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Abstract 

Notch signalling is a conserved developmental pathway involved, inter alia, in cell-fate decision, 

morphogenesis and tissue patterning. Extensive research has linked this pathway with a variety of 

malignancies, cancer stem cell renewal, induction of epithelial-to-mesenchymal transition and 

tumour angiogenesis. These data indicate that Notch can act as both a tumour suppressor and an 

oncoprotein, depending upon cellular context and identify it as a potential therapeutic target in 

cancer treatment. This review discusses the implications of Notch in a number of hematologic and 

solid malignancies and some of the currently available inhibitors developed against this pathway as 

potential cancer therapeutics. 
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Introduction 

Notch signalling is an evolutionary conserved pathway present in most multicellular organisms. It 

was first described by Dexter1 who observed the appearance of a notch in the wings of Drosophila 

melanogaster. This feature became the namesake of the ‘notch’ gene and was later found to be the 

consequence of an X-linked, dominant mutation that causes irregular tissue loss in the wings of the 

fruit fly. In 1917, Morgan2 identified the alleles of the gene which was later analysed and sequenced 

in successive years by two different groups3, 4. 

 

Physiological roles of Notch signalling 

The Notch pathway regulates a variety of cell fate decisions and cellular processes in invertebrate 

and vertebrate embryonic development and continues to remain involved in adult tissue 

homeostasis5. During embryonic development, Notch is involved in four main processes; (1) lateral 

inhibition which determines cell fates and spatial patterning (for example, segregation of neural and 

epidermal lineages or selection of a sensory organ precursor during neurogenesis)6, (2) asymmetric 

cell fate division as a mechanism to generate cell diversity and differentiate cells prior to mitosis 

through cell polarity regulation, (3) boundary formation – e.g. boundary establishment between 

prospective somites during somitogenesis or the formation of dorsal and ventral margins in the 

wing imaginal disc, (4) endocrine gland development through the activities of the Notch target 

genes Hes1 and Hes57-9. Notch-mediated signals are able to control divergent programs of 

differentiation in many tissues, including muscle, skin, pancreas and the vascular, nervous and 

hematopoietic systems10. In the adult body, Notch is involved in renewal and maintenance of 

various organs such as kidneys, lungs, liver, muscle and bone11.  

 

The Molecular biology of Notch signalling 

Notch receptors – structure and maturation 

Notch (Fig.1) is a 300 kDa single-pass, transmembrane protein4, 7, 12 that can act as both a receptor 

and a transcription factor. While Drosophila has only one Notch receptor, mammals express four 

(Notch1-4). The extracellular domains of Notch1 and Notch2 contain a tandem array of 36 

epidermal growth factor (EGF)-like repeats, while Notch3 and Notch4 have 34 and 29 repeats, 

respectively4, 13. Only two of these EGF-like repeats, 11 and 12, are necessary for receptor-ligand 

interaction. The EGF-like repeats are followed by three cysteine-rich, LIN Notch repeats (LNRs)14.  

The Notch intracellular domain is also structurally complex and consists of a RBP-Jκ/CBF1 

association module (RAM) domain, six ankyrin repeats, a proline, serine, glutamic acid and 

threonine-rich (PEST) domain and, finally, a transactivation domain (TAD) which is absent from 

Notch3 and Notch413-16. 

The Notch receptor is proteolytically cleaved at the S1 site (between the EGF-like and LNR 

repeats) whilst in the Golgi apparatus15 by a furin–like convertase (Fig.2). This event yields two 

fragments that are held together non-covalently through a juxtamembrane heterodimerisation 

domain (HD)17. Also in the Golgi apparatus, Notch is subject to glycosylation, performed by O-

fucosyltransferase and Fringe12, 13, 15, 18, 19. Vertebrates have three Fringe homologues; Radical, 

Manic and Lunatic8. 

Canonical and non-canonical Notch signalling 

The mature Notch heterodimers are held in an auto-inhibited state by a juxtamembrane negative 

regulatory region (NRR), located between the transmembrane and ligand-binding regions of the  
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Figure 1. The modular domain structure of mammalian Notch receptors.  

The extracellular domain of all Notch receptors contains multiple epidermal growth factor (EGF)-

like repeats and three LIN Notch repeats (LNR) followed by the heterodimerization domain (HD). 

The cytosolic domain consists of a RBP-Jκ/CBF1 association module (RAM) domain and several 

ankyrin repeats (ANK). In addition, Notch receptors 1-3 contain a Notch cytokine response (NCR) 

region and Notch 1 and 2 contain a transactivation domain (TAD). Finally, all four receptors 

possess a proline, serine, glutamic acid and threonine-rich (PEST) domain. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Trafficking and proteolysis of Notch.  

