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Abstract 
 

The role of underlying assumptions about justice in the construction of climate geoengineering 

knowledge is explored, based on a review of climate modelling studies focused on stratospheric 

aerosol injection. Such emerging technologies would create distinctively new climates, closer to the 

present climate than those resulting from unabated emissions; but with different winners and losers, in 

part as a result of implications for energy systems. Embedded presuppositions about the nature and 

practice of modelling are exposed, as are unexplored and narrow utilitarian and distributional 

conceptions of justice. The implications of these underlying assumptions and values for the discourses 

of climate geoengineering are considered. It is argued that they obscure the identification and 

consideration of a range of potential injustices arising in the pursuit of climate geoengineering; and 

create and reproduce asymmetries in power regarding the discourses and evaluations of climate 

geoengineering prospects. In particular, optimistic climate geoengineering discourses risk sustaining 

elite interests in high-carbon energy economies. Some suggestions are offered to improve the design, 

deployment and interpretation of climate engineering models in trans-disciplinary research so as to 

mitigate these problems. 

 

Highlights 

 geoengineering modeling typically embodies unexplored utilitarian ideas of justice 

 geoengineering modeling presumptions and practices may help deter mitigation  

 geoengineering models should be used as experimental sandpits not truth-machines 
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Introduction 

Climate geoengineering is increasingly debated as a response to the problems of climate change and 

excess carbon emissions from energy systems. In various forms it appears to offer a technical fix that 

may well deter or delay a transition to clean energy (Markusson et al 2017; Wibeck et al 2015; 

McLaren 2016a&b). In this paper I explore ways in which underlying utilitarian and consequentialist 

presuppositions about justice, expressed in climate modelling practices and results, may contribute 

to misleading discursive framings of technological optimism regarding the dominant form of solar 

climate geoengineering: stratospheric aerosol injection. In turn these framings risk stimulating a 

moral hazard effect in which geoengineering substitutes for mitigation, thus sustaining other 

negative impacts and injustices of fossil fuel extraction and use. 

Climate geoengineering techniques are typically divided into carbon dioxide reduction (CDR) and 

solar radiation management (SRM). CDR involves removing greenhouse gases from the atmosphere, 

and, as a technical fix, promises future recovery of current emissions. CDR is not considered further 

here, but is already embedded in climate pathways models as a means to square carbon budgets to 

meet particular temperature targets (Fuss et al 2014; Anderson 2015; Peters and Geden 2017). SRM 

reduces the proportion of the sun’s heat captured in the earth system, typically by reflecting more 

sunlight. Stratospheric aerosol injection (SAI), which dominates the geoengineering literature (Linnér 

and Wibeck 2015), would reflect sunlight by dispersing small particulates into the stratosphere using 

aircraft, artillery or a balloon-lofted pipe, and thus reduce global temperatures through the same 

basic mechanism as occurs with large volcanic eruptions.  

Although such interventions are yet little more than technological imaginaries and their future 

evolution as co-constitutive parts of socio-technical systems largely unknowable (Stilgoe 2015), 

increasingly detailed climate modelling work using Global Circulation Models (GCMs) has begun to 

sketch possible distributional climatic consequences of such imagined SRM interventions, treating 

them as concrete objects. As in the case of CDR, here the models also co-constitute these 

technological imaginaries, with very limited scope for empirical validation, and do so in a charged 

policy space in which the politics of climate denial largely prevents constructive questioning of 

modelling and its assumptions. This means that climate modellers arguably bear an elevated 

responsibility to consider the possible social consequences of their work. This paper seeks to suggest 

ways in which modellers, other climate researchers and policy makers could act reflexively to 

enhance contributions to justice in climate policy. 

To fully investigate the justice implications of climate geoengineering means considering how it 

might affect people across plural dimensions of distribution, vulnerability, capability, structural 

inequalities, procedure, recognition, and restoration or correction (Jasanoff 2003; Mamo and 

Fishman 2013; Schlosberg 2007, 2012; Shrader-Frechette 2002; Sen 2009; Jenkins et al 2016; 

Hourdequin 2016). Climate change is not simply a justice issue because its effects are spatially and 

temporally uneven, as often presumed in the climate geoengineering modelling literature, it is also a 

justice issue because vulnerability to those effects is also uneven, and tightly inter-linked with 

existing economic, political and cultural injustices and power imbalances, in which the victims are 

often poorly recognized, their rights not respected and compensation resisted (Athanasiou and Baer 

2002; Schlosberg 2012; Shue 2014; Armstrong 2017; McLaren 2017). Moreover, responses to climate 



3 
 

 

change are also tightly interwoven with energy systems and their justice implications (Sovacool et al 

2015; Jenkins et al 2016). Geoengineering may imply significant energy demands, impact 

differentially on different energy sources, or promise to reduce climate risk while allowing continued 

exploitation of fossil fuels (McLaren 2016a, b).  It cannot be assumed simply that a reduction in 

overall climate risks will necessarily enhance justice. It is important to ask who will lose or gain, 

where, when, and in what respects. 

As outlined below, modelling of SAI predominantly suggests that it could - at a gross, global scale - 

significantly reduce, or at least mask, the impacts of unabated climate change. And, given that 

existing and likely impacts of climate change are disproportionately borne by the poor and 

disadvantaged, it might be argued that the deployment of SAI would enhance justice (Horton and 

Keith 2016). But there are also reasons to significantly qualify or even dismiss such a claim. First SAI 

is not a perfect substitute for mitigation (Keith 2013), and the distribution of residual and novel 

impacts could be important for an unknown proportion of the poor and disadvantaged. Second, 

insofar as SAI acts as a substitute for, or deters, mitigation (McLaren 2016a; Morrow 2014b), any 

negative side-effects of SAI would be magnified, and any co-benefits of mitigation reduced. 

Moreover any failure of SAI in practice would then result in more severe climate impacts than had 

mitigation not been deterred (Baatz 2016), although the justice implications of this would depend to 

some extent on whose emissions had continued. In particular, if SAI permitted greater use of fossil 

energy in poor Southern countries, it might enhance energy justice, but if it rather sustained energy 

rich lifestyles in the global North, the opposite would result. Third, justice arguably has richer and 

plural dimensions - beyond those defined in terms of consequential harms and benefits (Sen 2009) - 

in which climate risk may be a poor proxy for justice. In this paper I explore how the presumptions 

and practices of climate geoengineering modelling tend to downplay such qualifications, thus 

sustaining a discourse of climate geoengineering that despite being cautious, is nonetheless 

inappropriately rosy.  

The significance of models and modelling 

Before discussing the detailed findings and implications of climate geoengineering modelling, it is 

necessary to briefly consider the status and purpose of such scientific models. Researchers have 

developed increasingly sophisticated computer models – using both physical principles and historical 

climate data - in efforts to predict and understand the implications of rising greenhouse gas 

concentrations (Edwards 2011; Flato 2011; Curry and Webster 2011). Despite substantial 

uncertainties, climate models have contributed to a substantial improvement in our understanding 

of the relationships between energy systems and climate change. In the context of climate 

engineering, they provide illuminating opportunities to simulate - and experiment with - alternative 

conditions, scenarios and pathways in ways that are simply impossible empirically. This implies a 

responsibility to communicate assumptions and limitations carefully and clearly, but in the context 

of bitterly contested climate politics such caveats are rarely heard, even when offered. As a result 

climate models have been described as ‘seductive simulations’ (Lahsen 2005) and ‘technologies of 

hubris,’ offering a misplaced modernist concept of management and control that pre-empts political 

discussion (Jasanoff 2003). They are embedded in an administrative risk-management social 

imaginary (Groves 2014) which depoliticizes climate change in critical ways (Swyngedouw 2010). 

They as act as gatekeepers of claims about climate change (Sundberg 2007) and as boundary-
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ordering devices between science and authority that sideline uncertainty (Shackley and Wynne 

1996). As a result modelling co-constitutes particular sorts of worlds. As in the case of energy system 

research and models (Sovacool et al 2015), climate models tend to constitute technologically-framed 

worlds, rather than social ones. Nonetheless, such models are now being deployed and further 

refined technically to explore the potential implications of climate geoengineering. It must be 

stressed at this point that the constructivist effects of modelling are not the intentional product of 

modellers, but an emergent result of the co-production of models, technologies, discourses, 

imaginaries and institutions in this space. This makes for a difficult epistemological and 

methodological challenge. Empirical investigation of the beliefs and intents of modellers (for 

instance through qualitative interviews), although potentially useful, could not reveal and explain 

such outcomes. Here a critical, discursive review of the modelling literature is applied in an effort to 

begin to expose the co-productive relations between models and values which structure climatic 

imaginaries.  An analysis of the outputs of practices (the modelling literature) is an essential first 

step in exposing and understanding presumptions arising in the social imaginary which shapes such 

practices. At times I will speculate as to modellers’ motivations, but the central case I seek to make is 

that their modelling practices embody and construct particular ethics and values regardless of 

modellers’ intentions. 

