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Abstract

The max-cut problem is a much-studied NP-hard combinatorial
optimisation problem. Poljak and Turzik found some facet-defining
inequalities for this problem, which we call 2-circulant inequalities.
Two polynomial-time separation algorithms have been found for these
inequalities, but one is very slow and the other is very complicated. We
present a third algorithm, which is as fast as the faster of the existing
two, but much simpler.

Keywords: max-cut problem, polyhedral combinatorics, branch-and-
cut.

1 Introduction

Let G be an undirected graph, with vertex set V and edge set E. For any
S ⊆ V , the set of edges having exactly one end-vertex in S is called an
edge-cutset or simply cut. Given a weight we ∈ R for each edge e ∈ E, the
max-cut problem calls for a cut in G of maximum total weight.

The max-cut problem is strongly NP-hard [13]. It has many applica-
tions and has received much attention (see, e.g., [10, 18]). As present, the
most successful exact algorithms for max-cut are based on either linear pro-
gramming (LP) or semidefinite programming (SDP) relaxations (see, e.g.,
[4, 23, 25]). LP-based algorithms can solve sparse instances with up to
around 500 nodes, and SDP-based ones can solve dense instances with up
to around 150 nodes.

To construct strong LP relaxations of combinatorial optimisation prob-
lems, it helps to derive families of strong (preferably facet-defining) valid
linear inequalities (see, e.g., [7]). Several such families have been derived
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for max-cut (see, e.g., [3, 10]). In this paper, we focus on some inequalities
discovered by Poljak & Turzik [24], which we call 2-circulant inequalities.

The separation problem for a given family of valid linear inequalities is
this: given a fractional solution to an LP relaxation of an instance of the
max-cut problem, either find an inequality in the family that is violated by
the fractional solution, or prove that no such violated inequality exists (see,
e.g., [7, 16]). In [24], Poljak and Turzik claimed (without proof) that the
separation problem for the 2-circulant inequalities (or more precisely a gen-
eralisation of them) could be solved in polynomial time. Explicit algorithms
for this purpose were however discovered only later on [20, 21].

Unfortunately, the separation algorithm in [20] is very slow, involving
the solution of O

(
n2
)

very large LPs (where n = |V |). The algorithm in [21]
is faster, with a running time of O

(
n5
)
, but it is very hard to implement.

The purpose of this paper is to present a third algorithm, which is much
simpler than both of the other algorithms, yet still runs in O

(
n5
)

time.
The paper has a simple structure: the literature is reviewed in Sec-

tion 2, the new algorithms are presented in Section 3, and concluding re-
marks are made in Section 5. Throughout the paper, we let Kn denote
the complete undirected graph with vertex set Vn = {1, . . . , n} and edge
set En = {e ⊂ Vn : |e| = 2}. Given a vector x ∈ [0, 1]En and an edge
e = {i, j} ∈ En, we sometimes write xij or x(i, j) instead of xe. We also
assume that n ≥ 5 throughout the paper, to avoid trivial cases.

2 Literature Review

Now we review the literature. Due to space limitations, we only review
essential results, and refer the reader to [10, 18] for comprehensive surveys.

2.1 The cut polytope

By adding dummy edges of weight zero, if necessary, we can work with the
complete graph Kn. The max-cut problem can then be formulated as the
following 0-1 LP:

max
∑

e∈En
wexe

s.t. xij + xik + xjk ≤ 2 1 ≤ i < j < k ≤ n (1)

xij − xik − xjk ≤ 0 {i, j} ∈ En; k ∈ Vn \ {i, j} (2)

x ∈ {0, 1}En .

Here, xe takes the value 1 if and only if edge e lies in the cut. The inequalities
(1) and (2) are called triangle inequalities.