The Notch receptor is proteolytically cleaved at the S1 site in the Golgi apparatus by a furin–like 

convertase. At the cell surface, Notch undergoes S2 cleavage by members of the ADAM family. 

The residual C-terminal fragment then undergoes S3/4 cleavage by the -secretase complex yielding 

the Notch intracellular domain (NICD) which translocates to the nucleus where it can modulate 

transcriptional events through its displacement of co-repressors associated with CSL. Mastermind-

like (MAML) protein is then recruited to form a ternary complex. Possible therapeutic intervention 

points are shown in red.  
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protein20, 21. This prevents activation of the Notch pathway by physically blocking the S2 cleavage 

site until a suitable ligand binds to the Notch receptor20. Upon ligand binding, the receptor 

undergoes a conformational change exposing the S2 site allowing proteolytic cleavage (Fig.2)8, 20. 

Cleavage occurs at the S2 site, between Ala-1710 and Val-1711, and is mediated by a disintegrin 

and metalloproteinase (ADAM) 17 also known as tumour necrosis factor alpha (TNFα)-converting 

enzyme (TACE)22, 23. 

Proteolysis of Notch by TACE is followed by cleavage at the S3 site (Fig. 2) mediated by γ-

secretase, a multiprotein complex consisting of Pen2, nicastrin, Aph-1 and presenilin, with the 

aspartyl proteinase catalytic site located in the presenilin protein8, 23-25. Nicastrin promotes the 

maturation and proper trafficking of other proteins in the complex26, 27. S3 cleavage leads to the 

cytoplasmic release of Notch intracellular domain (NICD) (Fig.2) which then translocates to the 

nucleus28. 

Once in the nucleus (Fig.2), the NICD can modulate transcriptional events through its interaction 

with the DNA-binding factor CSL (CBF1, Suppressor of Hairless, Lag-1) that acts as both a 

transcriptional repressor and activator29. NICD displaces the co-repressors associated with CSL and 

together they recruit co-activators from the Mastermind-like (MAML) protein family to form a 

ternary complex8, 30, 31. Formation of the ternary complex depends on the ankyrin repeats of the 

Notch receptor31, 32.   Table 1 provides a list of some of the more extensively studied target genes 

regulated in this manner. 

 

Table 1: Known Notch target genes and their roles (adapted33, 34). 

Target gene Role/Function 

Hes1, Hes5, Hes7 encode nuclear proteins that suppress transcription35 

Hey1, Hey2, HeyL encode nuclear proteins that suppress transcription36 

Nanog embryonic stem cell marker34 

CD25 interleukin-2 receptor, pre-T cell receptor α chain33 

cyclin D1 encodes a protein involved in regulating cell cycle progression37 

CDK2 encodes a protein involved in regulating cell cycle progression37 

DTX1 encodes Deltex-1, a E3 ubiquitin ligase38 

c-Myc proto-oncogene involved in growth control, differentiation and 

apoptosis39 

p21WAF1 cyclin-dependent kinase inhibitor, regulates cell cycle 

progression40 

NFκB encodes a protein complex that controls a large number of cellular 

processes41   

Ifi-202, Ifi-204, Ifi-D3 encode interferon-inducible proteins42 

ADAM19 a disintegrin and metalloprotease; cleaves cell surface proteins43 

Bcl-2 apoptosis regulator44 

HoxA5, HoxA9, HoxA10 regulators of animal development45 

Slug transcriptional repressor46 

Survivin apoptosis regulator47 

NRARP Notch negative regulator48 

GATA3 transcription factor49 
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Protein degradation is seen as an effective means of regulating the Notch signalling pathway as it 

keeps the levels of the NICD just above a functional threshold8. The stability of the NICD is 

regulated by several E3 ubiquitin ligases (Deltex, Itch/AIP4, NEDD4, FBXW7 and Cbl) and 

polyubiquitination targets the fragment for either lysosomal degradation or recycling to the plasma 

membrane, both via endocytosis50, 51. Numb, a cytoplasmic negative regulator of Notch that acts 

upstream of the γ-secretase complex, and AP2 are also able to promote Notch degradation (Fig.2)50, 

52, 53. 

While canonical Notch signalling is able to mediate a number of biological processes, a non-

canonical function of Notch has also been reported through the activity of ligands such as 

F3/contactin, DLK1-2, DNER and EGFL7. Non-canonical Notch is able to activate transcription 

independently of CSL. For instance, Notch can post-translationally target Wnt/β-catenin 

signalling54 or promote the maturation of CD4+ and CD8+  without formation of a ternary 

complex50. 

