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SUMMARY

Aliasing is often overlooked in time series analysis but can seriously distort the spectrum, 10

autocovariance and their estimates. We show that dyadic subsampling of a locally stationary
wavelet process, which can cause aliasing, results in a process that is the sum of asymptotic
white noise and another locally stationary wavelet process with a modified spectrum. We develop
a test for the absence of aliasing in a locally stationary wavelet series at a fixed location, and
illustrate it on simulated data and a wind energy time series. A useful by-product is a new test for 15

local white noise. The tests are robust to model misspecification in that it is unnecessary for the
analysis and synthesis wavelets to be identical. Hence, in principle, the tests work irrespective of
which wavelet is used to analyze the time series, though in practice there is a tradeoff between
increasing statistical power and time localization of the test.
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1. INTRODUCTION

Typically, a data analyst is presented with a time series sampled at a fixed rate. However, the
series might have been sampled at a higher rate or the analyst could request future samples at a
higher rate. In practice, it is important to question whether time series are sampled often enough
to successfully capture their second-order structure. Improper sampling can lead to aliasing, 25

which this article proposes to detect and locate via a new test.
For a time series sampled at intervals of length ∆ the range of angular frequencies in the

spectrum that can be observed undistorted is [0, π/∆), where π/∆ is the Nyquist frequency
Chatfield (2003, page 109). If the highest frequencies in a series exceed the Nyquist frequency,
then aliasing occurs and distorts the spectrum estimable by any method. As the spectrum and 30

autocovariance are Fourier duals, distortion of the spectrum implies distortion of the autocovari-
ance, and techniques that rely on either can be affected. Consequently, aliasing can have critical
impact.

Without knowledge of the data generation process, the analyst will, a priori, be unaware
whether aliasing has occurred, and could misguidedly analyze the series assuming it is free from 35

distortion. For example, if {Xt} is a real-valued stationary process with spectrum fX(ω) for
ω ∈ [0, π), and Yt = X2t is observed, then the spectrum of Yt is fY (ω) = fX(ω) + fX(π − ω)
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for ω ∈ [0, π/2). Generally, fX cannot be identified from fY , so estimation of fX is impossible
from an estimate of fY . Thus there is a need for principled approaches to test for the presence of
aliasing.40

Hannan (1960), Priestley (1983), Hamilton (1994), Bloomfield (2000), Brillinger (2001) and
Chatfield (2003) all describe aliasing, but provide no advice about detecting or locating it. In-
stead, they suggest steps that can be taken to guard against it. One possibility is to apply a
low-pass anti-aliasing filter prior to sampling, to ensure that the highest frequency in the filtered
series is below the Nyquist rate. Although anti-alias filtering can be useful for analogue or very45

high sample-rate signal acquisitions, it is not useful when data are acquired at slow rates, such
as in economics. Moreover, even if anti-alias filtering is used, valuable high-frequency informa-
tion might be lost. Another possibility is that one might know, a priori, the highest frequency
contained within a time series, and can choose the sample rate high enough to prevent aliasing.

Hinich & Wolinsky (1988) and Hinich & Messer (1995) introduced a hypothesis test for alias-50

ing in stationary time series based upon the bispectrum, a third-order quantity. Our wavelet test is
based on simpler second-order quantities, and is designed for nonstationary time series. Comput-
ing the bispectrum typically takesO(T 2) operations. Our test is faster, only requiringO(T log T )
operations, which can be important for long time series.

Previous work has considered alias detection at a fixed location for a nonstationary time series,55

where the true signal or spectrum is known beforehand. Wunsch & Gunn (2003) use ice core time
series and induce aliasing to demonstrate how it can lead to misleading scientific conclusions.
Our test does not require knowledge of the underlying true spectrum, or the higher-rate time
series.

In a single realization, a nonstationary series can sometimes be aliased and sometimes not,60

depending on its spectral content relative to the Nyquist frequency at a given point. Hence, with
a nonstationary series one can ask not only whether the series is aliased, but also where. Our test
is designed to help answer both questions for locally stationary wavelet time series. That wavelets
bring something genuinely new to the aliasing problem can be seen by replicating our method
using Fourier-based quantities. Unlike the wavelet equations, which have a solution below, the65

equivalent Fourier-based equations are underdetermined, which is precisely the usual aliasing
problem.

If one has prior knowledge that the time series has been properly sampled, and there is no pos-
sibility of aliasing, then our test becomes a test for local white noise. Although global white noise
tests are popular and useful, we are unaware of any local method tailored for locally stationary70

series. Local tests can be used for similar purposes to global ones, such as assisting with model
selection, understanding time-varying forecasting performance or, as suggested by a referee, for
detecting measurement error in some circumstances.

