressive terms. Hence, as in Chapter 4, applying the ARSBM

in a dynamic setting allows more flexible modelling of temporal data by explicitly

allowing future edge-states to depend on the past.

A number of extensions to the research presented in this thesis are discussed in

Chapter 5. This includes missing data in the edges-states, inclusion of covariate

information on both the edges and nodes, and scalable inference procedures.
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2. Arbitrary edge-states and

unknown number of blocks in the

stochastic block model

2.1. Introduction

Statistical analysis of networks has seen much growth in recent years with the in-

creasing availability of network data. The term “network” is used in a broad range

of research fields. In this paper, a network consists of a set of nodes, which can

form pairwise interactions. Each possible interaction is referred to as an edge, with

the value of that interaction being denoted as an edge-state. In similar work these

are referred to as possible edges and edge-weights. By referring to each possible

pair of nodes as an edge, the terminology is more succinct. The aim of statisti-

cal network modelling is to describe the edge-states with a probabilistic model,

potentially performing inference for model parameters. Such models include the

exponential random graph, the class of latent space models and the stochastic

block model (SBM). Under the SBM, the set of nodes is partitioned into blocks

such that the edge-state between two nodes depends on their block memberships.

For example, an assortative block structure in a network with binary edge-states

is formed when nodes in the same block are more likely to have an edge-state of

one than between nodes in different blocks.

In this paper we aim to identify network structure via an extension of the
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2. Arbitrary edge-states and unknown number of blocks in the SBM

stochastic block model. The SBM has been studied at least since the 1980s (Hol-

land et al., 1983; Frank and Harary, 1982), with attention turning to non-binary

edge-states in the 2000s (Jiang et al., 2009; Mariadassou et al., 2010; Ambroise

and Matias, 2012). There is a rich literature on the SBM including both Bayesian

and Frequentist treatments. Extensions to the SBM include restricting the SBM

to only within-block and between-block edge-state distributions in the affiliation

network (Snijders and Nowicki, 1997; Nowicki and Snijders, 2001; Copic et al.,

2009), multiple-block memberships in the mixed-membership SBM (Airoldi et al.,

2008), degree-corrected SBM (Karrer and Newman, 2011), and the infinite rela-

tional model (IRM) (Kemp et al., 2006) where the number of blocks is treated as

unknown. For a thorough review of the SBM and inference methods see Matias

and Robin (2014).

The Bayesian inference procedure we present is applicable to networks with

arbitrary edge-states, extending the work of Mørup and Schmidt (2012, 2013) and

McDaid et al. (2013). The inference algorithms presented in this paper allow much

more flexible modelling than previous work on networks with arbitrary edge-states.

Previous authors have only considered conjugate models for edge-states, whereas

we allow much more flexibility in the choice of prior by only assuming that (1)

samples can be taken and (2) point-wise evaluation is computationally feasible.

This greatly broadens the applicability of the stochastic block model to general

network data with arbitrary edge-states.

Various methods have been considered to estimate the number of blocks within

a network. Such methods fall into two main approaches: (1) a post-hoc analy-

sis of multiple models (using model selection methodology) or (2) incorporating

the number of blocks as a random variable. The model selection techniques in

likelihood based methods using the Bayesian information criteria and its deriva-

tives (Daudin et al., 2008; Latouche et al., 2012; Wang et al., 2017; Saldaña et al.,

2017), information based methods using minimum description lengths (Peixoto,

2013), sequential testing by embedding successive block models with an increasing
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2. Arbitrary edge-states and unknown number of blocks in the SBM

number of blocks (Lei, 2016) and cross validation (Chen and Lei, 2016). These

methods all fit multiple SBM models with differing numbers of blocks, then do a

post-hoc analysis to choice a final number. Alternatively, treating the number of

blocks as a random variable allows inference on the joint distribution of number

of blocks, block membership of nodes and model parameters. Extending the SBM

by allowing the number of blocks to vary leads to the Infinite Relational Model

(IRM) (Mørup and Schmidt, 2013). The IRM extends the model hierarchy of the

SBM by placing a Chinese Restaurant Process (CRP) prior (Gershman and Blei,

2012) on the number of blocks. On top of this, the parameters θ can be integrated

out of the SBM model, leading to efficient collapsed Gibbs sampling algorithms

(Mørup et al., 2011; Mørup and Schmidt, 2012, 2013; McDaid et al., 2013)

In this paper, the number of blocks is estimated under the later paradigm. Two

algorithms are presented to sample from the posterior distribution of the block

parameters, block memberships and number of blocks in a stochastic block model.

The first algorithm uses the Dirichlet process (DP) sampler (Neal, 2000) to create a

Metropolis-within-Gibbs sampler. Given the block memberships, the parameters

θ can be updated using a Metropolis algorithm. The block memberships and

number of blocks can be updated in turn given the parameter values. This is

similar in spirit to the collapsed Gibbs sampler of McDaid et al. (2013) – for a

given node i, the posterior probability of belonging to block k is computed with

all other parameters fixed. Under the collapsed regime, considering assigning i to

a new block k∗ is simple, since the parameters θ have been integrated from the

model. In the case of non-conjugate mixture models, this parameter is required

to evaluate the likelihood of node i belonging to block k∗. However, notice that

in the SBM, if a node is the only member of a block, then such a block contains

no edges – any parameter value θk∗ does not affect the likelihood. By drawing

θk∗ from its prior, the proposal and prior densities will cancel, meaning θk∗ has no

effect on the acceptance probability either. This allows the sampler to create new

blocks undeterred by the value of θk∗ (contrast this to mixture models, where a
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2. Arbitrary edge-states and unknown number of blocks in the SBM

poor value of θk∗ can decrease the likelihood substantially).

The Gibbs like nature of the DP sampler is not without its pitfalls: the sampler

can get “stuck” in local maxima of the posterior. Specifically, in the case of block

models, the sampler can be stuck such that two “true” blocks (k, l say with nk and

nl nodes respectively) are assigned to block m. To reach a better local maxima,

the sampler must separate the nodes currently in m to two new blocks matching

the true labels k and l. Under the Gibbs sampler, to reach such a state requires

moving at least min(nk, nl) nodes. Each of these moves is unlikely, meaning the

series of such moves is very unlikely. However, if the sampler proposed all nk nodes

belonging to the “true” block k to be moved at once, the sampler could “jump”

to a place of higher posterior density. Such moves are considered in the second

sampler introduced.

The second sampler is inspired by Green and Richardson (2001) – a reversible

jump MCMC (Green, 1995) scheme using split and merge proposals to explore

the posterior by either combining two blocks, or splitting a block into two. Such

split-merge moves avoid the local maxima of the DP sampler, but at the expense

of proposing parameter values. Nobile and Fearnside (2007); McDaid et al. (2013)

make use of a split-merge proposal, although due to the conjugate models consid-

ered, they do not require parameter values θ′. The difficulty in designing a good

split-merge algorithm rests on ensuring that parameter values are “matched” when

changing dimension.

The remainder of the paper is organised as follows: in Section 2.2 the specifics

of the SBM are presented together with a discussion on the choice of prior distri-

butions for the number of blocks and block memberships. Sections 2.3 and 2.4 in-

troduce the Dirichlet process and split-merge samplers respectively. In Section 2.5

both samplers are applied to simulated data, whilst in Section 2.6 the split-merge

sampler is used to analyse some real networks. Finally, closing remarks and ex-

tensions to the samplers are discussed in Section 2.7.
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2.2. Model

The canonical SBM (Holland et al., 1983; Fienberg et al., 1985; Wasserman and

Anderson, 1987) considers a network with a fixed number of nodes and blocks

denoted as N and κ respectively. The nodes are then partitioned into blocks, with

each node belonging to only one block. Let z be the block indicator matrix with

zik = 1 if node i belongs to block k and 0 otherwise. As such zi is a one-of-κ

indicator vector. It is assumed that zi is drawn from a Multinomial distribution

with parameter ω. The parameter ω governs the block memberships, with ωk

being the probability that a node joins block k.

For each pair of blocks, there is an associated parameter ϑkl which governs the

probability of an edge-state between nodes in blocks k and l. These parameters

can be arranged into a matrix, with diagonal elements ϑkk governing edge-states

between nodes both in block k. In the case of undirected edges, the parameter

matrix is symmetric with ϑkl = ϑlk. Finally, the edge-states are modelled as

independent Bernoulli random variables with probability of success based on the

block membership of the nodes. Specifically, the edge-state for edge ij, denoted

Eij, is drawn from a Bernoulli distribution with probability ϑkl where zik = zjl = 1.

Notice this can be written as the quadratic form z′iϑzj. This model is summarised

in Equation (2.1), first the nodes are assigned to blocks; then given these block

memberships, the edge-states are drawn with parameters depending on the block

membership of the end-nodes.

z|ω ∼ Multinomial(ω, κ)

Eij|ϑ, z ∼ Bernoulli(z′iϑzj)

(2.1)

Given a data set consisting of the edge-states in a network, recovery of the

block memberships is of interest. However, when performing inference, the values

for parameters ϑ are likely to be unknown. In the case of binary edge-states, a

natural extension to Equation (2.1) is to allow ϑkl to be a Beta random variable.

Therefore, in applications of the SBM, when only the edge-states are observed,
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2. Arbitrary edge-states and unknown number of blocks in the SBM

inference must be performed on both z and ϑ.

The structure of the SBM can be applied to non-binary edge-states, such as

count data or a continuous value. In this way, the parameters ϑ apply to some

edge-state distribution other than the Bernoulli. As such, a prior distribution

other than the Beta is required for the parameters in order to perform inference.

A further extension allows ω to be treated as unknown by assigning it a Dirichlet

prior. Letting G and G0 be the distribution on the edges-states and parameters

respectively yields the model in Equation (2.2).

ω ∼ Dirichlet(γ)

z|ω ∼ Multinomial(ω, κ)

ϑkl ∼ G0(αkl)

Eij|ϑ, z ∼ G
(
ϑzizj

)
(2.2)

The IRM treats the number of blocks as unknown. Multiple authors have con-

sidered Bayesian inference for the IRM with conjugate models for the edge-states

In this case, the parameters governing the edge-states can be integrated out of the

likelihood, resulting in a collapsed Gibbs sampler (McDaid et al., 2013). Such an

approach is reliant on the conjugate assumptions; hence, only a limited number of

edge-state models can be fitted using such algorithms.

In the canonical SBM, there are κ blocks. When considering the block mem-

bership of the end-nodes there are
(
κ+1

2

)
possibilities: the end nodes can be in

the same block (κ possibilities) or in different blocks (
(
κ
2

)
possibilities). Allowing

every pair of blocks k, l to be governed by different parameters ϑkl say, then the

number of parameters grows quadratically in κ. Therefore, to control this growth,

this paper considers a restricted form of the SBM. Other authors have considered

reduced forms of the SBM. The affiliation model (Snijders and Nowicki, 1997;

Nowicki and Snijders, 2001; Copic et al., 2009), only has two parameters: one for

edges between nodes in the same block and another for edges between nodes in

different blocks. Therefore the number of parameters is always two, no matter
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2. Arbitrary edge-states and unknown number of blocks in the SBM

how many blocks the are. This paper considers a parameterisation between these

two extremes: letting θk be the parameters governing edges between nodes in the

same block k (of which there are κ), and a global parameter θ0 for edge-states

between nodes in different blocks. In this way the number of parameters is κ+ 1,

and grows linearly in the the number of blocks. This model is appropriate for net-

works where between block connections are relatively homogeneous; for example in

ecological contact networks, where herds of animals remain close together for most

of the time, with some between herd interactions. For comparison to the generic

SBM from Equation (2.2), let θ be the matrix with parameters with θkl = θ0

and θkk = θk, then the quadratic form z′iθzj picks the parameter governing the

edge-state Eij. This may be extended to edge-state distribution G with multiple

parameters. Note that θk is a vector of parameters for the edge-state distribution

for edges in block k (or between blocks if k = 0). For example, if G represents the

Gaussian distribution, then θk = (µk, σ
2
k) represents the mean and variance of the

edge-states in block k. In this case, an additional subscript is required on θk such

that θkp is the pth parameter for block k. In the Gaussian example θk1 is the mean

value of edges in block k.

Since the number of blocks κ is considered unknown in this paper, a prior must

be placed on both the number of blocks and block memberships. Choices for this

prior are discussed in Section 2.2.1. Prior parameters α are assigned to the block

parameters θ. Meanwhile, let F be a joint distribution for (κ, z) with parameters

γ, hence the restricted form of the SBM considered in this paper is shown in

Equation (2.3).

κ, z ∼ F (γ, δ)

θk ∼ G0(α)

Eij|θ, z ∼ G(z′iθzj)

(2.3)
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2.2.1. Prior for block structure

Under a canonical SBM, the number of blocks κ are assumed known. In this case,

the standard prior to place on the block allocations z is a Multinomial(ω). In

the case where κ is unknown, this can be extended by setting a prior on both

κ and z. A hierarchical prior distribution can be achieved by first setting an

arbitrary prior distribution F0 for κ, and then setting a prior for z given κ. One

approach is to let z ∼ Multinomial(ω), where ω ∼ Dirichlet(γ, κ), the symmetric

Dirichlet distribution on the κ− 1 simplex. Such a hierarchical prior is referred to

as a Dirichlet Multinomial Allocation (DMA) prior (Green and Richardson, 2001).

Since a symmetric Dirichlet distribution with parameter γ is used, the parameter ω

can be marginalised out to obtain a prior density for block memberships depending

only on κ and γ as shown in Equation (2.4).

f(z|γ, κ) =

∫
ω

f(z|ω) π0(ω|γ) dω

=

∫
ω

κ∏
k=1

N∏
i=1

ωzik+γ+1
k

Γ(κγ)

Γ(γ)κ
dω

=
Γ(κγ)

Γ(γ)κ

∏κ
k=1 Γ(Nk + γ)

Γ(
∑κ

k=1Nk + κγ)

(2.4)

where Nk is the number of nodes in block k.

By taking the limits κ→∞, γ → 0 while κγ → γ̂, the Dirichlet process named

the Chinese Restaurant Process (CRP) is obtained (Aldous, 1985). This has the

interpretation of a block model with infinitely many blocks, while the sum of the

Dirichlet parameters remains equal to γ̂. For further discussion on the connections

between DMA and DPs see Green and Richardson (2001). The CRP is a popular

choice of prior for the SBM (Mørup et al., 2011; Mørup and Schmidt, 2012; Cha and

Cho, 2012), used in topic modelling (Blei et al., 2003; Broderick et al., 2013) and

includes extensions such as the Indian buffet process (Ghahramani and Griffiths,

2006). It is appealing since it jointly models the number of blocks and block

memberships via one parameter γ. The expected number of blocks is available in

closed form in Equation (2.5) where Ψ is the digamma function.
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E[κ] = γ (Ψ(γ +N)−Ψ(γ)) (2.5)

However, the marginal distribution on the number of blocks, p(κ), depends on

the Stirling numbers of the first kind. The computation of Stirling numbers is

non-trivial (Antoniak, 1974). As such, prior specification is more precise under

the DMA specification, since it allows a distribution to be placed on the number

of blocks independent to the block size distribution.

For use in the following samplers, both the density, and marginal densities for a

single node are required. These are available in Equation (2.6) for the DMA and

Equation (2.7) for the CRP.

f(zi = l|z̄, η) =

η+1∑
κ∗=η

f(z|κ∗) π0(κ∗|η)

π0(z̄|η)

=
Γ(γ)η

Γ(γη)

Γ(γη +M)∏η
k=1 Γ(γ +Mk)

×
[

Γ(γη)

Γ(γ)η

∏η
k=1 Γ(γ +Mk + zik)

Γ(γη +M + 1)
π0(η|η)

+
Γ(γη + γ)

Γ(γ)η+1

∏η+1
k=1 Γ(γ +Mk + zik)

Γ(γη + γ +M + 1)
π0(η + 1|η)

]

=


π0(η + 1|η) B(γ+1,M+ηγ)

B(γ,ηγ)
if l = η + 1

π0(η|η) Ml+γ
M+ηγ

+ π0(η+1|η) B(γ+1,M+ηγ)
B(γ,ηγ)

(
1 + Ml

γ

)
o.w.

(2.6)

Where z̄ is the set of nodes without node i, M = N − 1 is the number of nodes

without i, η is the number of blocks defined by the set z̄ and Mk is the number of

nodes in block k from the set z̄. As for the CRP:

f(z, κ|γ) =
Γ(γ) γκ

Γ(γ +N)

κ∏
k=1

Γ(Nk)

f(zik = 1|z−i, κ, γ) =


N ′k

N−1+γ
if k ≤ κ,

γ
N−1+γ

if k a new block.

(2.7)
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This section closes with a comparison between the CRP and DMA priors. One

downside to using the CRP is that generated blocks structures are skewed towards

one large block with multiple smaller blocks. By keeping an explicit DMA prior

the possible block structures are more flexible and interpretation of parameters

is easier, since they are independent features of the model. Firstly, by choosing

a specific prior distribution F0 for κ, much more can be said about the number

of blocks; this allows more informative priors when modelling. Secondly, explicit

choices can be made for the distribution of nodes to these blocks via γ. Therefore,

for flexible modelling, the DMA is to be preferred. In this work, the DMA prior is

used with F0 the distribution obtained by adding one to a Poisson random variable.

As a consequence, f0(K = κ) = δκ−1exp(−δ)
(κ−1)!

for k = 1, 2, . . .. A comparison of block

structures generated under each model is shown in Figure 2.1. In each diagram, six

block structures have been generated for 100 nodes from two settings in each of the

CRP and DMA model. Each structure is represented as a set of rectangles, with

each rectangle denoting one block. The height of the rectangle depicts the number

of nodes assigned to that block. In all cases, the blocks have been sorted by size,

hence, the more uneven the block structure, the more curved the plot. As such,

notice that the CRP generates uneven block structures, especially for smaller γ.

However, to generate more even blocks, a high value for γ is required; this generally

generates more blocks as well. This is due to the low probability of generating even

blocks under the CRP. As for the DMA, in both cases, the expected number of

blocks is 5, but γ is set as 1 or 5. The block structures generated with γ = 1 are

in the lower left. The size of blocks in this case is drawn uniformly across all block

sizes with the given number of blocks. In the lower right, a DMA(5,5) is shown.

In this case the block sizes are drawn from a symmetric Dirichlet(5) distribution.

This concentrates the block size distribution to more even blocks, yielding plots

with a straight diagonal.
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Figure 2.1.: Comparison of block structures. Top left CRP(1), top right CRP(5).
Bottom left: DMA(1,5), bottom right: DMA(5,5).

2.3. Dirichlet process sampler

In this section a Dirichlet process sampler for the restricted SBM is given. This

adapts the Dirichlet process sampler for clustering of Neal (2000) for the SBM.

Running such a sampler for a large number of steps will draw samples from the

posterior distribution of (κ, z,θ). In such a procedure, the block membership of

each node is updated in turn. When considering a node i, it is either assigned

to one of the current κ blocks, or starts a new block denoted by k∗. For the

current blocks, a parameter θk is used from the current state of the sampler when

calculating the likelihood. For the new block however, a parameter θk∗ is simply

drawn from the prior.
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Neal (2000) introduce a Dirichlet process sampler for clustering with non-conjugate

models. When clustering, assigning a data point to a new cluster requires a new

parameter θk∗ . However, in the case of the SBM, there is a key difference: under

the clustering problem each data point belongs to one component, in the SBM

each node i belongs to one block, which in turn decides the distribution which the

N − 1 edges with end-node i follow. This will greatly influence the likelihood of

the point being assigned to the new cluster k∗. An interesting property for the re-

stricted SBM is that assigning a single node to a new block leaves no within-block

edges, hence, any value of θk∗ will not affect the likelihood. This can help the

sampler in exploration, since creating a new block is not down-weighted by poor

parameter values θk∗ , such values may be updated by other moves of the sampler.

The specifics of the algorithm are now discussed.

Firstly, let (κs, zs,θs) be the state of the sampler after s steps. The process by

which the next state s+1 is generated is described for each of the components κ, z

and θ. The update process for parameter values θ has been chosen as a Metropolis-

Hastings random walk on a transformed scale. In the following this is referred to

as “Update”, which takes the current state of the sampler and proposes new values

θs+1. In the analysis, a Metropolis-Hastings procedure is applied with symmetric

Gaussian proposals on a transformed scale. That is, θ′k = m−1(m(θk) + σξ) where

ξ is a draw from a standard normal distribution and m is an isomorphism from Θ

to R.

The difficult part of the Dirichlet process sampler is the update for block mem-

berships z and, as a consequence, the number of blocks κ. This makes use of a

Metropolis update for each node in turn. Let i be the node whose block member-

ship, zi, is to be updated. By choosing the marginal prior as the proposal distribu-

tion for the block membership of i, this will cancel in the acceptance probability.

Therefore, the proposed block membership of i is drawn as z′i ∼ Multinomial(p),

where pk = f(zik = 1|z−i). Note that the prior here is marginalised over κ as

well as the parameters θ. Therefore, the DMA prior cannot be used in this form.

35



2. Arbitrary edge-states and unknown number of blocks in the SBM

Therefore, all analysis with the DP sampler will use a CRP prior in this paper.

The marginal density for the CRP is given in Equation (2.7). Next, if i is proposed

to start a new block k′, then a value for θk′ is required for this new block. In this

case, denote θ′ = θ ∪ θk′ as the proposed set of parameters. By drawing θk′ from

its prior distribution G0, this also cancels in the acceptance probability. On the

other hand, if zi is currently a member of a singleton block l and z′i 6= l, then block

l is removed from the model. In this case θ′ = θ\θl. In the case where the number

of blocks is unchanged when proposing z′i, the proposed parameter values θ′ = θ.