Barahona and Mahjoub [3] call the convex hull of feasible solutions to
the above 0-1 LP the cut polytope. We will denote it by CUTn. They show
that the triangle inequalities define facets of CUTn, along with various other
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≤ 12

Figure 1: Representation of a 2-circulant inequality with c = 9.

families of inequalities, including so-called odd clique and odd bicycle wheel
inequalities. Since then, a huge array of valid and facet-defining inequalities
has been discovered (see Part V of [10]). We will be particularly interested
in the following inequalities, due to Poljak & Turzik [24]:

Proposition 1 (Poljak & Turzik, 1992) Let c be a positive integer with
5 ≤ c ≤ n, and suppose that c is congruent to 1 modulo 4. Let v1, . . . , vc be
distinct vertices in Kn. The inequality

c∑
i=1

(
x
(
vi, vi+1

)
+ x
(
vi, vi+2

))
≤ 3(c− 1)/2 (3)

defines a facet of CUTn, where indices are taken modulo c.

We will call the inequalities (3) 2-circulant inequalities. Figure 1 gives a
graphical representation of a 2-circulant inequality with c = 9. Small filled
circles represent nodes, and edges represent variables with a coefficient of
one on the left-hand side.

A point that will be important later on (see Subsection 2.3) is that 2-
circulant inequalities are not valid for CUTn when c is congruent to 3 mod
4. Indeed, to make them valid in that case, it is necessary to increase the
right-hand side by one, to (3c− 1)/2 (see Figure 2). Moreover, the resulting
inequalities are not of interest, since they are easily shown to be implied by
triangle inequalities.

We remark that the cut polytope is closely related to the so-called
Boolean quadric polytope, which is a polytope associated with unconstrained
quadratic programming in binary variables (see, e.g., [2, 8, 10, 22]). For
brevity, we do not go into details, but simply point out that our new sepa-
ration algorithms can be easily adapted to the Boolean quadric polytope.

2.2 Switching

An important operation, called switching, was also defined in [3]. It states
that, if the inequality λTx ≤ γ is valid (or facet-defining) for CUTn, then
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Figure 2: A 2-circulant with c = 7 contains a cut with (3c−1)/2 = 10 edges.
Nodes in S represented by filled circles, others by hollow circles. Edges in
δ(S) represented by solid lines, others by dotted lines.

the ‘switched’ inequality∑
e∈En\δ(S)

λexe −
∑
e∈δ(S)

λexe ≤ γ −
∑
e∈δ(S)

λe

is also valid (or facet-defining), for any S ⊂ Vn. As a simple example, taking
a triangle inequality of the form (1) and switching on node k, we obtain a
triangle inequality of the form (2). In a similar way, one can construct
switched odd clique, odd bicycle wheel and 2-circulant inequalities.

2.3 Separation

Known results on exact separation algorithms include the following:

• Separation for the triangle inequalities (1), (2) can be solved in O
(
n3
)

time by mere enumeration.

• More generally, separation for (switched) odd clique inequalities on k
nodes, for a fixed odd k ≥ 3, can be solved by enumeration in O

(
nk
)

time.

• Separation for the odd bicycle wheel inequalities can be solved in
O
(
n5
)

time [14]. The idea is to reduce the separation problem to(
n
2

)
minimum-weight odd cycle problems in Kn−2, and then use the

known fact [3, 15] that the minimum-weight odd cycle problem can
itself be reduced to a series of shortest (s, t)-path problems.

• The separation problem for a family of valid inequalities that arises
from an SDP relaxation of max-cut can be solved (to arbitrary fixed
precision) in polynomial time, by computing the minimum Eigenvalue
of a certain matrix [19]. The inequalities in question are however never
facet-defining.
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• One can separate in polynomial time over families of valid inequalities
that include not only all odd bicycle wheel and 2-circulant inequalities,
but also all of their switchings [20, 21]. The algorithm in [20] is based
on lift-and-project (see [1]), and involves the solution of

(
n
2

)
LPs, each

with O
(
n3
)

variables and O
(
n2
)

constraints. The algorithm in [21]
is based on repeated applications of the covariance map, along with
arguments based on “{0, 12}-cuts” (see [5]). It runs in O

(
n5
)

time, but
is very hard both to understand and to implement.