2. REVIEW OF LOCALLY STATIONARY WAVELET PROCESSES

Locally stationary wavelet processes are time series models, constructed from wavelets, that75

change their statistical properties slowly over time. They are particularly useful for their ability
to model time series operating at dominant scales in areas including finance (Fryzlewicz, 2005),
economics (Winkelmann, 2016), ocean engineering (Killick et al., 2013), structural engineer-
ing (Spanos & Kougioumtzoglou, 2012), energy (Nowotarski et al., 2013; de Menezes et al.,
2016) and business (Michis, 2009). Dahlhaus (2012) provides a comprehensive review of locally80

stationary time series. We now briefly review essential definitions from Nason et al. (2000).
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DEFINITION 1 (DISCRETE WAVELETS). Let {hk} and {gk} be the low and high pass quadra-
ture mirror filters underlying the Daubechies (1992) compactly-supported orthogonal continu-
ous time wavelets. The discrete wavelets ψj = (ψj,0, ψj,1, . . . , ψj,Nj−1) are vectors of length Nj

for scales j ∈ N obtained using the formulae 85

ψ1,n =
∑
k

gn−2kδ0,k = gn (n = 0, . . . , N1 − 1), (1)

ψj+1,n =
∑
k

hn−2kψj,k (n = 0, . . . , Nj+1 − 1), (2)

where Nj = (2j − 1)(Nh − 1) + 1, Nh is the number of non-zero elements of {hk} and δ0,k
is the Kronecker delta. The number of vanishing moments of the associated continuous time
Daubechies compactly supported wavelet is N = Nh/2 where

∫
xmψ(x) dx = 0 for m ∈ N

such that 0 ≤ m < N . Such wavelets are commonly referred to as Daubechies DN wavelets. 90

DEFINITION 2. A locally stationary wavelet process is a sequence of doubly-indexed stochas-
tic processes {Xt,T }t=0,...,T−1 (T = 2J , J ∈ N) having the following representation in the
mean-square sense,

Xt,T =
∞∑
j=1

∞∑
k=−∞

wj,k;T ψj,k−t ξj,k, (3)

where {ξj,k}j∈N,k∈Z is a collection of uncorrelated random variables with mean zero and unit
variance, {ψj,k}j∈N,k∈Z is a set of discrete wavelets and {wj,k;T }j∈N,k∈Z is a set of amplitudes 95

satisfying the following conditions. For each j ∈ N, there exists a Lipschitz continuous function
Wj : (0, 1)→ R, such that: (i)

∑∞
j=1 |Wj(z)|2 <∞, uniformly in z ∈ (0, 1); (ii) the Lipschitz

constants, Lj , are uniformly bounded in j and
∑∞

j=1 2jLj <∞; (iii) there exists {Cj}j∈N, such
that for each T , supk |wj,k;T −Wj(k/T )| ≤ Cj/T , where for each j the supremum is over k =
0, . . . , T − 1 and where {Cj} is such that

∑∞
j=1Cj <∞. 100

Spectral power for a locally stationary wavelet time series is quantified by the evolutionary
wavelet spectrum, the time-scale analogue of the usual stationary spectrum, f(ω).

DEFINITION 3. The locally stationary wavelet process {Xt,T }t=0,...,T−1, for T ≥ 1 has evo-
lutionary wavelet spectrum defined by Sj(z) = |Wj(z)|2 for j ∈ N and z ∈ (0, 1) with respect
to {ψj,k}. 105

Hence, the {wj,k} are a collection of amplitudes such that w2
j,k ≈ Sj(k/T ). Evolution of the

second-order properties of Xt,T is controlled by smoothness constraints on Sj(z) as a function
of z via those imposed on Wj(z) in Definition 2 (i)–(iii). For brevity, we henceforth drop the
second T subscript in Xt,T .

The spectrum, Sj(z), governs the contribution to variance in Xt at different scales at time z. 110

Informally, Sj(z) corresponds to the process variance integrated over the approximate frequency
band [2−jπ, 21−jπ]. For example, the approximate band for S1(z) is [π/2, π], that for S2(z) is
[π/4, π/2] and so on. The precise frequency bands and their degree of overlap depends on the
particular wavelet ψj,k(t) in use in (3). We next recall several key quantities associated with
locally stationary wavelet theory. 115

DEFINITION 4. The raw wavelet periodogram of Yt is defined to be I`,m = d2`,m for ` ∈ N
and m ∈ Z, where {d`,m} are the nondecimated wavelet coefficients of Yt given by d`,m =
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t Ytψ`,m(t) for ` ∈ N,m ∈ Z. The autocorrelation wavelet Ψj(τ) =

∑
k ψj,kψj,k−τ for j ∈

N, τ ∈ Z and the inner product operator of the autocorrelation wavelets is Aj,` =< Ψj ,Ψ` >=∑
τ Ψj(τ)Ψ`(τ) for j, ` ∈ N.120

Further information on locally stationary wavelet processes can be found in Fryzlewicz &
Nason (2006), Van Bellegem & von Sachs (2008) or Chapter 5 of Nason (2008).

3. LOCALLY STATIONARY WAVELET MODELS UNDER DYADIC SAMPLING

3·1. Dyadic subsampling of locally stationary wavelet processes
Aliasing is induced in this article by starting with a locally stationary wavelet process, Xt,125

and then forming Yt = X2rt (t ∈ Z, r = 1, . . . , J − 1) by dyadic subsampling of Xt. Since Yt is
sampled at a slower rate than Xt, high-frequency power in Xt could reappear as aliased power
in Yt. Our first result shows that Yt can be represented by the sum of a locally stationary wavelet
process, built using the same wavelets as the original, and another process, which is asymptoti-
cally white noise.130

THEOREM 1. Let {Xt}t∈Z be a locally stationary wavelet process with evolutionary wavelet
spectrum {Sj(z)}∞j=1. If Yt = X2t, then {Yt}t∈Z admits the decomposition Yt = Lt + Ft, where
Lt is a locally stationary wavelet process, with the same underlying wavelets as Xt, possessing
raw wavelet periodogram expectation given by the right-hand side of (4), andFt is a process with
zero mean and autocovariance cov(Ft, Ft+τ ) = S1(2t/T )δ0,τ +O(T−1). Hence, Ft is asymp-135

totically white noise with variance S1(z). Further, if S1(z) is constant for z ∈ (0, 1), then Ft is
stationary white noise with variance S1.

