Genetic alloy design of ultra high strength stainless steels:From thermodynamics to quantum mechanics

Rivera-Díaz-del-Castillo, P. E J and Xu, Wei and Van Der Zwaag, Sybrand (2010) Genetic alloy design of ultra high strength stainless steels:From thermodynamics to quantum mechanics. In: THERMEC 2009. Materials Science Forum, 638-64 (5). UNSPECIFIED, DEU, pp. 3473-3478. ISBN 0878492941

Full text not available from this repository.


The design of novel ultra high strength steels for aerospace applications is subjected to stringent requirements to ensure their performance. Such requirements include the ability to withstand high loads in corrosive environments subjected to temperature variations and cyclic loading. Achieving the desired performance demands microstructural control at various scales; e.g. fine lath martensite is desired in combination with nanoprecipitate networks at specified volume fractions, and controlled concentrations of alloying elements to prevent alloy embrittlement. The design for a specified microstructure cannot be separated from the processing route required for its fabrication. Alloys displaying exceptional properties are subjected to complex interactions between microstructure and processing requirements, which can be described in terms of evolutionary principles. The present work shows how genetic alloy design principles have been utilised for designing stainless steels displaying strength exceeding that of commercial counterparts. Such designed alloys become feasible for fabrication by tailoring their microstructure employing thermodynamic and kinetic principles, while fracture toughness properties can be controlled via performing quantum mechanical cohesion energy computations.

Item Type:
Contribution in Book/Report/Proceedings
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
25 May 2018 09:10
Last Modified:
21 Nov 2022 16:33