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Abstract

This thesis concerns the theory of Banach algebras, particularly those coming from
abstract harmonic analysis. The focus for much of the thesis is the theory of the ideals
of these algebras. In the final chapter we use semigroup algebras to solve an open
probelm in the theory of C*-algebras. Throughout the thesis we are interested in
the interplay between abstract algebra and analysis. Chapters 2, 4, and 5 are closely
based upon the articles [88], [89], and [56], respectively.

In Chapter 2 we study (algebraic) finite-generation of closed left ideals in Banach
algebras. Let G be a locally compact group. We prove that the augmentation ideal in
L'(G) is finitely-generated as a left ideal if and only if G is finite. We then investigate
weighted versions of this result, as well as a version for semigroup algebras. Weighted
measure algebras are also considered. We are motivated by a recent conjecture of
Dales and Zelazko, which states that a unital Banach algebra in which every maximal
left ideal is finitely-generated is necessarily finite-dimensional. We prove that this
conjecture holds for many of the algebras considered. Finally, we use the theory that
we have developed to construct some examples of commutative Banach algebras that
relate to a theorem of Gleason.

In Chapter 3 we turn our attention to topological finite-generation of closed left
ideals in Banach algebras. We define a Banach algebra to be topologically left Noe-
therian if every closed left ideal is topologically finitely-generated, and we seek infinite-
dimensional examples of such algebras. We show that, given a compact group G, the
group algebra L'(G) is topologically left Noetherian if and only if G is metrisable.
For a Banach space F satisying a certain condition we show that the Banach algebra
of approximable operators A(FE) is topologically left Noetherian if and only if E’ is

separable, whereas it is topologically right Noetherian if and only if E is separable.



We also define what it means for a dual Banach algebra to be weak™-topologically
left Noetherian, and give examples which satisfy and fail this condition. Along the
way, we give classifications of the weak*-closed left ideals in M (G), for G a compact
group, and in B(F), for E a reflexive Banach space with AP.

Chapter 4 looks at the Jacobson radical of the bidual of a Banach algebra. We
prove that the bidual of a Beurling algebra on Z, considered as a Banach algebra with
the first Arens product, can never be semisimple. We then show that rad (¢!(®2,Z)")
contains nilpotent elements of every index. Each of these results settles a question
of Dales and Lau. Finally we show that there exists a weight w on Z such that the
bidual of ¢1(Z,w) contains a radical element which is not nilpotent.

In Chapter 5 we move away from the theory of ideals and consider a question
about the notion of finiteness in C*-alegebras. We construct a unital pre-C*-algebra
Ag which is stably finite, in the sense that every left invertible square matrix over
Ay is right invertible, while the C*-completion of A, contains a non-unitary isometry,
and so it is infinite. This answers a question of Choi. The construction is based on

semigroup algebras.
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CHAPTER 1

Introduction

In this chapter we shall introduce some notation and basic concepts that we shall
use throughout the thesis. The material in this chapter is mostly well-known, and
none of it is original. The main purpose is to fix notation and to indicate appropriate
sources for background material. In some places, however, we do mention results
which are not required in the thesis, but which we feel might interest the reader and

offer context.

1.1. Frequently Used Notation and Definitions

We shall denote by Z the group of integers and by Z* the semigroup of non-negative
integers {0,1,2,...}. Similarly we write Z~ = {0, —1,—2,...}. Forus, N = {1,2,...}.
Of course, Q denotes the set of rational numbers, R the set of real numbers, and C
the set of complex numbers.

Let X be any set. We write the identity map X — X asidy. If X and Y are two
sets, and f: X — Y is any function we write im f for the image of f. Given a subset
S < X we write S¢ for the complement of S in X. We write yg for the indicator
function of S. Given z,y € X we define

1 ifr=y
(1.1) 1,, =

0 ifx#y.
We use this notation in place of the more common Kronecker delta in order to avoid
a conflict with our notation for Dirac measures given in (1.3); compare also (1.8).

Let G be a group. We write H < G to mean that H is a subgroup of G, and we
write [G : H] for the index of H in G. Let X =« G. We write X! = {z7! : z € X},
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and we say that X is symmetric if X = X~!. Now suppose that X is a generating set

for G. Then we define the word-length with respect to X of a group element v € G by
|u|x := min{r € N : there exist z1,...,z, € X U X! such that u = 2, - - - 2,.}.

When the generating set is clear, we shall usually write |u| in place of |u|x.

In this thesis linear spaces, and in particular algebras, will always be over C
unless otherwise stated. Let E be a linear space. Then, similarly to our notation for
subgroups, we write F' < F to indicate that F' is a linear subspace of F.

Let K be a locally compact Hausdorff space. We say that a subset of K is precom-
pact if it has compact closure. We write Cy(K) for the space of all complex-valued,
continuous functions on K which vanish at infinity, and C,(K) for the linear subspace
of Cy(K) of compactly-supported functions. We denote by C(K) the linear space of
all continuous functions from K to C. We write M (K) for the set of complex, regular
Borel measures on K, which becomes a Banach space under the total variation norm.
The dual space of Cy(K) may be identified isometrically with M (K'), with the duality

given by

(1.2) (o) = Lfdu (f € Col), pe M(E)).

We write A for the Borel og-algebra of K. Given a point x € K we denote the Dirac

measure at x by §,. That is

1 fxekF
(1.3) 0.(E) = (E € Bk).

0 ifx¢FE
Now let X be any topological space. Let I be a directed set, U a filter on I, and
(Za)aer a net in X which converges along U. We write lim,_,;, for the limit of (x,)
along U. In expressions such as lim,_,4 2, the symbol ‘c0’ is understood to represent
the Fréchet filter on I. We often write lim,_,» z, = lim, z,. Denoting the topology

on X by 7, we sometimes write lim, o, 2, if the topology is ambiguous. For instance,
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we frequently write things like lim, oz, when X is a dual Banach space in order to

indicate that the limit is taken in the weak™-topology.

1.2. Background From Banach Space Theory

1.2.1. Basic Definitions.
Let E be a Banach space. We use the notation Bg = {z € F : |z| < 1} for the closed
unit ball of E. We denote the dual space of E by E’, and the second dual, sometimes
termed the bidual, by E”. We often identify F with its image in £” under the canonical
embedding. We write (x, \) for the value of a functional A € E’ applied to = € E. If
the exact dual pairing needs clarifying, we sometimes write this as (x, \)(g, ). If H
is a Hilbert space, we usually write the inner product on H as (-, -)g. Given elements
x,y € H we write x | y for the statement {(z,y)y = 0.

Now take subsets X ¢ E and Y < E’. We write

Xt={DePl (e, )=0@xeX)}, Yi={zeE:{(x,))=0\eY)}.
It is well known that, for X and Y as above, we have
(1.4) (Y)*t = span”'Y, (X1), = spanX.

We denote the set of all bounded linear maps £ — E by B(E). If F' is another
Banach space, then we denote the set of bounded linear maps £ — F by B(E, F).
If T'e B(E,F) we write T": F" — E’ for the dual map, and T” = (7")’. We denote
by K(E, F) the set of compact operators E — F, and by F(FE, F) the set of finite-
rank operators £ — F. We define the approximable operators to be the closure of
F(E,F)in B(E, F), and denote this space by A(E, F'). Each of these spaces is a linear
subspace of B(E, F'), and A(E, F') and IC(E, F') are closed. We write K(F) = K(E, E)
et cetera. For any Banach space E each of F(F), A(E) and IC(E) is an ideal in B(E).

Given z € F and A € E’, the notation 2 ® A denotes the member of B(E) given by

T@Ay— Y, Hr (y€ E).
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We denote the projective tensor product of Banach spaces by & (see [76] for back-

ground on Banach space tensor products). We may identify the set
span{tr @ \:x € E,\ € E'}

with the algebraic tensor product EQE’, and therefore with a dense subspace of EQE'.
However, note that in general it is not possible to identify EQFE’ with the closure of
span{z ® A : x € E, A € E'} in B(E), which turns out to be A(E). In particular, in
equation (1.5) below the expression > ;- | x; ® ); is understood to represent a member
of EQF', not an operator. The subtle issue of representing elements of tensor products
of Banach spaces as operators is discussed in more detail in [65, Chapter 0, Section
b].

Let E be a reflexive Banach space. Then B(FE) may be identified isometrically
with (EQE’)’ via the formula

0 0
(1.5) Z T; ® i, T> = Z<T% Ai)(e, B);
(E®QE,B(E) =1

i=1

for T e B(E) and Y72 7; ® \; € EQE' [19, Proposition A.3.70]. In particular, if we
talk about the weak*-topology on B(E), we always mean the weak*-topology induced
by this duality.

Now let E be an arbitrary Banach space. The strong operator topology, or the SOP
topology for short, is the locally convex topology on B(FE) induced by the seminorms
B(E) — [0,00) given by

T~ T4

as x ranges through E. This topology is particularly important when £ is a Hilbert
space, and as such we shall mention it below when we discuss representation theory
in Subsection 1.3.4. However, we also consider this topology on B(F) for an arbitrary

Banach space E in Section 3.6.
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1.2.2. The Approximation Property.
A Banach space FE is said to have the approzrimation property, or simply AP, if,
whenever F' is another Banach space, we have A(F, F) = K(F, E). There is also an
equivalent formulation of the approximation property which has some useful general-
izations: a Banach space E has AP if and only if, for every compact subset K < F
and every € > 0, there exists T' € F(E) such that [Tz —z| < ¢ (x € K) [59, Theorem
3.4.32]. We say that F has the bounded approximation property, or BAP, if there
exists a constant C' > 0 such that the operator T can be chosen to have norm at most
C. Clearly BAP implies AP. Moreover, a reflexive Banach space with AP has BAP
[14, Theorem 3.7|. Many Banach spaces have the bounded approximation property:
for instance any Banach space with a Schauder basis [59, Theorem 4.1.33] has BAP,
and it can be deduced from this that any Hilbert space has BAP. The Banach space
B(H), for H an infinite dimensional Hilbert space, does not even have AP [82].
In Subsection 1.4.1 below we define approximate identities. In Chapter 3 we shall
be interested in Banach algebras of the form A(F), for some Banach space F, such
that A(F) contains either a left or a right approximate identity (or both). This is

closely related to AP and BAP, as we summarise in the following theorem:

THEOREM 1.2.1. Let E be a Banach space.

(i) The Banach algebra A(FE) has a bounded left approximate identity if and only
if E has BAP.
(ii) The Banach algebra A(E) has a bounded (two-sided) approzimate identity if
and only if E' has BAP.
(iii) If E has AP, then the Banach algebra A(E) has a (possibly unbounded) left

approximate identity.

PROOF. Part (i) follows from [30, Theorem 2.6(i)], (ii) follows from |39, Theorem
3.3|, and (iii) follows from [30, Theorem 2.5 (ii)]. O
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We do not know whether or not E’ having AP is enough to imply that A(FE) has
a right approximate identity.
We are also interested in AP in this thesis because of the following result. When
E is a Banach space with AP we have IC(E)' =~ EQE’ isometrically, with the duality
given by

oo o
i=1 (K(E), EQE')

i=1

for T e K(E), and Y%, 2; ® \; € EQE’ [19, A.3.71]. Compare with (1.5). Hence, if
E is also reflexive, we have B(F) = IC(E)".

1.3. Background From Abstract Harmonic Analysis

1.3.1. Locally Compact Groups.
A central area of study in this thesis will be the theory of locally compact groups. By
a topological group we mean a pair (G, 7), where G is a group and 7 is a Hausdorff

topology on G such that the maps
GxG—G, (st)— st

and

G—-G, s—s!

are continuous. By a locally compact group we mean a topological group, whose
topology is locally compact. For an introduction to topological and locally compact
groups see [45] or [34].

Every locally compact group G has a positive Borel measure m defined on it which

is invariant under left translation, in the sense that
m(sE)=m(E) (seG, Ee€ %Bg),

and also satisfies
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(1) m(U) > 0 for each non-empty, open set U < G

—~
[\
~

m(K) < o for each compact set K < G;

(3) m is outer regular, i.e.
m(E) =inf{m(U) : Ec U, U is open} (F € HBg);
(4) m is inner regular on open sets, i.e. for every open subset U of G we have
m(U) = sup{m(K) : K < U, K is compact}.

This measure is unique up to a positive scalar multiple and is called the left Haar
measure on G. In this thesis the left Haar measure on a locally compact group will
always be denoted by m. Sometimes we may abbreviate the phrase “left Haar measure”
to simply “Haar measure”. From now on, given p € [1, 0], we write L?(G) to mean
L?(G,m), and given f e L'(G) we usually write {, f(¢) dt in place of §, f(t) dm(t).
For a proof of the existence and uniqueness of Haar measure see either |18, Chapter
9] or [34, Section 2.2|. By (2) above, m(G) < c whenever G is compact. When this
is the case, we usually scale the Haar measure so that m(G) = 1.

Given t € G, the map E — m(Et), from %¢ to [0, 0], is easily seen to be another
left Haar measure on G so that, by uniqueness, there exists a positive scalar A(t) such
that

m(Et) = A(t)m(E) (te G, Ee€ Bg).

The function A is a continuous group homomorphism G — (0, c0) which is called the
modular function of G. We think of the modular function as measuring “how far”
the left Haar measure is from being invariant under right translation. A group for
which the modular function is identically equal to 1 is called unimodular. Compact
groups, discrete groups, and locally compact abelian groups are always unimodular.
The affine group of the real line is an example of a locally compact group which is

not unimodular |34, page 48|.
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Let GG be a locally compact group, and let f be an integrable function on GG. The

translation invariance of the left Haar measure on G implies that we have

Lf(st) dt:Lf(t) dt (seq).

Moreover, we shall use the following formulae throughout the text without reference;

they can be found in [19, Lemma 3.3.6]:
| soa= | s naea
G G

L Flts)dt = A(s™) L FBdt (se).

1.3.2. The Group Algebra and the Measure Algebra.
We now introduce the Banach algebras which will be of most interest to us in this
thesis. Let G be a locally compact group, and let f,g € L'(G). We define the

convolution of f and g by

(L.7) (f = 9)(s) = Lf(t)g(t‘ls) dt (s€G),

and it turns out that this again belongs to L!(G). In order to be totally rigorous, we
should point out that this function is only defined m-almost everywhere, and one can
check that the element of L1(G) that f = g defines does not depend on the functions
chosen to represent elements f and g of L'(G). It can then be shown that convolution
defines an algebra multiplication on L!(G), and that | f=g[l; < ||f|lllgll: (f,9 € L1 (G)).
Hence L!(G) is a Banach algebra, which is called the group algebra of G. Moreover,
the following formulae hold and we shall use them without reference throughout the

thesis:

(f = g)(s) = L F(st)g(HAET) dt = f st dt (e G).
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We can also define the convolution of two complex, regular Borel measures, using

the formula

(s v)(E) = (ux )(p (E)) (nveM(G), EeB),

where p: G x G — G denotes the multiplication map. Bearing in mind that M (G)

may be identified with the dual space of Cy(G), we obtain the following nice formula:

<MHW=LLNWWMMW)UG%@%wwM@»

In fact this formula gives an alternative way to define the convolution of two measures
belonging to M (G) [81].

By the Radon-Nikodym Theorem, we may identify L!(G) with the measures in
M (G) which are absolutely continuous with respect to Haar measure, and under this
identification the convolution of two elements of L!(G) regarded as measures coincides
with convolution as defined in (1.7). We shall usually not distinguish between L!(G)
and its image inside M(G). In fact L'(G) is a closed ideal in M(G), and we shall

freely use the following formulae without reference:
(e D) = | SE) ) (ue MG, F LG

(o) = [ HEDAE () (0= M©), 12 L1(G))

By a Banach *-algebra we mean a Banach algebra A which has an isometric

involution defined on it. Given a measure p € M(G) we define u* € M(G) by
pHE) = (BT (Ee Za).

The operation g — p* is an involution rendering M (G) a Banach *-algebra, and

L'(G) a *-subalgebra. Given f € Cy(G) we have

Lﬂmwszﬂwmw»



1.3. BACKGROUND FROM ABSTRACT HARMONIC ANALYSIS 10

Given f € LY(G), we find that f*(s) = f(s 1) A(s7!) (s € G). We also define the
notation f(s) = f(s7) (s € G).

1.3.3. Semigroup Algebras and Beurling Algebras.

Before we define Beurling algerbas we define weighted semigroup algebras.

DEFINITION 1.3.1. Let S be a semigroup. Then a weight on S is a function

w: S — [1,00) such that
w(uw) < w(u)w(v) (u,v e S).

In the case where S has an identity e, we insist that w(e) = 1. Moreover, when G is a
locally compact group, weights on G are always assumed to be continuous. A weight
w on a locally compact group G is said to be symmetric if w(u) = w(u™!) (u e G).

Given a semigroup S and a weight w on S, we define

(H(S,w) = {f 2S5 = C: | flw = D) 1f(Wlw(u) < OO}-

uesS

The set £1(S,w) is a Banach space under pointwise operations with the norm given
by || - |w, and a Banach algebra when multiplication is given by convolution, which is

defined for f,g e (1(S) by

(f*g)(u) =D f(s)g(t) (ueS).

st=u
By a weighted semigroup algebra, we shall mean a Banach algebra of this form. When
w is identically 1, we write £(S) in place of ¢'(S,w), and we call such algebras
semigroup algebras.
We denote by CS the dense subalgebra of £1(S) consisting of its finitely-supported
elements. In fact it is easily seen that CS is a dense subalgebra of every weighted

semigroup algebra on S. Given an element u € S we write §, for the function given
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1 ift=u
(1.8) 0u(t) = (te ).

0 otherwise
This does not conflict with the notation defined in (1.3), since S may be thought of as
a discrete topological space, and with this point of view the two definitions coincide.
We have CS = span{d, : u € S}, and d, = 0, = dyp (u,v € 5).
Now suppose that we have a locally compact group G and a weight w on G. Then

we define

L'(G,w) = {f e L'G) - | f]l = f (0 ew(t) dm(t) < oo},

and
M(Gw) = {u £ M(G): k. i= | w(t)dlnle) < oo}.

The sets L'(G,w) and M(G,w) are Banach algebras with respect to convolution
multiplication, and point-wise addition and scalar multiplication. Moreover, L!(G,w)
is a closed ideal of M (G, w). It is a Banach algebra of the form L'(G,w) that we refer
to as a Beurling algebra, whereas we refer to a Banach algebra of the form M (G,w) as
a weighted measure algebra. Note that Beurling algebras are occasionally referred to
as weighted group algebras. When the group G is discrete, both of these definitions

coincide with that of £!(G,w).

EXAMPLE 1.3.2. (i) The trivial weight w = 1 is always a weight on any
locally compact group G (or any semigroup), and in this case we recover the
group algebra L'(G).

(ii) Let G be a discrete group, and fix a generating set X. Then

u— (1 +ulx)®, G—[1,0),
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defines a weight on G for each o = 0. We call this weight a radial polynomial
weight of degree o.

(iii) With notation as in (ii), the map
wes ey G [1,0),

defines a weight for any ¢ > 1 and 0 < g < 1. We call this a radial exponential

weight with base ¢ and degree 5.

More generally, a weight on a finitely-generated group G is said to be radial if there
exists a finite generating set X such that |u|y = |v|x implies that w(u) = w(v) for
any u,v € G.

When the group G is discrete we usually prefer the notation £1(G, w) over L (G, w).
For a general locally compact group G and a weight w on G, we often write £1(G, w)
for the Beurling algebra associated with w and G with its discrete topology. Moreover,
the set of discrete measures belonging to M(G,w) may be identified with £}(G,w).
Letting M.(G,w) denote the continuous measures belonging to M(G,w), we find that
M.(G,w) is a closed ideal in M(G,w) and ¢'(G,w) a closed subalgebra, with

M(G,w) = M.(G,w) ® (G, w),

where @ denotes the direct sum of Banach spaces. In other words, we have a split

exact sequence of Banach algebras

0 — M.(G,w) — M(G) - (1(G,w) — 0.
In particular
(1.9) M(G,w)/M.(G,w) = (1(G,w).

(This follows straightforwardly from [19, Theorem 3.3.36].)
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Let GG be a locally compact group, and let w be a weight on G. We define
Co(G,1/w) ={f: G = C: flwe C(G)}
We define a norm || - |, , on Co(G,1/w) by
1 flleo, 0 == i?é?‘&' feCo(G,1jw).

w(s)

The Banach space M (G,w) may be identified isometrically with Cy(G, 1/w)’ via
o= | Fan (FeColG. 1), pe M(Gw).
G
Now consider a discrete group GG, and a weight w on G. Then we define

0] )

This is a Banach space which may be identified isometrically with ¢1(G,w)’ via

(G, 1jw) = {f: G — C:|flo,w :=sup

ueG

w(u)

.= 9w f(u) (gel’(G,w), fel®(G, 1 w)).

ueG

13

For non-discrete G, the space L (G, w)’ may also be identified with a certain weighted

L*-space, but we shall not use this in this thesis.

1.3.4. Representation Theory.

In what follows, G will be a locally compact group, and given a Hilbert space H we

denote the group of unitary operators H — H by U(H). We define a representation

of G to be a pair (m, H;), where H, is a Hilbert space, and 7: G — U(H,) is a group

homomorphism which is continuous with respect to the given topology on G and

the strong operator topology on U(H,) (many authors refer to this as a “continuous,

unitary representation”). A representation (m, H,) is said to be irreducible if it has no

non-trivial subrepresentations, .e. if there is no closed linear subspace E of H, such

that 7(s)E < F (s € G).
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Let (m, H,) and (o, H,) be two representations of G. We say that the two repre-
sentations are equivalent if there exists a surjective isometry T': H, — H, such that
o(s)oT =Tom(s) (s € G). It is easily checked that this notion of equivalence is an
equivalence relation. For each equivalence class of irreducible representations we pick
a distinguished member to represent the equivalence class, and we collect these repre-
sentatives together into a set that we denote by @, sometimes called the unitary dual
of G. Since we do not usually distinguish between representations that are equivalent,
we often treat G as if it were the collection of all irreducible representations of G,
although, of course, formally it is not. When G is abelian G may be identified with
the usual dual group of G consisting of the continuous group homomorphisms G — T
(see [72] for a detailed exposition of locally compact abelian groups and their duals).

Given a representation (m, H,), there is a bounded algebra homomorphism
' M(G) — B(H,)
such that

(1.10) & = | e mauo),

for every € M(G),&,n € H, (see |45, Theorem 22.3 (iii)]). We shall mostly be
interested in lifting 7 to L'(G) via ©’|11(). From now on we write 7 = 7’|,1(¢) in an
abuse of notation.

By the Gelfand—Raikov Theorem [45, Theorem 22.12], the irreducible representa-
tions of (G separate the points of G. An important fact about compact groups is that

all of their irreducible representations are finite-dimensional [45, Theorem 22.13].

1.3.5. The Fourier and Fourier—Stieltjes Algebras.
In this subsection, we shall introduce two more families of Banach algebras associated
with locally compact groups, namely the Fourier and Fourier—Stieltjes algebras. These

are commutative Banach algebras which capture representation-theoretic information
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about the underlying group. These algebras were first studied in this level of generality
by Eymard in [32]. A detailed account of these algebras will soon appear in [55].

Let G be a locally compact group. Given f € L'(G) define

Iflor = sup { I=(f)] : 7 € G}

It turns out that this defines a C*-norm on L'(G). We denote the completion of
LY (@) in the norm || - |+ by C*(G), the group C*-algebra of G (for further details
see [34, Section 7.1]). This C*-algebra has the property that every representation 7
of G extends from a *-representation of L'(G) to a *-representation of C*(G). We
continue to denote this extension by 7.

It follows from [45, Theorem 22.11| that the representations of G separate the
points of L(G) (even M(G)), and it follows from this fact, and the construction of
C*(@), that they also separate the points of C*(G).

Let (m, H,) be a representation of G. Given vectors &, € H, we define a function
Exm: G— C by

(E+nm)(s) = RSy (5€G).

We define the Fourier—Stieltjes algebra of G to be
B(G) :={£ *rn: (7, H,) is a representation of G, {,n € H,}.

It can be shown that this is an algebra under point-wise addition and multiplication
of functions. Moreover, every element of B((G) acts as a bounded linear functional on

C*(@) via the formula

(1.11) (€5 mex@). By = (e mu,  (f € CHG)).

It can be shown that every bounded linear functional of C*(G) arises in this way, so
that we may formally identify B(G) with C*(G)’. We define the norm on B(G) to

be the dual space norm inherited from this identification, and it turns out that, with
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this norm, B(G) becomes not only a Banach algebra, but a dual Banach algebra (as
defined in Subsection 1.4.5 below).

We define the Fourier algebra of G to be the closed ideal of B(G) given by

A(G) := C.(G) n B(G).

Many equivalent definitions of A(G) are available (see for example [32, Proposition
(3.4), Théoréme (3.10)]).

Every element s of the group G induces a character on A(G) via evaluation:

In this manner the character space of A(G) may be identified with G as a topological
space (see [32, Théoréme (3.34)|, or [77]). Since the evaluation maps clearly separate
the elements of the Fourier algebra, A(G) may be regarded as a Banach function
algebra on G. It is known that A(G) < Cy(G) |32, Proposition (3.7) 1°|.

When G is an abelian group, the Fourier algebra of G may be identified with
the group algebra of the dual group Ll(@), and likewise B(G) = M(@) For this
reason we often view the theory of the Fourier algebra (now for an arbitrary locally
compact group) as being “dual” to the theory of the group algebra. In fact, this can
be made precise using the language of Kac algebras [31]. To give a very basic example
illustrating this point, it is know that, given a locally compact group G, the group
algebra L!(@) is unital if and only if G is discrete [58, Theorem 31D|. Therefore we
might hope that A(G) should be unital if and only if G is compact, since compactness
is the dual notion to discreteness in the theory of locally compact abelian groups.
Indeed it is easily checked that this is true.

We shall make use of this heuristic a couple of times in this thesis, and sometimes
we are able to “dualise” a proof that works for the Fourier algebra to obtain a proof of
a theorem about the group algebra, and vice versa. See, for example, Theorem 2.3.5

and Theorem 2.4.1, or Proposition 3.3.1 and Theorem 3.3.5.
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1.4. Background From Banach Algebras

1.4.1. Approximate Identities.
Let A be a semi-topological algebra, that is an algebra with a topology which renders
the underlying vector space a topological vector space, and which makes the multi-
plication separately continuous. We say that a net (e,) in A is a left approzimate
identity for A if lim, e,a = a for all a € A, and a right approximate identity if instead
lim,, ae, = a for all a € A. We say that (e,) is an approzimate identity if it is both a
left and a right approximate identity.

Now assume that A is a Banach algebra. Then we say that a net (e,) < A is
a bounded approximate identity if it is an approximate identity and sup, |e.| < 0.
Bounded left and right approximate identities are defined analogously. It is known,
for example, that L!(G) always has a bounded approximate identity of bound 1 for
any locally compact group G [19, Lemma 3.3.22 (i)], as does any C*-algebra [19,
Lemma 3.2.20]. The former fact shall be important to us in this thesis.

The following result is often known as Cohen’s factorisation theorem.

THEOREM 1.4.1. Let A be a Banach algebra with a bounded approximate identity,
and let E be a Banach left A-module such that sSpan{ax : a € A, x € E} = E. Then

for every x € E there exist ae A and y € E such that x = ay.

PROOF. See [19, Theorem 2.9.24|, or [62, Theorem 5.2.2]. O

See |19, Section 2.9| for more information on approximate identities and factori-

sation results.

1.4.2. Unitisation.
Let A be a complex algebra. We define the unitisation of A (sometimes called the
conditional unitisation of A), denoted here by A*, as follows. If A is already unital

then we set A* = A, so suppose that A is non-unital. We set

A*=Clo A,
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as a vector space, where 1 is some formal symbol which will act as a unit. We view

A% as an algebra with multiplication given by the formula
(Al +a)(pl +0b) :=Apl + (pa+ Ab+ab) (A, peC, a,beA).

We find that A* is a unital algebra with identity element 1, and that A embeds into
A% as an ideal via a — 01 4+ a. From now on we shall always identify A with its image
in A*. When (A, | - |) is a normed algebra then A* also becomes a normed algebra,

with norm defined by
IAL+al ;=X\ + |a] (AeC, ac A).

If A is a Banach algebra, then A* is also.

1.4.3. Multiplier Algebras.
We now describe the so-called multiplier algebra of a Banach algebra A, which is an
object that is closely related to the extensions of A. In some ways it is analogous
to the concept of the automorphism group of a group in group theory, as we shall
explain below.

Let A be a Banach algebra. By a right multiplier on A we mean a linear map
R: A — A such that R(ab) = aR(b) (a,b e A). By a left multiplier on A we mean a
linear map L: A — A such that L(ab) = L(a)b (a,b € A). By a multiplier we mean a

pair (L, R), where L is a left multiplier and R is a right multiplier, such that
aL(b) = R(a)b (a,be A).

We say that (L, R) is a bounded multiplier if both L and R are bounded. We define
the multiplier algebra M(A) to be the set of bounded multipliers on A, and note that

it inherits the structure of a Banach algebra by regarding it as a closed subalgebra
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of B(A) @, B(A)P (again, see |19, Proposition 2.5.12(i)]). This algebra was origi-
nally defined by Johnson in [49], who was the first to systematically study multiplier
algebras.

The importance of the multiplier algebra lies in the fact that, whenever there is
another Banach algebra B such that A may be identified isomorphically with a closed
ideal of B, each element b € B defines a multiplier (L, R) on A, by setting L: a — ba
and R: a — ab (a € A). This induces a bounded homomorphism B — M(A). The
analogy with the automorphism group of a group may now be explained: if G is any
group and N a normal subgroup of GG, then there is a similar map from G to Aut(N)
defined by conjugation. In general the map B — M (A) may have a large kernel.
Hence, we introduce some further terminology which allows us to avoid trivialities.

Anideal I in A is said to be left faithful in A if xI = 0 implies that x = 0 for every
x € A. We define the term right faithful similarly, and I is said to be faithful if I is
both left and right faithful. We say that A is faithful if is a faithful ideal in itself. It
is routinely checked that any Banach algebra with an approximate identity is faithful,
so that in particular all group algebras are faithful. Also, for any Banach space FE,
any closed subalgebra of B(FE) containing the finite-rank operators is faithful. By [19,
Proposition 2.5.12(i)], if A is a faithful Banach algebra, then whenever (L, R) is a
multiplier, the maps L and R are automatically continuous, so that the boundedness
condition may be dropped in the definition of M (A).

Given a € A we may define the multiplication maps L., R,: A — A by
L,: x—ax, R,:xz—za (xeA).

When A is faithful it can be shown that A embeds algebraically into M(A) via a —
(Lo, Ry). When A has a bounded approximate identity this embedding has closed
range, and when A has a bounded approximate identity of bound 1 the embedding is

isometric.
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For faithful Banach algebras, the multiplier algebra is defined by the following uni-
versal property, which heuristically speaking says that M(A) is the “largest” Banach

algebra containing A as a faithful ideal.

THEOREM 1.4.2. Let A be a faithful Banach algebra. Then the multiplier algebra

of A is the unique Banach algebra M satisfying:

(i) there exists a bounded, injective homomorphism ag: A — M such that ag(A)
is a faithful ideal in M(A);

(ii) whenever there is a bounded, injective homomorphism 5: A — B, for some
Banach algebra B, such that 5(A) is a faithful ideal in B then there exists a

unique bounded monomorphism 0: B — M such that 6 o 3 = «y.

PROOF. The map «p in (i) can be taken to be the map a: — (L, R,). The fact

that M (A) satisfies (ii) follows from [13]. Verifying uniqueness is routine. O

This characterisation of the multiplier algebra is due to Busby [13], who defines an
analogue of the multiplier algebra, called a mazimal container, in a much more general,
category-theoretic setting. For example, in the category of groups the analogue of
being faithful is having trivial centre, and for such groups the maximal container of
a group G turns out to be its automorphism group. Busby goes on to show that
maximal containers play a central role in understanding extensions in the category.
Hence, in particular, given Banach algebras A and B, if A is faithful, the theory of
the extensions of A by B is intimately connected with M (A).

It is easily seen that, for any Banach algebra A, the pair (id,id4) defines a
multiplier on A, and that it is a multiplicative unit for M(A). In fact, for faithful
Banach algebras, the fact that M (A) is unital can be seen abstractly by using the
universal property of Theorem 1.4.2 and the fact that A is a faithful ideal in A*. This

leads to M (A) being often described as the “largest” unitisation of A.
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Let A be a faithful Banach algebra. We define the strict topology on M(A) to be

the locally convex topology induced by the seminorms M (A) — C given by
po—ap|  and  p—fpal  (a€ A).

Note that in [19] the strict topology is referred to as the strong operator topology. If
A has an approximate identity, then it is easily seen that A is dense in M(A) with
respect to the strict topology.