These proofs are in Appendix 1. Theorem 1 can be extended to repeated dyadic sampling:

COROLLARY 1. Let {Xt}t∈Z be as in Theorem 1 and let Yt = X2rt (r ∈ N). Then, asymp-
totically, {Yt} admits the decomposition Yt = Lt + Ft, where Lt is a locally stationary wavelet140

process, with the same underlying wavelets as Xt, possessing raw wavelet periodogram expec-
tation in the right-hand side of (4), and Ft is a process with zero mean and autocovariance
cov(Ft, Ft+τ ) = δ0,τ

∑r
j=1 Sj(2

rt/T ) +O(T−1). Further, if S1(z), . . . , Sr(z) are all constant
functions of z ∈ (0, 1), then Ft is stationary white noise with variance

∑r
j=1 Sj .

Nason et al. (2000) developed an estimator for the wavelet spectrum by exploiting the raw145

wavelet periodogram d2`,m of Xt using the result E(d2`,m) =
∑

j A`,jSj(m/T ) +O(T−1). The
next result explains what happens to E(d2`,m) after dyadic subsampling.

THEOREM 2. Suppose {Xt}t∈Z is a locally stationary wavelet process with evolutionary
wavelet spectrum given by {Sj(z)}∞j=1 with Daubechies compactly-supported wavelets. The ex-
pectation of the raw wavelet periodogram, d2`,m, of Yt = X2rt is150

E(d2`,m) =

r∑
j=1

Sj(2
rm/T ) +

∞∑
j=r+1

Aj−r,`Sj(2
rm/T ) +O(T−1) (r = 1, . . . , 2J−1), (4)

where ` ∈ N,m ∈ Z and A is the inner-product operator from Definition 4. The result also
holds true for Shannon wavelets if the evolutionary wavelet spectrum, Sj(z), has continuous
first derivative for each j > 0.

Theorem 2 generalizes Proposition 4 of Nason et al. (2000), in which r = 0, and additionally
establishes the result for Shannon wavelets. The Shannon wavelet can be thought of as the limit-155
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ing case of Daubechies wavelets with an infinite number of vanishing moments. A consequence
is that Aj,` = 2jδj,` for Shannon wavelets; see Nason et al. (2000) for further details.

Aliasing results in power redistribution across scales. For example with r = 1, subsampling
dyadically once, formula (4) for Yt becomes

E(d2`,m) = S1(2m/T ) +

∞∑
j=2

Aj−1,`Sj(2m/T ) +O(T−1). (5)

Compare (5) with the usual formula for the asymptotic expectation of the raw wavelet peri- 160

odogram of Xt without subsampling, due to Nason et al. (2000):

E(d2`,m) =
∞∑
j=1

Aj,`Sj(m/T ) +O(T−1). (6)

There are three key differences between (5) and (6). First, E(d2`,m) in (5) is contaminated by
S1(2m/T ) at every analysis scale, i.e., for all ` ≥ 1. This contamination is the manifestation
of aliasing in the locally stationary wavelet domain and might be used to detect aliasing, as
described in §3·2. The second difference is that the mixing matrix on the right-hand side of (5) is 165

Aj−1,`, not Aj,`. The remaining difference is that the dyadically subsampled periodogram exists
on the grid 2m/T rather than on m/T .

3·2. White noise confounding and hypothesis specification
If a locally stationary wavelet process,Xt, is white noise with variance σ2, then the unsampled

process is such that E(d2`,m) = σ2 for ` ∈ N,m ∈ Z; see proof of Lemma B.3 in Fryzlewicz 170

et al. (2003). The same quantity appears at every scale as in the first term of (4) or (5) when
subsampling. Hence, the effects of white noise and aliasing are confounded in our set-up.

Such confounding is not a surprise, as white noise can be seen as the ultimate aliased signal.
For example, suppose that Xt is a stationary process with variance σ2 <∞ and autocovariance
γX(τ)→ 0 as τ →∞. If Yt = X2rt, then γY (τ)→ σ2δτ,0 as r →∞. In other words, repeated 175

subsampling of Xt leads to white noise. Taking a broader view, in a practical situation, what
may appear to be white noise might be the result of repeatedly subsampling a time series. Similar
confounding can be found in the test for aliasing for stationary series in Hinich & Messer (1995);
rejection of the null hypothesis there can mean that the series is not random, not stationary,
aliased, not mixing, or any combination of these. 180

However, even with confounding, we can still test the null hypothesisH0 that there is no white
noise component and no aliased component at z0 ∈ (0, 1), against the hypothesisHA that a white
noise or aliased component exists at z0. So although we cannot separate the two components, our
hypothesis test can test locally whether they are both absent.