Notch ligands – structure and proteolysis 

Canonical Notch ligands are type I transmembrane proteins, part of the DSL (Delta/Serrate/Lag2) 

family and only affect the activity of adjacent cells expressing the receptor7. The mammalian 

genome encodes five distinct ligands; Delta-like ligand (DLL) 1, 3 and 4 along with Jagged1 and 

214, 55. Although, recently, it has been suggested that DLL3 inhibits rather than activates Notch 

signalling56. The effects of certain ligands on mammalian Notch signalling may vary, depending on 

which of the four receptors is involved. 

DSL ligands share a commonly structured extracellular region which is comprised of an N-terminal 

domain followed by a DSL domain and multiple EGF-like repeats (both calcium and non-calcium 

binding), the latter of which are essential for the interaction with Notch (Fig.3)5, 57. The N-terminal 

domain consists of an N1 cysteine-rich region and an N2 cysteine-free region with a conserved 

glycosphingolipid-binding motif58. The extracellular region of the DSL ligands differs in terms of 

the number of EGF-like repeats as well as the presence of a cysteine-rich region in Serrate/Jagged 

ligands that shares partial homology with the Von Willebrand factor. In addition, some DSL ligands 

present a PDZ motif5. 

 

 

 

 

 

 

 

 

Figure 3. The modular domain structure of mammalian Notch ligands.  

The mammalian genome encodes five distinct ligands; Delta-like ligand (DLL) 1, 3 and 4 along 

with Jagged1 and 2. Each ligand contains an epidermal growth factor (EGF)-like repeat region (15-

16 repeats in Jagged ligands and 6-8 in DLLs), a DSL (Delta/Serrate/Lag2) region and N1 and N2 

N-terminal regions. Additionally, the Jagged ligands also have a conserved cysteine-rich region.  
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Delta and Notch accumulate in endocytic vesicles and a number of recent studies have shown that 

ligand immobilisation and endocytosis of the extracellular domain of Delta is necessary for signal 

activation57, 59. Like their receptors, DSL ligands undergo O- and N-linked glycan modifications19 

and are proteolytically processed by ADAMs and γ-secretase60-63. Ligand ectodomain shedding 

produces membrane bound C-terminal fragments that compete with Notch for γ-secretase cleavage 

and lead to the loss of Notch signalling62. The DSL ligand intracellular domain contains multiple 

lysine residues that can act as sites for the attachment of ubiquitin by E3 ligases. Neutralised and 

Mindbomb are ubiquitin ligases that influence Notch signalling through their interaction with DSL 

ligands64, 65. Neutralised interacts with Delta and promotes its internalisation and degradation 

through ubiquitination; the resultant loss of Delta at the cell surface is thought to indirectly promote 

Notch signalling by relieving the cis-inhibition imposed by Delta. Mindbomb also ubiquitinates and 

upregulates Delta endocytosis but, in contrast to Neutralised, it functions exclusively in the 

activation of trans-Notch signalling. 

 

Notch signalling in cancer 

Notch is one of the key pathways in embryonic development and, as such, it is not surprising that 

irregularities in Notch signalling have been associated with various genetic physical disorders and 

cancers. Examples of genetic diseases resulting from dysfunctional Notch signalling include 

Alagille syndrome which results from mutations in Jagged1 or Notch211, 66, spondylocostal 

dysostosis linked to DLL3 mutations10, and CADASIL (cerebral autosomal dominant arteriopathy 

with subcortical infarcts and leukoencephalopathy) caused by Notch3 mutations67. 

In terms of cancer, Notch has been shown to influence carcinogenesis through its extensive cross-

talk with other signalling pathways linked to development. Notch activates the PI3kinase/Akt 

pathway which inhibits apoptosis68-70 and operates in an interdependent fashion with the 

Ras/Mitogen Activated Protein Kinase (MAPK)71, 72, NF-κB  and PPARγ pathways73, 74.  

Furthermore, Notch also interacts with and/or influences the expression of receptor tyrosine kinases 

such as fibroblast growth factor receptor (FGFR)75-77, vascular endothelial growth factor receptor 

(VEGFR)78-80 and epidermal growth factor receptor (EGFR)81, 82. Notch and the transforming 

growth factor-β (TGF-β) signalling pathways play critical roles during development83-85 and several 

interactions between Notch and the Wnt/β-catenin86-88 and Hedgehog pathways have also been 

established89, 90 

Dysregulation of the Notch pathway has been associated with a wide range of solid tumours and 

hematologic malignancies. However, depending on the tissue and organ site in which it is 

expressed, the Notch pathway can be either oncogenic or tumour suppressive (Table 2). 

 

Notch signalling in an oncogenic role 

T-cell acute lymphoblastic leukaemia 

T-cell acute lymphoblastic leukaemia (T-ALL) is an aggressive malignant disease affecting mainly 

children and adolescents. The survival rate is up to 80% but patients that relapse show a poor 

prognosis91. Notch signalling is essential for T-cell lineage commitment and oncogenic Notch 

signalling has been well documented in T-ALL51, 92. In fact, more than 50% of human T-ALL cases 

exhibit mutations in the HD domain and/or PEST domain of Notch1 which is required during  
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Table 2: Oncogenic and tumour suppressive roles of Notch in a variety of cancers (adapted11, 

13, 93).  