An important example for us is provided by the beautiful theorem of Wendel
which states that, for a locally compact group G, the multiplier algebra of L1(G)
may be identified isometrically with the measure algebra (see [87] or [19, Theorem
3.3.40]). Another key example is that, for any Banach space E, the multiplier algebras
of both A(F) and KC(E) may be identified isometrically with B(F) [62, 1.7.14]. As
a final example, we mention that, if K is any locally compact Hausdorff space, then
M (Cy(K)) may be identified with Cy(K), the space of bounded, continuous functions
on K [61, Example 3.1.3].

1.4.4. The Jacobson Radical.
Let A be an algebra, and take n € N. We say that a € A is nilpotent of index n if

a" =0, but a" ! # 0. Given a left ideal I of A and n € N, we write
I" = span{aias---a, : ai,...,a, € I}

for the ideal generated by n-fold products of elements of I, and we say that I is
nilpotent of index n if I™ = {0} but 1"~ = {0}.
Now let A be a unital Banach algebra. We say that a € A is quasi-nilpotent

"Hl/" = 0, and we denote the

if its spectrum is zero, or, equivalently, if lim, ., |a
set of quasi-nilpotent elements of A by Q(A). Every nilpotent element is also quasi-

nilpotent. We define the Jacobson radical of A, denoted by rad (A), to be the largest
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left ideal of A contained in Q(A), and it can be shown that
rad (A) = {ae A:bae Q(A) (be A)}.
In fact, rad (A) is a closed, two-sided ideal of A, and
rad (A) = {ae A:abe Q(A) (be A)}.

For a possibly non-unital Banach algebra A we define rad (A) := A n rad (A*). We
often abbreviate the phrase “Jacobson radical” to “radical”, and by a radical element
of A we mean an element of rad (A).

We say that A is semisimple if rad (A) = {0}. For example, any C*-algebra is
semisimple [19, Corollary 3.2.12]. For us, it is important to note that, for a locally
compact group G, the Banach algebras L' (G) and M (G) are semisimple [19, Corollary
3.3.35]. However, it seems to be an open question whether or not Beurling algebras
are always semisimple. It is known that they are semisimple in the case that the
underlying group is abelian, as well as in the case that the group is arbitrary but the
weight is symmetric [23, Theorem 7.13].

Many equivalent characterizations of rad (A) are available. We note a few of the
important ones for context, although we shall not use them in the thesis (for details

see [19, Section 1.5]).

THEOREM 1.4.3. Let A be a Banach algebra. Then the Jacobson radical rad (A)

1s equal to each of the following:

(1) the intersection of the mazximal modular left ideals of A;

(2) the intersection of the maximal modular right ideals of A;

(3) the set of elements of A that annihilate every (algebraically) simple left A-
module;

(4) the set of elements of A that annihilate every (algebraically) simple right
A-module. O
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1.4.5. Dual Banach Algebras.

A dual Banach algebra is a pair (A, X), where A is a Banach algebra and X is a
Banach space, such that X’ is isomorphic to A as a Banach space, and such that the
multiplication on A is separately continuous in the weak*-topology induced by X.
For example, every von Neumann algebra is a dual Banach algebra. Another class of
examples is given by B(E), for E a reflexive Banach space. In this case the predual
may be identified with EQFE’ as in (1.5). An important example for us will be the
measure algebra M (G) of a locally compact group G, with predual given by Cy(G)
as in (1.2). Similarly the Fourier-Stieltjes algebra B(G) is a dual Banach algebra,
with predual C*(G) as in (1.11). Finally, we remark that, given a Banach algebra
A, its bidual A” is a dual Banach algebra under either Arens product if and only if
A is Arens regular (Arens products and Arens regularity are defined in Subsection
1.4.6 below). These examples all appear in |74, Example 4.4.2|, except for B(G), but
it is routine to check that this is a dual Banach algebra. Another natural family of

examples is given below:

PROPOSITION 1.4.4. Let G be a locally compact group, and let w be a weight on

G. Then (M(G,w), Co(G,1/w)) is a dual Banach algebra.

PROOF. By considering compactly supported functions, which form a dense sub-

space of Cy(G, 1/w), we see that the formula

(Grpnvy = L f F(st) du(s) du(t) (f € ColG,1/w), ju,w € M(G,w))

continues to hold in the weighted setting. It follows that, given f, 4 and v as in that

formula, we have

(Fopnv) = L(f WO Au(t),  forep) = Lw Pt du()
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where

(f - 1)(s) = L ts)du(t)  and  (u- f)(s) = L F(st) dpu(t).

for s € G. If we can show that, for every f and pu, the function f - pu € Co(G, 1/w),
then it will follow that the map M(G,w) — C given by v — {(f,u = v) is equal to
the weak*-continuous map v — {f - p,v). It will then follow that the map v — p = v
is weak*-continuous. Similarly, if we can show that, for every f and pu, the function
- feCo(G,1/w), it will follow that multiplication on the right by a fixed element
is weak*-continuous, and we will have proven the proposition. We show only that
f e Co(G,1/w), the other case being very similar.

To this end, fix f € Cy(G,1/w), and p € M(G,w). We first show that (f - u)/w
is continuous. Let s € G and let ¢ > 0. Let F' be a compact subset of G' such
that SG\Fw(t)d]u\(t) < ¢ (which exists because pu is regular and |ul, < o). Since
w is continuous, so must f be. Hence f|p is uniformly continuous, so there exists a
compact neighbourhood V' of s such that supy |f(tu) — f(ts)| < € whenever u € V,
and we set C' = supy, w. For all u e V' we have
[ (tu)
w(t)

f(tu)
w(tu)

f(ts)
w(t)

w(t) dlpel(t)

L\F(f(tU) ~ f(ts)) du(t)‘ < L\F

<)
G\F

wlt) dlul(t) + jG\Fl

w(w)w(t) dul(t)

o)
G\F

< [ flloow(@(u) + w(s))e < 20 flloo, we-

w(s)w(t) d|ul(?)

We also have

[f(tu) — f(ts)
w(t)

< lptlosup | (tw) = £(t)] < e
€

L(f(tu) ~ f(ts)) dpt)

< [l sup
teF



1.4. BACKGROUND FROM BANACH ALGEBRAS 25

It follows that for all w € V we have

[(F - ) (w) = (F - w)(s)] < el +2C floo,0)-

Since € was arbitrary, we have shown that f-p is continuous, and hence so is (f - p)/w.
Next we show that (f-u)/w tends to zero at infinity. Let € > 0, let F' be a compact
subset of G such that SG\F (t)d|u|(t) < e, and let E be a compact subset of G such

that supg [ f(s)/w(s)| < e. Then for every s € G\(F~'E) we have

) _ [ sl 1/(t3)]
gL () f (#) dlpel®)
[ s !f
L\F Ll dlnlt) j ) dlul (2

< ”fOO,wJ w(t)d|p|(t) + | ] sup f(S)
G\F G\E

w(s)

< e(IF oo, + llpeles):

As e was arbitrary, it follows that f - e Cy(G, 1/w). A very similar argument shows
that p - f € Cy(G,1/w), and this completes the proof. O

The above proposition does not seem to be stated explicitly anywhere in the
literature.

We now give some general background on the topic of dual Banach algebras, al-
though we shall not explicitly use what follows in the thesis. Building on the work of
Young [91], Daws |26] showed that every dual Banach algebra has a weak*-continuous,
isometric isomorphism to a weak*-closed subalgebra of B(E), for some reflexive Ba-
nach space E. This result may be thought of as analogous to the famous characteri-
sation due to Sakai of von Neumann algebras as C*-algebras which are isometrically
dual Banach spaces. However, in contrast to the situation for von Neumann algebras,
the predual of a dual Banach algebra need not be unique. Indeed, consider any Ba-
nach space F which has at least two isomorphically distinct preduals (for example

(1) and consider it as a Banach algebra with zero multiplication. Then both preduals
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render E a dual Banach algebra. In particular, the weak™-topology on a dual Banach
algebra may not be unique. A detailed study of such phenomena for more natural
Banach algebras, such as £!(Z), has been undertaken: see [27, 28|.

The term “dual Banach algebra” was first defined in [73], although the concept
was studied before. Since that time dual Banach algebras have attracted a significant
amount of attention, particularly from the harmonic analysis community. One of the
most interesting aspects of the theory of dual Banach algebras, although we shall not
study it in this thesis, is Connes amenability. This is a certain cohomology condi-
tion on a dual Banach algebra which parallels the theory of amenability for ordinary
Banach algebras: specifically, a dual Banach algebra (A, X) is Connes amenable if
every weak*-continuous derivation from A to a normal dual module is inner. See, for
example, |73, 74]. One particularly striking result is that the measure algebra of a
locally compact group, M(G), is Connes-amenable if and only if G is amenable [75];
compare this with the fact that L'(G) is amenable if and only if G is amenable [50],
whereas it was shown in [21] that M (G) is amenable if and only if G is discrete and

amenable, in which case of course M(G) = L'(G).

1.4.6. Arens Products.
Next we describe Arens products, which give a way to make the bidual of a Banach al-
gebra A again into a Banach algebra by defining an algebra multiplication on A” with
the property that, when A is viewed as a subspace of A” under the canonical embed-
ding, the new multiplication restricted to A coincides with the original multiplication
on A. In fact there are two ways to define such a multiplication.

Arens (|2], [3]) introduced two products on A”, now denoted by []and <, rendering
it a Banach algebra. These are called the first and second Arens product respectively.

They are defined in three stages as follows: first we define the action of A on A’; then

we define - X and - ®, for A € A" and ® € A”; finally, this allows us to define [] and
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<. The exact formulae are:

A -a,by =\ ab), {a -\ by =\ ba)y,
(DN ay=(P,\a), N-Toay =T a-\),
(WO, \) = (U, & - ), (BB, N = (D, ) B,

for &, W e A" A € A';a,b € A (for more details see [19, Section 2.6]). Both Arens
products have the property that they agree with the original multiplication on A, when
A is identified with its image under the canonical embedding into A”. In this thesis,
unless we specify otherwise, whenever we talk about the bidual of a Banach algebra
we are implicitly considering it as a Banach algebra with the first Arens product.
The first Arens product has the property that multiplication by a fixed element on
the right is weak*-continuous, whereas the second Arens product has this property
on the left. In particular the following formulae hold, for ®, ¥ elements of A”, and

(aq), (bg) = A nets converging in the weak™*-topology to ® and ¥ respectively:
(1.12) W = lim lién anbg, OOV = lién lim a,bs.

In these formulae the limits are again taken in the weak*-topology. If [] = <, we say

that A is Arens regular, and if the other extreme occurs, namely that
{PeA": PV = POV (Pe A")} = A

and

(Bed Vb = VOd (Ve A")} = A,

we say that A is strongly Arens irregular. Both of these extremes may occur for Banach
algebras of the type considered in Chapter 4, namely those of the form ¢1(Z,w), as
may intermediate cases (see |23, Theorem 8.11] and |23, Example 9.7]).

Most of our discussion of Arens products will take place in Chapter 4, where we

shall consider the second duals of Beurling algebras. However, In Chapter 3 we shall
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make use of the following result, which also provides a nice example where the Arens

products coincide with something familiar.

LEMMA 1.4.5. Let E be a reflexive Banach space with the approximation property.
Then K(E)" = B(E) and both the Arens products coincide with the usual composition

of operators in B(E). In particular, IC(E) is Arens regular.

PROOF. As we mentioned in Subsection 1.2.2, when F is reflexive with AP IC(E)”
may be identified with B(E), with the dualities given by (1.5) and (1.6). As we noted
at the beginning of Subsection 1.4.5, B(F) is a dual Banach algebra whenever E is re-
flexive. Hence, in particular composition of operators is separately weak™-continuous.
It now follows from (1.12) that both Arens products coincide with composition of

operators. O

In fact it follows from [91, Theorem 3| that IC(E) is Arens regular if and only if E
is reflexive, but without AP we do not know whether IC(E)” is isomorphic to B(E).
See also [19, Theorem 2.6.23].

Let A be a Banach algebra. An element &y € A” is called a mized identity if it is a
right identity for (A”,[J) and a left identity for (A", <). By [19, Proposition 2.9.16],

A” has a mixed identity if and only if A has a bounded approximate identity.



CHAPTER 2

Finitely Generated Left Ideals in Banach Algebras on Groups

and Semigroups

2.1. Introduction

This chapter is concerned with finitely-generated ideals in certain Banach algebras,
and is based on the paper [88|. In this thesis we always understand the phrase

“finitely-generated” in the following sense:

DEFINITION 2.1.1. Let A be an algebra and let I be a left ideal in A. We say
that [ is finitely-generated if there exist n € N and xy,...,2, € [ such that [ =

APy + -+ Al

Note that when this definition is applied to topological algebras we do not take
the closure on the right-hand side. In the next chapter we shall study topologically
finitely-generated ideals in Banach algebras (defined there). If there is ever danger of
confusion we may occasionally write “algebraically finitely-generated” to mean finitely-
generated.

The Banach algebras of most interest to us will be those which were defined in
Subsections 1.3.2 and 1.3.3 of the introduction. Moreover, we shall mostly focus on
the so-called augmentation ideals of these algebras, which we define now.

Let S be a semigroup, and take w to be a weight on S. We define the augmentation

ideal of £1(S,w) to be

048, w) = {f e L' (S,w): Y flu) = o} .

ues

29
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This is the kernel of the augmentation character, which is the map given by

f’_’Zf(u)7 EI(S,M)HC.

uesS
The augmentation ideal is a two-sided ideal of codimension one, and it has analogues
in the Beurling algebras and the weighted measure algebras of a locally compact group

G, also referred to as the augmentation ideals of those algebras:

L(G,w) = {f e L'(G,w): f fdm = O} ;
G
Mo(G,w) = {pe M(G,w): p(G) = 0}
There are also corresponding augmentation characters, given by
fro | fOamie), L'Gw)
G

and

p— (@), MG w)—C,

respectively. Finally, for a semigroup S, we define
CoS = £§(S) n CS.
One of the central themes of this chapter will be the following question:

QUESTION 2.1.2. Which of the Banach algebras mentioned above have the prop-
erty that the underlying group or semigroup is finite whenever the augmentation ideal

is finitely-generated?

We now give this question some context. In 1974 Sinclair and Tullo [79] proved
that a left Noetherian Banach algebra, by which we mean a Banach algebra in which all
the left ideals are finitely-generated in the sense of Definition 2.1.1, is necessarily finite
dimensional. In 2012 Dales and Zelazko [25] conjectured the following strengthening

of Sinclair and Tullo’s result:
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CONJECTURE 2.1.3. Let A be a unital Banach algebra in which every maximal

left ideal is finitely-generated. Then A is finite dimensional.

It is this conjecture that motivates the inquiries of this chapter. The conjecture is
known to be true in the commutative case by a theorem of Ferreira and Tomassini [33],
and Dales and Zelazko presented a generalization of this result in their paper [25].
The conjecture is also known to be true for C*-algebras [11], and for B(E) for many
Banach spaces E [22]. For instance the conjecture is known to be true when E is a
Banach space which is complemented in its bidual and has a Schauder basis, or when
E = ¢y(I), for I an arbitrary non-empty index set. Moreover, in Corollary 2.2.7 below
we show that the conjecture holds for B(E) whenever E is a reflexive Banach space.
However, the conjecture remains open for an arbitrary Banach space E.

We are interested in the conjecture for the Banach algebras arising in harmonic
analysis. Our approach is to note that an affirmative answer to Question 2.1.2 for
some class of Banach algebras implies that the DalesZelazko Conjecture holds for
that class. As the DalesZelazko conjecture is about unital Banach algebras, all the
discrete semigroups that we consider will be monoids, in order to ensure that we are
in this setting (note, however, that £!(S) can be unital without S being a monoid; see
for instance [24, Example 10.15]). However, in Section 2.3 we do prove some results
about L'(G,w) for a locally compact group G and a weight w, an algebra which of
course is unital only when G is discrete

We now discuss our main results. Full definitions of the terminology used will be
given in the body of the chapter. We begin with the following answer to Question

2.1.2 for group algebras:

COROLLARY 2.1.4. Let G be a locally compact group. Then L{(G) is finitely-

generated if and only if G is finite.
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In particular the Dales—Zelazko conjecture holds for all group algebras. This result
follows from Theorems 2.3.2 and 2.3.5, which establish more general results. In partic-
ular, Theorem 2.3.5 states that My(G) is finitely-generated if and only if G is compact
and Theorem 2.3.2 states that, for non-discrete G, L'(G) has no finitely-generated,
closed, maximal left ideals at all. In Section 2.4 we observe that the proofs of these
latter results “dualise” to give analogous results about the Fourier and Fourier-Stieltjes
algebras (Theorem 2.4.1 and Theorem 2.4.3).

The focus of Section 2.5 is semigroup algebras, and our main result is the following

THEOREM 2.1.5. Let M be a monoid. Then (5(M) is finitely-generated if and only
if M is pseudo-finite.

Here, “pseudo-finite” is a term defined in Section 2.5 which we deem too technical to
describe here. For groups (and indeed for weakly right cancellative monoids) pseudo-
finiteness coincides with being finite in cardinality, whence the name.

We say that a sequence (7,) < [1,00) is tail-preserving if, for each sequence of

complex numbers (z,,), we have >, | 7, Zjozn 1 xj’ < o whenever > 7, |z,| < 0.

This notion is explored in Section 2.6. In Section 2.7 we prove the following theorem:

THEOREM 2.1.6. Let G be an infinite, finitely-generated group, with finite, sym-
metric generating set X. Let w be a radial weight on G with respect to X, and write
7, for the value that w takes on S,. Then (}(G,w) is finitely-generated if and only if

(Tn) is tail-preserving.

Here S,, denotes the set of group elements of word-length exactly n with respect
to the fixed generating set X. This implies an affirmative answer to Question 2.1.2
for many weighted group algebras, but also provides examples where the answer is

negative:

COROLLARY 2.1.7. Let G be a finitely-generated, discrete group, and let w be a

weight on G.
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(1) If w is either a radial polynomial weight, or a radial exponential weight of

degree strictly less than 1, then (}(G,w) is finitely-generated only if G is
finite.

(ii) Ifw is a radial exponential weight of degree equal to 1, then ¢} (G, w) is finitely-

generated.

The proof of this corollary is given in Section 2.7. Finally, in Section 2.8, as an
application of the theory developed elsewhere in the chapter, we construct weights
wy and wy on ZT and Z respectively for which the Banach algebras ¢1(Z",w;) and
(YNZ,ws) fail to satisfy a converse to Gleason’s Theorem on analytic structure (The-

orem 2.8.1). We believe that these examples illustrate new phenomena.

2.2. Preliminary Results

In this section we prove some results about finitely-generated left ideals in arbitrary

Banach algebras.

LEMMA 2.2.1. Let A be a Banach algebra, let I be a closed left ideal in A, and
let E be a dense subset of I. Suppose that I is finitely-generated. Then I is finitely-

generated by elements of E.

PROOF. Suppose that I = Afx; + --- + Afz,, where n € N and z4,...,2, € 1.
Define a map 7T : (A*)" — I by

T:(ay,...,a,) — a1x1 + - + ayTp.

Then T is a bounded linear surjection, and, since the surjections in B((A*)", I) form
an open set [80, Lemma 15.3], there exists ¢ > 0 such that S € B((A*)", I) is surjective

whenever |T'— S| < e. Take y1,...,y, € F with

lys — 5| <e/m (i=1,...,n).



2.2. PRELIMINARY RESULTS 34

Then we see that the map (A%)" — I defined by
(a1,...,a,) = a1y + - + @Yy

is within € of T" in norm, and hence it is surjective, which implies the result. O

LEMMA 2.2.2. Let X be a Banach space, with dense linear subspace E, and let Y

be a closed linear subspace of X of codimension one. Then E NY 1is dense in'Y .

PROOF. Since Y is a closed and codimension one subspace, Y = ker ¢ for some
non-zero bounded linear functional ¢. Since Y is proper and closed, E is not contained
in Y. Hence there exists zo € F such that ¢(xy) = 1.

Now let y € Y, and take ¢ > 0. Then there exists € F with |y —z| <e. Set z =
x — p(x)xo. Then p(z) = 0, so that 2 € EnY. Note that |p(z)| = |o(y — )| < ellp],

and hence [z — z| = [o(2)||zo] < elgll]zof, so that [y — 2| < & (1 + [gf |o). Thus

EnY =Y. U

LEMMA 2.2.3. Let A be a Banach algebra, and let B be a dense left ideal in A.

Let I be a closed, maximal left ideal. Then B n I is dense in I.

PROOF. As [ is a closed, maximal left ideal and B is dense in A, B is not contained
in I, so that we may choose by € B\I. Consider the left ideal Aby + I of A. As I is
maximal, either Aby + 1 = I or Aby + [ = A.

In the first case, we see that aby € I for every a € A, so that Cby + I is a left
ideal strictly containing I. This forces Cby + I = A, so that I has codimension one.
Therefore, in this case, the result follows from Lemma 2.2.2.

Hence we suppose that Aby+1 = A. DefineamapT : A — A/I by T : a+— aby+1.
Then T is a bounded linear surjection between Banach spaces, so that, by the open
mapping theorem, there exists a constant C' > 0 such that, for every y € A/I, there
exists x € A with |z|| < C|y| and Tz = y.

Let a € I and € > 0 be arbitrary. There exists b € B with ||a—b|| < €. It follows that

1b+I]ar < e, s0we can find ag € A with |ag| < Ce and T'ag = agbo +1 = b+ I. Let
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¢ =b—apby. Then c € B I, because B is a left ideal, and [|b — ¢|| = |agbo| < Celbo].

Hence [|a — ¢| < e(1 + C|by|). As a and e were arbitrary, the result follows. O

COROLLARY 2.2.4. Let A be a Banach algebra with a dense, proper left ideal.

Then:

(i) A has no finitely-generated, closed, mazximal left ideals;

(ii) A has no finitely-generated, closed left ideals of finite codimension.

PROOF. (i) Assume towards contradiction that I is a finitely-generated, closed,
maximal left ideal in A. The algebra A has a proper, dense left ideal B. Then, by
Lemma 2.2.3, B n [ is dense in I, so that, by Lemma 2.2.1, we can find a finite set of
generators for I from within B. But then, as B is a left ideal, this forces I < B, and
hence I = B by the maximality of I. But [ is closed, whereas B is dense, and both

are proper, so we have arrived at a contradiction.

(ii) Let I be a proper, closed left ideal of finite codimension. Then [ is contained
in some closed maximal left ideal M. We may write M = I @ F, as linear spaces, for
some finite-dimensional space EF < A. If I were finitely-generated, then the generators
together with a basis for £ would give a finite generating set for M, contradicting (i).

Hence I cannot be finitely-generated. O

We note that the above corollary is of limited use since its hypothesis cannot be
satisfied in a unital Banach algebra. However, in the non-unital setting it is quite
effective, and we shall make use of it in Section 2.3 and Section 2.4. An example
of a Banach algebra satisfying the hypothesis of Corollary 2.2.4 coming from outside
harmonic analysis is the algebra of approximable operators on an infinite-dimensional
Banach space.

We now turn to a result about dual Banach algebras.

PROPOSITION 2.2.5. Let A be a unital dual Banach algebra. Then every |-|-closed,

finitely-generated left ideal in A is weak*-closed.
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PROOF. Let X be the predual of A, and let I be a closed, finitely-generated left
ideal in A. Write

I =Axy + -+ Az,

for some n € N, and xy,...,x, € I. Define a linear map
S A" > A
by
S:i(ay, ... a,) — a1y + -+ + apT,.

As multiplication in A is separately weak*-continuous, S is a weak*-continuous linear
map, and hence S = T* for some bounded linear map 7" : X — X". We know that
imS = [ is closed, implying that im T is closed, and so we see that [ = im .S is

weak*-closed, as required. O

LEMMA 2.2.6. Let A be a unital dual Banach algebra with a proper weak*-dense

left ideal. Then A has a maximal left ideal which is not finitely-generated.

PROOF. Let B be a proper, weak*-dense left ideal in A. Since A is unital, B is
contained in some maximal left ideal I of A, which is |- |-closed. Since I contains B it
is also weak*-dense. If I were finitely-generated then, by Proposition 2.2.5, it would

be weak*-closed, forcing I = A, which contradicts I being a maximal left ideal. [

We note the following corollary of Lemma 2.2.6 here. The result was already

known in the case that E has a Schauder basis by [22, Theorem 1.4(i)].

COROLLARY 2.2.7. The family of Banach algebras B(E), for E a reflexive Banach

space, satisfy the Dales-Zelazko conjecture.

PROOF. Since E is reflexive, B(E) is a dual Banach algebra. If E is infinite-

dimensional, then F(FE) is a proper ideal. Moreover, it is easily checked that F(FE), =
{0}, implying that F(E) is weak*-dense in B(FE). Hence, by Lemma 2.2.6, B(F) has a
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maximal left ideal which is not finitely-generated whenever it is infinite-dimensional.

O

2.3. The Case of a Non-Discrete Locally Compact Group

In this section, we shall consider Question 2.1.2 for L}(G,w) and M (G, w), where G is
a non-discrete, locally compact group and w is a weight on G. The first result implies

that, if L'(G) < C(G), then G is discrete.

LEMMA 2.3.1. Let G be a locally compact group. Suppose that, for every precom-
pact, open subset A of G, the function x4 is equal to a continuous function almost

everywhere. Then G s discrete.

PROOF. Assume to the contrary that G is not discrete. Then by [20, Corollary
4.4.4], or [67, Theorem 1|, G cannot be extremely disconnected, so that there are
disjoint open sets A and B and zy € G such that zy € A n B. By intersecting with a
precompact open neighbourhood of zy, we may further assume that A is precompact,
and thus of finite measure.

Consider the function h = x4 € L'(G). Then, by hypothesis, there is a continuous
function f and a measurable function g such that supp g is a Haar-null set, with the
property that h = f + g. In particular, supp ¢ must have empty interior, so, for any
open neighbourhood U of xg, we can choose xyy € U n A such that z;; ¢ supp g. Then
(zy) is a net contained in A\supp g converging to xy. Similarly, we may find a net (yy)
contained in B\supp g converging to zo. Then f(zy) = h(zy) = 1 for all U, whereas
f(yv) = h(yy) = 0 for all U. As both nets have the same limit, this contradicts the

continuity of f. O

THEOREM 2.3.2. Let G be a non-discrete, locally compact group, and let w be a
weight on G. Then LY(G,w) has no finitely-generated, closed, mazximal left ideals, and

no finitely-generated, closed left ideals of finite codimension.
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PROOF. Let J = LY (G, w) = C.(G) + C.(G) be the left ideal of L'(G,w) generated

by C.(G). By [19, Theorem 3.3.13 (i)], every element of J is continuous, so that, by
the previous lemma, J is proper, and of course it is also dense. The result now follows

from Corollary 2.2.4. O

When G is a compact group, L?(G) is a Banach algebra under convolution. A
trivial modification of the previous argument shows that, when G is infinite and
compact, L*(G) has no closed, finitely-generated maximal left ideals.

We now turn to the measure algebra. We shall exploit the fact that it is a dual
Banach algebra, and make frequent use of (1.4). In particular we shall make use of
the following characterisation of the weak*-closed left ideals of a weighted measure
algebra. Analogous characterisations exist for the weak*-closed right and two-sided

ideals.

LEMMA 2.3.3. Let G be a locally compact group, and let w be a weight on G. Then
there is a bijective correspondence between the weak*-closed left ideals in M(G,w)
and the norm-closed subspaces of Co(G,1/w) invariant under left translation. This

correspondence is given by

E — E*,

for E a closed subspace of Co(G,1/w) invariant under left translation.

PROOF. Let E be a closed subspace of Cy(G, 1/w), invariant under left translation.
That Et is weak*-closed is clear. We show that it is a left ideal. Let p € E+. Then

for all f e E and y € G we have

(2.1 | #0000 = [ 1026, @) —0.

Hence 6, #p € E* for all y € G. That E* is a left ideal now follows from weak*-density
of the discrete measures in M(G,w).
Now suppose that I is a weak*-closed left ideal in M (G,w). Set E = I,. Then,

by (1.4), B+ = I. The linear subspace E is clearly closed, and, for y € G,pe I
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and f € Cy(G,1/w), we have d, = u € I, so that, by (2.1), 6, * f € E. Hence E is
left-translation-invariant.

We have shown that the correspondence is well-defined and surjective. To see that

it is injective, use (1.4). O

LEMMA 2.34. Let G be a locally compact group. Then My(G) is weak*-closed if

and only if G is compact.

PROOF. If G is compact, then My(G) = {constant functions}*, which is weak*-
closed.

Assume towards a contradiction that My(G) is weak*-closed, but that G is not
compact. By Lemma 2.3.3, E' = My(G), is invariant under left translation, and using
the formula E' =~ M(G)/E+ = M(G)/My(G) we see that E has dimension one. So
there exists f € Cy(G) of norm 1 such that £ = spanf. There exists xg € G such that
|f(zo)] = 1. Let K be a compact subset of G such that |f(z)| < 1/2 for all x € G\K.
Then Kzy' U zoK ! is still compact, so we may choose y € G not belonging to this
set, so that in particular yzg,y 'zo ¢ K. Then there exists A € C\{0} such that
oy * [ = Af. Hence

| f(yzo)| = Al f(zo)| = [A] < 1/2,
whereas
L= [f(zo)] = [flyy~"wo)| = NI (y~"wo)| < 1/2-1/2 = 1/4.
This contradiction completes the proof. O
The next theorem characterises when My(G) is finitely-generated. In particular

Question 2.1.2 has a negative answer for the measure algebra.

THEOREM 2.3.5. Let G be a locally compact group. Then My(G) is finitely-gene-

rated as a left ideal if and only if G is compact.
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PRrooOF. If G is compact, and m denotes the normalised Haar measure on GG, then

m € My(G), and it is easily seen, by direct computation, that

pxm = po(u)m  (ne M(G)).

Hence, in particular, m is a right-annihilator of the augmentation ideal, so that, for

every u € My(G), we have
o (0e —m) = pxde —0=p.

Noting that §. — m € My(G), we see that it is an identity element for My(G), so that
in particular My(G) is finitely-generated.
Suppose that My(G) is finitely-generated. Then, by Proposition 2.2.5, My(G) is

weak*-closed, implying that G is compact by Lemma 2.3.4. 0

We do not know of a weighted version of this theorem, but when G is discrete
M(G,w) = (}(G,w), and this case will be the focus of Section 2.7, where it seems
a very different approach is required as weak*-closure of the augmentation ideal no
longer characterises finiteness of the underlying discrete group, and in particular it
can happen that £}(G,w) is weak*-closed, but not finitely-generated.

Note that we have now proven Corollary 2.1.4:

PROOF OF COROLLARY 2.1.4. By Theorem 2.3.2, it is enough to consider the

discrete case, which follows from Theorem 2.3.5. O

We now prove the DalesZelazko conjecture for weighted measure algebras on non-
discrete groups. In fact we give two proofs. The first exploits the fact that weighted
measure algebras are dual Banach algebras, and does not rely on Lemma 2.3.6 below.
The second is a good warm up for the approach taken in Section 2.5 and Section 2.7.
We have been unable to fully resolve the discrete version of the conjecture, but again

this is addressed in Section 2.7.
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LEMMA 2.3.6. Let G be a discrete group, and w a weight on G. Suppose that

(3G, w) is finitely-generated as a left ideal. Then G is finitely-generated.

PROOF. Suppose {}(G,w) is generated by hy, ..., h, € {}(G,w). By Lemma 2.2.1
we may assume each h; is finitely-supported. Let H be the subgroup of G generated
by |J supp h;. We show that H = G. Let g € {'(G,w). Then, for each i € {1,...,n},

i=1

(2.2) g = 3 S gh) = Yats) S halt) = 0,

ueH ueH st=u seG tes—1H
where the final equality holds because either s ¢ H, in which case s™'H is disjoint
from supp h;, or else sT'H = H > supp h;, in which case h; € £}(G,w) implies that
e hi(t) = 0. Since the functions h; generate (§(G,w) it follows that Y, _,; f(u) =0

for every f € (}(G,w). This clearly forces H = G, as claimed. O

THEOREM 2.3.7. The Dales—Zelazko conjecture holds for the algebra M(G,w),

whenever G is a non-discrete locally compact group, and w is a weight on G.

PROOF 1. Proposition 1.4.4 implies that M (G, w) is a unital dual Banach algebra,
and, since G is non-discrete, L!(G,w) is a proper, weak*-dense ideal in M (G, w). The
conjecture now follows from Lemma 2.2.6. 0J

PROOF 2. By (1.9) ¢!(G,w) is the quotient of M(G,w) by the closed ideal con-
sisting of the continuous measures belonging to M (G,w). As G is non-discrete, it is
uncountable, and hence, by Lemma 2.3.6, £}(G,w) is not finitely-generated as a left

ideal. Taking the preimage of this ideal under the quotient map gives a codimension

1 ideal of M(G,w), and this ideal is not finitely-generated as a left ideal. O

2.4. Interlude on the Fourier Algebra

In this section we prove analogues of Corollary 2.1.4 and Theorem 2.3.5 for the Fourier

and Fourier-Stieltjes algebras. We define ideals

By(G) :={f € B(G) : f(e) = 0}
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and
Ao(G) :={f € A(G) : f(e) =0}.

