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Abstract

This thesis concerns the theory of Banach algebras, particularly those coming from

abstract harmonic analysis. The focus for much of the thesis is the theory of the ideals

of these algebras. In the final chapter we use semigroup algebras to solve an open

probelm in the theory of C*-algebras. Throughout the thesis we are interested in

the interplay between abstract algebra and analysis. Chapters 2, 4, and 5 are closely

based upon the articles [88], [89], and [56], respectively.

In Chapter 2 we study (algebraic) finite-generation of closed left ideals in Banach

algebras. Let G be a locally compact group. We prove that the augmentation ideal in

L1pGq is finitely-generated as a left ideal if and only if G is finite. We then investigate

weighted versions of this result, as well as a version for semigroup algebras. Weighted

measure algebras are also considered. We are motivated by a recent conjecture of

Dales and Żelazko, which states that a unital Banach algebra in which every maximal

left ideal is finitely-generated is necessarily finite-dimensional. We prove that this

conjecture holds for many of the algebras considered. Finally, we use the theory that

we have developed to construct some examples of commutative Banach algebras that

relate to a theorem of Gleason.

In Chapter 3 we turn our attention to topological finite-generation of closed left

ideals in Banach algebras. We define a Banach algebra to be topologically left Noe-

therian if every closed left ideal is topologically finitely-generated, and we seek infinite-

dimensional examples of such algebras. We show that, given a compact group G, the

group algebra L 1pGq is topologically left Noetherian if and only if G is metrisable.

For a Banach space E satisying a certain condition we show that the Banach algebra

of approximable operators ApEq is topologically left Noetherian if and only if E 1 is

separable, whereas it is topologically right Noetherian if and only if E is separable.



We also define what it means for a dual Banach algebra to be weak*-topologically

left Noetherian, and give examples which satisfy and fail this condition. Along the

way, we give classifications of the weak*-closed left ideals in MpGq, for G a compact

group, and in BpEq, for E a reflexive Banach space with AP.

Chapter 4 looks at the Jacobson radical of the bidual of a Banach algebra. We

prove that the bidual of a Beurling algebra on Z, considered as a Banach algebra with

the first Arens product, can never be semisimple. We then show that rad p` 1p‘8i“1Zq2q

contains nilpotent elements of every index. Each of these results settles a question

of Dales and Lau. Finally we show that there exists a weight ω on Z such that the

bidual of ` 1pZ, ωq contains a radical element which is not nilpotent.

In Chapter 5 we move away from the theory of ideals and consider a question

about the notion of finiteness in C*-alegebras. We construct a unital pre-C*-algebra

A0 which is stably finite, in the sense that every left invertible square matrix over

A0 is right invertible, while the C*-completion of A0 contains a non-unitary isometry,

and so it is infinite. This answers a question of Choi. The construction is based on

semigroup algebras.
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CHAPTER 1

Introduction

In this chapter we shall introduce some notation and basic concepts that we shall

use throughout the thesis. The material in this chapter is mostly well-known, and

none of it is original. The main purpose is to fix notation and to indicate appropriate

sources for background material. In some places, however, we do mention results

which are not required in the thesis, but which we feel might interest the reader and

offer context.

1.1. Frequently Used Notation and Definitions

We shall denote by Z the group of integers and by Z` the semigroup of non-negative

integers t0, 1, 2, . . .u. Similarly we write Z´ “ t0,´1,´2, . . .u. For us, N “ t1, 2, . . .u.

Of course, Q denotes the set of rational numbers, R the set of real numbers, and C

the set of complex numbers.

Let X be any set. We write the identity map X Ñ X as idX . If X and Y are two

sets, and f : X Ñ Y is any function we write im f for the image of f . Given a subset

S Ă X we write Sc for the complement of S in X. We write χS for the indicator

function of S. Given x, y P X we define

(1.1) 1x,y “

$

’

’

&

’

’

%

1 if x “ y

0 if x ‰ y.

We use this notation in place of the more common Kronecker delta in order to avoid

a conflict with our notation for Dirac measures given in (1.3); compare also (1.8).

Let G be a group. We write H ď G to mean that H is a subgroup of G, and we

write rG : Hs for the index of H in G. Let X Ă G. We write X´1 “ tx´1 : x P Xu,

1
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and we say that X is symmetric if X “ X´1. Now suppose that X is a generating set

for G. Then we define the word-length with respect to X of a group element u P G by

|u|X :“ mintr P N : there exist x1, . . . , xr P X YX´1 such that u “ x1 ¨ ¨ ¨ xru.

When the generating set is clear, we shall usually write |u| in place of |u|X .

In this thesis linear spaces, and in particular algebras, will always be over C

unless otherwise stated. Let E be a linear space. Then, similarly to our notation for

subgroups, we write F ď E to indicate that F is a linear subspace of E.

Let K be a locally compact Hausdorff space. We say that a subset of K is precom-

pact if it has compact closure. We write C0pKq for the space of all complex-valued,

continuous functions on K which vanish at infinity, and CcpKq for the linear subspace

of C0pKq of compactly-supported functions. We denote by CpKq the linear space of

all continuous functions from K to C. We write MpKq for the set of complex, regular

Borel measures on K, which becomes a Banach space under the total variation norm.

The dual space of C0pKq may be identified isometrically withMpKq, with the duality

given by

(1.2) xf, µy “

ż

K

f dµ pf P C0pKq, µ PMpKqq.

We write BK for the Borel σ-algebra of K. Given a point x P K we denote the Dirac

measure at x by δx. That is

(1.3) δxpEq “

$

’

’

&

’

’

%

1 if x P E

0 if x R E
pE P BKq.

Now let X be any topological space. Let I be a directed set, U a filter on I, and

pxαqαPI a net in X which converges along U . We write limαÑU for the limit of pxαq

along U . In expressions such as limαÑ8 xα the symbol ‘8’ is understood to represent

the Fréchet filter on I. We often write limαÑ8 xα “ limα xα. Denoting the topology

onX by τ , we sometimes write limτ, αÑU xα if the topology is ambiguous. For instance,
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we frequently write things like limw˚, α xα when X is a dual Banach space in order to

indicate that the limit is taken in the weak*-topology.

1.2. Background From Banach Space Theory

1.2.1. Basic Definitions.

Let E be a Banach space. We use the notation BE “ tx P E : }x} ď 1u for the closed

unit ball of E. We denote the dual space of E by E 1, and the second dual, sometimes

termed the bidual, by E2. We often identify E with its image in E2 under the canonical

embedding. We write xx, λy for the value of a functional λ P E 1 applied to x P E. If

the exact dual pairing needs clarifying, we sometimes write this as xx, λypE,E1q. If H

is a Hilbert space, we usually write the inner product on H as x¨, ¨yH . Given elements

x, y P H we write x K y for the statement xx, yyH “ 0.

Now take subsets X Ă E and Y Ă E 1. We write

XK
“ tλ P E 1 : xx, λy “ 0 px P Xqu, YK “ tx P E : xx, λy “ 0 pλ P Y qu.

It is well known that, for X and Y as above, we have

(1.4) pYKq
K
“ spanw

˚

Y, pXK
qK “ spanX.

We denote the set of all bounded linear maps E Ñ E by BpEq. If F is another

Banach space, then we denote the set of bounded linear maps E Ñ F by BpE,F q.

If T P BpE,F q we write T 1 : F 1 Ñ E 1 for the dual map, and T 2 “ pT 1q1. We denote

by KpE,F q the set of compact operators E Ñ F , and by FpE,F q the set of finite-

rank operators E Ñ F . We define the approximable operators to be the closure of

FpE,F q in BpE,F q, and denote this space byApE,F q. Each of these spaces is a linear

subspace of BpE,F q, and ApE,F q and KpE,F q are closed. We write KpEq “ KpE,Eq

et cetera. For any Banach space E each of FpEq, ApEq and KpEq is an ideal in BpEq.

Given x P E and λ P E 1, the notation xbλ denotes the member of BpEq given by

xb λ : y ÞÑ xy, λyx py P Eq.
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We denote the projective tensor product of Banach spaces by pb (see [76] for back-

ground on Banach space tensor products). We may identify the set

spantxb λ : x P E, λ P E 1u

with the algebraic tensor product EbE 1, and therefore with a dense subspace of EpbE 1.

However, note that in general it is not possible to identify EpbE 1 with the closure of

spantx b λ : x P E, λ P E 1u in BpEq, which turns out to be ApEq. In particular, in

equation (1.5) below the expression
ř8

i“1 xibλi is understood to represent a member

of EpbE 1, not an operator. The subtle issue of representing elements of tensor products

of Banach spaces as operators is discussed in more detail in [65, Chapter 0, Section

b].

Let E be a reflexive Banach space. Then BpEq may be identified isometrically

with pEpbE 1q1 via the formula

(1.5)

C

8
ÿ

i“1

xi b λi, T

G

pE pbE1,BpEqq

“

8
ÿ

i“1

xTxi, λiypE,E1q,

for T P BpEq and
ř8

i“1 xi b λi P EpbE 1 [19, Proposition A.3.70]. In particular, if we

talk about the weak*-topology on BpEq, we always mean the weak*-topology induced

by this duality.

Now let E be an arbitrary Banach space. The strong operator topology, or the SOP

topology for short, is the locally convex topology on BpEq induced by the seminorms

BpEq Ñ r0,8q given by

T ÞÑ }Tx}

as x ranges through E. This topology is particularly important when E is a Hilbert

space, and as such we shall mention it below when we discuss representation theory

in Subsection 1.3.4. However, we also consider this topology on BpEq for an arbitrary

Banach space E in Section 3.6.
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1.2.2. The Approximation Property.

A Banach space E is said to have the approximation property, or simply AP, if,

whenever F is another Banach space, we have ApF,Eq “ KpF,Eq. There is also an

equivalent formulation of the approximation property which has some useful general-

izations: a Banach space E has AP if and only if, for every compact subset K Ă E

and every ε ą 0, there exists T P FpEq such that }Tx´x} ă ε px P Kq [59, Theorem

3.4.32]. We say that E has the bounded approximation property, or BAP, if there

exists a constant C ą 0 such that the operator T can be chosen to have norm at most

C. Clearly BAP implies AP. Moreover, a reflexive Banach space with AP has BAP

[14, Theorem 3.7]. Many Banach spaces have the bounded approximation property:

for instance any Banach space with a Schauder basis [59, Theorem 4.1.33] has BAP,

and it can be deduced from this that any Hilbert space has BAP. The Banach space

BpHq, for H an infinite dimensional Hilbert space, does not even have AP [82].

In Subsection 1.4.1 below we define approximate identities. In Chapter 3 we shall

be interested in Banach algebras of the form ApEq, for some Banach space E, such

that ApEq contains either a left or a right approximate identity (or both). This is

closely related to AP and BAP, as we summarise in the following theorem:

Theorem 1.2.1. Let E be a Banach space.

(i) The Banach algebra ApEq has a bounded left approximate identity if and only

if E has BAP.

(ii) The Banach algebra ApEq has a bounded (two-sided) approximate identity if

and only if E 1 has BAP.

(iii) If E has AP, then the Banach algebra ApEq has a (possibly unbounded) left

approximate identity.

Proof. Part (i) follows from [30, Theorem 2.6(i)], (ii) follows from [39, Theorem

3.3], and (iii) follows from [30, Theorem 2.5 (ii)]. �
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We do not know whether or not E 1 having AP is enough to imply that ApEq has

a right approximate identity.

We are also interested in AP in this thesis because of the following result. When

E is a Banach space with AP we have KpEq1 – EpbE 1 isometrically, with the duality

given by

(1.6)

C

T,
8
ÿ

i“1

xi b λi

G

pKpEq, E pbE1q

“

8
ÿ

i“1

xTxi, λiypE,E1q,

for T P KpEq, and
ř8

i“1 xi b λi P EpbE 1 [19, A.3.71]. Compare with (1.5). Hence, if

E is also reflexive, we have BpEq – KpEq2.

1.3. Background From Abstract Harmonic Analysis

1.3.1. Locally Compact Groups.

A central area of study in this thesis will be the theory of locally compact groups. By

a topological group we mean a pair pG, τq, where G is a group and τ is a Hausdorff

topology on G such that the maps

GˆGÑ G, ps, tq ÞÑ st

and

GÑ G, s ÞÑ s´1

are continuous. By a locally compact group we mean a topological group, whose

topology is locally compact. For an introduction to topological and locally compact

groups see [45] or [34].

Every locally compact group G has a positive Borel measure m defined on it which

is invariant under left translation, in the sense that

mpsEq “ mpEq ps P G, E P BGq,

and also satisfies
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(1) mpUq ą 0 for each non-empty, open set U Ă G;

(2) mpKq ă 8 for each compact set K Ă G;

(3) m is outer regular, i.e.

mpEq “ inftmpUq : E Ă U, U is openu pE P BGq;

(4) m is inner regular on open sets, i.e. for every open subset U of G we have

mpUq “ suptmpKq : K Ă U, K is compactu.

This measure is unique up to a positive scalar multiple and is called the left Haar

measure on G. In this thesis the left Haar measure on a locally compact group will

always be denoted bym. Sometimes we may abbreviate the phrase “left Haar measure”

to simply “Haar measure”. From now on, given p P r1,8s, we write L ppGq to mean

L ppG,mq, and given f P L 1pGq we usually write
ş

G
fptq dt in place of

ş

G
fptq dmptq.

For a proof of the existence and uniqueness of Haar measure see either [18, Chapter

9] or [34, Section 2.2]. By (2) above, mpGq ă 8 whenever G is compact. When this

is the case, we usually scale the Haar measure so that mpGq “ 1.

Given t P G, the map E ÞÑ mpEtq, from BG to r0,8s, is easily seen to be another

left Haar measure on G so that, by uniqueness, there exists a positive scalar ∆ptq such

that

mpEtq “ ∆ptqmpEq pt P G, E P BGq.

The function ∆ is a continuous group homomorphism GÑ p0,8q which is called the

modular function of G. We think of the modular function as measuring “how far”

the left Haar measure is from being invariant under right translation. A group for

which the modular function is identically equal to 1 is called unimodular. Compact

groups, discrete groups, and locally compact abelian groups are always unimodular.

The affine group of the real line is an example of a locally compact group which is

not unimodular [34, page 48].
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Let G be a locally compact group, and let f be an integrable function on G. The

translation invariance of the left Haar measure on G implies that we have

ż

G

fpstq dt “

ż

G

fptq dt ps P Gq.

Moreover, we shall use the following formulae throughout the text without reference;

they can be found in [19, Lemma 3.3.6]:

ż

G

fptq dt “

ż

G

fpt´1
q∆pt´1

q dt;

ż

G

fptsq dt “ ∆ps´1
q

ż

G

fptq dt ps P Gq.

1.3.2. The Group Algebra and the Measure Algebra.

We now introduce the Banach algebras which will be of most interest to us in this

thesis. Let G be a locally compact group, and let f, g P L 1pGq. We define the

convolution of f and g by

(1.7) pf ˚ gqpsq “

ż

G

fptqgpt´1sq dt ps P Gq,

and it turns out that this again belongs to L 1pGq. In order to be totally rigorous, we

should point out that this function is only defined m-almost everywhere, and one can

check that the element of L 1pGq that f ˚ g defines does not depend on the functions

chosen to represent elements f and g of L 1pGq. It can then be shown that convolution

defines an algebra multiplication on L 1pGq, and that }f˚g}1 ď }f}1}g}1 pf, g P L 1pGqq.

Hence L 1pGq is a Banach algebra, which is called the group algebra of G. Moreover,

the following formulae hold and we shall use them without reference throughout the

thesis:

pf ˚ gqpsq “

ż

G

fpst´1
qgptq∆pt´1

q dt “

ż

G

fpstqgpt´1
q dt ps P Gq.
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We can also define the convolution of two complex, regular Borel measures, using

the formula

pµ ˚ νqpEq “ pµˆ νqpp´1
pEqq pµ, ν PMpGq, E P BGq,

where p : G ˆ G Ñ G denotes the multiplication map. Bearing in mind that MpGq

may be identified with the dual space of C0pGq, we obtain the following nice formula:

xf, µ ˚ νy “

ż

G

ż

G

fpstq dµpsq dνptq pf P C0pGq, µ, ν PMpGqq.

In fact this formula gives an alternative way to define the convolution of two measures

belonging to MpGq [81].

By the Radon–Nikodym Theorem, we may identify L 1pGq with the measures in

MpGq which are absolutely continuous with respect to Haar measure, and under this

identification the convolution of two elements of L 1pGq regarded as measures coincides

with convolution as defined in (1.7). We shall usually not distinguish between L 1pGq

and its image inside MpGq. In fact L 1pGq is a closed ideal in MpGq, and we shall

freely use the following formulae without reference:

pµ ˚ fqpsq “

ż

G

fpt´1sq dµptq pµ PMpGq, f P L 1
pGqq;

pf ˚ µqpsq “

ż

G

fpst´1
q∆pt´1

q dµptq pµ PMpGq, f P L 1
pGqq.

By a Banach *-algebra we mean a Banach algebra A which has an isometric

involution defined on it. Given a measure µ PMpGq we define µ˚ PMpGq by

µ˚pEq “ µpE´1q pE P BGq.

The operation µ ÞÑ µ˚ is an involution rendering MpGq a Banach *-algebra, and

L 1pGq a *-subalgebra. Given f P C0pGq we have

ż

G

fptq dµ˚ptq “

ż

G

fpt´1q dµptq.
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Given f P L 1pGq, we find that f˚psq “ fps´1q∆ps´1q ps P Gq. We also define the

notation qfpsq “ fps´1q ps P Gq.

1.3.3. Semigroup Algebras and Beurling Algebras.

Before we define Beurling algerbas we define weighted semigroup algebras.

Definition 1.3.1. Let S be a semigroup. Then a weight on S is a function

ω : S Ñ r1,8q such that

ωpuvq ď ωpuqωpvq pu, v P Sq.

In the case where S has an identity e, we insist that ωpeq “ 1. Moreover, when G is a

locally compact group, weights on G are always assumed to be continuous. A weight

ω on a locally compact group G is said to be symmetric if ωpuq “ ωpu´1q pu P Gq.

Given a semigroup S and a weight ω on S, we define

` 1
pS, ωq “

#

f : S Ñ C : }f}ω :“
ÿ

uPS

|fpuq|ωpuq ă 8

+

.

The set ` 1pS, ωq is a Banach space under pointwise operations with the norm given

by } ¨ }ω, and a Banach algebra when multiplication is given by convolution, which is

defined for f, g P ` 1pSq by

pf ˚ gqpuq “
ÿ

st“u

fpsqgptq pu P Sq.

By a weighted semigroup algebra, we shall mean a Banach algebra of this form. When

ω is identically 1, we write ` 1pSq in place of ` 1pS, ωq, and we call such algebras

semigroup algebras.

We denote by CS the dense subalgebra of ` 1pSq consisting of its finitely-supported

elements. In fact it is easily seen that CS is a dense subalgebra of every weighted

semigroup algebra on S. Given an element u P S we write δu for the function given
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by

(1.8) δuptq “

$

’

’

&

’

’

%

1 if t “ u

0 otherwise
pt P Sq.

This does not conflict with the notation defined in (1.3), since S may be thought of as

a discrete topological space, and with this point of view the two definitions coincide.

We have CS “ spantδu : u P Su, and δu ˚ δv “ δuv pu, v P Sq.

Now suppose that we have a locally compact group G and a weight ω on G. Then

we define

L1
pG,ωq “

"

f P L1
pGq : }f}ω :“

ż

G

|fptq|ωptq dmptq ă 8

*

,

and

MpG,ωq “

"

µ PMpGq : }µ}ω :“

ż

G

ωptq d|µ|ptq ă 8

*

.

The sets L1pG,ωq and MpG,ωq are Banach algebras with respect to convolution

multiplication, and point-wise addition and scalar multiplication. Moreover, L1pG,ωq

is a closed ideal of MpG,ωq. It is a Banach algebra of the form L1pG,ωq that we refer

to as a Beurling algebra, whereas we refer to a Banach algebra of the formMpG,ωq as

a weighted measure algebra. Note that Beurling algebras are occasionally referred to

as weighted group algebras. When the group G is discrete, both of these definitions

coincide with that of ` 1pG,ωq.

Example 1.3.2. (i) The trivial weight ω “ 1 is always a weight on any

locally compact group G (or any semigroup), and in this case we recover the

group algebra L1pGq.

(ii) Let G be a discrete group, and fix a generating set X. Then

u ÞÑ p1` |u|Xq
α, GÑ r1,8q,
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defines a weight on G for each α ě 0. We call this weight a radial polynomial

weight of degree α.

(iii) With notation as in (ii), the map

u ÞÑ c|u|
β
X , GÑ r1,8q,

defines a weight for any c ě 1 and 0 ă β ď 1. We call this a radial exponential

weight with base c and degree β.

More generally, a weight on a finitely-generated group G is said to be radial if there

exists a finite generating set X such that |u|X “ |v|X implies that ωpuq “ ωpvq for

any u, v P G.

When the groupG is discrete we usually prefer the notation ` 1pG,ωq over L 1pG,ωq.

For a general locally compact group G and a weight ω on G, we often write ` 1pG,ωq

for the Beurling algebra associated with ω and G with its discrete topology. Moreover,

the set of discrete measures belonging to MpG,ωq may be identified with ` 1pG,ωq.

Letting McpG,ωq denote the continuous measures belonging to MpG,ωq, we find that

McpG,ωq is a closed ideal in MpG,ωq and ` 1pG,ωq a closed subalgebra, with

MpG,ωq “McpG,ωq ‘ `
1
pG,ωq,

where ‘ denotes the direct sum of Banach spaces. In other words, we have a split

exact sequence of Banach algebras

0 ÑMcpG,ωq ÑMpGq Ñ ` 1
pG,ωq Ñ 0.

In particular

(1.9) MpG,ωq{McpG,ωq – ` 1
pG,ωq.

(This follows straightforwardly from [19, Theorem 3.3.36].)
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Let G be a locally compact group, and let ω be a weight on G. We define

C0pG, 1{ωq “ tf : GÑ C : f{ω P C0pGqu

We define a norm } ¨ }8, ω on C0pG, 1{ωq by

}f}8, ω :“ sup
sPG

ˇ

ˇ

ˇ

ˇ

fpsq

ωpsq

ˇ

ˇ

ˇ

ˇ

f P C0pG, 1{ωq.

The Banach space MpG,ωq may be identified isometrically with C0pG, 1{ωq
1 via

xf, µy “

ż

G

f dµ pf P C0pG, 1{ωq, µ PMpG,ωqq.

Now consider a discrete group G, and a weight ω on G. Then we define

`8pG, 1{ωq “

"

f : GÑ C : }f}8, ω :“ sup
uPG

ˇ

ˇ

ˇ

ˇ

fpuq

ωpuq

ˇ

ˇ

ˇ

ˇ

ă 8

*

.

This is a Banach space which may be identified isometrically with ` 1pG,ωq1 via

xg, fy “
ÿ

uPG

gpuqfpuq pg P ` 1
pG,ωq, f P `8pG, 1{ωqq.

For non-discrete G, the space L 1pG,ωq1 may also be identified with a certain weighted

L8-space, but we shall not use this in this thesis.

1.3.4. Representation Theory.

In what follows, G will be a locally compact group, and given a Hilbert space H we

denote the group of unitary operators H Ñ H by UpHq. We define a representation

of G to be a pair pπ,Hπq, where Hπ is a Hilbert space, and π : GÑ UpHπq is a group

homomorphism which is continuous with respect to the given topology on G and

the strong operator topology on UpHπq (many authors refer to this as a “continuous,

unitary representation”). A representation pπ,Hπq is said to be irreducible if it has no

non-trivial subrepresentations, i.e. if there is no closed linear subspace E of Hπ such

that πpsqE Ă E ps P Gq.
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Let pπ,Hπq and pσ,Hσq be two representations of G. We say that the two repre-

sentations are equivalent if there exists a surjective isometry T : Hπ Ñ Hσ such that

σpsq ˝ T “ T ˝ πpsq ps P Gq. It is easily checked that this notion of equivalence is an

equivalence relation. For each equivalence class of irreducible representations we pick

a distinguished member to represent the equivalence class, and we collect these repre-

sentatives together into a set that we denote by pG, sometimes called the unitary dual

of G. Since we do not usually distinguish between representations that are equivalent,

we often treat pG as if it were the collection of all irreducible representations of G,

although, of course, formally it is not. When G is abelian pG may be identified with

the usual dual group of G consisting of the continuous group homomorphisms GÑ T

(see [72] for a detailed exposition of locally compact abelian groups and their duals).

Given a representation pπ,Hπq, there is a bounded algebra homomorphism

π1 : MpGq Ñ BpHπq

such that

(1.10) xπ1pµqξ, ηy “

ż

G

xπptqξ, ηy dµptq,

for every µ P MpGq, ξ, η P Hπ (see [45, Theorem 22.3 (iii)]). We shall mostly be

interested in lifting π to L 1pGq via π1|L 1pGq. From now on we write π “ π1|L 1pGq in an

abuse of notation.

By the Gelfand–Raikov Theorem [45, Theorem 22.12], the irreducible representa-

tions of G separate the points of G. An important fact about compact groups is that

all of their irreducible representations are finite-dimensional [45, Theorem 22.13].

1.3.5. The Fourier and Fourier–Stieltjes Algebras.

In this subsection, we shall introduce two more families of Banach algebras associated

with locally compact groups, namely the Fourier and Fourier–Stieltjes algebras. These

are commutative Banach algebras which capture representation-theoretic information
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about the underlying group. These algebras were first studied in this level of generality

by Eymard in [32]. A detailed account of these algebras will soon appear in [55].

Let G be a locally compact group. Given f P L 1pGq define

}f}C* “ sup
!

}πpfq} : π P pG
)

.

It turns out that this defines a C*-norm on L 1pGq. We denote the completion of

L 1pGq in the norm } ¨ }C* by C˚pGq, the group C*-algebra of G (for further details

see [34, Section 7.1]). This C*-algebra has the property that every representation π

of G extends from a *-representation of L 1pGq to a *-representation of C˚pGq. We

continue to denote this extension by π.

It follows from [45, Theorem 22.11] that the representations of G separate the

points of L 1pGq (even MpGq), and it follows from this fact, and the construction of

C˚pGq, that they also separate the points of C˚pGq.

Let pπ,Hπq be a representation of G. Given vectors ξ, η P Hπ we define a function

ξ ˚π η : GÑ C by

pξ ˚π ηqpsq “ xπpsqξ, ηy ps P Gq.

We define the Fourier–Stieltjes algebra of G to be

BpGq :“ tξ ˚π η : pπ,Hπq is a representation of G, ξ, η P Hπu.

It can be shown that this is an algebra under point-wise addition and multiplication

of functions. Moreover, every element of BpGq acts as a bounded linear functional on

C˚pGq via the formula

(1.11) xf, ξ ˚π ηypC˚pGq, BpGqq “ xπpfqξ, ηyHπ pf P C˚pGqq.

It can be shown that every bounded linear functional of C˚pGq arises in this way, so

that we may formally identify BpGq with C˚pGq1. We define the norm on BpGq to

be the dual space norm inherited from this identification, and it turns out that, with
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this norm, BpGq becomes not only a Banach algebra, but a dual Banach algebra (as

defined in Subsection 1.4.5 below).

We define the Fourier algebra of G to be the closed ideal of BpGq given by

ApGq :“ CcpGq XBpGq.

Many equivalent definitions of ApGq are available (see for example [32, Proposition

(3.4), Théorème (3.10)]).

Every element s of the group G induces a character on ApGq via evaluation:

f ÞÑ fpsq, ApGq Ñ C.

In this manner the character space of ApGq may be identified with G as a topological

space (see [32, Théorème (3.34)], or [77]). Since the evaluation maps clearly separate

the elements of the Fourier algebra, ApGq may be regarded as a Banach function

algebra on G. It is known that ApGq Ă C0pGq [32, Proposition (3.7) 1˝].

When G is an abelian group, the Fourier algebra of G may be identified with

the group algebra of the dual group L 1p pGq, and likewise BpGq – Mp pGq. For this

reason we often view the theory of the Fourier algebra (now for an arbitrary locally

compact group) as being “dual” to the theory of the group algebra. In fact, this can

be made precise using the language of Kac algebras [31]. To give a very basic example

illustrating this point, it is know that, given a locally compact group G, the group

algebra L 1pGq is unital if and only if G is discrete [58, Theorem 31D]. Therefore we

might hope that ApGq should be unital if and only if G is compact, since compactness

is the dual notion to discreteness in the theory of locally compact abelian groups.

Indeed it is easily checked that this is true.

We shall make use of this heuristic a couple of times in this thesis, and sometimes

we are able to “dualise” a proof that works for the Fourier algebra to obtain a proof of

a theorem about the group algebra, and vice versa. See, for example, Theorem 2.3.5

and Theorem 2.4.1, or Proposition 3.3.1 and Theorem 3.3.5.
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1.4. Background From Banach Algebras

1.4.1. Approximate Identities.

Let A be a semi-topological algebra, that is an algebra with a topology which renders

the underlying vector space a topological vector space, and which makes the multi-

plication separately continuous. We say that a net peαq in A is a left approximate

identity for A if limα eαa “ a for all a P A, and a right approximate identity if instead

limα aeα “ a for all a P A. We say that peαq is an approximate identity if it is both a

left and a right approximate identity.

Now assume that A is a Banach algebra. Then we say that a net peαq Ă A is

a bounded approximate identity if it is an approximate identity and supα }eα} ă 8.

Bounded left and right approximate identities are defined analogously. It is known,

for example, that L 1pGq always has a bounded approximate identity of bound 1 for

any locally compact group G [19, Lemma 3.3.22 (i)], as does any C*-algebra [19,

Lemma 3.2.20]. The former fact shall be important to us in this thesis.

The following result is often known as Cohen’s factorisation theorem.

Theorem 1.4.1. Let A be a Banach algebra with a bounded approximate identity,

and let E be a Banach left A-module such that spantax : a P A, x P Eu “ E. Then

for every x P E there exist a P A and y P E such that x “ ay.

Proof. See [19, Theorem 2.9.24], or [62, Theorem 5.2.2]. �

See [19, Section 2.9] for more information on approximate identities and factori-

sation results.

1.4.2. Unitisation.

Let A be a complex algebra. We define the unitisation of A (sometimes called the

conditional unitisation of A), denoted here by A7, as follows. If A is already unital

then we set A7 “ A, so suppose that A is non-unital. We set

A7 “ C1‘ A,
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as a vector space, where 1 is some formal symbol which will act as a unit. We view

A7 as an algebra with multiplication given by the formula

pλ1` aqpµ1` bq :“ λµ1` pµa` λb` abq pλ, µ P C, a, b, P Aq.

We find that A7 is a unital algebra with identity element 1, and that A embeds into

A7 as an ideal via a ÞÑ 01` a. From now on we shall always identify A with its image

in A7. When pA, } ¨ }q is a normed algebra then A7 also becomes a normed algebra,

with norm defined by

}λ1` a} :“ |λ| ` }a} pλ P C, a P Aq.

If A is a Banach algebra, then A7 is also.

1.4.3. Multiplier Algebras.

We now describe the so-called multiplier algebra of a Banach algebra A, which is an

object that is closely related to the extensions of A. In some ways it is analogous

to the concept of the automorphism group of a group in group theory, as we shall

explain below.

Let A be a Banach algebra. By a right multiplier on A we mean a linear map

R : A Ñ A such that Rpabq “ aRpbq pa, b P Aq. By a left multiplier on A we mean a

linear map L : AÑ A such that Lpabq “ Lpaqb pa, b P Aq. By a multiplier we mean a

pair pL,Rq, where L is a left multiplier and R is a right multiplier, such that

aLpbq “ Rpaqb pa, b P Aq.

We say that pL,Rq is a bounded multiplier if both L and R are bounded. We define

the multiplier algebra MpAq to be the set of bounded multipliers on A, and note that

it inherits the structure of a Banach algebra by regarding it as a closed subalgebra
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of BpAq ‘8 BpAqop (again, see [19, Proposition 2.5.12(i)]). This algebra was origi-

nally defined by Johnson in [49], who was the first to systematically study multiplier

algebras.

The importance of the multiplier algebra lies in the fact that, whenever there is

another Banach algebra B such that A may be identified isomorphically with a closed

ideal of B, each element b P B defines a multiplier pL,Rq on A, by setting L : a ÞÑ ba

and R : a ÞÑ ab pa P Aq. This induces a bounded homomorphism B Ñ MpAq. The

analogy with the automorphism group of a group may now be explained: if G is any

group and N a normal subgroup of G, then there is a similar map from G to AutpNq

defined by conjugation. In general the map B Ñ MpAq may have a large kernel.

Hence, we introduce some further terminology which allows us to avoid trivialities.

An ideal I in A is said to be left faithful in A if xI “ 0 implies that x “ 0 for every

x P A. We define the term right faithful similarly, and I is said to be faithful if I is

both left and right faithful. We say that A is faithful if is a faithful ideal in itself. It

is routinely checked that any Banach algebra with an approximate identity is faithful,

so that in particular all group algebras are faithful. Also, for any Banach space E,

any closed subalgebra of BpEq containing the finite-rank operators is faithful. By [19,

Proposition 2.5.12(i)], if A is a faithful Banach algebra, then whenever pL,Rq is a

multiplier, the maps L and R are automatically continuous, so that the boundedness

condition may be dropped in the definition of MpAq.

Given a P A we may define the multiplication maps La, Ra : AÑ A by

La : x ÞÑ ax, Ra : x ÞÑ xa px P Aq.

When A is faithful it can be shown that A embeds algebraically into MpAq via a ÞÑ

pLa, Raq. When A has a bounded approximate identity this embedding has closed

range, and when A has a bounded approximate identity of bound 1 the embedding is

isometric.
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For faithful Banach algebras, the multiplier algebra is defined by the following uni-

versal property, which heuristically speaking says that MpAq is the “largest” Banach

algebra containing A as a faithful ideal.

Theorem 1.4.2. Let A be a faithful Banach algebra. Then the multiplier algebra

of A is the unique Banach algebra M satisfying:

(i) there exists a bounded, injective homomorphism α0 : AÑM such that α0pAq

is a faithful ideal in MpAq;

(ii) whenever there is a bounded, injective homomorphism β : A Ñ B, for some

Banach algebra B, such that βpAq is a faithful ideal in B then there exists a

unique bounded monomorphism θ : B ÑM such that θ ˝ β “ α0.

Proof. The map α0 in (i) can be taken to be the map a : ÞÑ pLa, Raq. The fact

that MpAq satisfies (ii) follows from [13]. Verifying uniqueness is routine. �

This characterisation of the multiplier algebra is due to Busby [13], who defines an

analogue of the multiplier algebra, called amaximal container, in a much more general,

category-theoretic setting. For example, in the category of groups the analogue of

being faithful is having trivial centre, and for such groups the maximal container of

a group G turns out to be its automorphism group. Busby goes on to show that

maximal containers play a central rôle in understanding extensions in the category.

Hence, in particular, given Banach algebras A and B, if A is faithful, the theory of

the extensions of A by B is intimately connected with MpAq.

It is easily seen that, for any Banach algebra A, the pair pidA, idAq defines a

multiplier on A, and that it is a multiplicative unit for MpAq. In fact, for faithful

Banach algebras, the fact that MpAq is unital can be seen abstractly by using the

universal property of Theorem 1.4.2 and the fact that A is a faithful ideal in A7. This

leads to MpAq being often described as the “largest” unitisation of A.
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Let A be a faithful Banach algebra. We define the strict topology on MpAq to be

the locally convex topology induced by the seminorms MpAq Ñ C given by

µ ÞÑ }aµ} and µ ÞÑ }µa} pa P Aq.

Note that in [19] the strict topology is referred to as the strong operator topology. If

A has an approximate identity, then it is easily seen that A is dense in MpAq with

respect to the strict topology.