Type of cancer Function Notch/Ligand 

Acute myeloid leukaemia  Notch1-2 , DLL1 and DLL4 tumour suppressor; 

Jagged2 oncogene 

B-cell acute lymphoblastic 

leukaemia 

 Notch1-4  

B-cell chronic lymphocytic 

leukaemia 

 Notch1-2, Jagged1-2 

Chronic myelomonocytic 

leukaemia 

 Undetermined  

Chronic lymphocytic 

leukaemia 

 5-12% Notch1 mutations 

Diffuse large B-cell 

lymphoma 

 Notch2 

Hodgkin’s lymphoma  Notch1 

Mantle cell lymphoma  ~10% Notch1 mutations 

Marginal zone lymphoma  Notch2 

Multiple myeloma  Notch1-2, Jagged1-2 oncogenes; Notch1 tumour 

suppressor 

T-cell acute lymphoblastic 

leukaemia 

 Notch1-3 and DLL4 oncogenes; Notch2 tumour 

suppressor; 60% Notch1 and 30% FBXW7 

mutations 

Adenocarcinoma of the lung  Notch1, Notch3, Jagged2 

Breast cancer  Notch1-2, Notch4, Jagged1 oncogenes; Notch2 

tumour suppressor 

Cervical cancer  Notch1-2, Jagged1-2, DLL4 oncogenes; Notch1 

tumour suppressor 

Cholangiocarcinoma  Notch1; 35% FBXW7 mutations 

Colorectal cancer  Notch1-2, Jagged1-2, DLL4; 8%-9% FBXW7 

mutations 

Cutaneous squamous cell 

carcinoma 

 60-70% Notch1 and >25% Notch2 mutations 

Glioblastoma multiforme  Notch1-2, Jagged1, DLL1 oncogenes; Notch1 

tumour suppressor 

Head and neck squamous cell 

carcinoma 

 15-20% Notch1 mutations; Notch1 can be an 

oncogene and a tumour suppressor 

Hepatocellular carcinoma  Notch1-2 

Lung squamous cell 

carcinoma 

 5-10% Notch1 mutations; Notch2  

Medulloblastoma   Notch1 tumour suppressor; Notch2 oncogene 

Melanoma  ~50% Notch1 overexpression 

Non-small cell lung cancer  10%Notch1 mutations; Notch3; Jagged2 

Ovarian cancer  Undetermined  

Pancreatic cancer  Jagged2 (90%) and DLL4 (50%) 

overexpression; Notch2, Notch4 oncogene; 

Notch1 tumour suppressor 

Prostate cancer  Notch1 tumour repressor, Jagged1 oncogene 

Renal cell carcinoma  Undetermined  

Small cell lung cancer  Notch1, Notch2 

   Oncogene,  Tumour suppressor,  Oncogene and tumour suppressor    
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several stages of normal early T-cell development51. The majority of these mutations consist of 

single amino acid substitutions, insertions, and deletions. The HD domain mutations induce ligand 

independent signalling, while C-terminal mutations lead to the partial or complete deletion of the 

PEST domain and increase the half-life of the NICD11, 51. Less than 1% of all T-ALL cases show a 

t(7;9) chromosomal translocation that results in a truncated form of the Notch1 protein through the 

translation of a series of truncated mRNAs. These truncated alleles lack the NRR region of the 

receptor and have been associated with ligand-independent activation16, 51, 94. 

Breast cancer  

Notch plays a crucial role in mammary development and, as a result, abnormalities in the pathway 

lead to mammary tumourigenesis. The first indication of a link between Notch and breast cancer 

came with the finding that the Notch4 locus is the integration site for the mouse mammary tumour 

virus95. Since then Notch has been shown to exert its oncogenic effects in breast cancer through 

cooperation with a number of growth promoting proteins and pathways including Ras71, enhanced 

cyclin A and B expression, activation of Akt signalling with an associated reduction in apoptosis, 

and inhibition of p53 and Foxo3a69, 96-98. Notch also induces expression of the transcriptional 

repressor, Slug, and concomitantly promotes epithelial-to-mesenchymal transition (EMT) in E-

cadherin-negative breast cancer cells99. Furthermore, the aberrant activation of Notch signalling 

through the RBP-Jk pathway has been linked to human breast cancer as it leads to the accumulation 

of the NICD which is able to transform normal breast epithelial cells into cancerous cells100. 

Finally, loss of Numb has been identified in more than 50% of human mammary carcinomas 

leading to enhanced Notch signalling101. 