Because the future state of the climate and the effectiveness of climate policy are complex and 

indeterminate, the status that models are granted critically structures the interpretation of scientific 

evidence. Models may be treated in diverse ways across a spectrum from ‘truth machines’, to more 

honest ‘sandpits’ for experimentation (Galarraga and Szerszynski 2012) or ‘props in games of make-

believe’ (Toon 2010). Audiences for models must ‘play the game’, which makes modelling a social 

activity (Corry 2015). So the use and interpretation of models depends heavily on a shared language, 

vocabulary and grammar and is thus co-constituted with disciplinary discourses. Wiertz (2016), 

suggests that model-based climate geoengineering research shapes social and political expectations 

around technologies, whilst underlying presumptions, such as the models’ reliance on a “figure of a 

single rational decision maker who designs and evaluates the performance of the technology" (p.454) 

remain unquestioned. Wiertz challenges us to question the “relation between model-based and 

social visions of climate futures” and the ethical and political questions raised by the practice of 

climate geoengineering modelling. Modellers often appear reticent to engage directly with such 

questions - which admittedly extend beyond the quantitative evidence base provided by modelling - 

within the scientific literature (see table 1). Yet in this very unwillingness, they tend to import 

unquestioned presumptions from the dominant social imaginary (Groves 2014) into their practices 

and interpretations, which can in turn be exposed by qualitative discursive analysis.  

This is a space in which scholarship is sparse. There is work on the ethics of the technologies and 

policies of climate engineering (Gardiner 2010; Morrow 2014; Svoboda 2016), some of which 

engages explicitly with economic modelling using Integrated Assessment Models (notably Hansson 

2014). Examinations of climate geoengineering from a science and technology studies orientation 

seek to open up framings and narratives to assist with the evaluation of climate geoengineering 

proposals (Bellamy 2016; Cairns and Stirling 2014) but this work tends to lack a clear normative 

dimension with respect to justice (Mamo and Fishman 2013). Finally, there are some researchers 

who use or examine modelling processes and seek to modify and weight outcomes in an effort to 

represent ethical or justice concerns (eg Moreno Cruz et al 2012; Ferraro et al 2014). This latter 
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literature forms part of the papers examined here, and as will be seen, the epistemology involved 

tends to privilege certain forms of ethical judgement and certain values of justice. 

This paper focuses therefore on exploring and unpacking both explicit and hidden assumptions 

about justice. These presumptions arise at several levels: first in the modellers’ interpretation of 

their models’ outputs; second in the modelling practices; and third in values or conceptions of 

justice which researchers (typically unquestioningly) import into their modelling and analysis. The 

first part of the paper addresses each of these levels in turn, based on a focused review of the 

modelling literature. The second part of the paper then discusses how these interpretations, 

practices and values relate to discourses and framings of climate geoengineering with respect to risk, 

vulnerability and power, and considers the relevance of plural and relational dimensions of justice 

drawn from the environmental justice and science and technology studies literatures. This analysis is 

informed both by the literature, and by participant observation in major climate geoengineering 

conferences, symposia and summer schools.(1) Further work might helpfully elaborate this step by 

conducting formal qualitative interviews or deliberative engagements with modellers themselves, 

seeking to better understand and explore their motivations and ideas of justice. Nonetheless, simply 

putting the different literatures and discourses into dialogue is revealing and suggestive. Finally the 

paper draws conclusions regarding the possible implications of climate geoengineering for climate 

justice. 

Representations of justice in modelling of SRM  

Based on a broad literature review, involving iterated searches of Scopus and Web of Science, using 

the terms ‘geoengineering’ or ‘solar radiation management’ plus ‘regional effects’, ‘regional 

inequalities’ or ‘regional disparities’, I identified 11 key studies prior to 2016 that address spatial 

distributional implications (at a regional scale, rather than just global impacts). Although the initial 

search returned around 70 papers in total, I eliminated those that did not report climate system 

modelling, those that focused only on localised applications (eg protection of coral reefs), and those 

which did not consider SAI (although some simulate SAI by adjusting the solar constant). The 

remaining 11 papers are listed in table 1, and considered in this section, supported by references to 

other, often more fundamental modelling and non-model-based studies whose outputs are helpful 

to understanding ways in which climate geoengineering might impact on justice. The database 

searches were supplemented by on-going monitoring of geo-engineering list-servers (the geo-

engineering google group, and the Kiel Earth Institute’s climate engineering newsletter). The 

resultant set of papers may not be entirely comprehensive, but it is representative of the field, and 

of the evolution of research into the likely distributed impacts of SAI. The researchers and 

institutions involved go beyond what Kintish (2010) called the ‘geoclique’ although that group is 

strongly represented. Almost all of the papers identified have been widely cited (see table 1 for 

frequencies). 

In this section I first outline the key findings of modelling studies regarding the potential 

distributional effects of SAI, and discuss how they have been interpreted, particularly regarding 

consideration of winners and losers. I then turn to issues arising in the practices of modelling, with a 

focus on counterfactuals, uncertainties and vulnerability. Throughout, I quote directly from the 

modelling studies identified through the literature review to help illustrate relevant presumptions 
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and practices. I conclude the section with a brief summary of the concepts of justice revealed by the 

modelling.  

Model outputs and their interpretation 

Much of what scientists understand of the likely implications of SAI SRM comes from modelling 

studies (see Table 1, which summarises the key findings outlined in this section). The last decade has 

seen a rapid increase in climate geoengineering modelling, with increasingly sophisticated models, 

multiple model runs utilising increasing computer power, and in recent years, efforts to compare 

multiple models as part of the geoengineering model intercomparison project (GeoMIP) (Kravitz el al 

2014; Yu et al 2015; Schmidt et al 2012; Niemeier et al 2013). Simple models simply simulate a 

reduction in incoming solar radiation, while more sophisticated ones directly model stratospheric 

distributions of aerosols, providing more detail of dynamic and distributed effects. There is broad 

consensus in the modelling community (dominated by US, UK and German scientists), over the large-

scale effects of SAI, but still significant uncertainty (and even disagreement) over several parameters 

of significance for regional impacts, such as cloud effects or ocean circulation (Driscoll et al 2012; 

Schmidt et al 2012; Niemeier et al 2013; Curry et al 2014; McCusker et al 2015). Different models 

and even different runs tend to suggest different results – exposing significant inter-model variation 

(Yu at al 2015). 

Latitudes and hemispheres, temperature and precipitation 

Modelling suggests that even uniformly distributed reductions in solar radiation would have 

distributional consequences. Such SRM could broadly cool the planet (Kravitz et al 2014; Irvine et al  

2010; Robock et al 2008), but the temperature offsets achievable through uniform global SAI are 

expected to be latitudinally distributed, with “significant cooling of the tropics [but substantial 

residual] warming of high latitudes and related sea ice reduction” (Lunt et al 2008:1; also Schmidt et 

al 2012;  MacMartin, Keith et al, 2013). Effects on precipitation would be more diverse, with 

overcompensation for the effects of climate forcings in some regions and undercompensation in 

others (Robock et al 2008; Schmidt et al 2012; Curry et al 2014; Yu et al 2015). Changes in 

precipitation may be “quite small relative to interannual variability at the regional scale” (Bala et al 

2008:7668) but still significant. Schmidt et al (2012) found that regional precipitation changes may 

exceed those under unmitigated climate change, a finding supported by Ferraro et al (2014). 

Moreover the variations would be inconsistent. For instance, “simulated temperature and 

precipitation in large regions such as China and India vary significantly with different trajectories for 

[SRM], and they diverge from historical baselines in different directions” (Ricke et al 2010:537). 

Modelled precipitation divergences are more severe for SAI than solar dimming (Niemeier et al 

2013; Ferraro et al 2014). Ferraro et al find four times more area and population at risk of 

substantial increases in precipitation under SAI than solar dimming. Aerosols also have dynamic 

effects on atmospheric, and consequentially oceanic circulation. In the southern hemisphere, SAI 

might even warm deep ocean currents around Antarctica, a key driver of ice-sheet collapse and sea-

level rise (McCusker et al 2015). 