An important example for us is provided by the beautiful theorem of Wendel

which states that, for a locally compact group G, the multiplier algebra of L 1pGq

may be identified isometrically with the measure algebra (see [87] or [19, Theorem

3.3.40]). Another key example is that, for any Banach space E, the multiplier algebras

of both ApEq and KpEq may be identified isometrically with BpEq [62, 1.7.14]. As

a final example, we mention that, if K is any locally compact Hausdorff space, then

MpC0pKqq may be identified with CbpKq, the space of bounded, continuous functions

on K [61, Example 3.1.3].

1.4.4. The Jacobson Radical.

Let A be an algebra, and take n P N. We say that a P A is nilpotent of index n if

an “ 0, but an´1 ‰ 0. Given a left ideal I of A and n P N, we write

In “ spanta1a2 ¨ ¨ ¨ an : a1, . . . , an P Iu

for the ideal generated by n-fold products of elements of I, and we say that I is

nilpotent of index n if In “ t0u but In´1 ‰ t0u.

Now let A be a unital Banach algebra. We say that a P A is quasi-nilpotent

if its spectrum is zero, or, equivalently, if limnÑ8 }a
n}1{n “ 0, and we denote the

set of quasi-nilpotent elements of A by QpAq. Every nilpotent element is also quasi-

nilpotent. We define the Jacobson radical of A, denoted by rad pAq, to be the largest
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left ideal of A contained in QpAq, and it can be shown that

rad pAq “ ta P A : ba P QpAq pb P Aqu.

In fact, rad pAq is a closed, two-sided ideal of A, and

rad pAq “ ta P A : ab P QpAq pb P Aqu.

For a possibly non-unital Banach algebra A we define rad pAq :“ A X rad pA7q. We

often abbreviate the phrase “Jacobson radical” to “radical”, and by a radical element

of A we mean an element of rad pAq.

We say that A is semisimple if rad pAq “ t0u. For example, any C*-algebra is

semisimple [19, Corollary 3.2.12]. For us, it is important to note that, for a locally

compact groupG, the Banach algebras L 1pGq andMpGq are semisimple [19, Corollary

3.3.35]. However, it seems to be an open question whether or not Beurling algebras

are always semisimple. It is known that they are semisimple in the case that the

underlying group is abelian, as well as in the case that the group is arbitrary but the

weight is symmetric [23, Theorem 7.13].

Many equivalent characterizations of rad pAq are available. We note a few of the

important ones for context, although we shall not use them in the thesis (for details

see [19, Section 1.5]).

Theorem 1.4.3. Let A be a Banach algebra. Then the Jacobson radical rad pAq

is equal to each of the following:

(1) the intersection of the maximal modular left ideals of A;

(2) the intersection of the maximal modular right ideals of A;

(3) the set of elements of A that annihilate every (algebraically) simple left A-

module;

(4) the set of elements of A that annihilate every (algebraically) simple right

A-module. �
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1.4.5. Dual Banach Algebras.

A dual Banach algebra is a pair pA,Xq, where A is a Banach algebra and X is a

Banach space, such that X 1 is isomorphic to A as a Banach space, and such that the

multiplication on A is separately continuous in the weak*-topology induced by X.

For example, every von Neumann algebra is a dual Banach algebra. Another class of

examples is given by BpEq, for E a reflexive Banach space. In this case the predual

may be identified with EpbE 1 as in (1.5). An important example for us will be the

measure algebra MpGq of a locally compact group G, with predual given by C0pGq

as in (1.2). Similarly the Fourier–Stieltjes algebra BpGq is a dual Banach algebra,

with predual C˚pGq as in (1.11). Finally, we remark that, given a Banach algebra

A, its bidual A2 is a dual Banach algebra under either Arens product if and only if

A is Arens regular (Arens products and Arens regularity are defined in Subsection

1.4.6 below). These examples all appear in [74, Example 4.4.2], except for BpGq, but

it is routine to check that this is a dual Banach algebra. Another natural family of

examples is given below:

Proposition 1.4.4. Let G be a locally compact group, and let ω be a weight on

G. Then pMpG,ωq, C0pG, 1{ωqq is a dual Banach algebra.

Proof. By considering compactly supported functions, which form a dense sub-

space of C0pG, 1{ωq, we see that the formula

xf, µ ˚ νy “

ż

G

ż

G

fpstq dµpsq dνptq pf P C0pG, 1{ωq, µ, ν PMpG,ωqq

continues to hold in the weighted setting. It follows that, given f, µ and ν as in that

formula, we have

xf, µ ˚ νy “

ż

G

pf ¨ µqptq dνptq, xf, ν ˚ µy “

ż

G

pµ ¨ fqptq dνptq
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where

pf ¨ µqpsq “

ż

G

fptsq dµptq and pµ ¨ fqpsq “

ż

G

fpstq dµptq,

for s P G. If we can show that, for every f and µ, the function f ¨ µ P C0pG, 1{ωq,

then it will follow that the map MpG,ωq Ñ C given by ν ÞÑ xf, µ ˚ νy is equal to

the weak*-continuous map ν ÞÑ xf ¨ µ, νy. It will then follow that the map ν ÞÑ µ ˚ ν

is weak*-continuous. Similarly, if we can show that, for every f and µ, the function

µ ¨ f P C0pG, 1{ωq, it will follow that multiplication on the right by a fixed element

is weak*-continuous, and we will have proven the proposition. We show only that

f ¨ µ P C0pG, 1{ωq, the other case being very similar.

To this end, fix f P C0pG, 1{ωq, and µ P MpG,ωq. We first show that pf ¨ µq{ω

is continuous. Let s P G and let ε ą 0. Let F be a compact subset of G such

that
ş

GzF
ωptq d|µ|ptq ă ε (which exists because µ is regular and }µ}ω ă 8). Since

ω is continuous, so must f be. Hence f |F is uniformly continuous, so there exists a

compact neighbourhood V of s such that supF |fptuq ´ fptsq| ă ε whenever u P V ,

and we set C “ supV ω. For all u P V we have

ˇ

ˇ

ˇ

ˇ

ż

GzF

pfptuq ´ fptsqq dµptq

ˇ

ˇ

ˇ

ˇ

ď

ż

GzF

ˇ

ˇ

ˇ

ˇ

fptuq

ωptq

ˇ

ˇ

ˇ

ˇ

ωptq d|µ|ptq `

ż

GzF

ˇ

ˇ

ˇ

ˇ

fptsq

ωptq

ˇ

ˇ

ˇ

ˇ

ωptq d|µ|ptq

ď

ż

GzF

ˇ

ˇ

ˇ

ˇ

fptuq

ωptuq

ˇ

ˇ

ˇ

ˇ

ωpuqωptq d|µ|ptq

`

ż

GzF

ˇ

ˇ

ˇ

ˇ

fptsq

ωptsq

ˇ

ˇ

ˇ

ˇ

ωpsqωptq d|µ|ptq

ď }f}8, ωpωpuq ` ωpsqqε ď 2C}f}8, ωε.

We also have

ˇ

ˇ

ˇ

ˇ

ż

F

pfptuq ´ fptsqq dµptq

ˇ

ˇ

ˇ

ˇ

ď }µ}ω sup
tPF

ˇ

ˇ

ˇ

ˇ

fptuq ´ fptsq

ωptq

ˇ

ˇ

ˇ

ˇ

ď }µ}ω sup
tPF
|fptuq ´ fptsq| ă }µ}ωε.
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It follows that for all u P V we have

|pf ¨ µqpuq ´ pf ¨ µqpsq| ă εp}µ}ω ` 2C}f}8, ωq.

Since ε was arbitrary, we have shown that f ¨µ is continuous, and hence so is pf ¨µq{ω.

Next we show that pf ¨µq{ω tends to zero at infinity. Let ε ą 0, let F be a compact

subset of G such that
ş

GzF
ωptq d|µ|ptq ă ε, and let E be a compact subset of G such

that supGzE |fpsq{ωpsq| ă ε. Then for every s P GzpF´1Eq we have

|pf ¨ µqpsq|

ωpsq
ď

ż

G

|fptsq|

ωpsq
d|µ|ptq ď

ż

G

|fptsq|

ωptsq
ωptq d|µ|ptq

“

ż

GzF

|fptsq|

ωptsq
ωptq d|µ|ptq `

ż

F

|fptsq|

ωptsq
ωptq d|µ|ptq

ď }f}8, ω

ż

GzF

ωptq d|µ|ptq ` }µ}ω sup
GzE

ˇ

ˇ

ˇ

ˇ

fpsq

ωpsq

ˇ

ˇ

ˇ

ˇ

ď εp}f}8, ω ` }µ}ωq.

As ε was arbitrary, it follows that f ¨ µ P C0pG, 1{ωq. A very similar argument shows

that µ ¨ f P C0pG, 1{ωq, and this completes the proof. �

The above proposition does not seem to be stated explicitly anywhere in the

literature.

We now give some general background on the topic of dual Banach algebras, al-

though we shall not explicitly use what follows in the thesis. Building on the work of

Young [91], Daws [26] showed that every dual Banach algebra has a weak*-continuous,

isometric isomorphism to a weak*-closed subalgebra of BpEq, for some reflexive Ba-

nach space E. This result may be thought of as analogous to the famous characteri-

sation due to Sakai of von Neumann algebras as C*-algebras which are isometrically

dual Banach spaces. However, in contrast to the situation for von Neumann algebras,

the predual of a dual Banach algebra need not be unique. Indeed, consider any Ba-

nach space E which has at least two isomorphically distinct preduals (for example

` 1) and consider it as a Banach algebra with zero multiplication. Then both preduals
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render E a dual Banach algebra. In particular, the weak*-topology on a dual Banach

algebra may not be unique. A detailed study of such phenomena for more natural

Banach algebras, such as ` 1pZq, has been undertaken: see [27, 28].

The term “dual Banach algebra” was first defined in [73], although the concept

was studied before. Since that time dual Banach algebras have attracted a significant

amount of attention, particularly from the harmonic analysis community. One of the

most interesting aspects of the theory of dual Banach algebras, although we shall not

study it in this thesis, is Connes amenability. This is a certain cohomology condi-

tion on a dual Banach algebra which parallels the theory of amenability for ordinary

Banach algebras: specifically, a dual Banach algebra pA,Xq is Connes amenable if

every weak*-continuous derivation from A to a normal dual module is inner. See, for

example, [73, 74]. One particularly striking result is that the measure algebra of a

locally compact group, MpGq, is Connes-amenable if and only if G is amenable [75];

compare this with the fact that L 1pGq is amenable if and only if G is amenable [50],

whereas it was shown in [21] that MpGq is amenable if and only if G is discrete and

amenable, in which case of course MpGq “ L 1pGq.

1.4.6. Arens Products.

Next we describe Arens products, which give a way to make the bidual of a Banach al-

gebra A again into a Banach algebra by defining an algebra multiplication on A2 with

the property that, when A is viewed as a subspace of A2 under the canonical embed-

ding, the new multiplication restricted to A coincides with the original multiplication

on A. In fact there are two ways to define such a multiplication.

Arens ([2], [3]) introduced two products on A2, now denoted by l and3, rendering

it a Banach algebra. These are called the first and second Arens product respectively.

They are defined in three stages as follows: first we define the action of A on A1; then

we define Φ ¨λ and λ ¨Φ, for λ P A1 and Φ P A2; finally, this allows us to define l and
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3. The exact formulae are:

xλ ¨ a, by “ xλ, aby, xa ¨ λ, by “ xλ, bay,

xΦ ¨ λ, ay “ xΦ, λ ¨ ay, xλ ¨Ψ, ay “ xΨ, a ¨ λy,

xΨlΦ, λy “ xΨ,Φ ¨ λy, xΨ3Φ, λy “ xΦ, λ ¨Ψy,

for Φ,Ψ P A2, λ P A1, a, b P A (for more details see [19, Section 2.6]). Both Arens

products have the property that they agree with the original multiplication on A, when

A is identified with its image under the canonical embedding into A2. In this thesis,

unless we specify otherwise, whenever we talk about the bidual of a Banach algebra

we are implicitly considering it as a Banach algebra with the first Arens product.

The first Arens product has the property that multiplication by a fixed element on

the right is weak*-continuous, whereas the second Arens product has this property

on the left. In particular the following formulae hold, for Φ,Ψ elements of A2, and

paαq, pbβq Ă A nets converging in the weak*-topology to Φ and Ψ respectively:

(1.12) ΦlΨ “ lim
α

lim
β
aαbβ, Φ3Ψ “ lim

β
lim
α
aαbβ.

In these formulae the limits are again taken in the weak*-topology. If l “ 3, we say

that A is Arens regular, and if the other extreme occurs, namely that

tΦ P A2 : ΦlΨ “ Φ3Ψ pΨ P A2qu “ A

and

tΦ P A2 : ΨlΦ “ Ψ3Φ pΨ P A2qu “ A,

we say that A is strongly Arens irregular. Both of these extremes may occur for Banach

algebras of the type considered in Chapter 4, namely those of the form ` 1pZ, ωq, as

may intermediate cases (see [23, Theorem 8.11] and [23, Example 9.7]).

Most of our discussion of Arens products will take place in Chapter 4, where we

shall consider the second duals of Beurling algebras. However, In Chapter 3 we shall
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make use of the following result, which also provides a nice example where the Arens

products coincide with something familiar.

Lemma 1.4.5. Let E be a reflexive Banach space with the approximation property.

Then KpEq2 “ BpEq and both the Arens products coincide with the usual composition

of operators in BpEq. In particular, KpEq is Arens regular.

Proof. As we mentioned in Subsection 1.2.2, when E is reflexive with AP KpEq2

may be identified with BpEq, with the dualities given by (1.5) and (1.6). As we noted

at the beginning of Subsection 1.4.5, BpEq is a dual Banach algebra whenever E is re-

flexive. Hence, in particular composition of operators is separately weak*-continuous.

It now follows from (1.12) that both Arens products coincide with composition of

operators. �

In fact it follows from [91, Theorem 3] that KpEq is Arens regular if and only if E

is reflexive, but without AP we do not know whether KpEq2 is isomorphic to BpEq.

See also [19, Theorem 2.6.23].

Let A be a Banach algebra. An element Φ0 P A
2 is called a mixed identity if it is a

right identity for pA2,lq and a left identity for pA2,3q. By [19, Proposition 2.9.16],

A2 has a mixed identity if and only if A has a bounded approximate identity.



CHAPTER 2

Finitely Generated Left Ideals in Banach Algebras on Groups

and Semigroups

2.1. Introduction

This chapter is concerned with finitely-generated ideals in certain Banach algebras,

and is based on the paper [88]. In this thesis we always understand the phrase

“finitely-generated” in the following sense:

Definition 2.1.1. Let A be an algebra and let I be a left ideal in A. We say

that I is finitely-generated if there exist n P N and x1, . . . , xn P I such that I “

A7x1 ` ¨ ¨ ¨ ` A
7xn.

Note that when this definition is applied to topological algebras we do not take

the closure on the right-hand side. In the next chapter we shall study topologically

finitely-generated ideals in Banach algebras (defined there). If there is ever danger of

confusion we may occasionally write “algebraically finitely-generated” to mean finitely-

generated.

The Banach algebras of most interest to us will be those which were defined in

Subsections 1.3.2 and 1.3.3 of the introduction. Moreover, we shall mostly focus on

the so-called augmentation ideals of these algebras, which we define now.

Let S be a semigroup, and take ω to be a weight on S. We define the augmentation

ideal of ` 1pS, ωq to be

` 1
0pS, ωq “

#

f P ` 1
pS, ωq :

ÿ

uPS

fpuq “ 0

+

.

29
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This is the kernel of the augmentation character, which is the map given by

f ÞÑ
ÿ

uPS

fpuq, ` 1
pS, ωq Ñ C.

The augmentation ideal is a two-sided ideal of codimension one, and it has analogues

in the Beurling algebras and the weighted measure algebras of a locally compact group

G, also referred to as the augmentation ideals of those algebras:

L1
0pG,ωq “

"

f P L1
pG,ωq :

ż

G

fdm “ 0

*

;

M0pG,ωq “ tµ PMpG,ωq : µpGq “ 0u .

There are also corresponding augmentation characters, given by

f ÞÑ

ż

G

fptqdmptq, L1
pG,ωq Ñ C,

and

µ ÞÑ µpGq, MpG,ωq Ñ C,

respectively. Finally, for a semigroup S, we define

C0S “ ` 1
0pSq X CS.

One of the central themes of this chapter will be the following question:

Question 2.1.2. Which of the Banach algebras mentioned above have the prop-

erty that the underlying group or semigroup is finite whenever the augmentation ideal

is finitely-generated?

We now give this question some context. In 1974 Sinclair and Tullo [79] proved

that a left Noetherian Banach algebra, by which we mean a Banach algebra in which all

the left ideals are finitely-generated in the sense of Definition 2.1.1, is necessarily finite

dimensional. In 2012 Dales and Żelazko [25] conjectured the following strengthening

of Sinclair and Tullo’s result:
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Conjecture 2.1.3. Let A be a unital Banach algebra in which every maximal

left ideal is finitely-generated. Then A is finite dimensional.

It is this conjecture that motivates the inquiries of this chapter. The conjecture is

known to be true in the commutative case by a theorem of Ferreira and Tomassini [33],

and Dales and Żelazko presented a generalization of this result in their paper [25].

The conjecture is also known to be true for C*-algebras [11], and for BpEq for many

Banach spaces E [22]. For instance the conjecture is known to be true when E is a

Banach space which is complemented in its bidual and has a Schauder basis, or when

E “ c0pIq, for I an arbitrary non-empty index set. Moreover, in Corollary 2.2.7 below

we show that the conjecture holds for BpEq whenever E is a reflexive Banach space.

However, the conjecture remains open for an arbitrary Banach space E.

We are interested in the conjecture for the Banach algebras arising in harmonic

analysis. Our approach is to note that an affirmative answer to Question 2.1.2 for

some class of Banach algebras implies that the Dales–Żelazko Conjecture holds for

that class. As the Dales–Żelazko conjecture is about unital Banach algebras, all the

discrete semigroups that we consider will be monoids, in order to ensure that we are

in this setting (note, however, that ` 1pSq can be unital without S being a monoid; see

for instance [24, Example 10.15]). However, in Section 2.3 we do prove some results

about L1pG,ωq for a locally compact group G and a weight ω, an algebra which of

course is unital only when G is discrete

We now discuss our main results. Full definitions of the terminology used will be

given in the body of the chapter. We begin with the following answer to Question

2.1.2 for group algebras:

Corollary 2.1.4. Let G be a locally compact group. Then L1
0pGq is finitely-

generated if and only if G is finite.
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In particular the Dales–Żelazko conjecture holds for all group algebras. This result

follows from Theorems 2.3.2 and 2.3.5, which establish more general results. In partic-

ular, Theorem 2.3.5 states thatM0pGq is finitely-generated if and only if G is compact

and Theorem 2.3.2 states that, for non-discrete G, L1pGq has no finitely-generated,

closed, maximal left ideals at all. In Section 2.4 we observe that the proofs of these

latter results “dualise” to give analogous results about the Fourier and Fourier-Stieltjes

algebras (Theorem 2.4.1 and Theorem 2.4.3).

The focus of Section 2.5 is semigroup algebras, and our main result is the following

Theorem 2.1.5. Let M be a monoid. Then ` 1
0pMq is finitely-generated if and only

if M is pseudo-finite.

Here, “pseudo-finite” is a term defined in Section 2.5 which we deem too technical to

describe here. For groups (and indeed for weakly right cancellative monoids) pseudo-

finiteness coincides with being finite in cardinality, whence the name.

We say that a sequence pτnq Ă r1,8q is tail-preserving if, for each sequence of

complex numbers pxnq, we have
ř8

n“1 τn

ˇ

ˇ

ˇ

ř8

j“n`1 xj

ˇ

ˇ

ˇ
ă 8 whenever

ř8

n“1 τn|xn| ă 8.

This notion is explored in Section 2.6. In Section 2.7 we prove the following theorem:

Theorem 2.1.6. Let G be an infinite, finitely-generated group, with finite, sym-

metric generating set X. Let ω be a radial weight on G with respect to X, and write

τn for the value that ω takes on Sn. Then ` 1
0pG,ωq is finitely-generated if and only if

pτnq is tail-preserving.

Here Sn denotes the set of group elements of word-length exactly n with respect

to the fixed generating set X. This implies an affirmative answer to Question 2.1.2

for many weighted group algebras, but also provides examples where the answer is

negative:

Corollary 2.1.7. Let G be a finitely-generated, discrete group, and let ω be a

weight on G.
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(i) If ω is either a radial polynomial weight, or a radial exponential weight of

degree strictly less than 1, then ` 1
0pG,ωq is finitely-generated only if G is

finite.

(ii) If ω is a radial exponential weight of degree equal to 1, then ` 1
0pG,ωq is finitely-

generated.

The proof of this corollary is given in Section 2.7. Finally, in Section 2.8, as an

application of the theory developed elsewhere in the chapter, we construct weights

ω1 and ω2 on Z` and Z respectively for which the Banach algebras ` 1pZ`, ω1q and

` 1pZ, ω2q fail to satisfy a converse to Gleason’s Theorem on analytic structure (The-

orem 2.8.1). We believe that these examples illustrate new phenomena.

2.2. Preliminary Results

In this section we prove some results about finitely-generated left ideals in arbitrary

Banach algebras.

Lemma 2.2.1. Let A be a Banach algebra, let I be a closed left ideal in A, and

let E be a dense subset of I. Suppose that I is finitely-generated. Then I is finitely-

generated by elements of E.

Proof. Suppose that I “ A7x1 ` ¨ ¨ ¨ ` A7xn, where n P N and x1, . . . , xn P I.

Define a map T : pA7qn Ñ I by

T : pa1, . . . , anq ÞÑ a1x1 ` ¨ ¨ ¨ ` anxn.

Then T is a bounded linear surjection, and, since the surjections in BppA7qn, Iq form

an open set [80, Lemma 15.3], there exists ε ą 0 such that S P BppA7qn, Iq is surjective

whenever }T ´ S} ă ε. Take y1, . . . , yn P E with

}yi ´ xi} ă ε{n pi “ 1, . . . , nq.
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Then we see that the map pA7qn Ñ I defined by

pa1, . . . , anq ÞÑ a1y1 ` ¨ ¨ ¨ ` anyn

is within ε of T in norm, and hence it is surjective, which implies the result. �

Lemma 2.2.2. Let X be a Banach space, with dense linear subspace E, and let Y

be a closed linear subspace of X of codimension one. Then E X Y is dense in Y .

Proof. Since Y is a closed and codimension one subspace, Y “ kerϕ for some

non-zero bounded linear functional ϕ. Since Y is proper and closed, E is not contained

in Y . Hence there exists x0 P E such that ϕpx0q “ 1.

Now let y P Y , and take ε ą 0. Then there exists x P E with }y´ x} ă ε. Set z “

x´ϕpxqx0. Then ϕpzq “ 0, so that z P E X Y . Note that |ϕpxq| “ |ϕpy´ xq| ď ε}ϕ},

and hence }x´ z} “ |ϕpxq|}x0} ď ε}ϕ}}x0}, so that }y ´ z} ď ε p1` }ϕ}}x0}q. Thus

E X Y “ Y . �

Lemma 2.2.3. Let A be a Banach algebra, and let B be a dense left ideal in A.

Let I be a closed, maximal left ideal. Then B X I is dense in I.

Proof. As I is a closed, maximal left ideal and B is dense in A, B is not contained

in I, so that we may choose b0 P BzI. Consider the left ideal Ab0 ` I of A. As I is

maximal, either Ab0 ` I “ I or Ab0 ` I “ A.

In the first case, we see that ab0 P I for every a P A, so that Cb0 ` I is a left

ideal strictly containing I. This forces Cb0 ` I “ A, so that I has codimension one.

Therefore, in this case, the result follows from Lemma 2.2.2.

Hence we suppose that Ab0`I “ A. Define a map T : AÑ A{I by T : a ÞÑ ab0`I.

Then T is a bounded linear surjection between Banach spaces, so that, by the open

mapping theorem, there exists a constant C ą 0 such that, for every y P A{I, there

exists x P A with }x} ď C}y} and Tx “ y.

Let a P I and ε ą 0 be arbitrary. There exists b P B with }a´b} ă ε. It follows that

}b` I}A{I ď ε, so we can find a0 P A with }a0} ď Cε and Ta0 “ a0b0` I “ b` I. Let
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c “ b´ a0b0. Then c P BX I, because B is a left ideal, and }b´ c} “ }a0b0} ď Cε}b0}.

Hence }a´ c} ď εp1` C}b0}q. As a and ε were arbitrary, the result follows. �

Corollary 2.2.4. Let A be a Banach algebra with a dense, proper left ideal.

Then:

(i) A has no finitely-generated, closed, maximal left ideals;

(ii) A has no finitely-generated, closed left ideals of finite codimension.

Proof. (i) Assume towards contradiction that I is a finitely-generated, closed,

maximal left ideal in A. The algebra A has a proper, dense left ideal B. Then, by

Lemma 2.2.3, BX I is dense in I, so that, by Lemma 2.2.1, we can find a finite set of

generators for I from within B. But then, as B is a left ideal, this forces I Ă B, and

hence I “ B by the maximality of I. But I is closed, whereas B is dense, and both

are proper, so we have arrived at a contradiction.

(ii) Let I be a proper, closed left ideal of finite codimension. Then I is contained

in some closed maximal left ideal M . We may write M “ I ‘E, as linear spaces, for

some finite-dimensional space E Ă A. If I were finitely-generated, then the generators

together with a basis for E would give a finite generating set for M , contradicting (i).

Hence I cannot be finitely-generated. �

We note that the above corollary is of limited use since its hypothesis cannot be

satisfied in a unital Banach algebra. However, in the non-unital setting it is quite

effective, and we shall make use of it in Section 2.3 and Section 2.4. An example

of a Banach algebra satisfying the hypothesis of Corollary 2.2.4 coming from outside

harmonic analysis is the algebra of approximable operators on an infinite-dimensional

Banach space.

We now turn to a result about dual Banach algebras.

Proposition 2.2.5. Let A be a unital dual Banach algebra. Then every }¨}-closed,

finitely-generated left ideal in A is weak*-closed.
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Proof. Let X be the predual of A, and let I be a closed, finitely-generated left

ideal in A. Write

I “ Ax1 ` ¨ ¨ ¨ ` Axn,

for some n P N, and x1, . . . , xn P I. Define a linear map

S : An Ñ A

by

S : pa1, . . . , anq ÞÑ a1x1 ` ¨ ¨ ¨ ` anxn.

As multiplication in A is separately weak*-continuous, S is a weak*-continuous linear

map, and hence S “ T ˚ for some bounded linear map T : X Ñ Xn. We know that

imS “ I is closed, implying that imT is closed, and so we see that I “ imS is

weak*-closed, as required. �

Lemma 2.2.6. Let A be a unital dual Banach algebra with a proper weak*-dense

left ideal. Then A has a maximal left ideal which is not finitely-generated.

Proof. Let B be a proper, weak*-dense left ideal in A. Since A is unital, B is

contained in some maximal left ideal I of A, which is } ¨ }-closed. Since I contains B it

is also weak*-dense. If I were finitely-generated then, by Proposition 2.2.5, it would

be weak*-closed, forcing I “ A, which contradicts I being a maximal left ideal. �

We note the following corollary of Lemma 2.2.6 here. The result was already

known in the case that E has a Schauder basis by [22, Theorem 1.4(i)].

Corollary 2.2.7. The family of Banach algebras BpEq, for E a reflexive Banach

space, satisfy the Dales-Żelazko conjecture.

Proof. Since E is reflexive, BpEq is a dual Banach algebra. If E is infinite-

dimensional, then FpEq is a proper ideal. Moreover, it is easily checked that FpEqK “

t0u, implying that FpEq is weak*-dense in BpEq. Hence, by Lemma 2.2.6, BpEq has a
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maximal left ideal which is not finitely-generated whenever it is infinite-dimensional.

�

2.3. The Case of a Non-Discrete Locally Compact Group

In this section, we shall consider Question 2.1.2 for L1pG,ωq andMpG,ωq, where G is

a non-discrete, locally compact group and ω is a weight on G. The first result implies

that, if L1pGq Ă CpGq, then G is discrete.

Lemma 2.3.1. Let G be a locally compact group. Suppose that, for every precom-

pact, open subset A of G, the function χA is equal to a continuous function almost

everywhere. Then G is discrete.

Proof. Assume to the contrary that G is not discrete. Then by [20, Corollary

4.4.4], or [67, Theorem 1], G cannot be extremely disconnected, so that there are

disjoint open sets A and B and x0 P G such that x0 P AX B. By intersecting with a

precompact open neighbourhood of x0, we may further assume that A is precompact,

and thus of finite measure.

Consider the function h “ χA P L
1pGq. Then, by hypothesis, there is a continuous

function f and a measurable function g such that supp g is a Haar-null set, with the

property that h “ f ` g. In particular, supp g must have empty interior, so, for any

open neighbourhood U of x0, we can choose xU P U XA such that xU R supp g. Then

pxUq is a net contained in Azsupp g converging to x0. Similarly, we may find a net pyUq

contained in Bzsupp g converging to x0. Then fpxUq “ hpxUq “ 1 for all U , whereas

fpyUq “ hpyUq “ 0 for all U . As both nets have the same limit, this contradicts the

continuity of f . �

Theorem 2.3.2. Let G be a non-discrete, locally compact group, and let ω be a

weight on G. Then L1pG,ωq has no finitely-generated, closed, maximal left ideals, and

no finitely-generated, closed left ideals of finite codimension.
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Proof. Let J “ L1pG,ωq ˚CcpGq `CcpGq be the left ideal of L1pG,ωq generated

by CcpGq. By [19, Theorem 3.3.13 (i)], every element of J is continuous, so that, by

the previous lemma, J is proper, and of course it is also dense. The result now follows

from Corollary 2.2.4. �

When G is a compact group, L2pGq is a Banach algebra under convolution. A

trivial modification of the previous argument shows that, when G is infinite and

compact, L2pGq has no closed, finitely-generated maximal left ideals.

We now turn to the measure algebra. We shall exploit the fact that it is a dual

Banach algebra, and make frequent use of (1.4). In particular we shall make use of

the following characterisation of the weak*-closed left ideals of a weighted measure

algebra. Analogous characterisations exist for the weak*-closed right and two-sided

ideals.

Lemma 2.3.3. Let G be a locally compact group, and let ω be a weight on G. Then

there is a bijective correspondence between the weak*-closed left ideals in MpG,ωq

and the norm-closed subspaces of C0pG, 1{ωq invariant under left translation. This

correspondence is given by

E ÞÑ EK,

for E a closed subspace of C0pG, 1{ωq invariant under left translation.

Proof. Let E be a closed subspace of C0pG, 1{ωq, invariant under left translation.

That EK is weak*-closed is clear. We show that it is a left ideal. Let µ P EK. Then

for all f P E and y P G we have

(2.1)
ż

G

fpyxq dµpxq “

ż

G

fpxq dpδy ˚ µqpxq “ 0.

Hence δy ˚µ P EK for all y P G. That EK is a left ideal now follows from weak*-density

of the discrete measures in MpG,ωq.

Now suppose that I is a weak*-closed left ideal in MpG,ωq. Set E “ IK. Then,

by (1.4), EK “ I. The linear subspace E is clearly closed, and, for y P G, µ P I
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and f P C0pG, 1{ωq, we have δy ˚ µ P I, so that, by (2.1), δy ˚ f P E. Hence E is

left-translation-invariant.

We have shown that the correspondence is well-defined and surjective. To see that

it is injective, use (1.4). �

Lemma 2.3.4. Let G be a locally compact group. Then M0pGq is weak*-closed if

and only if G is compact.

Proof. If G is compact, then M0pGq “ tconstant functionsuK, which is weak*-

closed.

Assume towards a contradiction that M0pGq is weak*-closed, but that G is not

compact. By Lemma 2.3.3, E “M0pGqK is invariant under left translation, and using

the formula E 1 – MpGq{EK “ MpGq{M0pGq we see that E has dimension one. So

there exists f P C0pGq of norm 1 such that E “ spanf . There exists x0 P G such that

|fpx0q| “ 1. Let K be a compact subset of G such that |fpxq| ă 1{2 for all x P GzK.

Then Kx´1
0 Y x0K

´1 is still compact, so we may choose y P G not belonging to this

set, so that in particular yx0, y
´1x0 R K. Then there exists λ P Czt0u such that

δy ˚ f “ λf . Hence

|fpyx0q| “ |λ||fpx0q| “ |λ| ă 1{2,

whereas

1 “ |fpx0q| “ |fpyy
´1x0q| “ |λ||fpy

´1x0q| ă 1{2 ¨ 1{2 “ 1{4.

This contradiction completes the proof. �

The next theorem characterises when M0pGq is finitely-generated. In particular

Question 2.1.2 has a negative answer for the measure algebra.

Theorem 2.3.5. Let G be a locally compact group. Then M0pGq is finitely-gene-

rated as a left ideal if and only if G is compact.
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Proof. If G is compact, and m denotes the normalised Haar measure on G, then

m PM0pGq, and it is easily seen, by direct computation, that

µ ˚m “ ϕ0pµqm pµ PMpGqq.

Hence, in particular, m is a right-annihilator of the augmentation ideal, so that, for

every µ PM0pGq, we have

µ ˚ pδe ´mq “ µ ˚ δe ´ 0 “ µ.

Noting that δe ´m PM0pGq, we see that it is an identity element for M0pGq, so that

in particular M0pGq is finitely-generated.

Suppose that M0pGq is finitely-generated. Then, by Proposition 2.2.5, M0pGq is

weak*-closed, implying that G is compact by Lemma 2.3.4. �

We do not know of a weighted version of this theorem, but when G is discrete

MpG,ωq “ ` 1pG,ωq, and this case will be the focus of Section 2.7, where it seems

a very different approach is required as weak*-closure of the augmentation ideal no

longer characterises finiteness of the underlying discrete group, and in particular it

can happen that ` 1
0pG,ωq is weak*-closed, but not finitely-generated.

Note that we have now proven Corollary 2.1.4:

Proof of Corollary 2.1.4. By Theorem 2.3.2, it is enough to consider the

discrete case, which follows from Theorem 2.3.5. �

We now prove the Dales–Żelazko conjecture for weighted measure algebras on non-

discrete groups. In fact we give two proofs. The first exploits the fact that weighted

measure algebras are dual Banach algebras, and does not rely on Lemma 2.3.6 below.

The second is a good warm up for the approach taken in Section 2.5 and Section 2.7.

We have been unable to fully resolve the discrete version of the conjecture, but again

this is addressed in Section 2.7.
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Lemma 2.3.6. Let G be a discrete group, and ω a weight on G. Suppose that

` 1
0pG,ωq is finitely-generated as a left ideal. Then G is finitely-generated.

Proof. Suppose ` 1
0pG,ωq is generated by h1, . . . , hn P `

1
0pG,ωq. By Lemma 2.2.1

we may assume each hi is finitely-supported. Let H be the subgroup of G generated

by
n
Ť

i“1

supphi. We show that H “ G. Let g P ` 1pG,ωq. Then, for each i P t1, . . . , nu,

(2.2)
ÿ

uPH

pg ˚ hiqpuq “
ÿ

uPH

ÿ

st“u

gpsqhiptq “
ÿ

sPG

gpsq
ÿ

tPs´1H

hiptq “ 0,

where the final equality holds because either s R H, in which case s´1H is disjoint

from supphi, or else s´1H “ H Ą supphi, in which case hi P ` 1
0pG,ωq implies that

ř

tPH hiptq “ 0. Since the functions hi generate ` 1
0pG,ωq it follows that

ř

uPH fpuq “ 0

for every f P ` 1
0pG,ωq. This clearly forces H “ G, as claimed. �

Theorem 2.3.7. The Dales–Żelazko conjecture holds for the algebra MpG,ωq,

whenever G is a non-discrete locally compact group, and ω is a weight on G.