In terms of specific receptor and ligand species, the over-expression of Notch1, 3, 4 and Jagged1 

has been linked to poor overall survival in breast cancer patients96, 98, 101-104 while Notch2 has been 

shown to induce apoptosis and have a tumour suppressive role in breast cancer lines105. Notch3 

plays an important role in the proliferation of ErbB2-negative breast tumour cells106 whilst tumours 

expressing high levels of Notch4 appear highly vascularised and aggressive105.  

Melanoma  

Melanomas are highly aggressive neoplasms that are unresponsive to most common therapies. The 

Notch pathway is important for the survival of immature melanocytes through the inhibition of 

apoptosis107. Notch1 has been shown to enhance primary melanoma cell growth whilst having little 

effect on metastatic cells108. The authors also showed that Notch expression was mediated by β-

catenin and its functional inhibition reversed the effects of Notch on tumour growth and metastasis. 

The promotion of primary melanoma progression by Notch1 is also thought to occur through the 

activation of the MAPK/PI3-kinase/Akt pathways and the upregulation of N-cadherin expression109. 

Dysregulated Notch1 also promotes melanomagenesis under hypoxic conditions through its 

interaction with PI3/Akt and NF-κB signalling. Low oxygen is able to upregulate Notch1 signalling 

via stabilisation of HIF-1α (hypoxia-inducible factor-1)68. 

 

Notch signalling in a tumour suppressor role 

Skin carcinomas  

In contrast to its oncogenic role in melanoma progression, Notch1 has been identified as a tumour 

suppressor in mouse basal cell and squamous cell carcinomas of the skin where it interacts with the 

Wnt and Hedgehog pathways108, 110. In keratinocytes, Notch signalling is able to promote 
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differentiation and suppress tumourigenesis. Activated Notch1 leads to keratinocyte growth arrest 

by increasing p21WAF1/Cip1 expression (cyclin/CDK inhibitor) through RBP-jK-dependent 

transcription111. p21 also acts as a negative transcriptional regulator of Wnt expression downstream 

of Notch1112. Notch1 can also suppress the expression of p63 (a modulator of Notch1-dependent 

transcription) in both human and murine keratinocytes113. Deletion of Notch1 results in epidermal 

and corneal hyperplasia111 while Notch1 deficiency is associated with the upregulation of Gli2 

which leads to the development of basal-cell tumours114. 

Small cell lung carcinoma 

Small cell lung carcinoma (SCLC) is a neuroendocrine subtype of lung cancer with a high mortality 

rate. Notch signalling has a tumour suppressive role in SCLC as indicated by the loss-of-function 

mutations in human tumours. The Notch family of receptors is affected by genomic alterations in 

25% of SCLC cases115. The majority of the identified mutations are heterozygous and mainly 

cluster in the EGF-like repeat region of Notch1. Most aberrations are frameshift and nonsense 

mutations as well as substitutions116.  Notch signalling is able to cause growth arrest associated with 

G1 cell cycle block and upregulate the expression of p21waf/cip1 and p27kip1 in SCLC cancer cell lines 

with cycle arrest being linked to the repression of hASH1 and induction of the MAPK/Ras 

pathway117. 

 

Notch signalling and tumour angiogenesis 

Tumour growth and metastasis is dependent on angiogenesis which is controlled by multiple 

signalling mechanisms such as the VEGF, FGF and hepatocyte growth factor (HGF) pathways. The 

Notch signalling pathway plays a pivotal role in vascular development and tumour angiogenesis, 

from vessel maturation, branching and cell differentiation to cell proliferation, survival and 

apoptosis78, 118. The VEGF and Notch pathways have independent but complementary functions in 

tumour angiogenesis; VEGF can stimulate the expression of Notch receptors and ligands while 

Notch is able to regulate the expression of VEGFs79, 118, 119. DLL4 haploinsufficiency leads to 

severe vascular defects in embryos and increased expression of the ligand is associated with human 

cancers120, 121. Many studies have reported that DLL4 acts as a negative regulator of tumour 

angiogenesis by disrupting vessel density and structure122-124. Some data, however, suggest that 

inhibition of the DLL4/Notch pathway induces vascular neoplasms79, 119, 125. 

 

Notch signalling and cancer stem cells 

Stem cells are characterised by their capacity for self-renewal and increasing data point toward the 

existence of cancer stem cells (CSCs). These ‘tumour-initiating cells’ are self-sustaining and 

capable of indefinite self-replication all the while showing resistance to chemotherapy and radiation 

which means that their complete eradication is necessary to obtain a cure for cancer. The Notch 

pathway, along with Wnt and Hedgehog, is essential for the maintenance of this population of cells 

and contributes to inflammatory signalling which promotes the stem-like cell phenotype98, 126. 