Poljak & Turzik [24] noted (Remark 5.4, page 391) that 2-circulant in-
equalities remain valid even when the nodes v1, . . . , vc are not all distinct,
provided that vi 6= vi+1 for i = 1, . . . , c. They also stated that the separation
problem for the resulting generalised 2-circulant inequalities could be trans-
formed to a minimum-weight odd cycle problem on a suitable graph, but
they did not give a proof. (Actually, we believe that such a transformation
is impossible, due to the fact that 2-circulant inequalities are valid not when
c is odd, but only when c is congruent to 1 mod 4.)

There are also several separation heuristics available for CUTn and re-
lated polyhedra; see, e.g., [2, 4, 6, 9, 12, 17]. For the sake of brevity, we do
not go into details.

3 The New Separation Algorithms

In this section, we describe our new separation algorithms. Subsection 3.1
deals with the 2-circulant inequalities themselves, whereas Subsection 3.2
deals with switched 2-circulant inequalities. The inputs to both algorithms
are an integer n ≥ 5 and a fractional point x∗ ∈ [0, 1]En that lies outside
CUTn.

3.1 Separation for 2-circulant inequalities

Our separation algorithm is based on the following lemmas and definition.

Lemma 1 Given any ordered triple (i, j, k) of nodes in V , the “weakened
triangle” inequality

xij + xjk + 2xik ≤ 3 (4)

is valid for CUTn.

Proof. It is the sum of the triangle inequality (1) and the upper bound
xik ≤ 1. �

Definition 1 Given any ordered triple (i, j, k) of nodes in V , let ∆(i, j, k)
denote the slack of the weakened triangle inequality (4). That is:

∆(i, j, k) = 3 − xij − xjk − 2xik.
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Lemma 2 The 2-circulant inequalities (3) can be written as

c∑
i=1

∆
(
vi, vi+1, vi+2

)
≥ 3,

where indices are again taken mod c.

Proof. Multiplying the inequality (3) by minus two and adding 3c to both
sides yields

3c−
c∑
i=1

(
2x
(
vi, vi+1

)
+ 2x

(
vi, vi+2

))
≥ 3.

The result then follows easily. �

Lemma 2 immediately suggests using Algorithm 1 to solve the separation
problem for 2-circulant inequalities.

Algorithm 1: Exact separation of 2-circulant inequalities.

Input: An integer n ≥ 5 and a point x∗ ∈ [0, 1]En that satisfies all of the
weakened triangle inequalities (4).

Output: A collection of valid inequalities violated by x∗, or a proof that
no violated 2-circulant inequalities exist.

1 Construct a digraph G+ = (V +, A+), initially empty;
2 for each ordered pair (i, j) of nodes in V do
3 insert a node into V + and label it “(i, j)”;
4 end
5 for each ordered triple (i, j, k) of nodes in V do
6 let ∆ = 3− x∗ij − x∗jk − 2x∗ik;

7 insert an arc from node (i, j) to node (j, k);
8 give the arc a weight of ∆;

9 end
10 for each node (i, j) ∈ V + do
11 Find the minimum-weight dicycle in G+ that passes through the

node (i, j) and whose cardinality is congruent to 1 mod 4;
12 if the weight of the dicycle is less than 3 then
13 Output the corresponding violated inequality;
14 end

15 end

Note that Algorithm 1 solves the separation problem for a generalisation
of the 2-circulant inequalities, rather than the 2-circulant inequalities them-
selves, since we cannot guarantee that every dicycle in G+ found during the
course of the algorithm corresponds to a sequence of distinct nodes v1, . . . , vc
in G.
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One component of Algorithm 1 that needs explaining is the minimum-
weight dicycle computation in step 10. This can be accomplished via a minor
modification of the minimum-weight odd cycle algorithm given in [3, 15]. We
create another graph H, which has four copies of each node in V +. For each
arc

(
(i, j), (j, k)

)
in A+, we insert four arcs into H, with the same weight,

going:

• from the first copy of node (i, j) to the second copy of (j, k);

• from the second copy of node (i, j) to the third copy of (j, k);

• from the third copy of node (i, j) to the fourth copy of (j, k);

• from the fourth copy of node (i, j) to the first copy of (j, k).