Proof 1. Proposition 1.4.4 implies thatMpG,ωq is a unital dual Banach algebra,

and, since G is non-discrete, L 1pG,ωq is a proper, weak*-dense ideal inMpG,ωq. The

conjecture now follows from Lemma 2.2.6. �

Proof 2. By (1.9) ` 1pG,ωq is the quotient of MpG,ωq by the closed ideal con-

sisting of the continuous measures belonging to MpG,ωq. As G is non-discrete, it is

uncountable, and hence, by Lemma 2.3.6, ` 1
0pG,ωq is not finitely-generated as a left

ideal. Taking the preimage of this ideal under the quotient map gives a codimension

1 ideal of MpG,ωq, and this ideal is not finitely-generated as a left ideal. �

2.4. Interlude on the Fourier Algebra

In this section we prove analogues of Corollary 2.1.4 and Theorem 2.3.5 for the Fourier

and Fourier-Stieltjes algebras. We define ideals

B0pGq :“ tf P BpGq : fpeq “ 0u
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and

A0pGq :“ tf P ApGq : fpeq “ 0u.

These are the analogues of the augmentation ideal for ApGq and BpGq. (Beware

that this conflicts with another common notation, where authors define B0pGq “

C0pGq X BpGq). Our main results of this section are Theorem 2.4.3(ii), which says

that A0pGq is finitely-generated if and only if G is finite, and Theorem 2.4.1, which

says that B0pGq is finitely-generated if and only if G is discrete. The proof of Theorem

2.4.1 may be thought of, heuristically, as “dual” to the proof of Theorem 2.3.5; likewise

the proof of Theorem 2.4.3(ii) is “dual” to that of Corollary 2.1.4.

Theorem 2.4.1. Let G be a locally compact group. Then B0pGq is finitely-gener-

ated if and only if G is discrete.

Proof. If G is discrete then, by (the easy direction of) Host’s idempotent theorem

[47], we have χG zteu P BpGq, and clearly B0pGq “ BpGqχG zteu.

Suppose that B0pGq is finitely-generated. Our plan is to show that this forces

C˚pGq to be unital, which implies that G is discrete by [60]. Since BpGq is a dual

Banach algebra, Proposition 2.2.5 implies that B0pGq is weak*-closed. Let E “

B0pGqK Ă C˚pGq. Since EK “ B0pGq ‰ BpGq, we must have E ‰ t0u (in fact E must

be 1-dimensional). Let f P Ezt0u. We shall show that F may be scaled to be a unit

for C˚pGq.

Observe that

B0pGq “ tξ ˚π η : xξ, ηyHπ “ 0u
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so that

E “ tf P C˚pGq : xξ ˚π η, fy “ 0 for every representation pπ,Hπq,

and every ξ, η P Hπ such that ξ K ηu

“ tf P C˚pGq : xπpfqξ, ηyHπ “ 0 for every representation pπ,Hπq,

and every ξ, η P Hπ such that ξ K ηu.

Now fix a representation of G, say pπ,Hπq. Then we see that πpfqξ K η whenever

ξ, η P Hπ satisfy ξ K η. It follows that

(2.3) πpfqξ P tξuKK “ span ξ pξ P Hπq.

Let peiq be a (possibly uncountably) orthonormal basis for Hπ. Then, by (2.3), for

each i there exists a scalar λi such that πpfqei “ λiei. Given indices i, j there must

also exist a scalar λ such that πpfqpei ` ejq “ λpei ` ejq, so that

λei ` λej “ πpfqpei ` ejq “ πpfqei ` πpfqej “ λiei ` λjej,

which implies that λi “ λ “ λj. Hence all of the scalars λi are the same, so that πpfq

acts as a scalar multiple of the identity on Hπ.

Now take two representations pπ,Hπq and pσ,Hσq, and let ξπ P Hπ and ξσ P

Hσ. We consider the direct sum representation π ‘ σ. Again using (2.3) we have

scalars λπ, λσ and λπ‘σ such that πpfq “ λπ idHπ , σpfq “ λσ idHσ and pπ ‘ σqpfq “

λπ‘σ idHπ‘Hσ . Observe that

λπ‘σpξπ, ξσq “ pπ ‘ σqpfqpξπ, ξσq “ pλπξπ, λσξσq,

so that λπ “ λπ‘σ “ λσ. Hence f acts as the same scalar under every representation.

Moreover, as f ‰ 0, and the representations of G separate the points of C˚pGq, this

scalar is non-zero so that, by scaling, we may assume that πpfq is the identity for

every representation π.
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Let g P C˚pGq. Then for every representation π of G we have πpfgq “ πpgq “

πpgfq, so that, agian using the fact that the representations of G separate the points

of C˚pGq, we have fg “ g “ gf . As g was arbitrary it follows that f is an identity

element for C˚pGq, so that G is discrete by [60]. �

Now we turn to the Fourier algebra.

Lemma 2.4.2. Let G be a locally compact group. We have CcpGq X ApGq “ ApGq

if and only if G is compact.

Proof. Assume that G is not compact, and let K be a compact neighbourhood

of the identity in G. Let H “
Ť8

i“1K
i. Then H is a clopen subgroup of G.

First suppose that H is compact. Then, as G is not compact, we must have

rG : Hs “ 8, so that we can find a sequence of group elements t1, t2, . . . P G such that

t1H, t2H, . . . are all distinct cosets. By [32, Lemme (3.2)], we may find non-negative

functions fi P ApGq pi P Nq such that

fipsq “

$

’

’

&

’

’

%

1 s P tiH

0 s R tiH

pi P Nq.

Let

f “
8
ÿ

i“1

2´i
fi
}fi}

P ApGq.

Then the support of f is
Ť8

i“1 tiH, which is not compact.

Now suppose instead that H is not compact. Then, again using [32, Lemme (3.2)],

we can find functions non-negative fi P ApGq pi P Nq such that

fipsq “

$

’

’

&

’

’

%

1 s P Ki

0 s R H

pi P Nq.

Let f “
ř8

i“1 2´i fi
}fi}

P ApGq. Then the support of f is H, which is not compact by

supposition. �
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Theorem 2.4.3. Let G be a locally compact group.

(i) If G is non-compact then ApGq has no finitely-generated ideals of finite codi-

mension.

(ii) The ideal A0pGq is finitely-generated if and only if G is finite.

Proof. (i) By Lemma 2.4.2, CcpGqXApGq is a proper dense ideal in ApGq. Hence

(i) follows from Corollary 2.2.4(ii).

(ii) Suppose that A0pGq is finitely-generated. Then by (i) G is compact, so that

ApGq “ BpGq. Hence, by Theorem 2.4.1, G is discrete, forcing G to be finite. The

converse is trivial. �

Remark. Observe that, by Theorem 2.4.3(ii), the conclusion of the Dales-Żelazko

conjecture holds for ApGq even though the hypothesis that the algebra be unital is not

satisfied unless G is compact. Indeed, since ApGq is not necessarily unital, this result

is not covered by [25]. However BpGq is covered by [25], so that the Dales-Żelazko

conjecture holds for Fourier-Stieltjes algebras.

2.5. The Case of a Discrete Monoid

We begin this section with some definitions, which generalise ideas such as word-

length in group theory to the context of an arbitrary monoid. By a monoid we mean

a semigroup possessing an identity element e. Let M be a monoid, and let E be a

subset of M . Then for x PM we define

E ¨ x “ tux : u P Eu, x ¨ E “ txu : u P Eu,

and

E ¨ x´1
“ tu PM : ux P Eu, x´1

¨ E “ tu PM : xu P Eu.

We abbreviate tuu ¨ x´1 to u ¨ x´1, and similarly u ¨ x represents the set tuu ¨ x. The

important thing to note in these definitions is that there may not be an element x´1,

and that u¨x´1 represents not an element but a set, which in general may be infinite or



2.5. THE CASE OF A DISCRETE MONOID 46

empty. Also, be aware that ‘¨’ is not necessarily associative: px¨y´1q¨z´1 is meaningful

whereas x ¨ py´1 ¨ z´1q is not.

Now let X Ă M , and fix u P M . We say that a finite sequence pziqni“1 in M is an

ancestry for u with respect to X if z1 “ u, zn “ e, and, for each i P N with 1 ă i ď n,

there exists x P X such that either zix “ zi´1 or zi “ zi´1x.

Denote by HX the set of elements of M which have an ancestry with respect to

X. Then

HX “ teu Y

¨

˝

ď

nPN,x1,...,xnPX

ď

pε1,...,εnqPt˘1un

p. . . ppe ¨ xε11 q ¨ x
ε2
2 q ¨ . . . ¨ x

εn
n q

˛

‚.

We say that the monoid M is pseudo-generated by X if M “ HX ; this is the same

notion as what is termed being right unitarily generated by X in [52]. Observe that

when M is not just a monoid but a group, M is pseudo-generated by X if and only

if it is generated by X. We say that M is finitely pseudo-generated if M is pseudo-

generated by some finite set X.

Given a subset X of M we set B0 “ teu and for each n P N we set

Bn “ teu Y

¨

˝

ď

x1,...,xkPX, kďn

ď

pε1,...,εkqPt˘1uk

p. . . ppe ¨ xε11 q ¨ x
ε2
2 q ¨ . . . ¨ x

εk
k q

˛

‚

and

(2.4) Sn “ BnzBn´1.

The set Bn consists of those u in M which have an ancestry of length at most n with

respect to X. Of course the sets Bn and Sn depend on X, but we suppress this in the

notation as X is usually clear from the context. Finally, we say thatM is pseudo-finite

if there is some n P N and a finite subset X of M such that every element of M has

an ancestry with respect to X of length at most n, or equivalently if M “ Bn. Again,

for a group M , M is pseudo-finite if and only if it is finite.
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To see an example of a monoid which is pseudo-finite, but not finite, take any

infinite monoid M and add a zero θ to obtain M0 “M Y tθu. (This is a new monoid

in which the multiplication restricted to M coincides with the original multiplication,

and otherwise is determined by aθ “ θ “ θa for all a PM0). Then

M0
“ θ ¨ θ´1,

so thatM0 is pseudo-finite. Incidentally, this also furnishes us with an example where

associativity of ‘¨’ fails, even though all expressions involved are meaningful: we have

pθ ¨ θ´1q ¨ e “M0, whereas θ ¨ pθ´1 ¨ eq “ H.

In the next two lemmas we establish a version of Lemma 2.3.6 for monoids.

Lemma 2.5.1. Let M be a monoid, and let X ĂM . Then we have

HX ¨ u,HX ¨ u
´1
Ă HX pu P HXq.

Proof. To see this, we define H0 “ teu YX, and subsequently

Hk “

˜

ď

xPX

Hk´1 ¨ x

¸

Y

˜

ď

xPX

Hk´1 ¨ x
´1

¸

for k P N. It is easily seen that

HX “

8
ď

k“0

Hk.

We establish the lemma by induction on k such that u P Hk. The case k “ 0

follows just from the definition of HX . So suppose that k ą 0. Then either u “ zx or

ux “ z for some z P Hk´1 and x P X. Consider the first case, and let h P HX . Then

hu “ hzx. By the induction hypothesis hz P HX , and hence hu “ hzx P HX by the

case k “ 0. Similarly, if y P M is such that yu “ yzx P HX , then (again using the

case k “ 0) we have yz P HX , and so y P HX by the induction hypothesis applied to

z.
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Similar considerations apply in the case where u has the property that ux “ z for

some z P Hk´1 and some x P X, and we see that in either case HX ¨u, HX ¨u
´1 Ă HX ,

completing the induction. �

Lemma 2.5.2. Let M be a monoid, let ω be a weight on M , and suppose that

` 1
0pM,ωq is finitely-generated as a left ideal in ` 1pM,ωq. Then M is finitely pseudo-

generated.

Proof. Write A “ ` 1pM,ωq. Since C0M is dense in ` 1
0pM,ωq, by Lemma 2.2.1

we may suppose that

(2.5) ` 1
0pM,ωq “ A ˚ h1 ` ¨ ¨ ¨ ` A ˚ hn

for some h1, . . . , hn P C0M . Set

X “

n
ď

i“1

supphi,

so that X is a finite set. We shall complete the proof by showing that X pseudo-

generates M .

Write H “ HX . We observe that, for s P M , if s´1 ¨ H X H ‰ H, then s P H.

Indeed, suppose that u P s´1 ¨H XH. Then su P H, and hence s P H ¨ u´1, which is

a subset of H by Lemma 2.5.1.

Now let g P A be arbitrary. Then, for every i P t1, . . . , nu, we have

ÿ

uPH

pg ˚ hiqpuq “
ÿ

uPH

ÿ

st“u

gpsqhiptq “
ÿ

uPH

ÿ

sPM

ÿ

tPs´1¨u

gpsqhiptq

“
ÿ

sPM

˜

gpsq
ÿ

tPs´1¨H

hiptq

¸

“
ÿ

sPH

˜

gpsq
ÿ

tPs´1¨H

hiptq

¸

,

where the last equality holds because s´1 ¨H X supphi Ă s´1 ¨H XH “ H whenever

s R H. However, when s P H, then, for every x P supphi, we have sx P H by Lemma
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2.5.1, which implies that supphi Ă s´1 ¨H. It follows that

ÿ

tPs´1¨H

hiptq “ 0

because hi P C0M . Hence
ÿ

uPH

pg ˚ hiqpuq “ 0.

By (2.5), this implies that
ÿ

uPH

fpuq “ 0

for every f P ` 1
0pMq. But this clearly forces M “ H, as required. �

Suppose that a monoid M is pseudo-generated by a set X. Given f P ` 1pMq, we

define a sequence of scalars pσnpfqq by

σnpfq “
ÿ

uPBn

fpuq.

Lemma 2.5.3. Let M be a monoid and X Ă M . Let the sets Bn in the definition

of σn refer to X. Then, for every g P ` 1pMq and every x P X we have

8
ÿ

n“1

|σnpg ˚ pδe ´ δxqq| ă 8.

Proof. Write σn “ σnpg ˚ pδe ´ δxqq. Since

g ˚ pδe ´ δxq “
ÿ

uPM

gpuqδu ´ gpuqδux,

it follows that

σn “
ÿ

uPBn

gpuq ´
ÿ

vPBn¨x´1

gpvq.

If u P Bn´1, then ux P Bn, implying that Bn´1 Ă Bn XBn ¨ x
´1. Hence

σn “
ÿ

uPBnzBn´1

gpuq `
ÿ

uPBn´1

gpuq ´

¨

˝

ÿ

uPBn¨x´1zBn´1

gpuq `
ÿ

uPBn´1

gpuq

˛

‚

“
ÿ

uPSn

gpuq ´
ÿ

vPBn¨x´1zBn´1

gpvq.
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Notice that Bn ¨ x
´1 Ď Bn`1, so that

Bn ¨ x
´1
zBn´1 Ď Bn`1zBn´1 “ Sn Y Sn`1.

Hence

|σn| ď
ÿ

uPSn

|gpuq| `
ÿ

uPSnYSn`1

|gpuq| “ 2
ÿ

uPSn

|gpuq| `
ÿ

uPSn`1

|gpuq|,

so that
8
ř

n“1

|σn| ď 3
ř

uPM

|gpuq| ă 8, using the fact that the sets Sn are pairwise

disjoint. �

We shall now prove Theorem 2.1.5 in the next two propositions.

Proposition 2.5.4. Let M be a monoid such that ` 1
0pMq is finitely-generated as

a left ideal. Then M is pseudo-finite.

Proof. By Lemmas 2.2.1 and 2.2.2, ` 1
0pMq is generated by finitely many elements

of C0M . Suppose that h “
N
ř

i“1

αiδui is one of these generators, where N P N and

u1, . . . , uN PM . Then a simple calculation exploiting the fact that
řN
i“1 αi “ 0 shows

that

h “
N´1
ÿ

i“1

˜

i
ÿ

j“1

αj

¸

pδui ´ δui`1
q.

Writing δui ´ δui`1
“ pδe ´ δui`1

q ´ pδe ´ δuiq shows that

h “
N
ÿ

i“1

βipδe ´ δuiq

for some β1, . . . , βN P C. It follows that there is some finite subset Y of M such that

` 1pMq is generated by elements of the form δe ´ δu pu P Y q.

By Lemma 2.5.2, M is pseudo-generated by some finite set X. Enlarging X if

necessary, we may suppose that Y Ă X. It then follows from Lemma 2.5.3 that

pσnpfqq P `
1pNq for every f P ` 1

0pMq, since now every element of ` 1
0pMq is a linear

combination of elements of the form considered in that lemma. We now show that
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this gives a contradiction in the case where M is not pseudo-finite by constructing an

element f of ` 1
0pMq for which pσnpfqq R ` 1pNq.

Assume that M is not pseudo-finite. Then no Bn is the whole of M , but, by the

definition of X,
8
Ť

n“1

Bn “ M , so there exists an increasing sequence pnkq of natural

numbers such that Bnk´1
Ł Bnk for every k P N. Select uk P BnkzBnk´1

pk P Nq.

Let ζ “
8
ř

j“1

1{j2, and define f P ` 1
0pMq by fpeq “ ζ, fpukq “ ´1{k2 and fpuq “ 0

otherwise. Then

σnkpfq “ ζ ´
k
ÿ

j“1

1

j2
“

8
ÿ

j“k`1

1

j2
ě

1

k
pk P Nq.

Hence
8
ř

k“1

|σnkpfq| “ 8, so that pσnpfqq R ` 1pNq, as required. �

The converse of Proposition 2.5.4 is also true, as we shall now prove, completing

the proof of Theorem 2.1.5.

Proposition 2.5.5. Let M be a pseudo-finite monoid. Then ` 1
0pMq is finitely-

generated.

Proof. Let X “ tx1, . . . , xru be a finite pseudo-generating set for M such that

Bn “M for some n P N. For k P N, we define

Λk “ tf P `
1
0pMq : supp f Ă Bku,

and use induction on k to show that Λk is contained in a finitely-generated ideal which

is contained in ` 1
0pMq.

Write A “ ` 1pMq, and denote the augmentation character on ` 1pMq by ϕ0. For

f P Λ1, we may write

f “ fpeqδe `
r
ÿ

i“1

fpxiqδxi

“ fpeqpδe ´ δx1q ` pfpeq ` fpx1qqpδx1 ´ δx2q`

¨ ¨ ¨ ` pfpeq ` ¨ ¨ ¨ ` fpxr´1qqpδxr´1 ´ δxrq.
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It follows that Λ1 Ă A ˚ pδe ´ δx1q ` ¨ ¨ ¨ ` A ˚ pδxr´1 ´ δxrq. This establishes the base

case.

Consider k ą 1. By the induction hypothesis, there exist m P N and p1, . . . , pm P

` 1
0pMq such that

Λk´1 Ă A ˚ p1 ` ¨ ¨ ¨ ` A ˚ pm.

Write Bk as

Bk “ teu Y

˜

r
ď

i“1

Bk´1 ¨ xi

¸

Y

˜

r
ď

i“1

Bk´1 ¨ x
´1
i

¸

.

Write f P Λk as

f “ fpeqδe ` g1 ` ¨ ¨ ¨ ` gr ` h1 ` ¨ ¨ ¨ ` hr,

where supp gi Ă Bk´1 ¨ xi and supphi Ă Bk´1 ¨ x
´1
i . Then

f “
r
ÿ

i“1

pgi ´ ϕ0pgiqδxiq `
r
ÿ

i“1

phi ´ ϕ0phiqδeq

`

r
ÿ

i“1

ϕ0pgiqδxi `

˜

fpeq `
r
ÿ

i“1

ϕ0phiq

¸

δe.

We note that

r
ÿ

i“1

ϕ0pgiqδxi `

˜

fpeq `
r
ÿ

i“1

ϕ0phiq

¸

δe P A ˚ pδe ´ δx1q ` ¨ ¨ ¨ ` A ˚ pδxr´1 ´ δxrq

by the base case. Fix i P t1, . . . , ru. Each u P Bk´1 ¨ xi can be written u “ u1xi for

some u1 P Bk´1 (which depends on u, and may not be unique), and we calculate that

gi “
ÿ

uPBk´1¨xi

gipuqδu1xi “ g1i ˚ δxi ,

where g1i “
ř

uPBk´1¨xi

gipuqδu1 . Moreover,

gi ´ ϕ0pgiqδxi “ pg
1
i ´ ϕ0pgiqδeq ˚ δxi .
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The support of g1i´ϕ0pgiqδe is contained in Bk´1, and so, by the induction hypothesis,

we have

g1i ´ ϕ0pgiqδe P A ˚ p1 ` ¨ ¨ ¨ ` A ˚ pm,

whence

gi ´ ϕ0pgiqδxi P A ˚ p1 ˚ δxi ` ¨ ¨ ¨ ` A ˚ pm ˚ δxi .

Now consider hi ´ ϕ0ph1qδe. We have

hi ˚ δxi “
ÿ

uPBk´1¨x
´1
i

hipuqδuxi ,

so that supp phi ˚ δxiq Ă Bk´1 and, in particular, supp phi ˚ δxi ´ϕ0phiqδxiq Ă Bk´1 (as

k ě 2). It then follows from the induction hypothesis that

phi ´ ϕ0phiqδeq ˚ δxi “ a1 ˚ p1 ` ¨ ¨ ¨ ` am ˚ pm

for some a1, . . . , am P A. So

hi ´ ϕ0phiqδe “ phi ´ ϕ0phiqδeq ˚ pδe ´ δxiq ` a1 ˚ p1 ` ¨ ¨ ¨ ` am ˚ pm

P A ˚ pδe ´ δxiq ` A ˚ p1 ` ¨ ¨ ¨ ` A ˚ pm.

We now conclude that

Λk Ă

m
ÿ

i“1

A ˚ pi `
ÿ

i,j

A ˚ pi ˚ δxj `
r
ÿ

i“1

A ˚ pδe ´ δxiq `
r´1
ÿ

i“1

A ˚ pδxi ´ δxi`1
q.

This completes the induction. When k “ n, we obtain the theorem. �

We recall the following standard definitions:

Definition 2.5.6. Let M be a monoid. Then:

(i) M is right cancellative if a “ b whenever ax “ bx pa, b, x PMq;

(ii) M is weakly right cancellative if, for every a, x PM , the set a ¨ x´1 is finite.
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It is easily seen from the definitions that a weakly right cancellative monoid is

pseudo-finite if and only if it is finite. Hence, Question 2.1.2 and the Dales–Żelazko

conjecture both have answers in the affirmative for the class of Banach algebras of

the form ` 1pMq, where M is a weakly right cancellative monoid. However, it remains

open whether the Dales–Żelazko conjecture holds for ` 1pMq for an arbitrary monoid

M .

2.6. τ-Summable Sequences

In this section τ “ pτnq will always be a sequence of real numbers, all at least 1. We

say that a sequence of complex numbers pxnq τ -summable if

8
ÿ

n“1

τn|xn| ă 8.

Note that if pxnq is τ -summable for some τ , then in particular pxnq P ` 1.

We say that τ is tail-preserving if the sequence

˜

8
ř

j“n`1

xj

¸

is τ -summable when-

ever pxnq is τ -summable. For example, the constant 1 sequence is not tail-preserving

(as can be seen by considering, for instance, the sequence xn “ 1{n2 pn P Nq), but

it will be a consequence of Proposition 2.6.1, below, that τn “ cn is tail-preserving

for each c ą 1. The main result of this section is an intrinsic characterization of

tail-preserving sequences, given in Proposition 2.6.1. The results of this section will

underlie our main line of attack when we consider questions involving weights on

discrete groups in Sections 2.7 and 2.8.

Our approach is to consider the Banach spaces ` 1pτq, defined by

` 1
pτq “

#

pxnq P CN :
8
ÿ

n“1

τn|xn| ă 8

+

,

with the norm given by

}pxnq}τ “
8
ÿ

n“1

τn|xn|,
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so that ` 1pτq is exactly the set of τ -summable sequences. Each space ` 1pτq is in fact

isometrically isomorphic to ` 1.

Proposition 2.6.1. Let τ “ pτnq be a sequence in r1,8q. Then the following are

equivalent:

(a) τ is tail-preserving;

(b) there exists a constant D ą 0 such that

(2.6) τn`1 ě D
n
ÿ

j“1

τj pn P Nq;

(c) lim inf
n

ˆ

τn`1

M n
ř

i“1

τi

˙

ą 0.

Proof. The equivalence of (b) and (c) is clear. We show the equivalence of (a)

and (b).

Given x “ pxnq P ` 1pτq we write T pxq for the sequence

T pxq “

˜

8
ÿ

j“n`1

xj

¸

.

Clearly the condition that τ is tail-preserving is equivalent to the statement that T

defines a map ` 1pτq Ñ ` 1pτq. We begin by showing that, in fact, this is equivalent to

the statement that T defines a bounded linear map ` 1pτq Ñ ` 1pτq. One implication

is trivial, and the other is an application of the Closed Graph Theorem.

Indeed, suppose that τ is tail preserving, and let pxpiqq be a sequence of elements of

` 1pτq converging to zero, with the property that
`

T pxpiqq
˘

converges to some point y P

` 1pτq. Let ε ą 0, and let i be large enough that both }xpiq}τ ă ε and }T pxpiqq´y}τ ă ε.

Observe that, for all n P N, we have
ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

j“n`1

x
piq
j

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

j“1

|x
piq
j | ď }x

piq
}τ ă ε.

Also,
8
ÿ

n“1

τn

ˇ

ˇ

ˇ

ˇ

ˇ

˜

8
ÿ

j“n`1

x
piq
j

¸

´ yn

ˇ

ˇ

ˇ

ˇ

ˇ

“
›

›T pxpiqq ´ y
›

›

τ
ă ε
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implies that, for each n P N, we have
ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

j“n`1

x
piq
j ´ yn

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε.

Hence, for each n P N,

|yn| ď

ˇ

ˇ

ˇ

ˇ

ˇ

˜

8
ÿ

j“n`1

x
piq
j

¸

´ yn

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

j“n`1

x
piq
j

ˇ

ˇ

ˇ

ˇ

ˇ

ă 2ε.

As n and ε were arbitrary, this forces y “ 0. Hence, by the Closed Graph Theorem,

T is bounded.

We now complete the proof. Clearly T is bounded if and only if it is bounded on

the non-negative real sequences belonging to ` 1pτq. Note that, by changing the order

of summation, we have
8
ÿ

n“1

τn

8
ÿ

j“n`1

xj “
8
ÿ

j“2

xj

j´1
ÿ

n“1

τj,

for any non-negative x P ` 1pτq. Hence T is bounded if and only if there exists D ą 0

such that
8
ÿ

j“2

xj

j´1
ÿ

n“1

τn ď D
8
ÿ

n“1

τnxn

for every non-negative x P ` 1pτq, which is evidently equivalent to

j´1
ÿ

n“1

τn ď Dτj pj P Nq.

This establishes the equivalence of (a) and (b). �

As we remarked above, it is an immediate consequence of this proposition that

the sequence pcnq is tail-preserving for each c ą 1.

The following lemma concerns the growth of tail-preserving sequences. Part (ii)

implies that, if pτnq is tail-preserving and τ 1n ě τn for all n, then pτ 1nq is not necessarily

tail-preserving.
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Lemma 2.6.2. (i) Let τ “ pτnq be a tail-preserving sequence, and let D ą 0

satisfy (2.6). Then

τj`1 ě DpD ` 1qj´1τ1 pj P Nq.

(ii) Let ρ ą 1. There exists a sequence pτnq Ă r1,8q such that ρn ď τn for all

n P N, but pτnq is not tail-preserving.

Proof. (i) We proceed by induction on j P N. The case j “ 1 is immediate from

(2.6). Now suppose that j ą 1, and assume that the result holds for all i ă j. Then

we have

τj`1 ě D
j
ÿ

i“1

τi ě DrDpD ` 1qj´2
` ¨ ¨ ¨ `DpD ` 1q `D ` 1sτ1

“ DpD ` 1qj´1τ1.

Hence the result also holds for j.

(ii) Define integers nk recursively by n1 “ 1 and nk “ nk´1`k`1 for k ě 2. Then

define

τj “ ρnk`1
pnk´1 ` 1 ă j ď nk ` 1q.

Then clearly τj ě ρj for all j P N, and

τnk`1
řnk
j“1 τj

ď
τnk`1

řnk
j“nk´1`2 τj

“
1

k
Ñ 0.

Hence pτnq violates condition (c) of Proposition 2.6.1, so cannot be tail-preserving. �

2.7. Weighted Discrete Groups

In this section G will denote a discrete group, with finite generating set X, and ω will

be a weight on G. Without loss of generality we may suppose that X is symmetric

(we recall that a subset X of a group G is symmetric if X “ X´1). We shall consider

whether ` 1
0pG,ωq is finitely-generated. We note that when considering Question 2.1.2

and Conjecture 2.1.3 for L1pG,ωq, Theorem 2.3.2 and Lemma 2.3.6 allow us to reduce
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to this setting. As noted at the end of Section 2.3, similar remarks pertain toMpG,ωq.

We define a sequence of real numbers, all at least 1, by

(2.7) τn “ min
uPSn

ωpuq,

where Sn is defined by (2.4). As we are now in the group setting, Sn is exactly the

the set of group elements of word-length n with respect to X. We write

(2.8) C “ max
xPX

ωpxq.

Lemma 2.7.1. With τn pn P Nq and C defined by (2.7) and (2.8), respectively, we

have τn ď Cτn`1 for all n P N.

Proof. For each n P N, take yn P Sn satisfying ωpynq “ τn. Then yn`1 “ zx for

some z P Sn and some x P X, so

τn “ ωpynq ď ωpzq “ ωpyn`1x
´1
q ď Cωpyn`1q “ Cτn`1,

giving the result. �

In the next lemma, notice that parts (i) and (ii) depend on the weight having the

specified properties, whereas part (iii) is a purely algebraic result that can be applied

more broadly. In fact, Lemma 2.7.2(iii) is well known; see e.g. [63, Chapter 3, Lemma

1.1]. We include a short proof for the convenience of the reader.

Lemma 2.7.2. Let G be a group with finite generating set X, and denote word-

length with respect to X by | ¨ |. Let ω be a radial weight on G, and denote by τn the

value that ω takes on Sn. Assume that pτnq is tail-preserving, and let D ą 0 be a

constant as in (2.6). Consider CG Ă ` 1pG,ωq.

(i) Let u P G be expressed as u “ y1 ¨ ¨ ¨ yn for y1, . . . , yn P X, where n “ |u|.

Then

δe ´ δu “
ÿ

xPX

fx ˚ pδe ´ δxq
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for some fx P CG px P Xq each of which may be taken to have the form

fx “
n´1
ÿ

j“0

apjqx ,

where each apjqx is either 0 or δy1...yj in the case that j ‰ 0, and either 0 or δe

in the case that j “ 0.

(ii) Each fx in (i) satisfies

(2.9) }fx} ď
1

D
ωpuq px P Xq.

(iii) As a left ideal in CG, C0G is generated by the elements

δe ´ δx px P Xq.

Proof. (i) We proceed by induction on n “ |u|. The case n “ 1 is trivial, so

suppose that n ą 1. Set v “ y2 ¨ ¨ ¨ yn P Sn´1. By the induction hypothesis applied to

v,

δe ´ δv “
ÿ

xPX

gx ˚ pδe ´ δxq,

where

gx “
n´2
ÿ

j“0

bpjqx px P Xq

and each bpjqx is either 0, δy2¨¨¨yj`1
or δe. We have

δe ´ δu “ δy1 ˚ pδe ´ δvq ` pδe ´ δy1q “ δy1 ˚
ÿ

xPX

gx ˚ pδe ´ δxq ` pδe ´ δy1q

“
ÿ

x‰y1

δy1 ˚ gx ˚ pδe ´ δxq ` pδy1 ˚ gy1 ` δeq ˚ pδe ´ δy1q.

We define

fx “

$

’

’

&

’

’

%

δy1 ˚ gx px ‰ y1q,

δy1 ˚ gy1 ` δe px “ y1q,
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and check that each fx can be written in the required form. To see this, set

apjqx “

$

’

’

’

’

’

&

’

’

’

’

’

%

δy1 ˚ b
pj´1q
x pj “ 1, . . . , n´ 1q,

0 px ‰ y1, j “ 0q,

δe px “ y1, j “ 0q.

It is easily checked that each apjqx has the required form, and that fx “
řn´1
j“0 a

pjq
x px P

Xq. This completes the induction.

(ii) Using part (i), we see that

}fx} “
n´1
ÿ

j“0

}apjqx } px P Xq

and, since, for each x P X, every non-zero apjqx is δw for some w P Sj, we have

}fx} ď
n´1
ÿ

j“0

τj ď
1

D
τn “

1

D
ωpuq,

as required.

(iii) Let
N
ř

i“0

αiδui P C0G. A simple calculation shows that

N
ÿ

i“0

αiδui “
N
ÿ

i“0

˜

i
ÿ

j“0

αj

¸

pδui ´ δui`1
q.

Moreover, for each i P N, we have δui ´ δui`1
“ pδe ´ δui`1

q ´ pδe ´ δuiq, so that the

result follows from (i). �

By analogy to our approach in Section 2.5, we associate to each function f P

` 1pG,ωq, a complex-valued sequence pσnpfqq, defined by

(2.10) σnpfq “
ÿ

uPBn

fpuq.

Lemma 2.7.3. Let G be a group generated by a finite, symmetric set X, and let ω

be a weight on G. Let τ “ pτnq be defined by (2.7). Let g P ` 1pG,ωq and x P X, and
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write

σn “ σnrg ˚ pδe ´ δxqs pn P Nq.

Then pσnq P ` 1pτq.

Proof. Begin by repeating exactly the argument from the beginning of the proof

of Lemma 2.5.3, to obtain

σn “
ÿ

uPSn

gpuq ´
ÿ

uPBnx´1zBn´1

gpuq.

Again we have Bnx
´1zBn´1 Ď Sn Y Sn`1. Taking C as in (2.8), we compute

τn|σn| ď 2
ÿ

uPSn

|gpuq|τn `
ÿ

uPSn`1

|gpuq|τn

ď 2
ÿ

uPSn

|gpuq|τn ` C
ÿ

uPSn`1

|gpuq|τn`1

ď 2
ÿ

uPSn

|gpuq|ωpuq ` C
ÿ

uPSn`1

|gpuq|ωpuq,

where we have used Lemma 2.7.1 in the second line, and (2.7) in the third line. Since

the sets Sn are pairwise disjoint, we conclude that

8
ÿ

n“1

τn|σn| ď p2` Cq}g}ω ă 8.

Hence pσnq P ` 1pτq, as claimed. �

The following gives a strategy for showing that ` 1
0pG,ωq fails to be finitely-gener-

ated, for finitely-generated groups G and certain weights ω on G.

Theorem 2.7.4. Let G be an infinite group generated by the finite, symmetric set

X, and let ω be a weight on G. Let τ “ pτnq be defined by (2.7). Suppose that ` 1
0pG,ωq

is finitely-generated. Then τ is tail-preserving.

Proof. By Lemmas 2.2.1 and 2.2.2, we may suppose that ` 1
0pG,ωq is generated

by a finite subset of C0G, and hence, by Lemma 2.7.2(iii), we may suppose that each
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generator has the form δe ´ δx, for some x P X. Therefore every element of ` 1
0pG,ωq

is a finite linear combination of elements of the form g ˚ pδe ´ δxq, where g P ` 1pG,ωq

and x P X, and so, by Lemma 2.7.3, pσnpfqq P ` 1pτq for every f P ` 1
0pG,ωq.

Assume for contradiction that τ fails to be tail-preserving. Then there exists a

sequence pαnq of non-negative reals such that pαnq P ` 1pτq, but such that
˜

8
ÿ

j“n`1

αj

¸

R ` 1
pτq.

For n P N, let yn P Sn satisfy ωpynq “ τn, and define

f “ ζδe ´
8
ÿ

j“1

αnδyn ,

where ζ “
8
ř

j“1

αj. Then f is well defined, because pαnq P ` 1pτq, and clearly ϕ0pfq “ 0.

