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Abstract

In this paper, we explored how judgment can be used to improve the selection of a forecast-

ing model. We compared the performance of judgmental model selection against a standard

algorithm based on information criteria. We also examined the efficacy of a judgmental

model-build approach, in which experts were asked to decide on the existence of the struc-

tural components (trend and seasonality) of the time series instead of directly selecting a

model from a choice set. Our behavioral study used data from almost 700 participants,

including forecasting practitioners. The results from our experiment suggest that selecting

models judgmentally results in performance that is on par, if not better, to that of algorith-

mic selection. Further, judgmental model selection helps to avoid the worst models more

frequently compared to algorithmic selection. Finally, a simple combination of the statis-

tical and judgmental selections and judgmental aggregation significantly outperform both

statistical and judgmental selections.
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1. Introduction

Planning processes in operations - e.g., capacity, production, inventory, and materials

requirement plans - rely on a demand forecast. The quality of these plans depends on the

accuracy of this forecast. This relationship is well documented (Gardner, 1990; Ritzman

and King, 1993; Sanders and Graman, 2009; Oliva and Watson, 2009). Small improvements
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in forecast accuracy can lead to large reductions in inventory and increases in service levels.

There is thus a long history of research in operations management that examines forecasting

processes (Seifert et al., 2015; Nenova and May, 2016; van der Laan et al., 2016, are recent

examples).

Forecasting model selection has attracted considerable academic and practitioner atten-

tion during the last 30 years. There are many models to choose from – different forms of

exponential smoothing, autoregressive integrated moving average (ARIMA) models, neural

nets, etc. – and forecasters in practice have to select which one to use. Many academic stud-

ies have examined different statistical selection methodologies to identify the best model; the

holy grail in forecasting research (Petropoulos et al., 2014). If the most appropriate model

for each time series can be determined, forecasting accuracy can be significantly improved

(Fildes, 2001), typically by as much as 25-30% (Fildes and Petropoulos, 2015).

In general, forecasting software recommends or selects a model based on a statistical

algorithm. The performance of candidate models is evaluated either on in-sample data,

usually using appropriate information criteria (Burnham and Anderson, 2002), or by with-

holding a set of data points to create a validation sample (out-of-sample evaluation, Ord

et al., 2017, also known as cross-validated error). However, it is easy to devise examples

in which statistical model selection (based either on in-sample or out-of-sample evaluation)

fails. Such cases are common in real forecasting applications and thus make forecasting

model selection a non-trivial task in practice.

Practitioners can apply judgment to different tasks within the forecasting process, namely:

1. definition of a set of candidate models,

2. selection of a model,

3. parametrization of models,

4. production of forecasts, and

5. forecast revisions/adjustments.

Most of the attention in the judgmental forecasting literature focuses on the latter two tasks.

Experts are either asked to directly estimate the point forecasts of future values of an event

or a time series (see for example Hogarth and Makridakis, 1981; Petropoulos et al., 2017),

or they are asked to adjust (or correct) the estimates provided by a statistical method in

order to take additional information into account; such information is often called soft data,

such as information from the sales team (Fildes et al., 2009).

However, little research has examined the role and importance of human judgment in

the other three tasks. In particular, Bunn and Wright (1991) referred to the problem of
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judgmental model selection (item 2 in the above list), suggesting that the selection of the

most appropriate model(s) can be based on human judgment. They also emphasized the

dearth of research in this area. Importantly, the majority of the world-leading forecasting

support systems allow human judgment as the final arbiter among a set of possible models.1

Therefore, the lack of research into how well humans perform this task remains a substantive

gap in the literature.

In this study, we examined how well human judgment performs in model selection com-

pared with an algorithm using a large-scale behavioral experiment. We analyzed the effi-

ciency of judgmental model selection of individuals as well as groups of participants. The

frequency of selecting the best and worst models provides suggestions on the efficacy of each

approach. Moreover, we identified the process that most likely will choose models that lead

to improved forecasting performance.

The rest of our paper is organized as follows. The next section provides an overview

of the literature concerning model selection for forecasting. The design of the experiment

to support the data collection is presented in section 3. Section 4 shows the results of our

study. Section 5 discusses the implications for theory, practice, and implementation. Finally,

section 6 contains our conclusions.