Modelling a larger aerosol loading in polar latitudes appears to compensate for the latitudinal 

distribution of temperature effects but not the ocean dynamics. Moreover it also “tends to degrade 

the degree to which the hydrological cycle is restored” (Ban-Weiss and Caldeira 2010:1). And even 
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fully masking average temperature change is predicted to only reduce, but not eliminate changes in 

weather extremes (Curry et al 2014). Nor would it halt sea-level rise: to do that, as Irvine et al (2012) 

show, would require an average aerosol loading that would more than compensate for temperature 

rise.(2)  

Potential distributional consequences from precipitation changes are not insignificant. Early 

modelling by Robock et al (2008) suggested that both tropical and Arctic SAI would result in “a 

weakening of the African and Asian summer monsoon circulation, an effect found previously from 

high-latitude volcanic eruptions” (p.8). However, more recent modelling indicates less extreme 

implications (Schmidt et al 2012; Tilmes et al 2013). Nonetheless, MacMartin, Keith et al (2013) 

advocate seasonal distribution of SAI interventions to ameliorate the risk of negative effects on 

precipitation in monsoon regions. If SAI were heavily biased to one hemisphere the implications 

could be more dramatic. Haywood et al (2013:660) find that:  “large asymmetric stratospheric 

aerosol loadings concentrated in the Northern Hemisphere are a harbinger of Sahelian drought 

whereas those concentrated in the Southern Hemisphere induce a greening of the Sahel.” In a similar 

vein, Jones et al (2017) find that Southern hemisphere SAI would exacerbate North Atlantic tropical 

cyclone frequency relative to global SAI, while Northern hemisphere SAI would depress it.  Yet  

hemispherically asymmetric SRM intervention might be deliberate - not just a modelling fiction. 

Several authors have suggested or examined Arctic dominated SRM (eg Lunt et al 2008; Irvine et al 

2010; MacMartin, Keith et al 2013). Moreover, the only advocates for immediate deployment of SAI 

argue for Arctic deployment to prevent loss of sea ice and subsequent methane feedbacks.(3) Such an 

asymmetric deployment would need to be substantial. Tilmes et al (2014) estimate that the SRM 

forcing required to retain summer sea ice would be four times greater in a polar deployment than in 

a global one. 

Novel climates and modulated SRM 

SRM could not simultaneously compensate everywhere for changes in both precipitation and 

temperature. Climate geoengineering modellers have responded to this in two related ways: by 

seeking to assess the scale of ‘residual’ effects, and by modifying the scenarios they model in an 

effort to minimize those residuals. Moreno Cruz et al (2012) developed a ‘residual climate response’ 

approach that combines deviations in temperature and precipitation. Irvine et al (2010) quantify the 

extent of ‘novel climates’. And Ferraro et al (2014) develop a risk ratio to describe the likelihood of 

problematic novel climatic conditions. Modellers have explored modulating the levels and spatial 

and temporal distributions of SAI interventions. Yet, as explored below, the findings of such 

modelling are often interpreted and reported in ways that may underplay the implications of 

remaining distributional problems.  

Several studies have modelled levels of SAI that only partially mask temperature changes, to reduce 

the extent of harmful overcompensating precipitation changes. For example, Moreno-Cruz et al 

(2012) model returning an unabated 2xCO2 2030 climate to 1990s temperatures, and report that 

separately each factor can be almost perfectly corrected (97-99%). However, their abstract’s 

optimistic interpretation that “while inequalities in the effectiveness of SRM are important, they may 

not be as severe as it is often assumed” (p.649) is rather contradicted in the body of the paper. This 

notes that: “Compensation is harder when one tries to optimize for both temperature and 
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precipitation at once. … the SRM scheme that minimizes … precipitation changes compensates for 

only 70% of … temperature changes” (p.651).  

And this remaining trade-off could have profound distributional consequences. Moreno-Cruz et al 

also state that: “the first region to reach its optimum as we incrementally increase SRM is Western 

Africa … [where] the optimal amount of SRM … is 78% of the [full amount] ... An increase in the level 

of SRM beyond this point makes Western Africa worse-off” (p.661). Moreno-Cruz et al estimate that 

78% of full SRM would compensate for 56% of global damages from climate warming. But they 

choose not to draw out the disturbing implication that to optimise for any other region - the 

mainland USA for example – or to seek to mask a higher proportion of global damages, would 

therefore make things relatively worse for some of the poorest countries in the world, when 

comparing it with SRM optimized for Western Africa. 

Some subsequent researchers have adopted a similar method of estimating residual climate 

responses (eg MacMartin et al 2014; Yu et al 2015). Yu et al, however, highlight how “large across-

model variation in the treatment of key geoengineering processes (such as stratospheric aerosols) 

and the quantification of damage caused by climate change creates significant uncertainties in any 

strategies to achieve optimal compensation effectiveness across different regions” (p.10). Others 

have sought to tame and quantify regional disparities arising from SAI by developing a concept of 

'novel climate', with the apparent ambition of modulating their modelled interventions so as to 

minimise the incidence of such novel climates. However this has highly problematic consequences 

for the framing of the climate justice problem. Irvine et al (2010) define a novel climate as “a climatic 

state, measured by either surface temperature or rainfall (annual or seasonal), that lies outside the 

continuum of climatic states bounded by the preindustrial and an unmitigated (4xCO2) greenhouse” 

(p.5). Their results show 'novel conditions' – primarily in precipitation, over up to 28-45% of the 

earth (from SAI designed to reverse 70-80% of the warming arising from 4xCO2 (Irvine et al, 2010: 

figure 3b)). To interpret this, as the authors do, as limiting novel climate states to 'only a small 

fraction' of the earth (p6), seems overly optimistic. Furthermore, in Irvine et al’s results, higher levels 

of SAI generate an even wider spread of both novel precipitation and temperature regimes. Yet their 

definition of novelty already normalises extreme climate change. A 4xCO2 climate is massively 

beyond human experience. If it is 'novelty' that signals the potential for significant harmful regional 

changes, but a 4xCO2 greenhouse is not considered novel, this frames the associated climate impacts 

of business as usual as more acceptable, so the historic injustices embedded in their causation are 

more easily overlooked. 

Even if SAI could be restrained to reduce disruptive effects on precipitation, it appears that there 

would still be significant areas with novel and potentially harmful climatic conditions, and many 

different or new winners and losers. Model inter-comparison appears to confirm this. Kravitz et al 

(2014) model SAI restricted to compensate only 85% of the difference from preindustrial 

temperatures, and suggest that, in a world divided into 22 regions, this delivers regional 

temperatures closer to preindustrial levels than to a 4xCO2 world “for all regions and all models” 

(p.1). However: “in all but one model, there is at least one region for which no amount of solar 

reduction can restore precipitation toward its preindustrial value” (p.1). Moreover, if only 

precipitation were considered significant, “11 of the 12 models show the [optimum] amount of 

geoengineering determined by the Pareto criterion to be zero”(p.4) and for nine of the 22 regions at 

least one model shows precipitation changes that exacerbate, rather than ameliorate, the effects of 
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climate change. Yet again, the interpretation of this work is given an optimistic spin. By weighting 

temperature and precipitation effects equally in their overall evaluation these authors conclude that 

SAI would create ‘no new winners and losers’. In reality, though, such an equal weighting is 

misleading: some regions and groups would be far more vulnerable to temperature impacts than 

precipitation changes, and vice versa.  

Ferraro et al (2014) are less optimistic. Using a somewhat different method of assessing novelty (a 

risk ratio, estimating the risk of experiencing a year in which the mean surface temperature or 

precipitation is outside one standard deviation of the current interannual variability), they find over 

40% of the Earth's surface experiencing increased risk of substantial precipitation change under 

4xCO2 plus SAI than under elevated CO2 alone. Some advocates of SRM research imply that optimism 

is justified by the potential for modulating the level of, and/or targeting the timing and locations of 

SAI (Irvine et al 2010; MacMartin et al 2014; Moreno Cruz et al 2012; Curry et al 2014)(4) Niemeier et 

al (2013) suggest that a global balancing of transient forcings with SAI may be possible, but raise 

some practical caveats. On the other hand, MacMartin, Keith et al (2013) introduce the possibility of 

not only varying the global level, but also fine-tuning both the latitudinal and seasonal distribution of 

SAI. They report that with such modulation: “residual temperature and precipitation changes in the 

worst-off region can be reduced by 30% relative to uniform solar reduction” (p.365).  But such 

benefits may be as imaginary as the technologies involved: they depend strongly on assumptions of 

controllability and uniform vulnerability, as discussed in the next section. 

Overall, therefore, the modelling appears to show that, in terms of global average effects, masking 

greenhouse forcings with SAI would probably leave most places better off than under unabated 

climate change. Yet SAI is not a perfect substitute for mitigation, nor can it restore previous 

climates.(5) SAI would reconfigure, or even make new climates, with serious implications for climate 

justice that must be considered in climate policy. There would be dynamic regional and temporal 

patterns of impact – at scales at which the model uncertainties are much greater - that could expose 

particular populations, across significant proportions of the world, to continued or enhanced risk. A 

significant minority might suffer undesirable shifts in precipitation regimes, only some of which 

might be mitigated somewhat by more targeted and refined application of SAI, even if that were to 

prove practical. While early modelling studies arguably exaggerated the possible implications of such 

impacts, much recent work appears to downplay them. The next section turns to some of the 

modelling practices that would appear to structure such optimistic findings and interpretations. 