However,

σnpfq “ ζ ´
n
ÿ

j“1

αj “
8
ÿ

j“n`1

αj,

so that pσnpfqq R ` 1pτq by the choice of α, contradicting Lemma 2.7.3. �

We are now ready to prove Theorem 2.1.6, which completely characterises finite

generation of the augmentation ideal in the case where the weight is radial. In par-

ticular, this characterisation establishes the Dales–Żelazko conjecture for ` 1pG,ωq for

many groups G and weights ω.

Proof of Theorem 2.1.6. If ` 1
0pG,ωq is finitely-generated then, by Theorem

2.7.4, pτnq is tail-preserving .

Suppose that pτnq is tail-preserving. Write X “ tx1, . . . , xru and enumerate G

as G “ tu0 “ e, u1, u2, . . .u. Let f “
ř8

n“0 αnδun P `
1
0pG,ωq, and let D ą 0 be as

in (2.6). By Lemma 2.7.2, for each n P N, there exist gp1qn , . . . , g
prq
n P CG such that

δe ´ δun “
řr
i“1 g

piq
n ˚ pδe ´ δxiq and

}gpiqn } ď
1

D
}δun} pi “ 1, . . . , rq.
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This implies that, for each i “ 1, . . . , r, we may define an element of ` 1pG,ωq by

spiq “ ´
8
ÿ

n“1

αng
piq
n .

Then

f “
8
ÿ

n“0

αnδun ´

˜

8
ÿ

n“0

αn

¸

δe “ ´
8
ÿ

n“1

αnpδe ´ δunq

“ ´

8
ÿ

n“1

αn

˜

r
ÿ

i“1

gpiqn ˚ pδe ´ δxiq

¸

“

r
ÿ

i“1

spiq ˚ pδe ´ δxiq.

As f was arbitrary, it follows that the elements δe ´ δx1 , . . . , δe ´ δxr together generate

` 1
0pG,ωq. �

We now prove Corollary 2.1.7, part (ii) of which shows that it can happen that

` 1
0pG,ωq is finitely-generated, for certain infinite groups G and certain weights ω.

Proof of Corollary 2.1.7. (i) Lemma 2.6.2(i) implies that, for such a weight,

the sequence pτnq defined in Theorem 2.1.6 is not tail-preserving, and the result follows

from that theorem.

(ii) By Theorem 2.6.1, the sequence pτnq of Theorem 2.1.6 is tail-preserving. �

Let G be a discrete group, and G1 its commutator subgroup. We conclude this

section by remarking that, if rG : G1s “ 8, then ` 1pG,ωq safisfies the Dales–Żelazko

conjecture for every weight ω. The reasoning is as follows. As the conjecture holds for

commutative Banach algebras [33, Corollary 1.7], the conjecture holds for ` 1pH,ωq

whenever H is an abelian group and ω is a weight on H. Then, by [68, Theorem

3.1.13], given G and ω, there exists a weight rω on G{G1 such that ` 1pG{G1, rωq is a

quotient of ` 1pG,ωq. Finally, by the commutative result, there is some maximal ideal

in ` 1pG{G1, rωq which is not finitely-generated, and taking its preimage under the

quotient map gives a maximal left ideal in ` 1pG,ωq which is not finitely-generated.

However, we have not been able to establish the Dales–Żelazko conjecture for an

arbitrary weighted group algebra.
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2.8. Examples on Z and Z`

In this section we look at some specific examples of weighted algebras on Z and Z`, and

consider how they fit into the more general theory of maximal ideals in commutative

Banach algebras. When convenient, we shall sometimes write ωn in place of ωpnq.

For a commutative Banach algebra A we shall denote the character space of A by

ΦA, and for an element a P A, we shall denote by pa its Gelfand transform. We first

recall Gleason’s Theorem [80, Theorem 15.2]:

Theorem 2.8.1. Let A be a commutative Banach algebra, with unit 1 and take

ϕ0 P ΦA. Suppose that kerϕ0 is finitely-generated by g1, . . . , gn, and take γ : ΦA Ñ Cn

to be the map given by

γpϕq “ pϕpg1q, . . . , ϕpgnqq pϕ P ΦAq.

Then there is a neighbourhood Ω of 0 in Cn such that:

(i) γ is a homeomorphism of γ´1pΩq onto an analytic variety E of Ω;

(ii) for every a P A, there is a holomorphic function F on Ω such that pa “ F ˝ γ

on γ´1pΩq;

(iii) if ϕ P γ´1pΩq, then kerϕ is finitely-generated by

g1 ´ ϕpg1q1, . . . , gn ´ ϕpgnq1.

It is natural to wonder whether there are circumstances under which a converse

holds. For instance, suppose we have a commutative Banach algebra A such that

there is an open subset U of the character space, which is homeomorphic to an open

subset of Cn, and such that pa is holomorphic on U under this identification for every

a P A. Does it then follow that the maximal ideals corresponding to points of U are

finitely-generated? T. T. Reed gave an example [80, Example 15.9] which shows that

this need not be true in general, even for uniform algebras. We note that the character

space in Reed’s example is very complicated. In this section we give two examples
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of commutative Banach algebras for which the converse to Gleason’s Theorem fails

to hold, and whose character spaces are the disc and the annulus respectively. The

first (Theorem 2.8.4) shows that there is no general converse to Gleason’s Theorem

for the class of natural Banach function algebras on simply connected compact plane

sets. The second (Theorem 2.8.6) shows that there is no general converse to Glea-

son’s Theorem for the class of weighted abelian group algebras. Interestingly, these

examples rely on constructing counterparts to the sequence pτnq of Lemma 2.6.2(ii)

satisfying the additional constraints that the sequence must now be a weight on Z`

in Theorem 2.8.4, and a weight on Z` admitting an extension to Z in Theorem 2.8.6.

We note that many authors have considered a related question, known as Gleason’s

Problem, which may be stated as follows: let Ω Ă Cn be a bounded domain, and let

RpΩq be a ring of holomorphic functions on Ω containing the polynomials. Given

p “ pp1, . . . , pnq P Ω, is the ideal consisting of those functions in RpΩq which vanish

at p generated by

pz ´ p1q, . . . , pz ´ pnq?

The cases ofApΩq, the algebra of functions which are holomorphic on Ω and continuous

on its closure, and H8pΩq, the algebra of bounded, holomorphic functions on Ω, are

considered to be of particular interest. See e.g. [53, 57].

Before we construct our examples, we first recall some facts about weights on Z

and Z`; see [19, Section 4.6] for more details.

Let ω be a weight on Z. The character space of ` 1pZ, ωq may be identified with

the annulus tz P C : ρ1 ď |z| ď ρ2u, where

ρ1 “ lim
nÑ8

ω
´1{n
´n and ρ2 “ lim

nÑ8
ω1{n
n .

The identification is given by ϕ ÞÑ ϕpδ1q, for ϕ a character. Note that ρ1 ď 1 ď ρ2. As

it is easily seen to be semi-simple, ` 1pZ, ωq may be thought of as a Banach function

algebra on the annulus, and in fact these functions are all holomorphic on the interior
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of the annulus. We denote by Mz the maximal ideal corresponding to the point z of

the annulus, and observe that the augmentation ideal is M1.

Now instead let ω be a weight on Z`. The situation for ` 1pZ`, ωq is analo-

gous to the situation above. Now the character space is identified with the disc

tz P C : |z| ď ρu, where ρ “ lim
nÑ8

ω
1{n
n , and ` 1pZ`, ωq may be considered as a Banach

function algebra on this set, with the property that each of its elements is holomorphic

on the interior. In this context Mz denotes the maximal ideal corresponding to the

point z of the disc.

Before giving our examples we characterise those weights for which ` 1
0pZ, ωq is

finitely-generated. Note that this is a slight improvement, for the group Z, on Theorem

2.1.6 since we no longer need to assume that the weight is radial.

Theorem 2.8.2. Let ω be a weight on Z. Then ` 1
0pZ, ωq is finitely-generated if

and only if both sequences pωnqnPN and pω´nqnPN are tail-preserving.

Proof. Set A “ ` 1pZ, ωq. Suppose that pωnqnPN is not tail-preserving. Then we

can repeat the proof of Theorem 2.7.4 with G “ Z essentially unchanged, except that

now we insist that all functions appearing in it have support contained in Z`, to show

that ` 1
0pZ, ωq is not finitely-generated. By symmetry, the same conclusion holds if

instead pω´nqnPN fails to be tail-preserving.

Now suppose that pωnqnPN and pω´nqnPN are both tail-preserving. Let f P ` 1
0pZ, ωq,

and suppose for the moment that supp f Ă Z`. Then we have

8
ÿ

n“0

ωn

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

fpiq

ˇ

ˇ

ˇ

ˇ

ˇ

“

8
ÿ

n“0

ωn

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

i“n`1

fpiq

ˇ

ˇ

ˇ

ˇ

ˇ

ă 8,

and so we may define g P A by

g “ ´
8
ÿ

n“0

˜

n
ÿ

i“0

fpiq

¸

δn.
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Then

g ˚ pδ1 ´ δ0q “ ´

8
ÿ

n“0

˜

n
ÿ

i“0

fpiq

¸

pδn`1 ´ δnq

“

8
ÿ

n“0

˜

n
ÿ

i“0

fpiq ´
n´1
ÿ

i“0

fpiq

¸

δn “
8
ÿ

n“0

fpnqδn “ f.

Hence

f “ g ˚ pδ1 ´ δ0q P A ˚ pδ1 ´ δ0q.

A similar argument shows that, if supp f Ă Z´, then

f P A ˚ pδ´1 ´ δ0q.

But any f P ` 1
0pZ, ωq can be written as f “ f1 ` f2 for f1, f2 P ` 1

0pZ, ωq, with

supp f1 Ă Z` and supp f2 Ă Z´, and so we see that

` 1
0pZ, ωq “ A ˚ pδ1 ´ δ0q ` A ˚ pδ´1 ´ δ0q

is finitely-generated, as required �

We now construct the first of our special weights described at the beginning of the

section. This is a weight on Z` such that neither the augmentation ideal nor M0 are

finitely-generated.

Lemma 2.8.3. Let ρ ą 1. Then there exists a weight ω on Z`, satisfying

lim
nÑ8

ω1{n
n “ ρ

such that there exists a strictly increasing sequence of natural numbers pnkq with

(2.11)
ωnk`1

ωnk
ď
ρ` 1

k
pk P Nq.

Proof. First, we define inductively a non-increasing null sequence pεpnqq of pos-

itive reals, as follows. Set εp0q “ 1. Since lim
nÑ8

p1{nq1{n “ 1, we can find an integer n1
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such that

0 ă

ˆ

1

n1

˙1{n1

pρ` 1q ´ ρ.

Define εpnq “ 1 for n ď n1, and then choose εpn1 ` 1q such that

0 ă εpn1 ` 1q ă

ˆ

1

n1

˙1{n1

pρ` 1q ´ ρ.

Note also that εpn1 ` 1q ă 1.

Now take k ě 2, and suppose that we have already defined a strictly increasing

sequence of integers n1, . . . , nk´1, and defined εpnq for n ď nk´1 ` 1. Then choose

nk P N, with nk ą nk´1 and such that

0 ă

ˆ

1

nk

˙1{nk

pρ` εpnk´1 ` 1qq ´ ρ.

Define εpnq “ εpnk´1` 1q for nk´1` 1 ă n ď nk, and then choose εpnk ` 1q such that

0 ă εpnk ` 1q ă

ˆ

1

nk

˙1{nk

pρ` εpnk´1 ` 1qq ´ ρ,

whilst ensuring that εpnk ` 1q ă mint1{k, εpnkqu. This completes the inductive con-

struction of ε.

Now define

ωn “ pρ` εpnqq
n
pn P Z`q.

Then ω :“ pωnq is a weight on Z`, because

ωm`n “ pρ` εpm` nqq
m
pρ` εpm` nqqn

ď pρ` εpmqqmpρ` εpnqqn “ ωmωn pm,n P Z`q,

where we have used the fact that ε is non-increasing. As lim
nÑ8

εpnq “ 0, we have

lim
nÑ8

ω
1{n
n “ ρ. It remains to show that (2.11) holds.

For k P N, we have

ωnk`1

ωnk
ď pρ` 1q

pρ` εpnk ` 1qqnk

pρ` εpnkqqnk
.
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However

ρ` εpnk ` 1q ă

ˆ

1

nk

˙1{nk

pρ` εpnk´1 ` 1qq “

ˆ

1

nk

˙1{nk

pρ` εpnkqq,

which implies that
pρ` εpnk ` 1qqnk

pρ` εpnkqqnk
ă

1

nk
ď

1

k
,

and (2.11) now follows. �

As lim
nÑ8

ω
1{n
n “ inf

nPN
ω

1{n
n by [19, Proposition A.1.26(iii)], the weight constructed in

Lemma 2.8.3 satisfies ωn ě ρn pn P Nq. However, Proposition 2.6.1 implies that ω is

not tail-preserving, as

lim inf
n

¨

˝ωn`1

˜

n
ÿ

j“1

ωj

¸´1
˛

‚ď lim inf
n

ωn`1

ωn
“ 0.

Hence we have a version of Lemma 2.6.2(ii) in which the sequence is also a weight.

Theorem 2.8.4. Let ω denote the weight constructed in Lemma 2.8.3. Then nei-

ther M1 nor M0 is finitely-generated, even though both 0 and 1 correspond to interior

points of the character space.

Proof. Set A “ ` 1pZ`, ωq and assume towards a contradiction thatM0 is finitely-

generated. Note that M0 “ tf P A : fp0q “ 0u, so that every finitely supported

element of M0 is of the form g ˚ δ1, for some g P A. By Lemmas 2.2.1 and 2.2.2, we

may suppose that the generators ofM0 have finite support, and as they also lie inM0,

we may factor out a δ1 from each one. It follows that M0 “ A ˚ δ1. Define a sequence

of non-negative reals by

αj “

$

’

’

&

’

’

%

pkωnkq
´1 if j “ nk ` 1,

0 otherwise.

Let f “
8
ř

j“1

αjδj. Then by (2.11) we have
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8
ÿ

j“0

|αj|ωj “
8
ÿ

k“1

ωnk`1

kωnk
ď pρ` 1q

8
ÿ

k“1

1

k2
ă 8.

This shows that f P A, and so clearly f PM0. Assume that f “ g ˚ δ1 for some g P A.

Then g must satisfy gpj ´ 1q “ fpjq pj P Nq. However,

8
ÿ

j“1

|fpjq|ωj´1 “

8
ÿ

k“1

1

k
“ 8,

so that g R A.

The case ofM1 is very similar. This time we know that, ifM1 is finitely-generated,

it must equal A ˚ pδ0 ´ δ1q. By the remark preceding the theorem ω is not tail-

preserving, and so there exists some sequence pαnq P ` 1pωq, such that

8
ÿ

n“1

ωn

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

j“n`1

αj

ˇ

ˇ

ˇ

ˇ

ˇ

“ 8.

Let ζ “
ř8

n“1 αn, and let f “ ζδ0 ´
ř8

n“1 αnδn. Then f P M1. Assume that f “

g ˚ pδ0 ´ δ1q for some g P A. A short calculation implies that

gpnq “
n
ÿ

j“0

fpjq “ ´
8
ÿ

j“n`1

αj

for all n ě 1, contradicting the fact that
ř8

n“0 ωn|gpnq| ă 8. �

We remark that a weight ω on Z` extends to a weight on Z if and only if

sup
nPN

ωn{ωn`1 ă 8. The “only if” direction of this implication just follows from submul-

tiplicativity of the weight at ´1. For the “if” direction, set C “ sup
nPN

ωn{ωn`1. Then

it is routine to verify that ω´n “ Cnωn pn P Nq defines an extension. It follows from

this observation that the weight constructed in Lemma 2.8.3 admits no extension to

Z. However, a different construction does allow us to do something similar on Z.

Lemma 2.8.5. Let ρ ą 1. Then there exists a weight ω on Z satisfying lim
nÑ8

ω
1{n
n “

ρ and lim
nÑ8

ω
´1{n
´n ă 1, but such that pωnqnPN is not tail-preserving.
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Proof. With the preceding remark in mind, we construct first a weight γ on Z`

satisfying sup
nPN
tγn{γn`1u ď ρ ` 1, which ensures that γ extends to a weight on Z. In

the end we shall define ω by ωn “ ρ|n|γn.

We set nk “ 2k ´ 1 pk P Nq. We define γ on t0, 1, 2, 3u by

γ0 “ 1, γ1 “ ρ` 1, γ2 “ pρ` 1q2, γ3 “ ρ` 1.

We then recursively define

γj “ pρ` 1qγj´nk pnk ď j ă nk`1, k ě 2q.

We observe that

(2.12) γnk´i “ pρ` 1qi`1
p0 ď i ď k ´ 1, k ě 2q.

This follows by an easy induction on k. Indeed, the base case can be seen to hold by

inspection, and for k ě 3 we see that

γnk´i “ pρ` 1qγnk´i´nk´1
“ pρ` 1qγnk´1`1´i

“ pρ` 1qpρ` 1qi “ pρ` 1qi`1
p1 ď i ď k ´ 1q

and

γnk “ pρ` 1qpγnk´nkq “ pρ` 1qγ0 “ pρ` 1q.

We now claim that

(2.13) γj ď pρ` 1qγj`1 pj P Nq.

Again, this can be seen by inspection for j ď n2, and we then proceed by induction

on k. Indeed, if j P rnk, nk`1 ´ 2s then

γj
γj`1

“
pρ` 1qγj´nk
pρ` 1qγj`1´nk

“
γj´nk
γj`1´nk

ď pρ` 1q.
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When j “ nk`1 ´ 1 and j ` 1 “ nk`1, then, by (2.12), we have

γj
γj`1

“
pρ` 1q2

pρ` 1q
“ ρ` 1,

establishing the claim.

Now we are ready to prove that γ really is a weight. That γ is submultiplicative

on t0, 1, 2, 3u can be seen by inspection. Let i, j P N, with i ď j, and let k P N

satisfy i ` j P rnk`1, nk`2q. We proceed by induction on i ` j. If j ď nk then

i ` j ď 2nk ă nk`1, so we must have j ě nk ` 1. There are three cases. Firstly, if

j ě nk`1, then

γi`j “ pρ` 1qγi`j´nk`1
ď pρ` 1qγiγj´nk`1

“ γiγj.

If instead j ă nk`1, but i ě nk, then

γi`j “ pρ` 1qγi`j´nk`1
“ pρ` 1qγpi´nkq`pj´1´nkq

ď pρ` 1qγi´nkγj´1´nk “
1

ρ` 1
γiγj´1 ď γiγj,

by (2.13). Finally, suppose that i ă nk and nk ď j ă nk`1. In this case we have

i` j ´ 2k ă nk`1, and, since i` j ě nk`1, we also have

i` j ´ 2k ě nk`1 ´ 2k “ nk,

so that i` j´2k P rnk, nk`1q. Then the formula i` j´nk`1 “ i` j´pnk`2kq implies

that

γi`j “ pρ` 1qγi`j´nk`1
“ pρ` 1qγi`j´2k´nk “ γi`j´2k .

Therefore

γi`j “ γi`j´2k ď γi´1γj`1´2k “ γi´1γj´nk ď pρ` 1qγiγj´nk by (2.13)

“ γiγj.
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This concludes the proof that γ is a weight. By (2.13), it extends to a weight on Z,

which we also denote by γ.

Define ω “ pωnq by ωn “ ρ|n|γn pn P Zq. As γ1{nk
nk “ pρ ` 1q1{nk for all k ě 2, we

must have lim
nÑ8

γ
1{n
n “ 1, and hence lim

nÑ8
ω

1{n
n “ ρ. Furthermore,

lim
nÑ8

ω
´1{n
´n “

1

ρ
lim
nÑ8

γ
´1{n
´n ď

1

ρ
ă 1,

as required.

It remains to show that pωnqnPN is not tail-preserving. We compute

ωnk
řnk´1
j“1 ωj

ď
ωnk

ωnk´pk´1q

“
ρnkpρ` 1q

ρnk`1´kpρ` 1qk
“

ˆ

ρ

ρ` 1

˙k´1

,

which tends to 0 as k goes to infinity. In particular, pωnqnPN violates (2.6), so it is not

tail-preserving. �

Theorem 2.8.6. Let ω be the weight constructed in Lemma 2.8.5. Then the aug-

mentation ideal ` 1
0pZ, ωq fails to be finitely-generated, despite corresponding to an

interior point of the character space.

Proof. By constructionM1 corresponds to an interior point of the annulus. Now

apply Theorem 2.8.2. �



CHAPTER 3

Topologically Finitely-Generated Left Ideals

3.1. Introduction

In Chapter 2 we discussed Sinclair and Tullo’s theorem [79] that a left Noetherian

Banach algebra is finite-dimensional. We then went on to prove new results which

illustrate the fact that algebraic finite-generation of left ideals in a Banach algebra

is a very strong condition. Perhaps a notion better suited to the study of Banach

algebras is topological finite-generation. In this chapter we aim to complement the

discussion of the first chapter by considering Banach algebras in which every closed

left ideal is topologically finitely-generated. We call such Banach algebras topologically

left Noetherian. In contrast to Sinclair and Tullo’s result we find that there are many

natural examples of infinite-dimensional, topologically left Noetherian Banach alge-

bras. Moreover, this property often captures interesting properties of some underlying

object: for example, given a compact group G the group algebra L 1pGq is topologi-

cally left Noetherian if and only if G is metrisable (Theorem 3.3.5); meanwhile, given

a Banach space E with the approximation property, the algebra of compact operators

KpEq is topologically left Noetherian if and only if E 1 is separable (Theorem 3.5.9).

In some situations, however, it seems that in order to get interesting examples and

capture interesting properties of the underlying group or Banach space, it is better to

consider topological finite-generation in some topology other than the norm topology.

For instance, given a compact group G, the measure algebraMpGq is }¨}-topologically

left Noetherian if and only if G is finite (Proposition 3.3.6), whereas it is weak*-

topologically left Noetherian whenever G is metrisable (Corollary 3.4.13). Hence part

of this chapter is devoted to weak*-topological Noetherianity of dual Banach algebras.

In Section 3.6 we shall also consider SOP-topological left Noetherianity of BpEq for

74
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a Banach space E, and show that this is equivalent to a natural condition on the

Banach space (Corollary 3.6.5(ii)).

In this chapter we shall also take an interest in classifying the closed left ideals

in certain families of Banach and semi-topological algebras. In some cases this is

a necessary step towards our results about topological left Noetherianity, but these

classification results are also of interest in their own right. Our main result of this

nature is a classification of the closed left and right ideals in the Banach algebra

of approximable operators ApEq, for any Banach space E satisfying a certain con-

dition (Theorem 3.5.4 and Theorem 3.5.10 respectively)1 . Our classification holds,

for instance, whenever the dual of the Banach space has the bounded approximation

property. We also give classifications of the weak*-closed left ideals of the measure

algebra of a compact group (Theorem 3.4.17), and of the weak*-closed left and right

ideals of BpEq, for E a reflexive Banach space with the approximation property (The-

orem 3.6.7). In addition, we give a classification of the SOP-closed left ideals of BpEq

for an arbitrary Banach space E (Theorem 3.6.2).

3.2. General Theory

Recall that a semi-topological algebra is a pair pA, τq, where A is an algebra, and τ

is a topology on A such that pA,`, τq is a topological vector space, and such that

multiplication on A is separately continuous. For example, a dual Banach algebra

with its weak*-topology is a semi-topological algebra.

Let pA, τq be a semi-topological algebra. Let I be a closed left ideal in A, and let

n P N. We say that I is τ -topologically generated by elements x1, . . . , xn P I if

I “ A7x1 ` ¨ ¨ ¨ ` A7xn.

We say that I is τ -topologically finitely-generated if there exist n P N and x1, . . . , xn P I

which τ -topologically generate I. We say that A is τ -topologically left Noetherian if
1Since proving Theorem 3.5.4 we have found that there is a very similar result to Theorem 3.5.4
already in the literature due to Grønbæk [38, Proposition 7.3]. We acknowledge this in Section 3.5.
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every closed left ideal of A is τ -topologically finitely-generated. For example, we shall

often discuss weak*-topologically left Noetherian dual Banach algebras. When the

topology is clear we may simply speak of “topologically finitely-generated left ideals”

et cetera, without naming the topology referred to. In the context of Banach algebras,

if there is more than one topology under discussion, phrases such as “topologically

finitely-generated left ideal” and “topologically left Noetherian Banach algebra” are

understood to refer to the norm topology.

Analogously we may define τ -topologically finitely-generated right ideals, as well

as τ -topologically right Noetherian algebras. If the algebra in question is commutative

we usually drop the words “left” and “right”.

We note that when a semi-topological algebra A has a left approximate identity

we have

A7x1 ` ¨ ¨ ¨ ` A7xn “ Ax1 ` ¨ ¨ ¨ ` Axn,

for each n P N and each x1, . . . , xn P A. When this is the case we usually drop the

unitisations in order to ease notation. For example, in the proof of Theorem 3.3.5

below, we shall write L 1pGq ˚ g in place of L 1pGq7 ˚ g, for G a locally compact group

and g P L 1pGq.

The following lemma will be invaluable throughout this chapter.

Lemma 3.2.1. Let A be a semi-topological algebra with a left approximate identity.

Let J be a dense right ideal of A. Then J intersects every closed left ideal of A densely.

Proof. Let peαq be a left approximate identity for A. Given an open neighbour-

hood of the origin U and an index α choose fα,U P J such that eα ´ fα,U P U . Note

that pfα,Uq is a net, where the underlying directed set is ordered by pα, Uq ď pβ, V q

if and only if α ď β and V Ă U . We see that pfα,Uq is a left approximate identity for

A contained in J : let a P A, let U be an arbitrary open neighbourhood of the origin,

let V0 be an open neighbourhood of the origin such that V0 ` V0a Ă U , and let α0 be

such that eαa´ a P V0 for all α ě α0. Then, for all open neighbourhoods of the origin
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V Ă V0 and all α ě α0, we have

a´ fα,V a “ pa´ eαaq ` peαa´ fα,V aq P V0 ` V0a Ă U.

Let I be a closed left ideal in A and let a P I. Then for every index pα, Uq we

have fα,Ua P J X I. Since a “ limpα,Uq fα,Ua P J X I, and a was arbitrary, it follows

that J X I “ I, as required. �

Next we show that topological left Noetherianity is stable under taking quotients

and extensions.

Lemma 3.2.2. Let A be a semi-topological algebra, and let I be a closed (two-sided)

ideal in A.

(i) If A is topologically left Noetherian then so is A{I.

(ii) Suppose that both I and A{I are topologically left Noetherian. Then so is A.

(iii) A is topologically left Noetherian if and only if A7 is topologically left Noe-

therian.

Proof. (i) Let J be a closed left ideal in A{I and let q : AÑ A{I denote the quo-

tient map. Let rJ “ q´1pJq. Since A is topologically left Noetherian, there exists n P N

and there exist x1, . . . , xn P rJ such that rJ “ A7x1 ` ¨ ¨ ¨ ` A7xn. It follows from the

continuity and surjectivity of q that J is topologically generated by qpx1q, . . . , qpxnq.

(ii) Let J be a closed left ideal in A. Since I is topologically left Noetherian there

exist n P N and x1, . . . , xn P J such that J X I “ I7x1 ` ¨ ¨ ¨ ` I7xn. Moreover, since

J{pI X Jq is topologically isomorphic as a left A-module to pJ ` Iq{I, which is a

topologically finitely-generated closed left ideal of A{I, there must exist m P N and

y1, . . . , ym P J such that y1 ` I X J, . . . , ym ` I X J topologically generate J{pI X Jq.

We claim that x1, . . . , xn, y1, . . . , ym topologically generate J . Since J was arbi-

trary this will complete the proof of (ii). Denote the quotient map AÑ A{IXJ by q.

Let z P J , let U be any open neighbourhood of 0, and let V be an open neighbourhood

of 0 such that V ` V Ă U . Since q is an open map, qpV q is an open neighbourhood
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of 0 in A{I X J , so that, by the above, there exist a1, . . . , am P A
7 such that

qpzq ´ pa1qpy1q ` ¨ ¨ ¨ ` amqpymqq P qpV q.

It follows that there exists w P I X J such that z ´ pa1y1 ` ¨ ¨ ¨ ` amymq ´ w P V .

Furthermore there exist b1, . . . , bn P A
7 such that w ´ b1x1 ` ¨ ¨ ¨ ` bnxn P V . Hence

z ´ pa1y1 ` ¨ ¨ ¨ ` amym ` b1x1 ` ¨ ¨ ¨ ` bnxnq

“ z ´ pa1y1 ` ¨ ¨ ¨ ` amymq ´ w ` w ´ pb1x1 ` ¨ ¨ ¨ ` bnxnq P V ` V Ă U,

and as U was arbitrary this proves the claim.

(iii) We may suppose that A is non-unital for otherwise the result is trivial. Sup-

pose that A is topologically left Noetherian. Then, since A7{A – C is topologically

left Noetherian, it follows from (ii) that A7 is also. The converse follows from the fact

that every closed left ideal in A is also a closed left ideal in A7. �

3.3. Examples From Abstract Harmonic Analysis

It is surely easiest to determine whether or not a Banach algebra is topologically left

Noetherian when we know what its closed left ideals are. Fortunately, this is the

case for the group algebra of a compact group, as well as for the Fourier algebra of a

discrete group. We shall show below that, for a compact group G, the group algebra

L 1pGq is topologically left Noetherian if and only if G is metrisable, whereas, for a

discrete group G, the Fourier algebra ApGq is topologically Noetherian if and only if

G is countable. The proofs of both statements are similar, but the latter is easier, so

we start there.

Proposition 3.3.1. Let G be a discrete group. Then ApGq is topologically Noe-

therian if and only if G is countable.
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Proof. Given E Ă G, write IpEq “ tf P ApGq : fpxq “ 0, x P Eu. It is well

known that, since G is discrete, the closed ideals of ApGq are all of the from IpEq for

some subset E of G: see, for instance, [46, Theorem 39.18].

Suppose first that G is countable and let I ŸApGq be closed. Let E Ă G be such

that I “ IpEq, and enumerate GzE “ tx1, x2, . . . , u. Since G is discrete the point

mass δx belongs to ApGq for each x P G, since this may be realised as δe ˚λ δx, where

λ here denotes the left regular representation. Hence g “
ř8

n“1
1
n2 δxn P ApGq. It is

clear that supp g “ GzE, and hence that

!

x P G : fpxq “ 0 for every f P ApGq7g
)

“ E.

It follows from the classification of the closed ideals of ApGq given above that I “

ApGq7g. As I was arbitrary we conclude that ApGq is topologically Noetherian.

Now suppose that ApGq is topologically Noetherian. Let

I “ tf P ApGq : fpeq “ 0u.

Then there exist n P N and h1, . . . , hn P I such that I “ ApGq7h1 ` ¨ ¨ ¨ ` ApGq7hn.

Since ApGq Ă c0pGq, every function in ApGq must have countable support. Hence

S :“
Ťn
i“1 supphi is a countable set. Every f P ApGq7h1`¨ ¨ ¨`ApGq

7hn has supp f Ă

S, and of course, after taking closures, we see that this must hold for every f P I.

This clearly forces S “ Gzteu, so that G must be countable. �

We now recall some facts about compact groups. Firstly, when G is compact each

representation in pG is finite-dimensional. Secondly, for G a compact group the closed

left ideals of L 1pGq have the following characterisation [46, Theorem 38.13]:

Theorem 3.3.2. Let G be a compact group, and let I be a closed left ideal in

L 1pGq. Then there exist linear subspaces Eπ Ă Hπ pπ P pGq such that

I “
!

f P L 1
pGq : πpfqpEπq “ 0, π P pG

)

.
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Let G be a compact group. Given π P pG we write TπpGq “ spantξ ˚π η : ξ, η P Hπu,

and we write T pGq “ spantξ ˚π η : ξ, η P Hπ, π P pGu. We recall the following facts

about these spaces from [45, 46]:

Theorem 3.3.3. Let G be a compact group.

(i) Let σ, π P pG with σ ‰ π. Then σpξ ˚π ηq “ 0.

(ii) The linear space T pGq is a dense ideal in L 1pGq.

(iii) For each π P pG the space TπpGq is an ideal in L 1pGq, and as an algebra

TπpGq –MdπpGq, where dπ denotes the dimension of Hπ.

Proof. It follows from equation (1.10) that

xσpfqζ1, ζ2y “

ż

G

fptqxσptqζ1, ζ2y dt,

for f P L 1pGq, σ P pG and ζ1, ζ2 P Hσ. Part (i) follows from this and the orthogonality

relations [46, Theorem 27.20 (iii)]. Part (ii) follows from [46, Theorem 27.20, Lemma

31.4], and part (iii) follows from [46, Theorem 27.21]. �

We also record the following result here, although we shall not require it in a proof

until Section 3.4.

Lemma 3.3.4. Distinct choices of linear subspace in Theorem 3.3.2 give rise to

distinct ideals.

Proof. Suppose that pEπqπP pG and pFπqπP pG are two distinct choices of linear sub-

spaces of the Hilbert spaces pHπqπP pG. Then there exists σ P pG such that Eσ ‰ Fσ.

Without loss of generality Fσ Ę Eσ. Let n be the dimension of Eσ and let m be the

dimension of Hσ. Choose an orthonormal basis η1, . . . , ηm for Hσ such that η1, . . . , ηn

is a basis for Eσ and ηn`1 . . . ηm is a basis for EKσ . Let f “
řm
i“n`1 ηi ˚σ ηi P L

1pGq.

Then it follows from Theorem 3.3.3(i) that πpfq “ 0 for π ‰ σ. Moreover, using (1.10)
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and the orthogonality relations [46, Theorem 27.20 (iii)], we see that σpfq is the or-

thogonal projection onto EKσ . Hence πpfqpEπq “ 0 pπ P pGq, but taking ξ P FσzEσ we

have σpfqξ ‰ 0. �

We can now prove our theorem. The equivalence of conditions (b) and (c) has

surely been noticed before, but we include a short proof for the convenience of the

reader.

Theorem 3.3.5. Let G be a compact group. Then the following are equivalent:

(a) L 1pGq is topologically left Noetherian;

(b) pG is countable;

(c) G is metrisable.

Proof. We first demonstrate that (b) implies (c). Our method is to show that

G is first countable, which will implie that G is metrisable by [45, Theorem 8.3].

Indeed, it follows from Tannaka-Krein duality [51] that the topology on G is the

initial topology induced by its irreducible representations, and as such has a base

given by sets of the form

Upπ1, . . . , πn; ε; tq :“ ts P G : }πiptq ´ πipsq} ă ε, i “ 1, . . . , nu,

where ε ą 0, t P G, and pπ1, H1q, . . . , pπn, Hnq P pG. Hence, if pG is countable, for

every t P G the sets Upπ1, . . . , πn; 1{m; tq pm P N, π1, . . . , πn P pGq form a countable

neighbourhood base at t, and so G is first-countable.

Now suppose instead that G is metrisable. Then CpGq is separable. Since the

infinity norm dominates the L 2-norm for a compact space, and since CpGq is dense

in L 2pGq, it follows that L 2pGq is separable. By [46, Theorem 27.40]

L 2
pGq –

à

πP pG

Hπ,

(where ‘ denotes the direct sum of Hilbert spaces) which is clearly separable only if

pG is countable. Hence (c) implies (b).
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Next we show that (b) implies (a). Suppose that pG is countable. By Theorem

3.3.3(ii) T pGq is a dense ideal in L 1pGq so that, by Lemma 3.2.1, I X T pGq “ I for

every closed left ideal I in L 1pGq.

Fix a closed left ideal I in L 1pGq. By Theorem 3.3.2 there exist linear subspaces

Eπ Ă Hπ pπ P pGq such that

I “
!

f P L 1
pGq : πpfqpEπq “ 0, π P pG

)

.