Finally, θs+1, zs+1
i is set to θ′, z′i with probability A in Equation (2.8), and to

θs, zsi otherwise. It remains to compute the acceptance probability. Since updates

are proposed from the prior distribution, this cancels in the posterior leaving a

likelihood ratio. Recall that G is the distribution for the edge-states with density

function g, and thus g(E|z,θ) is the likelihood function then:

A(zi → z′i) =
π
(
z′i|E, zs−i,θ′

)
π
(
zsi |E, zs−i,θs

) q(zsi |z′i)
q(z′i|zsi )

=
g
(
E|z′i, zs−i,θ′

)
g
(
E|zsi , zs−i,θs

) . (2.8)

The procedure is summarised in Algorithm 2.3. Note that at a given step a

node may start a new block, increasing κ. A node may also be the only node in a

block, but then be reassigned to a block containing other nodes, decreasing κ. An

important case to consider is when a node i is currently a member of a singleton

block, say k: a block with only one node. In such a situation, assigning i to k′ is

the same as i starting a new block in terms of the model, since block labels have

no impact on the model. A simple remedy is to set the probability of reassigning

node i to block k as zero.

2.4. Split-merge sampler

In this section a split-merge sampler, based on reversible jump Markov chain Monte

Carlo is provided. This is an alternative approach to the Dirichlet process sampler
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Algorithm 2.3 Metropolis-within-Gibbs sampler for restricted SBM with un-
known κ: Dirichlet process sampler.

Inputs: Edge-states E, prior parameters α, γ, δ.
Draw κ0, z0 ∼ F0(·|γ, δ).
Draw θ0 ∼ G0(·|α).
for s = 1, . . . , S do

Draw θs ∼ Update(·|E, κs−1, zs−1,θs−1,α)
Let κs = κs−1

for i = 1, . . . , N do
for k = 1, . . . , κs + 1 do

Let pk = f(zik = 1|z−i)
end for
if i currently belongs to a singleton block k then

Let pk = 0
end if
Draw z′i ∼ Multinomial(p)
if z′i = κs + 1 then

Draw θκs+1 ∼ G0(α)
end if
Calculate A from Equation (2.8)
Draw Y ∼ Bernoulli(A)
if Y = 1 then

Let zsi = z′i
else

Let zsi = zs−1
i

end if
Let κs =

∑∞
k=1 I

[∑N
i=1 z

s
ik > 0

]
end for
Store sample (zs,θs).

end for
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introduced in Section 2.3. Both methods draw samples from the posterior distri-

bution of (κ, z,θ). However, the split-merge sampler can perform more drastic

changes to the state space compared to the Dirichlet process sampler. This can

have major benefits when exploring the posterior distribution. For example, the

block membership of each node is updated in turn under the Dirichlet process

sampler; this can lead to cases where it is difficult to separate nodes which should

belong to different blocks. Consider two “true” blocks k and l with nk ≥ nl nodes.

Furthermore, consider a state s of the DPS where all nodes in blocks k and l are

assigned to one block ks (which contains only these nodes). To separate the nodes

within ks to the true blocks k and l requires at least nl steps, each of which takes

the nodes assigned to ks and assigns them to a new block ls. However, each of

these moves is quite unlikely: especially if the parameters θk,θl are close to θ0. On

the other hand, if all nodes could be moved at once, then the proposal would be

more likely to be accepted. This is a common problem with Gibbs sampling algo-

rithms: the one-at-a-time nature of the procedure means large changes in posterior

space are unlikely, even if the combined changes increase the posterior consider-

ably. This phenomenon can cause the Gibbs sampler to get “stuck” in local modes

of the posterior. One way to address this problem is to use a split-merge sampler.

Split-merge samplers have been developed for general mixture models (Green

and Richardson, 2001), with emphasis on the canonical mixture of normal densi-

ties. In a standard parametric mixture model, each data point is believed to be

drawn from a component of the mixture. Each component has a different form,

either different distributions or different parameter values. A split-merge sampler

applied to such a data set explores the possible assignments of data points to

components by successively proposing to either merge two components together,

or splitting one component into two. Care must be taken in designing such pro-

posals: it must be an isomorphism and differentiable to ensure the validity of the

underlying Markov chain. Furthermore, to be efficient, the proposal must ensure

that a proposed structure has similar posterior support to the current structure to
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ensure a reasonable acceptance probability.

In this paper, a split-merge sampler for the SBM is introduced. Firstly, notice

that the SBM differs from the standard mixture model considered above. In the

above, each data point belongs to one component; in the SBM each node belongs

to one block, however the data in a network is the set of edge-states. These are

influenced by the block membership of the nodes. Therefore, when considering

split-merge samplers for the SBM, multiple edge-states are affected by changing

the block membership of one node.

On top of this, in a mixture model a data point may belong to a component

to which no other data points are assigned. If a split move proposes a split such

that a component contains only one data point, it will be penalised for creating an

extra component, but rewarded for finding a good fit in terms of likelihood. In the

mixture of normal examples, if a data point zi is proposed to start a component

with form N(zi, ε) (for ε small), the likelihood will be increased. Similarly, a node i

may be the only member of a block, say k. Such nodes are referred to as singletons.

However, in this case, there are no edge-states governed by the kth block (since self-

edges are not considered in this paper). As such, the likelihood is not influenced

by a parameter value for block k. On the contrary, node i is a singleton, thus

all its edges are between-block edges, and thus the edge-states Eij for j 6= i are

governed by parameter θ0.

The differences highlighted above make a split-merge sampler for the SBM differ-

ent from a standard split-merge sampler. These differences need to be considered

for the design of a successful sampler.

The remainder of this section introduces the split-merge sampler for the re-

stricted SBM, taking account of the issues highlighted above. The sampler consists

of four moves:

• resampling parameter values,

• splitting or merging blocks,
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• adding or deleting an empty block,

• reassigning nodes to the current set of blocks.

Let (κs, zs,θs) be the current state of the parameters in step s of the sampler.

Resampling parameter values is identical to the process under the DP sampler

of Section 2.3. The difficult proposals are the trans-dimensional: splitting and

merging.

Firstly, the merge proposal is described. This takes the state (κs, zs,θs) and

proposes a new state (κ′, z′,θ′) Such a move will reduce the number of blocks by

one; hence, κ′ = κs − 1. Two block must be chosen to merge, k and l, say. There

is freedom of choice in the mechanism for choosing k and l: random, proportional

to block size, inversely proportional to block size, etc. In this paper, k and l

are chosen at random for simplicity. Given k and l, the parameter and block

memberships must be proposed. Block memberships are deterministic: any node

belonging to either block k or block l at step s is now assigned to block k′. Finally,

the parameter values are proposed. Following the recommendations of Green and

Richardson (2001), proposing a value θ′k′ with similar explanatory power as θk and

θl should ensure that θ′k′ is well supported in the posterior. A simple approach

is to simply take the mean value: θ′k′ = θk/2 + θl/2. However, to allow more

flexibility in the sampler, an uneven merge is considered with a sampler parameter

w ∈ [0, 1] giving a weighted mean of parameter values as in Equation (2.9).

θ′k′ = wθk + (1− w)θl (2.9)

The split move is the inverse of a merge. Hence, when splitting block k′ back

into block k and l, the inverse of Equation (2.9) is required. On top of this, an

auxiliary variable u is need to match the dimension of the parameter space. In

the examples u is drawn from a Normal(0, σ2) distribution for σ = 1. The value

of σ dictates the extent to which the new block parameters can differ, with larger

values forcing the proposed parameters further apart. Letting u be the weighted
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difference of the parameters k and l yields a pair of simultaneous equations, as in

Equation (2.10). Solving these gives values for the new block parameters θk and

θl in Equation (2.11).

θ′k′ = wθk + (1− w)θl

u = wθk − (1− w)θl

(2.10)

θk =
θ′k′ + u

2w

θl =
θ′k′ − u

2(1− w)

(2.11)

However, Equation (2.11) does not guarantee values in the parameter space. For

example, if θ′k′ is a rate parameter (which must be positive), θl is not guaranteed

to remain positive. Rather than choose u and w conditional on a suitable θ,

a matching function m : θ → R is used. This ensures that, when splitting,

the inverse m−1 yields parameter values in the correct space. Possible matching

functions for a given parameter space are shown in Table 2.1.

Table 2.1.: Possible matching functions to ensure parameters lie in the correct
space.

Range for θ Possible matching function m
(∞,∞) m(x) = x
[0,∞) m(x) = log(x)
[0, 1] m(x) = logit(x) = log(x)− log(1− x)

As a consequence, the sampler uses Equation (2.12) with sampler parameter

w to merge blocks k and l into block k′. Whereas to split a block k′, equations

(2.13) and (2.14) are used together with simulation parameters w′ and u′. In the

examples w and w′ are drawn from Unif(0, 1) and u′ from Normal(0, 1). Note that

the dimension matching criteria of RJMCMC (Green, 1995) is achieved since the

vectors (θ′k′ , u
′, w′) and (θk,θl, w) contain the same number of elements.
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m(θ′k′) = wm(θk) + (1− w)m(θl) (2.12)

m(θk) =
m(θ′k′) + u′

2w′
(2.13)

m(θl) =
m(θ′k′)− u′

2(1− w′)
(2.14)

Therefore, the merge proposal takes two blocks k, l, proposes a parameter value

θ′k′ based on θk,θl, w and u, reassigns nodes in block k or l to block k′ and decreases

the value of κ by one. The proposed state (κ′, z′,θ′) is then accepted as the new

state of the RJMCMC sampler with probability Amerge computed in the following

and shown in Equation (2.18).

It remains to describe the split proposal in detail. Again let the current state

of the sampler be (κs, zs,θs); as such the proposed state is (κ′, z′,θ′). A split

move will divide a single block into two blocks, thereby increasing the number of

blocks by one; hence κ′ = κs + 1. Firstly, a block k is chosen to split at random

from the current set of κs blocks. Given k, the parameter and block memberships

must be proposed with new blocks k′, l′. Discussion of how to generate parame-

ters can be found above in the merge procedure, parameters θ′k′ ,θ
′
l′ are given by

Equation (2.13) and (2.14) respectively.

Finally, the proposed block structure z′ is considered. In Green and Richardson

(2001), data points are assigned to block k′ or l′ proportional to the likelihood.

That is, for a density f and data y:

q(z′i = k′) =
f(yi|z′i = k′)

f(yi|z′i = k′) + f(yi|z′i = l′)

Taking a similar approach in the SBM is not possible due to the fact that edge-

states exist between all nodes. For example, under the SBM, g(Eij|z′i = k′) can

only be calculated with knowledge of z′j for j 6= i; this is not known for the set

of nodes being split. The quantity can be calculated in principle by looking at all

the possible allocations of the nodes in block k to k′ and l′. Let I be the set of
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nodes to be split, and σ(I) be a permutation of I. Each of the nodes in I will

be assigned in the order σ(I). Let “< i” represent indices preceding i and hence

σ(I)<i is the set of nodes already assigned before i. Therefore, when assigning i,

the following can be calculated:

q(z′i = k′) =
f
(
E|z′i = k′, z′<i, z

′
−I ,θ

′)
f
(
E|z′i = k′, z′<i, z

′
−I ,θ

′
)

+ f
(
E|z′i = l′, z′<i, z

′
−I ,θ

′
) . (2.15)

Taking the product of this over each i ∈ σ(I) yields the probability of assigning

the nodes in the sequence σ(I):

q(z′I) =
∏
i∈σ(I)

g
(
E|z′i = k′, z′<i, z

′
−I ,θ

′)
g
(
E|z′i = k′, z′<i, z

′
−I ,θ

′
)

+ g
(
E|z′i = l′, z′<i, z

′
−I ,θ

′
) . (2.16)

However, this depends on the order σ, hence to obtain the probability of a given

sequence, this value is averaged over all permutations of I. Let Σ(I) be the set

of all permutations over the set I and σ(I) be a given permutation, then the

probability of the allocation z′ is:

q(z′) =
1

|I|!
∑

σ∈Σ(I)

∏
i∈σ(I)

g
(
E|z′i = k′, z′<i, z

′
−I ,θ

′)
g
(
E|z′i = k′, z′<i, z

′
−I ,θ

′
)

+ g
(
E|z′i = l′, z′<i, z

′
−I ,θ

′
)

(2.17)

This is computationally infeasible to calculate. Notice that it is a mean over

all permutation of the set I, hence, an unbiased estimate can be obtained by

taking a sample average over some subset of permutations, specifically a single

permutation. Therefore, in practise, to split a block k, the nodes to be split are

permuted at random. Next, they are sequentially allocated to the new blocks k′ or

l′ with the probability given in Equation (2.15). This contributes to the acceptance

probability by the amount in Equation (2.17), which is an unbiased estimate of

the value in Equation (2.16). Finally, the proposed split is accepted as the next

state of the RJMCMC sampler with probability Asplit in Equation (2.18).

Now each of the proposal distributions are described, it remains to compute
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the acceptance probabilities Amerge and Asplit. Since a merge move is the inverse

of a split move, Amerge = 1/Asplit, hence only Asplit is derived. The acceptance

probability can be split into the following parts: posterior density ratio, proposal

density ratio, ratio of densities of auxiliary variables, and the Jacobian; as such

Asplit has the general form:

Asplit =
π(κ+ 1, z′,θ′|E)

π(κ, z,θ|E)

q(κ, z,θ|κ+ 1, z′,θ′)

q(κ+ 1, z′,θ′|κ, z,θ)

q(w)

q(u′, w′)
Jsplit

=
π(κ+ 1, z′,θ′|E)

π(κ, z,θ|E)

q(merge|κ+ 1)

q(split|κ)

q(k′, l′)

q(k)

q(w′)

q(w, u)

1

q(z′|θ′)
Jsplit

(2.18)

where q(split|κ) and q(merge|κ) are the probabilities of proposing a split or

merge move given the current state of the sampler contains κ blocks. These are

chosen as 1/2 where possible. That is q(split|κ = 1) = 1 and q(merge|κ = 1) = 0

since merging is impossible when there is only one block.

Notice the sampler allows splitting of singleton blocks and leaving a block empty

during a split. Due to the reversible nature of the sampler, these empty blocks can

then be merged back with other blocks. In the mean time nodes can be assigned to

such empty blocks via the Gibbs-like allocation move, described in the following.

Lastly, Jsplit is the Jacobian of the split proposal given in Equation (2.19) and

p is the dimensionality of each θk.

Jsplit =

∣∣∣∣∣∣∣∣
∂θ′k′

∂θk

∂θ′l′

∂θk

∂θ′k′

∂u′
∂θ′l′

∂u′

∣∣∣∣∣∣∣∣ =

∣∣∣∣ ∇m(θ′k′)∇m(θ′l′)

∇m(θk) (2w(1− w))p

∣∣∣∣ (2.19)

Hence, in the examples, where specific choices for u′, w′, w and q(merge) , q(split)
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have been made, the acceptance probabilities reduce to:

Asplit =
π(κ+ 1, z′,θ′|E)

π(κ, z,θ|E)

1

1 + I[κ = 1]

2

κ+ 1

× 1

φ(u′|0, σ2)

1

q(z′|θ′)

∣∣∣∣ ∇m(θ′k′)∇m(θ′l′)

∇m(θk) (2w(1− w))p

∣∣∣∣
Amerge =

π(κ− 1, z′,θ′|E)

π(κ, z,θ|E)
(1 + I[κ = 2])

κ

2

× φ
(
u|0, σ2

)
q(z|θ)

∣∣∣∣∇m(θ′k′) (2w(1− w))p

∇m(θk)∇m(θl)

∣∣∣∣
To allow the sampler to explore the parameter space, an additional two moves

are included. A Gibbs like move, which allocates each node to a block proportional

to the posterior density, and a move that allows the addition and deletion of empty

blocks.

The Gibbs-like allocation move takes a node i and computes the marginal pos-

terior for i being a member of each of the κ blocks in the current state of the

sampler. Since κ is finite, at any given step, a vector pi, of length κ, can be

calculated with pik the probability that node i is proposed to move to block k.

Thanks to the structure of the restricted SBM, pik can be written as the product

of two densities: the posterior density of edge-states to nodes in the block k and

the posterior density of edge-states to nodes in other blocks as in Equation (2.20).

pik = π(zik = 1|z−i, E,θ)

∝ f(zik = 1|z−i)
∏
j 6=i

g(Eij|zj, bzik = 1,θ)

= f(zik = 1|z−i)
∏
j 6=i

g(Eij|θk)zjk g(Eij|θ0)1−zjk

(2.20)

Note that proposing to assign i back to the block to which it currently belongs

is allowed. Furthermore, since κ is finite, dividing by the sum of pi is trivial to

obtain a probability vector.

The second extension allows the deletion and addition of empty blocks. Notice

that the Gibbs allocation move or the split move can leave blocks empty. Waiting

for the sampler to merge an empty block with another block can leave empty
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blocks in the sampler state for some time (since blocks are chosen to merge with

probability 2/κ). Also, due to the need to have values for θ for empty blocks in case

of merging, a merge may not even be successful, due to the parameter averaging in

Equation (2.12). Therefore, a “delete empty block” proposal is included. To ensure

the steady-state properties of the sampler, the inverse “add empty block” proposal

is also required. When choosing a block to delete, it is chosen at random from the

current set of empty blocks. When adding an empty block, it is simply labelled

κ + 1. For simplicity, when an add/delete move is attempted, the probability of

adding a block is chosen proportional to an algorithm parameter ρ. The probability

of choosing to delete an empty block is proportional to the number of empty

blocks in the current state, N∅. In this way, steps are not wasted attempting to

delete an empty block that does not exist. Note that the likelihood of the edge-

states does not change with the addition of empty blocks since all node structure

remains identical. When adding a block, a parameter θ∗ is drawn from the prior

distribution. Given these points, the acceptance probabilities of the add and delete

empty block moves can be calculated as in Equation (2.21).

Aadd =
g(E|κ+ 1, z,θ,θ∗)

g(E|κ, z,θ|E)

π0(κ+ 1, z,θ,θ∗)

π0(κ, z,θ)

q(κ, z,θ|κ+ 1, z,θ,θ∗)

q(κ+ 1, z,θ,θ∗|κ,θ)

=
π0(κ+ 1, z)

π0(κ, z)

ρ+N∅
ρ(ρ+N∅ + 1)

(2.21)

Adel =
π0(κ− 1, z)

π0(κ, z)

ρ(ρ+N∅)

ρ+N∅ − 1
(2.22)

The full split-merge algorithm is given in Algorithm 2.4, including the split-

merge moves, Gibbs-like reallocation of nodes and the addition or deletion of empty

blocks.
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Algorithm 2.4 Reversible jump Markov Chain Monte Carlo sampler for the re-
stricted SBM with unknown κ: split-merge algorithm.

Inputs: Edge-states E, prior parameters α, γ, δ.
Draw κ0, z0 ∼ F0(·|γ, δ).
Draw θ0 ∼ G0(·|α).
for s = 1, . . . , S do

Draw θs ∼ Update(·|E, κs−1, zs−1,θs−1,α)
Let κs = κs−1

if κs=1 then
Propose a split

else
with probability 1/2 propose a split or a merge

end if
if There are no empty blocks then

Propose adding an empty block
else

with probability N∅
N∅+ρ

attempt deleting an empty block.

or with probability ρ
N∅+ρ

attempt adding an empty block.

end if
for i = 1, . . . , N do

for k = 1, . . . , κs do
Let pk = g(Ei·|z−i, zik = 1,θ) f(zik = 1|z−i)

end for
Draw z′i ∼ Multinomial(p)

end for
Store sample (zs,θs, κs).

end for
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2.5. Simulated data

In this section, the Dirichlet process sampler from Section 2.3 and split-merge

sampler of section 2.4 are demonstrated on simulated data.

2.5.1. Example networks

In this section example data sets are considered with a range of edge-state distri-

butions. Specifically the Bernoulli, Poisson, normal and negative binomial distri-

butions are considered. The negative binomial distribution as used in this paper is

a discrete distribution over the number of successful independent Bernoulli trials

with probability p which occur until a specified number of failures are obtained.

This can be extended to a generalised “number of failures” r > 0. The probability

mass function is thus:

P[X = x] =
Γ(x+ r)

Γ(r)x!
pr(1− p)x, for x = 0, 1, . . . , r > 0 and p ∈ (0, 1]

Notice that the first three edge-state distributions admit conjugate priors. There-

fore, existing samplers, such as those introduced by Mørup and Schmidt (2012)

and McDaid et al. (2013), could be applied. However, for the negative binomial

with both parameters unknown, no conjugate model exists. Each of these networks

are formed on the same block-structure of 100 nodes. The block sizes are 19, 23,

27 and 31.

In each network, the DP and split-merge samplers were implemented with ref-

erence prior distributions applied to each parameter θ (where possible). As for

the prior on κ and z, a CRP(5) is used for the DP sampler whereas a DMA(1,6)

prior was used with a Poisson distribution on κ − 1 for the split-merge sampler.

As discussed in Section 2.2.1, this ensures that the support for κ is the positive

integers, hence, the prior expected number of blocks is 5 in both cases. The pa-

rameter values used for each of the edge-state models is given in Table 2.2. For

the network with Bernoulli distributed edge-states, the reference prior Beta(1/2,
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1/2) was applied to each parameter θ. In the Poisson network, the reference prior

of Gamma(1/2, 0) was used for the rates θ. In the case of normal distributed

edge-states, two parameters are required. The reference prior used is proportional

to the reciprocal of the variance. In practice, a small value is used in place of

a 0 to make the above distributions proper. Finally, in the negative binomial

case with both parameters unknown, no reference prior exists, instead a Beta(1/2,

1/2) distribution is placed on the probability parameter p and a Gamma(0.5, 0)

distribution for r is used.

Table 2.2.: Simulated data parameter values for each edge-state distribution con-
sidered.

Parameter θ0 θ1 θ2 θ3 θ4

Bernoulli(p) 0.05 0.4 0.5 0.6 0.7
Poisson(λ) 1 1 5/3 7/3 3
Normal(µ, σ) (0, 0.5) (0.4, 0.5) (0.4, 0.5) (4.0, 0.5) (5.0, 0.5)
Negative binomial(r, p) (1, 0.5) (1, 0.5) (3, 0.5) (3, 0.5) (3, 0.5)

In the case of the DP sampler, 5000 steps were taken, with 2500 discarded as

burn-in. At each step, the block membership of each node is updated, therefore

250,000 updates to individual block memberships are made in total. This has the

possibility to create a new block by moving a single node out of a current block.