These are the analogues of the augmentation ideal for A(G) and B(G). (Beware
that this conflicts with another common notation, where authors define By(G) =
Co(G) n B(G)). Our main results of this section are Theorem 2.4.3(ii), which says
that Ag(G) is finitely-generated if and only if G is finite, and Theorem 2.4.1, which
says that By(G) is finitely-generated if and only if G is discrete. The proof of Theorem
2.4.1 may be thought of, heuristically, as “dual” to the proof of Theorem 2.3.5; likewise
the proof of Theorem 2.4.3(ii) is “dual” to that of Corollary 2.1.4.

THEOREM 2.4.1. Let G be a locally compact group. Then Bo(G) is finitely-gener-

ated if and only if G is discrete.

PROOF. If G is discrete then, by (the easy direction of) Host’s idempotent theorem
[47], we have xg\(e; € B(G), and clearly By(G) = B(G)Xa\(e}-

Suppose that By(G) is finitely-generated. Our plan is to show that this forces
C*(G) to be unital, which implies that G is discrete by [60]. Since B(G) is a dual
Banach algebra, Proposition 2.2.5 implies that By(G) is weak*-closed. Let E =
Bo(G)1 = C*(G). Since E+ = By(G) # B(G), we must have E # {0} (in fact E must
be 1-dimensional). Let f € E\{0}. We shall show that F' may be scaled to be a unit
for C*(G).

Observe that

Bo(G) = {& #x 0 : (& mm, = 0}
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so that

E={feC*(Q): {&=xn,f)=0 for every representation (7, H,),
and every £,n € H, such that £ 1 n}
={feC*Q): (x(f)&,nyu, =0 for every representation (7, Hy),

and every &,n € H, such that £ L n}.

Now fix a representation of G, say (m, H;). Then we see that 7(f)¢ L n whenever
&,n e H, satisfy &€ L n. It follows that

(2.3) n(f)§ e {&} = span€ (€€ Hy).

Let (e;) be a (possibly uncountably) orthonormal basis for H,. Then, by (2.3), for
each i there exists a scalar A; such that 7(f)e; = A\je;. Given indices i, j there must

also exist a scalar A such that w(f)(e; +e;) = A(e; + €;), so that
)\ei + )\ej = 7T(f)<€l + 6]') = 7T(f)€i + W(f)ej = >\i€i + )\jej,

which implies that A; = A = \;. Hence all of the scalars \; are the same, so that 7(f)
acts as a scalar multiple of the identity on H,.

Now take two representations (m, H,) and (o, H,), and let & € H, and &, €
H,. We consider the direct sum representation 7 @ o. Again using (2.3) we have
scalars A\;, A\, and A\;g, such that 7(f) = A\ idy,,0(f) = A\, idg, and (n D o)(f) =

Meao i, @mn,. Observe that

)‘ﬂ'@a(&ra 50) = (7T @o) (f) (5777 50) = ()\wfm )\050)7

so that A\, = A\rgo = As. Hence f acts as the same scalar under every representation.
Moreover, as f # 0, and the representations of G separate the points of C*(G), this
scalar is non-zero so that, by scaling, we may assume that 7(f) is the identity for

every representation 7.
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Let g € C*(G). Then for every representation m of G we have 7(fg) = 7(g) =
m(gf), so that, agian using the fact that the representations of G separate the points
of C*(G), we have fg = g = gf. As g was arbitrary it follows that f is an identity
element for C*(G), so that G is discrete by [60]. O

Now we turn to the Fourier algebra.

LEMMA 2.4.2. Let G be a locally compact group. We have C.(G) n A(G) = A(G)

iof and only iof G 1s compact.

PROOF. Assume that G is not compact, and let K be a compact neighbourhood
of the identity in G. Let H = | J;-, K*. Then H is a clopen subgroup of G.

First suppose that H is compact. Then, as G is not compact, we must have
[G : H] = w0, so that we can find a sequence of group elements 1, ts, ... € G such that
t1H,toH, ... are all distinct cosets. By [32, Lemme (3.2)], we may find non-negative
functions f; € A(G) (i € N) such that

1 se tzH

Let
22 Hsz @)

Then the support of f is | J;2, t;H, which is not compact.
Now suppose instead that H is not compact. Then, again using [32, Lemme (3.2)],

we can find functions non-negative f; € A(G) (i € N) such that

1 seK:
fi(s) = (1 e N).
0 s¢H

Let f=>7,27" |}c’” € A(G). Then the support of f is H, which is not compact by

supposition. O
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THEOREM 2.4.3. Let G be a locally compact group.

(i) If G is non-compact then A(G) has no finitely-generated ideals of finite codi-
mMension.

(ii) The ideal Ao(G) is finitely-generated if and only if G is finite.

PROOF. (i) By Lemma 2.4.2, C.(G) n A(G) is a proper dense ideal in A(G). Hence
(i) follows from Corollary 2.2.4(ii).

(ii) Suppose that Ag(G) is finitely-generated. Then by (i) G is compact, so that
A(G) = B(G). Hence, by Theorem 2.4.1, G is discrete, forcing G to be finite. The

converse is trivial. O

Remark. Observe that, by Theorem 2.4.3(ii), the conclusion of the Dales-Zelazko
conjecture holds for A(G) even though the hypothesis that the algebra be unital is not
satisfied unless G is compact. Indeed, since A(G) is not necessarily unital, this result
is not covered by [25]. However B(G) is covered by [25], so that the Dales-Zelazko

conjecture holds for Fourier-Stieltjes algebras.

2.5. The Case of a Discrete Monoid

We begin this section with some definitions, which generalise ideas such as word-
length in group theory to the context of an arbitrary monoid. By a monoid we mean
a semigroup possessing an identity element e. Let M be a monoid, and let E be a

subset of M. Then for x € M we define
E-x={ur:ueFE}, x-E={zu:uelkL},

and

E-v'={ueM:uxeFE}, o' - E={ueM:xueFE}.

We abbreviate {u} - 7! to w-z~!, and similarly u - = represents the set {u} - z. The

important thing to note in these definitions is that there may not be an element =7},

1

and that -2~ represents not an element but a set, which in general may be infinite or
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lis meaningful

empty. Also, be aware that ‘- is not necessarily associative: (z-y~!)-z~
whereas x - (y~! - 27!) is not.

Now let X < M, and fix u € M. We say that a finite sequence (2;)?_; in M is an
ancestry for u with respect to X if z; = u, z, = e, and, for each i € N with 1 <1 < n,
there exists £ € X such that either z;x = z;,_1 or z; = z;_1x.

Denote by Hyx the set of elements of M which have an ancestry with respect to

X. Then

Hy=febu | | U Celleaf) o). afn)

neEN,z1,...,.en€X (e1,...,6n)e{£1}"

We say that the monoid M is pseudo-generated by X if M = Hx; this is the same
notion as what is termed being right unitarily generated by X in [52]|. Observe that
when M is not just a monoid but a group, M is pseudo-generated by X if and only
if it is generated by X. We say that M is finitely pseudo-generated if M is pseudo-
generated by some finite set X.

Given a subset X of M we set By = {e} and for each n € N we set

B, = {e} v U U Collead)-ag) -2

Tl ThEX, kSN (£1,...,65)E{L1}F

and
(2.4) Sp = B,\Bp_1.

The set B,, consists of those u in M which have an ancestry of length at most n with
respect to X. Of course the sets B, and .S,, depend on X, but we suppress this in the
notation as X is usually clear from the context. Finally, we say that M is pseudo-finite
if there is some n € N and a finite subset X of M such that every element of M has
an ancestry with respect to X of length at most n, or equivalently if M = B,,. Again,

for a group M, M is pseudo-finite if and only if it is finite.
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To see an example of a monoid which is pseudo-finite, but not finite, take any
infinite monoid M and add a zero 0 to obtain M° = M U {#}. (This is a new monoid
in which the multiplication restricted to M coincides with the original multiplication,

and otherwise is determined by afl = 6 = fa for all a € M°). Then
MY =061,

so that M? is pseudo-finite. Incidentally, this also furnishes us with an example where
associativity of ‘-’ fails, even though all expressions involved are meaningful: we have
(0-071) - e = M° whereas 0- (07! -¢e) = .

In the next two lemmas we establish a version of Lemma 2.3.6 for monoids.

LEMMA 2.5.1. Let M be a monoid, and let X < M. Then we have
HX'U7HX'U_1CHX (’LLGHX).

PROOF. To see this, we define Hy = {e} u X, and subsequently

Hk = (U Hk,1 : LE) U <U Hk,1 : iL’_1>
zeX zeX

for k € N. It is easily seen that

o0
ﬂ:Um.
k=0

We establish the lemma by induction on k such that u € H,. The case £ = 0
follows just from the definition of Hx. So suppose that k£ > 0. Then either u = zz or
ur = z for some z € H,_; and x € X. Consider the first case, and let h € Hyx. Then
hu = hzx. By the induction hypothesis hz € Hy, and hence hu = hzx € Hx by the
case k = 0. Similarly, if y € M is such that yu = yzx € Hy, then (again using the
case k = 0) we have yz € Hx, and so y € Hy by the induction hypothesis applied to

zZ.
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Similar considerations apply in the case where u has the property that ux = z for
some z € H;,_; and some x € X, and we see that in either case Hx -u, Hx -u~' < Hy,

completing the induction. 0

LEMMA 2.5.2. Let M be a monoid, let w be a weight on M, and suppose that
(3(M,w) is finitely-generated as a left ideal in ¢*(M,w). Then M is finitely pseudo-

generated.

PROOF. Write A = ('(M,w). Since CoM is dense in ¢}(M,w), by Lemma 2.2.1

we may suppose that

(2.5) (o(M,w) = Axhy+ -+ Axh,
for some hq,...,h, € CoM. Set

X = OSUpp hi,
i=1

so that X is a finite set. We shall complete the proof by showing that X pseudo-
generates M.

Write H = Hyx. We observe that, for s € M, if s' - Hn H # &, then s € H.
Indeed, suppose that ue s~ - H n H. Then su € H, and hence s € H - v~!, which is
a subset of H by Lemma 2.5.1.

Now let g € A be arbitrary. Then, for every i € {1,...,n}, we have

Dlgxh)(w) =D Y gh(ty = Y1 > g(s)h(t)

=S <g<s> ) hi<t>>=2<g<s> ) m(t)),

where the last equality holds because s™! - H nsupph; < s~' - H n H = (§ whenever

s ¢ H. However, when s € H, then, for every x € supp h;, we have sx € H by Lemma
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2.5.1, which implies that supph; < s='- H. It follows that

DT hi(t) =0

tes—1.H
because h; € CoM. Hence
D (g hi)(u) = 0.

ueH
By (2.5), this implies that

2 ) =0

ueH
for every f € ¢}(M). But this clearly forces M = H, as required. U
Suppose that a monoid M is pseudo-generated by a set X. Given f € £1(M), we
define a sequence of scalars (o,(f)) by

on(f) = D, flu).

ueBy,

LEMMA 2.5.3. Let M be a monoid and X < M. Let the sets B,, in the definition

of o, refer to X. Then, for every g € {*(M) and every x € X we have

N loulg * (6. — 6.))] < .

PROOF. Write 0,, = 0,,(g * (0 — 0,)). Since

g* (68 - 627) = Z g(u)(su - g(u)(suxa

ueM

it follows that
on= Y, 9w — > gv).
ueB, veBy, -z~

If we B,_,, then uzx € B,, implying that B,,_, < B, n B, - x~'. Hence

o= Y g+ Y g Y g+ Y g

UEBn\anl ueBp -1 uEBn~I_1\Bn_1 ueB,_1

=D 9= Y g

uESH vEBy -z~ N\Bp_1
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Notice that B, - 27! S B,,1, so that
By -2 \B,_1 € Buy1\Bn1 = Sy U Spy1.
Hence

ol < D1 Mg+ > g =2 > g+ D lg(u)],
ueSy UESRUSH+1 ueSy UESy+1

0
so that > |0, < 3 D] |g(u)] < oo, using the fact that the sets S, are pairwise
n=1 ueM

disjoint. 0
We shall now prove Theorem 2.1.5 in the next two propositions.

PROPOSITION 2.5.4. Let M be a monoid such that £}(M) is finitely-generated as
a left ideal. Then M is pseudo-finite.

PROOF. By Lemmas 2.2.1 and 2.2.2, £(M) is generated by finitely many elements
N

of CoM. Suppose that h = > «;0,, is one of these generators, where N € N and
i=1

uy,...,uy € M. Then a simple calculation exploiting the fact that Zf\il a; = 0 shows

that
N-1 %
h = <Z aj) (5’% - 5ui+1)‘

— (6.—6

Writing d,, — 6 wis1) — (0 — 0y;) shows that

Uj+1
N

h=>Bi(d. — 6.,
=1

for some f1,..., 0y € C. It follows that there is some finite subset Y of M such that
(1(M) is generated by elements of the form §, — d, (u € Y).

By Lemma 2.5.2, M is pseudo-generated by some finite set X. Enlarging X if
necessary, we may suppose that ¥ < X. It then follows from Lemma 2.5.3 that
(0,(f)) € LY(N) for every f € (}(M), since now every element of £} (M) is a linear

combination of elements of the form considered in that lemma. We now show that
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this gives a contradiction in the case where M is not pseudo-finite by constructing an
element f of £}(M) for which (o,(f)) ¢ £*(N).

Assume that M is not pseudo-finite. Then no B, is the whole of M, but, by the

0

definition of X, |J B, = M, so there exists an increasing sequence (ny) of natural
n=1
numbers such that B,, , & B,, for every k € N. Select uy € B,,\B,,_, (k € N).
Q0
Let ¢ = Y 1/42, and define f € £{(M) by f(e) = ¢, f(ug) = —1/k* and f(u) = 0
j=1
otherwise. Then
k 0
1 1 1
i (f) fc—Zj—zz > 725 (keN).
j=1 j=k+1
0
Hence Y. |o,, (f)| = o0, so that (o,(f)) ¢ £*(N), as required. O
k=1

The converse of Proposition 2.5.4 is also true, as we shall now prove, completing

the proof of Theorem 2.1.5.

PROPOSITION 2.5.5. Let M be a pseudo-finite monoid. Then ((M) is finitely-

generated.

PROOF. Let X = {z1,...,x,} be a finite pseudo-generating set for M such that
B,, = M for some n € N. For k € N, we define

A = {f € (o(M) : supp f < By},

and use induction on k to show that A, is contained in a finitely-generated ideal which
is contained in ¢} (M).
Write A = ¢1(M), and denote the augmentation character on ¢1(M) by ¢q. For

f € Ay, we may write
f = f(e)(se + Z f(xz)(sxz
i=1

= f(e)(0e = 0z,) + (f(€) + f(21)) (00, — 00y)+
ot (f(e) +e Tt f(xr—1>>(5:mf1 - 5$r)
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It follows that Ay < A (0 — 04y) + -+ + A% (05, , — 6,.). This establishes the base
case.
Consider k£ > 1. By the induction hypothesis, there exist m € N and py,...,pn €
(5(M) such that

ApicAspr+ -+ Axpy,.

Write B, as
Bk = {6} U (U Bk,1 : .Il) U (U Bk,1 : LE'Z-1> .
i=1 =1

Write f € A, as

f=rfEbe+gi++g+hi+-+h,

where supp g; < By_1 - x; and supp h; < By - x;l. Then

T

f= Zr:(gz = ¢0(9i)0z,) + Z(hz — ¢o(hi)0e)

+ Z ©0(9i)0z; + (f(e) + Z goo(hi)> 5..

We note that
Z 900(91')5:01 + (f(e) + Z @O(hi)) 0c € A= (56 - 59:1) o+ A (5xr—1 - 5%)
i=1 i=1
by the base case. Fix i € {1,...,r}. Each u € By_; - x; can be written u = u'x; for

some 1’ € Bi_; (which depends on u, and may not be unique), and we calculate that
k p ) Yy que),
uEBk,yIi

where g; = Y, gi(u)d,. Moreover,

ueBk_yéti

9i — ©0(9i)0x, = (g; — p0(gi)de) * Oz, -
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The support of ¢! —¢o(g;)de is contained in By,_1, and so, by the induction hypothesis,

we have

g; — 00(gi)0e € Axpr + - 4+ Axpp,

whence

9i = 0(gi)0z; € Ax pr# b, + -+ + Ax P % bay.

Now consider h; — po(hq)d.. We have

uEBk_1°T;

so that supp (h; * d,,) < By_1 and, in particular, supp (h; = 6, — @o(h;)ds,) < Br_1 (as

k = 2). It then follows from the induction hypothesis that
(hi — @o(hi)de) * 00y = @1 %P1+ -+ + A * Py
for some aq,...,a,, € A. So

hi — 900<hi)5e = (hz - SOO(hi>5e> * (68 - 6231) +ar*pr+ -+ Ayt Py

€Ax(0e—0z) +Axpr+ -+ Axppy.

We now conclude that

m r r—1
MA@ Y Aspi+ D Axpisbo + D Aw (8= 04) + D, A (80, — Oy
i=1 irj i=1 i=1
This completes the induction. When k& = n, we obtain the theorem. 0

We recall the following standard definitions:

DEFINITION 2.5.6. Let M be a monoid. Then:

(i) M is right cancellative if a = b whenever ax = bx (a,b,z € M);

(ii) M is weakly right cancellative if, for every a,z € M, the set a - 7! is finite.
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It is easily seen from the definitions that a weakly right cancellative monoid is
pseudo-finite if and only if it is finite. Hence, Question 2.1.2 and the Dales—Zelazko
conjecture both have answers in the affirmative for the class of Banach algebras of
the form ¢£1(M), where M is a weakly right cancellative monoid. However, it remains

open whether the DalesZelazko conjecture holds for £'(M) for an arbitrary monoid

M.

2.6. -Summable Sequences

In this section 7 = (7,,) will always be a sequence of real numbers, all at least 1. We
say that a sequence of complex numbers (x,,) T-summable if

0e]

D Tl < o0

n=1

Note that if (z,) is 7-summable for some 7, then in particular (x,) € ¢'.

We say that 7 is tail-preserving if the sequence ( i xj) is 7-summable when-
j=n+1

ever (x,) is T-summable. For example, the constant 1j sequence is not tail-preserving
(as can be seen by considering, for instance, the sequence x, = 1/n* (n € N)), but
it will be a consequence of Proposition 2.6.1, below, that 7,, = ¢" is tail-preserving
for each ¢ > 1. The main result of this section is an intrinsic characterization of
tail-preserving sequences, given in Proposition 2.6.1. The results of this section will
underlie our main line of attack when we consider questions involving weights on

discrete groups in Sections 2.7 and 2.8.

Our approach is to consider the Banach spaces ¢1(7), defined by

(Y1) = {(mn) eCN: 2 Toltn| < oo},

n=1

with the norm given by
0

[(zn)l- = Z To|Tn|,

n=1
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so that £1(7) is exactly the set of 7-summable sequences. Each space £1(7) is in fact

isometrically isomorphic to £1.

PROPOSITION 2.6.1. Let 7 = (7,,) be a sequence in [1,00). Then the following are
equivalent:
(a) T is tail-preserving;

(b) there exists a constant D > 0 such that

(2.6) Tas1 =D 7 (neN);
j=1

(c) lin&linf (Tn+1/ il Ti> > 0.

PROOF. The equivalence of (b) and (c) is clear. We show the equivalence of (a)
and (b).

Given x = (z,) € £'(7) we write T'(z) for the sequence

o
T(x) = ( Z IL’]-) .
j=n+1

Clearly the condition that 7 is tail-preserving is equivalent to the statement that T’
defines a map ¢!(7) — £1(7). We begin by showing that, in fact, this is equivalent to
the statement that T defines a bounded linear map ¢'(7) — ¢!(7). One implication
is trivial, and the other is an application of the Closed Graph Theorem.

Indeed, suppose that 7 is tail preserving, and let (z(V) be a sequence of elements of
¢1(7) converging to zero, with the property that (T(x(i))) converges to some point y €
¢'(7). Let € > 0, and let 4 be large enough that both |z®|, < ¢ and |T(z®) —y|, < ¢.

Observe that, for all n € N, we have

S (4) S i) j
2, 7| < Yl < O <
j=n+1 j=1

Also,

= [T) =y, <e
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implies that, for each n € N, we have

w .
Z 2D — oyl <e
j=n+1
Hence, for each n € N,
Y| < ( Z a:ﬁ”) — Yn| + Z xy) < 2e.
j=n+1 j=n+1

As n and e were arbitrary, this forces y = 0. Hence, by the Closed Graph Theorem,
T is bounded.

We now complete the proof. Clearly T is bounded if and only if it is bounded on
the non-negative real sequences belonging to ¢1(7). Note that, by changing the order

of summation, we have
o0

0 0 j—1
COREIRS
=1 j=n+1 j=2 n=1

for any non-negative x € ¢(7). Hence T is bounded if and only if there exists D > 0

3

such that

o0 7j—1 o0
PIDIERD IS
j=2 n=1 n=1

for every non-negative z € £1(7), which is evidently equivalent to

j—1
Z 1, < D1; (jeN).

n=1

This establishes the equivalence of (a) and (b). O

As we remarked above, it is an immediate consequence of this proposition that
the sequence (¢") is tail-preserving for each ¢ > 1.

The following lemma concerns the growth of tail-preserving sequences. Part (ii)
implies that, if (7,,) is tail-preserving and 7/, > 7, for all n, then (77) is not necessarily

tail-preserving.
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LEMMA 2.6.2. (i) Let 7 = (1,,) be a tail-preserving sequence, and let D > 0

satisfy (2.6). Then
i1 = DD+ 1) (jeN).

(ii) Let p > 1. There exists a sequence (1,) < [1,90) such that p" < 7, for all

neN, but (1,) is not tail-preserving.

PROOF. (i) We proceed by induction on j € N. The case j = 1 is immediate from
(2.6). Now suppose that j > 1, and assume that the result holds for all i < j. Then
we have

J
71 = DY 1= D[DD+1Y 2+ -+ D(D+1)+ D+ 1]n
i=1

=D(D+ 1) 'n.

Hence the result also holds for j.
(ii) Define integers ny recursively by ny = 1 and ng = ni_1 +k+1 for k£ = 2. Then
define

T =p" (o + 1< <ng+1).
Then clearly 7; = p’ for all j € N, and

T, 1 T, 1 1
< et =~ —0.

Nk = N -
ijl Tj Zj:nk,ﬁz Tk

Hence (7,,) violates condition (c) of Proposition 2.6.1, so cannot be tail-preserving. [J

2.7. Weighted Discrete Groups

In this section G will denote a discrete group, with finite generating set X, and w will
be a weight on G. Without loss of generality we may suppose that X is symmetric
(we recall that a subset X of a group G is symmetric if X = X~ !). We shall consider
whether ¢}(G,w) is finitely-generated. We note that when considering Question 2.1.2

and Conjecture 2.1.3 for L'(G, w), Theorem 2.3.2 and Lemma 2.3.6 allow us to reduce
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to this setting. As noted at the end of Section 2.3, similar remarks pertain to M (G, w).
We define a sequence of real numbers, all at least 1, by

(2.7) T, = minw(u),
u€ESH

where S, is defined by (2.4). As we are now in the group setting, S,, is exactly the
the set of group elements of word-length n with respect to X. We write

(2.8) C = I;lggcw(m)

LEMMA 2.7.1. With 7,, (n € N) and C defined by (2.7) and (2.8), respectively, we

have 7, < C1, 41 for all n € N,

PROOF. For each n € N| take y, € S, satisfying w(y,,) = 7,,. Then y,,,; = zz for

some z € S, and some z € X, so

Tn = w(yn) < W(Z) = w(ynJrll)il) < Cw(yn+1) = CTnJrla

giving the result. 0

In the next lemma, notice that parts (i) and (ii) depend on the weight having the
specified properties, whereas part (iii) is a purely algebraic result that can be applied
more broadly. In fact, Lemma 2.7.2(iii) is well known; see e.g. [63, Chapter 3, Lemma

1.1]. We include a short proof for the convenience of the reader.

LEMMA 2.7.2. Let G be a group with finite generating set X, and denote word-
length with respect to X by |-|. Let w be a radial weight on G, and denote by T, the
value that w takes on S,. Assume that (1,) is tail-preserving, and let D > 0 be a

constant as in (2.6). Consider CG < (*(G,w).

(i) Let u € G be expressed as u = yi -+ yn for yi,...,yn € X, where n = |ul.

Then
56_5u: me*((se_(sa:)

zeX
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for some f, € CG (x € X) each of which may be taken to have the form

n—1
fx = g(cj)7
]Zaa

where each ag,;j) is either 0 or 5y1myj i the case that 7 # 0, and either 0 or o,
in the case that 3 = 0.
(ii) Each f, in (1) satisfies

1
(29) I < ) (reX).
(i) As a left ideal in CG, CoG is generated by the elements
de — 0, (xeX).

PROOF. (i) We proceed by induction on n = |u|. The case n = 1 is trivial, so

suppose that n > 1. Set v =y - - -y, € S,,_1. By the induction hypothesis applied to

U?
56_(51) = ng*((se_(sm)a
xeX
where
Z b(J (re X)

and each bg(gj ) is either 0, o

Y2-Yj4+1

or d.. We have

Oe = Ou = 0y, # (6 = 0u) + (0 = 6,,) = Oy + Y g (0 — 6,) + (6 — )
zeX
Z Oy, * o * (0e — 0z) + (Oyy * Gy, + 0e) * (0e — Iy, )
TFY1
We define
6?!1 * 0z (l‘ 7 yl)v
fz =

Oy, * Gy, + Oc (x = 1),
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and check that each f, can be written in the required form. To see this, set

-

5+ b9Y (G=1,... n—1),

al) =<0 (z #y1, j = 0),

56 (ZE:yl,jZO)

\

It is easily checked that each a$ has the required form, and that f, = Z;:é at (xe
X). This completes the induction.

(ii) Using part (i), we see that

n—1
[fel = D 1] (zeX)
j=0

and, since, for each x € X, every non-zero agg ) is 9y, for some w € S;, we have

1

n—1
1
15l < X575 < 57 = pwl);
7=0

as required.

N
(iii) Let > a;d,, € CoG. A simple calculation shows that
i=0
N N [
Zai(sui - Z (Z O@) (Ou; = Ougys)-
i=0 i=0 \j=0
Moreover, for each i € N, we have 6,, — 0y,,, = (dc — 0u,,,) — (dc — dy,), so that the

result follows from (i). O

By analogy to our approach in Section 2.5, we associate to each function f €
(1(G,w), a complex-valued sequence (0,,(f)), defined by
(2.10) ou(f) = ) flu).
ueBy,

LEMMA 2.7.3. Let G be a group generated by a finite, symmetric set X, and let w
be a weight on G. Let 7 = (1,,) be defined by (2.7). Let g € £}(G,w) and v € X, and
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write

On = 0nlg* (0 —0.)] (neN).
Then (o,) € £1(T).

PROOF. Begin by repeating exactly the argument from the beginning of the proof

of Lemma 2.5.3, to obtain

UESH u€Bpx—\Bp_1

Again we have B,z 7 '\B,,_1 € S,, U S,41. Taking C as in (2.8), we compute

Tlon| < 2 Z |g(w)|7 + Z |g9(u)|Tn

ueSy UESH +1

<2 ) glm +C D) 1g(w)lTas

ueSn UESn+1

<2 ) Jg)w(u) +C Y |g(u)|w(u),

ueSy UESH+1

where we have used Lemma 2.7.1 in the second line, and (2.7) in the third line. Since
the sets 5, are pairwise disjoint, we conclude that

0

D Taloul < 2+ O)lglu < .

n=1
Hence (0,,) € £1(7), as claimed. O

The following gives a strategy for showing that ¢} (G,w) fails to be finitely-gener-

ated, for finitely-generated groups G and certain weights w on G.

THEOREM 2.7.4. Let G be an infinite group generated by the finite, symmetric set
X, and let w be a weight on G. Let 7 = (1,,) be defined by (2.7). Suppose that (}(G,w)

is finitely-generated. Then T is tail-preserving.

PROOF. By Lemmas 2.2.1 and 2.2.2, we may suppose that (}(G,w) is generated

by a finite subset of CyG, and hence, by Lemma 2.7.2(iii), we may suppose that each
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generator has the form 4, — d,, for some z € X. Therefore every element of ¢} (G,w)

is a finite linear combination of elements of the form g * (§, — d,), where g € £1(G,w)
and x € X, and so, by Lemma 2.7.3, (c,(f)) € £(7) for every f € {}(G,w).

Assume for contradiction that 7 fails to be tail-preserving. Then there exists a

sequence (ay,) of non-negative reals such that («a,) € £1(7), but such that

( > aj> ¢ 01(r).

j=n+1

For n e N, let y, € S, satisfy w(y,) = 7, and define

o0
f = gée - Z anéyna
j=1

0

where ¢ = >} ;. Then f is well defined, because (a,) € £1(7), and clearly @o(f) = 0.
j=1
However,
n o0
Un(f) :C_Zo‘j = Z Qjy,
j=1 j=nt1
so that (o,(f)) ¢ £(7) by the choice of a, contradicting Lemma 2.7.3. O

We are now ready to prove Theorem 2.1.6, which completely characterises finite
generation of the augmentation ideal in the case where the weight is radial. In par-
ticular, this characterisation establishes the Dales—Zelazko conjecture for £1(G, w) for

many groups G and weights w.

PROOF OF THEOREM 2.1.6. If ¢}(G,w) is finitely-generated then, by Theorem
2.7.4, (7,) is tail-preserving .

Suppose that (7,,) is tail-preserving. Write X = {z1,...,z,} and enumerate G
as G = {ug = e,u,ug,...}. Let f =37  a,d,, € (}(G,w), and let D > 0 be as
in (2.6). By Lemma 2.7.2, for each n € N, there exist 97(11)7 . ,gg) € CG such that
Oe = Oup = 2_1 g0 * (8. — 8,) and

i 1 .
9] < S0l (i =1,.0,m)
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This implies that, for each i = 1,...,r, we may define an element of £1(G,w) by

s = — Z gt
n=1

Then

f = i anéun - (i an) 56 = - i an(ée - 5un)
n=0

n=0 n=1
- - i an <ig§j> « (5, — 5%)) - 2 s s (5, — 8,.).
n=1 i=1 1=1

As f was arbitrary, it follows that the elements 0, — d,,, ..., — J,, together generate
(3G, w). O

We now prove Corollary 2.1.7, part (ii) of which shows that it can happen that

(5(G, w) is finitely-generated, for certain infinite groups G and certain weights w.

PROOF OF COROLLARY 2.1.7. (i) Lemma 2.6.2(i) implies that, for such a weight,
the sequence (7;,) defined in Theorem 2.1.6 is not tail-preserving, and the result follows
from that theorem.

(ii) By Theorem 2.6.1, the sequence (7;,) of Theorem 2.1.6 is tail-preserving. [

Let G be a discrete group, and G’ its commutator subgroup. We conclude this
section by remarking that, if [G : G'] = oo, then ¢!(G,w) safisfies the Dales-Zelazko
conjecture for every weight w. The reasoning is as follows. As the conjecture holds for
commutative Banach algebras [33, Corollary 1.7|, the conjecture holds for ¢!(H,w)
whenever H is an abelian group and w is a weight on H. Then, by |68, Theorem
3.1.13|, given G and w, there exists a weight @ on G/G’ such that (}(G/G',D) is a
quotient of £1(G,w). Finally, by the commutative result, there is some maximal ideal
in (}(G/G',&) which is not finitely-generated, and taking its preimage under the
quotient map gives a maximal left ideal in £!(G,w) which is not finitely-generated.
However, we have not been able to establish the Dales-Zelazko conjecture for an

arbitrary weighted group algebra.
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2.8. Examples on Z and Z*

In this section we look at some specific examples of weighted algebras on Z and Z*, and
consider how they fit into the more general theory of maximal ideals in commutative
Banach algebras. When convenient, we shall sometimes write w, in place of w(n).
For a commutative Banach algebra A we shall denote the character space of A by
® 4, and for an element a € A, we shall denote by @ its Gelfand transform. We first

recall Gleason’s Theorem [80, Theorem 15.2]:

THEOREM 2.8.1. Let A be a commutative Banach algebra, with unit 1 and take
wo € Pa. Suppose that ker g is finitely-generated by g1, ..., gn, and take v : &4 — C”

to be the map given by

() = (0(g1), - p(gn)) (@€ Pa).