4. ALIASING/WHITE NOISE TEST 185

4·1. The test procedure
Let t0 ∈ {1, . . . , T} and let z0 = t0/T be the rescaled time equivalent of t0. If we could

observe the evolutionary wavelet spectrum {S(Y )
j (z0)}j∈N directly, then it would be possible

to test the ideal null hypothesis H(I)
0 that there exists j∗ ∈ N such that Sj∗(z0) = 0, versus the

alternative H(I)
A : Sj(z0) > 0 for all j ∈ N. In view of §3.2, the null hypothesis means that {Yt} 190

cannot possess any additive white noise component and, in view of Theorem 2, it would also
mean that no aliasing has occurred from any underlying subsampled {Xt} process.
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However, the spectrum {S(Y )
j (z)}j∈N cannot be observed directly, but can only be estimated

from a realization {Yt}Tt=1 on a finite set of scales j ≤ J† < J , where J† is chosen to avoid
boundary effects. Hence, we can only gain information on Sj(z0) for j ∈ {1, . . . , J†} and, there-195

fore, only test the null hypothesis H0 that there exists j∗ ∈ {1, . . . , J†} such that S∗j (z0) = 0

versus HA : Sj(z0) > 0 for j ∈ {1 . . . , J†}. Clearly, if H0 is true, then H(I)
0 is true. However, if

HA is true then either H(I)
0 or H(I)

A might be true, as Sj(z0) might be zero for scales j > J† that
cannot be discerned from a finite length series.

We proceed by testing whether Sj(z0) = 0 for each scale j ∈ {1, . . . , J†} separately.200

Let b ∈ N, b > 0 be a window width and define Rb = {−b, . . . , b}. Define the sample
{Ŝj,t0+r}j=1,...,J†,r∈Rb

, where Ŝj,` is the estimator given by
∑J†

i=1A
−1
j,i Ii,`, and Ii,` and A are

from Definition 4. Proposition 4 of Nason et al. (2000) and the Lipschitz continuity of Sj(z) im-
ply that E(Ŝj,t0+r) = Sj(z0) +O(r/T ). Hence, under H0, there exists j∗ ∈ {1, . . . , J†} such
that E(Ŝj∗,t0+r) = O(r/T ). For small r and large T we have E(Ŝj∗,t0+r) ≈ 0 with the Ŝj∗,t0+r205

possessing the same distribution on r ∈ Rb asymptotically This approximation improves with
increasing T and for smoother S around z0. Hence, we employ standard tests of zero location
on the set {Ŝj,t0+r}r∈Rb

, one for each scale j = 1, . . . , J†. For example, we could use Stu-
dent’s t-test on the sample {Ŝj,t0+r}r∈Rb

. Let S̄j,t0 and σ̂2j,t0 be the sample mean and variance
of {Ŝj,t0+r}j=1,...,J†,r∈Rb

. The next result establishes the asymptotic distribution of the usual210

t-statistic operating on the {Ŝj,t0+r}j=1,...,J†,r∈Rb
sample.

THEOREM 3. Let j ∈ {1, . . . , J†} be fixed, b ∈ N, b > 0. Suppose that {Yt} is a stationary
Shannon wavelet process with innovations that satisfy E(|ξj,k|6) <∞. Let t = (2b)1/2S̄j,t0 σ̂

−1
j,t0

be Student’s t-statistic defined on the sample {Ŝj,t0+r}j=1,...,J†,r∈Rb
. Then t converges in distri-

bution to a normal variable with mean 2jSj,t0 and variance one, as b→∞.215

We use Student’s t-test or, in the case of significant violations of normality, a nonparametric test
such as the Wilcoxon signed rank or the signmedian test. Student’s t-test does not work well in
the presence of autocorrelation, which is known to exist in the Ŝj,t0+r sequence as a function of
r; see Jones (1975), for example. To improve the performance of the t-test we use the equivalent
sample size method from Zwiers & von Storch (1995), which uses estimated autocorrelation to220

alter the effective sample size. The t-test is robust to violations of the normality assumption; see
the Supplementary Material.

We use Holm’s method (Holm, 1979) to control the overall size of our test over the multiple
J† hypotheses. This is a reasonable choice, as no assumption is made about correlations between
the Ŝj(z0) at different scales, but as a result our test is somewhat conservative.225

4·2. Practical considerations
Our test is robust to the mismatch of the synthesis wavelet in (3) and analysis wavelet given in

Definition 4, because a white noise component or aliasing caused by subsampling both cause a
constant to be added to each level of the wavelet periodogram, irrespective of the type of wavelet
used to synthesize the process. Our test uses a wavelet method to detect whether a constant has230

been added to each level, and works irrespective of the analysis wavelet.
All Daubechies compactly-supported wavelet spectral estimates suffer from spectral leakage,

where power from one scale can leak to adjacent scales. Such leakage makes it harder to deter-
mine whether power in a given scale is zero, which influences the statistical size and power of our
test. In practice, there is a tradeoff between mitigating spectral leakage by using longer smoother235



Absence of aliasing and local white noise test 7

wavelets (Nason et al., 2000, Section 4.1) and achieving good time localization by using shorter
rougher wavelets, such as Haar wavelets. Hence, we recommend using Daubechies’ D5, D6 or
D7 mid-range wavelets, which achieve a good compromise.