For the split-merge sampler, 5000 steps were taken with 2500 discarded as burn-

in. Notice that at each step, a single split or merge move is proposed which can

affect multiple nodes and a Gibbs step is taken to update the membership of each

node to the available blocks. Therefore new blocks can be created with multiple

nodes by splitting a current block into two new blocks. In all cases, a random walk

Metropolis-Hastings step was used on the parameters with variance equal to 0.1

A draw from the prior is taken as the starting point, with both samplers using the

same start for a fair comparison.

To evaluate the algorithms’ performance the joint probabilities that two nodes
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belong to the same block are calculated, after burn-in, as:

pij =
1

|S|
∑
s∈S

I[zis = zjs] , (2.23)

where S are the indices of samples remaining after burn-in. The posterior joint

probability that two nodes are in the same block (after burn-in) is displayed for

each algorithm for the Bernoulli network in Figure 2.2a and 2.2b, the Poisson

network in Figure 2.3a and 2.3b, the normal network in Figure 2.4a and 2.4b, and

the negative binomial network in Figure 2.5a and 2.5b,

Another point to consider when evaluating the ability of the samplers is the

estimated parameter values. The posterior means of the parameters are shown

in Table 2.3, together with a 95% the highest posterior density credible interval.

Notice that the values of θk, for k = 0, . . . , 4, are good estimates to the true values

in Table 2.2.

Notice that the Bernoulli case is rather easy, the parameter values within blocks

are quite different to the between-block parameter θ0, and as such both algorithms

perform well here. As for the Poisson case, notice that θ1 = θ0, hence block 1 is

not a block as defined in Section 2.2. This is apparent in the plots in Figure 2.3a

and 2.3b. In both cases, the nodes simulated with a block membership of 1 do not

have a high probability of being in a block with other nodes. This is a case where

the DP sampler is performing slightly better than the split-merge sampler: the

probabilities are smaller for the DP since it can assign a node to a singleton block

more easily. In the split-merge sampler, to assign a node to a singleton requires

splitting a block with n nodes into two block with 1 and n− 1 nodes respectively;

this is a low probability move so is rarely taken by the split-merge sampler.

For the network with normally distributed edge-states, the two blocks labelled 3

and 4 are represented in the upper right of the plots in Figure 2.4a and 2.4b. Notice

that the DP sampler fails to split these blocks and prefers a posterior where the

two blocks are joined as one. However, the split-merge sampler does much better in

this case, splitting the two blocks early in the RJMCMC chain. This is a problem
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with the DP sampler as mentioned in Section 2.1: due to its Gibbs-like nature it

easily gets stuck in local maxima. To split these blocks the DP must assign every

node in block 3 to a new block. Each of these moves is unlikely and when taken as

a sequence is incredibly unlikely, even though the end of the sequence (with block

3 and 4 split) has high posterior density. The split-merge sampler can propose a

split move which separates block 3 and 4 in one move, jumping over the sequence

of unlikely moves straight to the high density region of the posterior.

Finally, both samplers perform well in the network with negative binomial dis-

tributed edge-states. This network again has a “false” block labelled 1, where

θ0 = θ1. Both samplers are able to explore regions where the nodes in simulated

block 1 are separate from the other nodes, as seen by the low probability region

in both plots in Figures 2.5a and 2.5b.

Table 2.3.: Mean and 95% credible interval (CI) for parameters of example net-
works.

DP Bernoulli(p) Poisson(λ) Normal(µ)
θ0 0.056 (0.048, 0.063) 0.982 (0.952, 1.010) 0.017 (0.017, 0.017)
θ1 0.441 (0.360, 0.526) 43.089 (0.000, 173.426) 0.410 (0.326, 0.463)
θ2 0.507 (0.448, 0.568) 1.642 (1.432, 1.803) 0.422 (0.373, 0.487)
θ3 0.524 (0.011, 1.000) 2.198 (2.063, 2.324) 3.962 (3.942, 3.969)
θ4 0.346 (0.326, 0.372) 3.086 (2.902, 3.232) 5.004 (4.983, 5.049)
DP NegBin(r) NegBin(p) Normal(σ)
θ0 0.953 (0.894, 0.986) 0.484 (0.473, 0.497) 0.502 (0.502, 0.502)
θ1 92.693 (0.000, 525.346) 0.863 (0.164, 1.000) 0.505 (0.488, 0.555)
θ2 2.992 (2.025, 4.020) 0.526 (0.448, 0.617) 0.497 (0.442, 0.571)
θ3 5.336 (3.984, 7.129) 0.566 (0.498, 0.640) 0.520 (0.488, 0.527)
θ4 4.607 (3.429, 6.379) 0.466 (0.410, 0.559) 0.484 (0.472, 0.508)

RJ Bernoulli(p) Poisson(λ) Normal(µ)
θ0 0.052 (0.045, 0.060) 0.976 (0.942, 1.005) 0.015 (0.002, 0.027)
θ1 0.426 (0.352, 0.487) 0.964 (0.748, 1.155) 0.413 (0.368, 0.462)
θ2 0.507 (0.447, 0.566) 1.650 (1.468, 1.871) 0.369 (0.289, 0.428)
θ3 0.640 (0.595, 0.686) 2.201 (2.031, 2.376) 3.981 (3.962, 3.986)
θ4 0.678 (0.639, 0.722) 3.086 (2.889, 3.241) 4.985 (4.973, 5.019)
RJ NegBin(r) NegBin(p) Normal(σ)
θ0 0.931 (0.819, 1.065) 0.485 (0.455, 0.513) 0.504 (0.478, 0.521)
θ1 16.606 (0.000, 58.087) 0.589 (0.314, 0.999) 0.508 (0.489, 0.541)
θ2 2.892 (1.999, 3.988) 0.520 (0.436, 0.613) 0.502 (0.477, 0.522)
θ3 5.313 (3.639, 8.187) 0.562 (0.503, 0.686) 0.529 (0.523, 0.551)
θ4 4.609 (3.887, 5.397) 0.469 (0.418, 0.512) 0.490 (0.476, 0.509)
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Figure 2.2.: Posterior summaries for block membership in Bernoulli example net-
work.
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Figure 2.3.: Posterior summaries for block membership in Poisson example net-
work.
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Figure 2.4.: Posterior summaries for block membership in normal example net-
work.
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Figure 2.5.: Posterior summaries for block membership in negative binomial ex-
ample network.
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2.5.2. Assessing convergence

Assessing the convergence of a reversible jump Markov chain is non-trivial. Two

techniques are applied in this section: (1) applying the Rubin-Gelman convergence

statistic (Gelman and Rubin, 1992) to a summary statistic and (2) starting two

independent samplers, one with all nodes assigned to one block and the other with

each node assigned to different blocks.

In the first case, the mean and variance of the parameter values are used as

summary statistics of the sampler performance. These are recorded at every iter-

ation of the sampler. The Rubin-GelmanGelman and Rubin (1992) statistics for

the RJMCMC sampler for each model are shown in Table 2.4 based on 30 indepen-

dent chains. These values are mostly close to 1, indicating that convergence can be

expected after a few thousand iterations in the examples networks of Section 2.5.1.

The only case where the chain fails to converge is the Bernoulli model under the

DP sampler. This is due to the chain failing to split two blocks, and as such spends

many iterations with large parameter values drawn from the prior. These in turn

lead to large estimates of the variance under the Rubin-Gelman statistic. The DP

sampler gave similar results for 20,000 iterations (1.883 for mean of parameter val-

ues and 1.228 for variances), indicating that the sampler struggles in the Bernoulli

model.

Model Bernoulli Poisson
RJ – Mean 1.0004 (1.0007) 1.0090 (1.0094)
RJ – Variance 1.0008 (1.0013) 1.0222 (1.0226)
DP – Mean 2.5885 (3.2001) 1.0001 (1.0004)
DP – Variance 1.3593 (1.5734) 1.0003 (1.0004)

Model Normal Negative binomial
RJ – Mean 1.0212 (1.0334) 1.0197 (1.0295)
RJ – Variance 1.0032 (1.0046) 1.0161 (1.0194)
DP – Mean 1.0093 (1.0142) 1.0062 (1.0097)
DP – Variance 1.0347 (1.0542) 1.0010 (1.0016)

Table 2.4.: Rubin-Gelman Statistics (and upper bound of 95% confidence inter-
val) for each model with 30 independent chains of 5000 iterations for
RJMCMC and Dirichlet Process samplers.

The second technique for assessing convergence is inspired by perfect simula-
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2. Arbitrary edge-states and unknown number of blocks in the SBM

tion: considering two samplers starting at opposite extremes and observing both

converging to the same area gives an indication that the underlying Markov chains

have converged. This process was used for the simulated data sets, trace-plots for

the number of blocks in each case are shown in Figure 2.6.

2.6. Real data

The DP and RJMCMC samplers are demonstrated on real networks. These include

a network of brain connectivity with binary edge-states in Section 2.6.1 and a

network of emails with edge-state consisting of counts is analysed in Section 2.6.2.

In both cases the edge-states are directed. Finally, in Section 2.6.3 a network with

symmetric real-valued edge-states is considered.

2.6.1. Macaque

The first data set analysed concerns the brain of a macaque monkey (Négyessy

et al., 2006b). Regions of the cortex were deemed connected, or not, during a sen-

sory task. In total, 45 regions of the brain were analysed as a network. Figure 2.7a

shows the data set as an adjacency matrix.

In this paper a block model is proposed to partition the regions of the brain.

This model assigns regions of the brain to the same block if their neural activity

is similar. Since the data only provides binary edge-states, a Bernoulli SBM is

applied. A Beta(0.5,0.5) reference prior was placed on the edge probability pa-

rameters θk. The Dirichlet process sampler and split-merge algorithm were run for

5,000 iterations to provide samples from the posterior distribution of both block

membership and parameter values. In the DP sampler a CRP(5) prior was used,

whilst the RJMCMC sampler used a DMA(1, 6) prior for block memberships. In

both cases the expected number of blocks is five.

Figure 2.7 displays posterior summaries of the macaque network using the

Dirichlet process sampler whilst Figure 2.8 displays summaries for the split merge
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Figure 2.6.: Trace plots for number of blocks in example networks. Two chains are
simulated in each case: The “lower chain” with all nodes initially in
one block (orange line) and the “upper chain” with all nodes initially
assigned to different blocks (blue line).
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algorithm. Notice that the joint posterior probability of two nodes being members

of the same block (presented in Equation (2.23)) for the Dirichlet process sampler

is more confident than the Split merge algorithm. This is shown in Figure 2.7b,

where four clear blocks are visible, whereas Figure 2.8b shows three blocks, how-

ever, the block in the top right is more uncertain, and could be interpreted as

two blocks with some probability of merging as one. This can be seen in the ad-

jacency matrix in Figure 2.8a, where the nodes in the top right could form one

or two groups with a high density of connections. The number of blocks in the

sampler state is plotted against sampler step in Figure 2.8c, this shows that the

sampler quickly splits blocks until between 4 and 7 blocks exist (for the split-merge

algorithm) and between 4 and 12 blocks (for the Dirichlet process sampler).

Parameter estimates for both methodologies are shown in Table 2.5 together

with a 95% highest posterior density interval. Note that parameter θ4 under the

RJMCMC sampler is more uncertain, this is due to the fact that the sampler is

unsure whether block four exists, or if it should be merged with block 3.
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Figure 2.7.: Posterior summaries for block membership in Macaque brain network
using Dirichlet process sampler.
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Figure 2.8.: Posterior summaries for block membership in Macaque brain network
using Dirichlet process sampler.

Table 2.5.: Parameter estimates and 95% highest posterior density interval for
Macaque network.

Parameter DP RJ
θ0 0.099 (0.078, 0.117) 0.091 (0.076, 0.107)
θ1 0.704 (0.643, 0.764) 0.702 (0.649, 0.765)
θ2 0.533 (0.394, 0.665) 0.481 (0.379, 0.580)
θ3 0.766 (0.643, 0.878) 0.719 (0.612, 0.829)
θ4 0.634 (0.148, 1.000) 0.576 (0.239, 0.996)
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2.6.2. Enron

The Enron data set is the second network to be analysed in this section. The Enron

corporation was declared bankrupt in 2001 and later multiple employees were found

guilty of accounting fraud. As a result of the trial, a corpus of emails leading up

to the closure of the company were released as a public data set (Klimt and Yang,

2004). In this paper the aggregate counts of emails between any two employees

are analysed over the entire period available. Note that these are directed, and

contain self-loops (since some emails are sent to mailing lists, to which the sender

belongs). Therefore, the edge-states are integer based. A Poisson model could be

used here with a Gamma prior, however, on a first analysis, the mean number of

emails sent by any one employee is 3.7, whilst the variance is 4753. Therefore,

for more flexibility, a negative binomial distribution is assumed for the edge-state

distribution. As for the priors, r is given a Gamma prior and p a Beta prior. The

split-merge algorithm of Section 2.4 was applied with 50,000 steps with both a

negative binomial and Poisson edge-state model. In both cases a DMA(1,6) joint

prior is placed on κ, z whilst a Gamma(1/2, 0) reference prior is placed on the rate

for the Poisson model, whereas a Gamma(1/2, 0) and a Beta(0.5, 0.5) are placed

on r and p respectively for the negative binomial model. The resulting modal

block structure under the Poisson model is shown in Figure 2.9b. The adjacency

matrix is plotted with the same ordering of nodes in Figure 2.9a (on a log scale).

The corresponding results for the negative binomial are shown in Figure 2.10. The

negative binomial model shows more uncertainty in the block membership of nodes

(Figure 2.10b) compared to the Poisson model (Figure 2.9b). This is due to the

lack of flexibility in the Poisson model, unlike for the Poisson. In both models, the

large group has a low incidence of emails sent. Furthermore this block is smaller in

the negative binomial model than the Poisson. This demonstrates the flexibility in

the negative binomial approach, which can detect more structure in the network.

The parameter values for each model are given in Table 2.6 together with a 95%

highest posterior density interval.
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Figure 2.9.: Posterior summaries for block membership in Enron network with
Poisson edge-state model.

Table 2.6.: Parameter estimates and 95% highest posterior density interval for En-
ron data set under both models.

Block Poisson(λ) NBin(r) NBin(p)
0 2.948 (2.832, 3.011) 0.016 (0.014, 0.018) 0.012 (0.009, 0.014)
1 348.494 (343.838, 356.793) 0.189 (0.116, 0.519) 0.002 (0.001, 0.009)
2 106.433 (103.874, 109.264) 0.313 (0.268, 0.374) 0.007 (0.005, 0.010)
3 0.368 (0.354, 0.384) 0.009 (0.007, 0.012) 0.035 (0.022, 0.052)
4 116.907 (0.562, 120.995) 0.059 (0, 0.267) 0.006 (0, 0.010)
5 202.968 (70.603, 265.529) 0.142 (0.076, 0.229) 0.003 (0, 0.003)
6 141.434 (94.038, 157.022) 0.077 (0.056, 0.158) 0.004 (0, 0.007)
7 671.401 (661.435, 682.603) 0.130 (0, 3737.000) 0.006 (0, 0.978)
8 88.199 (78.024, 182.127) 0.177 (0, 19001.158) 0.004 (0n, 0.996)
9 86.587 (0.002, 638.540)

10 86.948 (0.015, 725.435)
11 83.801 (0.003, 453.429)
12 84.072 (0.299, 221.739)
13 85.986 (0.644, 232.241)
14 85.503 (0.012, 279.680)
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Figure 2.10.: Posterior summaries for block membership in Enron network with
negative binomial edge-state model.
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2.6.3. Stack Overflow

In 2017 the company Stack Overflow at stackoverflow.com released data from their

developer stories. Developer stories are online curriculum vitae for developers on

the stackoverflow.com platform. When creating a developer story, the developer

may add “tags” to highlight which technologies they use. For example, a developer

using tags such as “html”, “javascript” and “css” would likely be a website de-

signer. Stack Overflow released a network based on the frequency of co-occurrence

of these tags in developer stories. The network was constructed with each tag

represented by a node, and the edge-states represent the co-occurrence of tags.

This network gives a positive value to edge-states from the set of non-negative

real numbers. The network was analysed with the split-merge algorithm of Sec-

tion 2.4. Since the network is formed on co-occurrence, prior distributions reflect-

ing an assortative block structure were chosen. The edge-states were modelled

using a Gaussian distribution with unknown mean and variance. The prior for

θ0 = (µ0, σ0) was µ0 ∼ Normal(0, 1) , σ0 ∼ Gamma(10, 10) whilst for θk = (µk, σk)

was µk ∼ Normal(20, 3) , σk ∼ Gamma(30, 10). After 50,000 iterations, with

25,000 discarded as burn-in, the estimate of the joint posterior block member-

ship was obtained as shown in Figure 2.11b. The block structure found indicates

that nine blocks exist. The model block structure is given in Table 2.8. This shows

the partition of technologies based on the SBM with Normally distributed edge

states. The table has been annotated by the authors to describe the technologies

in each block. Considering the partition induced by the block structure in the

posterior, developers on Stackoverflow.com seem to specialise in one area, with a

low frequency of co-occurrence for tags in different blocks, as indicated by θ0. The

mean posterior parameter values are given in Table 2.7 together with a 95% credi-

ble interval with the corresponding block labels from Table 2.8. This modal block

structure is used to order the nodes in the plots in Figure 2.11. In Figure 2.11b

block one is in the lower left corner and block 10 in the upper right.

The adjacency matrix is displayed in Figure 2.11a, with row and columns per-
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muted to match Figure 2.11b. Qualitatively, the blocks found do indeed have

an assortative structure. Notice in Figure 2.11b that there is uncertainty on if

some nodes in the 2nd block should be merged with the 7th block (counting from

the bottom left). These tags are “c++”, “embedded”, “qt” and “c”. These are

technologies with a broad use case so fit equally well with the “Web Apps” block

(2) or “Scientific” block (7). The trace plot for the number of blocks is given in

Figure 2.11c. This shows the algorithm exploring different block structures as the

algorithm progresses, before settling on a mean of ten blocks (with some explo-

ration to 11 or 12 blocks). The block structure found partitions the technology

tags into groups such that tags in the same group are likely to appear together in

the same developer story on stackoverflow.com, and as such, technologies in the

same block should be similar.
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Figure 2.11.: Posterior summaries for block membership in Stack Overflow net-
work.

2.7. Concluding remarks

This paper has considered the stochastic block model with arbitrary edge-state

distributions and an unknown number of blocks. Two Bayesian inference algo-

rithms were proposed: a Dirichlet process sampling procedure in Section 2.3 and a

split-merge algorithm facilitated by a reversible jump Markov chain Monte Carlo

sampler in Section 2.4. Unlike previous Bayesian treatments of the stochastic block
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Table 2.7.: Parameter estimates and 95% highest posterior density values for the
Stack Overflow network.

Block Normal(µ) Normal(σ) Description
0 0.084 (0.049, 0.118) 1.396 (1.318, 1.453)
1 13.482 (11.314, 15.748) 13.124 (12.051, 14.199) .NET
2 26.153 (21.407, 30.642) 3.282 (2.226, 4.355) Tests
3 4.841 (3.713, 6.115) 12.844 (12.063, 13.771) Web apps
4 21.153 (16.703, 25.326) 5.469 (4.581, 6.541) Angular
5 8.005 (6.040, 9.649) 12.795 (11.855, 13.746) Developer tools
6 34.780 (29.414, 40.067) 5.212 (3.927, 6.557) Excel
7 9.157 (7.071, 11.244) 13.289 (12.245, 14.371) Operating system
8 20.752 (16.720, 25.611) 2.775 (1.818, 3.827) Regular expressions
9 22.308 (18.223, 26.780) 7.729 (6.583, 8.816) Big data

10 14.631 (9.254, 19.359) 8.893 (7.045, 11.588) Scientific

Table 2.8.: Model block structure for the Stack Overflow network.

Block Modal block members Description
1 azure sql-server asp.net entity-framework

wpf linq wcf c# asp.net-web-api .net sql mvc
vb.net xamarin unity3d visual-studio

.NET

2 testing selenium Tests
3 tdd codeigniter jquery mysql css php

javascript json angularjs ionic-framework re-
actjs mongodb sass twitter-bootstrap express
node.js html5 nginx c++ embedded qt c lar-
avel ajax wordpress photoshop html boot-
strap less postgresql redis redux twitter-
bootstrap-3 xml vue.js apache elasticsearch
react-native ruby-on-rails ruby agile drupal

Web apps

4 typescript angular2 angular Angular
5 cloud devops docker android-studio java an-

droid rest amazon-web-services jenkins go
maven jsp spring-boot web-services spring-
mvc java-ee spring hibernate eclipse api

Developer tools

6 vba excel-vba excel Excel
7 ios linux shell git github bash swift osx

objective-c iphone xcode unix ubuntu win-
dows plsql oracle powershell

Operating system

8 regex perl Regular expressions
9 scala hadoop apache-spark haskell Big data

10 python flask django R machine-learning mat-
lab

Scientific

model with an unknown number of blocks (Mørup and Schmidt, 2012, 2013; Mc-

Daid et al., 2013), the proposed algorithms handle edge-state distributions without
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conjugate priors. This allows for more flexible modelling of network data. For ex-

ample, the Enron email network in Section 2.5 consists of edge-states representing

count data. A negative binomial model (with both parameters unknown) was fit

to the edge-states, allowing a higher variance than a Poisson model. In comparison

to the Poisson model when applied to the Enron data set, the negative binomial

explored the parameter space better by visiting posterior states with more blocks

than the Poisson edge-state model.

In Section 2.5.1 both algorithms were applied to example networks. As discussed

in Section 2.1, Gibbs samplers can get stuck in local modes of the posterior. This

is also true of the DP sampler, which is outperformed by the split-merge algorithm

in terms of identifying the true number of blocks in the examples.

The algorithms presented here are quite general and can applied to the stochastic

block model with any edge-state distributions from which samples can be taken

and densities evaluated. This can easily include covariate information in either the

edge-state distribution, G, or the block membership distribution, F .

The model as presented here assumes that all edge-states are observed. This

could be relaxed by including a sparsity parameter as in Matias and Miele (2017)

which could be inferred within the SBM framework (since it treats edges as a

mixture of a density and a Dirac mass at zero). Alternatively, for truly missing

data, a data augmentation scheme could be applied within the proposed samplers

to infer the missing edge-states together with the block memberships and model

parameters.
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membership

Abstract

The stochastic block model (SBM) is widely used for modelling network data

by assigning individuals (nodes) to communities (blocks) with the probability of

an edge existing between individuals depending upon community membership.