Then there is a neighbourhood €2 of 0 in C" such that:

(i) v is a homeomorphism of v~1(Q) onto an analytic variety E of ;
(ii) for every a € A, there is a holomorphic function F' on € such that a = F o~y
on y~HQ);

(iii) if ¢ € v"1(Q), then ker p is finitely-generated by

g1 — (1)1, ... g0 — @(gn)l.

It is natural to wonder whether there are circumstances under which a converse
holds. For instance, suppose we have a commutative Banach algebra A such that
there is an open subset U of the character space, which is homeomorphic to an open
subset of C", and such that @ is holomorphic on U under this identification for every
a € A. Does it then follow that the maximal ideals corresponding to points of U are
finitely-generated? T. T. Reed gave an example [80, Example 15.9] which shows that
this need not be true in general, even for uniform algebras. We note that the character

space in Reed’s example is very complicated. In this section we give two examples
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of commutative Banach algebras for which the converse to Gleason’s Theorem fails
to hold, and whose character spaces are the disc and the annulus respectively. The
first (Theorem 2.8.4) shows that there is no general converse to Gleason’s Theorem
for the class of natural Banach function algebras on simply connected compact plane
sets. The second (Theorem 2.8.6) shows that there is no general converse to Glea-
son’s Theorem for the class of weighted abelian group algebras. Interestingly, these
examples rely on constructing counterparts to the sequence (7,) of Lemma 2.6.2(ii)
satisfying the additional constraints that the sequence must now be a weight on Z*
in Theorem 2.8.4, and a weight on Z" admitting an extension to Z in Theorem 2.8.6.

We note that many authors have considered a related question, known as Gleason’s
Problem, which may be stated as follows: let 2 € C" be a bounded domain, and let
R(€2) be a ring of holomorphic functions on {2 containing the polynomials. Given
p = (p1,...,pn) € £, is the ideal consisting of those functions in R(£2) which vanish

at p generated by
(Z _p1)7"'7<z_pn>?

The cases of A(€2), the algebra of functions which are holomorphic on 2 and continuous
on its closure, and H*({2), the algebra of bounded, holomorphic functions on €2, are
considered to be of particular interest. See e.g. [53, 57].

Before we construct our examples, we first recall some facts about weights on 7Z
and Z*; see |19, Section 4.6] for more details.

Let w be a weight on Z. The character space of £!(Z,w) may be identified with

the annulus {z € C: p; < |z| < po}, where

1/n

n .

p1 = lim w_, and pe = lim w
n—0o0 n—0o0

The identification is given by ¢ +— ¢(d1), for ¢ a character. Note that p; < 1 < ps. As
it is easily seen to be semi-simple, ¢!(Z,w) may be thought of as a Banach function

algebra on the annulus, and in fact these functions are all holomorphic on the interior
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of the annulus. We denote by M, the maximal ideal corresponding to the point z of
the annulus, and observe that the augmentation ideal is M;.

Now instead let w be a weight on Z*. The situation for ¢1(Z* w) is analo-
gous to the situation above. Now the character space is identified with the disc
{z e C:|z| < p}, where p = nh_r)rc}o wy™, and (HZ*,w) may be considered as a Banach
function algebra on this set, with the property that each of its elements is holomorphic
on the interior. In this context M, denotes the maximal ideal corresponding to the
point z of the disc.

Before giving our examples we characterise those weights for which ¢}(Z,w) is
finitely-generated. Note that this is a slight improvement, for the group Z, on Theorem

2.1.6 since we no longer need to assume that the weight is radial.

THEOREM 2.8.2. Let w be a weight on Z. Then ({(Z,w) is finitely-generated if

and only if both sequences (wy), oy and (W—y,), o are tail-preserving.

PROOF. Set A = ('(Z,w). Suppose that (wy,), .y is not tail-preserving. Then we
can repeat the proof of Theorem 2.7.4 with G = Z essentially unchanged, except that
now we insist that all functions appearing in it have support contained in Z*, to show
that £}(Z,w) is not finitely-generated. By symmetry, the same conclusion holds if
instead (w_,), oy fails to be tail-preserving.

Now suppose that (wy,), .y and (w_,), .y are both tail-preserving. Let f € ¢{(Z,w),

and suppose for the moment that supp f < Z". Then we have

Dwn [ 2@ = Dwn| Y f0)] <,
n=0 i=1 n=0 i=n+1

and so we may define g € A by

g=- i (i f(i)> On-

n=0 \i=0
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Then
g* (61 —d0) == ) (Z f(i)> (41 — 0n)
=2 (210~ 2 f(z')) 0= . f(n)d, = f
Hence

f=9%(61—0d) € A= (01— o).

A similar argument shows that, if supp f < Z~, then
f € A= (5_1 — 50)

But any f € (}(Z,w) can be written as f = fi + fo for fi, fo € (}(Z,w), with

supp f1 € Z* and supp fo < Z~, and so we see that
K(l)(Z,W) = A= ((51 - (50) + A x ((5_1 — 60)

is finitely-generated, as required ([l

We now construct the first of our special weights described at the beginning of the
section. This is a weight on Z* such that neither the augmentation ideal nor M, are

finitely-generated.

LEMMA 2.8.3. Let p > 1. Then there exists a weight w on Z™, satisfying

: 1/n
lim wl™ = p
n—0o0

such that there exists a strictly increasing sequence of natural numbers (ny) with

. 1
(2.11) Ol P
W, k

(k eN).

PROOF. First, we define inductively a non-increasing null sequence (£(n)) of pos-

1/n

itive reals, as follows. Set €(0) = 1. Since lim (1/n)"" = 1, we can find an integer n,
n—oo
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0< (i)l/m (p+1)—p.

ny

such that

Define £(n) = 1 for n < ny, and then choose €(ny + 1) such that

1/n1
1

Note also that e(ny + 1) < 1.

Now take k > 2, and suppose that we have already defined a strictly increasing
sequence of integers ny,...,n;_1, and defined e(n) for n < ny_; + 1. Then choose
ny € N, with n, > n,_; and such that

0< (—)Unk (p+e(nk—1+1)) —p.

ng

Define e(n) = e(ng_1 + 1) for ny_; +1 < n < ny, and then choose £(n; + 1) such that

1/ng
0<e(ng+1) < <n_) (p+e(ng-—1+1)) —p,
k

whilst ensuring that e(ng + 1) < min{l/k,e(ns)}. This completes the inductive con-
struction of e.
Now define
wn = (p+ )" (neZ?)

Then w := (w,) is a weight on Z*, because

Witn = (p+e(m +n))"(p + e(m +n))"

<(p+em)™(p+en)" =wpw, (m,nelZt),

where we have used the fact that e is non-increasing. As lim e(n) = 0, we have
n—o0

lim wy™ = p. It remains to show that (2.11) holds.

n—o0

For k € N, we have

i (0 + <l + 1))
I A P T
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However

p+elng+1) < <i> o (p+e(np_y + 1)) = <i) " (p+ e(n)),

which implies that

ety 1 _1
(p + e(nyg))m™ n, k'
and (2.11) now follows. O
As lim wy™ = in1£1 wi/™ by [19, Proposition A.1.26(iii)], the weight constructed in
n—0o0 ne

Lemma 2.8.3 satisfies w,, = p" (n € N). However, Proposition 2.6.1 implies that w is

not tail-preserving, as

" -1
o ..o Wiyl
liminf | w1 (ij> < liminf 2 — 0.
n
j=1

n Wp,
Hence we have a version of Lemma 2.6.2(ii) in which the sequence is also a weight.

THEOREM 2.8.4. Let w denote the weight constructed in Lemma 2.8.3. Then nei-
ther My nor My s finitely-generated, even though both 0 and 1 correspond to interior

points of the character space.

PROOF. Set A = ¢1(Z",w) and assume towards a contradiction that Mj is finitely-
generated. Note that My = {f € A : f(0) = 0}, so that every finitely supported
element of My is of the form g * d;, for some g € A. By Lemmas 2.2.1 and 2.2.2, we
may suppose that the generators of M, have finite support, and as they also lie in My,
we may factor out a d; from each one. It follows that My = A = §;. Define a sequence

of non-negative reals by

(kw,, )™t ifj=mn + 1,

0 otherwise.

o0
Let f = >} a;0;. Then by (2.11) we have
j=1
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0 Oownk—s—l ©q
Z|aj|wj22m<(0+1)zk— < .

This shows that f € A, and so clearly f € My. Assume that f = g =d; for some g € A.

Then g must satisfy g(j — 1) = f(j) (j € N). However,

o 1
|f()|wj1 = Z =%

1 k=1

IF

J

so that g ¢ A.
The case of M is very similar. This time we know that, if M is finitely-generated,
it must equal A * (6y — 01). By the remark preceding the theorem w is not tail-

preserving, and so there exists some sequence («,) € £*(w), such that
o0 0
26| X
n=1

j=n+1
Let ¢ = X7 an, and let f = (6 — D @0, Then f € M;. Assume that f =

Qi = 0.

x (09 — d1) for some g € A. A short calculation implies that

=Zf(j)=— D

j=n+1
for all n > 1, contradicting the fact that Y, wy,|g(n)| < 0. O

We remark that a weight w on Z* extends to a weight on Z if and only if

Sup wy, /wp+1 < 0. The “only if” direction of this implication just follows from submul-
neN

tiplicativity of the weight at —1. For the “if” direction, set C' = sup wy,/w,+1. Then

neN
it is routine to verify that w_,, = C"w, (n € N) defines an extension. It follows from

this observation that the weight constructed in Lemma 2.8.3 admits no extension to

Z. However, a different construction does allow us to do something similar on Z.

LEMMA 2.8.5. Let p > 1. Then there exists a weight w on Z satisfying lim wi™ =
n—ao0

p and lim w ,1/” < 1, but such that (wp)nen is not tail-preserving.
n—aoo
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PrROOF. With the preceding remark in mind, we construct first a weight v on Z*
satisfying sup{v,/n+1} < p + 1, which ensures that v extends to a weight on Z. In
the end Wen?:lall define w by w, = p/"y,.
We set ny, = 28 — 1 (k € N). We define v on {0,1,2,3} by

Yo=1n=p+1, u=(p+1)> 3=p+1

We then recursively define
Vi =P+ 1)Vjmn, (e <J <mppr, k= 2).
We observe that
(2.12) Ynpi = (p+ 1) (0<i<k—1,k=2).

This follows by an easy induction on k. Indeed, the base case can be seen to hold by

inspection, and for k£ > 3 we see that

Tnp—i = (P + 1>7nk—i—nk—1 = (p + 1)’77%—1-*-1—2'

=(p+D(p+1)'=(p+1)" (1<i<k-1)
and

Tne = (P + 1)(77%—7%) = (P + 1)’70 = (P + 1)'

We now claim that

(2.13) 1< (p+ Dy (GeN).

Again, this can be seen by inspection for j < ns, and we then proceed by induction

on k. Indeed, if j € [ng, ngr1 — 2] then

Y5 _ (p+1)7j*nk _ Yi—nk <(,0+ 1)‘

Vi+1 (P+1)’Yj+1—nk Vi+1—ny




2.8. EXAMPLES ON Z AND Z* 72

When j = ngy1 — 1 and j + 1 = ngyq, then, by (2.12), we have

- +1)?
i :(p ) — 1,
Ve (p+1)

establishing the claim.

Now we are ready to prove that v really is a weight. That ~ is submultiplicative
on {0,1,2,3} can be seen by inspection. Let i,7 € N, with ¢ < j, and let k € N
satisfy @ + j € [ngi1,nks2). We proceed by induction on i + j. If j < ny then
1+ J < 2ng < ngy1, so we must have 5 > ng + 1. There are three cases. Firstly, if

.j Z N1, then

Yiej = (0 + D)Vitjonpr < (P 1)ViVjonpsy = ViV

If instead j < mgyq1, but ¢ = ng, then

Yivj = (P + DVirjoney = (0 + D)V +(G-1-n0)

1

< (p+ DYicnVj—1-n, = m%%‘—l < Vi

by (2.13). Finally, suppose that ¢ < nj and ny < j < ngy1. In this case we have

i+ 37— 2% < ngyq, and, since i + j > ny41, we also have
i+7—2" = mp — 28 =y,

so that i +j — 2% € [ng, ng41). Then the formula i+ j —ngyq = i +j — (ng +2F) implies

that

Virj = (P + DVirjonper = (P + 1)Vij2bny = Vigjon-

Therefore

Vitj = Vivj—2k < Vic1Vja1-2k = Vi1 Vj-np < (P + 1)%iYjon, by (2.13)

= Y-
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This concludes the proof that « is a weight. By (2.13), it extends to a weight on Z,

which we also denote by 7.

Define w = (wy) by w, = p"ly, (n € Z). As AL (p+ 1)V for all k > 2, we
must have lim ’y%/ " =1, and hence lim wi™" = p. Furthermore,
n—0o0 n—0o0
IR —1n
lim w_:/ = — lim 7_,1/ < - <1,
n—0o0 p n—0o0

as required.
It remains to show that (wy,),en is not tail-preserving. We compute

n k—1
Wy W pp ) _(p)

S w ey PR DR \p

which tends to 0 as k goes to infinity. In particular, (w,)nen violates (2.6), so it is not

tail-preserving. O

THEOREM 2.8.6. Let w be the weight constructed in Lemma 2.8.5. Then the aug-
mentation ideal (}(Z,w) fails to be finitely-generated, despite corresponding to an

interior point of the character space.

PROOF. By construction M; corresponds to an interior point of the annulus. Now

apply Theorem 2.8.2. O



CHAPTER 3

Topologically Finitely-Generated Left Ideals

3.1. Introduction

In Chapter 2 we discussed Sinclair and Tullo’s theorem [79] that a left Noetherian
Banach algebra is finite-dimensional. We then went on to prove new results which
illustrate the fact that algebraic finite-generation of left ideals in a Banach algebra
is a very strong condition. Perhaps a notion better suited to the study of Banach
algebras is topological finite-generation. In this chapter we aim to complement the
discussion of the first chapter by considering Banach algebras in which every closed
left ideal is topologically finitely-generated. We call such Banach algebras topologically
left Noetherian. In contrast to Sinclair and Tullo’s result we find that there are many
natural examples of infinite-dimensional, topologically left Noetherian Banach alge-
bras. Moreover, this property often captures interesting properties of some underlying
object: for example, given a compact group G the group algebra L!(G) is topologi-
cally left Noetherian if and only if G is metrisable (Theorem 3.3.5); meanwhile, given
a Banach space E with the approximation property, the algebra of compact operators
IC(E) is topologically left Noetherian if and only if E’ is separable (Theorem 3.5.9).
In some situations, however, it seems that in order to get interesting examples and
capture interesting properties of the underlying group or Banach space, it is better to
consider topological finite-generation in some topology other than the norm topology.
For instance, given a compact group G, the measure algebra M (G) is | -||-topologically
left Noetherian if and only if G is finite (Proposition 3.3.6), whereas it is weak™-
topologically left Noetherian whenever GG is metrisable (Corollary 3.4.13). Hence part
of this chapter is devoted to weak*-topological Noetherianity of dual Banach algebras.

In Section 3.6 we shall also consider SOP-topological left Noetherianity of B(E) for

74
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a Banach space F, and show that this is equivalent to a natural condition on the
Banach space (Corollary 3.6.5(ii)).

In this chapter we shall also take an interest in classifying the closed left ideals
in certain families of Banach and semi-topological algebras. In some cases this is
a necessary step towards our results about topological left Noetherianity, but these
classification results are also of interest in their own right. Our main result of this
nature is a classification of the closed left and right ideals in the Banach algebra
of approximable operators A(FE), for any Banach space E satisfying a certain con-
dition (Theorem 3.5.4 and Theorem 3.5.10 respectively)! . Our classification holds,
for instance, whenever the dual of the Banach space has the bounded approximation
property. We also give classifications of the weak*-closed left ideals of the measure
algebra of a compact group (Theorem 3.4.17), and of the weak*-closed left and right
ideals of B(F), for E a reflexive Banach space with the approximation property (The-
orem 3.6.7). In addition, we give a classification of the SOP-closed left ideals of B(E)

for an arbitrary Banach space E (Theorem 3.6.2).

3.2. General Theory

Recall that a semi-topological algebra is a pair (A, 7), where A is an algebra, and 7
is a topology on A such that (A, +,7) is a topological vector space, and such that
multiplication on A is separately continuous. For example, a dual Banach algebra
with its weak*-topology is a semi-topological algebra.

Let (A, T) be a semi-topological algebra. Let I be a closed left ideal in A, and let

n € N. We say that I is 7-topologically generated by elements x1,...,x, € I if

I =Afxy + -+ Afz,.

We say that I is 7-topologically finitely-generated if there exist n € Nand xq,...,z, € [

which 7-topologically generate I. We say that A is 7-topologically left Noetherian if

ISince proving Theorem 3.5.4 we have found that there is a very similar result to Theorem 3.5.4
already in the literature due to Grgnbaek [38, Proposition 7.3]. We acknowledge this in Section 3.5.
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every closed left ideal of A is T-topologically finitely-generated. For example, we shall
often discuss weak*-topologically left Noetherian dual Banach algebras. When the
topology is clear we may simply speak of “topologically finitely-generated left ideals”
et cetera, without naming the topology referred to. In the context of Banach algebras,
if there is more than one topology under discussion, phrases such as “topologically
finitely-generated left ideal” and “topologically left Noetherian Banach algebra” are
understood to refer to the norm topology.

Analogously we may define 7-topologically finitely-generated right ideals, as well
as T-topologically right Noetherian algebras. If the algebra in question is commutative
we usually drop the words “left” and “right”.

We note that when a semi-topological algebra A has a left approximate identity

we have

Aty + -+ Alg, = Azq + - + Az,

for each n € N and each zy,...,x, € A. When this is the case we usually drop the
unitisations in order to ease notation. For example, in the proof of Theorem 3.3.5
below, we shall write W)*g in place of W)ﬁ*g, for G a locally compact group
and g € L1(G).

The following lemma will be invaluable throughout this chapter.

LEMMA 3.2.1. Let A be a semi-topological algebra with a left approzimate identity.
Let J be a dense right ideal of A. Then J intersects every closed left ideal of A densely.

PROOF. Let (e,) be a left approximate identity for A. Given an open neighbour-
hood of the origin U and an index « choose f, € J such that e, — f, v € U. Note
that (f,,u) is a net, where the underlying directed set is ordered by (a,U) < (5,V)
if and only if & < f and V < U. We see that (f, ) is a left approximate identity for
A contained in J: let a € A, let U be an arbitrary open neighbourhood of the origin,
let V5 be an open neighbourhood of the origin such that Vi + Voa < U, and let o be

such that e,a —a € Vj for all & = . Then, for all open neighbourhoods of the origin
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V <V, and all a = ag, we have
a— fava=(a—eya)+ (ena— fayva) e Vo+ Voa < U.

Let I be a closed left ideal in A and let a € I. Then for every index («,U) we
have fopa € J n 1. Since a = lim,, ) fa,ya € J N I, and a was arbitrary, it follows

that J n I = I, as required. O

Next we show that topological left Noetherianity is stable under taking quotients

and extensions.

LEMMA 3.2.2. Let A be a semi-topological algebra, and let I be a closed (two-sided)
ideal in A.
(i) If A is topologically left Noetherian then so is A/I.
(ii) Suppose that both I and A/l are topologically left Noetherian. Then so is A.
(iii) A is topologically left Noetherian if and only if A* is topologically left Noe-

therian.

PROOF. (i) Let J be a closed left ideal in A/I and let g: A — A/I denote the quo-

tient map. Let J = g *(J). Since A is topologically left Noetherian, there exists n € N

and there exist x1,...,2, € J such that J = Alzy + -+ Abx,,. Tt follows from the
continuity and surjectivity of ¢ that J is topologically generated by q(z1), ..., q(z,).

(ii) Let J be a closed left ideal in A. Since I is topologically left Noetherian there

exist n € N and z4,...,2, € J such that J n [ = I*x; + --- + I*x,. Moreover, since
J/(I n J) is topologically isomorphic as a left A-module to (J + I)/I, which is a
topologically finitely-generated closed left ideal of A/I, there must exist m € N and
Y1, .-, Ym € J such that y; + I n J,... y, + I n J topologically generate J/(I N J).

We claim that zq,...,2,,y1,...,yn topologically generate .J. Since .J was arbi-
trary this will complete the proof of (ii). Denote the quotient map A — A/I nJ by q.
Let z € J, let U be any open neighbourhood of 0, and let V' be an open neighbourhood

of 0 such that V + V < U. Since ¢ is an open map, ¢(V') is an open neighbourhood
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of 0 in A/I N J, so that, by the above, there exist ay, ..., a,, € A* such that

q(z) = (a1q(y1) + -+ + amq(ym)) € (V).

It follows that there exists w € I n J such that z — (a1y; + -+ + apym) —w € V.

Furthermore there exist by, ..., b, € A* such that w — bjzq + - - + bz, € V. Hence

z— (a1 + -+ aplYm + brxy + - + b))

=z—(my1+ -+ apym) —w+w— (b1 + -+ byx,) eV+V U,

and as U was arbitrary this proves the claim.

(iii) We may suppose that A is non-unital for otherwise the result is trivial. Sup-
pose that A is topologically left Noetherian. Then, since A*/A =~ C is topologically
left Noetherian, it follows from (ii) that A* is also. The converse follows from the fact

that every closed left ideal in A is also a closed left ideal in A®. O

3.3. Examples From Abstract Harmonic Analysis

It is surely easiest to determine whether or not a Banach algebra is topologically left
Noetherian when we know what its closed left ideals are. Fortunately, this is the
case for the group algebra of a compact group, as well as for the Fourier algebra of a
discrete group. We shall show below that, for a compact group G, the group algebra
L'(G) is topologically left Noetherian if and only if G is metrisable, whereas, for a
discrete group G, the Fourier algebra A(G) is topologically Noetherian if and only if
G is countable. The proofs of both statements are similar, but the latter is easier, so

we start there.

PROPOSITION 3.3.1. Let G be a discrete group. Then A(G) is topologically Noe-

thertan if and only if G is countable.
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PROOF. Given E < G, write I(E) = {f € A(G) : f(z) = 0,z € E}. It is well
known that, since G is discrete, the closed ideals of A(G) are all of the from I(FE) for
some subset E of G: see, for instance, [46, Theorem 39.18].

Suppose first that G is countable and let I < A(G) be closed. Let £ < G be such
that [ = I(F), and enumerate G\E = {z1,22,...,}. Since G is discrete the point
mass J, belongs to A(G) for each = € G, since this may be realised as . =, d,, where
A here denotes the left regular representation. Hence g = > | —d, € A(G). It is

n=1 n2

clear that supp g = G\E, and hence that
{x €eG: f(zr) =0 for every f € A(G)ﬁg} =FE.

It follows from the classification of the closed ideals of A(G) given above that I =

A(G)tg. As I was arbitrary we conclude that A(G) is topologically Noetherian.

Now suppose that A(G) is topologically Noetherian. Let

I={feAG): fle) =0}

Then there exist n € N and hy,...,h, € I such that [ = A(G)thy + -+ + A(G)th,.
Since A(G) < ¢o(G), every function in A(G) must have countable support. Hence
S :=|JI_, supp h; is a countable set. Every f € A(G)*hy +---+ A(G)*h,, has supp f <
S, and of course, after taking closures, we see that this must hold for every f € I.

This clearly forces S = G\{e}, so that G must be countable. O

We now recall some facts about compact groups. Firstly, when G is compact each
representation in G is finite-dimensional. Secondly, for G a compact group the closed

left ideals of L'(G) have the following characterisation |46, Theorem 38.13]:

THEOREM 3.3.2. Let G be a compact group, and let I be a closed left ideal in

LY(G). Then there exist linear subspaces Ex = H, (7 € G) such that

I= {feLl(G):w(f)(Eﬂ) —0, we@}.
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Let G be a compact group. Given 7 € G we write T.(G) = span{&+,n: & ne H},
and we write T(G) = span{€ +; n : &, € Hy,m € G}. We recall the following facts

about these spaces from [45, 46]:

THEOREM 3.3.3. Let G be a compact group.
(i) Let o,m € G with o # m. Then o(€ + ) = 0.
(ii) The linear space T(G) is a dense ideal in L*(G).
(iii) For each m € G the space T, (G) is an ideal in LY (G), and as an algebra
T.(G) = My (G), where d, denotes the dimension of H,.

PROOF. It follows from equation (1.10) that

()t G = jG F()o(8)Cr, Gy dt,

for fe LYG),0 € G and (1,0 € H,. Part (i) follows from this and the orthogonality
relations [46, Theorem 27.20 (iii)]. Part (ii) follows from |46, Theorem 27.20, Lemma
31.4], and part (iii) follows from [46, Theorem 27.21]. O

We also record the following result here, although we shall not require it in a proof

until Section 3.4.

LEMMA 3.3.4. Distinct choices of linear subspace in Theorem 3.3.2 give rise to

distinct ideals.

PROOF. Suppose that (E;) 5 and (Fr) _a are two distinct choices of linear sub-
spaces of the Hilbert spaces (H:) _as. Then there exists o € G such that E, # F,.
Without loss of generality F, € E,. Let n be the dimension of E, and let m be the
dimension of H,. Choose an orthonormal basis 7, ...,n,, for H, such that n;,...,n,
is a basis for E, and 1,41 ...7m, is a basis for E;. Let f = >" 7,17 € LY(G).
Then it follows from Theorem 3.3.3(i) that 7(f) = 0 for 7 # 0. Moreover, using (1.10)



3.3. EXAMPLES FROM ABSTRACT HARMONIC ANALYSIS 81
and the orthogonality relations [46, Theorem 27.20 (iii)|, we see that o(f) is the or-
thogonal projection onto E}. Hence 7(f)(E,) =0 (7 € é—'), but taking £ € F,\E, we
have o(f)& # 0. O

We can now prove our theorem. The equivalence of conditions (b) and (c) has
surely been noticed before, but we include a short proof for the convenience of the

reader.

THEOREM 3.3.5. Let G be a compact group. Then the following are equivalent:
(a) LY(G) is topologically left Noetherian;
(b) G is countable;

(¢) G is metrisable.

PROOF. We first demonstrate that (b) implies (¢). Our method is to show that
G is first countable, which will implie that G is metrisable by [45, Theorem 8.3].
Indeed, it follows from Tannaka-Krein duality [51] that the topology on G is the
initial topology induced by its irreducible representations, and as such has a base

given by sets of the form
U(my,y...,mpset) :={seG:|mt) —m(s)| <ei=1,...,n},

where ¢ > 0,t € G, and (m, Hy),..., (7, Hy,) € G. Hence, if G is countable, for
every t € G the sets U(my,...,mp;1/m;t) (me Nymy, ... ,m, € CAT*) form a countable
neighbourhood base at ¢, and so G is first-countable.

Now suppose instead that G is metrisable. Then C(G) is separable. Since the
infinity norm dominates the L?-norm for a compact space, and since C(G) is dense
in L?(@G), it follows that L?(G) is separable. By [46, Theorem 27.40]

L*(G) =~ P H,,
me@
(where @ denotes the direct sum of Hilbert spaces) which is clearly separable only if

G is countable. Hence (c) implies (b).
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Next we show that (b) implies (a). Suppose that G is countable. By Theorem
3.3.3(ii) T(G) is a dense ideal in L'(G) so that, by Lemma 3.2.1, I n T(G) = I for
every closed left ideal I in L(G).

Fix a closed left ideal I in L'(G). By Theorem 3.3.2 there exist linear subspaces
E. c H, (r € G) such that

= {feLl(G) c1(f)(E,) = 0, ﬂe@}.

By Theorem 3.3.3(iii), for each 7 € G we have T;(G) =~ M, (C), where d, is the
dimension of H,, and since I n T (G) is a left ideal in 7, (G) there must be an idem-
potent P, € T,(G) such that I n T (G) = Tr(G) * P,. Set o, = ||P;|~*. Enumerate
G = {m1,ma, ...}, and define
1
g = Z; Z,—Qam.Pm e LY(G),
which belongs to I because each Py, does, and I is closed.

We claim that I = W Indeed, I o W because g € I. For the
reverse inclusion we show that, for j € N and { € H,,, we have 7;(f)(§) = 0 for all
fe m if and only if £ € E;,. The claim then follows from Theorem 3.3.2.
Indeed, if f € W)*g then 7;(f)(§) = 0 because f € I. On the other hand if
§ € Hx\Er, then m;(Pr,)(§) # 0, whereas m;(Py;) = 0 for 7 # j by Theorem 3.3.3(i),
which implies that 7;(¢)¢ = j%aﬂjwj(ij)(ﬁ) # 0. This establishes the claim.

Finally we show that (a) implies (b). Assume that L'(G) is topologically left

Noetherian. Then there exist r € N and g1, . .., g, € L{(G) such that

Lo(G) = LY G) = gy + -+ + L}(G) * gy
For each n € N there exist ¢ e T(G) (i =1,...,r) such that

i 1
1) —gil <~ (i=1,....m).
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Let S be the set
S = {7? € G : there exist i,n € N such that 7 (tD) # O} v {1},

where 1 denotes the trivial representation. We see that S is countable because, by
Theorem 3.3.3(i), each function t$ satisfies W(t%)) # 0 for at most finitely many
7€ G. We shall show that S = G.

Assume instead that there exists some 7 € @\S , and let u be the identity element
of T(G). For o € G\{r} we have o(u) = 0, whereas (t,(f)> = 0 for every n € N and
every i = 1,...,r. Hence o (tgf) * u) =0 (o€ @,n eN,ie {1,...,r}), which implies
that tg)*uzoforeveryneNandiz 1,...,r.

By taking the limit as n goes to infinity, this shows that g;»u =0 (i =1,...,r),
and hence that f = u = 0 for every f € L}(G). However, because 1 € S, Theorem
3.3.3(i) implies that u € L}(G). Since u was chosen to be an identity u * u = u # 0.

This contradiction implies that G=3S , as claimed. 0

We conjecture that in fact G is compact whenever L!(G) is topologically left
Noetherian, and hence metrisable by the previous Theorem. Indeed, this is the case
when G is abelian by a theorem of Atzmon [5] (note that Atzmon says “finitely-
generated” where we say “topologically finitely-generated”). In [5] Atzmon points
out the relationship between questions about topologically finitely-generated ideals
of LY(G) and difficult questions about spectral synthesis. In the light of this our
conjecture seems daunting, and we do not attempt to prove it here.

The next proposition suggests to us that weak*-topological Noetherianity is a
more interesting notion for the measure algebra of a locally compact group G than

| - |-topological Noetherianity, and we explore this in the next section.

PROPOSITION 3.3.6. Let G be a locally compact group such that M(G) is topolog-
ically left Noetherian. Then G is countable. If, in addition, G is either compact or

abelian, then G is finite.
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PROOF. Suppose that M(G) is topologically left Noetherian. Then, by Lemma
3.2.2 (i), so are its quotients, whence ¢!(Gy) is topologically left Noetherian, where

(G4 denotes the group G with the discrete topology. It follows that

05(Ga) = LH(Gy) x g1 + -+ + LH(Gy) * g,

for some n € N and some gy, . .., g, € £}(Gq4). Let H be the subgroup of G generated by
the supports of the functions gy, . .., g,. This is a countable set. Define o: £1(G4) — C
by

7 f e S f) (el (Ga))

zeH

Then, by the calculation (2.2) performed in Lemma 2.3.6,
o(f) =0 (felHGa)=gr+ -+ LGy)*gn),

and hence, since o is clearly bounded, o(f) = 0 for every f € £}(G4). This forces
G = H. Hence G is countable.

A countable locally compact group is always discrete, so that if it is also compact
it must be finite. If G is abelian, then the fact that £1(Gy) is topologically Noetherian
implies that G is finite by |5, Theorem 1.1]. O

Note that if our conjecture that G is compact whenever L*(G) is topologically left
Noetherian is correct, then the above proof actually shows that G is finite whenever

M(QG) is topologically left Noetherian.

3.4. Multiplier Algebras and Dual Banach Algebras

In this section we consider Banach algebras whose multiplier algebras are dual Banach
algebras. We first develop some general theory and then go on to prove some results
concerning the weak*-closed left ideals of such multiplier algebras. We shall observe
that, as a consequence of our general theory and Theorem 3.3.5, the measure algebra
of a locally compact group G is weak*-topologically left Noetherian whenever G is

compact and metrisable. The results of this section will be useful again when we
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consider weak*-topological left Noetherianity of B(E), with E a reflexive Banach
space, in Section 3.6.

Let A be a faithful Banach algebra and denote the multiplier algebra of A by
M (A). We always regard A as an ideal in M (A). The bidual A” admits left and right
actions of M (A) rendering it a Banach M (A)-bimodule, denoted by

O — P and D — oo,
and defined by

<(I)D:u’ >‘> = <CI), we )‘>7 <N<>(I)7 )‘> = <(I)a A ,U>>

<CL, K- )‘> = <aN> >‘>7 <a7 A /JJ> = <,U,CL, )‘>7

for e AV’ X e Ayae A,u e M(A). When we view A as sitting inside M(A) we
recover the first and second Arens products, which we also denote by [] and <.