Similarly, the size and power of our test will depend on the window width, b, which should be
large enough to enable detection of modest departures from H0, but small enough to ensure that 240

the estimates Ŝj,t0+r are representative of the behaviour of the spectrum at z0. An appropriate
upper bound for b could be obtained by computing an estimator of the spectrum (Fryzlewicz &
Nason, 2006; Nason et al., 2000), and then choosing b such that the window of spectral estimates
onRb is approximately constant for each scale. For fixed T , our test operates over a small interval
(z0 − b/T, z0 + b/T ) although, conceptually, as T increases, this interval shrinks to z0. 245

Torrence & Compo (1998) introduced the wavelet cone of influence as the region of the
wavelet spectrum degraded by edge effects. The extent of the cone depends on the length
of the time series, T , and the length, Nh, of the wavelet filter used to compute the wavelet
spectrum from Definition 1. The coarsest non-cone scale is the largest JNC ∈ N such that
JNC ≤ log2{(T/2 +Nh − 2)/(Nh − 1)}. Our test uses scales 1, . . . , J† and to, avoid edge ef- 250

fects, we choose J† ≤ JNC. For a functioning practical test, with reasonable power, we recom-
mend T ≥ 512 and, for the range of sample sizes we consider, choose J† = 4. This provides us
with enough scales to furnish a non-trivial test, but not too many scales, which would reduce
power and expose the test to large autocorrelations at the coarser scales, as mentioned above. For
practical use, we recommend that J† should grow linearly with log T . 255

We already employ multiple hypothesis testing methods to control the overall size of our test
by combining the results over J† scales using Holm’s method. Similar methods could be used if
we repeated our test at multiple time locations, and not just at a single time point z0.

4·3. Post hoc investigation that can be undertaken if the test is rejected
If the null hypothesis is rejected, then evidence exists that aliasing or a white noise component 260

are present, and we describe three post hoc strategies to distinguish them.
One strategy might be to perform stationarity tests on a range of times around z0 and, if

stationary, use the Hinich & Wolinsky (1988) or Hinich & Messer (1995) aliasing tests. Another
strategy could be to reanalyze the series at a faster rate, if possible. If significant power exists at
finer scales, then aliasing probably has occurred, and the new rate should be considered in future. 265

A third approach, illustrated in §5·2, investigates the local spectral properties of the series
in clear patches, where there is no aliasing or white noise, to discover whether power moves
from low to higher frequencies just before an aliasing/white noise event, or vice versa. This
exploratory approach has the advantage of not requiring faster-sampled data required by the
second approach, or the stationarity tests of the first approach, which might possess poor power 270

for moderate sample sizes.
For the specific case of Shannon locally stationary wavelet processes, Eckley & Nason (2014)

show that aliased power can be detected and the aliasing effects removed.

5. SIMULATIONS AND A WIND ENERGY EXAMPLE

5·1. Simulation study 275

Our simulation study uses the test-bed evolutionary wavelet spectrum, {STB1
j (z)} shown in

Fig. 1 to produce realizations without subsampling, r = 0. The test-bed spectrum satisfies the
null hypothesis, for J† = 4, at z0 = 1/2 and the alternative at z0 = 1/4, respectively. We drew
1000 realizations of length T = 4096 from the locally stationary process model of (3) using the
test-bed spectrum and Daubechies D5 wavelets with normally-distributed innovations. Tables 1– 280
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Time, z
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Fig. 1. The test-bed spectrum, {STB1
j (z)}J

†=4
j=1 .

4 show the empirical rejection rates. Using the method described in §4·1, we testH0 : Sj(z0) = 0
versus HA : Sj(z0) > 0, for each scale j = 1, . . . , J† separately, at a nominal size of 5%, using
the equivalent sample size version of Student’s t-test.

Table 1 illustrates our test working as a local white noise test, with no subsampling. Under
the null hypothesis, at z0 = 1/2, it shows increasing empirical power at scales j = 2, 3, 4 as the285

window width, b, increases and empirical size ranging from 1.8% to 3.2% for scale j = 1. These
empirical sizes are somewhat conservative and we attribute this to negative correlations present
in the {Ŝj,t0+r}r∈Rb

sample. The equivalent sample size method mentioned in §4·1 attempts to
improve the size calibration, but the outcome is not perfect.

The overall empirical size of our test is 1–2%, lower than the nominal rate. Under the alterna-290

tive hypothesis, at z0 = 1/4, Table 2 shows increasing empirical power for all scales.
The next simulation set illustrates our absence of aliasing test using a second test-bed spec-

trum, STB2
j (z), which is identical to STB1

j (z) except that scale j = 3 has zero power. This set
subsamples using r = 1, which reduces the realization length from 4096 to 2048 according to
§3·1, and induces aliasing where power existed at scale j = 1. The subsampling causes scale295

j = 1 to disappear, and so we test the individual scale hypotheses at j = 2, 3, 4.
Table 3 shows the results for z0 = 1/2, where there was previously no power at the finest scale

and so no aliasing will occur. The empirical power for the j = 2, 4 columns is high, due to the
spectral power present at those scales. However, for scale j = 3, for reasonable sample sizes, the
rejection rate becomes consistent with the nominal size. The overall rejection rate at z0 = 1/2 is300

well-controlled, but conservative, with respect to the nominal rate. Table 4 shows the results for
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Table 1. Empirical rejection rate (%), per scale
and overall, at z0 = 1/2, with no subsampling.

Size Power Power Power Size
b j = 1 j = 2 j = 3 j = 4 Overall

16 3.2 42.1 28.0 30.9 0.6
32 2.5 76.2 36.4 39.4 1.1
64 1.8 99.2 69.7 65.6 1.2

128 2.2 100.0 98.0 90.0 2.1

The Overall column in each table corresponds to the re-
jection rate obtained by combining the per scale p-values
via Holm’s method, whereas the rates for individual scales
j = 1, . . . , 4 are shown in the other columns.