Recent work has shown that Notch plays a central role in breast and glioma CSCs. Notch1-

transformed mouse mammary tumors have been shown to harbour a rare mammary tumor-initiating 

cell population and the receptor contributes to mammary tumour-initiating activity127. The authors 

demonstrated that Notch1 over-expression was able to increase the rate of tumoursphere formation 

in murine mammary tumour cell cultures through expression of the embryonic stem cell 

transcription factor, Nanog. Notch4 signalling has also been shown to be enhanced 8-fold in breast 

CSCs103. In glioblastoma models, knockdown of Notch ligands through RNA interference was 

found to hinder CSC self-renewal and growth128. 
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Strategies to regulate Notch signalling for cancer therapy 

The range of roles exhibited by Notch signalling in tumourigenesis, angiogenesis and CSC 

maintenance makes it a viable therapeutic target for cancer. Inhibition of the Notch pathway with 

various agents from small molecule inhibitors to large molecule antibodies is being actively 

investigated as there is a need to identify new, less toxic and more efficacious disease treatments. 

Notch-related antibodies 

Molecules that target Notch receptors or ligands in a specific manner should, theoretically, reduce 

the therapeutic complications that arise from using non-selective compounds in cancer treatment. 

An attractive prospect in this respect is that of monoclonal antibody (mAb) therapy. However, 

monoclonal antibodies cannot cross the blood-brain barrier so they cannot, unmodified, be used 

against primary brain tumours and metastases and have a short half-life. 

Using phage display technology, mAbs that can recognise specific ligands and receptors have been 

generated50. These antibodies can act as potent inhibitors of the Notch pathway by preventing 

ligand-receptor interaction or proteolytic cleavage, thus inhibiting the production of the NICD96, 129. 

Aste-Amezaga et al. 129 generated two types of mAb against Notch1; one of which recognized the 

NRR of the receptor and the other of which interacted with the ligand binding domain. Both 

antibodies were able to downregulate Notch signalling with the NRR-specific antibody having anti-

angiogenic effects on tumours. However, the same authors noted that dual Notch1 and Notch2 

mAb-mediated inhibition caused gastrointestinal toxicity. Antibodies that bind to overlapping 

epitopes in the NRR region of Notch3 have been shown to inhibit the pathway by stabilising the 

auto-inhibited state and preventing proteolysis21 whilst the antibody, OMP-59R5 (tarextumab), 

which is a Notch2/Notch3 antagonist, has shown promising results in various cancer models, both 

as a single agent or in combination with other drugs130. 

Antibodies against Notch ligands are also under development. An anti-DLL4 antibody124 and a 

soluble Dll4-Fc fusion protein123, 131 have been shown to have anti-tumour activity that disrupts 

angiogenesis and inhibits tumour growth. OMP-21M18 is an antibody against DLL4 that blocks 

ligand interaction with Notch1 and Notch4 thus inhibiting the signalling pathway. Multiple early-

stage clinical trials are being conducted to test the efficacy of OMP-21M18 as a single agent or in 

combination with chemotherapy13, 132, 133 

Finally, A5226A, an antibody against the extracellular domain of nicastrin (a component of the -

secretase complex), is able to neutralise the activity of γ-secretase without causing any off-target 

effects134. 

Notch signalling decoys 

Soluble decoys of the extracellular domain of Notch receptors and ligands appear to inhibit 

signalling. Funahashi et al.121 employed a construct containing the 36 EGF repeats of rat Notch1 

fused to human Fc and demonstrated that it blocked Notch signalling in endothelial cells and 

impaired tumour neoangiogenesis with a 58% decrease in microvessel density in xenograft models. 

Monomeric and dimeric forms of DLL-1 generated by fusing the extracellular domain to either a 

series of myc epitopes or to the Fc portion of human IgG-1 have also been shown to impair the 

activation of Notch by tethered DLL-1, suggesting a direct competition between soluble and 

tethered ligands59. Similarly, soluble Jagged1 has been shown to repress the function of its 

transmembrane counterpart135. Although not strictly a decoy, the soluble protein, epidermal growth 

factor-like domain 7 (EGFL7), has been shown to suppress endothelial cell proliferation, sprouting 

and migration in a manner reminiscent of Notch inhibition136. Furthermore, the authors 
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demonstrated a physical interaction between Notch and EGFL7 suggesting that the latter protein 

might compete with Notch-ligand binding to inhibit angiogenesis. 