The implications of model design and assumptions 

Modellers themselves have highlighted the way in which simulating SAI by reducing solar irradiance, 

rather than by introducing aerosols appears to better counter greenhouse gas forcings (Niemeier et 

al 2013; Ferraro et al 2014; Yu et al 2015). But this is only one distorting practice, and in some 

respects a superficial one, easily rectified. Here I focus in on three key more deep-rooted and 

pervasive features of the modelling practices that appear to help construct the optimistic narratives: 

use of inappropriate counterfactuals; overconfidence in the predictability and controllability of SAI; 

and largely ignoring variation in vulnerability. Not only do these features tend to over-simplify 

assessments and focus attention on specific dimensions of justice, while framing out others, but 

their effects also appear to structure and even pre-condition the findings that suggest that SRM 
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could be just. This is not to suggest that models should be expanded to try to better incorporate 

justice, rather that presumptions about justice must be unpacked to create opportunities to explore 

and experiment with the implications of alternative assumptions and conceptions of justice. 

Extreme counterfactuals, catastrophism and the clean sheet 

Modelling studies typically contrast high greenhouse gas worlds (in a majority of cases, a 4xCO2 

greenhouse) in the presence or absence of SRM, rather than contrasting the outcomes of SRM with 

either preindustrial climates or the outcomes of partial mitigation (see Table 1). This almost 

universal choice of counterfactual appears to reflect a common belief that adequate mitigation has 

become politically or practically implausible (e.g. Keith 2013). Mitigation effort may indeed be 

currently inadequate to avoid dangerous climate change, and it might even be true that no practical 

rate of improvement in mitigation could avert dangerous climate change; but it is unreasonable to 

imply that no progress will be made to reverse emissions growth even as impacts become severe 

and immediate.  

Using a counterfactual of unabated climate change makes modelling results easier to identify and 

the effects of different factors easier to isolate, but it also exacerbates the potential for 

consideration of climate geoengineering to distract attention from other responses - the so called 

‘moral hazard’ (Gardiner 2010; Morrow 2014b; Corner and Pidgeon 2014; McLaren 2016a). In its 

political form, moral hazard suggests decision makers may be tempted to avoid controversial or 

costly decisions to mitigate in favour of hypothetical future SRM. This would exacerbate risks for 

future generations if SAI failed to work as expected, or were prevented or halted by political 

disagreement. Inappropriate counterfactuals unintentionally foster a misleading impression that 

SRM is a direct alternative to mitigation (despite apparently well-intentioned assertions to the 

contrary by most researchers). Such counterfactuals also make SAI more palatable, because in 

comparisons with unabated climate change, any potential negative disparities arising from SAI 

appear less significant if the alternative appears to be a climate catastrophe. As shown above, such 

comparison has already restricted the identification of ‘novel’ or ‘harmful’ climates in some 

modelling work.  

Moreover, this framing of the distributional consequences of unabated climate change presents 

them as virtually inevitable, if unintended, and thus in certain respects as of less moral consequence 

than if they were recognised as the result of active human agency (Morrow 2014a). This is not to 

claim that SRM modellers are unconcerned by climate injustice, rather that the construction of their 

models incidentally deflects attention from the historic causes of that injustice and the potential for 

its attempted rectification by accelerated mitigation. The more the framing of the models reinforces 

the claim that it is physically impractical and politically unrealistic to avoid a high greenhouse gas 

world (McLaren 2016b), and the more focus is drawn to technological means of avoiding the 

extremes of climate impacts, the less attention we can expect to be paid to any moral obligations 

arising from historic emissions. In this way the models reflect a sort of ‘clean sheet’ analysis that 

looks only forward, and in which past responsibility for emissions, and any form of corrective justice, 

is not taken into account. 
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Uncertainty and control  

As seen in the quotes so far, the language of modelling is replete with claims that SAI 'can', or ‘will’ 

deliver certain outcomes, or could be managed, modulated, targeted, or optimised. However, not 

only are these claims products only of modelling, not empirical experiments, they also ignore the 

practicalities of delivery and control. Bellamy (2016), following Stirling (2003), criticises climate 

geoengineering appraisals generally for a narrow focus on risk and a failure to recognise 

uncertainties. The modelling literature largely assumes away uncertainties in three spheres: in the 

technologies for SAI, within the models themselves, and in the monitoring and control mechanisms 

that would connect them (see Table 1). Such uncertainties may be critical to judgements about the 

desirability of SAI, as seen, for example in the caveats raised by most of the modellers who have 

sought to simulate aerosol injection directly, rather than by simulating reduced solar irradiance. 

Moreover, if SAI might not be practically realisable or controllable, then any deterrent or delay to 

mitigation becomes much more risky. 

In the first sphere, even the most optimistic researchers concede significant ‘non-trivial’ 

uncertainties that demand further research into SAI technologies (Keith 2013) while other natural 

and social scientists suggest the technical challenges may be so great that a practical, cost-effective 

and socially and politically acceptable system may never be feasible (Hunt cited in Koplewitz 2015; 

Stilgoe 2015). In other words, technologies for precise and controllable delivery of aerosols imagined 

in the modelling might remain imaginary, called into being only by the parameters and functioning 

of the models (Wiertz 2016). This offers little confidence that SAI could be targeted effectively. Yet 

MacMartin, Keith et al (2013) largely dismiss the question. They confess: “We do not address how 

one might achieve the desired forcing distributions” (p.367), but argue that “Although these 

variations may be difficult to achieve in practice, it is premature to presume today what variations 

might ultimately be achievable … [future] engineered particles or space-based systems might enable 

more control over the distribution of solar reduction” (p.366). 

Even if the physical challenges can be surmounted, managed delivery would rely on models that 

permit us reasonably to predict the climate outcomes of any climate geoengineering intervention, 

and control systems that would deliver the desired effects, in the face of huge lags and complexity in 

feedbacks (also attributed using models). The uncertainties involved in this second sphere are also 

substantial. To confidently predict the sort of detail reported above would require models that 

accurately reflect complex connections between different climatic regions, yet even the interactions 

between hemispheres and latitudes are only now emerging (Haywood et al 2013; Jones et al 2017). 

For example, climate models generally fail to capture several significant dynamic responses in the 

northern hemisphere observed following tropical volcanic eruptions (Driscoll et al 2012) and often 

miss dynamic effects of aerosols on ocean circulation in the southern hemisphere (McCusker et al 

2015). This may not cast doubt on the potential for SAI to cool the climate generally, but must give 

researchers pause in claiming that they can predict regional effects adequately.  

When considering the uncertainty in models, the distinctions between runs, ensembles, and 

controlled inter-model comparisons must be acknowledged. Individual runs have inherent 

variability. Ensembles can embody consistent biases. Inter-comparison studies encompass a broader 

range of possible outcomes, but are still constrained by the selection of scenarios, and can establish 

dominant framings and path dependencies (Sundberg 2011). Although climate models can clearly be 
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improved further, they will inevitably remain inherently incomplete and uncertain (Curry and 

Webster 2011; Stilgoe 2015). Moreover, seeking to reduce variations in modelled climatic responses 

may distract attention disproportionately from the implications of social, economic, cultural and 

political vulnerabilities, considered in the next section. 

In the third sphere, technical controllability, the literature is sparse. MacMartin, Kravitz et al (2013) 

and MacMartin et al (2014) find that cybernetic feedback could be used to control model 

temperature outputs, even with limited understanding and a crude model. However they note 

fundamental trade-offs, such that managing uncertainty risks amplifying variability. MacMartin, 

Kravitz et al’s approach is essentially technocratic, although they do acknowledge that technical 

requirements for rapid feedback control “may be incompatible with … a stable decision-making 

process that is able to gain legitimacy” (2013:255). Jackson et al (2015) report an experimental 

approach that begins to explore such problems, using two layers of modelling and iteration of 

interventions in annual rounds, targeting Arctic sea-ice retention. The researchers were able to 

establish control over the model (after about a decade), but their experience suggests that in reality, 

with political and social influences as well as technical ones, the controllability of SRM remains highly 

uncertain. And even if control were to prove plausible, it would raise serious procedural justice 

questions regarding how all those affected might participate in governance of a managed climate. 

At the present state of knowledge, moreover, SAI would appear to involve a wider range and scale of 

uncertainties than mitigation (although MacMartin et al (2015) find that the uncertainties of climate 

change and solar geoengineering appear to be at least partly offsetting, rather than additive). These 

uncertainties mean that climate impacts may be more evenly or unevenly distributed than the 

models imply. But, equally critically, the level of uncertainty itself is significant for justice in the same 

way as climate variability. Groups with greater capabilities, strong social capital, and majority 

recognition are simply less vulnerable to uncertainty about future climates than those with weak 

capabilities, limited social capital or suffering misrecognition (McLaren 2017). 