In this paper we introduce an autoregressive extension of the SBM, based on

continuous-time Markovian edge dynamics. The model is appropriate for networks

evolving over time and allows for edges to turn on and off. Moreover, we allow for

the movement of individuals between communities. An effective reversible jump

Markov chain Monte Carlo algorithm is introduced for sampling jointly from the

posterior distribution of the community parameters and the number and location

of changes in community membership. The algorithm is successfully applied to a

network of mice.

3.1. Introduction

Network models play a key role in capturing and understanding population dy-

namics in a range of scenarios. Networks often show some form of structure rather

than simple random interactions and this has led to a plethora of network models
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to capture such dynamics. Structures studied in the literature include: Barabási-

Albert model (Albert and Barabási, 2002) (a scale-free model generated by prefer-

ential attachment), Watts-Strogatz model (Watts and Strogatz, 1998) (small-world

model), exponential random graph model(Frank and Strauss, 1986) (specified fre-

quencies of subgraphs) and the stochastic block model (SBM) (Frank and Harary,

1982) (community model). This body of research covers a broad range of subject

areas including the social sciences, statistics, physics and computational biology.

In this paper we consider the statistical detection of changes in the community

structure of a dynamic network. The challenge of detecting changes in data se-

quences is well-known, receiving considerable attention in the statistics literature

in recent years. Much of this effort has been focused on changepoint detection

within univariate data sequences, for example, see Davis et al. (2006); Fearnhead

and Liu (2007); Picard et al. (2007); Killick et al. (2012); Fryzlewicz (2014); Haynes

et al. (2017). More recently, the literature has turned to focus on the detection of

changes in more complex settings including multivariate time series (e.g. Matte-

son and James (2014); Xie and Siegmund (2013); Bardwell et al. (2016), spatial-

temporal (Altieri et al., 2015) and related challenges with network data (e.g. Fu

et al. (2009); Yang et al. (2011); Xu and Hero (2014); Matias and Miele (2017)).

Within a network context, changing behaviour can arise in many different sce-

narios. This article focuses on movement of individuals from one community to

another with the interactions between individuals depending upon their commu-

nity. Animals changing their mating partners is a prime example of such behaviour.

Detecting changes in community structure in animal herds could help indicate the

source of disease outbreaks and help with decisions such as targeted vaccination

programs. In Section 3.6, we study the changes in community structure in a net-

work of mice first presented in Lopes et al. (2016b).

The different network models described above typically capture different net-

work features. For example, the Watts-Strogatz model can create clusters whilst

keeping a small distance between any two chosen nodes. This model has no simple
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parametric form, hence non-parametric methods are used to assess model fit (Ko-

laczyk, 2009). The ERGM can create clusters of nodes with specified sub-graph

properties but is known to suffer from identifiability problems (Chatterjee and

Diaconis, 2013) since two different parameterisations can lead to the same model.

Given that our primary interest is in community dynamics, we focus on a dynamic,

autoregressive extension of the SBM, introduced by Holland et al. (1983). The gen-

eral form of the SBM model is given by Snijders and Nowicki (1997) who discuss

maximum likelihood estimation and an Expectation Maximisation algorithm for

inferring the parameters for the SBM. The SBM aims to partition the set of nodes

in a network in such a way that the proportion of edges between nodes in the same

block is different to the proportion of edges between nodes in different blocks.

In this paper, the autoregressive stochastic block model (ARSBM) is introduced.

This model is inspired by populations where the network of contacts (edges) be-

tween individuals evolve over time and depend upon the community (block) to

which individuals belong; see, for example, the mice network data, Section 3.6

and Lopes et al. (2016b). The edges are binary states 1/0 which alternate be-

tween being on (1) and off (0), spending time in a given state before transiting

to the other state. The observed data consist of snapshots of the network over

time with snapshots close together in time typically being more similar to those

further apart. The correlation in the presence/absence of edges is a key feature of

the data we want to explore and capture in our modelling. In addition, we seek

to infer other important characteristics of the population such as the amount of

movement of individuals between communities (blocks) and the interactions both

within and between blocks.

There have been a number of extensions of the SBM to include temporal dynam-

ics. Various authors have considered a continuous-time model based on an SBM

where the edge processes are non-homogeneous Poisson point processes (DuBois

et al., 2013; Guigourès et al., 2015; Corneli et al., 2016; Xin et al., 2017; Matias

et al., 2017). This is appropriate for event data such as sending emails or SMS.
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However, for edge processes which have a duration, such as phone calls and the

status of friendships in a social network, a model which accounts for the time for

which an edge lasts is required. Another direction which has attracted attention is

discrete time dynamic extensions of the SBM (Fu et al., 2009; Yang et al., 2011; Xu

and Hero, 2014; Matias and Miele, 2017). These papers have focused on discrete-

time dynamics for both community membership and the network evolution over

time. A key assumption of these works is that, conditional upon the community

structure, the networks at each time point are independent SBMs. Relaxing the

time-independence assumption is an important contribution of this work with a

view to application domains with highly correlated edges. For example, in a com-

puter network, knowing that two machines are currently connected means they

are more likely to be connected in the near future. Moreover, as we show in this

article, some community structures can only be detected by taking account of

the temporal dependencies in the network dynamics. Finally, the continuous-time

model handles irregularly observed or incomplete data far more easily than its

discrete-time counterparts.

The remainder of the paper is organised as follows: in Section 3.2 we introduce

the autoregressive stochastic block model (ARSBM), a time-dependent extension

of the SBM. This includes the model definition of the process governing when

nodes change community membership together with the autoregressive model for

edge processes. Due to the complexity added by the continuous-time setting,

knowledge of some edge states is needed at the changepoints, where individuals

change community membership. To overcome this, an augmentation scheme is pre-

sented to aid inference for the ARSBM within a Bayesian framework. Since the

number of changepoints is assumed to be unknown and the number of parameters

of the ARSBM depends on the number of changepoints then a reversible-jump

Markov chain Monte Carlo (RJMCMC) sampling scheme can be used to draw

samples from the posterior distribution on the number of changepoints. In Sec-

tion 3.3 an RJMCMC sampling scheme is described for the ARSBM. Whilst the

70



3. Autoregressive stochastic block model with changes in block membership

primary focus of the paper is on the movements between communities, a useful

by-product of the RJMCMC is an efficient algorithm for estimating the underlying

network parameters. The performance of the RJMCMC sampler is sensitive to the

initial community assignments and to combat this we give an effective mechanism

for the initial assignment of nodes to communities in Section 3.4. In Sections 3.5

and 3.6 the RJMCMC sampling scheme is demonstrated on simulated data sets

and a data set involving monitoring social behaviour in mice (Lopes et al., 2016b),

respectively. Finally, in Section 3.7 we make some concluding remarks concerning

directions for future research in this area.

3.2. The autoregressive stochastic block model

3.2.1. Model

The autoregressive stochastic block model (ARSBM) is built on a hierarchical

structure as follows. Suppose a dynamic network consists of a fixed set of nodes,

V (|V | = N), partitioned into a fixed number of communities, K. The commu-

nity membership of the N nodes is modelled using N independent and identically

distributed community membership processes. Let Ci(·) denote the community

membership process for node i. It is assumed that Ci(·) is a continuous-time

Markov chain (CTMC) (Norris, 1998), which takes values in {1, 2, . . . , K}, with

Ci(t) = k meaning that individual i is in community k at time t. We assume that,

regardless of the current community to which it belongs, a node spends Exp(λ)

time in the community before moving to a new community chosen uniformly at

random from the remaining communities. (This assumption can easily be relaxed.)

Therefore the generator matrix for the CTMC governing Ci(·) has diagonal ele-

ments equal to −λ and off-diagonal elements equal to λ/(K−1). Using properties

of CTMCs, the number of times node i changes community, Mi ∼ Pois(λ) with the

times of the changes τi =
(
τ 1
i , . . . , τ

Mi
i

)
being ordered and uniformly distributed

on [t0, tT ]. The new community level, Ci
(
τ di
)
, is drawn uniformly at random from
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the set {k 6= ci
(
τ d−1
i

)
: k = 1, . . . , K}, and individual i remains in that community

until τ d+1
i . Throughout we denote the stochastic process by Ci(t) and a given

realisation at time t by ci(t).

In the SBM the probability that an edge exists between two nodes depends only

upon the communities to which the two nodes belong. In the ARSBM, we employ a

similar model hierarchy with edge dynamics only depending upon the communities

to which the two nodes belong. We introduce an autoregressive component which

allows the state of the edge to switch “on” or “off” with Markovian dynamics.

We make the additional assumption that all edges with end-nodes in different

communities have similar dynamics, although this can easily be relaxed. Under

this setting, there will be K + 1 processes to govern the dynamics of edges in

the network: one process for each community k (governing the edges (i, j) with

Ci(t) = Cj(t) = k) and one process for edges between communities (governing the

edges (i, j) where Ci(t) 6= Cj(t)). This reduces the number of parameters from

O(K2) to O(K).

In order to model edge dynamics, we first define the community membership

of the edge, which is a deterministic function of the community membership of

the end-nodes. Specifically, for the edge between nodes i and j, its community

membership process Cij(·) is defined to be k if both i and j are in community k

and 0 otherwise, as in Equation (3.1).

Cij(t) =


Ci(t) if Ci(t) = Cj(t) ,

0 if Ci(t) 6= Cj(t) ,

Cij(t) ∈ {0, 1, . . . , K}.

(3.1)

Since both Ci(·) and Cj(·) are piecewise constant processes, then Cij(·) is a piece-

wise constant process with Mij ≤ Mi + Mj step changes. Let Eij(·) denote the

edge status process for the edge between nodes i and j. Specifically, Eij(t) = 1 if

an edge exists (“on”) between nodes i and j at time t and Eij(t) = 0 if no edge
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exists (“off”) between nodes i and j at time t. The edge process is assumed to

follow a piecewise time-homogeneous CTMC. That is, whilst the Cij(t) = k, the

generator matrix for the edge process is

G(k) =

 −αk αk

δk −δk

 .
The transition rates αk, referred to as the appearance rates, govern the rate at

which an edge appears (transitions from state 0 to 1) whilst in community k.

Similarly, the transition rates δk are referred to as deletion rates and govern the

reverse transition from state 1 to 0. Throughout, we denote the stochastic process

by Eij(t) and a given realisation at time t by eij(t).

Let πk = αk/(αk+δk), the stationary probability of an edge being on in commu-

nity k. This allows for a direct comparison with the static SBM. Furthermore, let

ρk = αk + δk be the combined rate of change for the edge process with αk = πkρk

and δk = (1− πk)ρk. It is helpful to use the parameterisation π = (π0, π1, . . . , πK)

and ρ = (ρ0, ρ1, . . . , ρK) for modelling the ARSBM.

3.2.2. Posterior distribution

We are now in position to construct the likelihood for the data and the posterior

distribution of the parameters and community membership of the nodes.

Suppose that network snapshots ofN are collected at time points t = (t0, t1, . . . , tT )

in the observation interval [t0, tT ]. In this way, the states eij(ts) are observed for

s = 0, 1, . . . , T and i 6= j ∈ {1, . . . , N}. For brevity, we let esij = eij(ts) be the state

of the edge between nodes i and j at the sth observation. Similarly, csi = ci(ts)

is the community membership of node i at observation time s; however, this is a

latent variable. We also let ∆s = ts− ts−1 be the amount of time between observa-

tions s−1 and s. Let e(t) =
{
esij|1 ≤ i < j ≤ N, s = 0, 1, . . . , T

}
denote the set of

all network snapshot data. Let ci(t) = {csi |s = 0, 1, . . . , T}, the community mem-

bership of node i at every observation time, with c(t) = {ci(t) |i = 1, 2, . . . , N},
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the set of all community memberships. We are interested in the joint posterior

distribution, which can be decomposed into the product of the observation like-

lihood, the distribution of the evolution of community assignments and a prior

distribution on the parameters as in Equation (3.2).

π(θ, c(t) |e(t)) ∝ π(e(t) , c(t) |θ)π(θ)

= π(e(t) |c(t) ,θ) π(c(t) |θ, c(t0))π(θ, c(t0)) ,

(3.2)

where θ = (λ,π,ρ) and c(t0) = (c0
1, c

0
2, . . . , c

0
N). Note the dependence on the initial

community structure.

We now provide equations for each term in Equation (3.2). Firstly, in Equa-

tion (3.3), the likelihood of the observed edge sequence, given the latent community

memberships and model parameters, is computed.

π(e(t) |c(t) ,θ) =
∏
s,i
j 6=i

π
(
esij|es−1

ij , cs−1
i , csi , c

s−1
j , csj

)
(3.3)

The computation of each factor in Equation (3.3) is non-trivial since it requires in-

tegrating over all possible community membership processes for all nodes between

the times ts−1 and ts. Since each community membership process is piecewise con-

stant, it is sufficient to know the times of the changepoints in node i’s community

membership, τi =
(
τ 1
i , . . . , τ

Mi
i

)
, and the community membership of the nodes at

the changepoints, ci(τi) with c(τ ) = (c1(τ1) , . . . , cN(τN)). Note that cij(τij) is a

deterministic function of ci(τi) and cj(τj), where τij =
(
τ 1
ij, . . . , τ

Mij

ij

)
is the set

of combined changepoints in nodes i and j community memberships.

Therefore, given that the edge dynamics are governed by a CTMC with piecewise

constant dynamics then, if cij(t) = k for all time t ∈ [ts−1, ts), then

P
[
es = 1|es−1, c(t)

]
= πk + (es−1 − πk)exp(−ρk∆s) , (3.4)

where we drop the subscript ij for brevity.
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The calculation of the probability of an edge being in state 1 becomes more in-

volved if there is a change in community membership of the edge during an interval

[ts−1, ts). It is straightforward, in principle at least, to compute P
[
esij = 1|es−1

ij , cij(t)
]

by summing over the possible states of the edge ij at each of the changepoints in

the interval [ts−1, ts). Specifically, if τ ∈ [ts−1, ts] is a changepoint with cij(t) = k

for t ∈ [τ, ts), then

P
[
es = 1|es−1, c(t)

]
=

1∑
l=0

P[es = 1|e(τ) = l]P
[
e(τ) = l|es−1

]
=

1∑
l=0

{πk + (l − πk)exp(−ρk(ts − τ))}P
[
e(τ) = l|es−1

]
,

(3.5)

where again, we drop the subscript ij for brevity.

Whilst it is possible to compute π(e(t) |c(t) , c(τ ) ,θ) from (3.5), it is far simpler

to augment the data with e(τ ) =
{
eij
(
τ dij
)

; 1 ≤ i, j ≤ N, d = 1, 2, . . . ,Mij

}
. Let

σi = t ∪ τi, the ordered times at which the edges are observed or node i changes

community membership. Similarly, let σij = σi ∪ σj denote the ordered times

at which edge (i, j) is observed or changes community membership and contains

Tij = T+Mij elements. Thus, the likelihood of the observed and augmented edges,

given the community structure, π(e(σ) |c(σ) , τ ,θ) becomes

∏
i 6=j

Tij−1∏
d=0

P
[
eij
(
σd+1
ij

)
|eij
(
σdij
)
, cij
(
σdij
)]

(3.6)

where, by letting ∆d+1 = σd+1 − σd, the factors can be written as:

{(
1− πc(σd)

)
−
(
e
(
σd
)
− πc(σd)

)
exp
(
−ρc(σd)∆d+1

)}1−e(σd+1)

×
{
πc(σd) + (e(σd)− πc(σd))exp

(
−ρc(σd)δd+1

)}e(σd+1)

The computation of π(c(σ) , τ |θ, c(t0)) is straightforward. Firstly, σi is determin-
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istic given τi, so

π(c(σ) , τ |θ, c(t0))

=
N∏
i=1

π(ci(τi) |τi, c(t0)) π(τi|λ)

=
N∏
i=1

π(ci(τi) |τi, c(t0)) π(τi|Mi) π(Mi|λ)

=
N∏
i=1

(
1

k − 1

)Mi

× Mi!

(tT − t0)Mi

×{λ(tT − t0)}Mi

Mi!
exp(−λ(tT − t0))

=

(
1

k − 1

)M
λMexp(−λN(tT − t0)) , (3.7)

where M =
∑N

i=1Mi is the total number of changepoints. The three components

on the right-hand side of (3.7) for node i correspond to; the density of the ordered

Mi time points, the probability of the group transitions which take place and the

probability that there are Mi changes in node i’s community membership.

Combining (3.6) and (3.7), we have an expression for π(e(σ), c(σ)|θ, c(t0)), and

therefore, an explicit expression for the right hand side of

π(c(σ) , e(τ ) , τ ,θ|e(t)) ∝ π(e(σ) |c(σ) , τ ,θ)

× π(c(σ) , τ |c(t0) ,θ)× π(c(t0) ,θ) .

(3.8)

3.2.3. Identifiability

An important point to consider before introducing the RJMCMC sampler is the

identifiability of the model. As is well known for SBMs, the parameters can

only be obtained up to a label switching of the group nodes (Matias and Miele,

2017). Letting ρk ↓ 0 for k = 0, 1, . . . , K whilst keeping π fixed results in λ being

unidentifiable. This is because the graph does not change through time and hence

E(t) = E(s) for all 0 ≤ s < t. Therefore the graph dynamics are invariant to how

fast (or slow) the nodes switch between blocks since after the initial configuration,
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the block to which a node belongs becomes irrelevant. More generally, we observe

that the dependence parameter ρk enters the likelihood through exp(−ρk∆s)), see

Equation (3.4), and robust estimation of ρk is obtained when exp(−ρk∆s)) is not

close to 0 (independence) or 1 (full dependence).

The graph parameters become unidentifiable as λ → ∞, that is the nodes are

constantly switching between blocks. In this case, for each k, l = 1, 2, . . . , K, the

nodes i and j will spend a proportion 1/K2 time in blocks k and l, respectively

during any period of time. Consequently, regardless of the value of K, as λ→∞,

the dynamic SBM resembles an SBM with a single block model, a dynamic Erdös-

Rényi random graph, with stationary probability of an edge π∗ and rate of change

ρ∗, where

ρ∗ =
1

K2

K∑
k=1

ρk +
K − 1

K
ρ0, (3.9)

and

π∗ =
1

ρ∗

{
1

K2

K∑
k=1

ρkπk +
K − 1

K
ρ0π0

}
. (3.10)

Letting λ → ∞ removes any dependence in block membership of a node from

one time point to the next. This is linked to the observation in Matias and Miele

(2017) for the discrete time SBM models of Xu and Hero (2014) and Matias and

Miele (2017) that independence in block membership from one time point to the

next leads to non-identifiability of the parameters.

If λ = 0 and (ρk, πk) = (ρI , πI) (k = 1, 2, . . . , K) (a dynamic affiliation model),

then, following the approach of Frank and Harary (1982) and Allman et al. (2011),

it is straightforward to show that E[E12(0)] andE[E12(0)E13(0)E23(0)] give (πI , π0),

as in the case of the static SBM. Moreover, considering E[E12(0)E12(t)] and

E[E12(0)E13(0)E23(0)E12(t)E13(t)E23(t)] for some t > 0 is sufficient to identify

(ρI , ρ0). By considering edge moments involving 4 nodes, we can show that this

extends to small positive λ > 0 by ignoring o(λ) terms. A further discussion
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of parameter identifiability is beyond the scope of this paper but note that we

observe parameter estimation is robust to starting values in the simulations and

application data set up to permutation of block labels, for moderate, positive ρk

and small, positive λ.

3.3. Reversible jump MCMC

3.3.1. Sampling scheme

In this section a RJMCMC (reversible jump MCMC) algorithm is described for

obtaining samples from the joint posterior distribution of θ = (λ,π,ρ) and c(t)

given e(t) using (3.8) and data augmentation of the values (τ , c(τ ) , e(τ )). The

updating of the parameters λ,π and ρ given (τ , c(τ ), e(τ )) is straightforward

using (3.6) and (3.7). Updating τi and the associated augmented data is more

involved as Mi, the number of elements in τi, is unknown. This naturally leads to

a reversible jump sampler (Green, 1995) to explore parameter spaces of differing

dimensions.

An overview of the sampling scheme is given in Algorithm 3.5. For each step of

the sampler, each of the parameters λ,π,ρ and τ (and M = (M1,M2, . . . ,MN))

are updated in turn. By assigning a Gamma(λ01, λ02) prior to λ, it follows from

(3.7) that, λ|π,ρ, τ , c(σ) , e(σ) is distributed as Gamma(λ01+M,λ02+N(tT−t0)).

For π and ρ there is no closed form conditional distribution and for this reason, a

random walk is proposed. Since πk is bounded on [0, 1], a random walk is proposed

on a logit scale, logit(π∗k) ∼ N(logit(πk) , σ
2
π). As for ρk, a random walk on the log

scale is proposed, since ρk > 0, with log(ρ∗k) ∼ Normal
(
log(ρk) , σ

2
ρ

)
. The priors for

πk and ρk are Beta and Gamma distributions respectively. By performing random

walk updates on transformed scales, we need to take account of the proposal

densities with

q(π∗k|πk) =
φ(logit(π∗k) |logit(πk) , σ

2
π)

π∗k(1− π∗k)
, (3.11)

78



3. Autoregressive stochastic block model with changes in block membership

Algorithm 3.5 RJMCMC Sampler

Inputs: parameters for Gamma prior for λ, prior distributions for π and ρ,
nRuns and burn-in.
Draw λ, π, ρ from their respective priors. Set M = 0 and τ = ∅.
for h=1,. . .,nRuns do

Draw λ(h+1) from its conditional distribution.

for k in 1,. . . , C do
Propose π

(h+1)
k by taking a random walk on the logit scale from π

(h)
k .