A minimum-weight dicycle in G+ passing through node (i, j) and having
cardinality congruent to 1 mod 4 can now be found by computing a shortest
path in H from the first copy of (i, j) to the second copy.

Now, provided that our fractional point x∗ satisfies all of the weakened
triangle inequalities, then all arc-weights in A+ will be non-negative. This
leads to our main theorem:

Theorem 1 If the fractional point x∗ ∈ [0, 1]En satisfies all of the weakened
triangle inequalities (4), then the separation problem for a generalisation of
the 2-circulant inequalities can be solved in O

(
n5
)

time.

Proof. The digraph G+ has O
(
n2
)

nodes and O
(
n3
)

arcs, and therefore
so does H. To solve the separation problem, we must solve O

(
n2
)

short-
est (s, t)-path problems in H. The implementation of Dijkstra’s algorithm
described in [11] takes O(p + q log q) time to compute a shortest path in a
digraph with p arcs and q nodes. Thus, each shortest-path computation in
H can be performed in O

(
n3
)

time. �

We remark that, although a running time of O
(
n5
)

time is rather high,
our separation algorithm can generate several violated inequalities in a single
call. (We conjecture that it can generate Θ

(
n2
)

of them.) Moreover, the
practical performance of the algorithm can be improved a little by exploiting
the structure of x∗:

Proposition 2 Suppose that x∗ satisfies all of the triangle inequalities (1),
(2), and let f denote the number of variables that are fractional at x∗. Then
Algorithm 1 can be implemented to run in O

(
nf2

)
time.

Proof. Theorem 4 of [20] states that 2-circulant inequalities are implied
by the triangle inequalities together with the disjunction(

x
(
v1, v2

)
= 0
)
∨
(
x
(
v1, v2

)
= 1
)
.
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By symmetry, this implies that, if x∗ satisfies all triangle inequalities, then
a 2-circulant inequality cannot be violated unless x∗

(
vi, vi+1

)
is fractional

for i = 1, . . . , c. This implies in turn that we only need to include a node
(i, j) in V + if x∗ij is fractional. This reduces the number of nodes in V + to
2f , and reduces the number of arcs in A+ to O(nf). Each shortest-path
computation then takes only O(nf) time, and the number of shortest-path
calls is only O(f). �

One can speed up the practical performance of the separation algorithm
further, by aborting any given Dijkstra call as soon as a node in H receives
a permanent distance label of 3 or more. We omit details, for brevity.

3.2 Separation for switched 2-circulant inequalities

Now we show how to extend the separation algorithm to cover switched 2-
circulant inequalities, while preserving the same (asymptotic) running time.

First, we enumerate all possible switchings of the weakened triangle in-
equality (4). For example, if we switch nodes i and k, we obtain

−xij − xjk + 2xik ≤ 1. (5)

Then, we extend the notation ∆(i, j, k), by putting a small bar above any
nodes that have been switched. For example, ∆(̄i, j, k̄) will denote the slack
of the switched inequality (5), i.e., the quantity 1 + xij + xjk − 2xik.