Variation in vulnerability 

Other features of the modelling methodologies and practices – especially the implicit 

characterization of affected populations – also shape how justice implications are revealed and 

interpreted. Inappropriate or limited criteria, aggregation and implicit assumptions of uniform 

preferences and values can all act to frame out important dimensions and questions of vulnerability. 

Vulnerability shapes experiences of extreme weather more than meteorology (Stilgoe 2015); and for 

climate impacts, vulnerability matters as much or more than the physical climate outcomes. In 

climate impacts assessment, vulnerability and exposure are considered separately to physical 

outcomes, but for climate geoengineering such a systematic approach is currently lacking. At best 

simplistic indicators are used for weighting impacts, and often issues of vulnerability are simply 

passed over, with perhaps a brief caveat (see Table 1). 

Varied vulnerability to factors such as heatwaves, drought, or the timing of rainfall or frosts could 

exacerbate distributional inequalities. The simplistic indicators used in modelling, such as economic 

value, crop production or demographic weighting, do not reflect the reality that “in different regions 

different kinds of changes matter … [and] relevant physical indicators for an assessment of SRM 

impacts are likely to vary between and even within regions” (Heyen et al 2015: 12). Most modelling 
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also presupposes that all affected populations have the same underlying preferences. But: “even 

limited variation in actors’ preferences about a target climate state can significantly change 

assessments of regional disparities from SRM” (Heyen et al 2015: 2). Once additional climate 

variables - beyond average temperature and precipitation - are considered, the likelihood of such 

disagreements grows. As a result, those who control the choice of model, the choice of criteria and 

the weightings given to different factors hold a great deal of discursive power. 

Moreno-Cruz et al (2012) contrast SRM deployment under outcomes weighted by ‘utilitarian’ 

economic output, and ‘egalitarian’ population numbers. They estimate that: “precipitation induced 

population-weighted damages will increase by 51% if we optimize for output-weighted temperature 

damages … [but] minimizing population-weighted precipitation changes simultaneously 

compensates for [only] 69% of utilitarian temperature damages” (p659). In other words, while there 

are significant overlaps, political contestation could well result from different underlying values. 

Aaheim et al (2015) model economic consequences, and also find a mix of winners and losers from 

SRM, with some regions where the economic effects are negative in all their scenarios.  

Increasing computational capacity and improved data has tempted modellers to try to assess 

distributional implications in such ways, potentially generating useful inputs for political discussion. 

Nonetheless technical limitations of climate models and data availability mean researchers have 

“tended to assess regional disparities on spatial levels … that do not match with any socially 

meaningful categories” (Heyen et al 2015:13). Irvine et al (2010) make their conclusions based on 

just five 'illustrative' regions (US mainland, Western Europe, Eastern China, Australia and Brazil). 

Such aggregation “averages out small scale spatial differences ... [producing] more positive 

assessments of SRM’s distributional effects” (Heyen et al 2015:13). Modellers also aggregate 

temporally over multi-year periods, thus potentially underweighting changes in annual variability 

and extreme events.  

Aggregation is just one of the ways in which uncertainty – which multiplies at smaller scales - is de-

emphasized. Moreover, vulnerability is not just a function of location, for example, being 

dramatically different for waged and subsistence populations in the same localities. Vulnerability is 

variegated in multiple dimensions. And some vulnerabilities would not be reduced significantly by 

SAI. SRM does not reduce ocean acidification, or its impacts on communities dependent on fisheries 

or the protective effects of growing reefs. Insofar as climate geoengineering exerts any deterrent on 

mitigation, such impacts would then be exacerbated. Such deterrent effects would also sustain 

existing injustices in the fossil energy system, particularly those associated with extraction of fossil 

fuels or the distributed effects of air pollution from combustion in power generation or vehicles.  

Revealed conceptions of justice 

Collectively – and perhaps in response to climate policy-makers’ demands for greater certainty - this 

literature tends to treat models primarily as truth machines that can be refined and tweaked to 

provide an ever-improving representation or prediction of reality. It consistently proposes further 

research, rather than calling directly for deployment, although there is currently a live debate over 

the desirability of small scale field trials, which might help resolve some technical uncertainties 

(Dykema et al, 2014), but would not provide evidence of regional distributive effects (Lenferna et al, 

2017). Despite a general cautiousness, several of the papers reviewed here encourage consideration 
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of particular modulated forms of SAI deployment. Although modellers often question their 

approaches and assumptions, and take care to specify technical uncertainties, the mode of such 

questioning rarely engages with more fundamental questions regarding the purpose or nature of 

modelling, nor the values and conceptions of justice embedded in the practices of modelling. I would 

speculate that this may represent defensiveness about the validity of climate modelling resulting 

from political controversy and the attacks of climate denialists (as described by Brown 2010); but as 

shown in the preceding section, it can have serious implications. Here I briefly summarize the largely 

unquestioned conceptions of justice revealed in the modelling literature. 

In modelling efforts to minimise trade-offs and ‘optimise’ SAI, the approach to ethics and justice is 

primarily consequentialist (embedded in a liberal social imaginary of risk-management (Groves 

2014)). Harms and benefits experienced by people are central to modelling approaches and 

interpretation, rather than, for example, deontological rules of action. The literature tends to 

overlook the prospect that not all those disadvantaged by climate change could be compensated by 

SAI, and indeed some may even experience a worse situation; or engages with it only in ways that 

treat these losers as acceptable collateral in a utilitarian balance. The underlying assumptions – 

rarely offered explicitly – are broadly utilitarian: justice is found in minimising aggregate suffering, or 

maximising aggregate wellbeing (Sinnott-Armstrong 2015). 

These underlying philosophies are sometimes accompanied by distributional conceptions of justice, 

which particularly reflect Rawlsian western liberal approaches (Rawls 1971; Lamont and Favor 2013). 

A few modellers (eg Moreno-Cruz et al 2012) pay attention to the regional distribution of climate 

outcomes, and explore ways to minimise harms to the most disadvantaged groups. While the 

Pareto-optimisation approaches typically applied are rather utilitarian, the idea that disparities are 

acceptable only where they benefit the worst off (Rawls’ ‘difference principle’) also seems 

influential. However, as the preceding sections show, claims about the distributional justice of SAI 

arising from the modelling literature are rather less certain than might first appear. The potential for 

countervailing mitigation-deterrent effects, for greater uncertainties and for differently variegated 

vulnerabilities all make it difficult to draw meaningful conclusions in a liberal justice paradigm. 

Earlier work on the distribution of benefits and burdens from climate change (eg Anthoff et al 2009) 

reinforces this concern. They find that, even within a consequentialist paradigm, introducing equity-

weightings substantially raises estimates of the social costs of carbon emissions, and such estimates 

differ by two orders of magnitude depending on the region to which the equity weights are 

normalised. Moreover, estimates may be more than twice as high if national rather than (global) 

regional impacts are aggregated. Such variations arise not only from differential warming, but also 

from variations in income, growth rates, and vulnerabilities. Given such a mix, we cannot presume 

that reducing climate impacts alone through climate geoengineering will necessarily promote justice.   

Collectively these factors also suggest that SAI might be less just than it might appear on the face of 

the models, especially if considered against a broader set of dimensions of justice. The next section 

begins to elaborate such a broader, plural approach, highlighting the desirability of supplementing 

distribution with procedure, correction and recognition (in ways – particularly drawing on 

capabilities and care - that transcend the binary of utilitarian/consequentialist and deontological 

approaches).   

 



15 
 

 

Conceptions of justice and discourses of climate geoengineering 

Climate change and its causes impact on multiple dimensions of justice. Simply examining 

distributional effects does not give a complete picture. Not only will political responses to climate 

change and climate geoengineering depend on varied impacts and preferences for particular climate 

outcomes, they will equally depend on how various cultures interpret and conceive of justice. Here I 

therefore identify ways in which broader conceptions of justice, beyond distribution, might be 

relevant – considering each of the plural dimensions identified by environmental justice scholars (eg 

Schlosberg 2007) in turn, and discussing briefly how they are framed out in the modelling literature. I 

then connect these framing effects with predominant discourses in climate geoengineering science 

and politics. This is a disembodied analysis, in which the principles embodied in climate 

geoengineering modelling are derived from the literature. It does not seek to impute motivations or 

beliefs to the modellers, but rather to surface some important constraints and limitations of their 

work, within the co-produced cultural, economic and institutional context of climate science and 

policy, with the hope of stimulating more reflexive responses.  