Propose ρ
(h+1)
k by taking a random walk on the log scale from ρ

(h)
k .

end for
if There are no changes in the current sampler state then

Propose inserting a change
elseDraw X uniformly at random from {1, 2}

if X=1 then
Propose inserting a new change to the current state, with augmented

edge states as required.
elseX=2

Propose deleting a change from the current state, removing and
adding affected augmented edge states as required.

end if
end if
Given that M > 0, propose moving each changepoint into an adjacent ob-

servation interval and using a Gaussian random walk proposal.
Resample the augmented edges.

end for
Discard samples 1, . . . ,burn-in.
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and

q(ρ∗k|ρk) =
φ(log(ρ∗k) |log(ρk) , σ

2
ρ)

ρk
, (3.12)

where φ(y;µ, σ2) denotes the probability density function of a N(µ, σ2) evaluated

at y.

In this work, an adaptive scheme is used to adjust the variance of the proposal

distributions to improve the efficiency of the sampler. The proposal variances σ2
π

and σ2
ρ are set using an adaptive procedure as in Xiang and Neal (2014). By

Roberts et al. (1997), an acceptance rate of approximately 25% is optimal for

random walk Metropolis sampling. To achieve this rate, a proposal variance σ2 is

adjusted at each step during the burn-in period by

σ2
h+1 =


σ2
h

(
1− ε√

h

)
if move rejected,

σ2
h

(
1 + 3ε√

h

)
if move accepted,

where the step size ε is chosen as input.

3.3.2. Updating change points and augmented edge states

The trans-dimensional sampler for updating τ , and consequently, (c(τ ) , e(τ )) is

now described. These constitute birth-death moves: inserting a changepoint (in-

sert a change of community membership in a node) and removing a changepoint

(removes one of the changes from the current state of the sampler). In each iter-

ation of the algorithm only one move is attempted. In the case that the current

sampler state contains no changepoints, then an insert move is attempted. Oth-

erwise, the insert move is chosen with probability 0.5. In addition, we propose

moving the time of existing changepoints to obtain a posterior distribution of

changepoint locations.

We begin by describing the process for proposing to insert a changepoint. Firstly

a node i is chosen uniformly at random from 1, . . . , N and a time τ ∗ is chosen

uniformly at random from the interval [t0, tT ]. This amounts to adding a step
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change at time τ ∗ in Ci(·). Let k denote the community membership of node

i at time τ ∗ prior to the proposed addition of a changepoint at time τ ∗. Since

the initial community memberships are unknown, the sampler allows for adjusting

Ci(·) either prior to, or after, time τ ∗. A proposal “forwards” in time proposes a

new community k∗ and sets Ci(τ
∗) = k∗. Conversely, a proposal “backwards” in

time proposes a new community k∗ for the interval preceding τ ∗. If this previous

interval starts at time σ∗, then the sampler sets Ci(σ
∗) = k∗, where σ∗ = t0 if there

are no previous changes in node i’s community membership with Ci(τ
∗) = k. See

Figure 3.1 for an example of possible insert moves.

2

1

Current State

2

Delete Backwards
1

Delete Forwards

3

2

1

Insert Backwards

2

1

Insert Self-change

2

3

1

Insert Forwards

Figure 3.1.: Possible moves to insert or delete a changepoint for a node which
currently has one change. After choosing to insert or delete, a model
is proposed proportional to the likelihood.

To allow the sampler to explore the parameter space more freely, we allow the

possibility of self-changes in community membership. That is, a change in which

node i moves from community k to community k at time τ ∗. Such changes are

artificial and are used purely to allow the sampler to explore the parameter space.

The directionality (“forwards” or “backward” in time) of such a change is irrelevant

since inserting a self change is symmetric in time.

There are therefore 2K − 1 ways to propose inserting a change in community

membership at time τ ∗ for node i. Rather than drawing a change in community

membership uniformly at random from the possibilities we consider the relative
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likelihood of the 2K − 1 changes in community membership and propose a change

accordingly. In order to do this, we consider the set of edges affected by each

of the proposed community changes. In all cases the unobserved states of edges

affected by the change are a subset of Ei(τ
∗) = (Ei1(τ ∗) , Ei2(τ ∗) , . . . , EiN(τ ∗)).

For an edge (i, j) affected by the change in community membership, we augment

the state space with eij(τ
∗) and set eij(τ

∗) = 1 with probability,

P[eij(τ
∗) = 1|eij(σ∗ ∧ t∗) , cij(σ∗) = κ, πκ, ρκ] , (3.13)

where t∗ denotes the last observation prior to τ ∗. Let Ak1,k2 denote the set of

additional edges proposed with the move to ci(σ
∗) = k1 and ci(τ

∗) = k2, where

at least one of k1 or k2 is equal to k. Let A∗ = ∪k1,k2Ak1,k2 and note that edge

(i, j) can be included in more than one Ak1,k2 with different values for eij(τ
∗). We

choose to move to community memberships ci(σ
∗) = k1 and ci(τ

∗) = k2 for node i

with probability

P
[
Ak1,k2|θ, τ ∗

]∑
l1,l2

P[Al1,l2|θ, τ ∗]
. (3.14)

Therefore the proposal distribution for the proposed changepoint in node i’s com-

munity membership and A∗ is

P[M + 1|M ]

N(tT − t0)
· P[A∗|θ, τ ∗] ·

P
[
Ak1,k2|θ, τ ∗

]∑
l1,l2

P[Al1,l2|θ, τ ∗]
. (3.15)

The reverse move is the deletion of a changepoint for which we require M > 0.

Firstly, we select a changepoint τ ∗ to delete uniformly at random. Suppose that

the changepoint occurs in node i’s community membership. Suppose that σ∗

denotes the previous changepoint in node i prior to τ ∗ and that ci(σ
∗) = k1 and

ci(τ
∗) = k2, then there are two choices (unless k1 = k2, τ ∗ represents a self-change),

either set ci(σ
∗) = k1 (change the future community membership from time τ ∗)

or ci(σ
∗) = k2 (change the community membership prior to time τ ∗). For both

of these proposed changes it is possible that the set of augmented edges required

changes at σ∗ when setting ci(σ
∗) = k2 and the changepoint in node i, should one
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exist, after τ ∗. Let Bk1 and Bk2 denote the additional augmented edges required

when setting ci(σ
∗) = k1 and ci(σ

∗) = k2, respectively. For generating edges in Bkl

(l = 1, 2), we take the same approach as when inserting a changepoint simulating

forward the state of an edge by modifying (3.13) to propose the edge state at the

required time. Then we set ci(σ
∗) = kl (l = 1, 2) with additional augmented edges

Bkl with probability

P
[
Bkl |θ

]
P[Bk1|θ] + P[Bk2|θ]

. (3.16)

Therefore, the proposal distribution for the proposed deletion of changepoint τ ∗

with associated changes and B∗ = Bk1 ∪ Bk2 is

P[M − 1|M ]

M
· P[B∗|θ] ·

P
[
Bkl |θ

]
P[Bk1|θ] + P[Bk2|θ]

. (3.17)

The generating of A∗ and B∗ in the above procedures are simply to assist with

choosing community membership in an informed way and play no role in the

posterior distribution (parameters and augmented states) once a set of augmented

edges have been chosen. Therefore, we would ideally want to integrate out A∗

and B∗. This can effectively be done by working on an expanded state space

incorporating all the possible community membership states of the nodes and all

possible edge states. In this way we can show that the probability of accepting a

proposed move to insert a changepoint in community i at time t∗ is

π(e(σ′) , c(τ ′) , τ ′,θ|e(t))

π(e(σ) , c(τ ) , τ ,θ|e(t))

× P[M |M + 1]N(tT − t0)

P[M + 1|M ] (M + 1)
× P[B∗|θ]

P[A∗|θ, τ ∗]

×
P
[
Bkl |θ

]∑
l1,l2

P
[
Al1,l2 |θ, τ ∗

]
P[Ak1,k2|θ, τ ∗]P[Bk1|θ] + P[Bk2|θ]

(3.18)

where σ′ = σ ∪ τ ∗ and τ ′ = τ ∪ τ ∗. The acceptance probability for deleting a

changepoint is the reciprocal of (3.18).

The two procedures for moving a changepoint are straightforward. Firstly, each

change point is moved at random either to the next observation interval or the
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previous observation interval. Secondly, the time of a changepoint is perturbed

using a random walk move with a Gaussian proposal. The first such move allows

for large changes in the location of a changepoint while the second allows for small,

local moves refining the position of the changepoint. Suppose that the changepoint

to be adjusted is τ which lies in the interval [tn, tn+1]. We propose a new time τ ∗

to lie in one of the intervals immediately before or after [tn, tn+1]. We propose that

τ ∗ is positioned in the proposed interval proportional to the location of τ in the

current interval such that:

τ ∗ =


tn−1 + (tn − tn−1) τ−tn

tn+1−tn w.p 0.5

tn+1 + (tn+1 − tn+2) τ−tn
tn+1−tn w.p 0.5.

The second move allows for refinement of such times by making a small change

in location of τ using a standard Metropolis-like move. Specifically a value τ ∗ is

proposed via τ ∗ = τ +N(0, στ ) for στ small.

Finally, each augmented edge state A ∈ A∗ is resampled proportional to the

relative likelihood using Equation (3.3) in the proposal distribution,

P[A = 1] =
π(A = 1, e(σ) |θ)

π(A = 0, e(σ) |θ) + π(A = 1, e(σ) |θ)
.

In the case that a change point τ is close to an observation time t, the augmented

edges at τ will most likely be resampled in the same state as at the observation

time t.

3.4. Initialisation of sampler state

In this section some observations are made about the initial community mem-

bership vector c(t0), which is key to the success of the sampler. Recall that the

data e(t) concerns the state of edges in the network, which are assumed to be

Markov chain distributed with parameters determined by the latent community
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membership of the end nodes. These community memberships are themselves

Markov chain distributed conditional on the initial community assignment, c(t0).

This makes the initial community membership very influential on the entire model.

As such, assigning nodes to the incorrect community can lead to poor estimates

for parameters π and ρ, and slow convergence of the RJMCMC to the posterior

distribution.

There are a number of possible ways to initialise c(t0), the initial community

membership. The simplest approach is to model the initial state using a static

SBM to identify the initial block assignments. Given that a single snapshot of the

ARSBM is informative about π but contains no information concerning ρ, this

works well if the πks (k = 1, 2, . . . , K) are significantly different from π0. However,

this approach fails if ρ is the primary determinant of block membership. Therefore,

we propose and use throughout a robust approach based on clustering nodes using

a distance metric. An alternative clustering using a Poisson SBM on the distances

was also considered. In this case, the network snapshots were projected onto a

matrix Md with Md
ij = d(i, j) for each of the distances introduced in this section.

Next, an SBM with Poisson emission distribution was fit to each Md to yield an

initial assignment of nodes to communities labelled cd. Finally, the assignment with

the highest likelihood (under the Poisson SBM) was chosen for the initialisation.

The results for using a Poisson SBM are similar to the proposed clustering method;

however, the clustering procedure is faster to compute. A comparison between the

different initialisation procedures can be found in Appendix B.

The distance between two nodes is the weighted average of two measures. Firstly,

d1(i, j) is the fraction of time that eij(·) is observed in the “on” state in the set

of snapshots. Secondly, d2(i, j) is the number of times that eij(·) changes state in

the set of snapshots. In essence, d1 is a measure for π and d2 is a measure for ρ.

The metric d is then a weighted average of these two distances as given in (3.19).

d(i, j) = γd1(i, j) + (1− γ)d2(i, j) (3.19)

85



3. Autoregressive stochastic block model with changes in block membership

For networks where the community structure is more apparent in the ratio of

edges within a community compared to the ratio of edges between communities,

then setting γ = 1 in (3.19) gives a distance measure based only on this ratio.

However, for networks where the community structure is embedded in the rate of

transition of edge states, then γ = 0 is a more appropriate choice. This distance

will work well in networks with disassortative community structures, since nodes

which are less likely to be connected are close under this measure. Since no as-

sumptions are made on the assortivity of a network, the distance used should not

be fixed to one type of assortivity. A further three distances are used to measure

the similarity of two nodes. All four distances are given in (3.20).

d11(i, j) = γ11d1(i, j) + (1−γ11)d2(i, j)

d10(i, j) = γ10d1(i, j) + (1−γ10)(1−d2(i, j))

d01(i, j) = γ01(1−d1(i, j)) + (1−γ01)d2(i, j)

d00(i, j) = γ00(1−d1(i, j)) + (1−γ00)(1−d2(i, j))

(3.20)

These distances are suited to different types of community structure. Firstly, d11

will minimise the distance between nodes in the same community in a network

which is disassortative in both the fraction of edges and the number of times

edges change state. Such networks have few edges between nodes in the same

community, but such edges are persistent across time. Next, d10 will minimise the

distance between nodes in the same community in a network which is disassortative

in the fraction of edges and assortative in the number of times edges change state.

Such networks have few edges between nodes in the same community and such

edges change often. By contrast, d01 will minimise the distance between nodes in

the same community in a network which is assortative in the fraction of edges and

disassortative in the number of times edges change state. Such networks have more

edges between nodes in the same community and such edges are persistent in time

compared to edges between communities which are fewer in number and change

more frequently. Finally, d00 will minimise the distance between nodes in the same
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community in a network which is assortative in both the fraction of edges and

the number of times edges change state. Such networks have more edges between

nodes in the same community compared to edges between communities which are

fewer in number, however the edges between communities are more persistent than

edges within communities.

Using these distances, the k-means algorithm (Lloyd, 1982) can be used to clus-

ter the nodes. A good clustering should separate nodes which are in different

communities. Based on this idea, the k-means algorithm aims to put nodes which

are far apart under d into different communities. As a result, a measure for a good

clustering is the ratio R of squared distances between nodes in different commu-

nities to the total squared distance between all nodes. The higher this ratio, the

more separated the clusters are.

To set the initial community assignments c(t0), the network is measured using

each of the distances in (3.20). Each γ parameter is set by maximising R for each

d by clustering the nodes using k-means. This gives four clustering which are

respectively optimal under each distance. The clustering used to initialise c(t0)

is then chosen as the clustering which maximises R among these four clusterings.

This procedure is very quick compared to the RJMCMC sampling scheme.

3.5. Simulation study

In order to assess the performance of the RJMCMC sampler, we conducted a sim-

ulation study over a range of parameter combinations. There are eight parameters

which we varied and for each parameter we considered two settings (Low, High)

giving 28 = 256 parameter combinations. The parameter combinations are the

number of nodes N , the number of communities, C, the size of each community

nc, the expected number of changes E[M ] (the rate of nodes moving λ) and the

community parameters π and ρ. For the community parameters, we set all the

within-community parameters to be the same, that is, for all i, j = 1, 2, . . . , C,

πi = πj and ρi = ρj. The parameter values are given in Table 3.1. For equal
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community sizes, N/C nodes were placed in each community. The sizes of com-

munities for other simulations are given in Table 3.2. We ran simulation for all

parameter combinations with the exception of πk = π0 and ρk = ρ0, where the

resulting network is indistinguishable from a dynamic Erdös-Rényi random graph

(a stochastic block model with only one community). This yielded 192 simulated

data sets, each consisting of 30 snapshots of the network equally spaced in time.

Table 3.1.: Parameter settings for simulation study.

Parameter Low High
N 72 120
C 3 6
E[M ] 0.3N 1.0N
πk 0.1 0.5
π0 0.1 0.5
ρ0 0.2 1.2
ρk 0.2 1.2
nc Equal Unequal

Table 3.2.: Number of nodes per community for nc = unequal.

N C = 3 C = 6
72 12, 24, 36 7, 9, 11, 13, 15, 17
120 20, 40, 60 10, 14, 18, 22, 26, 30

The RJMCMC described in Section 3.3 was applied to each simulated data

set for H = 20, 000 steps. The prior distributions for λ, π and ρ were set as

Gamma(1,1), Beta(1,1) and Gamma(2,1) respectively. The algorithm was ini-

tialised with no changepoints (M = 0) and the first 1000 steps were removed

as burn-in. Trace-plots of the parameters showed that the burn-in was sufficient

and test runs of 50,000 steps on a subset of the data sets gave similar parameter

estimates, indicating that 20,000 steps is sufficient.

In order to assess the performance of the RJMCMC algorithm the modal values,

a 95% credible interval and mean absolute percentage error against the true value

(MAPE, see (3.21)) are computed for each of the parameters π, ρ, λ and τ . The
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MAPE of an estimate E from true value T is given by:

MAPE(E, T ) =
n∑
i=1

|Ei − Ti|
|Ti|

(3.21)

Additionally, to assess the estimation of community assignments c
¯
(t), the v-measure

(Rosenberg and Hirschberg, 2007) was computed. V -measure is a score between

0 and 1 given to a clustering of a data set where true class labels are available

Rosenberg and Hirschberg (2007). It is an information theoretic measure based

on the harmonic mean of two different scores: homogeneity and completeness. A

clustering is considered homogeneous if it assigns only those data points that are

members of a single class to a single cluster, whereas a clustering is considered

complete if it assigns all of those data points that are members of a single class

to a single cluster. The v-measure lies in the interval [0,1] with a v-measure of

1 denoting perfect reconstruction of the classes. Alternative metrics such as the

Adjusted Rand Index (ARI) can also be used for assessing community assignment.

The v-measure Viht was computed for each data set i = 1, . . . , 192 at each time

point t = 1, . . . , T for each step h = 1001, . . . , 20, 000 of the sampler. The mean

v-measure vi =
∑

h

∑
t Viht/(HT ) was computed for each data set by averaging

over time and sampler step. Across all sampler runs, vi has mean 0.9131 and

median 0.9294 with inter-quartile range [0.8856,0.9548]. Similar results were found

using the ARI which had mean 0.9079, median 0.9404 and inter-quartile range

[0.8644,0.9945]. The lowest v-measure was 0.6476, obtained for a data set with

π0 = πk = 0.1 and ρ0 = 0.2 and ρk = 1.2. This is a difficult data set for the

sampler since the probability of seeing a given edge at any time is 0.1 and all the

information on the community structure is encoded in the parameter ρ.

Although λ was estimated well in every simulation (the true value was in the

HPD interval), the number of changepoints was sometimes underestimated. This

generally occurred because changes close to the start or end of the observation

period or that occur close to another change are difficult to detect, a well-known

feature of changepoint problems. In such cases the sampler is performing model
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selection by selecting a more parsimonious model than the one simulated from.

For example, in the simulation with combined v-measure of 0.6476, the change in

community memberships of nodes 26 and 63 are missed at times 1.26 and 2.03,

respectively, and instead the sampler assigns the community they move to as their

initial community. Such an early change is thus difficult to detect but may not

be important since the important structure (i.e. the community membership after

time 2) is still captured. A similar boundary effect is present for changes late in

the observation period.

Finally, we investigated in more detail how the algorithm scales with the amount

of data (N = 50, 100, 150;T = 20, 40, 60) and number of blocks (K = 2, 4, 6).

The RJMCMC sampler run-time per iteration scales linearly with the number

of snapshots and quadratically in the number of nodes which is to be expected

as doubling the number of nodes quadruples the number of potential edges to

evaluate. The number of blocks in the model appears to have a negligible effect on

the run-time of the algorithm. For a fixed number of iterations the effective sample

sizes of the MCMC output decreases slightly as N and T increase. Therefore, the

main additional computational cost from analysing larger data sets is the larger

likelihood calculations required.

3.6. Application: Communities of mice

In this section we apply the RJMCMC sampling scheme to a data set of mice

contacts presented in Lopes et al. (2016b). We aim to show how the algorithm can

identify changes in community structure of this dynamic network. In this study,

90% of a population of 257 mice were observed for a period of 54 days (Lopes

et al., 2016a). Each nest box was fitted with a sensor which recorded when two

mice were cohabiting. The data were presented as aggregates of time spent in close

proximity, mainly collected every other day but with some observations collected

every third day. We use the data by setting the edge Yij(ts) to 1 if mice i and

j had any contact on observation day ts. Since the mice sleep in nests and are
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social animals, it is hypothesised that the contact network will show community

structure. In Lopes et al. (2016b) the authors stage an intervention in some of

the subjects by treating them with either lipopolyaccharide (LPS) or a placebo

saline injection. It is hypothesised that treatment with LPS makes subjects more

introverted and thus less likely to contact other subjects. The authors found that

the treatment, when compared to placebo injections, reduced the degree to which

mice interacted with others. We ask if the mice change their community structure,

hypothesising that the treated mice may change community membership.

A preliminary analysis (Lopes et al., 2016b) shows that the network is split

into some disconnected components. We take a subset of 107 mice to form a sub-

network. This sub-network contains some almost disconnected components with

some connections between components. This sub-network contained 12 mice who

received the active treatment and 17 mice treated with a placebo. The remaining

mice received no treatment.

Initial clustering of subjects was performed using the distance d11 in Equa-

tion (3.20). This measure is used, since there is prior knowledge available that

the communities are assortative. The value for γ11 found was 0.999 so this indi-

cates that only the density of edges within groups was needed to determine the

initial community structure. To determine the number of communities, K, we

consider the between-sum-of-squares (BSS) and total-sum-of-squares (TSS) ratio

RK = BSSK/TSSK . The BSSk is the sum of the squared distances in the k-

means clustering for all nodes in different communities, whereas TSSK is the sum

of squared distances between all node pairs. A higher value of RK means the com-

munities are better separated and as K increases, this measure RK tends to one.

Using an elbow plot in Figure 3.2 for RK , we chose an analysis based on five com-

munities, since five is the point where increasing the number of communities, K,

does not substantially increase the separation between communities as measured

by RK . However, we also include a sixth community with parameters clamped at

zero. This allows for the analysis to model mice which leave the nest for a period
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of time.
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Figure 3.2.: Elbow plot for determining the number of communities with which to
initialise the sampler.

We ran the RJMCMC sampler for 50,000 iterations discarding the first 10,000

as burn-in. This allows the number of changes to become stable, since the sampler

starts with zero changepoints. The estimates for the community parameters are

given in Table 3.3 with around 50 changes in community membership. Trace-plots

are available in Appendix B. Notice that π0 is low, showing that the communities

are mainly disjointed. Contacts in communities 1, 2 and 5 are more likely than

contacts in communities 3 and 4 with similar behaviour within these two groups.

Note also that ρ is in the range (0.4, 0.6) for all communities giving a similar degree
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of autoregressive behaviour in the contact process for all mice. The higher value

of ρ0 corresponds to a more rapid turnover of contacts between mice in different

communities, as one would expect.