Table 2. Empirical power (%) of test per
scale and overall power, at z0 = 1/4, with no

subsampling
b j = 1 j = 2 j = 3 j = 4 Overall

16 76.7 28.6 25.9 31.4 3.2
32 98.4 55.2 40.4 43.6 11.7
64 100.0 94.6 77.6 73.0 54.6
80 100.0 98.8 86.6 83.0 70.6
96 100.0 99.4 94.1 89.1 83.3

128 100.0 99.8 98.4 94.0 92.3

Table 3. Empirical rejection rate (%), per scale
and overall, at z0 = 1/2, with dyadic subsam-

pling (r = 1)
– Power Size Power Size

b j = 1 j = 2 j = 3 j = 4 Overall
16 – 87.7 9.7 63.5 2.8
32 – 95.5 5.8 88.6 1.3
64 – 100.0 5.9 99.8 2.2

128 – 100.0 2.4 100.0 0.9

z0 = 1/4, where the power at the finest scale, j = 1, is redistributed into coarser scales according
to Theorem 2. As before, the null hypothesis is routinely rejected at scales j = 2, 4. In contrast to
Table 3, Table 4 shows increasing, and eventually high, power at scale j = 3. Hence, we would
often reject our null hypothesis in favour of the alternativeHA : Sj(z0) > 0 for all j = 1, . . . , J† 305

and, therefore, the overall empirical power of the test increases and reaches 65.8% for b = 128.
In practice, we would, for the time being, accept H0 at z0 = 1/2, and conclude that no aliasing
occurred nor white noise components were present. However, at z0 = 1/4, although we can reject
H0, we cannot conclude that there was definitely aliasing or white noise components present,
because we have no information on scales for j > 4. 310

5·2. A wind speed example
Wind power forecasting has received much attention in recent years, motivated by the need to

develop reliable forecast tools to enable effective integration of wind farm output into power grids
(Landberg et al., 2003; Genton & Hering, 2007). Several authors use autoregressive integrated
moving average models that implicitly assume the absence of aliasing; see Huang & Chalabi 315

(1995) or Sfetsos (2002), for example. We seek to identify whether any such corruption might
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Table 4. Empirical rejection rate (%), per scale
and overall power, at z0 = 1/4, with subsam-

pling r = 1

b j = 1 j = 2 j = 3 j = 4 Overall
16 – 78.6 16.6 38.7 2.1
32 – 98.7 29.9 60.7 6.5
64 – 100.0 62.4 90.6 29.0

128 – 100.0 94.3 100.0 65.8
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Fig. 2. First differences of wind speed (ms−1) for a pro-
posed wind farm site in U.S. Midwest, T = 512. The
dashed vertical lines indicate the time points t = 245, 330.

occur in data provided by an industrial collaborator. High-resolution wind speed data, sampled
at 1Hz, were acquired from a proposed wind farm in the midwest U.S.A. during March 2011 and
differenced to remove trend. Figure 2 displays the differenced series, which exhibits nonstation-
arity. For example, the sample variances of the first and last one hundred observations are 0.063320

and 0.093, respectively, and statistically significant variance differences were confirmed using
methods from Nason (2013). Q-Q plots and goodness of fit tests strongly suggest that the series’
marginal distribution has heavy tails.

We test H0 at the two times, t = 245, 330, and the Holm-adjusted p-values are displayed in
Table 5. Results are presented for the three wavelets recommended in §4·2 for the J† = 4 non-325

cone scales. At time t = 330, for each wavelet, H0 is not rejected, so we have no evidence for
a white noise component or aliasing at this location. At time t = 245, H0 is rejected at the 5%
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Table 5. The p-values and H0 rejection status for the wind se-
ries using our test at two reference times (using the signmedian
test, three different Daubechies Dv wavelets with v vanishing

moments and b = 25)
Time Wavelet j = 1 j = 2 j = 3 j = 4 Reject H0

245 D6 0.0 0.3 3.3 0.3 Yes
245 D7 0.0 2.0 6.5 2.0 No
245 D8 0.1 3.3 0.8 0.8 Yes
330 D6 0.0 100.0 0.0 100.0 No
330 D7 0.0 100.0 0.8 100.0 No
330 D8 0.0 100.0 0.1 100.0 No

level for wavelets D6 and D8, but not for D7. However,H0 would have been rejected at the 6.5%
level for the D7 wavelet. Hence, there is evidence to reject H0 in favour of HA.

We undertake a post hoc investigation as described in §4·3. We did not rejectH0 at t = 330, are 330

suspicious that aliasing or white noise components might exist at t = 245 and suspect that there
might be a transition between the two time points, possibly around t = 290. If, prior to t = 290,
the series was truly subject to aliasing and after it was not, then power will have moved from
higher to lower frequencies over time or, at the very least, disappeared from frequencies above
the Nyquist frequency. Since we suspect aliasing prior to t = 300, we do not apply classical 335

spectral analysis here.
However, as we have no evidence for aliasing after the suspected transition, we subject the

series there to post hoc classical stationary periodogram analyses on three rolling windows, using
methods described by Fryzlewicz et al. (2008) and displayed in Fig. 3. These indicate that the
peak frequency associated with each window decreases. 340

Hence, there is supporting evidence that, after t = 300, the high frequency content in the series
is reducing over time.