Broadening conceptions of justice  

Procedural justice focuses on the involvement of people in decisions that affect them. Just as public 

engagement in the development and design of new technology is critical because technologies can 

reshape moral landscapes and help lock-in particular social practices (Cotton 2014; Stilgoe 2015), so 

is public engagement in the design of models. As Bohman (1999) argues, public engagement in 

research design can support a pragmatic politics of inclusion, turning expert knowledge into a shared 

resource and supporting emergent publics to overcome disadvantage. But with rare exceptions, 

models and scenarios are typically constructed with no consultation of publics, which could helpfully 

be used to inform the choices of technologies, parameters or scenarios to model or even to shape 

the criteria informing the research as a whole (Bellamy et al 2014).(6) This shortcoming privileges 

expertise, fails to recognise the necessarily partial nature of scientific knowledge (Ottinger 2013) and 

treats justice as something determined by elite institutions, rather than something participatory and 

procedural (McLaren et al 2013). Such procedural aspects are especially important insofar as climate 

geoengineering converts future climates into chosen, intentional artifacts, rather than unintended 

side effects of other beneficial activities. Intentionality reconfigures moral considerations (Morrow 

2014a). It also makes it as important to scrutinise the implications of not using the technologies as 

the implications of deployment, and introduces new dynamics and challenges to international 

politics. But the addition of fair procedure alone still leaves the analysis within the standard 

consequentialist paradigm of the dominant social imaginary. 

We begin to escape this paradigm by understanding the ways in which effective procedural justice 

and participatory parity demand recognition of people’s status as full moral equals in society (Fraser 

and Honneth 2003). In largely ignoring vulnerabilities, and aggregating across multiple individuals, 

the dominant paradigm (and the models that reflect it) rather presuppose an artificial equality. Real 

world capacities to participate are instead highly variegated, and often constrained by institutional 

and cultural misrecognition. Similarly in applying implicit value assumptions about universal and 

equal preferences and criteria, the models fail to recognise real cultural variation. Justice as 

recognition demands taking account of existing difference, not just of our common humanity. 
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Lack of attention to variation in vulnerability also exposes the ways in which conceptions of justice 

drawing on capabilities (Sen 2009) or care (Held 2006) are overlooked in considering the implications 

of the models. The capabilities approach focuses on justice as freedom – enabled by universal 

enjoyment of essential capabilities for functioning such as political participation, health and 

education. Yet actually existing capabilities are unequal. Justice in capability terms demands 

investment in capabilities, building power, enabling people and communities to function without 

dependency and domination. Like the ethics of care, it implies a focusing of our capacity to care on 

those who are vulnerable, ideally supporting them to obtain functioning and autonomy. 

Rather than supporting building capabilities and thus social resilience, the climate modelling 

approaches and practices instead effectively prioritize the ‘removal of a hazard’ (the physical climate 

outcome). This represents a hierarchical model of control that is at worst a form of domination and 

at best, elitist paternalism. It treats those affected by climate change as powerless victims, not as 

potentially capable actors able to participate in determining the conditions of their lives – including 

participating in climate politics. This territory is implicitly reserved for the scientific and political 

elites – notably in the countries which dominate climate geoengineering research: the US, UK, 

Germany and to a lesser degree, China. Moreover, if SRM merely masks the threat of climate 

injustice to future generations, rather than structurally or institutionally removing it in the way 

mitigation and adaptation do (Smith 2012), then there is an equivalent intergenerational injustice 

involved. Put another way, mitigation and adaptation would appear inherently more supportive of 

future people’s freedoms and capabilities because they reduce vulnerability to domination, 

especially if the underlying interventions, in energy systems for example, are undertaken with 

attention to fair distribution, recognition and procedure (Jenkins et al 2016). But this distinction is 

not acknowledged (or perhaps cannot be acknowledged) in the ways the models construct affected 

populations. 

Finally, in ignoring existing inequalities, vulnerabilities and misrecognition, the modelling literature 

tends to reinforce a ‘clean sheet’ framing that risks excluding corrective or reparative justice. 

Reconciliation, reparation and even punishment can be central to justice, especially where 

vulnerability is a product of previous injustice. So restrictions and financial burdens imposed on 

carbon-intensive corporations and nations by accelerated mitigation and adaptation financing can 

be understood as a concrete representation of climate justice. Corrective or restorative justice also 

ensures that a focus on the victims of climate change does not cause us to ignore the perpetrators: 

which seems critical as addressing the problem demands changes in the behaviours of wealthy 

consumers and investors, particularly with respect to energy. Space precludes a deeper exploration 

of restorative justice here, but it seems clear that whether the aim is ‘punishment’ of ‘climate 

criminals’, or reconciliation between the perpetrators and victims of climate change, climate 

geoengineering - as constructed in the modelling described above - acts to dismiss both the need 

for, and possible mechanisms of, such corrective justice. Moreover any moral hazard effect also 

reduces the corrective implications of mitigation and adaptation policy, leaving those who have 

profited from the causes of climate change to continue to enjoy their benefits. Ways in which such 

effects could be countered, enabling geoengineering to support restorative justice, merit further 

investigation, especially in a context in which they might be considered as forms of climate repair or 

restoration (McLaren 2018).  
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Framing out justice, ignoring power 

The foregoing suggests that the modelling literature embodies narrow, largely utilitarian, 

conceptions of justice. Space precludes a full elaboration of the implications of these presumptions, 

or a discussion of the extent to which these conceptions accurately reflect or apply particular 

theories of justice. Here I focus on one aspect, the lack of plurality demonstrated. I outline how a 

richer understanding of justice might instead reveal and begin to respond to the power relations 

embodied in the models and related narratives of climate change. Here power is understood as 

asymmetric capability or agency (Stirling 2014).  

The technological optimism of the modelling literature frames SAI as practical, manageable and 

governable. The counterfactual of unabated climate change reproduces a ‘political realism' in which 

mitigation remains minimal. Together these risk a form of post-political, technological solutionism 

(McLaren 2016b), which presents another source of moral hazard. In the face of the constraints and 

difficulties of international climate politics, it should not be surprising that researchers and 

modellers are keen to explore climate geoengineering, even while they continue to advocate 

accelerated mitigation and adaptation. However, the solutionist mind-set redefines problems such 

that the novel technology appears as the solution, notably in ways that bypass messy political, 

cultural or behavioural changes (Morozov 2013). Reducing consumption, changing profligate 

lifestyles, or adopting costly or inconvenient practices becomes not only impractical but also 

unnecessary in solutionist responses to climate change. Yet these are the responses typically 

advocated as essential to deliver climate justice (Athanasiou and Baer 2002), and similarly, 

consideration of demand-side responses is critical to energy justice (Jenkins et al 2016). 

Solutionism shifts power and authority from politics to science and technology, but typically without 

democratising the latter. Simultaneously, the high apparent leverage of SAI forms of SRM could be 

expected to concentrate power, giving it an essentially centralising and autocratic ‘social 

constitution’ (Szersynski et al 2013). In this light, a scheme of SRM designed to benefit the poorest 

(such as those explored by Moreno-Cruz et al 2012) would seem unlikely to be implemented even if 

technically feasible (Stilgoe 2015). The new climates resulting from SAI suggest incentives for 

powerful nations to prefer distributional patterns that could impose greater risks on poorer and less 

powerful groups. Such an outcome need not rely on unilateral imposition, as poorer countries might 

well accede to a distributional schema designed by the powerful for its generic benefits or for other 

political reasons. Nor can we assume that the political interests of poor country governments would 

coincide with the interests of their poorest inhabitants.  

Power is perhaps overlooked for the same reasons as moral hazard: SRM modellers typically treat 

technology as something morally neutral, on which they can act, but which does not act on them. 

But technologies not only cause us to adjust our behaviours but also condition our agency and 

reframe our moral and political choices (Verbeek 2011; Cotton 2014). Even the technical capacity to 

model climate geoengineering has such a reframing effect, in that simulations based on SRM open 

questions of desirable climate outcomes or ‘designer climates’ (Wiertz 2016). Justice is only one 

dimension of the moral choices raised here, but other aspects lie beyond the scope of this paper. 

If the technologies of climate modelling - like those of climate geoengineering – are understood as 

embedded co-constituted parts of socio-technical systems, it becomes easier to understand how 

modelling designs exert agency within a system; how moral questions extend to the design and 
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assumptions of models, not only their use and interpretation; and that values and facts cannot be 

treated as independent, but are different aspects of a system in which politics, power and 

technology are co-constituted. Of course justice should be similarly conceptualised – as it is in 

environmental justice theory - as something negotiated, contested and co-constituted, not as 

something separate, abstract and ideal. By treating models as games of make-believe, researchers 

could not only open up climate geoengineering appraisal (Bellamy 2016) but also create 

opportunities to experiment (both with, and on) the models, as Stilgoe suggests (2015), in ways that 

assist with deliberation and negotiation over both climate technologies and climate justice. There is 

great potential for scientific collaborations across disciplines to conduct different analyses with the 

models, and conduct modelling experiments using different concepts of justice to help challenge the 

shortcomings identified here. Social science is not only valuable for communicating the results of 

modelling to the public and policy makers, but integrated into research programs it can help 

introduce social values and concerns into the design of modelling experiments. 