γ-secretase inhibitors 

Proteolytic cleavage of Notch receptors and/or ligands by the γ-secretase complex is a prerequisite 

for the downstream transcriptional changes associated with Notch signalling. -secretase inhibitors 

(GSIs), therefore, inhibit Notch signalling by reducing the formation of the NICD. These 

compounds have cytostatic and cytotoxic activities in various cancer cells. However, the drawback 

of these effects is that most GSIs are not highly specific as they impair the proteolysis of a range of 

secretase substrates including DLLs, Jagged, CD44, E-cadherin, amyloid precursor protein and 

N-cadherin. Two classes of GSIs have been developed with differing specificities; non-transition 

state inhibitors and competitive inhibitors of the presenilin catalytic site133. 

RO4929097 is a competitive oral GSI that shows anti-tumour activity in multiple xenograft models. 

The inhibitor does not block proliferation or induce apoptosis but instead it produces a less 

transformed phenotype137, 138. The compound can impair angiogenesis but its effects in this respect 

are limited by high tumour levels of IL6 and IL8139. RO4929097 has been shown to downregulate 

the expression of Notch target genes in breast cancer cell lines126 and to reduce the tumour initiating 

potential of melanoma cells140, 141. In addition, it has also been shown to reduce the expression of 

Notch target genes (Hes1, 3 and 5) in a dose-dependent manner in glioma tumour-initiating cells142. 

However, it was later shown that RO4929097 had limited anti-tumour activity in established glial 

tumours but that its efficacy was enhanced when used in combination with various other established 

chemotherapeutic agents143. Similarly, a phase 1 study of patients with a range of refractory solid 

tumours (predominantly colon) demonstrated a clinical benefit in colon and cervical cancer patients 

when RO4929097 was used in combination with capecitabine144. The former compound seemed to 

enhance the sensitivity of tumour cells to capecitabine. However, common side effects included 

grade 3 and 4 toxicities in relation to nausea, vomiting, diarrhoea, fatigue and hypophosphatemia. 

PF-03084014 is a non-competitive and selective GSI that has been shown to reduce endogenous 

NICD levels and downregulate the Notch target genes Hes-1 and cMyc in the T-ALL cell line HPB-

ALL145. The authors demonstrated growth inhibition of several T-ALL cell lines via cell cycle 

arrest and the induction of apoptosis. Furthermore, the inhibitor reduced cell proliferation and 

induced apoptosis in HPB-ALL tumours. Used in combination with fludarabine, PF-03084014 

induced selective apoptosis in Notch1-mutated chronic lymphocytic leukaemia cells and 

upregulation of HRK, a proapoptotic gene146. Furthermore, the inhibitor has been shown to exhibit 

synergistic activity with dexamethasone (a glucocorticoid) in human T-ALL cell lines and primary 

human T-ALL patient samples147. The authors also demonstrated that the combination of 

compounds was highly efficacious in reducing the tumour burden in a xenograft model of T-ALL 

and that dexamethasone ablated the gastrointestinal toxicity of PF-03084014. Similarly, synergistic 

activity of PF-03084014 with docetaxel has been shown in triple-negative breast cancer models. 

The combination of the two drugs reversed the endothelial mesenchymal transition phenotype, 

induced apoptosis in bulk tumours and eliminated cancer stem cells148 

DAPT (N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester / GSI-IX) is a GSI 

that has been widely used to evaluate the role of Notch signalling in various cell types such as 

muscle stem cells, neural stem cells, ovarian cancer cells and tongue carcinoma cells80, 149, 150. 

DAPT blocks cellular proliferation and induces apoptosis through expression of p21 and regulation 

of cyclin A in Ishikawa endometrial cancer cells151 and reduces proliferation in adipose derived 

stem cells via regulation of Notch and Runx2 expression150. DAPT can also inhibit Notch1 in 

gastric cancer cells which in turn leads to EMT inhibition152. Synergistic anti-leukaemic activity 

was observed following the pretreatment of ovarian cell lines resistant to cisplatin with DAPT153. 

Furthermore, the authors demonstrated that the drug combination inhibited tumour growth and 
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induced G2 cell cycle arrest and apoptosis through modulation of cyclin B1, Bcl-2 and caspase-3. 

DAPT showed no effect on tumour angiogenesis in colon adenocarcinoma in obese mice154 but it 

was able to interfere with VEGF signalling in glioblastomas by decreasing VEGFR1 expression 

which led to uncoupling of tumour vessel density from vessel function80. However, the authors also 

showed that DAPT increased VEGFR2 expression and enhanced endothelial cell proliferation in 

combination with VEGF treatment. 