Now suppose that A has a bounded approximate identity, and let ®; be a mixed
identity for A”, which exists by [19, Proposition 2.9.16 (iii)|]. Then it is well known
that we have embeddings L and R of M(A) into (A”,[J) and (A", <), respectively,
given by

L:p— $oJpu and R: p— pody,

for p e M(A) (see [19, Theorem 2.9.49(iii)| for the details in the special case that
|®o| = 1; the general case is very similar). Note that L and R are just the identity

map when restricted to A. Moreover, whenever a € A and p € M(A) we have
(3.1) alL(p) = aO%p = alJp = ap,
and similarly

(3.2) R(p)da = pa.
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In this section we shall be interested in Banach algebras with a bounded approx-

imate identity whose multiplier algebras are also dual Banach algebras. Moreover,

we shall focus on cases where the dual structure and multiplier structure are com-

patible in some sense. It can be checked that ®g[JA” is a dual Banach space with

predual A’ - A, and similarly A”O®y may be identified with the dual of A - A’. The
(A" A, ®o[JA")-duality coincides with the (A’, A”)-duality in the sense that

<)\7 \Ij>(A’-A, dJA") = <)\, \Ij>(A’,A”) ()\ € A, : A, Ve (I)QDA”),

and similarly for the (A - A’, AC®q)-duality. Of course, L(M(A)) < PoJA” and
R(M(A)) ¢ A"Ody. Also, by Cohen’s factorisation theorem, we have A’ - A =
span(A’- A) and A- A’ =span(A - A').

We next define what what we shall call in this thesis an Ulger algebra. This is
a non-commutative version of a condition considered by Ulger in [84], in which the

condition was applied to commutative, semisimple Banach algebras.

DEFINITION 3.4.1. We say that a Banach algebra A is an Ulger algebra if

(1) A has a bounded approximate identity;

(2) M(A) is a dual Banach algebra, with predual X say;

(3) there are bounded module maps t,: X — A-A" and tp: X — A’- A which are
bounded below, such that under the map L the (X, M (A))-duality is identi-
fied with the (¢1(X), L(M(A)))-duality, and under the map R the (X, M(A))
duality is identified with the (tg(X), R(M(A))) duality, i.e.

(3.3) (@, py = Cr(w), L(p)) = Cr(e), R(p))  (pe M(A),x e X).

Examples of Ulger algebras include A,(G) for G alocally compact amenable group,
and p € (1,00), with X = PF,(G), the space of pseudo-functions on G (see |84, page
99]). Below we shall show that, for any locally compact group G, the group algebra
L'(@), whose multiplier algebra may be identified with the measure algebra M (G), is

an Ulger algebra (Proposition 3.4.4), as well as K(E), for any reflexive Banach space
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E with the approximation property (Corollary 3.4.9). Compare with our discussion
of these algebras in Subsections 1.4.3 and 1.4.5 of the introduction.

The following lemma is often useful.

LEMMA 3.4.2. Let A be a Banach algebra with a bounded approximate identity.
Then the following formulae hold for a € A€ M(A) and A€ A':

(3.4) A a, L) pgar, amy = as p - Aa, ar)

(3.5) {a- N, R(p)yqar, amy = a, A - phy(a, ar.-

PROOF. Let ae A, ue M(A),A€ A’. Then

</\ - a, L(/L>>(A/7AN) = <)\ - a, (I)()D/UL>(A/’A//) = <M “A- a, (I)0>(A’,A”)

= (- X, al0Poy(ar, ary = a1+ Ay, ar)-

The other identity is proved similarly. 0

Remark. It follows from the above lemma that, although the maps L and R may
depend on the choice of the mixed identity ®,, the definition of an Ulger algebra does
not. Indeed, suppose that we have two mixed identities ®; and ®,, and corresponding

maps L, and Ry, and Ly and Ry. Then Lemma 3.4.2 implies that

A-a, La(p)) = A -a, Lo(p))  and Ca- A, Ra(p)) = Ca- A, Ra(p)),

forae A)Ae A', and e M(A). Hence if A is an Ulger algebra with respect to ®;,
we have (x, ) = (up(x), L1(pn)) = (ep(x), La(p))y (z € X, pe M(A)), and similarly for
R, and Rs, so that A is also an Ulger algebra with respect to ®, for the same choices

of maps ¢y, and ¢g.

We wish to verify that the group algebra of a locally compact group is an Ulger
algebra. For this we shall need the following lemma which is surely well known. We

include a short proof for the reader’s convenience.
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LEMMA 3.4.3. The action of L'(G) on L*(G) as its dual is given by

~

fo=0+f and é-f=(Af)x0,

where A denotes the modular function, and f € LY (G) and ¢ € L*(G). Here, Af

denotes the pointwise product of the modular function with f.

PROOF. Let g € LY(G). Then, for f € L}(G) and ¢ € L*(G), we have

b P ={frgdy= f F(st)g(B)AE ) o(s) dt ds
G JG

— [ gt f F(st™)A®E)(s) dsdt
G G

~

i f (A7) (ts™ ) A(s )(s) ds dt
G G

r

= | g[(AF) = ¢](t)dt.

JG

It follows that ¢ - f = (A/f ) * ¢. The other formula is proved in a similar fashion, but

the calculation is slightly simplified by the absence of the modular function. O

PROPOSITION 3.4.4. Let G be a locally compact group. Then LY(G) is an Ulger

algebra.

PROOF. That L!(G) has a bounded approximate identity is well known. Recall
that we may identify the multiplier algebra of L!(G) with the measure algebra M(G),
and that M(G) is a dual Banach algebra, with predual Cy(G).

We claim that Co(G) < (L®(G) - LY(G)) n (LY (G) - L*(G)), so that part (2) of
Definition 3.4.1 is satisfied with ¢, = (z taken to be the inclusion map. By [32,
Proposition (3.4)] we have that A(G) = Span{g = g2 : ¢1,92 € C.(G)}, where the

closure is taken in the A(G)-norm. Because this norm dominates the infinity norm,
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we have

I-floo

Co(G) = A(G) " cspanll={¢« [ : ¢, f € C.(G)}

=span{f-¢: f,0 € C.(G)}

< LY(G)-L*(G) = L' (G) - L™(G).

The other inclusion is demonstrated using the same idea, but now the formula for

¢ - f involves the modular function. Indeed, we have

Co(G) = m\l-\\m < span’ *{g; * g2 : g1, 92 € Co(G)}
= span{(Af) = ¢ f,¢ € Co(G)} =5pan{o - f : f, ¢ € Co(G)}

< L*(G)- LY(G),

as required.
It remains to show that part (3) of the definition holds, with ¢;, = ¢ taken to be

the inclusion map. Fix u € M(G) and g € Cy(G). We have to show that

(g, )o@y, M)y = <95 L))o (), L1 ()

By the above, we can write g = ¢- f, for some ¢ € L*(G) and f € L'(G). By Lemma

3.4.3,{d - f, L)L), L@y = {f * 1, ®)(L1(@), L= (@), 50 it remains to show that
(- [y o), Mm@y = {f * 1 O)(1(@), Le@)-

This is equivalent to showing that

| @-nwano - | -wwomamo.

where m denotes the left Haar measure on the group. By Lemma 3.4.3 the left-hand
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side is equal to

L[(M + 610 dpu(t) = L J;m)(ts—lm(sm(s ) dum(s) du(t)
_ L J;A(st‘l)f(st‘l)cb(s)ﬁ(s ) dun(s) du(t)
_ L J;ﬂst-lw(sm(t—l)dm(s) dp(t)

_ L o(5) JG F(st™YAE) dp(t) dm(s)
= * 1 O)r1(G), 1= (@))-

It remains to show that (g, 1)), @) = {9, R(1t) (L= (), 1)), and for this
we write g = f - ¢ for ¢ € L®(G) and f € L'(G). We shall show that

by o), Mm@y = B fr0)w 1), L= @),

or, in other words, that

L(f B)() dplt) = f (1= £)(O)6(t) dm(t).

G

This time the left-hand side is equal to

| @ Poyaut = [ | ot o amis) dute)
— | | ots)10715) dute) (e
- | o)+ ) am(s),
as required. This completes the proof. 0

The next lemma lists some basic properties of Ulger algebras.

LEMMA 3.4.5. Let A be an Ulger algebra with bounded approzimate identity (eq)-
Then:

(i) A is weak*-dense in M(A);
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(ii) The weak*-topology on M(A) is coarser than the strict topology.

PROOF. (i) Let x € A < X. Then for every a € A we have {(¢(z),aya, 1) =
{x,a)x, mca)) = 0, so that «(x) = 0, forcing = 0. As x was arbitrary, we have shown
that A, = {0}, and hence that P/ (AL)* = {0} = M(A).

(ii) Let (o) = M(A) be a net converging to some p € M(A) in the strict topology.

Given x € X, there exist a € A and A € A" such that «(x) = X\ - a. Therefore

& pra) = - a, L(pa)) = O al(pia)) = <A, apa),

which converges to (A, ap) = (x, uy. As x was arbitrary lim,« o flo = p. O

DEFINITION 3.4.6. Let A be an Ulger algebra. We say that A is strongly Ulger if
the map L is o(M(A), X)-0(Po[JA”, A’-A) continuous and the map R is o(M(A), X)-
og(A"Ody, A- A’) continuous.

In this thesis we shall consider the ideal structure of strongly Ulger algebras,
but we note that they appear to have interesting properties more broadly and are
worthy of further study. In the papers [43] and [44] Hayati and Amini consider
Connes amenability of certain multiplier algebras which are also dual Banach algebras.
Although their framework is different to ours, their proof of [43, Theorem 3.1| can be
lifted with only trivial modifications to show that, if A is a strongly Ulger algebra,
then A is amenable if and only if M(A) is Connes amenable.

For finding examples of strongly Ulger algebras, the following lemma is quite

useful.

LEMMA 3.4.7. Let A be an Ulger algebra, and suppose that the maps vy, and vy in

Definition 3.4.1 are surjective. Then A is strongly Ulger.

PrROOF. We show that the map L is continuous in the appropriate sense, the
argument for R being very similar. Suppose (11, ) is a net in M (A), converging in the

weak*-topology to some element € M(A). Let a € A, and let A € A’. There exists
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x € X such that ¢z (z) = A - a, so we have

A a, L(pa)) = Cep(w), L(pa)) = (T, fta),

which converges to (z,uy = (\-a,L(n)). As X and a were arbitrary, it follows that
L(j1,) converges to L(p) in the o(®o[JA”, A"+ A)-topology. We have shown that L is
g(M(A), X)-o(PoJA”, A" - A) continuous. The argument for R is analogous. O]

This gives us the following family of examples of strongly Ulger algebras.

LEMMA 3.4.8. Let A be a Banach algebra with a bounded approximate identity

which is Arens reqular and an ideal in its bidual. Then A is a strongly Ulger algebra.

PROOF. By [54, Theorem 3.9] A” may be identified with M (A). Arens regularity
implies that A” is a dual Banach algebra with predual A’. The criteria set out in
Definition 3.4.1 now follow trivially, setting X = A" and ¢, = tg = id4. As the maps

v, and tp are surjective, A” is strongly Ulger by Lemma 3.4.7. O

It follows from Lemma 3.4.8 that ¢o(N) is an example of a strongly Ulger algebra.

A family of examples that will be important to us in the Section 5 is the following:

COROLLARY 3.4.9. Let E be a reflexive Banach space with the approximation

property. Then IC(E) is a strongly Ulger algebra.

PROOF. By [91, Theorem 3| A(E) = K(F) is Arens regular. Moreover K(E)” =
B(E) and by Lemma 1.4.5 the Arens product coincides with the usual composition of
operators, so that we see that KC(F) is an ideal in its bidual. Hence the result follows

from the previous lemma. OJ

One of the most useful properties of strongly Ulger algebras is summarised in the

following lemma.

LEMMA 3.4.10. Let A be a strongly Ulger algebra. Then for each a € A the maps
M(A) — A given by u — ap and p — pa are weak*weakly continuous, and hence

weakly compact.
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PROOF. To verify weak*-weak continuity of the map p — ap we compose with an

arbitrary A € A’, and observe that the result is a weak*-continuous linear funtional

on M(A). Indeed, by Lemma 3.4.2,

(ap, Ay = (A -a, L(p)) (pe M(A)),

and the map pu — (\-a, L(p)) is weak*-continuous by hypothesis. The case of the

other map is similar. O

Unfortunately, the group algebra is usually not strongly Ulger.

PROPOSITION 3.4.11. Let G be a locally compact group. The Banach algebra

LY(G) is strongly Ulger if and only if G is compact.

PROOF. First assume that G is compact. Then by [34, Proposition 2.39(d)| we
have ¢ = f, f = ¢ € C(G) for every ¢ € L®(G), f € L1(G), so that in fact C(G) =
LYG)-L*(G) = L*(G) - LY(G). Hence, by Lemma 3.4.7, L'(G) is strongly Ulger.

Now assume that L'(G) is strongly Ulger. Then whenever f € L'(G)\{0} Lemma
3.4.10 implies that the maps L'(G) — L'(G) given by

Li:g—g=f and Ri:g— fxg

are weakly compact. Hence L7(A"), R}(A”) = A by [59, Theorem 3.5.8]. Observing
that L}: ¥ — fOF (¥ e A”), we see that L'(G) is a right ideal its bidual, and

similarly it is a left ideal. Hence, by [40| G is compact. O

We now come to some results which describe how our different versions of Noethe-
rianity play out in the setting of Ulger algebras. The first hypothesis of the following

proposition is satisfied whenever A is an Ulger algebra by Lemma 3.4.5(i).

PROPOSITION 3.4.12. Let A be a Banach algebra with a bounded approrimate
identity such that M(A) admits the structure of a dual Banach algebra in such a way

that A is weak*-dense in M(A). Suppose that for every closed left ideal I in A there
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exists n € N and there exist py, ..., 1, € M(A) such that I = Afpy + -+ Alp,.
Then M(A) is weak*-topologically left Noetherian. In particular, M(A) is weak*-

topologically left Noetherian whenever A is | - |-topologically left Noetherian.

PROOF. Let I be a weak*-closed left ideal of M(A). Since A is weak*-dense in
M (A), which is unital, Lemma 3.2.1 implies that A n I is weak™-dense in /. On the

other hand, A n I is a closed left ideal in A, so there exists n € N, and there exist

fiy -y € M(A) such that An T = Afpy + -+ + Afp,. Tt follows that

*

I=Afpy+ -+ A, = MA)p + -+ M(A)p,

*

w

As I was arbitrary the result follows. OJ

We are now able to give an interesting family of examples of weak*-topologically
left Noetherian dual Banach algebras which (by Proposition 3.3.6) are not usually

| - |-topologically left Noetherian.

COROLLARY 3.4.13. Let G be a compact, metrisable group. Then M(G) is weak™*-

topologically left Noetherian.

PROOF. By Proposition 3.4.4, Lemma 3.4.5, and Theorem 3.3.5, L!(G) satisfies
the hypothesis of Proposition 3.4.12. The result now follows from that Proposition.
O

For strongly Ulger algebras there is a bijective correspondence between the closed
left ideals of A and the weak™*-closed left ideals of M(A) as we describe below in
Corollary 3.4.15. In Section 3.6 this will allow us to classify the weak*-closed left
and right ideals of B(E), for E a reflexive Banach space with the approximation
property, in Theorem 3.6.7. In Theorem 3.4.17 below, this will allow us to classify

the weak*-closed left ideals of the measure algebra of a compact group.

LEMMA 3.4.14. Let I be a closed left ideal of a strongly Ulger algebra A, and let
/LETU* c M(A). Then Auc I.
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PROOF. Let (1,) be a net in I converging to p in the weak*-topology and let

a € A. For each index o we have aj, € I. Since A is strongly Ulger, Lemma 3.4.10
implies that the map v — av, M(A) — A, is weak*-weakly continuous, so that net

ajia converges weakly to ap in A. Hence au e I = I. As a was arbitrary, the result

follows. O

PROPOSITION 3.4.15. Let A be a strongly Ulger algebra. The map

—w¥*

I—1 |

defines a bijective correspondence between closed left ideals in A and weak*-closed left

ideals in M(A). The inverse is given by
J— AnJ,
for J a weak*-closed left ideal in M(A).

PROOF. First we take an arbitrary closed left ideal I in A and show that Amjw* =
I. Certainly I ¢ An T Let a€An 7", Then by Lemma 3.4.14 we have Aa c I.
Since A has a bounded approximate identity, this implies that a € I. As a was
arbitrary, we must have I = A n Tw*.

It remains to show that, given a weak*-closed left ideal J of M(A), we have

AnJ . J, and this follows from Lemma 3.2.1. O

Using Proposition 3.4.15 we are able to classify the weak*-closed left ideals of
M(G), for G a compact group. Let G be a compact group and suppose the for each

m € G we have chosen a linear subspace E, < H,. Then we define

J(EBx)eg) = {1 € M(G) : () (Ex) =0, m e G}

We shall show that these are exactly the weak™-closed left ideals of M (G).
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LEMMA 3.4.16. Let G be a compact group and let E, < H, (7w € @) Then
N L
(3.6) spﬁ{g e meG e By ne HW} = J[(Ey)..c)

PROOF. Let 7 e @, ne H; and £ € E;. We calculate that

(R (W), ma, = JG<w<t>§, > du(t) = (€ o 1, 1),

It follows that 7(u)(&) = 0 for every mw € G and ¢ € E, if and only if (£ =, n,u) =0

for every w e G ,n€ H, and £ € E,. The result follows. OJ

THEOREM 3.4.17. Let G be a compact group. Then the weak*-closed left ideals
of M(G) are given by J[(Er), .al, as (Ex), .a runs over the possible choices of linear
subspaces E, < H,. (m € G). Moreover, distinct choices of the subspaces (Ex), e yield

distinct ideals J[(Ex), o]

PROOF. By Proposition 3.4.11, L'(G) is a strongly Ulger Banach algebra, so, by
Proposition 3.4.15, there is a bijection A from the set of weak*-closed left ideals of

M(G) to the set of || - |-closed left ideals of L'(G) given by
A:I—1InLYG),

for I a weak*-closed left ideal in M(G). By Lemma 3.4.16 each space J[(Ex), _a] is
weak*-closed, and it is easily checked that it is a left ideal. Moreover, by Theorem
3.3.2, each closed left ideal of L'(G) has the form L'(G)n J[(E), 4], for some choice

of subspaces FE, < H, (m € CAJ) Hence A is surjective when restricted to the set
{J[(Eﬂ)weé] B, < Hy, 7e é} .

Since A is a bijection, it follows that this set must be the full set of weak*-closed left
ideals of M(G). Finally, it follows from Lemma 3.3.4 and the injectivity of A that

different choices of subspaces give different left ideals. O
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COROLLARY 3.4.18. Let G be a compact group, and let X < C(G) be a closed
linear subspace, which is invariant under left translation. Then there exists a unique

choice of linear subspaces E, < H, (7€ é) such that
Xzspan{f*ﬂnzﬂeé, e b, neHﬂ}.

PROOF. By Lemma 2.3.3 X has the form [, for some weak*-closed ideal I of
M(G). It now follows from Theorem 3.4.17 and Lemma 3.4.16, that X has the given

form. O

Finally we show that for strongly Ulger algebras weak*-topological left Noetheri-

anity of M(A) can be characterised in terms of a | - [-topological condition on A.

PROPOSITION 3.4.19. Let A be a strongly Ulger algebra. Then M(A) is weak*-
topologically left Noetherian if and only if for every closed left ideal I in A has the

form

I'=Ap+ -+ Apty,
for some n € N, and some py, ..., u, € M(A).
PROOF. The “if” direction follows from Proposition 3.4.12. Conversely, suppose

that M(A) is weak™-topologically left Noetherian, and let I be a closed left ideal in

A. Then there exist n € N and pq, ..., u, € M(A) such that

—w¥ w*

77 = MDA -+ M A" = A+ % A"

where we have used Lemma 3.4.5(i) to get the second equality. Hence, by applying

Proposition 3.4.15 twice, we obtain

]=Tw*mA=A,u1+-~+A,unw*mA=Au1+-~-+Aun.

The result follows. O
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3.5. Left and Right Ideals of Approximable Operators on a Banach Space

In this section we classify the closed left ideals and closed right ideals of A(F), for
E belonging to a large class of Banach spaces that includes those Banach spaces F
such that E’ has BAP. Specifically, we require that A(F) has a left approximate
identity for the former classification, and a right approximate identity for the latter
(compare this with Theorem 1.2.1, which details some of the relationships between
approximate identities for A(F) and approximation properties of £/). We then use this
characterisation to determine when A(F) is topologically left and right Noetherian
for such Banach spaces. Of course when E has the approximation property, we have
A(E) = K(E).

Since proving this result we have become aware of a very similar classification
of the closed left ideals of KC(F), for E a Banach space with AP, due to Grgnbaek
[38, Proposition 7.3|. Indeed, Grgnbek’s proof is very similar to ours. Hence, our
classification of the closed left ideals is not really new. However, we feel that our
exposition gives a slightly more detailed picture than Grgnback’s, so we have included
it anyway. Moreover, Grgnbak says nothing about closed right ideals.

Let E be a Banach space, and let A be a closed subalgebra of B(E). Given closed

linear subspaces F' < £’ and G < E we define

(3.7) Ly(F)={TeA:imT c F}
and
(3.8) ZA(G)={TeA:imT c G}.

These define families of closed left and right ideals respectively. We also define a

family of closed left ideals by

(3.9) IA(G)={TeA:kerT > G},
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where G is a closed linear subspace of E. When the ambient algebra A is unambiguous
we shall often drop the subscript and simply write Z(F), Z(G), and .Z (G). Usually A
will be either A(F) or B(F). We shall show that when A(FE) has a left approximate
identity then every closed left ideal has the form Z4g)(F), for some closed linear
subspace F' < E’ (Theorem 3.5.4). Similarly, when A(FE) has a right approximate
identity every closed right ideal of A(FE) has the form Zag)(G), for some closed
linear subspace G of E (Theorem 3.5.10).

We begin by verifying that the sets defined in (3.7) really are closed left ideals of
A. The proof that the sets defined in (3.8) and (3.9) are closed right and left ideals,

respectively, is totally routine, and we leave it to the reader.

LEMMA 3.5.1. Let E be a Banach space, and let A be a closed subalgebra of B(E).

For each closed linear subspace F in E' the set L4(F) is a closed left ideal in A.

PROOF. It is clear that Z4(F') is a linear subspace. Let T' € Z4(F), and let
SeA Thenim (SoT) =im (7" 0 5") cimT’" < F, so that SoT € Z4(F). Suppose
(T,,) is a sequence in Z4(F) converging to some T' € A. Then for each A\ € E' we
know that 7/ A € F, which implies that 7'\ = lim,,_,,, T} A € F'. As A was arbitrary it
follows that im7” < F', and hence T € Z4(F). O

In what follows, given a Banach space £ and X < B(E) we write £/ o X for
the set {AoT : A e E'\T € X} = | JpeximT". Sets of this form will be important
because they give a way to recover the closed linear subspace appearing in (3.7): more
precisely we shall show that, given a closed left ideal I of A(FE), the set F' = E' o[ is

a closed linear subspace of E’, and moreover [ = Z(F).

LEMMA 3.5.2. Let E be a Banach space, and let I be a left ideal in A(E). Then
@A el whenever x e E and e E'o 1.

PROOF. We can write A\ = ¢ o T, for some ¢ € E’, and some T € [. Then

TR®A=(z®¢)oTel. O
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LEMMA 3.5.3. Let E be a Banach space, and let I be a closed left ideal in A(E).

Then E' oI is a closed linear subspace of E'.

PROOF. It is clear that E'ol is closed under scalar multiplication. We may assume
that F is non-zero and fix x € E\{0} and € E’ satisfying n(z) = 1. Let A, \p € E'o[.
By Lemma 3.5.2, t ® A\, ® Ay € I, so that

770(LU®>\1+I®>\2):/\1+>\QEEIOI.

Hence E’ o [ is closed under addition.

Let (\,) € E' oI be a sequence converging in norm to some A\ € E’, and let x
and n be as above. We have lim,, ., 2 ® A\, = x ® A in A(FE). Moreover, by Lemma
3.5.2 we have z ® A\, € I (n € N), so that x ® A € I, since [ is closed. Hence
no(x®A) =Xe E ol. We have shown that £’ o [ is closed. O

We write SUB(FE) for the set of all closed linear subspaces of a Banach space FE.
Similarly, given a Banach algebra A we write CLI(A) for the set of closed left ideals
of A. Both of these sets are lattices when ordered by inclusion. We can now state
and prove our first classification result precisely. Recall also that we write 1;; for the

Kronecker delta, as in (1.1).

THEOREM 3.5.4. Let E be a Banach space such that A(E) has a left approximate

tdentity. Then the map
©: (SUB(F'),c) —» (CLI(A(E)),c), F— Z(F)
1s a lattice 1somorphism, with inverse given by

©:1— E'ol, (IeCLI(AE))).
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PRrROOF. The maps © and © have the specified codomains by Lemma 3.5.1 and
Lemma 3.5.3, respectively, and it is clear that they respect inclusion. Since isomor-
phisms of posets preserve the lattice structure, once we have shown that these maps
are mutually inverse it will follow that they are lattice isomorphisms.

Let I be a closed left ideal in A(E), and set F = O(I). We show that I =
(© 0 ©)(I), ie. that I = Z(F). Noting that F = {T'A\ : A € E',T € I}, it is clear
that I < Z(F).

To show the reverse inclusion, we note that, by Lemma 3.2.1, the finite-rank
operators intersect .Z(F) densely, so that it is sufficient to show that F(E)n.Z(F) <
I. Let T € Z(F) be finite-rank, and write T = Y\ 2; ® \;, for some N € N,
Z1,...,xny € E,and \,..., Ay € /. We may assume that the vectors z1,...,zy are
linearly independent, so that there exist ny,...ny € E' such that n;(z;) = 1;;. Then
T'n; = X\ (i =1,...,N), so that each \; belongs to F. Therefore, by Lemma 3.5.2,
each z; ® \; belongs to I, and hence so does T. We have shown that Ois a right
inverse for ©.

Now let F be a closed subspace of E', and consider G = (60 0)(F) = E'o Z(F).
Let A € F. Then, picking z € E\{0} and n € E’ such that n(z) = 1, we see that
T@Ae Z(F), and hence A =no (x®\) € G. We conclude that F' = G. Conversely
whenever we have A = poT € G, for some p € E' and T € Z(F), wehave A = T'p € F.

Hence G = F', and we have shown that O is a left inverse for ©. O

The proof of the next corollary makes use of the following formula, valid for any

(possibly infinite) collection of bounded linear operators (7;) on a Banach space E:

(3.10) span?” (im T7) (ﬂ kerT)

COROLLARY 3.5.5. Let E be a reflexive Banach space such that A(E) has a left

approximate identity. Then there is a lattice anti-isomorphism

o : (SUB(E), ) — (CLI(A(E)), <)
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given by
(I) . F > fA(E)(F),

with inverse given by

®: I (kerT,

Tel

for I € CLI(A(E)).

PROOF. As in the proof of the previous theorem, it is sufficient to show that ®
and ® are mutually inverse poset anti-isomorphisms. Let © and O be as in Theorem
3.5.4 and define ¥ : SUB(E) — SUB(E') by ¥ : F +— F* for F a closed linear
subspace of E. Then, by reflexivity, the map W is an anti-isomorphism of posets, with

inverse given by U~': G — G (G € SUB(F)).

By (3.10), for T' € A(E) we have (ker T)* = im 7 =T = im 7", where we
have used the fact that the weak and weak*-topologies coincide for a reflexive Banach
space, and then Mazur’s Theorem. Hence, by applying U~ to this equality, we have

kerT' = (im T’ ) |- It follows that, for any closed F' < F,

L(FH ={Te AE):imT' c F'} = {T € AE) : imT' c F'}

= {T e A(E): (imT"), > F} ={T € A(E) : ker T > F} = ®(F),

which is equivalent to saying that ® = © o U. Since © is a poset isomorphism, and
V¥ is a poset anti-isomorphism, we see that ® is an anti-isomorphism of posets, and it

remains to show that its inverse is given by d. Indeed, we have U1 o O = o

€L
(\11 o @) (I) = (ﬂ ker T) — Spafiy (imT7)

~

—span{ o T: e E'\Tel}=FE ol =06(),

where we have used (3.10) and Mazur’s Theorem in the first line, and Lemma 3.5.3

in the second. Hence & is invertible, with inverse given by . 0
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Remark. Corollary 3.5.5 is a generalisation of the well-known classification of the

left ideals of M, (C), for n € N (see, e.g., |48, Exercise 3, pg. 173|).

Now that we have a classification of the closed left ideals of A(FE) we approach
the question of when A(FE) is topologically left Noetherian. The next lemma gives a
more explicit description of the correspondence of Theorem 3.5.4 for a topologically

finitely-generated left ideal in terms of its generators.

LEMMA 3.5.6. Let E be a Banach space. Letn € N, let Ty,...,T, € A(E), and let
I =AEWT + -+ A(E)'T,. Then

E'ol =imT]+ - +im7T’.

PROOF. As E' o] = | Jp;imT" we have E' o] >imT} (i = 1,...n). Since E' o ]

is a closed linear subspace, it follows that £’ o [ > im7] 4+ --- +1im 7.

For the reverse inclusion, let S € I and let A € E’. There are sequences
(jo))ja s (Rf(zj))J - A(E) +Cidg

such that
S = lim <R§j)oT1 +---+R§3‘>0Tn).

J—©

Then

AoS=lim (Ao (R{oT))+ -+ Ao (RYoT,))

J—®©

— lim (Tl’()\l o RY) +---+T7’L(/\oRff))> eimT] + - +im1..

j—o
As X\ and S were arbitrary, this concludes the proof. O
The next corollary gives a partial characterisation of when A(FE) is topologically

left Noetherian. The full characterisation will be given in Theorem 3.5.9.

COROLLARY 3.5.7. Let E be a Banach space such that A(E) has a left approzimate

identity.
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(i) Let F < E be a closed linear subspace. Then £ (F) is topologically generated
by T, ..., T, € A(E) if and only if

(3.11) F=imT{+ - +im7T}.

(ii) The algebra is A(E) is topologically left Noetherian if and only if every closed
linear subspace of E' has the form (3.11), for some n € N and Ty,...,T, €
A(E).

PROOF. (i) Suppose that Z(F) = A(E)T} + - -- + A(E)T,, for some Ty,...,T, €
A(E). Then by Lemma 3.5.6

F'o Z(F)=imT]+ - - +im T/,

so that, by Theorem 3.5.4, F =im 7] + --- +1im7.
Conversely, suppose that there are maps Ti,...,T, € A(F) such that F' has the
form (3.11). Consider the left ideal

I=AFE)T, + -+ AE)T,.

By Lemma 3.5.6 we have E'o] = F, and so by Theorem 3.5.4 we have I = Z(E'ol) =
Z(F). Hence

L(F) = AE)Ty + - + A(E)T,,,

as required.

(ii) This is clear from (i) and Theorem 3.5.4. O

In the proof of the next lemma we use the fact that every infinite-dimensional

Banach space contains a basic sequence |59, Theorem 4.1.30].

LEMMA 3.5.8. Let E be a Banach space, and let F' < E’ be a closed, separable

linear subspace. Then there exists T € A(E) such that imT'" = F.
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PrROOF. We may suppose that E is infinite-dimensional, since otherwise the lemma

follows from routine linear algebra. Let {\, : n € N} be a dense subset of B, and let

(b,,) be a normalised basic sequence in E. Let (8,) < E’ satisfy (b;, 8;) = 1;; (1,7 € N).
Define T'= >, 27"b, ® \,. The operator T is a limit of finite-rank operators and

o0
T'o= > 27"p(b)An (g€ E).
n=1

Certainly im 7" < F. Observing that T"(2/3;) = \; (i € N), we see that imT" = F, as

required. O]

We can now give our characterisation of topological left Noetherianity for A(FE).
We notice that our proof actually implies that for these Banach algebras topological
left Noetherianity is equivalent to every closed left ideal being topologically singly

generated.

THEOREM 3.5.9. Let E be a Banach space such that A(E) has a left approximate

identity. Then the following are equivalent:

(a) the Banach algebra A(E) is topologically left Noetherian;
(b) every closed left ideal of A(FE) is topologically singly-generated;

(c) the space E' is separable.

PROOF. It is trivial that (b) implies (a). To see that (c) implies (b), note that, by
Theorem 3.5.4, every closed left ideal of A(E) has the form Z(F), for some closed
linear subspace F in E’. Fixing F' € SUB(E’), by Lemma 3.5.8 there exists T' € A(F)

such that F' = im 7", which implies that Z(F) = A(E)T, by Corollary 3.5.7(i).