Of course, models are only part of the complex machinery used to anticipate the future. We cannot 

expect modelling and modellers to solve all these problems alone. But in the case of climate policy, 

modelling is central not only to other forms of anticipation and speculation (Stilgoe 2015) but to the 

politics and epistemology of climate change. So it is critical – for climate and energy research - to 

challenge how models are constructed and deployed, and to understand how political and social 

values – for example about risk, participation or justice - are embodied through design assumptions. 

Re-building models to respond to such an understanding will not be easy. Researchers should seek 

to recognize and understand the limitations of models, and seek to compensate for them. That the 

models will nevertheless remain incomplete does not render them irrelevant or inappropriate. It 

does, however, mandate that the models be put into dialogue with ethical and moral discourse. 

Designing models and experiments on models that deploy a reflexive approach to SAI, as in some 

ways a subject rather than only an object, should be the goal. Modelling should experiment with a 

wider range of counterfactuals; with scenarios designed through public engagement; with more 

random variation to simulate control problems; and more experiments using real human beings as 

control actors, representing diverse interests. This means designing trans-disciplinary research 

programs that genuinely engage with political, social and cultural dimensions of climate policy, not 

merely seeking to abstractly model the political and social alongside the scientific. Such approaches 

would appear urgently needed in a policy world which appears increasingly polarized over the 

desirability of SRM research and testing in the light of the 1.5°C climate aspiration agreed in Paris 

(Nicholson et al 2017). Otherwise we might fear a repetition of the process in which carbon 

geoengineering has been absorbed into climate pathways models without proper assessment of its 

technical limitations or ethical risks (Anderson 2015; Peters and Geden 2017).   

 

Conclusions 

In summary, the values and conceptions of justice revealed as underpinning SRM modelling 

exercises and the representations they produce are predominantly consequential rather than 

procedural; attending to the distribution of benefits and harms, rather than to underlying 

capabilities; individualist and aggregative rather than collective; fail to raise questions of recognition, 

vulnerability and reparation; and largely rooted in western, liberal conceptions of justice which 



19 
 

 

ignore international cultural and political variations. The literature mainly displays a utilitarian bent, 

accepting and reinforcing substantial economic inequality, in the name of political realism - 

presuming that radical socio-economic change is infeasible, even while exploring ways to reduce 

other dimensions of climate injustice. This does not necessarily reflect the personal convictions of 

the researchers involved, but is a product of practical limitations of modelling, combined with the 

co-produced discourses, imaginaries and institutions that constrain and condition the agency of 

modellers.  

Although SAI might offer justice gains when contrasted with unabated climate change, when 

compared with perfect mitigation it appears much less just. But neither unabated climate change 

nor perfect mitigation is plausible: it is essential to explore relative justice effects in responses 

involving mixtures of more or less mitigation, adaptation and climate geoengineering. In this context 

it is problematic that SAI techniques would not only generate different winners and losers with 

reconfigured climates but also distribute power, freedoms and capabilities in new and potentially 

harmful ways across populations and generations. 

The climate geoengineering modelling literature also tends to overlook or devalue issues such as the 

relative vulnerability of affected populations; extant obligations resulting from disproportionate 

historical contributions to emissions; the distribution of power to decide over the design of any SAI 

intervention; the extent to which uncertainties in controllability and governance of SAI could 

undermine efforts to mitigate distributional impacts; the ethical implications of the intentional 

creation of new climates. All these would appear to contribute to the risks of a ‘moral hazard’ effect 

delaying or deterring mitigation (McLaren 2016a), and thus increasing exposure to any harms from 

climate geoengineering, residual climate change and sustained extraction and use of fossil fuels in 

energy systems.  

In part these are products of a broader epistemic problem of implicitly yet hubristically treating and 

portraying climate and energy models as truth-machines rather than games of make-believe or 

sandpits. This paper has suggested particular shortcomings in the climate geoengineering literature’s 

often implicit assumptions of effectiveness, precision and controllability, its metrics and methods of 

aggregation, and its use of an excessive counterfactual of unabated climate change. The first means 

that risks of failure, moral hazard and uncertain distributional effects over space and time all receive 

inadequate attention. The second fails to recognise localised and variegated vulnerability and 

existing inequalities that might be exacerbated. And the last misrepresents the avoidance of a high 

greenhouse gas world as impractical and politically unrealistic, focusing attention on technological 

means of avoiding the extremes of climate impacts and away from moral obligations arising from 

historic emissions and other injustices of energy systems.  

As a result, the dominant constructions of justice in climate geoengineering appear likely to bolster 

the existing power of global, Northern elites to resist demands for climate justice from 

predominantly Southern subaltern groups. In failing to engage with the heterogeneity of justice as 

procedure, reparation, freedom, recognition, or care for the vulnerable the discipline risks 

diminishing the prospects of responses to climate change that genuinely enhance global justice. And, 

under pressure to provide pathways to a 1.5°C world, there seems a real risk that the promise of 

SRM will be adopted as yet another techno-fix for neo-liberal climate policy.  
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The promise of climate geoengineering – control over the climate – is also a threat, if future climates 

might be controlled or chosen by the powerful, in line with their interests and values. The modelling 

outcomes indicate that it would be unfair if ‘interests’ referred only to climate preferences. It would 

be even worse if the possibility of climate geoengineering were mobilised to restrict mitigation and 

protect elite financial interests in the current high-carbon fossil-fuelled energy system and economy. 

The question of who controls the technology is clearly critical. But even while the technologies 

themselves remain imaginaries, modelling also raises the question of who controls the discourses 

that effectively arbitrate what is and is not practical and just in climate policy. Focusing on the 

outcomes of models avoids accountability for the assumptions and conceptions of justice involved in 

building them. Rather than promoting deliberation and reflection, the scientific discourses risk 

prematurely closing down debate. Just like the moral implications of climate geoengineering, the 

moral implications of modelling must be taken seriously in design as well as use. 
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Endnotes 

1. Relevant events include the Climate Engineering Conferences and Symposium held in Berlin in 2014, 

2015 and 2017; and Climate Engineering Summer Schools in Oxford (2013), Harvard (2014) and 

Heidelberg (2015). 

2. Neither, however, could accelerated mitigation be expected to halt sea-level rise. 

3. See for example: http://a-m-e-g.blogspot.se/2012/05/message-from-arctic-methane-emergency.html. 

4. Cao et al (2017) even explore a ‘cocktail’ of SAI plus another proposed technique, cirrus cloud thinning. 

They suggest this could improve the global trade-off between precipitation and temperature effects, 

but not the regionally distributed impacts. 

5. Strictly, given complexity, no future climate would be the same as a past climate. Yet the modelling 

literature often refers to ‘restoring’ climate states. 

6. The Integrated Assessment of Geoengineering Proposals project (http://www.iagp.ac.uk) was an 

exception in that deliberative public engagement influenced both the research programme, and the 

scenarios modeled. 

  

http://a-m-e-g.blogspot.se/2012/05/message-from-arctic-methane-emergency.html
http://www.iagp.ac.uk/


27 
 

Annex: Table 1: Key SRM/SAI modelling literature on regional impacts and disparities (to 2015) 

Paper  
 

Robock et al 2008 
 

Irvine et al 2010  Ricke et al 2010  Schmidt et al 2012  

Model(s), scope, scale, 
approach 

GISS Model E GCM, 
continental/monsoon 
region scale, 5 
simulations including 
tropical and polar 
focused SAI. Aerosol 
modelling. 

HadCM3L GCM, 16 FUND 
model world regions, 12 
simulations 
(incrementally increasing 
the % of forcing 
countered by SAI - 
simulated by varying solar 
irradiance). Plus weighted 
analysis by crop 
yield/population density.  

HadCM3L, 54 scenario 
ensemble, 23 'macro-
regions'. Comparing 
regional normalised 
temperature and 
precipitation over time. 
Uniformly distributed 
aerosol modelling. 

Compare 4 Earth System 
Model responses to a 
standardised SRM 
scenario (compensating 
abrupt 4xCO2) using 
single simulations 
(varying solar irradiance) 
and multi-model 
averages . Continental / 
monsoon system scale. 

Key finding(s) / 
conclusion 

"consequences for 
the African and Asian 
summer monsoons 
could be serious, 
threatening the food 
and water supplies to 
billions of people" 
(p.1) 

"it might be possible to 
identify a level of SRM 
geoengineering sufficient 
to maintain the 
Greenland ice sheet and 
cool the climate 
significantly ... without a 
large reduction in global 
precipitation 
and exposing only a small 
fraction of the Earth to 
novel climates [outside 
preindustrial to 4xCO2 
bounds]" (p.1) 

"simulated temperature 
and precipitation in large 
regions ...  diverge from 
historical baselines in 
different directions. ... it 
may not be possible to 
stabilize the climate in all 
regions simultaneously" 
(p.537).  SAI brings all 
regions closer to 1990s 
conditions than under 
unmitigated climate 
change, but divergences 
grow over time. 