Figure 3.3 shows the a posteriori most probable community membership through

time for each mouse. The communities are coded by hatching, with the shading

type z used at point (x, y) representing the highest posterior probability at time

x of mouse y belonging to community z. The mice detected to have changed

community were mainly mice which were absent from the nests over a short period.

Such mice were detected to join the community labelled 6 (white) in Figure 3.3.

However, a few mice are more active. For example, the mouse with ID 97 leaves

the nest from group 5 for some time then returns to group 4 and then leaves the

nest again. For each of the 107 mice, we present plots of the posterior probabilities

of a mouse belonging to each of the 6 communities over time in Appendix B.

For comparison, the dynamic SBM (dynSBM) of Matias and Miele (2017) was

fit to the same data. In this model, the nodes act independently and move between

blocks via a discrete-time Markov chain. This gives similar dynamics for the nodes

as for the ARSBM. The key difference is in the modelling of the edges. Under

dynSBM, given the block memberships of the nodes, the edges are treated as

independent Bernoulli random variables. Applying the dynSBM to the mice data

set yields similar memberships to those found using ARSBM, as seen by comparing

Figures 3.3 and 3.4. The mean parameter estimates for the dynSBM are given in

Table 3.4. For communities k = 3, 4, 5, the mean estimates of the parameters

βk and πk, the probabilities of an edge between two mice in community k in

the dynSBM and ARSBM, respectively, are similar. For communities 1 and 2,

the parameters differ significantly, reflecting the significant changes in community

membership seen in the dynSBM between these two communities. The dynSBM

method estimates 283 changes, more than five times the mean number of changes

estimated using the ARSBM, with the latter maintaining a more consistent and

coherent community structure.
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3. Autoregressive stochastic block model with changes in block membership

Finally, we see no evidence that treating mice with LPS affects community

structure of the network, (except by leaving the network). Even though mice are

found to interact less by Lopes et al. (2016b), those interactions are likely to be

with the same group of mice.

Table 3.3.: Parameter estimates for the mice community data set.

variable 5% mean 95% s.d.
M 49 52.57 56 2.0843
λ 0.0010 0.0019 0.0030 0.0006
π0 0.0003 0.0004 0.0005 0.0001
π1 0.6799 0.6994 0.7182 0.0118
π2 0.6111 0.6660 0.7189 0.0328
π3 0.4152 0.4349 0.4547 0.0121
π4 0.4331 0.4473 0.4609 0.0084
π5 0.6616 0.6821 0.7007 0.0119
ρ0 1.1489 1.3164 1.5059 0.1092
ρ1 0.4740 0.5138 0.5556 0.0248
ρ2 0.3420 0.4104 0.4893 0.0453
ρ3 0.5256 0.5650 0.6054 0.0244
ρ4 0.3915 0.4077 0.4246 0.0102
ρ5 0.6265 0.6851 0.7429 0.0357

Table 3.4.: Parameter estimates for the mice community data set from the
dynSBM (β) and ARSBM (π, ρ).

k βk πk ρk
0 0.0948 0.0004 1.3164
1 0.3645 0.6994 0.5138
2 0.7301 0.6660 0.4104
3 0.6415 0.4349 0.5650
4 0.5610 0.4473 0.4077
5 0.7602 0.6821 0.6851

3.7. Concluding remarks

In this paper we have introduced an autoregressive, continuous-time version of

the stochastic block model and an effective RJMCMC algorithm to sample jointly

from the posterior distribution of the parameters and the number and location

of individuals’ changes in community membership. The Markovian nature of the
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Figure 3.3.: ARSBM: Maximum a posteriori community membership of each
mouse through time. Community labels: 1 - red, 2 - yellow, 3 - green,
4 - sky blue, 5 - dark blue, 6 - purple.

ARSBM makes it flexible and allows the model and RJMCMC algorithm to be

trivially applied to irregularly observed data or data with gaps in the collection

process, both of which are challenging problems for discrete-time models. The

effectiveness of the RJMCMC algorithm is demonstrated through the simulation

study with excellent detection of the changepoints in community membership.

There are a number of exciting avenues for future research opened up by autore-

gressive stochastic block models. Firstly, whilst the initialisation procedure for

community allocation worked well in the examples in this paper, alternative clus-

tering algorithms could be considered, especially by estimating the community
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Figure 3.4.: dynSBM: Maximum a posteriori community membership of each
mouse through time. Community labels: 1 - red, 2 - yellow, 3 - green,
4 - sky blue, 5 - dark blue, 6 - purple.

structure throughout the observation interval. This would enable the insertion of

changepoints into the model at the start of the RJMCMC algorithm to reduce the

potentially lengthy burn-in period. Secondly, it would be useful to allow the num-

ber of communities to be an unknown parameter which possibly varies over time.

This would avoid the use of ad hoc methods such as an elbow plot to choose the

number of communities and, more interestingly, allow the number of communities

to vary through time, with the possibility of large global changes when communi-

ties split or merge. Further possible extensions include covariate information on

edges or nodes and weighted edges. Both of these present challenges in efficient
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evaluation of the likelihood as in this paper we have been able to exploit the binary

state of edges classified solely by the community membership of the nodes.
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4. Online monitoring of block

membership in the autoregressive

stochastic block model

Abstract

In this paper we consider the problem of online monitoring of community structures

in a network. Specifically, we aim to detect when nodes change their community

membership. For this, we extend the autoretrogressive stochastic block model

(ARSBM) for network evolution first introduced in Ludkin et al. (2017), which

describes a process for nodes changing community together with a mechanism for

the creation and deletion of edges between nodes. The inference procedure dis-

cussed in this paper is based on the Sequential Monte Carlo algorithm of Fearnhead

(2002) and Storvik (2002). This allows inference to be made not only on the times

when nodes change community membership (changepoints), but also on the static

model parameters governing the evolution of edge-states. The algorithm is de-

scribed in Section 4.3. For efficient implementation of the proposed algorithm, we

provide some approximations in Section 4.3.2 together with justification, which

greatly improve the computational complexity, making online monitoring a prac-

tical possibility. We compare the SMC procedure with the RJMCMC of Ludkin

et al. (2017) on both simulated and real data in Section 4.4 and 4.5 to show the

computational/accuracy trade off.
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4.1. Introduction

In this paper we provide a sequential algorithm for the online monitoring of com-

munity structures in a network. A network consists of a set of nodes V which

can interact. We consider binary interactions, which can be modelled as the pres-

ence or absence of an edge between a pair of nodes. Furthermore, we consider a

dynamic network, where edges can change state over time, signifying the evolu-

tion of interactions. These edges are a set of stochastic processes denoted E(t).

For example, in a social network between people, an interaction such as “being

in conversation with” can be modelled as an edge. The amount of time the edge

remains “on” signifies the length of a given conversation. Denoting i, j ∈ V as a

pair of distinct nodes, the edge process Eij(t) ∈ E(t) models the interaction pro-

cess between the nodes i and j. We assume a data collection mechanism whereby

the state of edges are observed at some given time points, say t1, t2, . . . , tT called

observation times. At each observation time ts, a network snapshot is taken, such

that the states of all edges at time ts are recorded as E(ts). In practice multi-

ple snapshots will be available and a series of observations of edge states for each

pair of nodes is recorded. Each snapshot of the network is available as an adja-

cency matrix Es, with the corresponding series of adjacency matrices denoted by

E1:T = {Eij(ts) : s = 1, . . . , T}. In the following, the observations are indexed as

Es
ij = Eij(ts) for s = 1, . . . , T and i, j ∈ V .

Various statistical models have been developed for networks where a single snap-

shot forms the data set. These are referred to as static models (i.e. not dynamic).

These include the ERGM (Wasserman and Pattison, 1996; Anderson et al., 1999),

latent position model (Hoff et al., 2002; Handcock et al., 2007; Hoff, 2008a,b; Kriv-

itsky et al., 2009), and the stochastic block model (SBM) (Holland et al., 1983;

Snijders and Nowicki, 1997). In this paper we consider a dynamic extension to

the SBM. The SBM partitions the set of nodes V into groups or blocks such that

nodes in the same block have similar interaction behaviours. In the classic SBM,

the behaviour used to partition nodes is simply the appearance of edges. In this
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way, a block consists of nodes who share many edges, with fewer edges between

nodes in different blocks (or vice versa). This is an assortative (disassortative)

block structure.

We apply the stochastic block model to a dynamic model for interactions, hence

a partition of the node set is desired such that interaction behaviour is similar for

nodes in the same block compared to nodes in different blocks. Specifically, this

model treats the appearance of an edge as a binary random variable, but allows

autoregressive behaviour. This is a natural assumption in sequential data, allowing

the past to be indicative of the future.

Given that the state of edges may change through time, it is natural to consider

nodes to change through time as well. This is achieved by allowing nodes to change

block membership as time progresses. In this way, a partition of the node set is

sought for each time point. Together with the autoregressive edge state model,

this forms the autoregressive stochastic block model (ARSBM).

Other authors have considered dynamic extensions to the SBM with changes

in block membership. Yang et al. (2011), Xu and Hero (2014) and Matias and

Miele (2017) all extend the SBM to a discrete time dynamic version, which allow

dynamics of the edge process to depend on the group membership of the nodes. In

all of these models, the edge states at each time are assumed independent of past

states, given the block memberships. In this way, the dynamics are all modelled via

the latent block memberships. The autoregressive stochastic block model relaxes

this assumption of independence to allow previous edge states to influence the

present edge state via Markovian dynamics.

In this paper we consider an online inference procedure to track the block mem-

bership of nodes along time, as well as providing estimates for the posterior of the

model parameters. This consists of tracking some sufficient statistics for the pa-

rameters, consisting of summaries on the edges and block memberships of nodes.

These statistics can be used in conjunction with a data augmentation scheme to

provide samples from the posterior for the parameters at any point in time, using
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the past data. Since this algorithm only depends on sufficient statistics, the storage

requirements for the algorithm do not grow in time without a loss in accuracy.

The remainder of this paper is organised as follows: The autoregressive stochas-

tic block model (ARSBM) is defined in Section 4.2. The SMC algorithm to track

the block memberships and provide an estimate of the posterior for the model pa-

rameters is described in Section 4.3. In Section 4.4 the algorithm is demonstrated

on simulated data to show the effectiveness at tracking block memberships. This

includes a comparison to previous inference procedures first considered in Ludkin

et al. (2017). The SMC algorithm is applied to a data set of mice in Section 4.5.

The paper ends with a discussion and considerations for future work in Section 4.6.

4.2. Model

In this section we introduce the ARSBM and some notation. The model is set in

continuous time, allowing easy application in missing data or irregularly spaced

sampling regimes. The model splits into a simple hierarchy: firstly the nodes

are assigned to blocks together with the process governing their changes in block

membership. Secondly, the edge state distribution depends on the block member-

ship of the end-nodes. Note that we assume, as in the SBM, that the edges are

independent given the block memberships.

First we describe the block membership model. Each node belongs to one of

κ blocks at any given time. In this paper we consider κ is known and fixed. It

is assumed that each node starts as a member of block k with some probability

ωk, such that
∑κ

k=1 ωk = 1. Since we allow the block memberships to change

through time, a model is also required to describe this behaviour. To allow block

membership to evolve in time, we assume that the block membership of a node

follows a continuous time Markov chain (CTMC). Specifically, we assume that

the block membership of a node is reassigned at the points in a homogeneous

Poisson process with rate λ. When a block membership is reassigned, it is chosen

as block k with probability ωk independently of the current block membership.
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Note that this does not exclude the case of reassigning a node back to the same

block. Another view of this model is as follows: if a node is currently in block k, it

remains in block k for an Exp(λ(1− ωk)) distributed amount of time. Then, when

the node leaves block k, it joins a block l 6= k with probability ωl/(1 − ωk). In

this second interpretation, every event is a change in block membership; however

the first interpretation allows trivial simulation. Letting 1 be a vector of κ ones

and I be the κ × κ identity matrix it is straightforward to show this CTMC has

generator matrix:

Q = λ(1ωT − I). (4.1)

Let Zi(t) be the block membership process for node i. At time t1 the block

memberships are drawn from some distribution. In this paper we assume that

the initial block memberships are drawn from a Multinomial(ω) distribution for

simplicity. Then, for all times t > t1, Zi(t) follows a CTMC(Q).

Given the form of Q, the probability of observing node i in block k at time t,

given that Zi(s) = l, is:

P[Zi(t) = k|Zi(s) = l, λ,ω] = ωk(1− exp(−λ(t− s))) + exp(−λ(t− s)) I[k = l] .

For brevity we denote zsik = 1 if Zi(ts) = k for s = 1, . . . , T . As such, zsi is a

one-of-κ indicator vector, with zsik = 1 if node i is in block k at observation time ts.

Also, let z1:T = {zsi : i ∈ V , s = 1, . . . , T} represent the complete paths of block

memberships at the observation times.

Next the model for edge states is described. It will be convenient to define

an indicator for each edge, based on the block memberships of the end nodes.

Recall that the process governing an edge depends on the block memberships of

the end nodes, such that if two nodes i and j are in block k, then the kth process

governs edge ij, and if i and j are in different blocks, then the 0th process is used.

Let Zij(t) be an indicator for which process governs the edge ij at some time

t; this is a deterministic function of both Zi(t) and Zj(t). Simply, Zij(t) = k if
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Zi(t) = Zj(t) = k and Zij(t) = 0 otherwise. We define the corresponding indicator

variable at the observation times, zsij, as a one-of-(κ+ 1) indicator vector (indexed

from 0 to κ) as:

zsij =


(0, zsi ), if zsi = zsj ,

(1, 0, . . . , 0), if zsi 6= zsj .

As such zsij0 = 1 if nodes i and j are in different blocks at time ts and zsijk = 1 if

nodes i and j are both in block k at time ts.

At time t1, and given the block memberships of the nodes z1, we assume that the

edge states are drawn independently from a Bernoulli distribution with parameter

φk for zijk = 1. Here, φ0 is the probability of an edge appearing between nodes

in different blocks at time t1, whereas φk is the probability of an edge appearing

between nodes in block k at time t1, for k = 1, . . . , κ. Given that zij is an indicator,

the dot product z′ijφ selects the correct parameter for this Bernoulli distribution.

To allow edge states to depend on previous edge states, we let E(t) be a stochastic

process with autoregressive components. Given the block membership of the nodes

i and j, the edge process Eij1(t) will follow different distributions (similar to the

model for time t1 above). Therefore we require a process for each block and a

process for between blocks. Since binary edge states are considered we set each of

the κ+ 1 edge processes as a CTMC with two states: 0 and 1. The kth CTMC has

generator matrix Gk with elements consisting of two rates: αk and δk. The rates α

are called the appearance rates, the rates which edges transition from state 0 to 1,

whilst δ is the vector of deletion rates for transitions in the opposite direction. For

comparison to the static SBM and to the edge model for time t1, we reparameterise

with φk = αk
αk+δk

and ρk = αk+δk. The interpretation of this new parameterisation

is as follows: φk is the stationary distribution of an edge in process k, whilst ρk is

the strength of the autoregressive behaviour. A smaller value for ρk signifies more

autoregressive behaviour.

Given the nodes i and j, the state of edge ij at times r < s and the parameters

φ,ρ, we can write the probability distribution for Eij, if nodes i and j do not

103



4. Online monitoring of block membership in the ARSBM

change blocks, as:

P[Eij(s) = 1|Eij(r) = x, Zij(r) = k,φ,ρ] = φk + (x− φk)e−ρk(s−r)

P[Eij(s) = 0|Eij(r), Zij(r),φ,ρ] = 1− P[Eij(s) = 1|Eij(r),Z,φ,ρ]

(4.2)

If node i changes block membership at some time τ ∈ (r, s), then we can write

the probability of the observed sequence as:

P[Eij(s), Eij(τ)|Eij(r), Zij(r), Zij(τ), Zij(s),φ,ρ] =

P[Eij(s)|Eij(τ), Zij(τ),φ,ρ]P[Eij(τ)|Eij(r), Zij(r),φ,ρ] .

However, the changepoint τ is unknown, hence we must integrate over this

changepoint location and the edge state at this time to obtain the probability of

the observed sequence only at observation times as:

P[Eij(s)|Eij(r), Zij(s) 6= Zij(r),φ,ρ] =∫
τ

1∑
x=0

P[Eij(s)|Eij(τ) = x, Zij(τ),φ,ρ]P[Eij(τ) = x|Eij(r), Zij(r),φ,ρ] p(τ) dτ.

In this case p(τ) is the density for the changepoint being at time τ . This is not a

simple integral to calculate.

In this paper we assume that the rate of block membership change is slow

compared to the observation process (a standard assumption in any hidden Markov

model). As such, the probability of a given node changing block membership twice

in an observation interval is negligible and thus ignored. Furthermore, for most

consecutive observations, the block memberships of a given node i will remain the

same, and Equation (4.2) holds. However, if a node does change at time τ , then we

can approximate the above integral by using only the block membership at time

s:

P[Eij(s)|Eij(r),Z,φ,ρ] ≈ P[Eij(s)|Eij(r),Z(τ) = Z(s),φ,ρ] .

This approximation assumes that the changepoint τ = r so that the edge ij is
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governed by Z(s) for the entire interval (r, s).

We now consider the likelihood of an observed edge series up to the tth time

point, conditional on the block membership and parameters. We define ∆s =

ts − ts−1 as the time difference between observations s and s − 1 and let θ =

(λ,ω,φ,ρ). We may write the joint-likelihood of the observed edge states, given

the block memberships and parameters, as P[E1:t, z1:t|θ] = P[E1:t|z1:tθ]P[z1:t|θ].

This comprises of the data likelihood:

P
[
E1:t|z1:tθ

]
=
∏
i�j

P
[
E1
ij|z1

ij,φ
] t∏
s=2

P
[
Es
ij|Es−1

ij , zsij,φ,ρ
]

=
∏
i�j

κ∏
k=0

φ
E1
ijz

1
ijk

k (1− φk)(1−E1
ij)z

1
ijk

×
t∏

s=2

∏
i�j

κ∏
k=0

(φk + (1− φk)exp(−ρk∆s))
zsijkE

s
ijsE

s−1
ij

×
t∏

s=2

∏
i�j

κ∏
k=0

(1− φk + φkexp(−ρk∆s))
zsijk(1−Esij)(1−E

s−1
ij )

×
t∏

s=2

∏
i�j

κ∏
k=0

(φk − φkexp(−ρk∆s))
zsijkE

s
ij(1−E

s−1
ij )

×
t∏

s=2

∏
i�j

κ∏
k=0

(1− φk − (1− φk)exp(−ρk∆s))
zsijk(1−Esij)E

s−1
ij

(4.3)

and the block membership likelihood:

P
[
z1:t|ω, λ

]
=

N∏
i=1

κ∏
k=1

ω
z1ik
k

×
t∏

s=2

N∏
i=1

κ∏
k=1

(ωk(1− exp(−λ∆s)) + exp(−λ∆s))
zsikz

s−1
ik

×
t∏

s=2

N∏
i=1

κ∏
k=1

(ωk(1− exp(−λ∆s)))
zsik(1−zs−1

ik ) .

(4.4)

Interest lies in the posterior distribution for the block memberships zt and pa-

rameters θ at each time point. An algorithm for monitoring a network using the

ARSBM is described in Section 4.3. This is a sequential Monte Carlo algorithm,

and as such, the posterior estimates are updated each time that new data arrives.
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The algorithm presented uses sufficient statistics to allow posterior samples of the

parameters to be drawn at any time. The space requirements for the sufficient

statistics are independent of the length of the observation series. Therefore, if

interest only lies in the current block memberships (or a finite recent history),

then the following algorithm can be deployed in an online fashion for an arbitrary

length of series. The model simplifies when the observations are taken at regular

time intervals. In this case, the difference ∆s = ∆ for all s.

4.3. SMC

In this section we provide a sequential Monte Carlo (SMC) algorithm to estimate

the block memberships of nodes through time. Due to the sequential nature of the

algorithm, the posterior distribution for block memberships can be updated every

time new network snapshots arrive. We treat the static parameters θ = (ω, λ,φ,ρ)

as unknown. As such, we require a posterior distribution for both θ and zs for

s = 1, . . . , T .

SMC algorithms that can handle static parameters include the SMC2 method

(Chopin et al., 2012). This sampler combines two particle filters to estimate the

latent states and fixed parameters. However, each time a parameter is resampled,

the full path of latent states must be updated from time 1. This could occur at

any future time, hence the complexity of the algorithm depends on t, thus is not

a truly online procedure. Alternatively, the sampler of Liu and West (Liu and

West, 2001) combines ideas from kernel shrinkage with particle filters to develop

a particle filter that can estimate fixed parameters. This does not eradicate the

issue of particle degeneracy, but can delay it. Therefore, in time, the Monte Carlo

error will dominate the filter such that inference can no longer be drawn.

The aforementioned sampling schemes either require storage growing with the

number of observations (prohibiting an online approach), or do not abate the

problem of particle degeneracy. Moreover, they are black box approaches: they do

not exploit any structure in the data model. In Section 4.3.1 we derive sufficient
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statistics under a data augmentation scheme that allows sampling of the parame-

ters from the posterior at any time point. Therefore, we can employ the “MCMC

within particle filter” methods of Storvik (2002); Fearnhead (2002). In this SMC

algorithm, the parameters are estimated at each time based on low dimensional

sufficient statistics for the observations and block memberships. As such, particle

impoverishment is abated, unlike in the approaches mentioned above. This ap-

proach is more specialised than the black-box algorithms above, and can only be

used if suitable sufficient statistics exist.

In the remainder of this section, we derive sufficient statistics and integrate them

into a sequential importance sampling algorithm for the ARSBM.