Using the centre time, t, for each rolling window and its associated peak frequency, f , we ob-
tain (t, f) ∈ {(292, 0.438), (302.0.406), (312, 0.395)}, which can be modelled approximately
by the linear relationship f = 1.06− 0.0022t. Assuming that the peak frequency reduces lin- 345

early according to this model, and extrapolating backwards, we hypothesize that the series was
aliased before t = 261, when f = 0.5 in the model. This is merely a hypothesis, as the series
might have been contaminated by white noise before the transition instead of aliased high fre-
quency components. In addition, the transition time itself, and this analysis is subject to uncer-
tainty. 350
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together with advice on the selection of a suitable hypothesis test of location, and theoretical360

justification of the asymptotic equivalence of the distribution of dj,k with dj,k+r.

APPENDIX

Proof of Theorem 1
First, we substitute 2t for t in the main process definition formula (3) to obtain

Yt = X2t =

∞∑
j=1

∞∑
k=−∞

wj,kψj,k−2tξj,k = Ft + Lt, (A1)

where Ft is the j = 1 term of (A1),365

Ft =

∞∑
k=−∞

w1,kψ1,k−2tξ1,k, (A2)

and Lt = Vt +Ot, where Vt are the j ≥ 2 terms of (A1), corresponding to even-
indexed k, i.e., Vt =

∑∞
j=2

∑
`∈Z wj,2`ψj,2`−2tξj,2` and Ot the odd-indexed k, i.e., Ot =∑∞

j=2

∑
`∈Z wj,2`+1ψj,2`−2t+1ξj,2`+1.
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For the next part recall the discrete wavelet formulae in Definition 1. Focussing on the case where
j ≥ 2, we concentrate on Vt and Ot. Substituting in (2) for ψj,2`−2t into the expression for Vt gives 370

Vt =

∞∑
j=2

∑
`∈Z

wj,2`ξj,2`ψj,2`−2t =

∞∑
j=2

∑
`∈Z

wj,2`ξj,2`
∑
q

h2`−2(t+q)ψj−1,q.

Now sum over r = t+ q instead of q to obtain

Vt =

∞∑
j=2

∑
`∈Z

wj,2`ξj,2`
∑
r

h2(`−r)ψj−1,r−t,

sum over p = `− r instead of r to obtain

Vt =

∞∑
j=2

∑
`∈Z

wj,2`ξj,2`
∑
p

h2pψj−1,`−p−t,

and rearrange the terms to obtain

Vt =
∑
p

h2p

∞∑
j=2

∑
`∈Z

wj,2`ξj,2`ψj−1,`−p−t =
∑
p

h2pU
(p)
t , (A3)

assuming all sums converge absolutely, and where U (p)
t =

∑∞
j=2

∑
`∈Z wj,2`ξj,2`ψj−1,`−p−t.

In the formula for U (p)
t , substitute q = `− p, so 375

U
(p)
t =

∞∑
j=2

∑
q∈Z

wj,2(p+q)ξj,2(p+q)ψj−1,q−t.

Now define ξ∗j−1,q = ξj,2(p+q) for j = 2, 3, . . . and q ∈ Z; both are sequences of uncorrelated random
variables with zero mean and unit variance, and both depend on p. Further, defineW ∗j−1(z) = Wj(2z) for
j = 2, 3, . . ., z ∈ (0, 1) and let w∗j−1,q = wj,2q . Then we can write

U
(p)
t =

∞∑
j=2

∑
q∈Z

w∗j−1,q+pψj−1,q−tξ
∗
j−1,q =

∞∑
j=1

∑
q∈Z

w∗j,q+pψj,q−tξ
∗
j,q.

Recalling assumption (10) of Nason et al. (2000), we obtain

sup
q

∣∣w∗j,q+p −W ∗j {(q + p)/T}
∣∣ = sup

q

∣∣wj,2(q+p) −Wj{2(q + p)/T}
∣∣ ≤ Cj/T.

The {W ∗j (z)} satisfy the same smoothness conditions as the {Wj(z)}, Hence, U (p)
t is a locally stationary 380

wavelet process for all p. Although the range of p values in (A3) seems to be infinite, only a finite, and
typically small, number of h2p are non-zero, so the sum over p and ` in (A3) is never infinite.

Hence, Vt is a sum of a finite number of locally stationary wavelet processes with constant coefficients,
not depending on t, and hence is itself a locally stationary wavelet process (Cardinali & Nason, 2010).
The same arguments can be applied to Ot. Hence, Vt +Ot is also a locally stationary wavelet process. 385

Now consider the j = 1 term, Ft from (A2). Clearly, this term has mean zero, as the ξ1,k all have zero
mean. Recalling that ψ1,k = gk from (1) the autocovariance of Ft is

cov (Ft, Ft+τ ) = cov

( ∞∑
k=−∞

w1,kgk−2tξ1,k,

∞∑
`=−∞

w1,`g`−2(t+τ)ξ1,`

)
=
∑
k,`

w1,kgk−2tw1,`g`−2(t+τ) cov (ξ1,k, ξ1,`)

=
∑
k

w2
1,kgk−2tgk−2(t+τ), (A4) 390
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because cov (ξ1,k, ξ1,`) = δk,` by assumption.
If w2

1,k is constant, then S1(z) is constant for all z ∈ (0, 1) and hence

cov (Ft, Ft+τ ) = w2
1

∞∑
k=−∞

gk−2tgk−2(t+τ) = S1δ0,τ .