For full warming 
compensation of 4xCO2, 
polar temperatures are 
higher and tropical 
temperatures lower 
than pre-existing levels. 
Regional precipitation 
responses are highly 
divergent, and may even 
exceed changes under 
unmitigated climate 
change.  

Choice of counterfactuals IPCC SRES A1B BAU 
(2xCO2 by 2030) 

4xCO2 climate IPCC SRES A1B BAU 
(2xCO2 by 2030) 

4xCO2 climate 

Approach to 
uncertainties, 

controllability & 
vulnerability 

Broad concern over 
vulnerability to 
monsoon changes. 
Some scepticism 
regarding 
controllability (mainly 
political). Little 
discussion of 
uncertainties. 

Vulnerability largely 
reduced to crop yields 
and population density. 
Caveats regarding use of 
single, low resolution 
model, lack of cost-
benefit analysis. Results 
described as illustrative 

Sub-regional interests 
acknowledged. Very 
limited discussion of 
uncertainties and 
controllability. 

Note that only limited 
climate factors were 
considered. Suggest 
impact studies to assess 
harms and benefits to 
actual populations. Note 
that the technology 
implied is 'hypothetical' 
but do not discuss 
controllability. 

Citations (as of Dec 2017) 204 34 103 72 

SRM preferable to 
unmitigated climate change no Yes Yes Yes 

SAI 'corrects' temperature 
better than precipitation 

yes Yes Yes Yes 

SRM has uneven   
latitudinal effects   

yes Yes - Yes 

Limited SRM preferable to 
full temp compensation 

- Yes Yes Yes 

Regional modulation 
appears desirable 

- ? - - 

Hemispheric SRM is 
problematic 

- - - - 

Considered weather 
extremes 

no No No no  

Aerosol SAI less effective 
than solar dimming - - - ? 
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Paper Moreno Cruz et al 
2012 

Macmartin et al 2013 
  

Niemeier et al 2013 
  

Curry et al 2014 
 

Model(s), scope, scale, 
approach 

Analyse distribution of 
'residual climate 
responses' derived 
from a HadCM3L 
modelling ensemble.  
Simulate by adjusting 
solar irradiance. 
Compare 3 weighting 
schemes: by economic 
output, population and 
area. 

HadCM3L. Modify solar 
irradiance directly, but 
latitudinally and 
seasonally to optimise 
SRM at a grid-square 
resolution. 

MPI ESM. 5 scenarios 
(3 different forms of 
SRM  including solar 
dimming and aerosol-
simulated SAI) 
balancing transient 
increases in climate 
forcings. Report 
results for continental 
regions and 
latitudinal zonal 
means. 

GeoMIP ensemble of 9 
GCM models. Grid cell 
analysis of broad global 
regions in 3 simulations 
(preindustrial, 4xCO2 
and 4xCO2 offset with 
SRM). Modelling 
adjusts solar irradiance. 
 

Key finding(s) / conclusion "A globally optimal 
level of SRM can 
compensate for a large 
proportion of damages 
at a regional level." 
(p.661) "An SRM 
scheme optimized for 
population-weighted 
regional precipitation 
changes, however, 
compensates for 97% 
while compensating for 
70% of population-
weighted temperature 
changes." (p.661) 

"Spatial and temporal 
variation in solar 
insolation reduction can 
be used to improve the 
compensation between 
the climate response due 
to SRM and that due to 
increased greenhouse 
forcing. We do not ad- 
dress how one might 
achieve the desired 
forcing distributions." 
(p.367) 

Balancing the 
transient forcing 
appears reasonable, 
but may be less 
practical in reality. 
Find that lowering of 
precipitation in SAI 
scenarios is about 
double that in solar 
insolation (space 
mirror) scenarios. 

SRM maintains "a state 
wherein the global and 
annual mean surface 
temperature is approx. 
equal to that of [the 
preindustrial climate, 
but] complex regional 
patterns of extreme 
temperature and 
precipitation persist.” 
(p.3918-19) Minimising 
these would require 
“manipulation of 
forcings at a regional 
scale." (p.3921) 

Choice of counterfactuals IPCC SRES A1B BAU 
(2xCO2 by 2030) 

2xCO2 climate RCP 4.5 by 2100. 650 
ppm CO2 

4xCO2 climate 

Approach to uncertainties, 
controllability & 

vulnerability 

Briefly discuss linearity, 
aggregation, model 
variability, and the ideal 
nature of the SRM 
intervention. Conclude 
that the linear model 
they use is applicable. 
Vulnerability is 
represented only 
weakly in the weighting 
scheme. 

No discussion of 
controllability, despite 
idealised nature of 
model, nor of differential 
vulnerability. Mention 
model uncertainties such 
as impacts of non-
linearity. 

Note technical, legal 
and political 
challenges, suggest 
these make scenarios 
less plausible than 
the models imply. No 
discussion of 
vulnerability. 

Acknowledge 
uncertainties in 
simplified sensitivity 
models used. Do not 
discuss vulnerability, 
nor controllability. 

Citations (as of Dec 2017) 
57 39 50 24 

SRM preferable to 
unmitigated climate change yes yes yes yes 

SAI 'corrects' temperature 
better than precipitation yes yes yes yes 

SRM has uneven   
latitudinal effects   yes yes yes yes 

Limited SRM preferable to 
full temp compensation yes yes - - 

Regional modulation 
desirable - yes - yes 

Hemispheric SRM is 
problematic - no    -  - 

Considered weather 
extremes no no    no   yes 

Aerosol SAI less effective 
than solar dimming - - yes - 
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Paper 
 

Kravitz et al 2014  
 

Ferraro et al 2014  Yu et al 2015  

Model(s), scope, scale, 
approach 

GeoMIP ensemble of 12 
GCM models, results 
analysed for 22 macro-
regions in 3 simulations  
(preindustrial, 4xCO2 and 
4xCO2 offset with SRM). 
Models adjust solar 
irradiance. 

Reading IGCM, 4 scenarios: 
control, 4xCO2, aerosol SAI 
and solar dimming. Grid 
based analysis of likelihood 
of exceeding specified 
climatic thresholds. 

GeoMIP ensemble of 7-13 
models, including both aerosol 
SAI and solar irradiance 
simulations.  

Key finding(s) / 
conclusion 

SRM that only partially 
restored global mean 
temperature to its 
preindustrial level could 
ameliorate both 
anthropogenic temperature 
and precipitation changes. 
However, if precipitation 
changes matter most, any 
amount of SRM can 
exacerbate impacts from 
CO2 forcings, for some 
regions. 

Simulations based on solar 
dimming underestimate 
the risks from SAI. There is 
substantial regional 
variation in effectiveness of 
geoengineering in 
mitigating precipitation 
changes, with over 40% of 
the earth's surface 
experiencing increased risk 
of substantial precipitation 
change under 4xCO2+SAI 
 

Large across-model variation in 
the treatment of key 
geoengineering processes and 
the quantification of climate 
damage creates significant 
uncertainties in any strategies 
to achieve optimal 
compensation effectiveness 
across different regions. 

Choice of counterfactuals 4xCO2 climate 4xCO2 climate (1420ppm) 4xCO2 climate 

Approach to 
uncertainties, 

controllability & 
vulnerability 

Acknowledge different 
regional interests in 
temperature and 
precipitation changes. Do 
not discuss controllability . 
Discuss some modelling 
uncertainties. 

Discuss factors affecting 
regional variation and 
relative vulnerability of 
food producing areas to 
climate changes. 
Acknowledge the simplicity 
and uncertainties 
associated with the 
modelling. Do not discuss 
controllability. 

Note several remaining 
uncertainties, and a need for 
improved damage functions, 
but suggest that 'ultimately' 
such matters are ‘beyond the 
remit of the natural sciences’. 
(p.21) Do not otherwise discuss 
vulnerability, nor 
seasonal/regional 
controllability. 
 

Citations (as of Dec 2017) 28 4 14 

SRM preferable to 
unmitigated climate 

change 
yes ? yes 

SAI 'corrects' temperature 
better than precipitation 

yes yes yes 

SRM has uneven   
latitudinal effects   yes - yes 

Limited SRM preferable 
to full temp 

compensation 
yes - ? 

Regional modulation 
desirable 

? - ? 

Hemispheric SRM is 
problematic 

- - - 

Considered weather 
extremes 

no no no  

Aerosol SAI less effective 
than solar dimming 

? yes yes 
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