Now, for each ordered pair (i, j) of nodes in V , there are four possibilities,
according to which of the two nodes (if any) is to be switched. To handle
this, we insert four nodes into V + for each such pair, labelled (i, j), (̄i, j),
(i, j̄) and (̄i, j̄). Then, when constructing A+, in addition to inserting an
arc from node (i, j) to node (j, k) with weight equal to ∆∗(i, j, k), we insert
seven other arcs, as follows:

• from node (i, j) to node (j, k̄), with weight ∆∗(i, j, k̄);

• from node (i, j̄) to node (j̄, k), with weight ∆∗(i, j̄, k);

• from node (i, j̄) to node (j̄, k̄), with weight ∆∗(i, j̄, k̄);

• from node (̄i, j) to node (j, k), with weight ∆∗(̄i, j, k);

• from node (̄i, j) to node (j, k̄), with weight ∆∗(̄i, j, k̄);

• from node (̄i, j̄) to node (j̄, k), with weight ∆∗(̄i, j̄, k);

• from node (̄i, j̄) to node (j̄, k̄), with weight ∆∗(̄i, j̄, k̄).

It is then an easy (but tedious) exercise to show that x∗ violates a
switched 2-circulant inequality if and only if there is a dicycle in G+ with
weight less than 3 and cardinality congruent to 1 mod 4.
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%Gap Closed
|V | #OPT %Gap Circs Sw. Circs
35 0 15.70 73.89 73.89
45 0 26.79 54.11 54.11
55 0 29.89 43.60 43.60

Table 1: Computational results for MC A

4 Computational Results

To explore the potential of 2-circulant inequalities, we have implemented a
cutting-plane algorithm and run it on a set of 60 randomly generated max-
cut instances. Our test set is composed of two sets of fully dense instances
having 30 members each. The two sets, called “MC A” and “MC B”, differ
only with respect to their weight coefficients. For the instances in MC A,
each edge weight is a random integer uniformly selected from {1, . . . , 10}.
For the instances in MC B, each edge weight is set to either +1 or −1 with
equal probability. Each set contains ten instances for each value of n in
{35, 45, 55}.

For each instance, we computed three upper bounds: the one obtained
when using only the triangle inequalities (1) - (2), the one obtained when
2-circulant inequalities were added, and the one obtained when switched
2-circulant inequalities were included as well. We also computed a lower
bound, by running branch-and-bound with a time limit of 1200 seconds.

The code was written in C and calls on the callable library of CPLEX

(v. 12.71) both to solve the LP relaxations and to perform branch-and-
bound. The experiments were run on an Intel i3 processor at 3.60GHz,
under Ubuntu 16.04, with 8GB of RAM.

Table 1 and table 2 summarize the computational results obtained for
MC A and MC B, respectively. Each of the three rows in each table corresponds
to a batch of 10 instances. The first column gives the number of nodes. The
second column reports the number of instances solved to proven optimal-
ity by the branch-and-bound algorithm within the time limit. The column
headed “%Gap” gives the average gap between the initial upper bound (tri-
angle inequalities only) and the lower bound, expressed as a percentage of
the lower bound. The columns headed “%Gap Closed” report the average
percentage of the gap closed by the 2-circulant inequalities and switched
2-circulant inequalities.

For the instances with positive edge weights, the 2-circulant inequalities
are quite useful, but the switched inequalities add no value. For the instances
with positive and negative weights, however, the switched inequalities are
extremely useful, closing nearly all of the gap.
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%Gap Closed
|V | #OPT %Gap Circs Sw. Circs
35 10 33.90 41.27 100
45 10 55.74 28.38 99.48
55 5 80.57 22.90 93.68

Table 2: Computational results for MC B

5 Concluding Remarks

We have presented a (relatively) simple exact separation algorithm for (a
generalisation of) the 2-circulant inequalities of Poljak & Turzik [24], which
runs in O

(
nf2

)
time, where n is the number of nodes and f is the number

of fractional variables. We have also shown how to extend that algorithm
to separate over a broader family of inequalities, that can be derived by
switching.

We are currently working on faster separation heuristics, and of exten-
sions to the case of max-cut on general (rather than complete) graphs. Ulti-
mately, our goal is to create an open-source C library of exact and heuristic
separation routines for the max-cut problem and related problems.
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