We show that (a) implies (c¢) to complete the proof. Suppose that A(FE) is topo-

logically left Noetherian. Then in particular A(E) = A(E)Ty + -+ A(E)T, for
some Ti,...,T, € A(E). Observing that .Z(E’) = A(F), Lemma 3.5.6 implies that

E' = imT| +---+imT’. Since each operator T; is compact, so is each T, imply-

ing that each space im 7] is separable. It follows that E' = im7T] + --- +1im7T} is

separable. H
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Remark. Let Eay be the Banach space constructed by Argyros and Haydon in [4]
with the property that B(E4x) = Cidg,, + K(Fag). Since Eap is a predual of ¢!,
which has BAP, it satisfies the assumptions of Theorem 3.5.9 by Theorem 1.2.1(ii).
Furthermore A(Eay) = K(Eay). Since B(Eay) = K(Eag)?, Theorem 3.5.9 and

Lemma 3.2.2(iii) implie that B(E4g) is | - |-topologically left Noetherian.

We can give a very similar treatment of the closed right ideals of A(E); in fact this
case is a little simpler. Observe that our hypothesis on A(FE) changes from possessing
a left approximate identity to possessing a right approximate identity. We denote the

set of closed right ideals of a Banach algebra A by CRI(A).

THEOREM 3.5.10. Let E be a Banach space such that A(E) has a right approzimate
identity. There is a lattice isomorphism = : (SUB(FE),c) — (CRI(E), <) given by

=:F e Z(F),

with inverse given by

A~

—_
—

—

. I > 5pany., (imT) (I € CRI(A(E))).

A~

—_
—

—

PROOF. It is clear that = and = are inclusion preserving. Since a poset isomor-
phism between lattices preserves the lattice strucure, once we have shown that = and
= are mutually inverse it will follow that they are lattice isomorphisms.

Let F be a closed linear subspace of E and set G = Z(Z(F)). It is immediate
from the definitions that G < F. Moreover, given x € F', by considering x ® A for
some A € E\{0} we see that € G. Hence F' = G, and, since F was arbitrary, this
shows that = o = is the identity map.

Let I be a closed right ideal in A(E), and set F' = 2(I). Tt is clear that I < X (F).
By Lemma 3.2.1 the finite-rank operators intersect Z(F') densely, so in order to
check the reverse inclusion it is sufficient to show that F(E) n Z(F) < I. Let

T € F(E) n Z(F). Then we can write T = ", z; ® \;, for some n € N, some
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x1,..., T, €ImT and some Aq,..., N\, € E'. Fixie {l,...,n}. Then x; € F so there
exists a sequence (y;) < spang;(imU) such that lim;_,, y; = z;. Moreover, for each
J we can write y; = szl + -+ S,g)zkj, for some k; € N, some Sy), e ,S,g) el
and some 21, ..., 2, € E. For each j, and each p =1,... k; we have (S,gj)zj> RN =
S;,(,j) o(z,®\;) € I. Hence y; ® \; € I for each j, so that, taking the limit as j goes to
infinity, x; ® \; € I. As i was arbitrary it follows that T" € I. Hence we have shown

that I = Z(F'). As I was arbitrary, we have shown that ZoZ is the identity map. [J

Now we set out to characterise when A(FE) is topologically right Noetherian, for

E a Banach space as in Theorem 3.5.10.

LEMMA 3.5.11. Let E and = be as in Theorem 3.5.10. Let Ty, ..., T, € A(E) and

let I = TVA(E)+ -+ T,A(E). Then

A~

—_
—

—

(I) =imT) + --- +1imT,,.

PROOF. Since each T; (i = 1,...,n) belongs to I we have imT} + -+ +im7,, <
E(I). Let 2 € 2(I), and let & > 0. Then, by the definition of Z, there exist m € N,

Si,...,Sn€1,and yq,...,yn, € E such that
lz — (Siyr + - + Sym) | < e
Since T1A(E) + -+ + T, A(E) is dense in I, we may in fact suppose that
Sty Sme MAE) + -+ + T, A(E),

so that Siy; + -+ + Spym € imTy + --- +1m7T,. As € was arbitrary we see that

rzeimTy +---+im7T,. The result now follows. O

LEMMA 3.5.12. Let E be a Banach space, and let F' be any separable, closed linear
subspace of E. Then there exists an approximable linear map from E to F with dense

range.
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PROOF. We may suppose that F is infinite-dimensional. Let (z,) < F' be dense.
Since F is infinite-dimensional, there exists a normalised basic sequence (b,) < E.
Let (8,) < E' be a bounded sequence satisfying (b;, 3;) = 1;; (i,j € N), which we
can obtain by taking the coordinate functionals for (b,) and extending them using
the Hahn-Banach Theorem. Define T: E — F by T = > 272, ® 3,. Then T
is a limit of finite-rank operators, and T'(2'b;) = xz; (i € N) implies that 7" has dense

range. 0

THEOREM 3.5.13. Let E be a Banach space such that A(E) has a right approzimate

identity. Then the following are equivalent:

(a) the Banach algebra A(E) is topologically right Noetherian;
(b) every closed right ideal of A(E) is topologically singly-generated;

(c) the space E is separable.

PROOF. It is trivial that (b) implies (a). We show that (a) implies (c). Suppose
that A(FE) is topologically right Noetherian. Then A(FE) = Z(FE) is topologically

finitely-generated so that, by Lemma 3.5.11, there exist n € N and T3, ..., T, € A(F)

such that £ =1im 7} + --- 4+ im7,,. Since each operator T; (i = 1,...,n) is compact,
its image is separable, and hence so is F.

Now suppose instead that F is separable, and let I be a closed right ideal in A(E).
Then, by Theorem 3.5.10, [ = Z(F) for some F' € SUB(FE). By Lemma 3.5.12 there

exists T € A(E) with imT = F. By Lemma 3.5.11 we have = <TA(E)) —imT = F,

so that, by Theorem 3.5.10, I = Z(F) = TA(FE). Since I was arbitrary, this shows
that (c) implies (b). O

Remark. Consider K(¢1). Of course, (')’ =~ ¢ which has BAP by |90, Example
5(a), Chapter II E|, so that X(¢') has an approximate identity by Theorem 1.2.1(ii).
By Theorem 3.5.9 and Theorem 3.5.13 K(£1) is an example of a Banach algebra which

is topologically right Noetherian, but not topologically left Noetherian.
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3.6. Left Ideals of B(FE), Closed in Various Topologies

In this section we consider left ideals of the Banach algebra B(FE), for E a Banach
space, which are closed in either the strong operator (SOP) topology or, in the case
that B(E) is a dual Banach algebra, the weak*-topology. We first classify the SOP-
closed left ideals of B(E), for E an arbitrary Banach space (Theorem 3.6.2), and
show that SOP-topological left Noetherianity of B(F) is equivalent to asking that
every closed linear subspace of E can be realised as the intersection of the kernels of
finitely many bounded linear operators on E (Corollary 3.6.5). We then recall that
B(E) is a dual Banach algebra whenever F is reflexive, with predual E®FE', and we
observe that, when E also has the approximation property, results from Section 3.4
and Section 3.5 give a classification of the weak*-closed left ideals of B(E) (Theorem
3.6.7). Finally, we give an example of a dual Banach algebra of the form B(FE) which
fails to be weak*-topologically left Noetherian (Theorem 3.6.12).

We begin with our classification of the SOP-closed left ideals in B(E) which states

that, given a Banach space E, these left ideals are exactly the left ideals
J(F)={TeB(E):kerT o F}

defined in (3.9), as F' runs through the closed linear subspaces of F. It is routinely
checked that each set #(F) is a left ideal, and it is SOP-closed since it is the inter-
section of the kernels of the SOP-continuous maps B(F) — E given by T'— Tz, as

runs through the elements of F.

LEMMA 3.6.1. Let E be a Banach space. Let I be a left ideal in B(E), and let
F =\ kerT. Then I acts algebraically irreducibly on E/F via

T - (z+F)=Tz+F (Tel).

PROOF. The action is well defined since, by definition, ker T" o F' for every T € I.

Let x € E\F. Then, again by the definition of F', there exists 7" € I such that Tz # 0.
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Let y € E, and let n € E’ satisfy (Tx,n) = 1. Define S = (y®n) o T € I and observe
that Sz = y, and hence S- (v + F') = y + F. It follows that the action of I on E/F

is algebraically irreducible. 0

THEOREM 3.6.2. Let E be a Banach space. The map Q2 from SUB(E) to the set
of SOP-closed left ideals of B(E) given by

Q: F— #(F) (FeSUB(ER))
15 a lattice anti-isomorphism, with tnverse given by

Q: I (ke T

Tel

for I a SOP-closed left ideal of B(E).

PROOF. We write ¢q: E — E/F for the quotient map. It is clear that Q and QO
are anti-homomorphisms of posets. Hence once we have show that they are bijections
it will follows that they are lattice anti-isomorphisms. We first show that QoQis
the identity map. Indeed, let F' € SUB(FE). Then by definition F' < ﬂTej(F) ker T
Suppose that x € E\F, and let n € (E/F) satisty (¢(x),n) = 1. Then z®q'(n) € S (F)
but

[z®d (n)](z) =z # 0,

so that z ¢ ﬂTGy(F) ker T'. Hence we must have F = ﬂTe](F) kerT', as required.

It remains to prove that €2 o Q is the identity map. Let I be a SOP-closed left
ideal in B(E), and let F = (., kerT. We must show that I = #(F). Clearly
I < J(F), so that it remains to show the reverse inclusion. To this end let S € .7 (F)
be arbitrary. We shall show that there exist nets (R,) < F(F) and (7,,) < I such that
limgop, o Ry 0T, = S. The indexing set of the nets will be the collection of non-zero,
finite-dimensional subspaces of E/F.

Let a # {0} be a finite-dimensional subspace of E/F, of dimension n say, and let

Z1,..., %2, be such that {z; + F,..., z, + F'} is a basis for a. Since, by Lemma 3.6.1,
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I acts irreducibly on E/F, by (62, Theorem 4.2.13] there exists T, € I such that
{To(z1) + F,...,To(2,) + F} is linearly independent. By the Hahn-Banach Theorem

there exist 741, ..., Man € B’ such that

<Tazi7 77a,j> = 11’7]' (Z,j = 1, e ,n).
Define
Z S Zz ® Nayi-
i=1

Then (Ryo0T,)(z) = S(z) (i =1,...,n). Since ker R, 0T, ker S o F, it follows that
(312) (Ra o Ta)|q,1(a) - S’qfl(a) .

Let z € E and let ap = span{z+ F'}. Then whenever a > «y is a finite-dimensional
linear subspace of E/F we have (R, o T,)(z) = S(z) by (3.12). Hence lim, (R, ©
T.)(z) = S(z), so that S = limgop, o(Ra © Ty) € I, as required. O

Given a Banach space FE, it seems a natural question to ask which of the closed
linear subspaces of E can be realised as the kernel of some bounded linear operator
E — E. We show that this question can be rephrased in terms of the SOP-closed
ideals of B(FE).

LEMMA 3.6.3. Let E be a Banach space, let n € N, and let Ty, ..., T, € B(E). Set

I =BE) + -+ B(E)T,
Then (\pe; ker T = (), ker T;.

PROOF. Let F' = (), kerT; and let G = [\  ker T. Since each T; (i = 1,...,n)
belongs to I, F' © (. Since evaluation at any point in E is SOP-continuous, ker 7" > F'

for each T € I, so that F' = G. O



3.6. LEFT IDEALS OF B(F), CLOSED IN VARIOUS TOPOLOGIES 112

PROPOSITION 3.6.4. Let E be a Banach space and let F' be a closed linear subspace

of E. The left ideal Z(F') is SOP-topologically generated by operators 1y, ...,T, €
B(E) if and only if (;_, kerT; = F.

PROOF. First suppose that Z(F) = B(E)T) +--- + B(E)THSOP. By Theorem

3.6.2, F = ﬂTeﬂ(F) ker T', so that, by Lemma 3.6.3, F' = (;_, ker 7.
Now suppose instead that we have T1,...,T,, € B(E) with ();_, ker 7; = F. Then

J:=BE) + -+ B(E)TnsoP is a SOP-closed left ideal with (., kerT = F, by
Lemma 3.6.3. Hence, by Theorem 3.6.2, J = .#(F), as required. O

We now give our characterisation of SOP-topological left Noetherianty of B(E).

COROLLARY 3.6.5. Let E be a Banach space.

(i) The Banach algebra B(E) has the property that every SOP-closed left ideal
1s SOP-topologically generated by a single element if and only if every closed
linear subspace of E can be realised as the kernel of some operator in B(E).

(ii) The Banach algebra B(E) is SOP-topologically left Noetherian if and only if,
given a closed linear subspace F of E, there existn € N and Ty, ..., T, € B(E)
such that (;_, kerT; = F.

Proor. This follows from Proposition 3.6.4 and Theorem 3.6.2. 0

We now turn our attention to reflexive Banach spaces E and consider the Banach
algebra B(F) with its weak™-topology. First of all we observe that our earlier work
gives us many examples of these algebras which are weak™-topologically left and right

Noetherian.

PROPOSITION 3.6.6. Let E be a separable, reflexive Banach space with the approx-
imation property. Then the dual Banach algebra B(E) is weak*-topologically left and

right Noetherian.

PROOF. By Corollary 3.4.9, the Banach algebra A(E) = K(FE) is an Ulger algebra

for such Banach spaces. Hence, by Proposition 3.4.12, its multiplier algebra, which
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may be identified with B(E), is weak*-topologically left Noetherian whenever K(E) is
|-|-topologically left Noetherian. Since K(E) is an Ulger algebra it has an approximate
identity %, so that it is |- |-topologically left Noetherian whenever E’, or equivalently E,
is separable by Theorem 3.5.9. Similarly, B(F) is weak*-topologically right Noetherian
by Theorem 3.5.13. 0

Remark. We observe that this corollary cannot be strengthened to an “if and
only if” statement because B(H) is always weak*-topologically left Noetherian for

any Hilbert space H, as is any von Neumann algebra [83, Proposition 3.12].

Our earlier work also allows us to classify the weak*-closed left and right ideals
for these algebras. We note that for any reflexive Banach space F, possibly without
the approximation property, and for any closed linear subspace F' < E the left ideal

e (F') is weak™*-closed since we have
Ism(F) ={z@\:zeF, \e B’}

where £ ® A denotes an element of the predual EQE’. Similarly we have
Rpm)(F)={z@\:xe E, e F'}

so that these right ideals are weak*-closed.

THEOREM 3.6.7. Let E be a reflexive Banach space with the approximation prop-
erty. Then the weak™-closed left ideals are exactly given by Ipm(F), as F runs
through SUB(FE). The weak*-closed right ideals are given by Zp)(F), as F runs
through SUB(E).

2Alternatively this can be seen directly as follows: since E has is reflexive with AP, it has BAP,
implying that E’ has BAP. Now we may apply Theorem 1.2.1



3.6. LEFT IDEALS OF B(F), CLOSED IN VARIOUS TOPOLOGIES 114

PROOF. By Corollary 3.4.9, K(E) is a strongly Ulger algebra for such Banach
spaces. Hence, by Proposition 3.4.15, there is a bijection A from the set of weak*-

closed left ideals of B(F) to CLI((FE)) given by
A: T+ I nK(E).

For each F' € SUB(F), the ideal Sz(g)(F) is weak*-closed by the remarks preceding

the theorem. Clearly
) (F) 0 K(E) = I (F)  (F e SUB(E)),
so that, by Corollary 3.5.5, the map A is surjective when restricted to the set
{Is(p) (F) - F e SUB(E)}.

Since A is a bijection, this forces this set to be the full set of weak*-closed left ideals
of B(E). This concludes the proof of the result about weak*-closed left ideals.

A similar argument, using Theorem 3.5.10, gives the result about weak*-closed
right ideals. Alternatively, one could use the fact that B(E) and B(E’) are anti-
isomorphic as dual Banach algebras via T' +— T", so that the weak*-closed right ideals

of B(E) correspond the weak*-closed left ideals on B(E'). O

Remark. By Theorem 3.6.2 and the previous theorem, if F is a reflexive Banach
space with AP, then the weak*-closed and SOP-closed left ideals of B(E) coincide.
We know of no abstract proof of this fact that avoids simply classifying both types of

left ideals and observing that they are the same.

We now give an example of a dual Banach algebra of the form B(F) which is
not weak*-topologically left Noetherian. I must thank my doctoral supervisor Niels
Laustsen for pointing out this example of a Banach space, and for the subsequent
discussion that lead to the proof of Theorem 3.6.12. The Banach space in question

will be the dual of a certain space that we denote by Fy, which is an example due
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to Wark [86], who adapted a construction of Shelah and Steprans [78]. The Banach

space Ey is a reflexive Banach space with the property that it is non-separable but
(3.13) B(Ew) = Cidg,, + Z (Ew),

where 2 (Ew ) denotes the set of operators on Ey with separable range. We would

like to thank Hugh Wark for pointing out to us that the space Ey has AP.

LEMMA 3.6.8. The Banach space Ew has the approximation property. Hence so

does EY,, and moreover A(E},) is a strongly Ulger algebra.

PROOF. The space Ey has a transfinite basis, and as such has AP by [71]. To

see the second statement apply Corollary 3.4.9. U

We recall some notions from Banach space theory that we shall require in what

follows. Let E be a Banach space. A biorthogonal system in E is a set
{(xy,\y) :yel}c Ex E,

for some indexing set I', with the property that
(Lo, Ag)y =1ap (a,fel).

A biorthogonal system {(z,, A,) : v € I'} is said to be bounded if
sup{|zy[, [A ] : vy e T} < 0.

A Markushevich basis for a Banach space E is a biorthogonal system {(z,,\,) : v € I'}
in E such that {\, : v € I'} separates the points of £ and such that Span{z., : 7 €
'} = E. For an in-depth discussion of Markushevich bases see [42], in which a

Markushevich basis is referred to as an “M-basis”.
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LEMMA 3.6.9. Let E be a Banach space containing an uncountable, bounded bio-
rthogonal system. Then E contains a closed linear subspace F such that both F' and

E/F are non-separable

PROOF. Let {(z,,Ay):7v €'} be an uncountable, bounded biorthogonal system
in E. Since I' is uncountable, it has an uncountable subset I'y such that I'\I['y is also
uncountable. Set F' = Span{z., : v € I'y}, and set C' = sup{|z,|, |A\,| : 7 € I'}. The

subspace F' is non-separable since {x, : v € 'y} is an uncountable set satisfying

1

1
|za — wg = 6|<xa — 28, Aa)| = C (a,8€To,a# ).

Let ¢: E — E/F denote the quotient map. It is well known that the dual map
¢: (E/F) — FE'is an isometry with image equal to F*. Each functional \,, for
v ¢ Iy, clearly belongs to F'* so that, for each v € I'\I'y there exists g, € (E/F)’ such
that ¢'(g,) = A\, and such that ||g,| = |\,|. We now see that {g(z,) : v € '\I'¢} is an

uncountable 1/C-separated subset of F/F because

lo(za) — a(z)] > Sla(ra) ~ als), g0)] = 5o — 25,6 (92))

1 1
= 5|<l‘a — T8, Aa)| = C

It follows that F/F is non-separable. O

LEMMA 3.6.10. Let E be a non-separable, reflexive Banach space. Then E contains

a closed linear subspace F' such that both F' and E/F are non-separable.

PROOF. By [42, Theorem 5.1] every reflexive Banach space has a Markushevich
basis. By [41, Theorem 5] it follows that every reflexive Banach space has a bounded
Markushevich basis, so that, in particular, £ has a bounded Markushevich basis, say
{(z4, fy) : 7€ T'}. (Please note that a flawed proof of this theorem was given in [66]
and [42].) Since, by the definition of a Markushevich basis, span{z, : v € '} = E,

and F is non-separable, the set {(z, f,) : 7 € I'} must be uncountable. In particular
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this set is a bounded, uncountable biorthogonal system in E, so the result now follows

from Lemma 3.6.9. ]

PROPOSITION 3.6.11. Let F' be a subspace of Eyw with the property that both F

and Ew /F are non-separable. Then F cannot be written as imTy + - -+ +1im T, for

anyneN and Ty, ..., T, € B(Ew).

PROOF. Assume towards a contradiction that there exists n € N and there ex-

ist T,...,T,, € B(Ew) such that FF = im7Ty +--- +im7,,. By (3.13) there exist
ay,...,a, € Cand 5,...,S, € Z(Ew) such that

ﬂIOéZIdEW“r‘SZ (Z:]_,,TL>

If every «; equals zero, then F' = im S + - - - 4+ im S,,, which is separable, contradicting
our assumption on F. Hence, without loss of generality, we may assume that a; # 0.
Let x € Ey. Then Tix = ayx + Sz, implying that

1 _
x=—(Thx— Six) e F +im 5.
aq

As x was arbitrary, it follows that Ey, = F + im S7, so that

(F + im Sl) im Sl
Ew/F = >~ .
w/ F (im Si N F)

This implies that Eyy /F is separable, and this contradiction completes the proof. [J

We can now prove our theorem.

THEOREM 3.6.12. The dual Banach algebra B(EY;,) is not weak*-topologically left

Noetherian.

PROOF. Let F' be a closed linear subspace of Ey such that both F' and Ey /F are
non-separable, which exists by Lemma 3.6.10. Observe that, .7 (F'1) is a weak*-closed
left ideal of B(EY; ) by Lemma 3.6.8 and Theorem 3.6.7. We shall show that this ideal

fails to be weak*-topologically finitely-generated. Assume towards a contradiction
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that there exist n € N and T, ...,T, € B(E},) such that

w*

I(FY) = B(EW)Ty + -+ B(Ey)T, .

Using an almost identical argument to that given in the proof of Lemma 3.6.3, it is

then easily checked that

ﬂ kerT = ﬁkerTi.
i=1

Tes (FL1)
This implies that F*+ = (., kerT; (by, for example, Theorem 3.6.2). When we

identify EY, with Ey, this is equivalent to the statement that

F=imT{+ - +im7T},

by (3.10) and Mazur’s Theorem. However, this cannot occur by Proposition 3.6.11.
U

Remark. This is the only example that we know of a dual Banach algebra which
is not weak*-topologically left Noetherian. It would be interesting to know if there

are examples of the form M(G) or B(G), for a locally compact group G.



CHAPTER 4

The Radical of the Bidual of a Beurling Algebra

4.1. Introduction

In this chapter we study the Jacobson radical rad (¢}(G,w)”,[]J), for G a discrete
group, and w a weight on G. The chapter is based on [89]. The focus will be on
the cases where either w = 1, in which case we are in fact studying the bidual of the
group algebra £!(G), or where the weight is non-trivial but G = Z. Our main results
will be solutions to two questions posed by Dales and Lau in [23].

The study of the radicals of the biduals of Banach algebras goes back at least to
Civin and Yood’s paper [16|, where it was shown that if G is either a locally compact,
non-discrete, abelian group, or a discrete, soluble, infinite group, then rad (L1(G)") #
{0}. Civin and Yood’s results have since been extended to show that rad (L1(G)") is
not only non-zero, but non-separable, whenever G is discrete and amenable (|36], [64,
7.31(iii)]) or non-discrete [37]. The study has not been restricted to those Banach
algebras coming from abstract harmonic analysis. One particularly striking result is a
theorem of Daws and Read [29] which states that, for 1 < p < o0, the algebra B(¢?)"
is semisimple if and only if p = 2.

A study of rad (¢(G,w)”) for G a discrete group and w a weight on G was un-
dertaken by Dales and Lau in [23]. In the list of open problems at the end of their
memoir the authors ask whether ¢1(Z,w)” can ever be semisimple [23, Chapter 14,

Question 6]. In Section 4.3 we shall prove that the answer to this question is negative:
THEOREM 4.1.1. Let w be a weight on Z. Then rad (¢'(Z,w)") # {0}.

A key observation of Civin and Yood (see [16, Theorem 3.1]) is that, for an

amenable group G, the difference of any two invariant means on £*(G) always belongs

119
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to the radical of ¢!(G)”, and this idea is what lies behind many of the subsequent
results mentioned above. Note that the set of invariant means on an infinite, amenable
group G is known to have cardinality 22 [64, Corollary (7.8)]. Dales and Lau
developed a weighted version of this argument in |23, Theorem 8.27|, and invariant
means are also at the centre of our proof of Theorem 4.1.1.

In each of the works [16], [36] and [37], whenever an element of the radical of
the bidual of some group algebra is constructed it is nilpotent of index 2. This is an
artifact of the method of invariant means. Moreover, it follows from |23, Proposition
2.16] and [23, Theorem 8.11] that, for a discrete group G, if w is a weight on G such
that ¢1(G,w) is semisimple and Arens regular, then rad (¢}(G,w)")™? = {0}. To see
that this is a large class of examples consider |23, Theorem 7.13| and [23, Theorem
8.11]. In [23, Chapter 14, Question 3|, Dales and Lau ask, amongst other things,
whether or not we always have rad (L'(G)”)=? = {0}, for G a locally compact group.
It also seems that until now it was not known whether or not rad (L (G, w)") is always
nilpotent, for G a locally compact group and w a weight on G, although there is an
example of a weight on Z in [23, Example 9.15| for which this radical cubes to zero,
but has non-zero square. In Section 4.4 we shall answer both of these questions in the

negative by proving the following:

THEOREM 4.1.2. Let G = @ ,Z. Then rad ((*(G)") contains nilpotent elements

of every index.

Here we understand @;°,Z to consist of integer sequences which are eventually zero,
so that our example is a countable abelian group.

We note that by a theorem of Grabiner [35], Theorem 4.1.2 implies that the
radical of £1(®,Z)" contains non-nilpotent elements. In Section 4.5, we obtain a

similar result on Z, but this time involving a weight.

THEOREM 4.1.3. There exists a weight w on Z such that rad (('(Z,w)"”) contains

non-nilpotent elements.
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In the light of Theorem 4.1.2, it would be interesting to ask whether or not there
exists any locally compact group G for which rad (L'(G)")=? = {0}. We do not know

of such a group, and we are unable to say whether or not this happens for G = Z.

4.2. Repeated Limit Notation

In this short section we fix some notation relating to repeated limits. This will be
useful to us in this chapter, for instance, when we are considering powers of some
element of a bidual of a Banach algebra, which has been defined as the weak*-limits
of some net in the Banach algebra itself. Let X and Y be topological spaces, let I be
a directed set, and let U be a filter on I. Let (2,)qer be a net in X, let r € N, and let
f: X" =Y be a function. Then we define

g]‘i_{rzll (r)f('xal’ R 7$a7‘) = O[lliglu‘ : ‘C\(ljgu ('xal’ tet 7:5@7‘)7

whenever the repeated limit exists. We define

lim sup (T)f(xal, ce Za,)
a—U

analogously. Suppose now that we have two directed sets I and J and two filters:
Uon Il and Von J. Let (z4)aer and (yg)ses be two nets in X, let r € N, and let
f:X?* — Y. Then we define

Q—}}%—»v (r)f(‘rau Yy Lags yﬁr) -

lim lim --- lim lim f(z T
an—U BV -y Brﬂvf< a1y Y61 y awyﬁr)a

whenever the limit exists. It is important to note that the choice of directed set in the
above repeated limit alternates. In expressions of the form limg, ..o ™ f (70, ..., ZTa,)

the symbol ‘o0’ is understood to represent the Fréchet filter on the directed set.
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4.3. (Y(Z,w)" is Not Semisimple
In this section we shall prove Theorem 4.1.1. Throughout w will be a weight on Z,
and we shall write A, = (}(Z,w). We shall write p, = lim,_, wy™ and recall that
P = inf ey w " [19, Proposition A.1.26(iii)|]. In an abuse of notation, we shall write

1 € £*(Z) for the sequence which is constantly 1. Note that this is the augmentation

character (see Section 2.1) when regarded as an element of A/, We define
I,={Ae Al :6,0N=A (neZ), (A 1)=0}.

By [23, Proposition 8.23| I, is an ideal of A’

" satisfying IZ? = {0}, so that I, <
rad (A”). Our strategy will be to reduce to a setting in which we can show that
I, # {0}. Our argument is an adaptation of [23, Theorem 8.27|.

Let A € (*(Z,1/w)’. We say that A is positive, written A > 0, if (A, f) = 0
whenever f >0 (f € £*(Z,1/w)), and we say that A is a mean if A = 0 and [|A|| = 1.

We say that a mean A € (*(Z,1/w) is an invariant mean if §,[JA = A (n € Z).

LEMMA 4.3.1. Let w be a weight on Z and let A € {*(Z,1/w)" be positive. Then
[A] = <A, w).

ProoF. This follows by considering the positive isometric Banach space isomor-
phism T: (*(Z,1/w) — L*(Z) given by T'(f) = f/w (f € £*(Z,1/w)), and then using
the facts that the formula holds in the C*-algebra ¢*(Z) and that T'(w) = 1. O

In what follows, given £ N we denote the complement of E by E°.

LEMMA 4.3.2. Let w be a weight on Z, and suppose that p, = 1. Then there exist at
least two distinct invariant means A and M on (*(Z,1/w) such that (A, 1) = (M, 1).

PROOF. Since inf,cy Wi = 1, Lemma 2.6.2(i) implies that the sequence (w,,)nen
is not tail-preserving. Hence, by Proposition 2.6.1, there exists a strictly increasing

sequence (ny) of integers such that ng = 0,n; = 1 and such that

(4.1) ,}i_{rolownk/(wg+---+wnk) =0.
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(In fact, an inspection of the proof of Lemma 2.6.2(i) shows that this fact follows
directly from the calculation performed there, and so we do not really need Proposition

2.6.1 here). By passing to a subsequence if necessary we may suppose that
klim (ng+1)/(wo + -+ + wn,)
—0

exists.
Set C, = wp + - -+ + wy,,, and define Ay, = Cik(do + -+ 0y, ); we regard each Ay as

an element of A”. Notice that, for each fixed i € N, we have
(4.2) lim C;/Cy = 0.
k—00

We shall first show that the sequence (A;) does not converge when considered as a
sequence in A” with the weak*-topology. This will then allow us to use two different
ultrafilters in such a way as to obtain distinct limits of (Ax), and these limits will
turn out to be our invariant means. To achieve this, we shall inductively construct a

function ¢: Z — C and choose non-negative integers

S1 <t <8y <ty < oo <8 < g <

such that

1 3 .
(13) Aol <3 KA, > 5 GeN)
and
(4.4) 0<9Y()<w;+1 (ieZ).

Since (4.4) ensures that ¢ € (*(Z,1/w), this will indeed show that (Ay) is weak*-
divergent. We set s; = 0 and ¢; = 1, and define ¢ (i) = 0 (¢ < 0) and ¥ (1) = C, and

observe that this ensures that (4.3) holds for j = 1, and that (4.4) holds for all i < 1.
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Now assume inductively that we have found s; < t; < --- < s < t, and defined
Y up to ny, in such a way that (4.3) holds for j = 1,...,k, and such that (4.4) holds

for i < mny,. By (4.2), we may choose sg1 > t) such that

Ct,
C

Sk+1

1 _
< Z|<Atk> ¢>| 1;

we then define ¥(7) = 0 (ny, <1i < n,,,,), and note that (4.4) holds trivially for these

values of 7. Then
Ct,
C

Sk+1

1
(A )] = (A )] < 7

as required.

Again using (4.2), we may choose tj41 > si41 such that Cy,,, /Cy, | < 1/8, so that

w(nSkJrl + 1) +ooe w(ntk+1)
Ctk+1

>

ool 3

Set (i) = w; (ns,,, <1 <mny,,), and note that (4.4) continues to hold. Then

wns, , + 1)+ +wlng,,) Cs.,
’<Atk+17¢>‘ = = g = + C = <Ask+1>¢>
tet1 lkt1
7T 1 1 3
> _____ > —
8 4 4

The induction continues.

Let F denote the Fréchet filter on N. Let U be a free ultrafilter on N, and set
A = limy_y Ag (the limit being taken in the weak*-topology on A”). We have shown
that the sequence (Aj) is not convergent in the weak*-topology on A’ and so it
follows that there exists a weak*-open neighbourhood O of A such that F := {k e N :
A, € O} ¢ F. As E ¢ F, the set E€ is infinite, so that £ n A # J (A € F). Hence
there exists a free ultrafilter YV on N containing £E¢ and F. Let M = lim;_,,, A;. Since

E¢eV, we have E ¢V, so that A # M.
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Next we show that A and M are invariant means on £ *(Z, 1/w). Let f € {*(Z,1/w).
Then

(0 = Au Pl = (L) o Fle 1) = (F0) 4+ F(m)

1

= 1+ 1) = f0)
1

< @ Il w@w(n +w(0)),
k

which, by (4.1), tends to zero as k — co. Hence
51DA — A = lim (51DAI<: - Ak) = O,
k—U

and a similar calculation shows that d_;[JA = A as well. It follows that A is invariant.