MRK-003 is a potent GSI that exhibits good preclinical activity in several T-ALL and breast cancer 

cell lines. Intermittent treatment (3 days per week) is sufficient to induce Notch1-mediated cell 

cycle arrest and apoptosis in T-ALL155. Combining MRK-003 with trastuzumab (Herceptin) 

prevents ErbB-2 positive breast tumour recurrence while a combination of MRK-003 with lapatinib 

significantly reduces tumour growth156. MRK-003 treatment promotes caspase-dependent apoptosis 

and blocks proliferation in non-Hodgkin’s lymphoma and multiple myeloma cell lines by 

decreasing the levels of NICD, Hes1 and cMyc157. Moreover, the authors demonstrated that the 

inhibitor upregulated pAkt expression while downregulating the levels of p21, Bcl-2 and Bcl-XI in 

multiple myeloma cells and cyclin D1, Xiap and Bcl-XI in non-Hodgkin's lymphoma cells. MRK-

003 has also been shown to cause cytotoxicity and growth inhibition in a mouse model of pancreatic 

ductal adenocarcinoma158 but appears to reduce oxaliplatin-induced apoptosis in human colon 

cancer cells by increasing the levels of the anti-apoptotic proteins Mc1-1 and Bcl-xL159. 

Compound E is a selective, non-competitive GSI that has shown anti-tumour activity in several pre-

clinical studies. The treatment of T-ALL cell lines with Compound E for 5-7 days has been shown 

to reversibly inhibit cell proliferation, cause cell cycle block and differentiation (the latter only in 

some of the cell lines studied)160. Treatment of 14 days or longer was required to induce significant 

apoptosis but the authors also found that Compound E sensitized cells to the effects of 

dexamethasone raising the potential for the use of the drug combination to obtain efficient 

therapeutic effects in T-ALL. Another study tested the response of compound E in four T-ALL cell 

lines in combination with several chemotherapeutic drugs. GSI treatment showed inconsistencies: it 

led to downregulation of Notch in one line, had no effect on another and induced chemotherapy 

resistance in two of the cell lines tested91. 

GSI-I can induce cell cycle arrest and apoptosis in breast cancer cells with estrogen receptor (ER)-

negative cell lines showing increased sensitivity26. Treatment of precursor-B acute lymphoblastic 

leukaemia (ALL) blasts with GSI-I induced apoptosis and caused nuclear accumulation of cleaved 

Notch1 and Notch2 concomitant with an inhibition of the Notch targets Hey2 and Myc161 

MK-0752 is a novel GSI that has shown promising early results. The drug has been shown to 

reduce breast cancer stem cell numbers in tumourgrafts and to enhance the efficacy of docetaxel in 

pre-clinical studies162. In a 20-patient pilot study, MK-0752 was tested against early stage ER+ 

breast cancer and showed significant biomarker response in all tumours through modulation of 

Notch activity163. In another study investigating the effect of MK-0752 on advanced solid tumours, 

the inhibitor significantly impaired Notch signalling and a limited proportion of patients showed 

disease stabilization for longer than 4 months (one showed a complete response)164. 

Although GSIs show promising results in clinical studies, they fail to distinguish between 

individual Notch receptors and they inhibit other signalling pathways that utilise the γ-secretase 

complex. This lack of specificity can lead to gastrointestinal toxicity due to the rapid differentiation 

of progenitor cells into secretory goblet cells in the intestinal crypts (goblet cell metaplasia) being 

impaired by Notch inhibition. Other GSI-associated adverse effects include skin disorders such as 

erythema, rash and pruritus or headaches 96, 133, 165. However, as mentioned earlier, some studies 

have demonstrated that the combination of GSIs with other drugs such as glucocorticoids might 

overcome some of these toxicity problems147. 

Blocking peptides 
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Agents that interfere with the Notch signalling transcriptional activator complex have also been 

generated. SAHM1 is a permeable peptide that directly antagonises the assembly of the ternary 

complex and causes potent suppression of Notch target genes. SAHM1 blocks MAML1 recruitment 

and forms a transcriptionally inert complex with Notch and CSL. This inhibits Notch signalling and 

blocks tumour growth without showing gastrointestinal side effects166. TR4 is another dominant 

negative peptide derived from MAML1 that has shown promising results in human mammary and 

colon xenograft models. Moreover, the compound is able to cross the blood-brain barrier so it can 

potentially be used against brain tumours167. 

 

Concluding remarks 

A plethora of studies have demonstrated how aberrant Notch signalling increases cellular 

proliferation, induces epithelial-to-mesenchymal transition, maintains the cancer stem cell pool and 

inhibits apoptosis. The multifaceted role of Notch in cancer development/progression makes it an 

attractive therapeutic target and its cross-talk with other signalling pathways opens the door for the 

use of combinational therapeutic strategies. However, the efficacy of any Notch-targeted treatments 

must be considered in the light of drug specificity and related off-target toxicities. Furthermore, the 

role Notch signalling in cancer, as in differentiation, is context dependent; it can promote 

oncogenesis in some tissues and prevent neoplastic transformation in others. Nonetheless, the use of 

drugs to regulate Notch signalling represents an exciting challenge in the field of cancer 

therapeutics. 
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