4.3.1. Sufficient statistics

In this section we derive sufficient statistics for the parameters θ based on the

observed edge states and block memberships up to time t. To calculate sufficient

statistics, we consider the posterior for θ up to time t:

π
(
θ|E1:t, z1:t

)
∝ π0(θ)P

[
E1:t, z1:t|θ

]
(4.5)

In the case that observations are equally spaced in time, we let ∆ = ∆s and

reparameterise with µ = exp(−λ∆) and νk = exp(−ρk∆). By substituting Equa-

tions (4.3) and (4.4) into Equation (4.5), the posterior then becomes:

π
(
θ|E1:t, z1:t

)
∝ π0(θ)

κ∏
k=0

φ
N1,k+Nt

01,k

k (1− φk)N0,k+Nt
10,k (1− νk)N

t
10,k+Nt

01,k

× (φk + (1− φk)νk)N
t
11,k (1− φk + φkνk)

Nt
00,k

×
κ∏
k=1

ω
Lk+Mt,+

k −1

k (1− µ)M
t,+
k (ωk(1− µ) + µ)M

t
k ,

(4.6)

where the statistics St = (L,M t,+,M t,N1,N0,N
t
11,N

t
01,N

t
10,N

t
00) are defined

and summarised in Table 4.1.

To implement the sampling algorithm of Storvik, a sampling distribution for
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Table 4.1.: Summary statistics for the ARSBM

Statistic Interpretation Formula

L1,k The number of nodes assigned to
block k at time 1.

N∑
i=1

z1
i

M t,+
k The number of nodes which

change block membership and
join block k up to time t.

N∑
i=1

t∑
s=2

zsik(1−zs−1
ik )

M t
k The number of nodes remaining

in block k at consecutive obser-
vation times.

N∑
i=1

t∑
s=2

zsikz
s−1
ik

N1,k The number of edges governed by
process k at time one in state 1.

∑
i�j

z1
ijkE

1
ij

N0,k The number of edges governed by
process k at time one in state 0.

∑
i�j

z1
ijk(1−E1

ij)

N t
11,k The number of edges which re-

main in state 1 at consecutive
observation times while governed
by process k up to observation
time t.

∑
i�j

t∑
s=2

zsijkE
s
ijE

s−1
ij

N t
10,k The number of edges which tran-

sition from state 1 to 0 at con-
secutive observation times while
governed by process k up to ob-
servation time t.

∑
i�j

t∑
s=2

zsijk(1−Es
ij)E

s−1
ij

N t
01,k The number of edges which tran-

sition from state 0 to 1 at con-
secutive observation times while
governed by process k up to ob-
servation time t.

∑
i�j

t∑
s=2

zsijkE
s
ij(1−Es−1

ij )

N t
00,k The number of edges which re-

main in state 0 at consecutive
observation times while governed
by process k up to observation
time t.

∑
i�j

t∑
s=2

zsijk(1−Es
ij)(1−Es−1

ij )

θ|St−1 is required to draw parameters to use for inference of the block memberships

at time t. Note that in Equation (4.6), the parameters separate into a product of

joint distributions for (φk, νk) and (µ,ω). By introducing an auxiliary variable for
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each of these pairs, a separable form for the posterior can be found. We introduce

the auxiliary variable for (µ,ω) first, then discuss the pairs (φk, νk) for k = 0, . . . , κ.

Consider the parameters (µ,ω) governing the process which governs changes

in block membership for the nodes. This process is modelled as a CTMC with

generator Q as in Equation (4.1). Under this model, the probability that node

i remains in block k at consecutive times (ts−1, ts) can be decomposed as: (0)

the probability that i does not move, plus (1) the probability i moves at least

once but returns to block k by time ts. Suppose that we could identify which of

(0) or (1) occurred for each node. As such, let csi = c if node i stayed in block

k in time interval (ts−1, ts) via (c) for c=0,1. With this additional information

c1:t = {csi : i ∈ V , s = 0, . . . , t}, we can write the likelihood for z1:t, c1:t given ω, λ

as:

π
(
z1:t|c1:t,θ

)
∝

N∏
i=1

κ∏
k=1

ω
z1ik
k

×
t∏

s=2

N∏
i=1

κ∏
k=1

(ωk(1− µ))c
s
i z
s
ikz

s−1
ik µ(1−csi )zsikz

s−1
ik (ωk(1− µ))z

s
ik(1−zs−1

ik )

=
κ∏
k=1

ω
Lk+Mt,+

k +Mt,1
k

k µM
t,0
k (1− µ)M

t,+
k +Mt,1

k .

We have introduced the additional statistics M t,c
k which count the number of times

a node remains in block k with csi = c for c = 0, 1. Note that M t,0
k + M t,1

k = M t
K

by construction. Knowledge of M t,c
k makes the posterior distribution for µ,ω

separable. We can write the likelihood of csi given the data and parameters as:

P[csi = 1|zsik = 1,ω, λ] =
ωk(1− µ)

ωk(1− µ) + µ
.

Therefore, given that M t,1
k =

∑N
i=1

∑t
s=2 c

s
iz
s
ikz

s−1
ik , we find:

M t,1
k ∼ Bin

(
M t

k,
ωk(1− µ)

ωk(1− µ) + µ

)

By assigning a Dirichlet(γ) prior to ω, and a Beta(α, β) prior to µ then the
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above posterior yields the following set of distributions:

µ|M t ∼ Beta

(
α +

∑
k

M t,0
k , β +

∑
k

M t,+
k +M t,1

k

)
,

ω|M t ∼ Dirichlet
(
L+M t,+ +M t,1 + γ

)
,

M t,1
k |λ,ω ∼ Bin

(
M t

k,
ωk(1− µ)

ωk(1− µ) + µ

)
.

(4.7)

This form naturally leads to a Gibbs sampling approach which we will discuss in

Section 4.3.2.

Similarly, an augmentation approach can be applied to the pairs (φk, ρk). Let

dsij be an auxiliary variable such that dsij = 0 if edge ij remains in the same

state without changing between times ts−1 and ts, and dsij = 1 if edge ij is in the

same state at consecutive time points and changes at least once (therefore the last

change in state before time ts returned ij to the state at time ts−1).

Thus, the terms of the likelihood for both E1:T ,d1:T involving terms in φ,ρ can

be rewritten as:

π
(
E1:t|d1:t, z1:t,θ

)
∝
∏
i�j

κ∏
k=0

φ
z1ijkE

1
ij

k (1− φk)z
1
ijk(1−E1

ij)

×
t∏

s=2

∏
i�j

κ∏
k=0

(φk(1− νk))d
s
ijz

s
ijkE

s
ijE

s−1
ij

×
t∏

s=2

∏
i�j

κ∏
k=0

ν
(1−dsij)zsijk(EsijE

s−1
ij +(1−Esij)(1−E

s−1
ij ))

k

×
t∏

s=2

∏
i�j

κ∏
k=0

((1− φk)(1− νk))d
s
ijz

s
ijk(1−Esij)(1−E

s−1
ij )

×
t∏

s=2

∏
i�j

κ∏
k=0

(1− φk)z
s
ijk(1−Esij)E

s−1
ij φ

zsijkE
s
ij(1−E

s−1
ij )

k

×
t∏

s=2

∏
i�j

κ∏
k=0

(1− νk)z
s
ijk(Esij(1−E

s−1
ij )+(1−Esij)E

s−1
ij )

=
κ∏
k=0

φ
N1+Nt

01,k+Nt,1
11,k

k (1− φk)N0,k+Nt
10,k+Nt,1

00,k

×
κ∏
k=0

ν
Nt,0

00,k+Nt,0
11,k

k (1− νk)N
t,1
11,k+Nt,1

00,k+Nt
01+Nt
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where N t,d
aa,k counts the number of times an edge in block k stays in state a, for

d = 0, or changes state back to a, for d = 1, up to time t.

Again, we may write the distribution of d|φ,ν,E, z as:

P
[
dsij = 1|zsijk = 1, Es

ij = 0, Es−1
ij = 0,φ,ρ

]
=

(1− φk)(1− νk)
(1− φk)(1− νk) + νk

,

P
[
dsij = 1|zsijk = 1, Es

ij = 1, Es−1
ij = 1,φ,ρ

]
=

φk(1− νk)
φk(1− νk) + νk

.

Thus, the distributions for N t,1
11,k and N t,1

00,k are Binomial distributed with the above

probabilities and sizes N t
11,k, N

t
00,k respectively. Therefore, assigning a Beta prior

to φk with parameters ak, bk and a Beta(ck, dk) to νk, we obtain the following

posterior distributions in Equation (4.8):

φk|N t ∼ Beta
(
N1,k +N t

01,k +N t,1
11,k + ak, N0,k +N t

10,k +N t,1
00,k + bk

)
,

νk|N t ∼ Beta
(
N t,0

11,k +N t,0
00,k + ck, N

t
01,k +N t

10,k +N t,1
00,k +N t,1

11,k + dk
)
,

N t,1
00,k|φk, νk ∼ Bin

(
N t

00,k,
(1− φk)(1− νk)

(1− φk)(1− νk) + νk

)
,

N t,1
11,k|φk, νk ∼ Bin

(
N t

11,k,
φk(1− νk)

φk(1− νk) + νk

)
.

(4.8)

Using the above distributions, independent Gibbs samplers can be applied to

the variables λ,ω,M t,1 and φk, ρk, N
t,1
11,k, N

t,1
00,k for each k = 0, . . . , κ. Therefore,

given the sufficient statistics at time t − 1, a Gibbs sampler can be applied with

the augmented statistics M t,1, N t,1
11,k, N

t,1
00,k to provide draws from the posterior for

the parameters (λ,ω,φ, ρ). The details of this algorithm are presented in the next

section.

4.3.2. SMC algorithm

The sequential importance sampling algorithms of Storvik (2002) and Fearnhead

(2002) can be applied to the ARSBM with the sufficient statistics defined in Sec-

tion 4.3.1. The aim of this algorithm is to update the posterior distribution each

time a new network snapshot arrives. The algorithm achieves this via a set of
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particles which each store a realisation of the block structure and the sufficient

statistics at time t. Each particle has a corresponding weight, such that the par-

ticles and weights form a discrete approximation of the posterior distribution. At

each time t, parameter values θ̃ are sampled from the currently available posterior.

This is achieved by performing a Gibbs sampler on the parameters and augmented

statistics as discussed in the previous section. Specifically, draws are taken from

the distributions in Equations (4.7) and (4.8) for some pre-specified number of

steps.

Given θ̃, a proposed block structure for time t is generated, denoted as z̃t. The

weights are then updated, taking into account the proposed block structure and

parameters ability to describe the new snapshot Et. Next, the sufficient statistics

are updated for the new snapshot and block structure. Finally, the particles are

resampled according to their weights. This removes particles with little support

in the posterior. Each of the steps in the algorithm are now provided in detail.

Inference for time 1

An initial set of particles must be generated at time 1 to start the algorithm. In

the case of the ARSBM, a parameter value θ̃p is drawn from the prior for each

particle p. Given θ̃ the initial block structures z̃1,p are drawn from a proposal

distribution q1. This particle is then weighted as in Equation 4.9. There is scope

to include information on E1 in the proposal distribution q1. In the case of the

ARSBM, since the initial block structure lies in a large space (all possible as-

signments of N nodes to κ blocks, which has Nκ elements), simply setting q to

the prior is unlikely to be successful. In this paper we draw z̃1 by clustering the

nodes dependent on some initial set of snapshots via a similarity matrix D. For

example, in assortative networks, counting the number of edges between a pair of

nodes with Dij =
∑5

s=1Eijs leads to a similarity matrix where nodes in the same

block score higher in similarity. This can be combined with the concept of spectral

clustering (Von Luxburg, 2007) to generate a similarity matrix which is better able
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to separate blocks in the SBM (Lei et al., 2015). Given a similarity matrix D, we

perform clustering by fitting a Gaussian mixture model with κ components to the

rows of D. Under this proposal, node i is assigned to block k with probability

proportional to the density row i receives in component k of the mixture model.

Given z̃ and initial edge states E1, the parameters ω and φ are drawn from

the time 1 posterior as in Equation (4.7). The weight is then obtained via Equa-

tion (4.9):

wp1 =
f(z̃1,p|ω) g(E1|z̃1,p|φ)

q1(z̃1,p|ω,E1)
(4.9)

Next, the sufficient statistics are initialised for particle p, with only L,N0,N1

affected. Finally, the particles are resampled with replacement proportional to

their weights.

Sequential inference

For all time points t after the first, the set of particles from time t− 1 is updated

to yield a discrete approximation to the posterior on z1:t,θ. For each particle p,

a parameter θ̃ is drawn from the posterior of time t− 1 using the Gibbs sampling

procedure in Equations (4.7) and (4.8) based on the sufficient statistics Spt−1 avail-

able from particle p. Given θ̃, the block structure z̃tp is drawn from a proposal

distribution qt(zt|zt−1,p,Et,Et−1) (described in the following). Next, the weight

of the proposed particle is updated via Equation (4.10):

wpt = wpt−1

f(z̃t,p|zt−1,p,ω, λ) g(Et|Et−1z̃t,p,φ,ρ)

qt(z̃t,p|ω,Et,Et−1)
(4.10)

Then, the sufficient statistics are updated to include the information in the most re-

cent snapshot and proposed block structure. Once all particles have been updated,

the set is resampled proportional to weight to obtain a set of equally weighted par-

ticles.

The proposal distribution for zt used at time t makes use of the time t edge
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state data:

q
(
ztik = 1|zt−1

i ,Et,Et−1,θ
)

=∏
j 6=i g

(
Et
ij|Et−1

ij , ztik = 1, ztj = zt−1
j ,θ

)
f
(
ztik = 1|zt−1

i ,θ
)∑κ

l=1

∏
j 6=i g

(
Et
ij|Et−1

ij , ztil = 1, ztj = zt−1
j ,θ

)
f
(
ztil = 1|zt−1

i ,θ
) . (4.11)

This allows block structures with high posterior mass to be proposed. Notice that,

although we have a closed form expression for the posterior of zt|zt−1,Et,Et−1,θ

up to a normalising constant:

π
(
zt|zt−1,Et,Et−1,θ

)
∝
∏
i�j

g
(
Et
ij|Et−1

ij , ztij,θ
) N∏
i=1

f
(
zti |zt−1

i ,θ
)
,

this involves the likelihood of the edges at time t given the unknown block member-

ships zt for all nodes, of which there are κN possibilities. The proposal distribution

introduced in Equation (4.12) proposes the block memberships for each node in

turn, using only the current information on the other nodes, for which there are

Nκ possibilities. This greatly reduces the computation required by assuming that

the posterior distribution separates into a product of independent distributions,

one for each node. Recall that the nodes do move blocks independently, and only a

few nodes will change block at any given time interval. Therefore, when proposing

the new block membership for a given node, we assume all other nodes do not

move. As such, the proposal distribution has the following form:

q
(
ztik=1|zt−1

i ,Et,Et−1,θ
)
∝∏

j 6=i

g
(
Et
ij|Et−1

ij , ztik=1, ztj = zt−1
j ,θ

)
f
(
ztik=1|zt−1

i ,θ
)
.

(4.12)

This yields a discrete distribution over the κ blocks and as such, the probabilities

are normalised by their sum. The proposal at time t, for a set of P particles

{zt,p, St,p : p = 1, . . . , P} is thus:

• For each particle p:

– Draw θ̃p using the Gibbs sampling moves in Equation (4.7) and (4.8)
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conditional on St−1,p.

– For each node i = 1, . . . , N , draw z̃t,pi from a Multinomial distribution

with probability given by Equation (4.12), depending on θ̃p Et
i·,E

t−1
i·

and zt−1
j for all nodes j 6= i.

– Compute the weight of the particle via Equation (4.10).

– Update the sufficient statistics: St,p = S(St−1,p,Et,Et−1, z̃t,p).

• Resample the particles proportional to their weights, setting the new weights

to 1/P .

Algorithm implementations

There is choice in the way the above algorithms is implemented in the Gibbs

sampling step:

1. Store the block memberships and sufficient statistics for each particle.

2. Store the block memberships, sufficient statistics and parameter values for

each particle.

3. Store the block memberships, sufficient statistics and augmented statistics

for each particle.

In case (1), the Gibbs sampler can be initiated from the mean of the parameters

from time t− 1. For case (2), each particle retains the parameter value from time

t − 1. This is used to initiate the Gibbs sampler. Intuitively, if the particles are

not very varied, then any particle will have parameters close to the mean so these

approaches will be similar. Case (3) stores the augmented statistics instead of

the parameter values. Intuitively, case (3) should perform equally well to case (2)

since they both store the same number of unknowns from the joint posterior. We

try each of these three approaches in Section 4.4 on simulated data.
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4.4. Simulated data

We applied the SMC algorithm described in Section 4.3.2 with the three im-

plementations discussed in Section 4.3.2 to a set of simulated networks on 120

nodes. For each simulation, the nodes were split into three blocks with ω =

(30/120, 40/120, 50/120) then simulated for 100 time points with a fixed differ-

ence in observation times ∆ = 1. In each network, the parameters (φ,ρ) were

set to generate different block structures including assortative and disassortative

behaviours in the proportion of edges between nodes (φ) and the strength of the

autoregressive component (ρ). Furthermore, for each setting of φ and ρ, we in-

creased λ between 1/120 and 9/120. Since the expected number of changes in a

given time period ∆ is λ∆(1 − ω′ω), this yields an expected number of changes

in block memberships between 0.653 and 6 per unit time. The parameter settings

lead to 16 data sets shown in Table 4.2.

In all cases, we used P = 250 particles. We used G = 10 Gibbs step for imple-

mentation (1) and G = 1 for implementations (2) and (3) to sample parameters

from the posterior distribution of θ. Case (1) uses more computation but less

storage than cases (2) and (3).

The initialisation procedure used a Gaussian mixture model to assign nodes to

blocks at time one. This Gaussian mixture model was fit to a function of the first

five snapshots. This function aims to capture the group structure. Specifically,

we first map the initial snapshots to a similarity matrix W with Wij =
∑5

s=1Eijs.

Secondly, the spectral decomposition of W is found as D = Spec(W ). This maps

the matrix W into a space where similar nodes are closer together (Von Luxburg,

2007). The first κ columns of D are treated as “features” of the nodes before

finally fitting the Gaussian mixture model with the rows of D as the data for each

node as in Section 4.3.2.

To evaluate the performance of the samplers, we compute the v-measure (Rosen-

berg and Hirschberg, 2007) at each time point. This is an information theoretic

measure which scores a clustering between 0 and 1. If the clustering is perfect (i.e.
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Table 4.2.: Parameter settings for simulated data sets.

Index λ φ0 φ1 φ2 φ3 ρ0 ρ1 ρ2 ρ3

1 1.0 0.05 0.6 0.7 0.8 0.2 0.4 0.45 0.5

2 1.0 0.05 0.6 0.7 0.8 0.8 0.4 0.45 0.5

3 1.0 0.6 0.1 0.075 0.05 0.2 0.4 0.45 0.5

4 1.0 0.6 0.1 0.075 0.05 0.8 0.4 0.45 0.5

5 3.0 0.05 0.6 0.7 0.8 0.2 0.4 0.45 0.5

6 3.0 0.05 0.6 0.7 0.8 0.8 0.4 0.45 0.5

7 3.0 0.6 0.1 0.075 0.05 0.2 0.4 0.45 0.5

8 3.0 0.6 0.1 0.075 0.05 0.8 0.4 0.45 0.5

9 6.0 0.05 0.6 0.7 0.8 0.2 0.4 0.45 0.5

10 6.0 0.05 0.6 0.7 0.8 0.8 0.4 0.45 0.5

11 6.0 0.6 0.1 0.075 0.05 0.2 0.4 0.45 0.5

12 6.0 0.6 0.1 0.075 0.05 0.8 0.4 0.45 0.5

13 9.0 0.05 0.6 0.7 0.8 0.2 0.4 0.45 0.5

14 9.0 0.05 0.6 0.7 0.8 0.8 0.4 0.45 0.5

15 9.0 0.6 0.1 0.075 0.05 0.2 0.4 0.45 0.5

16 9.0 0.6 0.1 0.075 0.05 0.8 0.4 0.45 0.5

assigns all nodes to the right blocks) then the v-measure is 1. A v-measure of 0.8 is

considered a good score in terms of cluster evaluation (Rosenberg and Hirschberg,

2007). To evaluate the performance of the parameter estimation we measure the

mean bias over time and the mean absolute deviation (MAD).

The mean v-measure over a data set is computed as:

vm
(
z1:T

)
=

∑T
s=1

∑N
i=1

∑P
p=1 w

p
svm(zpim, Zim)

N
∑N

i=1

∑P
p=1 w

p
s

,

where vm(x,y) is given by Rosenberg and Hirschberg (2007).

The MAD of an estimate θ̂ to the true value θ is:

MAD
(
θ̂,θ

)
=

∑T
s=1 |θ̂s − θ|

T
.
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and similarly the bias is:

bias
(
θ̃,θ

)
=

∑T
s=1 θ̂s − θ
T

.

Figures 4.1, 4.2 and 4.3 show the performance of the methods via v-measure,

MAD and bias for the posterior mean respectively. Notice that method 1 and

2 perform similarly in all measures and that method 3 performs comparably in

v-measure but leads to more varied bias and MAD. For these reasons, we propose

that method 2 is preferred since it is more accurate than method 3 and requires

less computation than method 1.
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Figure 4.1.: v-measure for simulated networks against method. 1 - Gibbs from
mean, 2 - Gibbs from previous particle, 3 - store augmented states.
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Figure 4.2.: Mean absolute deviation for simulated networks against method. 1 -
Gibbs from mean, 2 - Gibbs from previous particle, 3 - store augmented
states.

The results for method 2 are now compared across the individual parameters.

Figure 4.4 compares the v-measure against the true value for λ. A higher value of

λ leads to more changes in block membership making the identification of blocks

more difficult since the length of data which can identify if a node belongs to a

particular block is shorter. Therefore, as expected, the v-measure decreases with

increasing λ. Note however that for the highest value of λ, the block structure

is still identified with an average v-measure of 0.95, representing strikingly good

performance.
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Figure 4.3.: Bias for simulated networks against method. 1 - Gibbs from mean, 2
- Gibbs from previous particle, 3 - store augmented states.

4.4.1. Comparison to offline methods

Previous methods have considered the problem of detecting changes in block mem-

bership under a dynamic stochastic block model. Most of these extensions consider

the snapshots as independent draws from a static SBM, with all dynamics modelled

via the latent block memberships. Matias and Miele (2017) develop a variational

approximation to the dynamic SBM which can detect changes in block member-

ship. This is an offline method, requiring the entire series of snapshots. Various

authors (Yang et al., 2011; Xu and Hero, 2014) have developed online methods for

the detection of changes in block structure in the case of independent snapshots.
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Figure 4.4.: v-measure against true λ values with method 2.