That A > 0 is clear, and hence, by Lemma 4.3.1,
JA] = (A w) = lm (A ) = 1.

Hence A is an invariant mean, as claimed. The same argument shows that M is also
an invariant mean.

Finally, we calculate that
<A, 1> = hm<Ak, 1> = lim (nk + 1)/Ok = hm<Ak, 1> = <M, 1>,
k—-U k—o0 k—V

as required. O
We now prove the main result of this section.

PROOF OF THEOREM 4.1.1. Let p = p,,, and let v, = w,/p" (n € Z). Then v is a
weight on Z, and T': (f(n)) — (p"f(n)) defines an (isometric) isomorphism of Banach
algebras A, — A,. The weight v satisfies the hypothesis of Lemma 4.3.2, so that there
exist distinct invariant means A and M on A’ as in that lemma. Then (A —M, 1) = 0,
so that A — M e [,\{0}. Hence, by [23, Proposition 8.23|, rad (A7) # {0}, so that
rad (A]) # {0}. O
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Remark. A trivial modification of the proof of Theorem 4.1.1 shows that in fact

we also have rad (¢'(Z*,w)”) # {0} for every weight w on Z*.

Remark. Since A, is commutative, (A7, <) = (A”,[0)°P, and it follows that

rad (A7, O) = rad (A7, ), so that (A”, <) is never semisimple either.
4.4. The Radical of (! (®?,Z)"

In this section we prove Theorem 4.1.2. In addition we observe in Corollary 4.4.5 that
there are many non-amenable groups G for which rad (¢}(G)”) # {0}. Ideals of the

following form will be central to both of these arguments.

DEFINITION 4.4.1. Let G be a group, let §: (1(G) — ¢!(G) be a bounded algebra

homomorphism, and let J = £1(G)” be an ideal. We define
10,]) = {® e lYG)" : 6P = 0(0,)0P (s e G), 0"(P) e J}.

PROPOSITION 4.4.2. Let G,0 and J be as in Definition 4.4.1. Then I(0,J) is an
ideal in £1(G)".

PROOF. Let ® € I(0,J), and let s,t € G. Then
0:01(0,0P) = 01 = 0(6:1)IP = 6(35)0I0(6,) P = 6(0,)(6P).
By taking linear combinations and weak*-limits, we may conclude that
OIVP = 6(d,) V[P

for every ¥ € £1(G)” and every s € G. It is clear that §,[JPI¥ = 0(d,) APV for every
U e (1(G)". Since J is an ideal and 6" (®) € J, we have §"(¥[JP) = " (¥)10"(P) € J
and 0" (®P) = 0" (P)J0"(¥) € J for every ¥ € £1(G)". Finally, we note that I(6,.J)

is clearly a linear space. We have shown that 1(6,.J) is an ideal in ¢1(G)". O

LEMMA 4.4.3. Let G,0 and J be as in Definition 4.4.1. Then:
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(i) if e 1(6,J) and ¥ € (Y(Q)", then V[P = 6" (V)[1P;

(i) if J is nilpotent of index n, then 1(0,.J) is nilpotent of index at most n + 1.

PROOF. (i) This follows from the identity o, 1P = 6”(0,)[1P, and the fact that 6"
is linear and weak*-continuous.

(ii) Given ®q,..., P, € I(0,J), we have

Q10 - OPpy1 = 0"(P10- - - OP,,) OPp 41

=0"(®)0---[0"(P,)IPpy1 = 0

because 0"(®q),...,0"(®,) € J. As ®y,...,P,,1 were arbitrary, this shows that
1(6, J)B+D = {0}, O

The key idea in the proof of Theorem 4.1.2 is to use invariant means coming from
each of the copies of Z in the direct sum to build more complicated radical elements
in (Y(@®P,Z)". We shall use the following lemma. Recall that, for a group G with
subgroups N and H, where N is normal in G, we say that N is complemented by H if
Hn N = {e} and G = HN. In this case every element of G may be written uniquely
as hn, for some h € H and some n € N, and the map G — G defined by hn — h is a

group homomorphism.

LEMMA 4.4.4. Let G be a group with a normal, amenable subgroup N which is
complemented by a subgroup H. Let w: (Y(G) — £1(G) be the bounded algebra homo-
morphism defined by 7(0p,) = 0y (h€ Hyne N) and let v: £1(N) — £Y(G) denote the
inclusion map. Let M be an invariant mean on {*(N), and write M = "(M). Then

M satisfies:

(4.5) 0.OM = 7(6)00M (s € G);

(4.6) (M) = 6.

PROOF. For every n € N and every f € £1(N), we have §, = 1(f) = 1(d, * f), and
so, by taking weak*-limits, we see that &, J."(®) = "(6,[1®) for all ® € 1(N)”. An
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arbitrary element s € G may be written as s = hn for some h € H and n € N, and so

§,0IM = 6,036,000 (M) = 6,00 (6,00M)

= 500" (M) = 7 (8,)IM.

Hence (4.5) holds.

Define ¢g: ¢1(N) — £Y(N) by po: f+— {f,1)d. (f € £1(N)). Tt is easily verified
that mor = 1oy, and so " 0r” = 1" o pf). We also have @} (®) = (®,1)5, (P € L1(N)").
Hence

m'(M) = (7" 0 ) (M) = (" 0 ¢g)(M) = " ((M, 1)dc) = 6,
establishing (4.6). O

We have not seen in the literature any instance of a discrete, non-amenable group
G for which it is known that rad (¢!(G)”) # {0}. However the next corollary gives a

large class of easy examples of such groups.

COROLLARY 4.4.5. Let G be a group with an infinite, amenable, complemented,

[N

normal subgroup N. Then |rad (¢}(G)")| = 22

PROOF. Let Mi, My be two invariant means in £'(N)”, and let ¢ and 7 be as
in Lemma 4.4.4 . Then by that lemma ("(M; — Ms) € I(m,0), which is a nilpotent
ideal by Lemma 4.4.3(ii). The result now follows from the injectivity of /" and |64,
Theorem 7.26]. O

We now prove our main theorem.

PROOF OF THEOREM 4.1.2. Let G = @& ,Z, and, given ¢ € N, write GG; for the
i™ copy of Z appearing in this direct sum. Let m;: G — G be the homomorphism

which “deletes” the i*" coordinate, that is

e (nl,ng, .. ) — (nl, ce ,ni_l,O,niH, .. )
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Each map m; gives rise to a bounded homomorphism ¢!(G) — ¢!(G), which we also
denote by 7;, given by

mii [ ) f(8)0m  (felNG)).

seG
Similarly, we write ¢;: G; — G for the inclusion map of groups, and ¢;: £*(G;) — (1(G)
for the inclusion of algebras which it induces.

Define a sequence of ideals I; in ('(G)” by I; = I(m,0) and
Ij = I(mj, I;1) (5 = 2).

By Lemma 4.4.3(ii), each I; is nilpotent of index at most j + 1 and the strategy of
the proof is to show that the index is exactly j + 1.

Fix a free ultrafilter 4 on N. Given i € N and n € Z we write

0 = 80,00,

where n appears in the i place. Given j € N we define elements o, M; € £1(G)" to

be the weak*-limits o; = limy_ 0 and M; = limy_y M, i, where

1

k
M =767 (jkeN),
=1

x|

and .
ok =7 2 (09 69) (ke
i=1

We claim that, for each j € N, M; and o; satisfy:

(4.7) 0,(IM; = m;(65)IM; (s € G);
(4.8) 7 (M) = 6(0,0,..);
(4.9) i (0;) = oj and 7} (M) = M; (i # j);

(4.10) o; € I(m;,0).
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Since 7! (M) = M, and «! (0j) = o;x (k € N;i # j), (4.9) follows from the
weak*-continuity of 7j. We observe that M; is the image of an invariant mean on Z
under (7, so that we may apply Lemma 4.4.4 to obtain (4.7) and (4.8). Similarly, o;
is the image of the difference of two invariant means on Z under ¢;, so that Lemma
4.4.4 implies that d,[Jo; = 7;(6,)Jo; (s € G) and 7} (0;) = 0, so that (4.10) holds.

We demonstrate that
(411) O'1|:|O'2|:|"'|:|O'j 750 (jEN)
To see this, define h € {*(G) by

1 if n; >0 forall i e N
h(nl,ng,. . ) =

0 otherwise.

Clearly, we have
(4.12) (oig,h)y =1 (i,keN).
It is easily checked that

(4.13) (i(0s) * i(81), hy = (i), h)Cei(0e), B

for every s € G and t € G;: indeed, given s and ¢, observe that m;(d,) is equal to d,,
for some u € G with i*® coordinate equal to zero, whereas 1;(J;) is of the form 6,
for some v € G which is zero in every other coordinate. It follows that m;(ds) * ¢;(d;)
has the property that all of its coordinates are non-negative if and only if both 7;(d5)
and ¢;(9;) separately have this property. Hence (m;(d5) * ¢;(d;), hy = 1 if and only if
(mi(6s), hy = {1;(0;), hy = 1, and equals 0 otherwise. Equation (4.13) follows. This

equation implies that

(4.14) (il f) = uilg), hy = <m ), <ulg), by (f € €H(G), g€ £1(Gy)).
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Given i, k € N, the element o, belongs to the image of ¢;, and, together with (4.9),
(4.14) and (4.12), this allows us to conclude that, for all k4, ..., k; € N, we have

<01,k1 *O2k ¥ * Ok h>
= Tj(O1 * - * Oty ) * Ok, B
= (o * - 01k ) )Xo, 1)
= (M1 (O1 gy % % Ojapyy) * Oj—tgyys W) Ojpy, ) = -+

= <O-1J€1v h><02,k27 h> T <O-j7k'j’ h> = 1.

Therefore
<0‘1D0’2D‘ . 'DO'j, h> = gglz}{ () <0'1,k1 ®OQfy ¥ 00 * Uj,kj> h> =1.

Equation (4.11) follows.
We now come to the main argument of the proof. We recursively define A; € £1(G)”
by A1 = o1 and
Aj=MON_1+0; (j=2).

We shall show inductively that each A; satisfies:

(4.15) A e Ij;
(4.16) Aij = o1[oo]- - - (oj;
(4.17) ™ (Ag) = A (1> ).

Since by Lemma 4.4.3(ii) 79" = {0}, and by (4.11) 0y0oo- - Ho; # 0, this will
give the result. The base case of the induction holds by (4.10) and (4.9).

Now assume that the hypothesis holds up to j — 1. It follows from (4.10) and (4.7)
that d;(JA; = 7;(d5)JA; (s € G). Moreover, by (4.8), (4.10), and (4.17) applied to
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Aj_1, we have

(4.18) T (A;) = 7 (M;)Orf (A1) + 75 (o) = Ay,

J

so that, by the induction hypothesis, 77(A;) € I;_;. Hence (4.15) holds. We see that
(4.17) holds for a given i > j because it holds for each of M;,o; and A;_; by (4.9)

and the induction hypothesis. Finally, we verify (4.16):

ATV = 7(A)F0-DA; = ADYY0A,

J J J J

_ AJDE‘jl_l)DM]DAJ—l 4 AD(]_l)Daj — O—1|:|0-2D . 'I:‘O—j—lljo_j7

j—1

where we have used Lemma 4.4.3(i) and (4.18) in the first line, and the fact that
IJ-Dfl = {0} in the second line to get A?f{_l)DMjDAj_l = 0.
This completes the proof. O]
Remark. A simpler version of the above argument shows that £'(Z?)” contains a
radical element which is nilpotent of index 3, which is enough to resolve Dales and
Lau’s question of whether the radical of L(G)”, for G a locally compact group, always

has zero square [23, Chapter 14, Question 3|. Specifically, this may be achieved by

terminating the induction at j = 2, and otherwise making trivial alterations.
COROLLARY 4.4.6. The radical of ¢ (®,Z)" contains non-nilpotent elements.

PROOF. By a theorem of Grabiner [35], if every element of rad (¢1(®2,Z)") were
nilpotent, then there would be a uniform bound on the index of nilpotency. Hence,

by Theorem 4.1.2, rad (£!(®*,Z)") must contain non-nilpotent elements. O

4.5. A Weight w for Which rad (¢!(Z,w)") is Not Nilpotent

In this section we shall prove Theorem 4.1.3. We shall also prove a related result, as a
sort of warm up: namely Proposition 4.5.5, which states that, for every g € N at least

2, there is a weight w, on Z such that rad (¢*(Z,w,)") contains a nilpotent element
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of index exactly q. The proof of Theorem 4.1.3 does not rely on that of Proposition
4.5.5, although there are some common ideas involved.

Given a weight w on Z and 7 € N, we define Q" : 7" — (0,1] by

w(ng +ng +---+n,)

(r) NiyennyNy) =
2,7 ) w(ny)w(ng) - - w(n,)

(nl,...,nreZ)

(compare with [23, Equation 8.7]). Often we simply write Q) when the weight w is
clear. As in Section 4.3 we write A, = (1(Z,w).
Our main tool will be Proposition 4.5.1. Recall that we denote the unit ball of a

Banach space E by Bg.

PROPOSITION 4.5.1. Let w be a weight on Z and suppose that there is some se-

quence (ng) < Z such that

(4.19) lim inf lim sup " [© ™ (ng,, . .. ,nkr)]l/r =0.

7—00 k—00

Let ® be a weak*-accumulation point of {0,, /w(ny) : k € N}. Then ® € rad (A”)\{0}.

Furthermore, if there is some q € N such that

(4.20) limsup Q@ (ny,, ... ,ng) =0

k—o0

then the left ideal generated by ® is nilpotent of index at most q.

PROOF. There exists some free filter & on N such that

1
¢ = lim ——4,,,
k—U w(nyg)

where the limit is taken in the weak*-topology. Let W € Bys. Then there exists a net

(aq) in By, such that lim,+ o aq = ¥. Let A € By, . Then, for each r € N, we have
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g, * 0y, *---*aar*(sn S A
(4.21) (OB = lim 0[S “ o >‘

w(ng,) - w(ng,)
<aa1 *”'*a’ar*(snkl **6nkw>‘>‘

w(ng,) - w(ng,)

5nk1 +- g,

w(ng,) - - w(ng, )

k—o0
— limsup WQ (g, ... 0.
k—o0
Hence
11 /r r r . r r 1r
J@OO)T [ = sup K(VEB)T, WM < limsup O [QO (i)
)\EBAL' k—o0

and so lim, o ||(WCI®)Z" Y™ = 0 by (4.19). Therefore I € Q(A”). As ¥ was

arbitrary, it follows that ® € rad (A!). Moreover, ® # 0 because

e N\
(P,w) = llgrlll<w(nk)’w> = 1.

If, further, (4.20) holds, then (4.21) with r = ¢ implies that (¥[J®)2¢ = 0. This

completes the proof. O

Remark. Observe that, since w is submultiplicative, and ) takes values in [0, 1],

the formula Q@ < Q) holds pointwise whenever i < j. Hence (4.20) implies (4.19).

In their memoir [23], Dales and Lau put forward a candidate for a weight w such
that A” is semisimple. They attribute this weight to Feinstein. In light of Theorem

4.1.1 this cannot be the case, but Proposition 4.5.1 gives us a second way to see this.

PROPOSITION 4.5.2. Let w denote the so-called Feinstein weight, studied in |23,

Example 9.17]. Then rad (A!) # {0}.

PROOF. Let X = {+2* : k € N}, and recall that w is defined by w(n) = e/"x. Let

ny = 22F 4+ 2%2 4 ... 4 1, as in [23|. It was shown there that w(n,) = e**1. Let
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k1 = ko be natural numbers. Then

Mgy + Mgy = 2290 4o 4 2222 9 92 49
:22k1+'..+22k2+2+22k2+1+“._’_2

2 kitl —(ka+1 :
so that |ng, + np,|x < k1 + 1. Hence Q& (ng,, i) < 55 = ¢ *2™), and it

follows that limg, . limg, e 3 (ng,, nk,) = 0. Now apply Proposition 4.5.1. O

In Section 1.1 word-length of a group element with respect to a generating was
defined, and in Example 1.3.2 we described how a given generating set gives rise to
certain weights on the group via the associated word-length function. In what follows
we shall use infinite generating sets for Z to construct weights. In this context the
word-length of an integer n with respect to a (possibly infinite) generating set X < Z

is given by the formula
In|x = min{r ‘n = Zai% for some s1,...,s5,€ X,e1,...,6, € {il}} .
i=1

Recall that, for any generating set X — Z, the function n — e/”/x defines a weight on
Z.

Let ¢ € N. We now set about showing that there is a weight w, on Z such
that rad (A, ) contains a nilpotent element of index exactly ¢. Throughout we set
m =2(q—1), X, = {#m"* : k e N}, and n,(n) = |n|x, and wy(n) = ™™ (n € Z). We

also define a sequence of integers (si) by
sp=m*+m* 24 41 (keZ").

LEMMA 4.5.3. Let d be an integer with 1 < d < m — 1. The equation cm + ¢ =
d—m?, forc,d € {—(m—1),...,m—2,m—1}, has only the solution c = —(m—1),c =

d—m.

PROOF. (i) Suppose that ¢ and ¢ are integers satisfying cm + ¢ = d — m? which

lie between —(m — 1) and (m — 1). We have m? —d = |em + | < |ejm + (m — 1),
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which forces |¢| = (m — 1) (since otherwise |cjm + (m —1) < (m —2)m+m —1 =

m? — (m + 1) < m? — d), and, since ¢ must be negative, we have ¢ = —(m — 1). The

value of ¢ is then determined by the equation. 0
LEMMA 4.5.4. Given an integer 1 < d < q—1 and ky, ..., kg € N we have

Ng(Sky + -+ 8y) = k1 + -+ + kg + d.
PROOF. We shall assume that k; > ky > -+ > k,. Certainly
Ng(Sky + -+ + Sky) < Ng(Sky) + -+ ng(s,) < ki + -+ kg + d.

To get the lower bound we proceed by induction on k. In what follows we shall
interpret s_; = 0, and for the base of our induction we shall take all of the cases in
which ki, ..., kq € {—1,0}, each of which holds trivially.

Assume that ky > 0, ks, ..., kg = 0. Write
p
Sgy + o+ S, = chm“j,
j=1

for some natural numbers a; > ay > -+ > a,, and some non-zero integers cy, ..., ¢,
satisfying >37_, [¢j| = ng(sk, + -+ + s,). It follows from the minimality of >7_, |c;]
that ¢1,...,¢, € {£1,£2,...,£(m — 1)}. As s, + -+ + s, = d (mod m) we have
a, = 0. Suppose that ¢, = d. Then, as s, + -+ + sx, = d (mod m?), we must have

ap—1 = 2. Recall that we understand s_; = 0, and compute
1 =
2
Sky—1 0+ Spy—1 = ﬁ(skl + - F sy, —d) = E c;m® T,

j=1

so that, by the induction hypothesis,

p—1
Dllel= (k= 1) + -+ (ka— 1) + d,
j=1
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which implies that
P
Z >k D+ 4 ka—D)+d+d=k +-+kg+d

Now suppose that ¢, # d. Then, as sy, + -+ + s, = d (mod m?), we must have

ap,—1 = 1. Since ¢,-ym + ¢, = d (mod m?) and |c,_1m + ¢,| < m? — 1, we must have

. _ g .2
either cp-ym + ¢, =dor c,.ym + ¢, =d —m*.

In the case where c,_ym + ¢, = d we repeat the argument that we used when

cp = d to get ;
—
Dllel= (ki = 1)+ + (kg — 1) + d.
j=1

Then ¢,_1m + ¢, = d,c,—1 # 0 forces ¢,_1 = 1 and ¢, = d —m, so that |c,_1| + |c,| =

1+ m —d > d, since 2d < m by hypothesis. Thus
p
Z >k D+ 4 ka—D+d+d=k +-+kg+d
We now turn to the case where ¢,_1m + ¢, = d — m?, and compute
1
Shy_1 ot Spy1 = W<Skl o sy, —d)
— 1 p—2
Z me % + —(cp 1m+c, —d) Z cm®i 2

It follows that

p—2
(4.22) Dlel+ 1= (ki — 1)+ + (kg — 1) + d.

j=1
By Lemma 4.5.3 we have ¢,_1 = —(m — 1) and ¢, = d — m, so that |c,_1| + |¢,| =
2m —1—d. Since ¢ > 2, we have d < ¢ —1 < 2¢g—3 =m — 1, so that |c,_1| + |¢,| =

2m —1—d > d+ 1. Hence by (4.22),
p
Z > =D+ 4 (ka—D+d=1+(d+1) =k + -+ kg +d.

This completes the proof. O
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PROPOSITION 4.5.5. The Banach algebra A7, contains a radical element which s

nilpotent of index exactly q.

PROOF. Let ® be a weak™-accumulation point of {ds, /w,(sx) : k € N}. For each

j € N we have

qs; = (m — (¢ = 2))s;

=m¥t — (g =2)m¥ + m¥ T — (g —2)m¥ 2+ 4+ (m— (¢ 2)),

so that
ne(gs;) < G+1)+ G+ 1)(g—2)=0+1)(g—1),

and so that, for natural numbers &, > ... > k; > j, we have

Ng(Sky + -+ sk,) = 0g((8k, — 85) + -+ (8K, — 55) + ¢55)
< n‘J(Skl - 3j> +ee nq(skq - Sj) + nq(qu)

Sthi=g)+- 4 kg =7+ +1)g—1)

Using Lemma 4.5.4 to get w,(sx,) = €X' (i =1,...,q), we then have

€k1+"~+km—j+q—1

QW (sp, ..., 85,) < <e,

6k‘1+1 e ek‘q+1

which implies that
lim @WQ@ (s, ... ,Sk,) = 0.

k—o0

By Proposition 4.5.1 ® € rad (qu) and ®-7 = 0. However, by Lemma 4.5.4, we have

1
P — lim @V
< 7wq> El_l;Iz}{ wq(skl) ...wq(sk_q_l

) <65k1+“'+5kq71 ) wq>

ek1tket - tkg1+q-1

= lim (=~ =1
k—U ek1+l ... gkg—1+1

?
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where U is some filter satisfying ® = limy_,; 05, /w,(sk) in the weak*-topology, so that

dL=1) £ 0, as required. O

We now turn to our main example. The weight in Theorem 4.1.3 will be defined
as follows. We let
X, = {2k2;kez+},
set n(n) = |n|x,, and define our weight by w(n) = "™ (n € Z). We also define a

sequence of integers (ny) by
np =28 4+26-0° 4. 41 (keN).
LEMMA 4.5.6. We have n(n;) =k +1 (ke N).

PrROOF. We proceed by induction on k£ € N, the base case being trivial. Take
k > 1, and assume that the lemma holds for £ — 1. That n(ny) < k + 1 is clear from
the definitions, and so it remains to show that n(ng) = k + 1. Observe that, for all

k € N, we have

]{3—1)2 o k k‘2 k2
(4.23) k2 = 2 <2V

Assume towards a contradiction that n(ng) < k + 1. Then we can write n, =
b ;2% forsome p € N, ¢y,... ¢, € Z\{0}, and a4, . .., a, € Z" such that P el <
k + 1. We may suppose that a; > as > --- > a,. We first show that a; = k. If

a1 < k — 1, we find that

P 2
i=1

by (4.23), a contradiction. Similarly, if a; = k + 1, we have

N =

p
< (Z \cl-|> 2% < oD <

i=1



4.5. A WEIGHT w FOR WHICH rad (¢'(Z,w)") IS NOT NILPOTENT

p

22"

i=1

ng =

=2

> 207V (k- 1)20@ -V’

= (a1 +1— k)2 > 2. 98 5

p
> Jerf2 — <Z |ci|> 201" > gm? _ (f — 1)gl V"

140

where we have used (4.23) to obtain the second line. Hence in either case we get a

contradiction, so we must have a; = k, as claimed.

Observe that ¢; > 0, since otherwise

N

p p
Z W< =2 Y o2 < =28 4 (k- 1)267° <0,

i=2
Hence we have deduced that
2 2 2 P 2
Kty =k =28 4+ (cp — 1)28 + Zcﬂ“i,
i=2
which implies that

p
ng—1 = (¢ — 1)2’€2 + Z ciza?,
i=2

and this contradicts the induction hypothesis, since ¢; — 1+ >0, |¢;] < k.

LEMMA 4.5.7. Let j € N, and set r = r(j) = 221, Then, for all ky, ...

we have

e .

[Q (T)<nk1, Ce 7nkT)]1/r

N

PrOOF. First of all, we compute
J

J
n; = 22]+1§ 2(] i)? _ 2 22]+1+] 2ij+1
=0

1=0

J J
_ Z 22i272i+2j72ij+j2+1+z Z o(j+1-i)
i=0 i=0
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This implies that

J
) 1 )
) < 221 _ 22_7 o 1 <
n(rn]) ;} 3( ) T,
so that, for all k1,..., k. = j, we have

Nk, + -+ ne,) = nl(ng, —ny) + -+ (e, —ny) +rny]

Hence, by Lemma 4.5.6, we have

(r) 1r ety — (= 1)r /7
[Q r (nkl,..-,nkr)] < [ ek’l""l-”ekr—"_l ]

_ [ef(jfl)rfr]l/r _ efj’

as required. O

LEMMA 4.5.8. Fiz j €N, and set r = 2%+, Let J € N satisfy J > j and
2% >k +2r (k= ).
Then, for all ky = ky = --- = k. = J, we have
nng, +--+ng,) =k +ka+- -+ k. —rJ

PROOF. Note that, by our hypothesis on .J, whenever k > J we have 28" ~(¢+--1? >

rk + 2r, which implies that
(4.24) PN 3 I I N (S

We proceed by induction on k; > J, with the base case corresponding to the case
where k1 = J, and hence also ky = --- = k., = J. Therefore the base hypothesis

merely states that 7(rn;) = 0, which is true.
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Suppose that k; > J, and assume that the lemma holds for all smaller values of
ki = J. Assume towards a contradiction that there exist ko,...,k, € Z such that

k1> ky>--->=k, > J, and such that
nng, + -+ +mng,) <k +--+ k. —rl

Then we may write

p

2

N, + -+ ng = ZciZ“i
i=1

for some p € N, some ay,...,a, € Z*, and some cy,...,c, € Z\{0}, satisfying a; >

ag > --->apand Y |¢| <ky+---+ k. —rJ. Note that we have

P 2
1=2

We claim that a; = k;. Assume instead that a; = k; + 1. Then, using (4.24) and

(425) < (kl + 4k — TJ)Q(I% < k’17“2(a1_1)2.

(4.25), we have

> ey |29 —

P 2
i=1

P 2
=2

> 28 _ pf, 2001 5 pola—1)+1

2
> 2Rt > oy,

a contradiction. If, on the other hand, we assume that a; < k; —1, then (4.24) implies
that
P

Z C; 2(1’2

i=1

< (kg + - 4 k)20 D gy 20D <oy

a contradiction. Hence a; = kq, as claimed.

Let d € N be maximal such that k; = k;. We claim that ¢; > d. Firstly, if ¢; were
negative, we would have
P

Z ci2a?

1=2

p

2 2
ZCZQ% < —le +
i=1

< —2M 4 pk 2D <,
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by (4.24), a contradiction. Hence ¢; must be positive. Suppose that ¢; < d—1. Then,

using (4.24) to obtain the second line, we would have

P 2
=2

< Mgy o gy <Ny o+ Ny,

p
a2 < (d-1)2M + < (d — 1)24 4 gy 20017
i=1

again a contradiction. Hence we must have ¢; > d, as claimed.

We now complete the proof. We have

p
2 2
C12k1 + E Ci2ai =Nk, +---+ng
=2

T

Zdnkl +nkd+1 —i—---—l—nkr

= d2M g e g gy, T
which implies that

p
(¢1 — d)2M +Zci2“? = Npgy—1 + - Nyt + Ny + o+ N,

i=2
But
P
(cl—d)+2|ci| <(ki—1)+ -+ (kg—1) + kg1 + -+ k. — Jr,
i=2
which contradicts the induction hypothesis applied to k; — 1. O

COROLLARY 4.5.9. Fix j € N, set r = 227 and let U be a free ultrafilter on N.

Then limy,_; QT (ng,, ..., ng,) > 0.
PROOF. Let J be as in Lemma 4.5.8. Then, for all &1,...,k, > J, we have
N, + - +ng,) =k + -+ k. —rJ,

which, when combined with Lemma 4.5.6, implies that

- ekt thr—rJ 4D
r —r(J+

> — =
Q7 (g, -y, ) = ek1+1 ... gkrt1 ¢ =
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This implies the result.
We can now prove Theorem 4.1.3.

PROOF OF THEOREM 4.1.3. Let ® be a weak*-accumulation point of

{0n, /w(ng) : k € N}.

Then, by Proposition 4.5.1 and Lemma 4.5.7, ® € rad (A”).

Take j € N and set r = 227!, Let U be a filter on N such that ® is equal to the
weak™-limit limy_, &, /w(ng). Then, by Corollary 4.5.9,

1
O )y = lim () i
(@, w) ) <w mﬂ)-'-w(nkr)énk1+ i k’"’w>

= lim WQ®(ny,,...,ng) > 0.
k—U

Hence ®2" # 0. Since r — o0 as j — o0, it follows that @ is not nilpotent. O



CHAPTER 5

An Infinite C*-algebra With a Dense, Stably Finite

*-subalgebra

5.1. Introduction

In this Chapter we use a construction based on semigroup algebras to solve an open
problem in the theory of C*-algebras. The Chapter is based on [56].

Let A be a unital algebra. We say that A is finite (also called directly finite or
Dedekind finite) if every left invertible element of A is right invertible, and we say that
A is infinite otherwise. This notion originates in the seminal studies of projections
in von Neumann algebras carried out by Murray and von Neumann in the 1930s. At
the 22°¢ International Conference on Banach Algebras and Applications, held at the

Fields Institute in Toronto in 2015, Yemon Choi raised the following questions:

QUESTION 5.1.1. (i) Let A be a unital, finite normed algebra. Must its com-
pletion be finite?

(ii) Let A be a unital, finite pre-C*-algebra. Must its completion be finite?

Choi also stated Question 5.1.1(i) in [15, Section 6].

A unital algebra A is said to be stably finite if the matrix algebra M, (A) is finite
for each n € N. This stronger form of finiteness is particularly useful in the context of
K-theory, and so it has become a household item in the Elliott classification program
for C*-algebras. The notions of finiteness and stable finiteness differ even for C*-
algebras, as was shown independently by Clarke [17| and Blackadar [9] (or see [10,
Exercise 6.10.1]). A much deeper result is due to Rgrdam [70, Corollary 7.2], who
constructed a unital, simple C*-algebra which is finite (and separable and nuclear),
but not stably finite.

145
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We shall answer Question 5.1.1(i), and hence Question 5.1.1(ii), in the negative

by proving the following result:

THEOREM 5.1.2. There exists a unital, infinite C*-algebra which contains a dense,

unital, stably finite *-subalgebra.

Let A be a unital *-algebra. Then there is a natural variant of finiteness in this
setting, namely we say that A is *-finite if whenever we have u € A satisfying u*u = 1,
then uu* = 1. However, it is known (see, e.g., [69, Lemma 5.1.2|) that a C*-algebra
is finite if and only if it is *-finite, so we shall not need to refer to *-finiteness again.

The chapter is organised as follows. Section 5.2 contains some basic definitions
and facts that we shall require throughout. In Section 5.3 we give a proof of a folklore
result concerning free products of *-algebras for which there seems to be no self-
contained proof in the literature. Then, in Section 5.4, we apply this folklore result
to some examples that we shall need in the proof of our main result. The body of the

proof will be given in Section 5.5.

5.2. Preliminaries

Our approach is based on semigroup algebras. Let S be a monoid, that is, a semigroup
with an identity, which we shall usually denote by e. By an involution on S we
mean a map from S to S, always denoted by s — s*, satisfying (st)* = t*s* and

** =5 (s,t €5). By a *monoid we shall mean a pair (S5, =), where S is a monoid,

s
and = is an involution on S. Given a *-monoid S, the algebra CS becomes a unital
*_algebra simply by defining §* = §.« (s € §), and extending conjugate-linearly.

Next we shall recall some basic facts about free products of *-monoids, unital
*_algebras, and their C*-representations.

Let S and T be monoids, and let A and B be unital algebras. Then we denote
the free product (i.e. the coproduct) of S and T in the category of monoids by S =T,

and similarly we denote the free product of the unital algebras A and B by A+ B. It
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follows from the universal property satisfied by free products that, for monoids S and
T, we have C(S = T) = (CS) = (CT).

Given *-monoids S and T', we can define an involution on S = T" by
(s1t1 -+ Sptpn)* =trsry - t]s]

forn € Njs; € S,s9,...,8, € S\{e},t1,...,tn_1 € T\{e}, and t,, € T. The resulting
*_monoid, which we continue to denote by S = T, is the free product in the category
of *-monoids. We can analogously define an involution on the free product of two
unital *-algebras, and again the result is the free product in the category of unital
*-algebras. We then find that C(S * T') = (CS) = (CT') as unital *-algebras.