By Theorem 3.3.3(iii), for each π P pG we have TπpGq – MdπpCq, where dπ is the

dimension of Hπ, and since I X TπpGq is a left ideal in TπpGq there must be an idem-

potent Pπ P TπpGq such that I X TπpGq “ TπpGq ˚ Pπ. Set απ “ }Pπ}´1. Enumerate

pG “ tπ1, π2, . . .u, and define

g “
8
ÿ

i“1

1

i2
απiPπi P L

1
pGq,

which belongs to I because each Pπi does, and I is closed.

We claim that I “ L 1pGq ˚ g. Indeed, I Ą L 1pGq ˚ g because g P I. For the

reverse inclusion we show that, for j P N and ξ P Hπj , we have πjpfqpξq “ 0 for all

f P L 1pGq ˚ g if and only if ξ P Eπj . The claim then follows from Theorem 3.3.2.

Indeed, if f P L 1pGq ˚ g then πjpfqpξq “ 0 because f P I. On the other hand if

ξ P HπjzEπj then πjpPπjqpξq ‰ 0, whereas πipPπjq “ 0 for i ‰ j by Theorem 3.3.3(i),

which implies that πjpgqξ “ 1
j2
απjπjpPπjqpξq ‰ 0. This establishes the claim.

Finally we show that (a) implies (b). Assume that L 1pGq is topologically left

Noetherian. Then there exist r P N and g1, . . . , gr P L
1
0pGq such that

L 1
0pGq “ L 1pGq ˚ g1 ` ¨ ¨ ¨ ` L 1pGq ˚ gr.

For each n P N there exist tpiqn P T pGq pi “ 1, . . . , rq such that

}tpiqn ´ gi} ă
1

n
pi “ 1, . . . , rq.
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Let S be the set

S “
!

π P pG : there exist i, n P N such that π
`

tpiqn
˘

‰ 0
)

Y t1u ,

where 1 denotes the trivial representation. We see that S is countable because, by

Theorem 3.3.3(i), each function t
piq
n satisfies πptpiqn q ‰ 0 for at most finitely many

π P pG. We shall show that S “ pG.

Assume instead that there exists some π P pGzS, and let u be the identity element

of TπpGq. For σ P pGztπu we have σpuq “ 0, whereas π
´

t
piq
n

¯

“ 0 for every n P N and

every i “ 1, . . . , r. Hence σ
´

t
piq
n ˚ u

¯

“ 0 pσ P pG, n P N, i P t1, . . . , ruq, which implies

that tpiqn ˚ u “ 0 for every n P N and i “ 1, . . . , r.

By taking the limit as n goes to infinity, this shows that gi ˚ u “ 0 pi “ 1, . . . , rq,

and hence that f ˚ u “ 0 for every f P L 1
0pGq. However, because 1 P S, Theorem

3.3.3(i) implies that u P L 1
0pGq. Since u was chosen to be an identity u ˚ u “ u ‰ 0.

This contradiction implies that pG “ S, as claimed. �

We conjecture that in fact G is compact whenever L 1pGq is topologically left

Noetherian, and hence metrisable by the previous Theorem. Indeed, this is the case

when G is abelian by a theorem of Atzmon [5] (note that Atzmon says “finitely-

generated” where we say “topologically finitely-generated”). In [5] Atzmon points

out the relationship between questions about topologically finitely-generated ideals

of L 1pGq and difficult questions about spectral synthesis. In the light of this our

conjecture seems daunting, and we do not attempt to prove it here.

The next proposition suggests to us that weak*-topological Noetherianity is a

more interesting notion for the measure algebra of a locally compact group G than

} ¨ }-topological Noetherianity, and we explore this in the next section.

Proposition 3.3.6. Let G be a locally compact group such that MpGq is topolog-

ically left Noetherian. Then G is countable. If, in addition, G is either compact or

abelian, then G is finite.
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Proof. Suppose that MpGq is topologically left Noetherian. Then, by Lemma

3.2.2 (i), so are its quotients, whence ` 1pGdq is topologically left Noetherian, where

Gd denotes the group G with the discrete topology. It follows that

` 1
0pGdq “ ` 1pGdq ˚ g1 ` ¨ ¨ ¨ ` ` 1pGdq ˚ gn,

for some n P N and some g1, . . . , gn P `
1
0pGdq. LetH be the subgroup ofG generated by

the supports of the functions g1, . . . , gn. This is a countable set. Define σ : ` 1pGdq Ñ C

by

σ : f ÞÑ
ÿ

xPH

fpxq pf P ` 1
pGdqq.

Then, by the calculation (2.2) performed in Lemma 2.3.6,

σpfq “ 0 pf P ` 1
pGdq ˚ g1 ` ¨ ¨ ¨ ` `

1
pGdq ˚ gnq,

and hence, since σ is clearly bounded, σpfq “ 0 for every f P ` 1
0pGdq. This forces

G “ H. Hence G is countable.

A countable locally compact group is always discrete, so that if it is also compact

it must be finite. If G is abelian, then the fact that ` 1pGdq is topologically Noetherian

implies that G is finite by [5, Theorem 1.1]. �

Note that if our conjecture that G is compact whenever L 1pGq is topologically left

Noetherian is correct, then the above proof actually shows that G is finite whenever

MpGq is topologically left Noetherian.

3.4. Multiplier Algebras and Dual Banach Algebras

In this section we consider Banach algebras whose multiplier algebras are dual Banach

algebras. We first develop some general theory and then go on to prove some results

concerning the weak*-closed left ideals of such multiplier algebras. We shall observe

that, as a consequence of our general theory and Theorem 3.3.5, the measure algebra

of a locally compact group G is weak*-topologically left Noetherian whenever G is

compact and metrisable. The results of this section will be useful again when we
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consider weak*-topological left Noetherianity of BpEq, with E a reflexive Banach

space, in Section 3.6.

Let A be a faithful Banach algebra and denote the multiplier algebra of A by

MpAq. We always regard A as an ideal in MpAq. The bidual A2 admits left and right

actions of MpAq rendering it a Banach MpAq-bimodule, denoted by

Φ ÞÑ Φlµ and Φ ÞÑ µ3Φ,

and defined by

xΦlµ, λy “ xΦ, µ ¨ λy, xµ3Φ, λy “ xΦ, λ ¨ µy,

xa, µ ¨ λy “ xaµ, λy, xa, λ ¨ µy “ xµa, λy,

for Φ P A2, λ P A1, a P A, µ P MpAq. When we view A as sitting inside MpAq we

recover the first and second Arens products, which we also denote by l and 3.

Now suppose that A has a bounded approximate identity, and let Φ0 be a mixed

identity for A2, which exists by [19, Proposition 2.9.16 (iii)]. Then it is well known

that we have embeddings L and R of MpAq into pA2,lq and pA2,3q, respectively,

given by

L : µ ÞÑ Φ0lµ and R : µ ÞÑ µ3Φ0,

for µ P MpAq (see [19, Theorem 2.9.49(iii)] for the details in the special case that

}Φ0} “ 1; the general case is very similar). Note that L and R are just the identity

map when restricted to A. Moreover, whenever a P A and µ PMpAq we have

(3.1) alLpµq “ alΦ0lµ “ alµ “ aµ,

and similarly

(3.2) Rpµqla “ µa.
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In this section we shall be interested in Banach algebras with a bounded approx-

imate identity whose multiplier algebras are also dual Banach algebras. Moreover,

we shall focus on cases where the dual structure and multiplier structure are com-

patible in some sense. It can be checked that Φ0lA2 is a dual Banach space with

predual A1 ¨ A, and similarly A23Φ0 may be identified with the dual of A ¨ A1. The

pA1 ¨ A, Φ0lA2q-duality coincides with the pA1, A2q-duality in the sense that

xλ,ΨypA1¨A,Φ0lA2q “ xλ,ΨypA1, A2q pλ P A1 ¨ A, Ψ P Φ0lA2q,

and similarly for the pA ¨ A1, A3Φ0q-duality. Of course, LpMpAqq Ă Φ0lA2 and

RpMpAqq Ă A23Φ0. Also, by Cohen’s factorisation theorem, we have A1 ¨ A “

spanpA1 ¨ Aq and A ¨ A1 “ spanpA ¨ A1q.

We next define what what we shall call in this thesis an Ülger algebra. This is

a non-commutative version of a condition considered by Ülger in [84], in which the

condition was applied to commutative, semisimple Banach algebras.

Definition 3.4.1. We say that a Banach algebra A is an Ülger algebra if

(1) A has a bounded approximate identity;

(2) MpAq is a dual Banach algebra, with predual X say;

(3) there are bounded module maps ιL : X Ñ A ¨A1 and ιR : X Ñ A1 ¨A which are

bounded below, such that under the map L the pX,MpAqq-duality is identi-

fied with the pιLpXq, LpMpAqqq-duality, and under the map R the pX,MpAqq

duality is identified with the pιRpXq, RpMpAqqq duality, i.e.

(3.3) xx, µy “ xιLpxq, Lpµqy “ xιRpxq, Rpµqy pµ PMpAq, x P Xq.

Examples of Ülger algebras include AppGq for G a locally compact amenable group,

and p P p1,8q, with X “ PFppGq, the space of pseudo-functions on G (see [84, page

99]). Below we shall show that, for any locally compact group G, the group algebra

L 1pGq, whose multiplier algebra may be identified with the measure algebraMpGq, is

an Ülger algebra (Proposition 3.4.4), as well as KpEq, for any reflexive Banach space
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E with the approximation property (Corollary 3.4.9). Compare with our discussion

of these algebras in Subsections 1.4.3 and 1.4.5 of the introduction.

The following lemma is often useful.

Lemma 3.4.2. Let A be a Banach algebra with a bounded approximate identity.

Then the following formulae hold for a P A, µ PMpAq and λ P A1:

xλ ¨ a, LpµqypA1, A2q “ xa, µ ¨ λypA,A1q(3.4)

xa ¨ λ,RpµqypA1, A2q “ xa, λ ¨ µypA,A1q.(3.5)

Proof. Let a P A, µ PMpAq, λ P A1. Then

xλ ¨ a, LpµqypA1, A2q “ xλ ¨ a,Φ0lµypA1, A2q “ xµ ¨ λ ¨ a,Φ0ypA1, A2q

“ xµ ¨ λ, alΦ0ypA1, A2q “ xa, µ ¨ λypA,A1q.

The other identity is proved similarly. �

Remark. It follows from the above lemma that, although the maps L and R may

depend on the choice of the mixed identity Φ0, the definition of an Ülger algebra does

not. Indeed, suppose that we have two mixed identities Φ1 and Φ2, and corresponding

maps L1 and R1, and L2 and R2. Then Lemma 3.4.2 implies that

xλ ¨ a, L1pµqy “ xλ ¨ a, L2pµqy and xa ¨ λ,R1pµqy “ xa ¨ λ,R2pµqy,

for a P A, λ P A1, and µ P MpAq. Hence if A is an Ülger algebra with respect to Φ1,

we have xx, µy “ xιLpxq, L1pµqy “ xιLpxq, L2pµqy px P X,µ PMpAqq, and similarly for

R1 and R2, so that A is also an Ülger algebra with respect to Φ2 for the same choices

of maps ιL and ιR.

We wish to verify that the group algebra of a locally compact group is an Ülger

algebra. For this we shall need the following lemma which is surely well known. We

include a short proof for the reader’s convenience.
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Lemma 3.4.3. The action of L 1pGq on L8pGq as its dual is given by

f ¨ φ “ φ ˚ qf and φ ¨ f “ p|∆fq ˚ φ,

where ∆ denotes the modular function, and f P L 1pGq and φ P L8pGq. Here, ∆f

denotes the pointwise product of the modular function with f .

Proof. Let g P L 1pGq. Then, for f P L 1pGq and φ P L8pGq, we have

xg, φ ¨ fy “ xf ˚ g, φy “

ż

G

ż

G

fpst´1
qgptq∆pt´1

qφpsq dt ds

“

ż

G

gptq

ż

G

fpst´1
q∆pt´1

qφpsq ds dt

“

ż

G

gptq

ż

G

p|∆fqpts´1
q∆ps´1

qφpsq ds dt

“

ż

G

gptqrp|∆fq ˚ φsptq dt.

It follows that φ ¨ f “ p|∆fq ˚ φ. The other formula is proved in a similar fashion, but

the calculation is slightly simplified by the absence of the modular function. �

Proposition 3.4.4. Let G be a locally compact group. Then L 1pGq is an Ülger

algebra.

Proof. That L 1pGq has a bounded approximate identity is well known. Recall

that we may identify the multiplier algebra of L 1pGq with the measure algebraMpGq,

and that MpGq is a dual Banach algebra, with predual C0pGq.

We claim that C0pGq Ă pL
8pGq ¨ L 1pGqq X pL 1pGq ¨ L8pGqq, so that part (2) of

Definition 3.4.1 is satisfied with ιL “ ιR taken to be the inclusion map. By [32,

Proposition (3.4)] we have that ApGq “ spantg1 ˚ qg2 : g1, g2 P CcpGqu, where the

closure is taken in the ApGq-norm. Because this norm dominates the infinity norm,
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we have

C0pGq “ ApGq
}¨}8

Ă span}¨}8tφ ˚ qf : φ, f P CcpGqu

“ spantf ¨ φ : f, φ P CcpGqu

Ă L 1pGq ¨ L8pGq “ L 1
pGq ¨ L8pGq.

The other inclusion is demonstrated using the same idea, but now the formula for

φ ¨ f involves the modular function. Indeed, we have

C0pGq “ ApGq
}¨}8

Ă span}¨}8tg1 ˚ g2 : g1, g2 P CcpGqu

“ spantp|∆fq ˚ φ : f, φ P CcpGqu “ spantφ ¨ f : f, φ P CcpGqu

Ă L8pGq ¨ L 1
pGq,

as required.

It remains to show that part (3) of the definition holds, with ιL “ ιR taken to be

the inclusion map. Fix µ PMpGq and g P C0pGq. We have to show that

xg, µypC0pGq,MpGqq “ xg, LpµqypL8pGq, L 1pGq2q.

By the above, we can write g “ φ ¨f , for some φ P L8pGq and f P L 1pGq. By Lemma

3.4.3, xφ ¨ f, LpµqypL8pGq, L 1pGq2q “ xf ˚ µ, φypL 1pGq, L8pGqq, so it remains to show that

xφ ¨ f, µypC0pGq,MpGqq “ xf ˚ µ, φypL 1pGq, L8pGqq.

This is equivalent to showing that

ż

G

pφ ¨ fqptq dµptq “

ż

G

pf ˚ µqptqφptq dmptq,

where m denotes the left Haar measure on the group. By Lemma 3.4.3 the left-hand
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side is equal to

ż

G

rp|∆fq ˚ φsptq dµptq “

ż

G

ż

G

p|∆fqpts´1
qφpsq∆ps´1

q dmpsq dµptq

“

ż

G

ż

G

∆pst´1
qfpst´1

qφpsq∆ps´1
q dmpsq dµptq

“

ż

G

ż

G

fpst´1
qφpsq∆pt´1

q dmpsq dµptq

“

ż

G

φpsq

ż

G

fpst´1
q∆pt´1

q dµptq dmpsq

“ xf ˚ µ, φypL 1pGq, L8pGqq.

It remains to show that xg, µypC0pGq,MpGqq “ xg,RpµqypL8pGq, L 1pGq2q, and for this

we write g “ f ¨ φ for φ P L8pGq and f P L 1pGq. We shall show that

xf ¨ φ, µypC0pGq,MpGqq “ xµ ˚ f, φypL 1pGq, L8pGqq,

or, in other words, that

ż

G

pf ¨ φqptq dµptq “

ż

G

pµ ˚ fqptqφptq dmptq.

This time the left-hand side is equal to

ż

G

pφ ˚ qfqptq dµptq “

ż

G

ż

G

φpsq qfps´1tq dmpsq dµptq

“

ż

G

ż

G

φpsqfpt´1sq dµptq dmpsq

“

ż

G

φpsqpµ ˚ fqpsq dmpsq,

as required. This completes the proof. �

The next lemma lists some basic properties of Ülger algebras.

Lemma 3.4.5. Let A be an Ülger algebra with bounded approximate identity peαq.

Then:

(i) A is weak*-dense in MpAq;
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(ii) The weak*-topology on MpAq is coarser than the strict topology.

Proof. (i) Let x P AK Ă X. Then for every a P A we have xιpxq, aypA1, Aq “

xx, aypX,MpAqq “ 0, so that ιpxq “ 0, forcing x “ 0. As x was arbitrary, we have shown

that AK “ t0u, and hence that Aw
˚

“ pAKq
K “ t0uK “MpAq.

(ii) Let pµαq ĂMpAq be a net converging to some µ PMpAq in the strict topology.

Given x P X, there exist a P A and λ P A1 such that ιpxq “ λ ¨ a. Therefore

xx, µαy “ xλ ¨ a, Lpµαqy “ xλ, aLpµαqy “ xλ, aµαy,

which converges to xλ, aµy “ xx, µy. As x was arbitrary limw˚, α µα “ µ. �

Definition 3.4.6. Let A be an Ülger algebra. We say that A is strongly Ülger if

the map L is σpMpAq, Xq-σpΦ0lA2, A1 ¨Aq continuous and the map R is σpMpAq, Xq-

σpA23Φ0, A ¨ A
1q continuous.

In this thesis we shall consider the ideal structure of strongly Ülger algebras,

but we note that they appear to have interesting properties more broadly and are

worthy of further study. In the papers [43] and [44] Hayati and Amini consider

Connes amenability of certain multiplier algebras which are also dual Banach algebras.

Although their framework is different to ours, their proof of [43, Theorem 3.1] can be

lifted with only trivial modifications to show that, if A is a strongly Ülger algebra,

then A is amenable if and only if MpAq is Connes amenable.

For finding examples of strongly Ülger algebras, the following lemma is quite

useful.

Lemma 3.4.7. Let A be an Ülger algebra, and suppose that the maps ιL and ιR in

Definition 3.4.1 are surjective. Then A is strongly Ülger.

Proof. We show that the map L is continuous in the appropriate sense, the

argument for R being very similar. Suppose pµαq is a net in MpAq, converging in the

weak*-topology to some element µ P MpAq. Let a P A, and let λ P A1. There exists
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x P X such that ιLpxq “ λ ¨ a, so we have

xλ ¨ a, Lpµαqy “ xιLpxq, Lpµαqy “ xx, µαy,

which converges to xx, µy “ xλ ¨ a, Lpµqy. As λ and a were arbitrary, it follows that

Lpµαq converges to Lpµq in the σpΦ0lA2, A1 ¨Aq-topology. We have shown that L is

σpMpAq, Xq-σpΦ0lA2, A1 ¨ Aq continuous. The argument for R is analogous. �

This gives us the following family of examples of strongly Ülger algebras.

Lemma 3.4.8. Let A be a Banach algebra with a bounded approximate identity

which is Arens regular and an ideal in its bidual. Then A is a strongly Ülger algebra.

Proof. By [54, Theorem 3.9] A2 may be identified with MpAq. Arens regularity

implies that A2 is a dual Banach algebra with predual A1. The criteria set out in

Definition 3.4.1 now follow trivially, setting X “ A1 and ιL “ ιR “ idA1 . As the maps

ιL and ιR are surjective, A2 is strongly Ülger by Lemma 3.4.7. �

It follows from Lemma 3.4.8 that c0pNq is an example of a strongly Ülger algebra.

A family of examples that will be important to us in the Section 5 is the following:

Corollary 3.4.9. Let E be a reflexive Banach space with the approximation

property. Then KpEq is a strongly Ülger algebra.

Proof. By [91, Theorem 3] ApEq “ KpEq is Arens regular. Moreover KpEq2 “

BpEq and by Lemma 1.4.5 the Arens product coincides with the usual composition of

operators, so that we see that KpEq is an ideal in its bidual. Hence the result follows

from the previous lemma. �

One of the most useful properties of strongly Ülger algebras is summarised in the

following lemma.

Lemma 3.4.10. Let A be a strongly Ülger algebra. Then for each a P A the maps

MpAq Ñ A given by µ ÞÑ aµ and µ ÞÑ µa are weak*-weakly continuous, and hence

weakly compact.
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Proof. To verify weak*-weak continuity of the map µ ÞÑ aµ we compose with an

arbitrary λ P A1, and observe that the result is a weak*-continuous linear funtional

on MpAq. Indeed, by Lemma 3.4.2,

xaµ, λy “ xλ ¨ a, Lpµqy pµ PMpAqq,

and the map µ ÞÑ xλ ¨ a, Lpµqy is weak*-continuous by hypothesis. The case of the

other map is similar. �

Unfortunately, the group algebra is usually not strongly Ülger.

Proposition 3.4.11. Let G be a locally compact group. The Banach algebra

L 1pGq is strongly Ülger if and only if G is compact.

Proof. First assume that G is compact. Then by [34, Proposition 2.39(d)] we

have φ ˚ f, f ˚ φ P CpGq for every φ P L8pGq, f P L 1pGq, so that in fact CpGq “

L 1pGq ¨ L8pGq “ L8pGq ¨ L 1pGq. Hence, by Lemma 3.4.7, L 1pGq is strongly Ülger.

Now assume that L 1pGq is strongly Ülger. Then whenever f P L 1pGqzt0u Lemma

3.4.10 implies that the maps L 1pGq Ñ L 1pGq given by

Lf : g ÞÑ g ˚ f and Rf : g ÞÑ f ˚ g

are weakly compact. Hence L2f pA2q, R2f pA2q Ă A by [59, Theorem 3.5.8]. Observing

that L2f : Ψ ÞÑ flΨ pΨ P A2q, we see that L 1pGq is a right ideal its bidual, and

similarly it is a left ideal. Hence, by [40] G is compact. �

We now come to some results which describe how our different versions of Noethe-

rianity play out in the setting of Ülger algebras. The first hypothesis of the following

proposition is satisfied whenever A is an Ülger algebra by Lemma 3.4.5(i).

Proposition 3.4.12. Let A be a Banach algebra with a bounded approximate

identity such that MpAq admits the structure of a dual Banach algebra in such a way

that A is weak*-dense in MpAq. Suppose that for every closed left ideal I in A there
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exists n P N and there exist µ1, . . . , µn P MpAq such that I “ A7µ1 ` ¨ ¨ ¨ ` A7µn.

Then MpAq is weak*-topologically left Noetherian. In particular, MpAq is weak*-

topologically left Noetherian whenever A is } ¨ }-topologically left Noetherian.

Proof. Let I be a weak*-closed left ideal of MpAq. Since A is weak*-dense in

MpAq, which is unital, Lemma 3.2.1 implies that A X I is weak*-dense in I. On the

other hand, A X I is a closed left ideal in A, so there exists n P N, and there exist

µ1, . . . , µn PMpAq such that AX I “ A7µ1 ` ¨ ¨ ¨ ` A7µn. It follows that

I “ A7µ1 ` ¨ ¨ ¨ ` A7µn
w˚

“MpAqµ1 ` ¨ ¨ ¨ `MpAqµn
w˚

.

As I was arbitrary the result follows. �

We are now able to give an interesting family of examples of weak*-topologically

left Noetherian dual Banach algebras which (by Proposition 3.3.6) are not usually

} ¨ }-topologically left Noetherian.

Corollary 3.4.13. Let G be a compact, metrisable group. Then MpGq is weak*-

topologically left Noetherian.

Proof. By Proposition 3.4.4, Lemma 3.4.5, and Theorem 3.3.5, L 1pGq satisfies

the hypothesis of Proposition 3.4.12. The result now follows from that Proposition.

�

For strongly Ülger algebras there is a bijective correspondence between the closed

left ideals of A and the weak*-closed left ideals of MpAq as we describe below in

Corollary 3.4.15. In Section 3.6 this will allow us to classify the weak*-closed left

and right ideals of BpEq, for E a reflexive Banach space with the approximation

property, in Theorem 3.6.7. In Theorem 3.4.17 below, this will allow us to classify

the weak*-closed left ideals of the measure algebra of a compact group.

Lemma 3.4.14. Let I be a closed left ideal of a strongly Ülger algebra A, and let

µ P I
w˚

ĂMpAq. Then Aµ Ă I.
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Proof. Let pµαq be a net in I converging to µ in the weak*-topology and let

a P A. For each index α we have aµα P I. Since A is strongly Ülger, Lemma 3.4.10

implies that the map ν ÞÑ aν, MpAq Ñ A, is weak*-weakly continuous, so that net

aµα converges weakly to aµ in A. Hence aµ P Iw “ I. As a was arbitrary, the result

follows. �

Proposition 3.4.15. Let A be a strongly Ülger algebra. The map

I ÞÑ I
w˚

,

defines a bijective correspondence between closed left ideals in A and weak*-closed left

ideals in MpAq. The inverse is given by

J ÞÑ AX J,

for J a weak*-closed left ideal in MpAq.

Proof. First we take an arbitrary closed left ideal I in A and show that AXIw
˚

“

I. Certainly I Ă AX I
w˚ . Let a P AX Iw

˚

. Then by Lemma 3.4.14 we have Aa Ă I.

Since A has a bounded approximate identity, this implies that a P I. As a was

arbitrary, we must have I “ AX I
w˚ .

It remains to show that, given a weak*-closed left ideal J of MpAq, we have

AX J
w˚

“ J , and this follows from Lemma 3.2.1. �

Using Proposition 3.4.15 we are able to classify the weak*-closed left ideals of

MpGq, for G a compact group. Let G be a compact group and suppose the for each

π P pG we have chosen a linear subspace Eπ ď Hπ. Then we define

JrpEπqπP pGs :“
!

µ PMpGq : πpµqpEπq “ 0, π P pG
)

.

We shall show that these are exactly the weak*-closed left ideals of MpGq.
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Lemma 3.4.16. Let G be a compact group and let Eπ ď Hπ pπ P pGq. Then

(3.6) span
!

ξ ˚π η : π P pG, ξ P Eπ, η P Hπ

)K

“ JrpEπqπP pGs.

Proof. Let π P pG, η P Hπ and ξ P Eπ. We calculate that

xπpµqξ, ηyHπ “

ż

G

xπptqξ, ηy dµptq “ xξ ˚π η, µy.

It follows that πpµqpξq “ 0 for every π P pG and ξ P Eπ if and only if xξ ˚π η, µy “ 0

for every π P pG, η P Hπ and ξ P Eπ. The result follows. �

Theorem 3.4.17. Let G be a compact group. Then the weak*-closed left ideals

of MpGq are given by JrpEπqπP pGs, as pEπqπP pG runs over the possible choices of linear

subspaces Eπ ď Hπ pπ P pGq. Moreover, distinct choices of the subspaces pEπqπP pG yield

distinct ideals JrpEπqπP pGs.

Proof. By Proposition 3.4.11, L 1pGq is a strongly Ülger Banach algebra, so, by

Proposition 3.4.15, there is a bijection Λ from the set of weak*-closed left ideals of

MpGq to the set of } ¨ }-closed left ideals of L 1pGq given by

Λ: I ÞÑ I X L 1
pGq,

for I a weak*-closed left ideal in MpGq. By Lemma 3.4.16 each space JrpEπqπP pGs is

weak*-closed, and it is easily checked that it is a left ideal. Moreover, by Theorem

3.3.2, each closed left ideal of L 1pGq has the form L 1pGqXJrpEπqπP pGs, for some choice

of subspaces Eπ ď Hπ pπ P pGq. Hence Λ is surjective when restricted to the set

!

JrpEπqπP pGs : Eπ ď Hπ, π P pG
)

.

Since Λ is a bijection, it follows that this set must be the full set of weak*-closed left

ideals of MpGq. Finally, it follows from Lemma 3.3.4 and the injectivity of Λ that

different choices of subspaces give different left ideals. �
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Corollary 3.4.18. Let G be a compact group, and let X Ă CpGq be a closed

linear subspace, which is invariant under left translation. Then there exists a unique

choice of linear subspaces Eπ ď Hπ pπ P pGq such that

X “ span
!

ξ ˚π η : π P pG, ξ P Eπ, η P Hπ

)

.

Proof. By Lemma 2.3.3 X has the form IK, for some weak*-closed ideal I of

MpGq. It now follows from Theorem 3.4.17 and Lemma 3.4.16, that X has the given

form. �

Finally we show that for strongly Ülger algebras weak*-topological left Noetheri-

anity of MpAq can be characterised in terms of a } ¨ }-topological condition on A.

Proposition 3.4.19. Let A be a strongly Ülger algebra. Then MpAq is weak*-

topologically left Noetherian if and only if for every closed left ideal I in A has the

form

I “ Aµ1 ` ¨ ¨ ¨ ` Aµn,

for some n P N, and some µ1, . . . , µn PMpAq.

Proof. The “if” direction follows from Proposition 3.4.12. Conversely, suppose

that MpAq is weak*-topologically left Noetherian, and let I be a closed left ideal in

A. Then there exist n P N and µ1, . . . , µn PMpAq such that

I
w˚

“MpAqµ1 ` ¨ ¨ ¨ `MpAqµn
w˚

“ Aµ1 ` ¨ ¨ ¨ ` Aµn
w˚

,

where we have used Lemma 3.4.5(i) to get the second equality. Hence, by applying

Proposition 3.4.15 twice, we obtain

I “ I
w˚

X A “ Aµ1 ` ¨ ¨ ¨ ` Aµn
w˚

X A “ Aµ1 ` ¨ ¨ ¨ ` Aµn.

The result follows. �
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3.5. Left and Right Ideals of Approximable Operators on a Banach Space

In this section we classify the closed left ideals and closed right ideals of ApEq, for

E belonging to a large class of Banach spaces that includes those Banach spaces E

such that E 1 has BAP. Specifically, we require that ApEq has a left approximate

identity for the former classification, and a right approximate identity for the latter

(compare this with Theorem 1.2.1, which details some of the relationships between

approximate identities forApEq and approximation properties of E). We then use this

characterisation to determine when ApEq is topologically left and right Noetherian

for such Banach spaces. Of course when E has the approximation property, we have

ApEq “ KpEq.

Since proving this result we have become aware of a very similar classification

of the closed left ideals of KpEq, for E a Banach space with AP, due to Grønbæk

[38, Proposition 7.3]. Indeed, Grønbæk’s proof is very similar to ours. Hence, our

classification of the closed left ideals is not really new. However, we feel that our

exposition gives a slightly more detailed picture than Grønbæk’s, so we have included

it anyway. Moreover, Grønbæk says nothing about closed right ideals.

Let E be a Banach space, and let A be a closed subalgebra of BpEq. Given closed

linear subspaces F Ă E 1 and G Ă E we define

(3.7) LApF q “ tT P A : imT 1 Ă F u

and

(3.8) RApGq “ tT P A : imT Ă Gu.

These define families of closed left and right ideals respectively. We also define a

family of closed left ideals by

(3.9) IApGq “ tT P A : kerT Ą Gu,
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where G is a closed linear subspace of E. When the ambient algebra A is unambiguous

we shall often drop the subscript and simply write L pF q, RpGq, and I pGq. Usually A

will be either ApEq or BpEq. We shall show that when ApEq has a left approximate

identity then every closed left ideal has the form LApEqpF q, for some closed linear

subspace F Ă E 1 (Theorem 3.5.4). Similarly, when ApEq has a right approximate

identity every closed right ideal of ApEq has the form RApEqpGq, for some closed

linear subspace G of E (Theorem 3.5.10).

We begin by verifying that the sets defined in (3.7) really are closed left ideals of

A. The proof that the sets defined in (3.8) and (3.9) are closed right and left ideals,

respectively, is totally routine, and we leave it to the reader.

Lemma 3.5.1. Let E be a Banach space, and let A be a closed subalgebra of BpEq.

For each closed linear subspace F in E 1 the set LApF q is a closed left ideal in A.

Proof. It is clear that LApF q is a linear subspace. Let T P LApF q, and let

S P A. Then im pS ˝ T q1 “ im pT 1 ˝ S 1q Ă imT 1 Ă F , so that S ˝ T P LApF q. Suppose

pTnq is a sequence in LApF q converging to some T P A. Then for each λ P E 1 we

know that T 1nλ P F, which implies that T 1λ “ limnÑ8 T
1
nλ P F . As λ was arbitrary it

follows that imT 1 Ă F , and hence T P LApF q. �

In what follows, given a Banach space E and X Ă BpEq we write E 1 ˝ X for

the set tλ ˝ T : λ P E 1, T P Xu “
Ť

TPX imT 1. Sets of this form will be important

because they give a way to recover the closed linear subspace appearing in (3.7): more

precisely we shall show that, given a closed left ideal I of ApEq, the set F “ E 1 ˝ I is

a closed linear subspace of E 1, and moreover I “ L pF q.

Lemma 3.5.2. Let E be a Banach space, and let I be a left ideal in ApEq. Then

xb λ P I whenever x P E and λ P E 1 ˝ I.

Proof. We can write λ “ ϕ ˝ T , for some ϕ P E 1, and some T P I. Then

xb λ “ pxb ϕq ˝ T P I. �
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Lemma 3.5.3. Let E be a Banach space, and let I be a closed left ideal in ApEq.

Then E 1 ˝ I is a closed linear subspace of E 1.

Proof. It is clear that E 1˝I is closed under scalar multiplication. We may assume

that E is non-zero and fix x P Ezt0u and η P E 1 satisfying ηpxq “ 1. Let λ1, λ2 P E
1˝I.

By Lemma 3.5.2, xb λ1, xb λ2 P I, so that

η ˝ pxb λ1 ` xb λ2q “ λ1 ` λ2 P E
1
˝ I.

Hence E 1 ˝ I is closed under addition.

Let pλnq Ă E 1 ˝ I be a sequence converging in norm to some λ P E 1, and let x

and η be as above. We have limnÑ8 x b λn “ x b λ in ApEq. Moreover, by Lemma

3.5.2 we have x b λn P I pn P Nq, so that x b λ P I, since I is closed. Hence

η ˝ pxb λq “ λ P E 1 ˝ I. We have shown that E 1 ˝ I is closed. �

We write SUBpEq for the set of all closed linear subspaces of a Banach space E.

Similarly, given a Banach algebra A we write CLIpAq for the set of closed left ideals

of A. Both of these sets are lattices when ordered by inclusion. We can now state

and prove our first classification result precisely. Recall also that we write 1ij for the

Kronecker delta, as in (1.1).

Theorem 3.5.4. Let E be a Banach space such that ApEq has a left approximate

identity. Then the map

Θ : pSUBpE 1q,Ăq Ñ pCLIpApEqq,Ăq, F ÞÑ L pF q

is a lattice isomorphism, with inverse given by

pΘ: I ÞÑ E 1 ˝ I, pI P CLIpApEqqq.
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Proof. The maps Θ and pΘ have the specified codomains by Lemma 3.5.1 and

Lemma 3.5.3, respectively, and it is clear that they respect inclusion. Since isomor-

phisms of posets preserve the lattice structure, once we have shown that these maps

are mutually inverse it will follow that they are lattice isomorphisms.

Let I be a closed left ideal in ApEq, and set F “ pΘpIq. We show that I “

pΘ ˝ pΘqpIq, i.e. that I “ L pF q. Noting that F “ tT 1λ : λ P E 1, T P Iu, it is clear

that I Ă L pF q.

To show the reverse inclusion, we note that, by Lemma 3.2.1, the finite-rank

operators intersect L pF q densely, so that it is sufficient to show that FpEqXL pF q Ă

I. Let T P L pF q be finite-rank, and write T “
řN
i“1 xi b λi, for some N P N,

x1, . . . , xN P E, and λ1, . . . , λN P E
1. We may assume that the vectors x1, . . . , xN are

linearly independent, so that there exist η1, . . . ηN P E
1 such that ηipxjq “ 1ij. Then

T 1ηi “ λi pi “ 1, . . . , Nq, so that each λi belongs to F . Therefore, by Lemma 3.5.2,

each xi b λi belongs to I, and hence so does T . We have shown that pΘ is a right

inverse for Θ.

Now let F be a closed subspace of E 1, and consider G “ ppΘ ˝ΘqpF q “ E 1 ˝L pF q.