On the other hand, in Ludkin et al. (2017), a reversible jump Markov chain

Monte Carlo (RJMCMC) algorithm was proposed to infer the changing block

membership of nodes in the autoregressive stochastic block model. This also re-

quires the full series of snapshots.

The method in this paper performs online inference and allows autoregressive

components in the edge state distribution. We now compare the RJMCMC output

to the SMC algorithm in Section 4.3 by analysing four simulated networks first

described in Ludkin et al. (2017). These consist of either 72 or 120 nodes split

into 3. In all cases the between block parameters were set as (φ0, ρ0) = (0.1, 0.2)

while the within block parameters were (φk, ρk) = (0.5, 1.2). The rate of change
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4. Online monitoring of block membership in the ARSBM

in block membership is set such that either λ = 0.01 or 0.03 leading to either 0.75

or 1.25 changes per time point (in the 72 node networks) or either 2.5 or 4.15

changes per time point (in the 120 nodes networks). Snapshots of the network

were taken at unit time intervals for 30 snapshots in total. Since the RJMCMC

algorithm assumes a fixed ω, with ωk = 1/κ in all cases, we fix ω in the SMC

implementation for a fair comparison. For the SMC we use the first 5 snapshots to

estimate the initial block structure, 250 particles and 20 Gibbs steps. We evaluate

the performance of the two approaches using the v-measure for block structure

and bias for parameters. These were defined in Section 4.4.

We find that the SMC is consistently better at determining the simulated block

structure as shown by the v-measure of close to 1 obtained in Figure 4.5. This is

due to the proposal distribution introduced in Section 4.3. When a change in block

membership occurs at time t, this proposal is very good at determining the correct

block structure at time t, given that the current block structure at time t − 1 is

a good fit to the data. Contrast this with the RJMCMC implementation which

starts with no changes in block structure and proposes changes at random times

in a random node. This is less efficient at searching the space of changes compared

to the SMC algorithm requiring a long burn-in period to identify changes.

On the other hand, the RJMCMC can “correct” changes which are not a good

fit. Due to the sequential nature of the SMC implementation, block structure

can only be inferred once at any given time t. Therefore, if errors enter the

block structure in every particle, they either need to be corrected at a later time

(meaning the estimation of λ and ω will be biased) or the sampler diverges from

the true block structure, with no hope of recovery. This is an unlikely event, since

the assumption that snapshots are recorded faster than the rate of node migration

implies that only a few nodes will change block at a given time. As such, the

problem of divergence is only a minor concern if the assumptions of the model are

upheld.

When considering the ability to estimate parameters, the performance of the
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4. Online monitoring of block membership in the ARSBM

samplers are reversed, with the RJMCMC providing better estimates of the pa-

rameters and their posterior distributions. The estimates are shown in Table 4.3.

Notice that the bias in the RJMCMC inference contains 0 in all cases in the right

of Figure 4.6. This is to be expected, since the RJMCMC sampler has access to

all snapshots and hence can compute the complete likelihood. Due to the dynamic

nature of the networks considered, the time t posterior may have low density at the

true parameter values. For example, in the ARSBM, since nodes move between

blocks, a small block k can easily contain half the expected number of nodes. This

leads to an estimate of ωk which is smaller than expected. Over time this estimate

should improve, but at the start of the series, the parameters can be very biased

due to small fluctuations like the above. Therefore, in these simulated data (with

only 30 observation times) the SMC does start with large biases but soon settles

on the true values. In both cases the time t = 30 posterior distributions are used

for the SMC. Notice that it is the rate in edge change ρ that is most biased.

Although the parameter estimation is less accurate, the SMC is a much faster

algorithm and can be run in a sequential manner, making online network moni-

toring a possibility. Notice that the complexity is fixed with respect to time since

only the sufficient statistics are stored, whose dimensionality does not depend on

time.

4.5. Application to dynamic contact network

In this section we apply the SMC algorithm from Section 4.3 to a network of mice.

4.5.1. Mice network

The data set comprises of 257 mice whose sleeping habits were analysed during

a period of 54 days. During this time, researchers recorded which nest-box the

mice slept in. A subset of 107 mice (who did not interact with the other 150) are

analysed. Previous analysis in Ludkin et al. (2017) shows that six blocks are formed
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Figure 4.5.: Comparison of v-measure for simulated networks under SMC and
RJMCMC algorithms.

in this network. It is also known that some mice drop out of the network and may

return at a later time. To model this, we set the parameters φ6 = 0, ρ6 = ∞.

Furthermore, if a mouse has no contacts at time t, it is automatically assigned

to the sixth block. All other block migrations are inferred via the algorithm in

Section 4.3.2. The series contains two time points where the number of interactions

drops significantly within the network. This is due to the researchers only partially

recording the data on some days, therefore, we drop these time points from the

analysis. We used 1000 particles and 50 Gibbs steps with five initial snapshots

to determine the block structure at time t1. The maximum a posteriori block
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Figure 4.6.: Comparison of bias in parameters under SMC (left) and RJMCMC
(right) for example networks.

Table 4.3.: Posterior means for SMC and RJMCMC algorithms in simulated net-
works.

Parameter Truth SMC RJMCMC Truth SMC RJMCMC

λ 0.0105 0.0164 0.0108 0.0345 0.0504 0.0332

φ0 0.1 0.1014 0.099 0.1 0.1142 0.1022

φ1 0.5 0.4977 0.4942 0.5 0.5003 0.5022

φ2 0.5 0.5247 0.5253 0.5 0.4900 0.4982

φ3 0.5 0.4922 0.4968 0.5 0.4879 0.4918

ρ0 0.2 0.1972 0.1938 0.2 0.2099 0.2023

ρ1 1.2 1.2022 1.2203 1.2 1.1646 1.1919

ρ2 1.2 1.2186 1.2167 1.2 1.1816 1.2157

ρ3 1.2 1.1892 1.2238 1.2 1.1627 1.2100

Parameter Truth SMC RJMCMC Truth SM RJMCMC

λ 0.0105 0.0153 0.0106 0.0345 0.0500 0.0325

φ0 0.1 0.1037 0.0984 0.1 0.1100 0.1038

φ1 0.5 0.4921 0.5002 0.5 0.4975 0.4965

φ2 0.5 0.4970 0.4966 0.5 0.4954 0.5020

φ3 0.5 0.4993 0.4945 0.5 0.5017 0.5034

ρ0 0.2 0.2035 0.2008 0.2 0.2109 0.2024

ρ1 1.2 1.1641 1.2019 1.2 1.1844 1.1805

ρ2 1.2 1.1648 1.1850 1.2 1.1879 1.2097

ρ3 1.2 1.1811 1.1695 1.2 1.1842 1.2087
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4. Online monitoring of block membership in the ARSBM

memberships are shown in Figure 4.7 with time along the x-axis, mouse identity

along the y-axis and the colour of pixel (x, y) representing which block mouse y

belongs to at time x. In this case, the pink block is the block for mice absent from

the network. The block membership between the blue and yellow blocks becomes

blurred near the end of the series. The block membership for each mouse is plotted

in Appendix C.2.

The final time posterior means of the parameters are given in Table 4.4 along

with the mean estimates for the corresponding blocks in the RJMCMC procedure.

Notice that unlike the RJMCMC algorithm, we treat ω as unknown, hence the

blocks are not identical. When considering the trace plots for the parameters in

Appendix C.1, they do not seem stable, hence there is a case that the assumption

of fixed parameters is not valid.

Table 4.4.: Final time posterior mean and variance for mice network under SMC
and the corresponding estimates for the RJMCMC algorithm.

Parameter λ ω1 ω2 ω3 ω4 ω5 ω6

RJMCMC Mean 0.0019 - - - - - -

SMC Mean 0.0431 0.2145 0.2115 0.1960 0.1111 0.0979 0.1689

SMC s.d. 0.0006 0.0355 0.0292 0.0028 0.0091 0.0087 0.0076

Parameter φ0 φ1 φ2 φ3 φ4 φ5 φ6

RJMCMC Mean 0.0004 0.6994 0.6660 0.4349 0.4473 0.6821 0

SMC Mean 0.0006 0.5039 0.6922 0.5220 0.8289 0.7658 0

SMC s.d. 0.0000 0.0007 0.0131 0.0053 0.0060 0.0027 0

Parameter ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

RMCMC Mean 1.3164 0.5138 0.4104 0.5650 0.4077 0.6851 0

SMC Mean 1.0466 0.2752 0.5294 0.1073 0.4417 0.3933 0

SMC s.d. 0.0180 0.0020 0.0138 0.0100 0.0061 0.0055 0

4.6. Closing remarks

In this paper we have introduced a particle filter algorithm with MCMC moves to

infer the block membership and parameters for the autoregressive stochastic block

model. This makes use of a data augmentation scheme to allow samples of the
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Figure 4.7.: Maximum a posteriori block memberships of mice.

static parameters to be drawn from the posterior at any time point. Furthermore,

the implementation depends on sufficient statistics which are updated sequentially

at each observation time. The size of these statistics is independent of time, al-

lowing a fully online algorithm to be developed. The efficacy of the approach is

demonstrated on both simulated data in Section 4.4 and real data in Section 4.5.

Block memberships are tracked well through time, as demonstrated on simulated

data in Section 4.4. Compared to offline approaches, the block membership de-

tection is comparable, if not better, whereas parameter estimation can be more

varied. This is apparent in both the simulated and real data examples.

Interesting extensions to the ARSBM include extending to arbitrary edge-states
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4. Online monitoring of block membership in the ARSBM

(i.e. weighted edges). This would extend the applicability of the model to richer

network data sets. In some cases the number of blocks in the network may change,

via two blocks merging into one or a block splitting in two. Methods to capture

these large scale changes would complement the methods in this paper for detecting

more fine-grain changes in block structure.

128



5. Perspectives and future directions

In this chapter some extensions and future directions of the research presented in

this thesis are discussed.

Considering the sampling procedures in Chapter 2, further research is needed

for the handling of missing edge-state data. The algorithms proposed in Chapter 2

assume that all edge-states are included in a given network data set. One approach

to relax this assumption is to model the missing data. If data is missing completely

at random, that is data are missing independent of the observation process, this

could be modelled via a specific edge-state distribution. For example, if all edge-

states follow a distribution G, but some edge-states are unobserved or missing

completely at random with probability η, then the distribution:

Ḡ(Eij) = ηδ0 + (1− η)G(Eij)

is a mixture model for such missing data scenarios. The components are the edge-

state distribution, G, if data is available, which occurs with probability 1−η. The

other component is a Dirac mass at 0, which encodes the missingness of data,

which has a probability η of occurring. This covers the case where data appear as

0 but are missing at random.

On the other hand, a possible network structure could be enforced, where some

edge-states are impossible. As an example, consider a road network where traffic

flows are recorded between nodes placed at the intersection points of roads. Many

edge-states will be 0 since there is no road between many nodes. However, this

could be recorded as NA, it is impossible to get a value, rather than stating it
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is 0. The mixture model above does not apply in this case, hence additional

methodologies need to be developed to perform inference in this case.

The inclusion of covariate information into the inference procedures in Chapter 2

should be straightforward: such information can be included in the edge-state

distribution G. On the other hand, information on the nodes could be considered

informative of the block membership distribution F . For example, knowledge of

peoples hobbies in a social network may be indicative of their block membership:

blocks may divide the network into hobby groups. On the other hand, by including

a parameter in the edge-state distribution such that people who share the same

hobby are more likely to interact, then the block structure in the base rate of

interaction may disappear. To make this concrete consider the two models in

Equations (5.1) and (5.2).

z ∼ Multinomial(logit(ω +α′X))

E|z ∼ G(θ)

(5.1)

In Equation (5.1), the parameter α dictates the strength of covariates for in-

forming block membership. In the example above, X may encode sport team

membership where Xik = 1 shows person i is a members of sport team k. Thus,

if αk is positive, then members of sport team k are more likely to be members of

the same block k. If sport team membership does partition the social network in

the manner of an assortative SBM, then parameters θk > θ0. This would be an

interpretable result: αk > 0 implies membership of sport team k makes it more

likely that a member of sport team k is a member of the social block k. On top

of this, since an assortative structure is assumed in this toy example, membership

of social block k makes a member more likely to interact with members of social

block k than other people in the network. A reasonable conclusion is that members

of sports teams are more likely to interact with each other than members of other

sports teams.
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z ∼ Multinomial(ω)

E|z ∼ G(θ + β′X)

(5.2)

On the other hand, under the model in Equation (5.2), implies that group mem-

bership is random, but the interactions are informed by the covariate information.

Thus, in the example, members of the same sport team k are more likely to inter-

act if βk is positive. Under such a model, and the assortative behaviour assumed

above, all interactions between members of a sports team could be explained via β.

This could lead to no block structure in z. Of course the final conclusion would be

the same: sports team membership makes it more likely that two people interact.

The above example highlights the care required in the choice of inclusion of

covariate information for nodes. Even though the potential conclusions could be

the same from an application perspective, for modelling such phenomenon the

model in Equation (5.1) seems more appealing

Covariate information could be available on the edges, not just the nodes. In

such cases, the model in Equation (5.2) is a natural choice.

Future research on the ARSBM could allow for non-binary edge-states. Note

that in Chapter 3 and 4, the edge-states are considered as binary random variables.

This is exploited to allow fast computation of the likelihood since, at consecutive

time points, there are only four possible observations: either the edge-state re-

mained in state 0, remained in state 1, switched from 0 to 1, or switched from

1 to 0. Furthermore, for the RJMCMC sampler in Chapter 3, binary edge-states

were useful for the augmentation scheme. When augmenting the state of an edge

at some intermediate time, there are only two possible states leading to a small

discrete distribution.

Hence, to directly extend the methodology of Chapter 3, an efficient augmenta-

tion scheme is required. If states are augmented without care, then the proposed

insertion of a change will be a poor fit in the augmented space, leading to small ac-

ceptance probabilities and thus poor mixing of the MCMC chain. For non-binary
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edge-states, an alternative augmentation scheme is required to augment a state at

a changepoint between two observations. This would lead to values that are likely

to have occurred in the observation interval.

Recent research for the static stochastic block model has considered scalable

inference algorithms. Recent work by El-Helw et al. (2016); Li et al. (2016) has

produced a stochastic gradient Langevin dynamics algorithm to perform Bayesian

inference for the static SBM in a distributed computing environment. Extending

such an algorithm to the dynamic ARSBM would be non-trivial but would offer

faster inference. For example, by sub-sampling nodes in the network in a princi-

pled way, the authors obtain unbiased estimates for the parameters of the SBM to

include in their MCMC algorithm. Finding an analogue in the ARSBM must in-

clude sub-sampling in time to speed up computations. However, by sub-sampling

in the time domain, changes in block structure may be missed, leading to longer

MCMC chains to perform the same inference for non-sub-sampled MCMC algo-

rithms. If such sub-sampling procedures can be produced then inference times for

the ARSBM with changes in block membership could be drastically reduced.
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A. Appendix for arbitrary

edge-states and unknown

number of blocks in the

stochastic block model

A.1. Enron

The priors use in the analysis of the Enron data in Section 2.6.2 used reference

and vague priors. To test robustness under stronger prior assumptions, the split-

merge algorithm was also run for 50,000 steps with a stronger prior in the both

the Poisson and negative binomial edge models. Specifically, for the between block

parameter, the parameters r0, p0 were assigned a Gamma(1/5, 10) and a Beta(1,

1000) respectively. Therefore, the prior mean (variance) for r0 is 1/50 (1/500)

and for p0 is approximately 1/1000 (1 × 10−7). These prior means give a mean

edge-state of 20 between nodes in different blocks. As for the between block

parameters, the parameters rk, pk were assigned a Gamma(1/3, 10) and a Beta(1,

1000) respectively. In this case, the prior mean (variance) for rk is 1/30 (1/300)

and for pk is approximately 1/1000 (1× 10−7). At the expected values, the mean

edge-state is 33. Therefore, these priors enforce a prior assortative structure, where

the between-block edge-states have smaller expected value than within-block edge-

states. The respective block structures found under both vague and strong prior
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specifications are very similar as shown by comparing Figures A.2 to Figures 2.10.

Furthermore, the parameter values for all models are given in Table A.1. Notice

these are similar for the first six blocks under the negative binomial model and

first 10 for the Poisson model (i.e. the modal number of blocks in each case).
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Figure A.1.: Posterior summaries for block membership in Enron network with
Poisson edge-state model and strong prior.

0

50

100

150

0 50 100 150

Node

 

value

0.0

2.5

5.0

7.5

(a) Edge states (log scale)
– permuted

50

100

150

50 100 150

0.00

0.25

0.50

0.75

value

(b) SM joint block mem-
bership posterior

2

4

6

8

0 10000 20000 30000 40000 50000

step

ka
pp

a

(c) SM trace plot for κ

Figure A.2.: Posterior summaries for block membership in Enron network with
negative binomial edge-state model and strong prior.
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Table A.1.: Mean posterior parameter values and 95% credible interval for Enron
network under Poisson and negative binomial models with vague and
strong priors.

Vague Poisson(λ) NBin(r) NBin(p)

0 2.948 (2.832, 3.011) 0.016 (0.014, 0.018) 0.012 (0.009, 0.014)

1 348.494 (343.838, 356.793) 0.189 (0.116, 0.519) 0.002 (0.001, 0.009)

2 106.433 (103.874, 109.264) 0.313 (0.268, 0.374) 0.007 (0.005, 0.010)

3 0.368 (0.354, 0.384) 0.009 (0.007, 0.012) 0.035 (0.022, 0.052)

4 116.907 (0.562, 120.995) 0.059 (0, 0.267) 0.006 (0, 0.010)

5 202.968 (70.603, 265.529) 0.142 (0.076, 0.229) 0.003 (0, 0.003)

6 141.434 (94.038, 157.022) 0.077 (0.056, 0.158) 0.004 (0, 0.007)

7 671.401 (661.435, 682.603) 0.130 (0, 3737.000) 0.006 (0, 0.978)

8 88.199 (78.024, 182.127) 0.177 (0, 19001.158) 0.004 (0, 0.996)

9 86.587 (0.002, 638.540)

10 86.948 (0.015, 725.435)

11 83.801 (0.003, 453.429)

12 84.072 (0.299, 221.739)

13 85.986 (0.644, 232.241)

14 85.503 (0.012, 279.680)

Strong Poisson(λ) NBin(r) NBin(p)

0 2.901 (2.829, 3.025) 0.016 (0.015, 0.018) 0.012 (0.010, 0.013)

1 348.022 (344.359, 356.772) 0.074 (0.056, 0.093) 0.001 (0, 0.001)

2 106.010 (103.385, 108.543) 0.109 (0.091, 0.124) 0.002 (0.001, 0.003)

3 0.366 (0.354, 0.381) 0.007 (0.006, 0.009) 0.016 (0.011, 0.025)

4 120.722 (0, 121.046) 0.012 (0, 0.014) 0 (0, 0.001)

5 200.602 (71.444, 268.602) 0.105 (0, 0.113) 0.002 (0, 0.003)

6 140.993 (97.647, 147.590) 0.066 (0.026, 0.080) 0.005 (0, 0.005)

7 671.162 (660.071, 681.965) 0 (0, 0.005) 0 (0, 0.002)

8 84.350 (0.012, 356.456) 0.001 (0, 0.004) 0 (0, 0.002)

9 84.835 (0, 211.653) 0.001 (0, 0.003) 0.001 (0, 0.001)

10 85.377 (0.044, 220.774)

11 87.336 (4.120, 219.729)

12 87.363 (0.129, 218.385)

13 87.545 (0.060, 219.549)

14 87.779 (0.170, 224.636)
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stochastic block model with

changes in block membership

In this section for each of the 107 mice, we present plots of the posterior proba-

bilities of a mouse belonging to each of the 6 communities over time. For most

mice the community to which they belong is clearly identified. Some changepoints

are clearly identified whereas others exhibit greater uncertainty. Interesting be-

haviour to note is that mice 27, 33 and 34 have very similar behaviour starting in

community 4, which they leave around time 10 to join community 6, possibly via

community 2. Mouse 97 moves between communities 1 and 3 and the “absentee”

group, community 6.
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Figure B.1.: Posterior density for each mouse’s community membership against
time. Shading implies levels of probability: White=0, Red=1
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Figure B.2.: Posterior density for each mouse’s community membership against
time. Shading implies levels of probability: White=0, Red=1
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Figure B.3.: Posterior density for each mouse’s community membership against
time. Shading implies levels of probability: White=0, Red=1
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Figure B.4.: Posterior density for each mouse’s community membership against
time. Shading implies levels of probability: White=0, Red=1
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Figure B.5.: Posterior density for each mouse’s community membership against
time. Shading implies levels of probability: White=0, Red=1
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Figure B.6.: Trace plots for π and ρ parameters for mice data set.
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Figure B.7.: Trace plots for λ and number of change-points for mice data set.
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C. Appendix for monitoring block

membership in the autoregressive

stochastic block model

Trace plots for the parameters in the mice data set are shown in the following fig-

ures. Note that the estimates a not stationary, calling into question the assumption

that the parameters are fixed through time.

C.1. Posterior plots
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Figure C.1.: Posterior mean for λ at each time point in the mice network.
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Figure C.2.: Posterior mean for ω at each time point in the mice network.
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Figure C.3.: Posterior mean for φ at each time point in the mice network.
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Figure C.4.: Posterior mean for ρ at each time point in the mice network.
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C.2. Trace of block membership per mouse

This section contains traces of the posterior block membership for each mouse

through time. This shows the uncertainty in the block membership estimates.

Compared to the RJMCMC implementation in Ludkin et al. (2017), the SMC

algorithm is underestimating uncertainty.
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Figure C.5.: Traces of block membership in mouse network.
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Figure C.6.: Traces of block membership in mouse network.
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Figure C.7.: Traces of block membership in mouse network.
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Figure C.8.: Traces of block membership in mouse network.
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Figure C.9.: Traces of block membership in mouse network.
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