The last equality holds because of the orthonormality relations possessed by the quadrature mirror filter
coefficients associated with the underlying mother wavelet; see Burrus et al. (1997, formula (5.28)).

If S1(z) is not constant for all z ∈ (0, 1), then substitute k = `+ 2t into (A4) to obtain395

cov (Ft, Ft+τ ) =
∑
`

w2
`+2tg`g`−2τ (A5)

=
∑
`

{
W 2

1

(
`+ 2t

T

)
+O(T−1)

}
g`g`−2τ (A6)

=
∑
`

{S1(2t/T ) +O(L1|`|/T )} g`g`−2τ +O(T−1) (A7)

= S1(2t/T )δ0,τ +O(T−1).

The transition from (A5) to (A6) is due to formula (10) from Nason et al. (2000), that from (A6) to (A7)400

due to the Lipschitz continuity of W1(z), and L1 is the associated Lipschitz constant, from Definition 1c
in Nason et al. (2000). The remainder terms parallel those found in Nason et al. (2000, Proposition 1) and
in the proof of Theorem 2.

Proof of Corollary 1
This follows by iteration of Theorem 1 and reference to Theorem 2.405

Proof of Theorem 2
Proof. We proceed by substituting 2rt for t in the formula for Xt in (3). We assume here that the same

wavelet is used for analysis as the process construction. The periodogram expectation is

E(d2`,m) = E


(∑

t

X2rtψ`,m−t

)2
 = E


∑

t

∑
j

∑
k

wj,kψj,k−2rtξj,kψ`,m−t

2


=
∑
j,k,n,p

wj,kwn,pE(ξj,kξn,p)
∑
t

ψj,k−2rtψ`,m−t
∑
s

ψn,p−2rsψ`,m−s410

=
∑
j,k

w2
j,k

(∑
t

ψj,k−2rtψ`,m−t

)2

=
∑
j,k

w2
j,kP (j, k, `,m, r), (` ∈ N;m ∈ Z), (A8)

where P (j, k, `,m, r) = (
∑
t ψj,k−2rtψ`,m−t)

2.
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To proceed we substitute k = n+ 2rm in (A8) to obtain

E(d2`,m) =
∑
j

∑
n

w2
j,n+2rmP (j, n+ 2rm, `,m, r)

=
∑
j,n

{
Sj

(
n+ 2rm

T

)
+O(T−1)

}
P (j, n+ 2rm, `,m, r) 415

=
∑
j,n

{
Sj(2

rm/T ) +O(T−1) +O(nT−1)
}
P (j, n+ 2rm, `,m, r) (A9)

=
∑
j,n

Sj(2
rm/T )P (j, n+ 2rm, `,m, r) +O(T−1)

=
∑
j

Sj(2
rm/T )

∑
n

P (j, n+ 2rm, `,m, r) +O(T−1). (A10)

The remainders in (A9) for Daubechies’ wavelets are derived using standard arguments (Nason et al.,
2000, Proposition 4). The Supplementary Material gives details of the remainder for the Shannon case. 420

Now ∑
n

P (j, n+ 2rm, `,m, r) =
∑
n,t,s

ψj,n+2rm−2rtψ`,m−tψj,n+2rm−2rsψ`,m−s

=
∑
t,s

ψ`,m−tψ`,m−s
∑
n

ψj,n+2r(m−t)ψj,n+2r(m−s)

=
∑
t,s

ψ`,m−tψ`,m−sΨj{2r(s− t)},

where Ψj(τ) is the autocorrelation wavelet from Nason et al. (2000). With v = s− t, 425∑
n

P (j, n+ 2rm, `,m, r) =
∑
v

Ψj(2
rv)
∑
t

ψ`,m−tψ`,m−v−t =
∑
v

Ψj(2
rv)Ψ`(v).

Lemma 1 of Eckley & Nason (2005) shows that when j > r we have Ψj(2
rv) = Ψj−r(v). Further, for

j = r we have Ψj(2
rv) = Ψ1(2v) = δv,0 and for j < r we have Ψ1(2r−jv) = δv,0.

Hence, omitting the remainder for the moment, splitting the sum in (A10) about r gives

E(d2`,m) =

r∑
j=1

Sj(2
rm/T )

∑
v

Ψj(2
rv)Ψ`(v) +

∞∑
j=r+1

Sj(2
rm/T )

∑
v

Ψj(2
rv)Ψ`(v) 430

=

r∑
j=1

Sj(2
rm/T )

∑
v

δv,0Ψ`(v) +

∞∑
r+1

Sj(2
rm/T )

∑
v

Ψj−r(v)Ψ`(v)

=

r∑
j=1

Sj(2
rm/T )Ψ`(0) +

∞∑
r+1

Sj(2
rm/T )Aj−r,`

=

r∑
j=1

Sj(2
rm/T ) +

∞∑
j=r+1

Aj−r,`Sj(2
rm/T ), (` ∈ N;m ∈ Z). (A11)

When not subsampling, r = 0, formula (A11) reduces to the formula for the expectation of the raw wavelet
periodogram in Nason et al. (2000, Proposition 4). � 435
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