We shall denote by S, the free *-monoid on countably many generators; that is, as
a monoid S, is free on some countably-infinite generating set {¢,, s, : n € N}, and the
involution is determined by t* = s,, (n € N). For the rest of the text we shall simply
write ¢* in place of s,. We define BC' to be the bicyclic monoid {p,q : pg = e). This
becomes a *-monoid when an involution is defined by p* = ¢, and the corresponding
*-algebra CBC is infinite because d,0, = ¢, but 0,0, = d4p # Oe.

Let A be a *-algebra. If there exists an injective *-homomorphism from A into
some C*-algebra, then we say that A admits a faithful C*-representation. In this case,
A admits a norm such that the completion of A in this norm is a C*-algebra, and we
say that A admits a C*-completion. Our construction will be based on C*-completions

of *-algebras of the form CS, for S a *-monoid.

5.3. Free Products of *-algebras and Faithful States

In our main construction we shall want to take the free product of two unital *-
algebras admitting faithful C*-representations and know that this free product again
admits a faithful C*-representation. That this is true follows from a key folklore result
in the theory of free products of *-algebras. The purpose of this section is to outline

a proof of this result (Theorem 5.3.1 below).
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By a state on a unital *-algebra A we mean a linear functional j: A — C satisfying

{a*a,py = 0 (a € A) and {1,y = 1. It can be shown that a state p on a unital *-

algebra A is automatically *-linear, that is (a*, ) = la, vy (a € A). We say that a

state p is faithful if (a*a,p) > 0 (a € A\{0}). A unital *-algebra with a faithful state

admits a faithful C*-representation via the GNS representation associated with the
state.

We can now state the main result of this section.

THEOREM 5.3.1. Let Ay and Ay be unital *-algebras which admit faithful states.
Then their free product Ay = As also admits a faithful state, and hence it has a faithful

C*-representation.

This result is folklore, and can be deduced from material in [6]; indeed this is
where our argument originates. A more general result can be found in [12, Section 4].
Although the result is well known, we do not know of any source in the literature in
which the proof is explicitly given, and so we provide a proof in this section for the
convenience of the reader.

The free product of two unital *-algebras is best defined as another *-algebra
satisfying a certain universal property. However, in order to show that such a *-
algebra exists one must give an explicit construction of this object. This construction
is briefly outlined in the proof of Theorem 5.3.1 below (see, for example, (5.2)),
although we do not show that this object satisfies the universal property, which is
standard; in the proof we always work with the explicit construction, rather than the
universal property.

One may also define the free product in the category of unital C*-algebras, as
in |85, Definition 1.4.1]. However, it is not clear a priori that the algebraic free-
product of two unital pre-C*-algebras embeds into the C*-algebraic free product of
their completions, so we cannot simply appeal to this result in the main construction
of this chapter. Indeed, the special case in which both pre-C*-algebras are in fact

C*-algebras, as well as related questions, seems to have caused some confusion [1].
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This is in part our motivation for setting out the proof of Theorem 5.3.1 here. As
it happens, it can be shown using Theorem 5.3.1, and Lemma 5.4.2 given below,
that the algebraic free product of two unital pre-C*-algebras admits a faithful C*-
representation, and hence embeds into the C*-algebraic free product, although we
shall not give the details of the argument here.
The proof of Theorem 5.3.1 itself is not long, but relies heavily on some standard
constructions in the theory of free products (see, e.g., [85, Chapter 1]), which we shall

include in order to make the proof reasonably self-contained.

PROOF OF THEOREM 5.3.1. We may suppose that A; and A, both have dimen-
sion at least 2 (because A+ C =~ A =~ C+ A). For j € {1,2}, take a faithful state p,
on A;, and let m;: A; — B(H;) be the GNS representation of A; associated with p;,
where Hj is the underlying Hilbert space. Since p; is faithful, this representation
admits a separating unit vector §; € H;. Let H; be the orthogonal complement of &;
in Hj, and let A7 = ker p1;, so that H; and Aj are closed subspaces of codimension 1
in H; and Aj, respectively. (Note, however, that A3 is not a subalgebra unless y; is

multiplicative.) The GNS construction implies that
(5.1) AS ={ae Aj:mi(a) e Hy}.

For m € N, let A;(m) be the tensor product of m factors alternating between AjJ
and A3, beginning with the opposite index of j, and define H;(m) analogously us-
ing Hy and H3, so that

Ajm) = 2@ A;® - @AY,y  and  Hym)=HQH;® - ® Hj;,,
where

N 1 ifyj=2 g if mis even

j= and i(j,m) =

2 ifj=1 7 if mis odd.
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We can then state the standard construction of the free product of A; and A, as
follows:

(5.2) A=Ay =Cle® @(Al(m) ® As(m)),

meN

where @ denotes the direct sum in the category of vector spaces (so that elements
are sequences with only finitely many non-zero terms). We identify C1 and A;(m)
(where j € {1,2} and m € N) with their natural images inside A; * Ay and write P
and Pj,, respectively for the canonical projections onto them. A key property of the

multiplication on A; = Ay is that
(5.3) ab=a®be Aj(m+n) (jef{l,2}, myneN,ae Aj(m), be Aj;m)(n)).

(Note that the condition that b € A;;,n)(n) ensures that the last tensor factor of a
and the first tensor factor of b come from distinct subspaces A7, so that a ® b belongs
to Aj(m + n), as stated.)

The free product A; = A, has a standard *-represention on the Hilbert space

H=CO® (—D(Hl(m) @ Hy(m)),
meN
where () is a chosen unit vector (conventionally called the vacuum vector), and @ de-
notes the direct sum in the category of Hilbert spaces (so that elements are sequences
whose terms are square-summable in norm); again we identify CS2 and H;(m) (where
J € {1,2} and m € N) with their natural images inside H and write )y and @), for
the canonical projections onto them.

To define the above-mentioned *-representation of A; * Ay on H, we require a
pair of unitary operators V;: H; ® H(j) — H, where j € {1,2} and H(j) denotes
the subspace CQ @ @,y H;j(m) of H. It suffices to say how V; acts on elementary
tensors of the form * ® y with x € H; and y € H(j). In turn, we need only consider

the case where x belongs to one of the two direct summands C¢; and H; of H; and
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y to one of the summands C$2 and H;(m), m € N, of H(j). These cases are specified
by:

4) Vi(z®y) =x®y e H; ® Hj(m) = H;(m + 1) for v € H} and y € H;(m).

We then obtain a unital *-homomorphism A;: A; — B(H) by the definition
Ajla) = Vi(mj(a) ® Ing))Vit (ae Ay, je{l,2}),

and finally the universal property of the free product implies that there is a unique
unital *-homomorphism m = A;*Ay: Ayx Ay — B(H) such that 7|4, = A; for j € {1,2}.

We are now ready to embark on the actual proof of Theorem 5.3.1. Our aim is
to show that the vacuum vector (Q is separating for the *-representation 7. Once we
have shown that, it follows that the map a — (w(a)2, 2y, where (-, )5 denotes the
inner product on H, is a faithful state on A; = A, and that the *-representation 7 is
faithful.

Observe that by applying (5.1) together with the above definitions we may deduce
that, for j € {1,2} and a € A5,

(5.4) m(a)Q = m;(a); € H} = Hj(l),

(5.5) m(a)y = mj(a)é; ®y € Hy(m + 1) (meN, ye Hj(m)).
We then use these identities to prove that

(56) W(G)Q = 7'(7(&1)53 ® T (ag)fj X Ti(5,m) (am)fi(jm) S Hj(m)

for j € {1,2}, me Nand a = a1 ® --- ® a,, € Aj(m). The proof is by induction
on m, with the base case (m = 1) already established by (5.4). Now let m > 2,

and assume inductively that the result holds for m — 1. Equation (5.3) implies that
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a=a(a®" - ®ay), so that

m(@)Q = m(a)m(a2 ® -+ ® a2 = m(a1)(7;(a2)§; @ @ 7Ti(3,m—1)<am)5i(§,m—1))

= m3(a1)&; @ mj(a2)&; @ -+ @ i(j,m) (@ )&ism)

by the multiplicativity of 7, the fact that 1(3, m —1) =i(j,m), the induction hypoth-
esis, and (5.5). Thus the induction continues.

Our next step is to show that, for each a € A; = As,
(5.7) Qo(m(a)?) = 7(Poa)Q? and Q;m(m(a)?) = 7(P;na) (j€{1,2}, meN).

Take M € N such that a = Pya + Z?:l Zn]‘le P; ma. The linearity of = implies that

m(a)Q = w(Pya)Q 22 Pjma)Q

where 7(FPpa)2 € CQ because 7 is unital, while (5.6) shows that m(P;,,a)Q2 € H;(m)
for each j and m. Hence (5.7) follows from the definitions of Qy and @ .

We can now verify that €2 is a separating vector for 7. Suppose that 7(a)Q = 0
for some a € Ay * A;. We must prove that a = 0, that is, Pha = 0 and P;,,a = 0 for
each j € {1,2} and m € N. The first of these identities is easy: taking o € C such that
Pya = al, we have

af) = m(Pya) = Qo(m(a)2) =0,
so that @ = 0 and therefore Ppa = 0. To establish the other identity, let j € {1,2}

and m € N, and write

n
Pjna = Z a1k QAo @ -+ Q Uy ks

k=1
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where n e Nand a;; € A§ for i odd and a; € A7 for i even. Equations (5.7) and (5.6)

imply that
(5.8) 0 = Qjm(m(a)Q) = 7(Pjma)d
= kzn] m5(a1k)8; @ mj(a2,8)65 ® - -+ @ Ti(jm) (Am. k) Ei(im)
=
= (M@ Q-+ @ Ti(jm) (Pma)(§ @& ® -+ @ &i(jm)),

where TR Q- @Ti(jm) 18 the unique *-homomorphism from the m-fold alternating

tensor product 45 ®@ A; @ - ® Aj(jm) into B(H; ®H; ® - ® Hj(jm)) such that

HRT®- @ Tim) (@) = m(a1) @ mj(az) @ - - - @ Ti(jm) (@)

J

foreacha = a1 ®a® - -Ra,, € A3®AJ~®- - ®A;(jm). The vector £3®£j®- - ®&i,m)
is separating for this *-representation because & and &, are separating for m; and 7,

respectively, and therefore (5.8) implies that P;,,a = 0, as required. 0

5.4. Applications of Theorem 5.3.1 to Some Examples

In this section we prove that the *-algebras important to the proof our main theorem

have faithful C*-completions.

LEMMA 5.4.1. The following unital *-algebras admit faithful C*-representations:
(i) C(BC),
(i) C(S.0).

PROOF. (i) Since BC is an inverse semigroup, this follows from [8, Theorem 2.3].
(ii) By |7, Theorem 3.4] CS; admits a faithful C*-representation, where S, denotes
the free monoid on two generators Sy = {(a, b), endowed with the involution determined
by a* = b. There is a *-monomorphism S,, < Sy defined by ¢, — a(a*)"a (n € N)

and this induces a *-monomorphism CS,, < CS;. The result follows. U
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Next we prove a lemma which is probably well known to experts in the theory
of C*-algebras, but, much like Theorem 5.3.1, does not seem to have an appropriate

reference available. We record a short proof.
LEMMA 5.4.2. Any separable C*-algebra admits a faithful state.

PROOF. Let A be a separable C*-algebra. Note that the unit ball of A’ with the
weak*-topology is a compact metric space, and hence also separable. It follows that
the set of states S(A) is weak*-separable. Taking {p, : n € N} to be a dense subset

of S(A), we then define p = >, | 27"p,,, which is easily seen to be a faithful state on
A. O

LEMMA 5.4.3. The unital *-algebra C(BC = Sy,) admits a faithful C*-representat-

10M.

PROOF. By Lemma 5.4.1, both C(BC') and C(Sy) admit C*-completions. Since
both of these algebras have countable dimension, their C*-completions are separable,
and, as such, each admits a faithful state by Lemma 5.4.2, which we may then restrict
to obtain faithful states on CBC and CS,. By Theorem 5.3.1, (CBC) * (CSy) =

C(BC * Sy) admits a faithful C*-representation. O

5.5. Proof of Theorem 5.1.2

The main idea of the proof is to embed CS,,, which is finite, as a dense *-subalgebra
of some C*-completion of C(BC' = Sy,), which will necessarily be infinite. In fact we

have the following;:
LEMMA 5.5.1. The *-algebra CSy, is stably finite.

PROOF. As we remarked in the proof of Lemma 5.4.1, CS,, embeds into CS,. It is
also clear that, as an algebra, CS; embeds into CF3, where F5 denotes the free group
on two generators. Hence CS,, embeds into vN(F3y), the group von Neumann algebra
of Fy, which is stably finite since it is a C*-algebra with a faithful tracial state. It

follows that CSy, is stably finite as well. ([l
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We shall next define a notion of length for elements of BC' % Sy,. Indeed, each

u € (BC * Sy)\{e} has a unique expression of the form wjw, - - - w,, for some n € N
and some wy, ..., w, € (BC\{e}) u {t;,t7 : j € N}, satisfying w1 € {t;,¢] : j € N}
whenever w; € BC\{e} (i = 1,...,n —1). We then define lenu = n for this value
of n, and set lene = 0. This also gives a definition of length for elements of S, by

considering S, as a submonoid of BC = Sy, in the natural way. For m € Ny we set
L,(BC #Sy) ={ue BCx* Sy :lenu < m};

L(Sy) ={ue Sy : lenu < m}.

We now describe our embedding of CSy, into C(BC' * Sy). By Lemma 5.4.3,
C(BC = Sy) has a C*-completion (A, | -|). Let v, = (n|d, )" (n € N) and define
elements a,, in C(BC * Sy) by a, = 6, + V.0, (n € N), so that a, — 9, as n —
o0. Using the universal property of S,, we may define a unital *-homomorphism
p: CSy — C(BC * Sy) by setting ¢(d;,) = a, (n € N) and extending to CSy,. In
what follows, given a monoid S and s € S, ¢, will denote the linear functional on CS

defined by (0, 0,y = L5+ (t € §), where L, is the Kronecker delta, as defined in (1.1).

LEMMA 5.5.2. Let w € Sy, with lenw = m. Then
(i) 90((511)) € Span{(su uE Lm(BC * Soo)};

(ii) for each y € L, (Sy) we have
(p(dy), 00y # 0 <y = w.

PrROOF. We proceed by induction on m. When m = 0, w is forced to be e and
hence, as ¢ is unital, p(d.) = d., so that (i) is satisfied. In (ii), y is also equal to e, so
that (ii) is trivially satisfied as well.

Assume m > 1 and that (i) and (ii) hold for all elements of L,,_1(S,). We can

write w as w = v for some v € Sy, with lenv = m — 1 and some z € {t;,t} : j € N}.
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First consider (i). By the induction hypothesis, we can write p(0,) = >,c 5 ®udu,
for some finite set £ < L,,_1(BC * Sy) and some scalars o, € C (u € E). Suppose

that x = ¢; for some j € N. Then

©(0w) = 90(511)90(5153') = (Z O‘U(SU> (dp + ’Yj(stj) = 2 Oy Oup + O‘u’Yjéutja

uekl uekl

which belongs to span{d, : u € L,,,(BC * Sy)} because
len (up) <len(u)+1<m and len(ut;)=len(u)+1<m

for each u € L,,_1(BC % S). The case z = t; is established analogously.

Next consider (ii). Let y € L,,,(S%). If leny < m — 1 then, by (i), we know that
©(d,) € span{d, : uw € L,,_1(BC % Sy)} < kerd,,. Hence in this case y # w and
(p(6,),8,) = 0.

Now suppose instead that leny = m, and write y = uz for some u € L,,_1(Sy)
and z € {t;,tF : j € N}. By (i) we may write ©(d,) = X ,cp Bs0s for some finite
subset F' < L, 1(BC = Sy) and some scalars s € C (s € F'), and we may assume
that v € F' (possibly with 8, = 0). We prove the result in the case that z = t; for
some j € N, with the argument for the case z = ¢ being almost identical. We have
¢(0.) = 6p + 7,0, and it follows that

0(6,) = (6,)@(82) = Y Bebep + BuVi0,-
seF
Observe that sp # w for each s € F. This is because we either have len (sp) <
m = len(w), or else sp ends in p when considered as a word over the alphabet
{p,p*} U {t;,t] : j € N}, whereas w € S,,. Moreover, given s € F, st; = w = vz if and

only if s = v and ¢; = . Hence

(p(8,),0,) = BoyiLeya = ((0), 007 Lty o
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As v; > 0, this implies that {¢(d,),d!,> # 0 if and only if {p(d,),d.) # 0 and ¢; = =,
which, by the induction hypothesis, occurs if and only if v = v and ¢; = . This final

statement is equivalent to y = w. 0
COROLLARY 5.5.3. The map ¢ is injective.

PROOF. Assume towards a contradiction that ] . ,d, € ker ¢ for some non-

uel
empty finite set F' < Sy, and «, € C\{0} (u € F). Take w € F of maximal length.
Then

0= <90 (Z au5u> Oy ) = Z up(0u); 0, = (00, 0y, ),

ueF ueF

where the final equality follows from Lemma 5.5.2(ii). That lemma also tells us that

{p(6w), 0l,) # 0, forcing o, = 0, a contradiction. O
We can now prove our main theorem.

PROOF OF THEOREM 5.1.2. Recall that (A,| - ||) denotes a C*-completion of
C(BC * Sy), which exists by Lemma 5.4.3, and A is infinite since d,,9, € A. Let
Ag < A be the image of ¢. Corollary 5.5.3 implies that Ay = CS,,, which is stably
finite by Lemma 5.5.1. Moreover, ¢(8;,) = a,, — d, as n — o, so that &, € Ay, and we
see also that ¢;, = %(an —6,) € Ag (n € N). The elements 6, and &;, (n € N) generate
A as a C*-algebra, and since A, is a C*-subalgebra containing them, we must have

A = Ay, which completes the proof. O



(1]

2]

3]

4]

5]

6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

Bibliography

http: //mathoverflow.net /questions/229847 /how-nondegenerate-are-amalgamated-free-
products-of-c-algebras.

Richard Arens. The adjoint of a bilinear operation. Proc. Amer. Math. Soc., 2:839-848, 1951.
Richard Arens. Operations induced in function classes. Monatsh. Math., 55:1-19, 1951.

Spiros A. Argyros and Richard G. Haydon. A hereditarily indecomposable .Z,-space that solves
the scalar-plus-compact problem. Acta Math., 206(1):1-54, 2011.

Aharon Atzmon. Nonfinitely generated closed ideals in group algebras. J. Functional Analysis,
11:231-249, 1972.

Daniel Avitzour. Free products of C*-algebras. Trans. Amer. Math. Soc., 271(2):423-435, 1982.
B. A. Barnes and J. Duncan. The Banach algebra (1(S). J. Funct. Anal., 18:96-113, 1975.
Bruce A. Barnes. Representations of the {!-algebra of an inverse semigroup. Trans. Amer. Math.
Soc., 218:361-396, 1976.

B. Blackadar. Notes on the structure of projections in simple c*-algebras (semesterbericht funk-
tionalanalysis). Technical report, Universitdt Tiibingen, 1983.

Bruce Blackadar. K-theory for operator algebras, volume 5 of Mathematical Sciences Research
Institute Publications. Cambridge University Press, Cambridge, second edition, 1998.

David P. Blecher and Tomasz Kania. Finite generation in C*-algebras and Hilbert C*-modules.
Studia Math., 224(2):143-151, 2014.

David P. Blecher and Vern 1. Paulsen. Explicit construction of universal operator algebras and
applications to polynomial factorization. Proc. Amer. Math. Soc., 112(3):839-850, 1991.
Robert C. Busby. Extensions in certain topological algebraic categories. Trans. Amer. Math.
Soc., 159:41-56, 1971.

Peter G. Casazza. Approximation properties. In Handbook of the geometry of Banach spaces,
Vol. I, pages 271-316. North-Holland, Amsterdam, 2001.

Yemon Choi. Directly finite algebras of pseudofunctions on locally compact groups. Glasg. Math.

J., 57(3):693-707, 2015.

158



[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

BIBLIOGRAPHY 159

Paul Civin and Bertram Yood. The second conjugate space of a Banach algebra as an algebra.
Pacific J. Math., 11:847-870, 1961.

N. P. Clarke. A finite but not stably finite C*-algebra. Proc. Amer. Math. Soc., 96(1):85-88,
1986.

Donald L. Cohn. Measure theory. Birkhduser Advanced Texts: Basler Lehrbiicher. [Birkh&user
Advanced Texts: Basel Textbooks|. Birkhduser/Springer, New York, second edition, 2013.

H. G. Dales. Banach algebras and automatic continuity, volume 24 of London Mathematical
Society Monographs. New Series. The Clarendon Press, Oxford University Press, 2000.

H. G. Dales, F. K. Dashiell, Jr., A. T.-M. Lau, and D. Strauss. Banach spaces of continuous
functions as dual spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC.
Springer, Cham, 2016.

H. G. Dales, F. Ghahramani, and A. Ya. Helemskii. The amenability of measure algebras. J.
London Math. Soc. (2), 66(1):213-226, 2002.

H. G. Dales, Tomasz Kania, Tomasz Kochanek, Piotr Koszmider, and Niels Jakob Laustsen.
Maximal left ideals of the Banach algebra of bounded operators on a Banach space. Studia
Math., 218(3):245-286, 2013.

H. G. Dales and A. T.-M. Lau. The second duals of Beurling algebras. Mem. Amer. Math. Soc.,
177(836):vi+191, 2005.

H. G. Dales, A. T.-M. Lau, and D. Strauss. Banach algebras on semigroups and on their com-
pactifications. Mem. Amer. Math. Soc., 205(966):vi+165, 2010.

H. G. Dales and W. Zelazko. Generators of maximal left ideals in Banach algebras. Studia Math.,
212(2):173-193, 2012.

Matthew Daws. Dual Banach algebras: representations and injectivity. Studia Math.,
178(3):231-275, 2007.

Matthew Daws, Richard Haydon, Thomas Schlumprecht, and Stuart White. Shift invariant
preduals of ¢1(Z). Israel J. Math., 192(2):541-585, 2012.

Matthew Daws, Hung Le Pham, and Stuart White. Conditions implying the uniqueness of the
weak*-topology on certain group algebras. Houston J. Math., 35(1):253-276, 2009.

Matthew Daws and Charles Read. Semisimplicity of Z(E)". J. Funct. Anal., 219(1):177-204,
2005.

P. G. Dixon. Left approximate identities in algebras of compact operators on Banach spaces.

Proc. Roy. Soc. Edinburgh Sect. A, 104(1-2):169-175, 1986.



31]

[32]

[33]

[34]

[35]
[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

BIBLIOGRAPHY 160

Michel Enock and Jean-Marie Schwartz. Kac algebras and duality of locally compact groups.
Springer-Verlag, Berlin, 1992. With a preface by Alain Connes, With a postface by Adrian
Ocneanu.

Pierre Eymard. L’algébre de Fourier d’un groupe localement compact. Bull. Soc. Math. France,
92:181-236, 1964.

A. V. Ferreira and G. Tomassini. Finiteness properties of topological algebras. I. Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (4), 5(3):471-488, 1978.

Gerald B. Folland. A course in abstract harmonic analysis. Studies in Advanced Mathematics.
CRC Press, Boca Raton, FL, 1995.

Sandy Grabiner. The nilpotency of Banach nil algebras. Proc. Amer. Math. Soc., 21:510, 1969.
E. Granirer. On amenable semigroups with a finite-dimensional set of invariant means. 1. Illinois
J. Math., 7:32—48, 1963.

Edmond E. Granirer. The radical of L*(G)*. Proc. Amer. Math. Soc., 41:321-324, 1973.

Niels Grgnbaek. Morita equivalence for Banach algebras. J. Pure Appl. Algebra, 99(2):183-219,
1995.

Niels Grgnbzk and George A. Willis. Approximate identities in Banach algebras of compact
operators. Canad. Math. Bull., 36(1):45-53, 1993.

Michael Grosser. L(G) as an ideal in its second dual space. Proc. Amer. Math. Soc., 73(3):363—
364, 1979.

Petr Hajek and Vicente Montesinos. Boundedness of biorthogonal systems in Banach spaces.
Israel J. Math., 177:145-154, 2010.

Petr Hajek, Vicente Montesinos Santalucia, Jon Vanderwerff, and Vaclav Zizler. Biorthogonal
systems in Banach spaces, volume 26 of CMS Books in Mathematics/Ouvrages de Mathématiques
de la SMC. Springer, New York, 2008.

Bahman Hayati and Massoud Amini. Connes-amenability of multiplier Banach algebras. Kyoto
J. Math., 50(1):41-50, 2010.

Bahman Hayati and Massoud Amini. Dual multiplier Banach algebras and Connes-amenability.
Publ. Math. Debrecen, 86(1-2):169-182, 2015.

Edwin Hewitt and Kenneth A. Ross. Abstract harmonic analysis. Vol. I: Structure of topo-
logical groups. Integration theory, group representations. Die Grundlehren der mathematischen
Wissenschaften, Bd. 115. Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-
Gottingen-Heidelberg, 1963.



|46]

[47]

48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]
[61]

BIBLIOGRAPHY 161

Edwin Hewitt and Kenneth A. Ross. Abstract harmonic analysis. Vol. II: Structure and analysis
for compact groups. Analysis on locally compact Abelian groups. Die Grundlehren der mathe-
matischen Wissenschaften, Band 152. Springer-Verlag, New York-Berlin, 1970.

B. Host. Le théoréme des idempotents dans B(G). Bull. Soc. Math. France, 114(2):215-223,
1986.

N. Jacobson. Basic algebra. II. W. H. Freeman and Co., San Francisco, Calif., 1980.

B. E. Johnson. An introduction to the theory of centralizers. Proc. London Math. Soc. (8),
14:299-320, 1964.

Barry Edward Johnson. Cohomology in Banach algebras. American Mathematical Society, Prov-
idence, R.I., 1972. Memoirs of the American Mathematical Society, No. 127.

André Joyal and Ross Street. An introduction to Tannaka duality and quantum groups. In
Category theory (Como, 1990), volume 1488 of Lecture Notes in Math., pages 413-492. Springer,
Berlin, 1991.

Yuji Kobayashi. The homological finiteness property FP; and finite generation of monoids.
Internat. J. Algebra Comput., 17(3):593-605, 2007.

Piotr Kot. The Gleason problem for A¥(2), H*(Q), Lip,, (). Univ. Iagel. Acta Math., (40):95—
112, 2002.

Hang Chin Lai. Multipliers of a Banach algebra in the second conjugate algebra as an idealizer.
Tohoku Math. J. (2), 26:431-452, 1974.

A. T.-M. Lau and E. Kaniuth. Fourier and Fourier-Stieltjes Algebras on Locally Compact
Groups. American Mathemtical Society Monographs, to appear.

N. J. Laustsen and J. T. White. An infinite C*-algebra with a dense, stably finite *-subalgebra.
Proc. Amer. Math. Soc., to appear.

O. Lemmers and J. Wiegerinck. Solving the Gleason problem on linearly convex domains. Math.
7., 240(4):823-834, 2002.

Lynn H. Loomis. An introduction to abstract harmonic analysis. D. Van Nostrand Company,
Inc., Toronto-New York-London, 1953.

Robert E. Megginson. An introduction to Banach space theory, volume 183 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1998.

Paul Milnes. Identities of group algebras. Proc. Amer. Math. Soc., 29:421-422, 1971.

Gerard J. Murphy. C*-algebras and operator theory. Academic Press, Inc., Boston, MA, 1990.



[62]

[63]

[64]

[65]

|66]

[67]

[68]

[69]

[70]

[71]

72|

73]
[74]

[75]

BIBLIOGRAPHY 162

Theodore W. Palmer. Banach algebras and the general theory of *-algebras. Vol. I, volume 49
of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge,
1994. Algebras and Banach algebras.

Donald S. Passman. The algebraic structure of group rings. Pure and Applied Mathematics.
Wiley-Interscience [John Wiley & Sons|, New York-London-Sydney, 1977.

Alan L. T. Paterson. Amenability, volume 29 of Mathematical Surveys and Monographs. Amer-
ican Mathematical Society, Providence, RI, 1988.

Gilles Pisier. Factorization of linear operators and geometry of Banach spaces, volume 60 of
CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the
Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence,
RI, 1986.

A. N. Plichko. Projection decompositions of the identity operator and Markushevich bases. Dokl.
Akad. Nauk SSSR, 263(3):543-546, 1982.

M. Rajagopalan. Fourier transform in locally compact groups. Acta Sci. Math. (Szeged), 25:86—
89, 1964.

Hans Reiter and Jan D. Stegeman. Classical harmonic analysis and locally compact groups,
volume 22 of London Mathematical Society Monographs. New Series. The Clarendon Press,
Oxford University Press, New York, second edition, 2000.

M. Rgrdam, F. Larsen, and N. Laustsen. An introduction to K-theory for C*-algebras, volume 49
of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2000.
Mikael Rgrdam. A simple C*-algebra with a finite and an infinite projection. Acta Math.,
191(1):109-142, 2003.

Haskell Rosenthal. Contractively complemented subspaces of Banach spaces with reverse mono-
tone (transfinite) bases. In Tezas functional analysis seminar 1984-1985 (Austin, Tex.),
Longhorn Notes, pages 1-14. Univ. Texas Press, Austin, TX, 1985.

Walter Rudin. Fourier analysis on groups. Wiley Classics Library. John Wiley & Sons, Inc.,
New York, 1990. Reprint of the 1962 original, A Wiley-Interscience Publication.

Volker Runde. Amenability for dual Banach algebras. Studia Math., 148(1):47-66, 2001.
Volker Runde. Lectures on amenability, volume 1774 of Lecture Notes in Mathematics. Springer-
Verlag, Berlin, 2002.

Volker Runde. Connes-amenability and normal, virtual diagonals for measure algebras. I. J.

London Math. Soc. (2), 67(3):643-656, 2003.



[76]

771

78]

[79]

[80]

[81]
[82]

[83]

[84]

[85]

[36]

[87]

[83]

[89]

[90]

BIBLIOGRAPHY 163

Raymond A. Ryan. Introduction to tensor products of Banach spaces. Springer Monographs in
Mathematics. Springer-Verlag London, Ltd., London, 2002.

Kazuyuki Sait6. On a duality for locally compact groups. Tohoku Math. J. (2), 20:355-367,
1968.

Saharon Shelah and Juris Steprans. A Banach space on which there are few operators. Proc.
Amer. Math. Soc., 104(1):101-105, 1988.

Allan M. Sinclair and Alan W. Tullo. Noetherian Banach algebras are finite dimensional. Math.
Ann., 211:151-153, 1974.

Edgar Lee Stout. The theory of uniform algebras. Bogden & Quigley, Inc., Tarrytown-on-Hudson,
N. Y., 1971.

Karl Stromberg. A note on the convolution of regular measures. Math. Scand., 7:347-352, 1959.
Andrzej Szankowski. B(H) does not have the approximation property. Acta Math., 147(1-2):89—
108, 1981.

M. Takesaki. Theory of operator algebras. I, volume 124 of Encyclopaedia of Mathematical Sci-
ences. Springer-Verlag, Berlin, 2002. Reprint of the first (1979) edition, Operator Algebras and
Non-commutative Geometry, 5.

A. Ulger. A characterization of the closed unital ideals of the Fourier-Stieltjes algebra B(G) of
a locally compact amenable group G. J. Funct. Anal., 205(1):90-106, 2003.

D. V. Voiculescu, K. J. Dykema, and A. Nica. Free random variables, volume 1 of CRM Mono-
graph Series. American Mathematical Society, Providence, RI, 1992. A noncommutative prob-
ability approach to free products with applications to random matrices, operator algebras and
harmonic analysis on free groups.

H. M. Wark. A non-separable reflexive Banach space on which there are few operators. J. London
Math. Soc. (2), 64(3):675-689, 2001.

J. G. Wendel. Left centralizers and isomorphisms of group algebras. Pacific J. Math., 2:251-261,
1952.

J. T. White. Finitely-generated left ideals in Banach algerbas on groups and semigroups. Studia
Math., 239(1):67-99, 2017.

J. T. White. The radical of the bidual of a Beurling algebra. Quarterly Journal Mathematics,
to appear.

P. Wojtaszczyk. Banach spaces for analysts, volume 25 of Cambridge Studies in Advanced Math-

ematics. Cambridge University Press, Cambridge, 1991.



BIBLIOGRAPHY 164

[91] N. J. Young. Periodicity of functionals and representations of normed algebras on reflexive

spaces. Proc. Edinburgh Math. Soc. (2), 20(2):99-120, 1976/77.