Let λ P F . Then, picking x P Ezt0u and η P E 1 such that ηpxq “ 1, we see that

xb λ P L pF q, and hence λ “ η ˝ pxb λq P G. We conclude that F Ă G. Conversely

whenever we have λ “ ϕ˝T P G, for some ϕ P E 1 and T P L pF q, we have λ “ T 1ϕ P F .

Hence G “ F , and we have shown that pΘ is a left inverse for Θ. �

The proof of the next corollary makes use of the following formula, valid for any

(possibly infinite) collection of bounded linear operators pTiq on a Banach space E:

(3.10) spanw
˚

i pimT 1i q “

˜

č

i

kerTi

¸K

.

Corollary 3.5.5. Let E be a reflexive Banach space such that ApEq has a left

approximate identity. Then there is a lattice anti-isomorphism

Φ : pSUBpEq,Ăq Ñ pCLIpApEqq,Ăq
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given by

Φ : F ÞÑ IApEqpF q,

with inverse given by

pΦ : I ÞÑ
č

TPI

kerT,

for I P CLIpApEqq.

Proof. As in the proof of the previous theorem, it is sufficient to show that Φ

and pΦ are mutually inverse poset anti-isomorphisms. Let Θ and pΘ be as in Theorem

3.5.4 and define Ψ : SUBpEq Ñ SUBpE 1q by Ψ : F ÞÑ FK, for F a closed linear

subspace of E. Then, by reflexivity, the map Ψ is an anti-isomorphism of posets, with

inverse given by Ψ´1 : G ÞÑ GK pG P SUBpE 1qq.

By (3.10), for T P ApEq we have pkerT qK “ imT 1
w˚

“ imT 1
w
“ imT 1, where we

have used the fact that the weak and weak*-topologies coincide for a reflexive Banach

space, and then Mazur’s Theorem. Hence, by applying Ψ´1 to this equality, we have

kerT “
`

imT 1
˘

K
. It follows that, for any closed F ď E,

L pFKq “ tT P ApEq : imT 1 Ă FKu “ tT P ApEq : imT 1 Ă FKu

“ tT P ApEq :
`

imT 1
˘

K
Ą F u “ tT P ApEq : kerT Ą F u “ ΦpF q,

which is equivalent to saying that Φ “ Θ ˝ Ψ. Since Θ is a poset isomorphism, and

Ψ is a poset anti-isomorphism, we see that Φ is an anti-isomorphism of posets, and it

remains to show that its inverse is given by pΦ. Indeed, we have Ψ´1 ˝ pΘ “ pΦ:

´

Ψ ˝ pΦ
¯

pIq “

˜

č

TPI

kerT

¸K

“ spanTPI pimT 1q

“ spantλ ˝ T : λ P E 1, T P Iu “ E 1 ˝ I “ pΘpIq,

where we have used (3.10) and Mazur’s Theorem in the first line, and Lemma 3.5.3

in the second. Hence Φ is invertible, with inverse given by pΦ. �
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Remark. Corollary 3.5.5 is a generalisation of the well-known classification of the

left ideals of MnpCq, for n P N (see, e.g., [48, Exercise 3, pg. 173]).

Now that we have a classification of the closed left ideals of ApEq we approach

the question of when ApEq is topologically left Noetherian. The next lemma gives a

more explicit description of the correspondence of Theorem 3.5.4 for a topologically

finitely-generated left ideal in terms of its generators.

Lemma 3.5.6. Let E be a Banach space. Let n P N, let T1, . . . , Tn P ApEq, and let

I “ ApEq7T1 ` ¨ ¨ ¨ `ApEq7Tn. Then

E 1 ˝ I “ imT 11 ` ¨ ¨ ¨ ` imT 1n.

Proof. As E 1 ˝ I “
Ť

TPI imT 1 we have E 1 ˝ I Ą imT 1i pi “ 1, . . . nq. Since E 1 ˝ I

is a closed linear subspace, it follows that E 1 ˝ I Ą imT 11 ` ¨ ¨ ¨ ` imT 1n.

For the reverse inclusion, let S P I and let λ P E 1. There are sequences

pR
pjq
1 qj, . . . , pR

pjq
n qj Ă ApEq ` C idE

such that

S “ lim
jÑ8

´

R
pjq
1 ˝ T1 ` ¨ ¨ ¨ `R

pjq
n ˝ Tn

¯

.

Then

λ ˝ S “ lim
jÑ8

`

λ ˝ pRj
1 ˝ T1q ` ¨ ¨ ¨ ` λ ˝ pR

pjq
n ˝ Tnq

˘

“ lim
jÑ8

´

T 11pλ1 ˝R
pjq
1 q ` ¨ ¨ ¨ ` T

1
npλ ˝R

pjq
n q

¯

P imT 11 ` ¨ ¨ ¨ ` imT 1n.

As λ and S were arbitrary, this concludes the proof. �

The next corollary gives a partial characterisation of when ApEq is topologically

left Noetherian. The full characterisation will be given in Theorem 3.5.9.

Corollary 3.5.7. Let E be a Banach space such that ApEq has a left approximate

identity.
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(i) Let F Ă E be a closed linear subspace. Then L pF q is topologically generated

by T1, . . . , Tn P ApEq if and only if

(3.11) F “ imT 11 ` ¨ ¨ ¨ ` imT 1n.

(ii) The algebra is ApEq is topologically left Noetherian if and only if every closed

linear subspace of E 1 has the form (3.11), for some n P N and T1, . . . , Tn P

ApEq.

Proof. (i) Suppose that L pF q “ ApEqT1 ` ¨ ¨ ¨ `ApEqTn, for some T1, . . . , Tn P

ApEq. Then by Lemma 3.5.6

E 1 ˝L pF q “ imT 11 ` ¨ ¨ ¨ ` imT 1n,

so that, by Theorem 3.5.4, F “ imT 11 ` ¨ ¨ ¨ ` imT 1n.

Conversely, suppose that there are maps T1, . . . , Tn P ApEq such that F has the

form (3.11). Consider the left ideal

I “ ApEqT1 ` ¨ ¨ ¨ `ApEqTn.

By Lemma 3.5.6 we have E 1˝I “ F, and so by Theorem 3.5.4 we have I “ L pE 1˝Iq “

L pF q. Hence

L pF q “ ApEqT1 ` ¨ ¨ ¨ `ApEqTn,

as required.

(ii) This is clear from (i) and Theorem 3.5.4. �

In the proof of the next lemma we use the fact that every infinite-dimensional

Banach space contains a basic sequence [59, Theorem 4.1.30].

Lemma 3.5.8. Let E be a Banach space, and let F Ă E 1 be a closed, separable

linear subspace. Then there exists T P ApEq such that imT 1 “ F .
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Proof. Wemay suppose that E is infinite-dimensional, since otherwise the lemma

follows from routine linear algebra. Let tλn : n P Nu be a dense subset of BF , and let

pbnq be a normalised basic sequence in E. Let pβnq Ă E 1 satisfy xbi, βjy “ 1ij pi, j P Nq.

Define T “
ř8

n“1 2´nbn b λn. The operator T is a limit of finite-rank operators and

T 1ϕ “
8
ÿ

n“1

2´nϕpbnqλn pϕ P E 1q.

Certainly imT 1 Ă F . Observing that T 1p2iβiq “ λi pi P Nq, we see that imT 1 “ F , as

required. �

We can now give our characterisation of topological left Noetherianity for ApEq.

We notice that our proof actually implies that for these Banach algebras topological

left Noetherianity is equivalent to every closed left ideal being topologically singly

generated.

Theorem 3.5.9. Let E be a Banach space such that ApEq has a left approximate

identity. Then the following are equivalent:

(a) the Banach algebra ApEq is topologically left Noetherian;

(b) every closed left ideal of ApEq is topologically singly-generated;

(c) the space E 1 is separable.

Proof. It is trivial that (b) implies (a). To see that (c) implies (b), note that, by

Theorem 3.5.4, every closed left ideal of ApEq has the form L pF q, for some closed

linear subspace F in E 1. Fixing F P SUBpE 1q, by Lemma 3.5.8 there exists T P ApEq

such that F “ imT 1, which implies that L pF q “ ApEqT , by Corollary 3.5.7(i).

We show that (a) implies (c) to complete the proof. Suppose that ApEq is topo-

logically left Noetherian. Then in particular ApEq “ ApEqT1 ` ¨ ¨ ¨ `ApEqTn for

some T1, . . . , Tn P ApEq. Observing that L pE 1q “ ApEq, Lemma 3.5.6 implies that

E 1 “ imT 11 ` ¨ ¨ ¨ ` imT 1n. Since each operator Ti is compact, so is each T 1i , imply-

ing that each space imT 1i is separable. It follows that E 1 “ imT 11 ` ¨ ¨ ¨ ` imT 1n is

separable. �
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Remark. Let EAH be the Banach space constructed by Argyros and Haydon in [4]

with the property that BpEAHq “ C idEAH ` KpEAHq. Since EAH is a predual of ` 1,

which has BAP, it satisfies the assumptions of Theorem 3.5.9 by Theorem 1.2.1(ii).

Furthermore ApEAHq “ KpEAHq. Since BpEAHq “ KpEAHq7, Theorem 3.5.9 and

Lemma 3.2.2(iii) implie that BpEAHq is } ¨ }-topologically left Noetherian.

We can give a very similar treatment of the closed right ideals of ApEq; in fact this

case is a little simpler. Observe that our hypothesis on ApEq changes from possessing

a left approximate identity to possessing a right approximate identity. We denote the

set of closed right ideals of a Banach algebra A by CRIpAq.

Theorem 3.5.10. Let E be a Banach space such that ApEq has a right approximate

identity. There is a lattice isomorphism Ξ : pSUBpEq,Ăq Ñ pCRIpEq,Ăq given by

Ξ : F ÞÑ RpF q,

with inverse given by

pΞ : I ÞÑ spanTPIpimT q pI P CRIpApEqqq.

Proof. It is clear that Ξ and pΞ are inclusion preserving. Since a poset isomor-

phism between lattices preserves the lattice strucure, once we have shown that Ξ and

pΞ are mutually inverse it will follow that they are lattice isomorphisms.

Let F be a closed linear subspace of E and set G “ pΞpRpF qq. It is immediate

from the definitions that G Ă F . Moreover, given x P F , by considering x b λ for

some λ P Ezt0u we see that x P G. Hence F “ G, and, since F was arbitrary, this

shows that pΞ ˝ Ξ is the identity map.

Let I be a closed right ideal in ApEq, and set F “ pΞpIq. It is clear that I Ă RpF q.

By Lemma 3.2.1 the finite-rank operators intersect RpF q densely, so in order to

check the reverse inclusion it is sufficient to show that FpEq X RpF q Ă I. Let

T P FpEq X RpF q. Then we can write T “
řn
i“1 xi b λi, for some n P N, some
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x1, . . . , xn P imT and some λ1, . . . , λn P E
1. Fix i P t1, . . . , nu. Then xi P F so there

exists a sequence pyjq Ă spanUPIpimUq such that limjÑ8 yj “ xi. Moreover, for each

j we can write yj “ S
pjq
1 z1 ` ¨ ¨ ¨ ` S

pjq
kj
zkj , for some kj P N, some Spjq1 , . . . , S

pjq
kj
P I,

and some z1, . . . , zkj P E. For each j, and each p “ 1, . . . , kj we have
´

S
pjq
p zj

¯

b λi “

S
pjq
p ˝ pzp b λiq P I. Hence yj b λi P I for each j, so that, taking the limit as j goes to

infinity, xi b λi P I. As i was arbitrary it follows that T P I. Hence we have shown

that I “ RpF q. As I was arbitrary, we have shown that Ξ˝pΞ is the identity map. �

Now we set out to characterise when ApEq is topologically right Noetherian, for

E a Banach space as in Theorem 3.5.10.

Lemma 3.5.11. Let E and pΞ be as in Theorem 3.5.10. Let T1, . . . , Tn P ApEq and

let I “ T1ApEq ` ¨ ¨ ¨ ` TnApEq. Then

pΞpIq “ imT1 ` ¨ ¨ ¨ ` imTn.

Proof. Since each Ti pi “ 1, . . . , nq belongs to I we have imT1 ` ¨ ¨ ¨ ` imTn Ă

pΞpIq. Let x P pΞpIq, and let ε ą 0. Then, by the definition of pΞ, there exist m P N,

S1, . . . , Sm P I, and y1, . . . , ym P E such that

}x´ pS1y1 ` ¨ ¨ ¨ ` Smymq} ă ε.

Since T1ApEq ` ¨ ¨ ¨ ` TnApEq is dense in I, we may in fact suppose that

S1, . . . , Sm P T1ApEq ` ¨ ¨ ¨ ` TnApEq,

so that S1y1 ` ¨ ¨ ¨ ` Smym P imT1 ` ¨ ¨ ¨ ` imTn. As ε was arbitrary we see that

x P imT1 ` ¨ ¨ ¨ ` imTn. The result now follows. �

Lemma 3.5.12. Let E be a Banach space, and let F be any separable, closed linear

subspace of E. Then there exists an approximable linear map from E to F with dense

range.
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Proof. We may suppose that E is infinite-dimensional. Let pxnq Ă F be dense.

Since E is infinite-dimensional, there exists a normalised basic sequence pbnq Ă E.

Let pβnq Ă E 1 be a bounded sequence satisfying xbi, βjy “ 1ij pi, j P Nq, which we

can obtain by taking the coordinate functionals for pbnq and extending them using

the Hahn-Banach Theorem. Define T : E Ñ F by T “
ř8

n“1 2´nxn b βn. Then T

is a limit of finite-rank operators, and T p2ibiq “ xi pi P Nq implies that T has dense

range. �

Theorem 3.5.13. Let E be a Banach space such that ApEq has a right approximate

identity. Then the following are equivalent:

(a) the Banach algebra ApEq is topologically right Noetherian;

(b) every closed right ideal of ApEq is topologically singly-generated;

(c) the space E is separable.

Proof. It is trivial that (b) implies (a). We show that (a) implies (c). Suppose

that ApEq is topologically right Noetherian. Then ApEq “ RpEq is topologically

finitely-generated so that, by Lemma 3.5.11, there exist n P N and T1, . . . , Tn P ApEq

such that E “ imT1 ` ¨ ¨ ¨ ` imTn. Since each operator Ti pi “ 1, . . . , nq is compact,

its image is separable, and hence so is E.

Now suppose instead that E is separable, and let I be a closed right ideal in ApEq.

Then, by Theorem 3.5.10, I “ RpF q for some F P SUBpEq. By Lemma 3.5.12 there

exists T P ApEq with imT “ F . By Lemma 3.5.11 we have pΞ
´

TApEq
¯

“ imT “ F ,

so that, by Theorem 3.5.10, I “ RpF q “ TApEq. Since I was arbitrary, this shows

that (c) implies (b). �

Remark. Consider Kp` 1q. Of course, p` 1q1 – `8, which has BAP by [90, Example

5(a), Chapter II E], so that Kp` 1q has an approximate identity by Theorem 1.2.1(ii).

By Theorem 3.5.9 and Theorem 3.5.13 Kp` 1q is an example of a Banach algebra which

is topologically right Noetherian, but not topologically left Noetherian.
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3.6. Left Ideals of BpEq, Closed in Various Topologies

In this section we consider left ideals of the Banach algebra BpEq, for E a Banach

space, which are closed in either the strong operator (SOP) topology or, in the case

that BpEq is a dual Banach algebra, the weak*-topology. We first classify the SOP-

closed left ideals of BpEq, for E an arbitrary Banach space (Theorem 3.6.2), and

show that SOP-topological left Noetherianity of BpEq is equivalent to asking that

every closed linear subspace of E can be realised as the intersection of the kernels of

finitely many bounded linear operators on E (Corollary 3.6.5). We then recall that

BpEq is a dual Banach algebra whenever E is reflexive, with predual EpbE 1, and we

observe that, when E also has the approximation property, results from Section 3.4

and Section 3.5 give a classification of the weak*-closed left ideals of BpEq (Theorem

3.6.7). Finally, we give an example of a dual Banach algebra of the form BpEq which

fails to be weak*-topologically left Noetherian (Theorem 3.6.12).

We begin with our classification of the SOP-closed left ideals in BpEq which states

that, given a Banach space E, these left ideals are exactly the left ideals

I pF q “ tT P BpEq : kerT Ą F u

defined in (3.9), as F runs through the closed linear subspaces of F . It is routinely

checked that each set I pF q is a left ideal, and it is SOP-closed since it is the inter-

section of the kernels of the SOP-continuous maps BpEq Ñ E given by T ÞÑ Tx, as x

runs through the elements of F .

Lemma 3.6.1. Let E be a Banach space. Let I be a left ideal in BpEq, and let

F “
Ş

TPI kerT . Then I acts algebraically irreducibly on E{F via

T ¨ px` F q “ Tx` F pT P Iq.

Proof. The action is well defined since, by definition, kerT Ą F for every T P I.

Let x P EzF . Then, again by the definition of F , there exists T P I such that Tx ‰ 0.
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Let y P E, and let η P E 1 satisfy xTx, ηy “ 1. Define S “ py b ηq ˝ T P I and observe

that Sx “ y, and hence S ¨ px ` F q “ y ` F . It follows that the action of I on E{F

is algebraically irreducible. �

Theorem 3.6.2. Let E be a Banach space. The map Ω from SUBpEq to the set

of SOP-closed left ideals of BpEq given by

Ω: F ÞÑ I pF q pF P SUBpEqq

is a lattice anti-isomorphism, with inverse given by

pΩ: I ÞÑ
č

TPI

kerT,

for I a SOP-closed left ideal of BpEq.

Proof. We write q : E Ñ E{F for the quotient map. It is clear that Ω and pΩ

are anti-homomorphisms of posets. Hence once we have show that they are bijections

it will follows that they are lattice anti-isomorphisms. We first show that pΩ ˝ Ω is

the identity map. Indeed, let F P SUBpEq. Then by definition F Ă
Ş

TPI pF q kerT .

Suppose that x P EzF , and let η P pE{F q1 satisfy xqpxq, ηy “ 1. Then xbq1pηq P I pF q

but

rxb q1pηqspxq “ x ‰ 0,

so that x R
Ş

TPI pF q kerT. Hence we must have F “
Ş

TPI pF q kerT , as required.

It remains to prove that Ω ˝ pΩ is the identity map. Let I be a SOP-closed left

ideal in BpEq, and let F “
Ş

TPI kerT . We must show that I “ I pF q. Clearly

I Ă I pF q, so that it remains to show the reverse inclusion. To this end let S P I pF q

be arbitrary. We shall show that there exist nets pRαq Ă FpEq and pTαq Ă I such that

limSOP, αRα ˝ Tα “ S. The indexing set of the nets will be the collection of non-zero,

finite-dimensional subspaces of E{F .

Let α ‰ t0u be a finite-dimensional subspace of E{F , of dimension n say, and let

z1, . . . , zn be such that tz1 ` F, . . . , zn ` F u is a basis for α. Since, by Lemma 3.6.1,
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I acts irreducibly on E{F , by [62, Theorem 4.2.13] there exists Tα P I such that

tTαpz1q ` F, . . . , Tαpznq ` F u is linearly independent. By the Hahn–Banach Theorem

there exist ηα,1, . . . , ηα,n P E 1 such that

xTαzi, ηα,jy “ 1i,j pi, j “ 1, . . . , nq.

Define

Rα “

n
ÿ

i“1

Spziq b ηα,i.

Then pRα ˝Tαqpziq “ Spziq pi “ 1, . . . , nq. Since kerRα ˝Tα, kerS Ą F , it follows that

(3.12) pRα ˝ Tαq|q´1pαq “ S|q´1pαq .

Let z P E and let α0 “ spantz`F u. Then whenever α Ą α0 is a finite-dimensional

linear subspace of E{F we have pRα ˝ Tαqpzq “ Spzq by (3.12). Hence limαpRα ˝

Tαqpzq “ Spzq, so that S “ limSOP, αpRα ˝ Tαq P I, as required. �

Given a Banach space E, it seems a natural question to ask which of the closed

linear subspaces of E can be realised as the kernel of some bounded linear operator

E Ñ E. We show that this question can be rephrased in terms of the SOP-closed

ideals of BpEq.

Lemma 3.6.3. Let E be a Banach space, let n P N, and let T1, . . . , Tn P BpEq. Set

I “ BpEqT1 ` ¨ ¨ ¨ ` BpEqTn
SOP

.

Then
Ş

TPI kerT “
Şn
i“1 kerTi.

Proof. Let F “
Şn
i“1 kerTi and let G “

Ş

TPI kerT . Since each Ti pi “ 1, . . . , nq

belongs to I, F Ą G. Since evaluation at any point in E is SOP-continuous, kerT Ą F

for each T P I, so that F “ G. �
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Proposition 3.6.4. Let E be a Banach space and let F be a closed linear subspace

of E. The left ideal I pF q is SOP-topologically generated by operators T1, . . . , Tn P

BpEq if and only if
Şn
i“1 kerTi “ F .

Proof. First suppose that I pF q “ BpEqT1 ` ¨ ¨ ¨ ` BpEqTn
SOP

. By Theorem

3.6.2, F “
Ş

TPI pF q kerT , so that, by Lemma 3.6.3, F “
Şn
i“1 kerTi.

Now suppose instead that we have T1, . . . , Tn P BpEq with
Şn
i“1 kerTi “ F . Then

J :“ BpEqT1 ` ¨ ¨ ¨ ` BpEqTn
SOP

is a SOP-closed left ideal with
Ş

TPJ kerT “ F , by

Lemma 3.6.3. Hence, by Theorem 3.6.2, J “ I pF q, as required. �

We now give our characterisation of SOP-topological left Noetherianty of BpEq.

Corollary 3.6.5. Let E be a Banach space.

(i) The Banach algebra BpEq has the property that every SOP-closed left ideal

is SOP-topologically generated by a single element if and only if every closed

linear subspace of E can be realised as the kernel of some operator in BpEq.

(ii) The Banach algebra BpEq is SOP-topologically left Noetherian if and only if,

given a closed linear subspace F of E, there exist n P N and T1, . . . , Tn P BpEq

such that
Şn
i“1 kerTi “ F .

Proof. This follows from Proposition 3.6.4 and Theorem 3.6.2. �

We now turn our attention to reflexive Banach spaces E and consider the Banach

algebra BpEq with its weak*-topology. First of all we observe that our earlier work

gives us many examples of these algebras which are weak*-topologically left and right

Noetherian.

Proposition 3.6.6. Let E be a separable, reflexive Banach space with the approx-

imation property. Then the dual Banach algebra BpEq is weak*-topologically left and

right Noetherian.

Proof. By Corollary 3.4.9, the Banach algebra ApEq “ KpEq is an Ülger algebra

for such Banach spaces. Hence, by Proposition 3.4.12, its multiplier algebra, which
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may be identified with BpEq, is weak*-topologically left Noetherian whenever KpEq is

}¨}-topologically left Noetherian. SinceKpEq is an Ülger algebra it has an approximate

identity 2, so that it is }¨}-topologically left Noetherian whenever E 1, or equivalently E,

is separable by Theorem 3.5.9. Similarly, BpEq is weak*-topologically right Noetherian

by Theorem 3.5.13. �

Remark. We observe that this corollary cannot be strengthened to an “if and

only if” statement because BpHq is always weak*-topologically left Noetherian for

any Hilbert space H, as is any von Neumann algebra [83, Proposition 3.12].

Our earlier work also allows us to classify the weak*-closed left and right ideals

for these algebras. We note that for any reflexive Banach space E, possibly without

the approximation property, and for any closed linear subspace F Ă E the left ideal

IBpEqpF q is weak*-closed since we have

IBpEqpF q “ txb λ : x P F, λ P E 1uK,

where xb λ denotes an element of the predual EpbE 1. Similarly we have

RBpEqpF q “ txb λ : x P E, λ P FKuK,

so that these right ideals are weak*-closed.

Theorem 3.6.7. Let E be a reflexive Banach space with the approximation prop-

erty. Then the weak*-closed left ideals are exactly given by IBpEqpF q, as F runs

through SUBpEq. The weak*-closed right ideals are given by RBpEqpF q, as F runs

through SUBpEq.
2Alternatively this can be seen directly as follows: since E has is reflexive with AP, it has BAP,
implying that E1 has BAP. Now we may apply Theorem 1.2.1
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Proof. By Corollary 3.4.9, KpEq is a strongly Ülger algebra for such Banach

spaces. Hence, by Proposition 3.4.15, there is a bijection Λ from the set of weak*-

closed left ideals of BpEq to CLIpKpEqq given by

Λ: I ÞÑ I XKpEq.

For each F P SUBpEq, the ideal IBpEqpF q is weak*-closed by the remarks preceding

the theorem. Clearly

IBpEqpF q XKpEq “ IKpEqpF q pF P SUBpEqq,

so that, by Corollary 3.5.5, the map Λ is surjective when restricted to the set

tIBpEqpF q : F P SUBpEqu.

Since Λ is a bijection, this forces this set to be the full set of weak*-closed left ideals

of BpEq. This concludes the proof of the result about weak*-closed left ideals.

A similar argument, using Theorem 3.5.10, gives the result about weak*-closed

right ideals. Alternatively, one could use the fact that BpEq and BpE 1q are anti-

isomorphic as dual Banach algebras via T ÞÑ T 1, so that the weak*-closed right ideals

of BpEq correspond the weak*-closed left ideals on BpE 1q. �

Remark. By Theorem 3.6.2 and the previous theorem, if E is a reflexive Banach

space with AP, then the weak*-closed and SOP-closed left ideals of BpEq coincide.

We know of no abstract proof of this fact that avoids simply classifying both types of

left ideals and observing that they are the same.

We now give an example of a dual Banach algebra of the form BpEq which is

not weak*-topologically left Noetherian. I must thank my doctoral supervisor Niels

Laustsen for pointing out this example of a Banach space, and for the subsequent

discussion that lead to the proof of Theorem 3.6.12. The Banach space in question

will be the dual of a certain space that we denote by EW , which is an example due
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to Wark [86], who adapted a construction of Shelah and Steprāns [78]. The Banach

space EW is a reflexive Banach space with the property that it is non-separable but

(3.13) BpEW q “ C idEW `X pEW q,

where X pEW q denotes the set of operators on EW with separable range. We would

like to thank Hugh Wark for pointing out to us that the space EW has AP.

Lemma 3.6.8. The Banach space EW has the approximation property. Hence so

does E 1W , and moreover ApE 1W q is a strongly Ülger algebra.

Proof. The space EW has a transfinite basis, and as such has AP by [71]. To

see the second statement apply Corollary 3.4.9. �

We recall some notions from Banach space theory that we shall require in what

follows. Let E be a Banach space. A biorthogonal system in E is a set

tpxγ, λγq : γ P Γu Ă E ˆ E 1,

for some indexing set Γ, with the property that

xxα, λβy “ 1α,β pα, β P Γq.

A biorthogonal system tpxγ, λγq : γ P Γu is said to be bounded if

supt}xγ}, }λγ} : γ P Γu ă 8.

A Markushevich basis for a Banach space E is a biorthogonal system tpxγ, λγq : γ P Γu

in E such that tλγ : γ P Γu separates the points of E and such that spantxγ : γ P

Γu “ E. For an in-depth discussion of Markushevich bases see [42], in which a

Markushevich basis is referred to as an “M-basis”.
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Lemma 3.6.9. Let E be a Banach space containing an uncountable, bounded bio-

rthogonal system. Then E contains a closed linear subspace F such that both F and

E{F are non-separable

Proof. Let tpxγ, λγq : γ P Γu be an uncountable, bounded biorthogonal system

in E. Since Γ is uncountable, it has an uncountable subset Γ0 such that ΓzΓ0 is also

uncountable. Set F “ spantxγ : γ P Γ0u, and set C “ supt}xγ}, }λγ} : γ P Γu. The

subspace F is non-separable since txγ : γ P Γ0u is an uncountable set satisfying

}xα ´ xβ} ě
1

C
|xxα ´ xβ, λαy| “

1

C
pα, β P Γ0, α ‰ βq.

Let q : E Ñ E{F denote the quotient map. It is well known that the dual map

q1 : pE{F q1 Ñ E 1 is an isometry with image equal to FK. Each functional λγ, for

γ R Γ0, clearly belongs to FK so that, for each γ P ΓzΓ0 there exists gγ P pE{F q1 such

that q1pgγq “ λγ and such that }gγ} “ }λγ}. We now see that tqpxγq : γ P ΓzΓ0u is an

uncountable 1{C-separated subset of E{F because

}qpxαq ´ qpxβq} ě
1

C
|xqpxαq ´ qpxβq, gαy| “

1

C
|xxα ´ xβ, q

1
pgαqy|

“
1

C
|xxα ´ xβ, λαy| “

1

C
.

It follows that E{F is non-separable. �

Lemma 3.6.10. Let E be a non-separable, reflexive Banach space. Then E contains

a closed linear subspace F such that both F and E{F are non-separable.

Proof. By [42, Theorem 5.1] every reflexive Banach space has a Markushevich

basis. By [41, Theorem 5] it follows that every reflexive Banach space has a bounded

Markushevich basis, so that, in particular, E has a bounded Markushevich basis, say

tpxγ, fγq : γ P Γu. (Please note that a flawed proof of this theorem was given in [66]

and [42].) Since, by the definition of a Markushevich basis, spantxγ : γ P Γu “ E,

and E is non-separable, the set tpxγ, fγq : γ P Γu must be uncountable. In particular
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this set is a bounded, uncountable biorthogonal system in E, so the result now follows

from Lemma 3.6.9. �

Proposition 3.6.11. Let F be a subspace of EW with the property that both F

and EW {F are non-separable. Then F cannot be written as imT1 ` ¨ ¨ ¨ ` imTn, for

any n P N and T1, . . . , Tn P BpEW q.

Proof. Assume towards a contradiction that there exists n P N and there ex-

ist T1, . . . , Tn P BpEW q such that F “ imT1 ` ¨ ¨ ¨ ` imTn. By (3.13) there exist

α1, . . . , αn P C and S1, . . . , Sn P X pEW q such that

Ti “ αiidEW ` Si pi “ 1, . . . , nq.

If every αi equals zero, then F “ imS1 ` ¨ ¨ ¨ ` imSn, which is separable, contradicting

our assumption on F . Hence, without loss of generality, we may assume that α1 ‰ 0.

Let x P EW . Then T1x “ α1x` S1x, implying that

x “
1

α1

pT1x´ S1xq P F ` imS1.

As x was arbitrary, it follows that EW “ F ` imS1, so that

EW {F “

`

F ` imS1

˘

F
–

imS1
`

imS1 X F
˘ .

This implies that EW {F is separable, and this contradiction completes the proof. �

We can now prove our theorem.

Theorem 3.6.12. The dual Banach algebra BpE 1W q is not weak*-topologically left

Noetherian.

Proof. Let F be a closed linear subspace of EW such that both F and EW {F are

non-separable, which exists by Lemma 3.6.10. Observe that, I pFKq is a weak*-closed

left ideal of BpE 1W q by Lemma 3.6.8 and Theorem 3.6.7. We shall show that this ideal

fails to be weak*-topologically finitely-generated. Assume towards a contradiction
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that there exist n P N and T1, . . . , Tn P BpE 1W q such that

I pFKq “ BpE 1W qT1 ` ¨ ¨ ¨ ` BpE 1W qTn
w˚

.

Using an almost identical argument to that given in the proof of Lemma 3.6.3, it is

then easily checked that
č

TPI pFKq

kerT “
n
č

i“1

kerTi.

This implies that FK “
Şn
i“1 kerTi (by, for example, Theorem 3.6.2). When we

identify E2W with EW , this is equivalent to the statement that

F “ imT 11 ` ¨ ¨ ¨ ` imT 1n,

by (3.10) and Mazur’s Theorem. However, this cannot occur by Proposition 3.6.11.

�

Remark. This is the only example that we know of a dual Banach algebra which

is not weak*-topologically left Noetherian. It would be interesting to know if there

are examples of the form MpGq or BpGq, for a locally compact group G.



CHAPTER 4

The Radical of the Bidual of a Beurling Algebra

4.1. Introduction

In this chapter we study the Jacobson radical rad p` 1pG,ωq2,lq, for G a discrete

group, and ω a weight on G. The chapter is based on [89]. The focus will be on

the cases where either ω “ 1, in which case we are in fact studying the bidual of the

group algebra ` 1pGq, or where the weight is non-trivial but G “ Z. Our main results

will be solutions to two questions posed by Dales and Lau in [23].

The study of the radicals of the biduals of Banach algebras goes back at least to

Civin and Yood’s paper [16], where it was shown that if G is either a locally compact,

non-discrete, abelian group, or a discrete, soluble, infinite group, then rad pL 1pGq2q ‰

t0u. Civin and Yood’s results have since been extended to show that rad pL 1pGq2q is

not only non-zero, but non-separable, whenever G is discrete and amenable ([36], [64,

7.31(iii)]) or non-discrete [37]. The study has not been restricted to those Banach

algebras coming from abstract harmonic analysis. One particularly striking result is a

theorem of Daws and Read [29] which states that, for 1 ă p ă 8, the algebra Bp` pq2

is semisimple if and only if p “ 2.

A study of rad p` 1pG,ωq2q for G a discrete group and ω a weight on G was un-

dertaken by Dales and Lau in [23]. In the list of open problems at the end of their

memoir the authors ask whether ` 1pZ, ωq2 can ever be semisimple [23, Chapter 14,

Question 6]. In Section 4.3 we shall prove that the answer to this question is negative:

Theorem 4.1.1. Let ω be a weight on Z. Then rad p` 1pZ, ωq2q ‰ t0u.

A key observation of Civin and Yood (see [16, Theorem 3.1]) is that, for an

amenable group G, the difference of any two invariant means on `8pGq always belongs

119



4.1. INTRODUCTION 120

to the radical of ` 1pGq2, and this idea is what lies behind many of the subsequent

results mentioned above. Note that the set of invariant means on an infinite, amenable

group G is known to have cardinality 22|G| [64, Corollary (7.8)]. Dales and Lau

developed a weighted version of this argument in [23, Theorem 8.27], and invariant

means are also at the centre of our proof of Theorem 4.1.1.

In each of the works [16], [36] and [37], whenever an element of the radical of

the bidual of some group algebra is constructed it is nilpotent of index 2. This is an

artifact of the method of invariant means. Moreover, it follows from [23, Proposition

2.16] and [23, Theorem 8.11] that, for a discrete group G, if ω is a weight on G such

that ` 1pG,ωq is semisimple and Arens regular, then rad p` 1pG,ωq2ql2 “ t0u. To see

that this is a large class of examples consider [23, Theorem 7.13] and [23, Theorem

8.11]. In [23, Chapter 14, Question 3], Dales and Lau ask, amongst other things,

whether or not we always have rad pL 1pGq2ql2 “ t0u, for G a locally compact group.

It also seems that until now it was not known whether or not rad pL 1pG,ωq2q is always

nilpotent, for G a locally compact group and ω a weight on G, although there is an

example of a weight on Z in [23, Example 9.15] for which this radical cubes to zero,

but has non-zero square. In Section 4.4 we shall answer both of these questions in the

negative by proving the following:

Theorem 4.1.2. Let G “ ‘8i“1Z. Then rad p` 1pGq2q contains nilpotent elements

of every index.

Here we understand ‘8i“1Z to consist of integer sequences which are eventually zero,

so that our example is a countable abelian group.

We note that by a theorem of Grabiner [35], Theorem 4.1.2 implies that the

radical of ` 1p‘8i“1Zq2 contains non-nilpotent elements. In Section 4.5, we obtain a

similar result on Z, but this time involving a weight.

Theorem 4.1.3. There exists a weight ω on Z such that rad p` 1pZ, ωq2q contains

non-nilpotent elements.
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In the light of Theorem 4.1.2, it would be interesting to ask whether or not there

exists any locally compact group G for which rad pL 1pGq2ql2 “ t0u. We do not know

of such a group, and we are unable to say whether or not this happens for G “ Z.

4.2. Repeated Limit Notation

In this short section we fix some notation relating to repeated limits. This will be

useful to us in this chapter, for instance, when we are considering powers of some

element of a bidual of a Banach algebra, which has been defined as the weak*-limits

of some net in the Banach algebra itself. Let X and Y be topological spaces, let I be

a directed set, and let U be a filter on I. Let pxαqαPI be a net in X, let r P N, and let

f : Xr Ñ Y be a function. Then we define

lim
αÑU

prqfpxα1 , . . . , xαrq “ lim
α1ÑU

¨ ¨ ¨ lim
αrÑU

fpxα1 , . . . , xαrq,

whenever the repeated limit exists. We define

lim sup
αÑU

prqfpxα1 , . . . , xαrq

analogously. Suppose now that we have two directed sets I and J and two filters:

U on I and V on J . Let pxαqαPI and pyβqβPJ be two nets in X, let r P N, and let

f : X2r Ñ Y . Then we define

lim
αÑU , βÑV

prqfpxα1 , yβ1 , . . . , xαr , yβrq “

lim
α1ÑU

lim
β1ÑV

¨ ¨ ¨ lim
αrÑU

lim
βrÑV

fpxα1 , yβ1 , . . . , xαr , yβrq,

whenever the limit exists. It is important to note that the choice of directed set in the

above repeated limit alternates. In expressions of the form limαÑ8
prqfpxα1 , . . . , xαrq

the symbol ‘8’ is understood to represent the Fréchet filter on the directed set.
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4.3. ` 1pZ, ωq2 is Not Semisimple

In this section we shall prove Theorem 4.1.1. Throughout ω will be a weight on Z,

and we shall write Aω “ ` 1pZ, ωq. We shall write ρω “ limnÑ8 ω
1{n
n , and recall that

ρω “ infnPN ω
1{n
n [19, Proposition A.1.26(iii)]. In an abuse of notation, we shall write

1 P `8pZq for the sequence which is constantly 1. Note that this is the augmentation

character (see Section 2.1) when regarded as an element of A1ω. We define

Iω “ tΛ P A
2
ω : δnlΛ “ Λ pn P Zq, xΛ, 1y “ 0u .

By [23, Proposition 8.23] Iω is an ideal of A2ω, satisfying Il2
ω “ t0u, so that Iω Ă

rad pA2ωq. Our strategy will be to reduce to a setting in which we can show that

Iω ‰ t0u. Our argument is an adaptation of [23, Theorem 8.27].

Let Λ P `8pZ, 1{ωq1. We say that Λ is positive, written Λ ě 0, if xΛ, fy ě 0

whenever f ě 0 pf P `8pZ, 1{ωqq, and we say that Λ is a mean if Λ ě 0 and }Λ} “ 1.

We say that a mean Λ P `8pZ, 1{ωq1 is an invariant mean if δnlΛ “ Λ pn P Zq.

Lemma 4.3.1. Let ω be a weight on Z and let Λ P `8pZ, 1{ωq1 be positive. Then

}Λ} “ xΛ, ωy.

Proof. This follows by considering the positive isometric Banach space isomor-

phism T : `8pZ, 1{ωq Ñ `8pZq given by T pfq “ f{ω pf P `8pZ, 1{ωqq, and then using

the facts that the formula holds in the C*-algebra `8pZq and that T pωq “ 1. �

In what follows, given E Ă N we denote the complement of E by Ec.

Lemma 4.3.2. Let ω be a weight on Z, and suppose that ρω “ 1. Then there exist at

least two distinct invariant means Λ and M on `8pZ, 1{ωq such that xΛ, 1y “ xM, 1y.

Proof. Since infnPN ω
1{n
n “ 1, Lemma 2.6.2(i) implies that the sequence pωnqnPN

is not tail-preserving. Hence, by Proposition 2.6.1, there exists a strictly increasing

sequence pnkq of integers such that n0 “ 0, n1 “ 1 and such that

(4.1) lim
kÑ8

ωnk{pω0 ` ¨ ¨ ¨ ` ωnkq “ 0.
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(In fact, an inspection of the proof of Lemma 2.6.2(i) shows that this fact follows

directly from the calculation performed there, and so we do not really need Proposition

2.6.1 here). By passing to a subsequence if necessary we may suppose that

lim
kÑ8

pnk ` 1q{pω0 ` ¨ ¨ ¨ ` ωnkq

exists.

Set Ck “ ω0 ` ¨ ¨ ¨ ` ωnk , and define Λk “
1
Ck
pδ0 ` ¨ ¨ ¨ ` δnkq; we regard each Λk as

an element of A2ω. Notice that, for each fixed i P N, we have

(4.2) lim
kÑ8

Ci{Ck “ 0.

We shall first show that the sequence pΛkq does not converge when considered as a

sequence in A2ω with the weak*-topology. This will then allow us to use two different

ultrafilters in such a way as to obtain distinct limits of pΛkq, and these limits will

turn out to be our invariant means. To achieve this, we shall inductively construct a

function ψ : ZÑ C and choose non-negative integers

s1 ă t1 ă s2 ă t2 ă ¨ ¨ ¨ ă sk ă tk ă ¨ ¨ ¨

such that

(4.3) |xΛsj , ψy| ă
1

4
, |xΛtj , ψy| ą

3

4
pj P Nq

and

(4.4) 0 ď ψpiq ď ωi ` 1 pi P Zq.

Since (4.4) ensures that ψ P `8pZ, 1{ωq, this will indeed show that pΛkq is weak*-

divergent. We set s1 “ 0 and t1 “ 1, and define ψpiq “ 0 pi ď 0q and ψp1q “ C1, and

observe that this ensures that (4.3) holds for j “ 1, and that (4.4) holds for all i ď 1.
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Now assume inductively that we have found s1 ă t1 ă ¨ ¨ ¨ ă sk ă tk, and defined

ψ up to ntk in such a way that (4.3) holds for j “ 1, . . . , k, and such that (4.4) holds

for i ď ntk . By (4.2), we may choose sk`1 ą tk such that

Ctk
Csk`1

ă
1

4
|xΛtk , ψy|

´1;

we then define ψpiq “ 0 pntk ă i ď nsk`1
q, and note that (4.4) holds trivially for these

values of i. Then

|xΛsk`1
, ψy| “

Ctk
Csk`1

|xΛtk , ψy| ă
1

4
,

as required.

Again using (4.2), we may choose tk`1 ą sk`1 such that Csk`1
{Ctk`1

ă 1{8, so that

ωpnsk`1
` 1q ` ¨ ¨ ¨ ` ωpntk`1

q

Ctk`1

ą
7

8
.

Set ψpiq “ ωi pnsk`1
ă i ď ntk`1

q, and note that (4.4) continues to hold. Then

|xΛtk`1
, ψy| “

ˇ

ˇ

ˇ

ˇ

ωpnsk`1
` 1q ` ¨ ¨ ¨ ` ωpntk`1

q

Ctk`1

`
Csk`1

Ctk`1

xΛsk`1
, ψy

ˇ

ˇ

ˇ

ˇ

ą
7

8
´

1

8
¨

1

4
ą

3

4
.

The induction continues.

Let F denote the Fréchet filter on N. Let U be a free ultrafilter on N, and set

Λ “ limkÑU Λk (the limit being taken in the weak*-topology on A2ω). We have shown

that the sequence pΛkq is not convergent in the weak*-topology on A2ω, and so it

follows that there exists a weak*-open neighbourhood O of Λ such that E :“ tk P N :

Λk P Ou R F . As E R F , the set Ec is infinite, so that Ec X A ‰ H pA P Fq. Hence

there exists a free ultrafilter V on N containing Ec and F . Let M “ limkÑV Λk. Since

Ec P V , we have E R V , so that Λ ‰M .
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Next we show that Λ andM are invariant means on `8pZ, 1{ωq. Let f P `8pZ, 1{ωq.

Then

|xδ1lΛk ´ Λk, fy| “
1

Ck
|pfp1q ` ¨ ¨ ¨ ` fpnk ` 1qq ´ pfp0q ` ¨ ¨ ¨ ` fpnkqq|

“
1

Ck
|fpnk ` 1q ´ fp0q|

ď
1

Ck
}f}pωp1qωpnkq ` ωp0qq,

which, by (4.1), tends to zero as k Ñ 8. Hence

δ1lΛ´ Λ “ lim
kÑU

pδ1lΛk ´ Λkq “ 0,

and a similar calculation shows that δ´1lΛ “ Λ as well. It follows that Λ is invariant.

That Λ ě 0 is clear, and hence, by Lemma 4.3.1,

}Λ} “ xΛ, ωy “ lim
kÑU

xΛk, ωy “ 1.

Hence Λ is an invariant mean, as claimed. The same argument shows that M is also

an invariant mean.

Finally, we calculate that

xΛ, 1y “ lim
kÑU

xΛk, 1y “ lim
kÑ8

pnk ` 1q{Ck “ lim
kÑV

xΛk, 1y “ xM, 1y,

as required. �

We now prove the main result of this section.

Proof of Theorem 4.1.1. Let ρ “ ρω, and let γn “ ωn{ρ
n pn P Zq. Then γ is a

weight on Z, and T : pfpnqq ÞÑ pρnfpnqq defines an (isometric) isomorphism of Banach

algebras Aγ Ñ Aω. The weight γ satisfies the hypothesis of Lemma 4.3.2, so that there

exist distinct invariant means Λ andM on A2γ as in that lemma. Then xΛ´M, 1y “ 0,

so that Λ ´M P Iγzt0u. Hence, by [23, Proposition 8.23], rad pA2γq ‰ t0u, so that

rad pA2ωq ‰ t0u. �



4.4. THE RADICAL OF ` 1p‘
8
i“1Zq

2 126

Remark. A trivial modification of the proof of Theorem 4.1.1 shows that in fact

we also have rad p` 1pZ`, ωq2q ‰ t0u for every weight ω on Z`.

Remark. Since Aω is commutative, pA2ω,3q “ pA2ω,lq
op, and it follows that

rad pA2ω,3q “ rad pA2ω,lq, so that pA2ω,3q is never semisimple either.

4.4. The Radical of ` 1p‘8i“1Zq2

In this section we prove Theorem 4.1.2. In addition we observe in Corollary 4.4.5 that

there are many non-amenable groups G for which rad p` 1pGq2q ‰ t0u. Ideals of the

following form will be central to both of these arguments.

Definition 4.4.1. Let G be a group, let θ : ` 1pGq Ñ ` 1pGq be a bounded algebra

homomorphism, and let J Ă ` 1pGq2 be an ideal. We define

Ipθ, Jq “ tΦ P ` 1
pGq2 : δslΦ “ θpδsqlΦ ps P Gq, θ2pΦq P Ju.

Proposition 4.4.2. Let G, θ and J be as in Definition 4.4.1. Then Ipθ, Jq is an

ideal in ` 1pGq2.

Proof. Let Φ P Ipθ, Jq, and let s, t P G. Then

δslpδtlΦq “ δstlΦ “ θpδstqlΦ “ θpδsqlθpδtqlΦ “ θpδsqlpδtlΦq.

By taking linear combinations and weak*-limits, we may conclude that

δslΨlΦ “ θpδsqlΨlΦ

for every Ψ P ` 1pGq2 and every s P G. It is clear that δslΦlΨ “ θpδsqlΦlΨ for every

Ψ P ` 1pGq2. Since J is an ideal and θ2pΦq P J , we have θ2pΨlΦq “ θ2pΨqlθ2pΦq P J

and θ2pΦlΨq “ θ2pΦqlθ2pΨq P J for every Ψ P ` 1pGq2. Finally, we note that Ipθ, Jq

is clearly a linear space. We have shown that Ipθ, Jq is an ideal in ` 1pGq2. �

Lemma 4.4.3. Let G, θ and J be as in Definition 4.4.1. Then:
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(i) if Φ P Ipθ, Jq and Ψ P ` 1pGq2, then ΨlΦ “ θ2pΨqlΦ;

(ii) if J is nilpotent of index n, then Ipθ, Jq is nilpotent of index at most n` 1.

Proof. (i) This follows from the identity δslΦ “ θ2pδsqlΦ, and the fact that θ2

is linear and weak*-continuous.

(ii) Given Φ1, . . . ,Φn`1 P Ipθ, Jq, we have

Φ1l ¨ ¨ ¨lΦn`1 “ θ2pΦ1l ¨ ¨ ¨lΦnqlΦn`1

“ θ2pΦ1ql ¨ ¨ ¨lθ
2
pΦnqlΦn`1 “ 0

because θ2pΦ1q, . . . , θ
2pΦnq P J . As Φ1, . . . ,Φn`1 were arbitrary, this shows that

Ipθ, Jqlpn`1q “ t0u. �

The key idea in the proof of Theorem 4.1.2 is to use invariant means coming from

each of the copies of Z in the direct sum to build more complicated radical elements

in ` 1p‘8i“1Zq2. We shall use the following lemma. Recall that, for a group G with

subgroups N and H, where N is normal in G, we say that N is complemented by H if

H XN “ teu and G “ HN . In this case every element of G may be written uniquely

as hn, for some h P H and some n P N , and the map GÑ G defined by hn ÞÑ h is a

group homomorphism.

Lemma 4.4.4. Let G be a group with a normal, amenable subgroup N which is

complemented by a subgroup H. Let π : ` 1pGq Ñ ` 1pGq be the bounded algebra homo-

morphism defined by πpδhnq “ δh ph P H,n P Nq and let ι : ` 1pNq Ñ ` 1pGq denote the

inclusion map. Let M be an invariant mean on `8pNq, and write ĂM “ ι2pMq. Then

ĂM satisfies:

δslĂM “ πpδsqlĂM ps P Gq;(4.5)

π2pĂMq “ δe.(4.6)

Proof. For every n P N and every f P ` 1pNq, we have δn ˚ ιpfq “ ιpδn ˚ fq, and

so, by taking weak*-limits, we see that δnlι2pΦq “ ι2pδnlΦq for all Φ P ` 1pNq2. An
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arbitrary element s P G may be written as s “ hn for some h P H and n P N , and so

δslĂM “ δhlδnlι2pMq “ δhlι2pδnlMq

“ δhlι2pMq “ πpδsqlĂM.

Hence (4.5) holds.

Define ϕ0 : ` 1pNq Ñ ` 1pNq by ϕ0 : f ÞÑ xf, 1yδe pf P `
1pNqq. It is easily verified

that π˝ι “ ι˝ϕ0, and so π2˝ι2 “ ι2˝ϕ20.We also have ϕ20pΦq “ xΦ, 1yδe pΦ P ` 1pNq2q.

Hence

π2pĂMq “ pπ2 ˝ ι2qpMq “ pι2 ˝ ϕ20qpMq “ ι2pxM, 1yδeq “ δe,

establishing (4.6). �

We have not seen in the literature any instance of a discrete, non-amenable group

G for which it is known that rad p` 1pGq2q ‰ t0u. However the next corollary gives a

large class of easy examples of such groups.

Corollary 4.4.5. Let G be a group with an infinite, amenable, complemented,

normal subgroup N . Then |rad p` 1pGq2q| ě 22|N | .

Proof. Let M1,M2 be two invariant means in ` 1pNq2, and let ι and π be as

in Lemma 4.4.4 . Then by that lemma ι2pM1 ´M2q P Ipπ, 0q, which is a nilpotent

ideal by Lemma 4.4.3(ii). The result now follows from the injectivity of ι2 and [64,

Theorem 7.26]. �

We now prove our main theorem.

Proof of Theorem 4.1.2. Let G “ ‘8i“1Z, and, given i P N, write Gi for the

i th copy of Z appearing in this direct sum. Let πi : G Ñ G be the homomorphism

which “deletes” the i th coordinate, that is

πi : pn1, n2, . . .q ÞÑ pn1, . . . , ni´1, 0, ni`1, . . .q.
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Each map πi gives rise to a bounded homomorphism ` 1pGq Ñ ` 1pGq, which we also

denote by πi, given by

πi : f ÞÑ
ÿ

sPG

fpsqδπipsq pf P ` 1
pGqq.

Similarly, we write ιi : Gi Ñ G for the inclusion map of groups, and ιi : ` 1pGiq Ñ ` 1pGq

for the inclusion of algebras which it induces.

Define a sequence of ideals Ij in ` 1pGq2 by I1 “ Ipπ1, 0q and

Ij “ Ipπj, Ij´1q pj ě 2q.

By Lemma 4.4.3(ii), each Ij is nilpotent of index at most j ` 1 and the strategy of

the proof is to show that the index is exactly j ` 1.

Fix a free ultrafilter U on N. Given i P N and n P Z we write

δpiqn “ δp0,...,0,n,0,...q,

where n appears in the i th place. Given j P N we define elements σj,Mj P `
1pGq2 to

be the weak*-limits σj “ limkÑU σj,k and Mj “ limkÑU Mj,k, where

Mj,k “
1

k

k
ÿ

i“1

δ
pjq
i pj, k P Nq,

and

σj,k “
1

k

k
ÿ

i“1

´

δ
pjq
i ´ δ

pjq
´i

¯

pj, k P Nq.

We claim that, for each j P N, Mj and σj satisfy:

δslMj “ πjpδsqlMj ps P Gq;(4.7)

π2j pMjq “ δp0,0,...q;(4.8)

π2i pσjq “ σj and π2i pMjq “Mj pi ‰ jq;(4.9)

σj P Ipπj, 0q.(4.10)
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Since π2i pMj,kq “ Mj,k and π2i pσj,kq “ σj,k pk P N, i ‰ jq, (4.9) follows from the

weak*-continuity of π2j . We observe that Mj is the image of an invariant mean on Z

under ι2j , so that we may apply Lemma 4.4.4 to obtain (4.7) and (4.8). Similarly, σj

is the image of the difference of two invariant means on Z under ιj, so that Lemma

4.4.4 implies that δslσj “ πjpδsqlσj ps P Gq and π2j pσjq “ 0, so that (4.10) holds.

We demonstrate that

(4.11) σ1lσ2l ¨ ¨ ¨lσj ‰ 0 pj P Nq.

To see this, define h P `8pGq by

hpn1, n2, . . .q “

$

’

’

&

’

’

%

1 if ni ě 0 for all i P N

0 otherwise.

Clearly, we have

(4.12) xσi,k, hy “ 1 pi, k P Nq.

It is easily checked that

(4.13) xπipδsq ˚ ιipδtq, hy “ xπipδsq, hyxιipδtq, hy

for every s P G and t P Gi: indeed, given s and t, observe that πipδsq is equal to δu,

for some u P G with i th coordinate equal to zero, whereas ιipδtq is of the form δv,

for some v P G which is zero in every other coordinate. It follows that πipδsq ˚ ιipδtq

has the property that all of its coordinates are non-negative if and only if both πipδsq

and ιipδtq separately have this property. Hence xπipδsq ˚ ιipδtq, hy “ 1 if and only if

xπipδsq, hy “ xιipδtq, hy “ 1, and equals 0 otherwise. Equation (4.13) follows. This

equation implies that

(4.14) xπipfq ˚ ιipgq, hy “ xπipfq, hyxιipgq, hy pf P ` 1
pGq, g P ` 1

pGiqq.
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Given i, k P N, the element σi,k belongs to the image of ιi, and, together with (4.9),

(4.14) and (4.12), this allows us to conclude that, for all k1, . . . , kj P N, we have

xσ1,k1 ˚ σ2,k2 ˚ ¨ ¨ ¨ ˚ σj,kj , hy

“ xπjpσ1,k1 ˚ ¨ ¨ ¨ ˚ σj´1,kj´1
q ˚ σj,kj , hy

“ xπjpσ1,k1 ˚ ¨ ¨ ¨ ˚ σj´1,kj´1
q, hyxσj,kj , hy

“ xπj´1pσ1,k1 ˚ ¨ ¨ ¨ ˚ σj´2,kj´2
q ˚ σj´1,kj´1

, hyxσj,kj , hy “ ¨ ¨ ¨

“ xσ1,k1 , hyxσ2,k2 , hy ¨ ¨ ¨ xσj,kj , hy “ 1.

Therefore

xσ1lσ2l ¨ ¨ ¨lσj, hy “ lim
kÑU

pjq
@

σ1,k1 ˚ σ2,k2 ˚ ¨ ¨ ¨ ˚ σj,kj , h
D

“ 1.

Equation (4.11) follows.

We now come to the main argument of the proof. We recursively define Λj P `
1pGq2

by Λ1 “ σ1 and

Λj “MjlΛj´1 ` σj pj ě 2q.

We shall show inductively that each Λj satisfies:

Λj P Ij;(4.15)

Λlj
j “ σ1lσ2l ¨ ¨ ¨lσj;(4.16)

π2i pΛjq “ Λj pi ą jq.(4.17)

Since by Lemma 4.4.3(ii) Ilpj`1q
j “ t0u, and by (4.11) σ1lσ2l ¨ ¨ ¨lσj ‰ 0, this will

give the result. The base case of the induction holds by (4.10) and (4.9).

Now assume that the hypothesis holds up to j´1. It follows from (4.10) and (4.7)

that δslΛj “ πjpδsqlΛj ps P Gq. Moreover, by (4.8), (4.10), and (4.17) applied to
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Λj´1, we have

π2j pΛjq “ π2j pMjqlπ
2
j pΛj´1q ` π

2
j pσjq “ Λj´1,(4.18)

so that, by the induction hypothesis, π2j pΛjq P Ij´1. Hence (4.15) holds. We see that

(4.17) holds for a given i ą j because it holds for each of Mj, σj and Λj´1 by (4.9)

and the induction hypothesis. Finally, we verify (4.16):

Λlj
j “ π2j pΛjq

lpj´1qlΛj “ Λ
lpj´1q
j´1 lΛj

“ Λ
lpj´1q
j´1 lMjlΛj´1 ` Λ

lpj´1q
j´1 lσj “ σ1lσ2l ¨ ¨ ¨lσj´1lσj,

where we have used Lemma 4.4.3(i) and (4.18) in the first line, and the fact that

Ilj
j´1 “ t0u in the second line to get Λ

lpj´1q
j´1 lMjlΛj´1 “ 0.

This completes the proof. �

Remark. A simpler version of the above argument shows that ` 1pZ2q2 contains a

radical element which is nilpotent of index 3, which is enough to resolve Dales and

Lau’s question of whether the radical of L 1pGq2, for G a locally compact group, always

has zero square [23, Chapter 14, Question 3]. Specifically, this may be achieved by

terminating the induction at j “ 2, and otherwise making trivial alterations.

Corollary 4.4.6. The radical of ` 1p‘8i“1Zq2 contains non-nilpotent elements.

Proof. By a theorem of Grabiner [35], if every element of rad p` 1p‘8i“1Zq2q were

nilpotent, then there would be a uniform bound on the index of nilpotency. Hence,

by Theorem 4.1.2, rad p` 1p‘8i“1Zq2q must contain non-nilpotent elements. �

4.5. A Weight ω for Which rad p` 1pZ, ωq2q is Not Nilpotent

In this section we shall prove Theorem 4.1.3. We shall also prove a related result, as a

sort of warm up: namely Proposition 4.5.5, which states that, for every q P N at least

2, there is a weight ωq on Z such that rad p` 1pZ, ωqq2q contains a nilpotent element
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of index exactly q. The proof of Theorem 4.1.3 does not rely on that of Proposition

4.5.5, although there are some common ideas involved.

Given a weight ω on Z and r P N, we define Ω
prq
ω : Zr Ñ p0, 1s by

Ω prq
ω pn1, . . . , nrq “

ωpn1 ` n2 ` ¨ ¨ ¨ ` nrq

ωpn1qωpn2q ¨ ¨ ¨ωpnrq
pn1, . . . , nr P Zq

(compare with [23, Equation 8.7]). Often we simply write Ω prq when the weight ω is

clear. As in Section 4.3 we write Aω “ ` 1pZ, ωq.

Our main tool will be Proposition 4.5.1. Recall that we denote the unit ball of a

Banach space E by BE.

Proposition 4.5.1. Let ω be a weight on Z and suppose that there is some se-

quence pnkq Ă Z such that

(4.19) lim inf
rÑ8

lim sup
kÑ8

prq
“

Ω prq
pnk1 , . . . , nkrq

‰1{r
“ 0.

Let Φ be a weak*-accumulation point of tδnk{ωpnkq : k P Nu. Then Φ P rad pA2ωqzt0u.

Furthermore, if there is some q P N such that

(4.20) lim sup
kÑ8

pqqΩ pqq
pnk1 , . . . , nkqq “ 0

then the left ideal generated by Φ is nilpotent of index at most q.

Proof. There exists some free filter U on N such that

Φ “ lim
kÑU

1

ωpnkq
δnk ,

where the limit is taken in the weak*-topology. Let Ψ P BA2ω . Then there exists a net

paαq in BAω such that limw˚, α aα “ Ψ. Let λ P BA1ω . Then, for each r P N, we have
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|xpΨlΦqlr, λy| “ lim
αÑ8, kÑU

prq

ˇ

ˇ

ˇ

ˇ

xaα1 ˚ δnk1 ˚ ¨ ¨ ¨ ˚ aαr ˚ δnkr , λy

ωpnk1q ¨ ¨ ¨ωpnkrq

ˇ

ˇ

ˇ

ˇ

(4.21)

“ lim
αÑ8, kÑU

prq

ˇ

ˇ

ˇ

ˇ

xaα1 ˚ ¨ ¨ ¨ ˚ aαr ˚ δnk1 ˚ ¨ ¨ ¨ ˚ δnkr , λy

ωpnk1q ¨ ¨ ¨ωpnkrq

ˇ

ˇ

ˇ

ˇ

ď lim sup
kÑ8

prq

›

›

›

›

δnk1`¨¨¨`nkr
ωpnk1q ¨ ¨ ¨ωpnkrq

›

›

›

›

“ lim sup
kÑ8

prqΩ prq
pnk1 , . . . , nkrq.

Hence

}pΨlΦqlr}1{r “ sup
λPBA1ω

|xpΨlΦqlr, λy|1{r ď lim sup
kÑ8

prq
“

Ω prq
pnk1 , . . . , nkrq

‰1{r
,

and so limrÑ8 }pΨlΦqlr}1{r “ 0 by (4.19). Therefore ΨlΦ P QpA2ωq. As Ψ was

arbitrary, it follows that Φ P rad pA2ωq. Moreover, Φ ‰ 0 because

xΦ, ωy “ lim
kÑU

B

δnk
ωpnkq

, ω

F

“ 1.

If, further, (4.20) holds, then (4.21) with r “ q implies that pΨlΦqlq “ 0. This

completes the proof. �

Remark. Observe that, since ω is submultiplicative, and Ω takes values in r0, 1s,

the formula Ω piq ď Ω pjq holds pointwise whenever i ď j. Hence (4.20) implies (4.19).

In their memoir [23], Dales and Lau put forward a candidate for a weight ω such

that A2ω is semisimple. They attribute this weight to Feinstein. In light of Theorem

4.1.1 this cannot be the case, but Proposition 4.5.1 gives us a second way to see this.

Proposition 4.5.2. Let ω denote the so-called Feinstein weight, studied in [23,

Example 9.17]. Then rad pA2ωq ‰ t0u.

Proof. Let X “ t˘2k : k P Nu, and recall that ω is defined by ωpnq “ e|n|X . Let

nk “ 22k ` 22k´2 ` ¨ ¨ ¨ ` 1, as in [23]. It was shown there that ωpnkq “ ek`1. Let
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k1 ě k2 be natural numbers. Then

nk1 ` nk2 “ 22k1 ` ¨ ¨ ¨ ` 22k2`2
` 2 ¨ 22k2 ` ¨ ¨ ¨ 2 ¨ 1

“ 22k1 ` ¨ ¨ ¨ ` 22k2`2
` 22k2`1

` ¨ ¨ ¨ ` 2

so that |nk1 ` nk2 |X ď k1 ` 1. Hence Ω p2qpnk2 , nk1q ď
ek1`1

ek1`1ek2`1 “ e´pk2`1q, and it

follows that limk2Ñ8 limk1Ñ8 Ω p2qpnk2 , nk1q “ 0. Now apply Proposition 4.5.1. �

In Section 1.1 word-length of a group element with respect to a generating was

defined, and in Example 1.3.2 we described how a given generating set gives rise to

certain weights on the group via the associated word-length function. In what follows

we shall use infinite generating sets for Z to construct weights. In this context the

word-length of an integer n with respect to a (possibly infinite) generating set X Ă Z

is given by the formula

|n|X “ min

#

r : n “
r
ÿ

i“1

εisi, for some s1, . . . , sr P X, ε1, . . . , εr P t˘1u

+

.

Recall that, for any generating set X Ă Z, the function n ÞÑ e|n|X defines a weight on

Z.

Let q P N. We now set about showing that there is a weight ωq on Z such

that rad pA2ωqq contains a nilpotent element of index exactly q. Throughout we set

m “ 2pq´ 1q, Xq “ t˘m
k : k P Nu, and ηqpnq “ |n|Xq and ωqpnq “ eηqpnq pn P Zq. We

also define a sequence of integers pskq by

sk “ m2k
`m2k´2

` ¨ ¨ ¨ ` 1 pk P Z`q.

Lemma 4.5.3. Let d be an integer with 1 ď d ď m ´ 1. The equation cm ` c1 “

d´m2, for c, c1 P t´pm´1q, . . . ,m´2,m´1u, has only the solution c “ ´pm´1q, c1 “

d´m.

Proof. (i) Suppose that c and c1 are integers satisfying cm` c1 “ d´m2 which

lie between ´pm ´ 1q and pm ´ 1q. We have m2 ´ d “ |cm ` c1| ď |c|m ` pm ´ 1q,
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which forces |c| “ pm ´ 1q (since otherwise |c|m ` pm ´ 1q ď pm ´ 2qm `m ´ 1 “

m2 ´ pm` 1q ă m2 ´ d), and, since c must be negative, we have c “ ´pm´ 1q. The

value of c1 is then determined by the equation. �

Lemma 4.5.4. Given an integer 1 ď d ď q ´ 1 and k1, . . . , kd P N we have

ηqpsk1 ` ¨ ¨ ¨ ` skdq “ k1 ` ¨ ¨ ¨ ` kd ` d.

Proof. We shall assume that k1 ě k2 ě ¨ ¨ ¨ ě kd. Certainly

ηqpsk1 ` ¨ ¨ ¨ ` skdq ď ηqpsk1q ` ¨ ¨ ¨ ` ηqpskdq ď k1 ` ¨ ¨ ¨ ` kd ` d.

To get the lower bound we proceed by induction on k1. In what follows we shall

interpret s´1 “ 0, and for the base of our induction we shall take all of the cases in

which k1, . . . , kd P t´1, 0u, each of which holds trivially.

Assume that k1 ą 0, k2, . . . , kd ě 0. Write

sk1 ` ¨ ¨ ¨ ` skd “
p
ÿ

j“1

cjm
aj ,

for some natural numbers a1 ą a2 ą ¨ ¨ ¨ ą ap, and some non-zero integers c1, . . . , cp

satisfying
řp
j“1 |cj| “ ηqpsk1 ` ¨ ¨ ¨ ` skdq. It follows from the minimality of

řp
j“1 |cj|

that c1, . . . , cp P t˘1,˘2, . . . ,˘pm ´ 1qu. As sk1 ` ¨ ¨ ¨ ` skd ” d pmod mq we have

ap “ 0. Suppose that cp “ d. Then, as sk1 ` ¨ ¨ ¨ ` skd ” d pmod m2q, we must have

ap´1 ě 2. Recall that we understand s´1 “ 0, and compute

sk1´1 ` ¨ ¨ ¨ ` skd´1 “
1

m2
psk1 ` ¨ ¨ ¨ ` skd ´ dq “

p´1
ÿ

j“1

cjm
aj´2,

so that, by the induction hypothesis,

p´1
ÿ

j“1

|cj| ě pk1 ´ 1q ` ¨ ¨ ¨ ` pkd ´ 1q ` d,
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which implies that

p
ÿ

j“1

|cj| ě pk1 ´ 1q ` ¨ ¨ ¨ ` pkd ´ 1q ` d` d “ k1 ` ¨ ¨ ¨ ` kd ` d.

Now suppose that cp ‰ d. Then, as sk1 ` ¨ ¨ ¨ ` skd ” d pmod m2q, we must have

ap´1 “ 1. Since cp´1m ` cp ” d pmod m2q and |cp´1m ` cp| ď m2 ´ 1, we must have

either cp´1m` cp “ d or cp´1m` cp “ d´m2.

In the case where cp´1m ` cp “ d we repeat the argument that we used when

cp “ d to get
p´2
ÿ

j“1

|cj| ě pk1 ´ 1q ` ¨ ¨ ¨ ` pkd ´ 1q ` d.

Then cp´1m` cp “ d, cp´1 ‰ 0 forces cp´1 “ 1 and cp “ d´m, so that |cp´1| ` |cp| “

1`m´ d ě d, since 2d ď m by hypothesis. Thus

p
ÿ

j“1

|cj| ě pk1 ´ 1q ` ¨ ¨ ¨ ` pkd ´ 1q ` d` d “ k1 ` ¨ ¨ ¨ ` kd ` d.

We now turn to the case where cp´1m` cp “ d´m2, and compute

sk1´1 ` ¨ ¨ ¨ ` skd´1 “
1

m2
psk1 ` ¨ ¨ ¨ ` skd ´ dq

“

p´2
ÿ

j“1

cjm
aj´2

`
1

m2
pcp´1m` cp ´ dq “

p´2
ÿ

j“1

cjm
aj´2

´ 1.

It follows that

(4.22)
p´2
ÿ

j“1

|cj| ` 1 ě pk1 ´ 1q ` ¨ ¨ ¨ ` pkd ´ 1q ` d.

By Lemma 4.5.3 we have cp´1 “ ´pm ´ 1q and cp “ d ´ m, so that |cp´1| ` |cp| “

2m´ 1´ d. Since q ě 2, we have d ď q ´ 1 ď 2q ´ 3 “ m´ 1, so that |cp´1| ` |cp| “

2m´ 1´ d ě d` 1. Hence by (4.22),

p
ÿ

j“1

|cj| ě pk1 ´ 1q ` ¨ ¨ ¨ ` pkd ´ 1q ` d´ 1` pd` 1q “ k1 ` ¨ ¨ ¨ ` kd ` d.

This completes the proof. �
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Proposition 4.5.5. The Banach algebra A2ωq contains a radical element which is

nilpotent of index exactly q.

Proof. Let Φ be a weak*-accumulation point of tδsk{ωqpskq : k P Nu. For each

j P N we have

qsj “ pm´ pq ´ 2qqsj

“ m2j`1
´ pq ´ 2qm2j

`m2j´1
´ pq ´ 2qm2j´2

` ¨ ¨ ¨ ` pm´ pq ´ 2qq,

so that

ηqpqsjq ď pj ` 1q ` pj ` 1qpq ´ 2q “ pj ` 1qpq ´ 1q,

and so that, for natural numbers k1 ě . . . ě kq ą j, we have

ηqpsk1 ` ¨ ¨ ¨ ` skqq “ ηqppsk1 ´ sjq ` ¨ ¨ ¨ ` pskq ´ sjq ` qsjq

ď ηqpsk1 ´ sjq ` ¨ ¨ ¨ ` ηqpskq ´ sjq ` ηqpqsjq

ď pk1 ´ jq ` ¨ ¨ ¨ ` pkq ´ jq ` pj ` 1qpq ´ 1q

“ k1 ` ¨ ¨ ¨ ` kq ´ j ` q ´ 1.

Using Lemma 4.5.4 to get ωqpskiq “ eki`1 pi “ 1, . . . , qq, we then have

Ω pqq
psk1 , . . . , skqq ď

ek1`¨¨¨`km´j`q´1

ek1`1 ¨ ¨ ¨ ekq`1
ď e´j,

which implies that

lim
kÑ8

pqqΩ pqq
psk1 , . . . , skqq “ 0.

By Proposition 4.5.1 Φ P rad pA2ωqq and Φlq “ 0. However, by Lemma 4.5.4, we have

@

Φlpq´1q, ωq
D

“ lim
kÑU

pq´1q 1

ωqpsk1q ¨ ¨ ¨ωqpskq´1q
xδsk1`¨¨¨`skq´1

, ωqy

“ lim
kÑU

pq´1q e
k1`k2`¨¨¨`kq´1`q´1

ek1`1 ¨ ¨ ¨ ekq´1`1
“ 1,
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where U is some filter satisfying Φ “ limkÑU δsk{ωqpskq in the weak*-topology, so that

Φlpq´1q ‰ 0, as required. �

We now turn to our main example. The weight in Theorem 4.1.3 will be defined

as follows. We let

X8 “
!

2k
2

: k P Z`
)

,

set ηpnq “ |n|X8 , and define our weight by ωpnq “ eηpnq pn P Zq. We also define a

sequence of integers pnkq by

nk “ 2k
2

` 2pk´1q2
` ¨ ¨ ¨ ` 1 pk P Nq.

Lemma 4.5.6. We have ηpnkq “ k ` 1 pk P Nq.

Proof. We proceed by induction on k P N, the base case being trivial. Take

k ą 1, and assume that the lemma holds for k ´ 1. That ηpnkq ď k ` 1 is clear from

the definitions, and so it remains to show that ηpnkq ě k ` 1. Observe that, for all

k P N, we have

(4.23) k2pk´1q2
“

k

22k´1
2k

2

ă 2k
2

.

Assume towards a contradiction that ηpnkq ă k ` 1. Then we can write nk “
řp
i“1 ci2

a2i , for some p P N, c1, . . . , cp P Zzt0u, and a1, . . . , ap P Z` such that
řp
i“1 |ci| ă

k ` 1. We may suppose that a1 ą a2 ą ¨ ¨ ¨ ą ap. We first show that a1 “ k. If

a1 ď k ´ 1, we find that

nk “

ˇ

ˇ

ˇ

ˇ

ˇ

p
ÿ

i“1

ci2
a2i

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

p
ÿ

i“1

|ci|

¸

2pk´1q2
ď k2pk´1q2

ă nk

by (4.23), a contradiction. Similarly, if a1 ě k ` 1, we have
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nk “

ˇ

ˇ

ˇ

ˇ

ˇ

p
ÿ

i“1

ci2
a2i

ˇ

ˇ

ˇ

ˇ

ˇ

ě |c1|2
a12 ´

˜

p
ÿ

i“2

|ci|

¸

2pa1´1q2
ě 2a1

2

´ pk ´ 1q2pa1´1q2

ą a12pa1´1q2
´ pk ´ 1q2pa1´1q2

“ pa1 ` 1´ kq2pa1´1q2
ě 2 ¨ 2k

2

ą nk,

where we have used (4.23) to obtain the second line. Hence in either case we get a

contradiction, so we must have a1 “ k, as claimed.

Observe that c1 ą 0, since otherwise

p
ÿ

i“1

ci2
a2i ď ´2k

2

`

p
ÿ

i“2

|ci|2
a2i ď ´2k

2

` pk ´ 1q2pk´1q2
ă 0.

Hence we have deduced that

2k
2

` nk´1 “ nk “ 2k
2

` pc1 ´ 1q2k
2

`

p
ÿ

i“2

ci2
a2i ,

which implies that

nk´1 “ pc1 ´ 1q2k
2

`

p
ÿ

i“2

ci2
a2i ,

and this contradicts the induction hypothesis, since c1 ´ 1`
řp
i“2 |ci| ă k. �

Lemma 4.5.7. Let j P N, and set r “ rpjq “ 22j`1. Then, for all k1, . . . , kr ě j,

we have
“

Ω prq
pnk1 , . . . , nkrq

‰1{r
ď e´j.

Proof. First of all, we compute

rpjqnj “ 22j`1
j
ÿ

i“0

2pj´iq
2

“

j
ÿ

i“0

22j`1`j2´2ij`i2

“

j
ÿ

i“0

22i2´2i`2j´2ij`j2`1`i2
“

j
ÿ

i“0

22i
¨ 2pj`1´iq2 .
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This implies that

ηprnjq ď
j
ÿ

i“0

22i
“

1

3
p22j

´ 1q ď r,

so that, for all k1, . . . , kr ě j, we have

ηpnk1 ` ¨ ¨ ¨ ` nkrq “ ηrpnk1 ´ njq ` ¨ ¨ ¨ ` pnkr ´ njq ` rnjs

ď ηpnk1 ´ njq ` ¨ ¨ ¨ ` ηpnkr ´ njq ` ηprnjq

ď pk1 ´ jq ` ¨ ¨ ¨ ` pkr ´ jq ` r

“ k1 ` ¨ ¨ ¨ ` kr ´ pj ´ 1qr.

Hence, by Lemma 4.5.6, we have

“

Ω prq
pnk1 , . . . , nkrq

‰1{r
ď

„

ek1`¨¨¨`kr´pj´1qr

ek1`1 ¨ ¨ ¨ ekr`1

1{r

“ re´pj´1qr´r
s
1{r
“ e´j,

as required. �

Lemma 4.5.8. Fix j P N, and set r “ 22j`1. Let J P N satisfy J ě j and

22k´1
ą rk ` 2r pk ě Jq.

Then, for all k1 ě k2 ě ¨ ¨ ¨ ě kr ě J, we have

ηpnk1 ` ¨ ¨ ¨ ` nkrq ě k1 ` k2 ` ¨ ¨ ¨ ` kr ´ rJ.

Proof. Note that, by our hypothesis on J , whenever k ě J we have 2k
2´pk´1q2 ą

rk ` 2r, which implies that

(4.24) 2k
2

ą rk2pk´1q2
` r2pk´1q2`1

pk ě Jq.

We proceed by induction on k1 ě J , with the base case corresponding to the case

where k1 “ J , and hence also k2 “ ¨ ¨ ¨ “ kr “ J . Therefore the base hypothesis

merely states that ηprnJq ě 0, which is true.
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Suppose that k1 ą J, and assume that the lemma holds for all smaller values of

k1 ě J . Assume towards a contradiction that there exist k2, . . . , kr P Z such that

k1 ě k2 ě ¨ ¨ ¨ ě kr ě J , and such that

ηpnk1 ` ¨ ¨ ¨ ` nkrq ă k1 ` ¨ ¨ ¨ ` kr ´ rJ.

Then we may write

nk1 ` ¨ ¨ ¨ ` nkr “
p
ÿ

i“1

ci2
a2i

for some p P N, some a1, . . . , ap P Z`, and some c1, . . . , cp P Zzt0u, satisfying a1 ą

a2 ą ¨ ¨ ¨ ą ap and
řp
i“1 |ci| ă k1 ` ¨ ¨ ¨ ` kr ´ rJ . Note that we have

(4.25)

ˇ

ˇ

ˇ

ˇ

ˇ

p
ÿ

i“2

ci2
a2i

ˇ

ˇ

ˇ

ˇ

ˇ

ă pk1 ` ¨ ¨ ¨ ` kr ´ rJq2
a22 ď k1r2

pa1´1q2 .

We claim that a1 “ k1. Assume instead that a1 ě k1 ` 1. Then, using (4.24) and

(4.25), we have
ˇ

ˇ

ˇ

ˇ

ˇ

p
ÿ

i“1

ci2
a2i

ˇ

ˇ

ˇ

ˇ

ˇ

ą |c1|2
a21 ´

ˇ

ˇ

ˇ

ˇ

ˇ

p
ÿ

i“2

ci2
a2i

ˇ

ˇ

ˇ

ˇ

ˇ

ě 2a
2
1 ´ rk12pa1´1q2

ą r2pa1´1q2`1

ě r2k
2
1`1

ě nk1 ` ¨ ¨ ¨ ` nkr ,

a contradiction. If, on the other hand, we assume that a1 ď k1´1, then (4.24) implies

that
ˇ

ˇ

ˇ

ˇ

ˇ

p
ÿ

i“1

ci2
a2i

ˇ

ˇ

ˇ

ˇ

ˇ

ď pk1 ` ¨ ¨ ¨ ` krq2
pk1´1q2

ď rk12pk1´1q2
ă nk1 ,

a contradiction. Hence a1 “ k1, as claimed.

Let d P N be maximal such that kd “ k1. We claim that c1 ě d. Firstly, if c1 were

negative, we would have

p
ÿ

i“1

ci2
a2i ď ´2k

2
1 `

ˇ

ˇ

ˇ

ˇ

ˇ

p
ÿ

i“2

ci2
a2i

ˇ

ˇ

ˇ

ˇ

ˇ

ď ´2k
2
1 ` rk12pk1´1q2

ă 0,
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by (4.24), a contradiction. Hence c1 must be positive. Suppose that c1 ď d´1. Then,

using (4.24) to obtain the second line, we would have

p
ÿ

i“1

ci2
a2i ď pd´ 1q2k

2
1 `

ˇ

ˇ

ˇ

ˇ

ˇ

p
ÿ

i“2

ci2
a2i

ˇ

ˇ

ˇ

ˇ

ˇ

ď pd´ 1q2k
2
1 ` rk12pk1´1q2

ă nk1 ` ¨ ¨ ¨ ` nkd ď nk1 ` ¨ ¨ ¨ ` nkr ,

again a contradiction. Hence we must have c1 ě d, as claimed.

We now complete the proof. We have

c12k
2
1 `

p
ÿ

i“2

ci2
a2i “ nk1 ` ¨ ¨ ¨ ` nkr

“ dnk1 ` nkd`1
` ¨ ¨ ¨ ` nkr

“ d2k
2
1 ` nk1´1 ` ¨ ¨ ¨ ` nkd´1 ` nkd`1

` ¨ ¨ ¨ ` nkr ,

which implies that

pc1 ´ dq2
k21 `

p
ÿ

i“2

ci2
a2i “ nk1´1 ` ¨ ¨ ¨ ` nkd´1 ` nkd`1

` ¨ ¨ ¨ ` nkr .

But

pc1 ´ dq `
p
ÿ

i“2

|ci| ă pk1 ´ 1q ` ¨ ¨ ¨ ` pkd ´ 1q ` kd`1 ` ¨ ¨ ¨ ` kr ´ Jr,

which contradicts the induction hypothesis applied to k1 ´ 1. �

Corollary 4.5.9. Fix j P N, set r “ 22j`1, and let U be a free ultrafilter on N.

Then limkÑU
prqΩ prqpnk1 , . . . , nkrq ą 0.

Proof. Let J be as in Lemma 4.5.8. Then, for all k1, . . . , kr ě J, we have

ηpnk1 ` ¨ ¨ ¨ ` nkrq ě k1 ` ¨ ¨ ¨ ` kr ´ rJ,

which, when combined with Lemma 4.5.6, implies that

Ω prq
pnk1 , . . . , nkrq ě

ek1`¨¨¨`kr´rJ

ek1`1 ¨ ¨ ¨ ekr`1
“ e´rpJ`1q

ą 0.
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This implies the result. �

We can now prove Theorem 4.1.3.

Proof of Theorem 4.1.3. Let Φ be a weak*-accumulation point of

tδnk{ωpnkq : k P Nu.

Then, by Proposition 4.5.1 and Lemma 4.5.7, Φ P rad pA2ωq.

Take j P N and set r “ 22j`1. Let U be a filter on N such that Φ is equal to the

weak*-limit limkÑU δnk{ωpnkq. Then, by Corollary 4.5.9,

xΦlr, ωy “ lim
kÑU

prq

B

1

ωpnk1q ¨ ¨ ¨ωpnkrq
δnk1`¨¨¨`nkr , ω

F

“ lim
kÑU

prqΩ prq
pnk1 , . . . , nkrq ą 0.

Hence Φlr ‰ 0. Since r Ñ 8 as j Ñ 8, it follows that Φ is not nilpotent. �



CHAPTER 5

An Infinite C*-algebra With a Dense, Stably Finite

*-subalgebra

5.1. Introduction

In this Chapter we use a construction based on semigroup algebras to solve an open

problem in the theory of C*-algebras. The Chapter is based on [56].

Let A be a unital algebra. We say that A is finite (also called directly finite or

Dedekind finite) if every left invertible element of A is right invertible, and we say that

A is infinite otherwise. This notion originates in the seminal studies of projections

in von Neumann algebras carried out by Murray and von Neumann in the 1930s. At

the 22nd International Conference on Banach Algebras and Applications, held at the

Fields Institute in Toronto in 2015, Yemon Choi raised the following questions:

Question 5.1.1. (i) Let A be a unital, finite normed algebra. Must its com-

pletion be finite?

(ii) Let A be a unital, finite pre-C*-algebra. Must its completion be finite?

Choi also stated Question 5.1.1(i) in [15, Section 6].

A unital algebra A is said to be stably finite if the matrix algebra MnpAq is finite

for each n P N. This stronger form of finiteness is particularly useful in the context of

K-theory, and so it has become a household item in the Elliott classification program

for C*-algebras. The notions of finiteness and stable finiteness differ even for C*-

algebras, as was shown independently by Clarke [17] and Blackadar [9] (or see [10,

Exercise 6.10.1]). A much deeper result is due to Rørdam [70, Corollary 7.2], who

constructed a unital, simple C*-algebra which is finite (and separable and nuclear),

but not stably finite.

145
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We shall answer Question 5.1.1(i), and hence Question 5.1.1(ii), in the negative

by proving the following result:

Theorem 5.1.2. There exists a unital, infinite C*-algebra which contains a dense,

unital, stably finite *-subalgebra.

Let A be a unital *-algebra. Then there is a natural variant of finiteness in this

setting, namely we say that A is *-finite if whenever we have u P A satisfying u˚u “ 1,

then uu˚ “ 1. However, it is known (see, e.g., [69, Lemma 5.1.2]) that a C*-algebra

is finite if and only if it is *-finite, so we shall not need to refer to *-finiteness again.

The chapter is organised as follows. Section 5.2 contains some basic definitions

and facts that we shall require throughout. In Section 5.3 we give a proof of a folklore

result concerning free products of *-algebras for which there seems to be no self-

contained proof in the literature. Then, in Section 5.4, we apply this folklore result

to some examples that we shall need in the proof of our main result. The body of the

proof will be given in Section 5.5.

5.2. Preliminaries

Our approach is based on semigroup algebras. Let S be a monoid, that is, a semigroup

with an identity, which we shall usually denote by e. By an involution on S we

mean a map from S to S, always denoted by s ÞÑ s˚, satisfying pstq˚ “ t˚s˚ and

s˚˚ “ s ps, t P Sq. By a *-monoid we shall mean a pair pS, ˚q, where S is a monoid,

and ˚ is an involution on S. Given a *-monoid S, the algebra CS becomes a unital

*-algebra simply by defining δ˚s “ δs˚ ps P Sq, and extending conjugate-linearly.

Next we shall recall some basic facts about free products of *-monoids, unital

*-algebras, and their C*-representations.

Let S and T be monoids, and let A and B be unital algebras. Then we denote

the free product (i.e. the coproduct) of S and T in the category of monoids by S ˚ T ,

and similarly we denote the free product of the unital algebras A and B by A ˚B. It
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follows from the universal property satisfied by free products that, for monoids S and

T , we have CpS ˚ T q – pCSq ˚ pCT q.

Given *-monoids S and T , we can define an involution on S ˚ T by

ps1t1 ¨ ¨ ¨ sntnq
˚
“ t˚ns

˚
n ¨ ¨ ¨ t

˚
1s
˚
1

for n P N, s1 P S, s2, . . . , sn P Szteu, t1, . . . , tn´1 P T zteu, and tn P T. The resulting

*-monoid, which we continue to denote by S ˚ T , is the free product in the category

of *-monoids. We can analogously define an involution on the free product of two

unital *-algebras, and again the result is the free product in the category of unital

*-algebras. We then find that CpS ˚ T q – pCSq ˚ pCT q as unital *-algebras.

We shall denote by S8 the free *-monoid on countably many generators; that is, as

a monoid S8 is free on some countably-infinite generating set ttn, sn : n P Nu, and the

involution is determined by t˚n “ sn pn P Nq. For the rest of the text we shall simply

write t˚n in place of sn. We define BC to be the bicyclic monoid xp, q : pq “ ey. This

becomes a *-monoid when an involution is defined by p˚ “ q, and the corresponding

*-algebra CBC is infinite because δpδq “ δe, but δqδp “ δqp ‰ δe.

Let A be a *-algebra. If there exists an injective *-homomorphism from A into

some C*-algebra, then we say that A admits a faithful C*-representation. In this case,

A admits a norm such that the completion of A in this norm is a C*-algebra, and we

say that A admits a C*-completion. Our construction will be based on C*-completions

of *-algebras of the form CS, for S a *-monoid.

5.3. Free Products of *-algebras and Faithful States

In our main construction we shall want to take the free product of two unital *-

algebras admitting faithful C*-representations and know that this free product again

admits a faithful C*-representation. That this is true follows from a key folklore result

in the theory of free products of *-algebras. The purpose of this section is to outline

a proof of this result (Theorem 5.3.1 below).
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By a state on a unital *-algebra A we mean a linear functional µ : AÑ C satisfying

xa˚a, µy ě 0 pa P Aq and x1, µy “ 1. It can be shown that a state µ on a unital *-

algebra A is automatically *-linear, that is xa˚, µy “ xa, µy pa P Aq. We say that a

state µ is faithful if xa˚a, µy ą 0 pa P Azt0uq. A unital *-algebra with a faithful state

admits a faithful C*-representation via the GNS representation associated with the

state.

We can now state the main result of this section.

Theorem 5.3.1. Let A1 and A2 be unital *-algebras which admit faithful states.

Then their free product A1 ˚A2 also admits a faithful state, and hence it has a faithful

C*-representation.

This result is folklore, and can be deduced from material in [6]; indeed this is

where our argument originates. A more general result can be found in [12, Section 4].

Although the result is well known, we do not know of any source in the literature in

which the proof is explicitly given, and so we provide a proof in this section for the

convenience of the reader.

The free product of two unital *-algebras is best defined as another *-algebra

satisfying a certain universal property. However, in order to show that such a *-

algebra exists one must give an explicit construction of this object. This construction

is briefly outlined in the proof of Theorem 5.3.1 below (see, for example, (5.2)),

although we do not show that this object satisfies the universal property, which is

standard; in the proof we always work with the explicit construction, rather than the

universal property.

One may also define the free product in the category of unital C*-algebras, as

in [85, Definition 1.4.1]. However, it is not clear a priori that the algebraic free-

product of two unital pre-C*-algebras embeds into the C*-algebraic free product of

their completions, so we cannot simply appeal to this result in the main construction

of this chapter. Indeed, the special case in which both pre-C*-algebras are in fact

C*-algebras, as well as related questions, seems to have caused some confusion [1].
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This is in part our motivation for setting out the proof of Theorem 5.3.1 here. As

it happens, it can be shown using Theorem 5.3.1, and Lemma 5.4.2 given below,

that the algebraic free product of two unital pre-C*-algebras admits a faithful C*-

representation, and hence embeds into the C*-algebraic free product, although we

shall not give the details of the argument here.

The proof of Theorem 5.3.1 itself is not long, but relies heavily on some standard

constructions in the theory of free products (see, e.g., [85, Chapter 1]), which we shall

include in order to make the proof reasonably self-contained.

Proof of Theorem 5.3.1. We may suppose that A1 and A2 both have dimen-

sion at least 2 (because A ˚ C – A – C ˚ A). For j P t1, 2u, take a faithful state µj

on Aj, and let πj : Aj Ñ BpHjq be the GNS representation of Aj associated with µj,

where Hj is the underlying Hilbert space. Since µj is faithful, this representation

admits a separating unit vector ξj P Hj. Let H˝
j be the orthogonal complement of ξj

in Hj, and let A˝j “ kerµj, so that H˝
j and A˝j are closed subspaces of codimension 1

in Hj and Aj, respectively. (Note, however, that A˝j is not a subalgebra unless µj is

multiplicative.) The GNS construction implies that

(5.1) A˝j “ ta P Aj : πjpaq P H
˝
j u.

For m P N, let Ajpmq be the tensor product of m factors alternating between A˝1

and A˝2, beginning with the opposite index of j, and define Hjpmq analogously us-

ing H˝
1 and H˝

2 , so that

Ajpmq “ A˝
pj
b A˝j b ¨ ¨ ¨ b A

˝
ipj,mq

looooooooooooomooooooooooooon

m factors

and Hjpmq “ H˝
pj
bH˝

j b ¨ ¨ ¨ bH
˝
ipj,mq

loooooooooooooomoooooooooooooon

m factors

,

where

pj “

$

’

’

&

’

’

%

1 if j “ 2

2 if j “ 1

and ipj,mq “

$

’

’

&

’

’

%

j if m is even

pj if m is odd.
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We can then state the standard construction of the free product of A1 and A2 as

follows:

(5.2) A1 ˚ A2 “ C1‘
à

mPN
pA1pmq ‘ A2pmqq,

where ‘ denotes the direct sum in the category of vector spaces (so that elements

are sequences with only finitely many non-zero terms). We identify C1 and Ajpmq

(where j P t1, 2u and m P N) with their natural images inside A1 ˚ A2 and write P0

and Pj,m respectively for the canonical projections onto them. A key property of the

multiplication on A1 ˚ A2 is that

(5.3) ab “ ab b P Ajpm` nq pj P t1, 2u, m, n P N, a P Ajpmq, b P Aipj,mqpnqq.

(Note that the condition that b P Aipj,mqpnq ensures that the last tensor factor of a

and the first tensor factor of b come from distinct subspaces A˝k, so that ab b belongs

to Ajpm` nq, as stated.)

The free product A1 ˚ A2 has a standard *-represention on the Hilbert space

H “ CΩ‘
à

mPN
pH1pmq ‘H2pmqq,

where Ω is a chosen unit vector (conventionally called the vacuum vector), and ‘ de-

notes the direct sum in the category of Hilbert spaces (so that elements are sequences

whose terms are square-summable in norm); again we identify CΩ and Hjpmq (where

j P t1, 2u and m P N) with their natural images inside H and write Q0 and Qj,m for

the canonical projections onto them.

To define the above-mentioned *-representation of A1 ˚ A2 on H, we require a

pair of unitary operators Vj : Hj b Hpjq Ñ H, where j P t1, 2u and Hpjq denotes

the subspace CΩ ‘
À

mPNHjpmq of H. It suffices to say how Vj acts on elementary

tensors of the form x b y with x P Hj and y P Hpjq. In turn, we need only consider

the case where x belongs to one of the two direct summands Cξj and H˝
j of Hj and
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y to one of the summands CΩ and Hjpmq, m P N, of Hpjq. These cases are specified

by:

(1) Vjpξj b Ωq “ Ω;

(2) Vjpξj b yq “ y for y P Hjpmq;

(3) Vjpxb Ωq “ x for x P H˝
j “ H

pjp1q;

(4) Vjpxb yq “ xb y P H˝
j bHjpmq “ H

pjpm` 1q for x P H˝
j and y P Hjpmq.

We then obtain a unital *-homomorphism λj : Aj Ñ BpHq by the definition

λjpaq “ Vjpπjpaq b IHpjqqV
˚
j pa P Aj, j P t1, 2uq,

and finally the universal property of the free product implies that there is a unique

unital *-homomorphism π “ λ1˚λ2 : A1˚A2 Ñ BpHq such that π|Aj “ λj for j P t1, 2u.

We are now ready to embark on the actual proof of Theorem 5.3.1. Our aim is

to show that the vacuum vector Ω is separating for the *-representation π. Once we

have shown that, it follows that the map a ÞÑ xπpaqΩ,ΩyH , where x¨, ¨yH denotes the

inner product on H, is a faithful state on A1 ˚ A2 and that the *-representation π is

faithful.

Observe that by applying (5.1) together with the above definitions we may deduce

that, for j P t1, 2u and a P A˝j ,

πpaqΩ “ πjpaqξj P H
˝
j “ H

pjp1q,(5.4)

πpaqy “ πjpaqξj b y P Hpjpm` 1q pm P N, y P Hjpmqq.(5.5)

We then use these identities to prove that

(5.6) πpaqΩ “ π
pjpa1qξpj b πjpa2qξj b ¨ ¨ ¨ b πipj,mqpamqξipj,mq P Hjpmq

for j P t1, 2u, m P N and a “ a1 b ¨ ¨ ¨ b am P Ajpmq. The proof is by induction

on m, with the base case (m “ 1) already established by (5.4). Now let m ě 2,

and assume inductively that the result holds for m ´ 1. Equation (5.3) implies that
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a “ a1pa2 b ¨ ¨ ¨ b amq, so that

πpaqΩ “ πpa1qπpa2 b ¨ ¨ ¨ b amqΩ “ πpa1qpπjpa2qξj b ¨ ¨ ¨ b πippj,m´1qpamqξippj,m´1qq

“ π
pjpa1qξpj b πjpa2qξj b ¨ ¨ ¨ b πipj,mqpamqξipj,mq

by the multiplicativity of π, the fact that ippj,m´ 1q “ ipj,mq, the induction hypoth-

esis, and (5.5). Thus the induction continues.

Our next step is to show that, for each a P A1 ˚ A2,

(5.7) Q0pπpaqΩq “ πpP0aqΩ and Qj,mpπpaqΩq “ πpPj,maqΩ pj P t1, 2u, m P Nq.

Take M P N such that a “ P0a`
ř2
j“1

řM
m“1 Pj,ma. The linearity of π implies that

πpaqΩ “ πpP0aqΩ`
2
ÿ

j“1

M
ÿ

m“1

πpPj,maqΩ,

where πpP0aqΩ P CΩ because π is unital, while (5.6) shows that πpPj,maqΩ P Hjpmq

for each j and m. Hence (5.7) follows from the definitions of Q0 and Qj,m.

We can now verify that Ω is a separating vector for π. Suppose that πpaqΩ “ 0

for some a P A1 ˚ A2. We must prove that a “ 0, that is, P0a “ 0 and Pj,ma “ 0 for

each j P t1, 2u and m P N. The first of these identities is easy: taking α P C such that

P0a “ α1, we have

αΩ “ πpP0aqΩ “ Q0pπpaqΩq “ 0,

so that α “ 0 and therefore P0a “ 0. To establish the other identity, let j P t1, 2u

and m P N, and write

Pj,ma “
n
ÿ

k“1

a1,k b a2,k b ¨ ¨ ¨ b am,k,
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where n P N and ai,k P A˝
pj
for i odd and ai,k P A˝j for i even. Equations (5.7) and (5.6)

imply that

0 “ Qj,mpπpaqΩq “ πpPj,maqΩ(5.8)

“

n
ÿ

k“1

π
pjpa1,kqξpj b πjpa2,kqξj b ¨ ¨ ¨ b πipj,mqpam,kqξipj,mq

“ pπ
pj b πj b ¨ ¨ ¨ b πipj,mqqpPj,maqpξpj b ξj b ¨ ¨ ¨ b ξipj,mqq,

where π
pjbπjb¨ ¨ ¨bπipj,mq is the unique *-homomorphism from the m-fold alternating

tensor product A
pj b Aj b ¨ ¨ ¨ b Aipj,mq into BpH

pj bHj b ¨ ¨ ¨ bHipj,mqq such that

π
pj b πj b ¨ ¨ ¨ b πipj,mqpaq “ π

pjpa1q b πjpa2q b ¨ ¨ ¨ b πipj,mqpamq

for each a “ a1ba2b¨ ¨ ¨bam P ApjbAjb¨ ¨ ¨bAipj,mq. The vector ξpjbξjb¨ ¨ ¨bξipj,mq

is separating for this *-representation because ξ1 and ξ2 are separating for π1 and π2,

respectively, and therefore (5.8) implies that Pj,ma “ 0, as required. �

5.4. Applications of Theorem 5.3.1 to Some Examples

In this section we prove that the *-algebras important to the proof our main theorem

have faithful C*-completions.

Lemma 5.4.1. The following unital *-algebras admit faithful C*-representations:

(i) CpBCq,

(ii) CpS8q.

Proof. (i) Since BC is an inverse semigroup, this follows from [8, Theorem 2.3].

(ii) By [7, Theorem 3.4] CS2 admits a faithful C*-representation, where S2 denotes

the free monoid on two generators S2 “ xa, by, endowed with the involution determined

by a˚ “ b. There is a *-monomorphism S8 ãÑ S2 defined by tn ÞÑ apa˚qna pn P Nq

and this induces a *-monomorphism CS8 ãÑ CS2. The result follows. �
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Next we prove a lemma which is probably well known to experts in the theory

of C*-algebras, but, much like Theorem 5.3.1, does not seem to have an appropriate

reference available. We record a short proof.

Lemma 5.4.2. Any separable C*-algebra admits a faithful state.

Proof. Let A be a separable C*-algebra. Note that the unit ball of A1 with the

weak*-topology is a compact metric space, and hence also separable. It follows that

the set of states SpAq is weak*-separable. Taking tρn : n P Nu to be a dense subset

of SpAq, we then define ρ “
ř8

n“1 2´nρn, which is easily seen to be a faithful state on

A. �

Lemma 5.4.3. The unital *-algebra CpBC ˚ S8q admits a faithful C*-representat-

ion.

Proof. By Lemma 5.4.1, both CpBCq and CpS8q admit C*-completions. Since

both of these algebras have countable dimension, their C*-completions are separable,

and, as such, each admits a faithful state by Lemma 5.4.2, which we may then restrict

to obtain faithful states on CBC and CS8. By Theorem 5.3.1, pCBCq ˚ pCS8q –

CpBC ˚ S8q admits a faithful C*-representation. �

5.5. Proof of Theorem 5.1.2

The main idea of the proof is to embed CS8, which is finite, as a dense *-subalgebra

of some C*-completion of CpBC ˚ S8q, which will necessarily be infinite. In fact we

have the following:

Lemma 5.5.1. The *-algebra CS8 is stably finite.

Proof. As we remarked in the proof of Lemma 5.4.1, CS8 embeds into CS2. It is

also clear that, as an algebra, CS2 embeds into CF2, where F2 denotes the free group

on two generators. Hence CS8 embeds into vNpF2q, the group von Neumann algebra

of F2, which is stably finite since it is a C*-algebra with a faithful tracial state. It

follows that CS8 is stably finite as well. �
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We shall next define a notion of length for elements of BC ˚ S8. Indeed, each

u P pBC ˚ S8qzteu has a unique expression of the form w1w2 ¨ ¨ ¨wn, for some n P N

and some w1, . . . , wn P pBCzteuq Y ttj, t
˚
j : j P Nu, satisfying wi`1 P ttj, t

˚
j : j P Nu

whenever wi P BCzteu pi “ 1, . . . , n ´ 1q. We then define lenu “ n for this value

of n, and set len e “ 0. This also gives a definition of length for elements of S8 by

considering S8 as a submonoid of BC ˚ S8 in the natural way. For m P N0 we set

LmpBC ˚ S8q “ tu P BC ˚ S8 : lenu ď mu;

LmpS8q “ tu P S8 : lenu ď mu.

We now describe our embedding of CS8 into CpBC ˚ S8). By Lemma 5.4.3,

CpBC ˚ S8q has a C*-completion pA, } ¨ }q. Let γn “ pn}δtn}q´1 pn P Nq and define

elements an in CpBC ˚ S8q by an “ δp ` γnδtn pn P Nq, so that an Ñ δp as n Ñ

8. Using the universal property of S8 we may define a unital *-homomorphism

ϕ : CS8 Ñ CpBC ˚ S8q by setting ϕpδtnq “ an pn P Nq and extending to CS8. In

what follows, given a monoid S and s P S, δ1s will denote the linear functional on CS

defined by xδt, δ1sy “ 1s,t pt P Sq, where 1s,t is the Kronecker delta, as defined in (1.1).

Lemma 5.5.2. Let w P S8 with lenw “ m. Then

(i) ϕpδwq P spantδu : u P LmpBC ˚ S8qu;

(ii) for each y P LmpS8q we have

xϕpδyq, δ
1
wy ‰ 0 ô y “ w.

Proof. We proceed by induction on m. When m “ 0, w is forced to be e and

hence, as ϕ is unital, ϕpδeq “ δe, so that (i) is satisfied. In (ii), y is also equal to e, so

that (ii) is trivially satisfied as well.

Assume m ě 1 and that (i) and (ii) hold for all elements of Lm´1pS8q. We can

write w as w “ vx for some v P S8 with len v “ m´ 1 and some x P ttj, t˚j : j P Nu.
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First consider (i). By the induction hypothesis, we can write ϕpδvq “
ř

uPE αuδu,

for some finite set E Ă Lm´1pBC ˚ S8q and some scalars αu P C pu P Eq. Suppose

that x “ tj for some j P N. Then

ϕpδwq “ ϕpδvqϕpδtjq “

˜

ÿ

uPE

αuδu

¸

pδp ` γjδtjq “
ÿ

uPE

αuδup ` αuγjδutj ,

which belongs to spantδu : u P LmpBC ˚ S8qu because

len pupq ď len puq ` 1 ď m and len putjq “ len puq ` 1 ď m

for each u P Lm´1pBC ˚ S8q. The case x “ t˚j is established analogously.

Next consider (ii). Let y P LmpS8q. If len y ď m ´ 1 then, by (i), we know that

ϕpδyq P spantδu : u P Lm´1pBC ˚ S8qu Ă ker δ1w. Hence in this case y ‰ w and

xϕpδyq, δ
1
wy “ 0.

Now suppose instead that len y “ m, and write y “ uz for some u P Lm´1pS8q

and z P ttj, t
˚
j : j P Nu. By (i) we may write ϕpδuq “

ř

sPF βsδs for some finite

subset F Ă Lm´1pBC ˚ S8q and some scalars βs P C ps P F q, and we may assume

that v P F (possibly with βv “ 0). We prove the result in the case that z “ tj for

some j P N, with the argument for the case z “ t˚j being almost identical. We have

ϕpδzq “ δp ` γjδtj and it follows that

ϕpδyq “ ϕpδuqϕpδzq “
ÿ

sPF

βsδsp ` βsγjδstj .

Observe that sp ‰ w for each s P F . This is because we either have len pspq ă

m “ len pwq, or else sp ends in p when considered as a word over the alphabet

tp, p˚u Y ttj, t
˚
j : j P Nu, whereas w P S8. Moreover, given s P F , stj “ w “ vx if and

only if s “ v and tj “ x. Hence

xϕpδyq, δ
1
wy “ βvγj1tj ,x “ xϕpδuq, δ

1
vyγj1tj ,x.
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As γj ą 0, this implies that xϕpδyq, δ1wy ‰ 0 if and only if xϕpδuq, δ1vy ‰ 0 and tj “ x,

which, by the induction hypothesis, occurs if and only if u “ v and tj “ x. This final

statement is equivalent to y “ w. �

Corollary 5.5.3. The map ϕ is injective.

Proof. Assume towards a contradiction that
ř

uPF αuδu P kerϕ for some non-

empty finite set F Ă S8 and αu P Czt0u pu P F q. Take w P F of maximal length.

Then

0 “

C

ϕ

˜

ÿ

uPF

αuδu

¸

, δ1w

G

“
ÿ

uPF

αuxϕpδuq, δ
1
wy “ αwxϕpδwq, δ

1
wy,

where the final equality follows from Lemma 5.5.2(ii). That lemma also tells us that

xϕpδwq, δ
1
wy ‰ 0, forcing αw “ 0, a contradiction. �

We can now prove our main theorem.

Proof of Theorem 5.1.2. Recall that pA, } ¨ }q denotes a C*-completion of

CpBC ˚ S8q, which exists by Lemma 5.4.3, and A is infinite since δp, δq P A. Let

A0 Ă A be the image of ϕ. Corollary 5.5.3 implies that A0 – CS8, which is stably

finite by Lemma 5.5.1. Moreover, ϕpδtnq “ an Ñ δp as nÑ 8, so that δp P A0, and we

see also that δtn “ 1
γn
pan´ δpq P A0 pn P Nq. The elements δp and δtn pn P Nq generate

A as a C*-algebra, and since A0 is a C*-subalgebra containing them, we must have

A “ A0, which completes the proof. �
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