2. Literature

2.1. Commonly used forecasting models

Business forecasting is commonly based on simple, univariate models. One of the most

widely used families of models are exponential smoothing models. Thirty different models

fall into this family (Hyndman et al., 2008). Exponential smoothing models are usually

abbreviated as ETS, which stands for either ExponenTial Smoothing or Error, Trend, Sea-

sonality (the three terms in such models). More specifically, the error term may be either

additive (A) or multiplicative (M), whereas trend and seasonality may be none (N), additive

(A), or multiplicative (M). Also, the trend can be linear or damped (d). As an example,

ETS(M,Ad,A) refers to an exponential smoothing model with a multiplicative error term,

a damped additive trend, and additive seasonality. Maximum likelihood estimation is used

to find model parameters that produce optimal one-step-ahead in-sample predictions (Hyn-

dman and Khandakar, 2008).

1For example, see the ‘Manual Model Selection’ feature of SAP Advanced Planning and Optimiza-
tion (SAP APO), on SAP ERP: https://help.sap.com/viewer/c95f1f0dcd9549628efa8d7d653da63e/7.0.4/en-
US/822bc95360267614e10000000a174cb4.html
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These models are widely used in practice. In a survey of forecasting practices, the

exponential smoothing family of models is the most frequently used (Weller and Crone,

2012). In fact, it is used in almost 1/3 of times (32.1%), with averages coming second (28.1%)

and naive methods third (15.4%). More advanced forecasting techniques are only used in

10% of cases. In general, simpler methods are used 3/4 times, a result that is consistent with

the relative accuracy of such methods in forecasting competitions. Furthermore, an empirical

study that evaluated forecasting practices and judgmental adjustments reveals that “the

most common approach to forecasting demand in support of supply chain planning involves

the use of a statistical software system which incorporates a simple univariate forecasting

method, such as exponential smoothing, to produce an initial forecast” (Fildes et al., 2009,

p. 4), while it specifies that three out of four companies examined “use systems that are

based on variants of exponential smoothing” (Fildes et al., 2009, p. 7).

There are many alternatives to exponential smoothing for producing business forecasts,

such as neural networks and other machine learning methods. Nevertheless, time series

extrapolative methods remain very attractive. This is due to their proven track record in

practice (Gardner, 2006) as well as their relative performance compared to more complex

methods (Makridakis and Hibon, 2000; Armstrong, 2006; Crone et al., 2011). Furthermore,

time series methods are fairly intuitive, which makes them easy to specify and use, and

enhances their acceptance by the end-users (Dietvorst et al., 2015; Alvarado-Valencia et al.,

2017). Complex methods, such as many machine learning algorithms, often appear as black

boxes, and provide limited or no insights into how the forecasts are produced and which data

elements are important. These attributes of forecasting are often critical for users (Sagaert

et al., 2018).

2.2. Algorithmic model selection

Automatic algorithms for model selection are often built on information criteria (Burn-

ham and Anderson, 2002; Hyndman et al., 2002). Models within a certain family (such as

exponential smoothing or ARIMA) are fitted to the data, and the model with the minimum

value for a specific information criterion is selected as the best. Various information cri-

teria have been considered, such as Akaike’s Information Criterion (AIC) or the Bayesian

Information Criterion (BIC). The AIC after correction for small sample sizes (AICc) is often

recommended as the default option because it is an appropriate criterion for short time series

and it differs only minimally from the conventional AIC for longer time series (Burnham

and Anderson, 2002). However, research also suggests that if we focus solely on out-of-

sample forecasting accuracy, the various information criteria may choose different models
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that nonetheless result in almost the same forecast accuracy (Billah et al., 2006).

Information criteria are based on the optimized likelihood function penalized by model

complexity. Using a model with optimal likelihood inadvertently assumes that the postu-

lated model is true (Xia and Tong, 2011). In a forecasting context, this assumption manifests

itself as follows: The likelihood approach generally optimizes the one-step-ahead errors; for

the forecasts to be optimal for multi-step ahead forecasts, the resulting model parameters

should be optimal for any longer horizon error distribution as well. This will only occur if the

model is true, in which case the model fully describes the structure of the series. Otherwise,

the error distributions will vary with the time horizon (Chatfield, 2000). Such time-horizon

dependent error distributions are often observed in reality (Barrow and Kourentzes, 2016),

providing evidence that any model merely approximates the underlying unknown true pro-

cess. Not recognizing this can lead to a biased model selection which favors one-step-ahead

performance at the expense of longer time horizons that may well be the analyst’s real

objective.

An alternative to selecting models via information criteria is to measure the performance

of different models in a validation set (Fildes and Petropoulos, 2015; Ord et al., 2017). The

available data are divided into fitting and validation sets. Models are fitted using the first set,

and their performance is evaluated in the second set. The model with the best performance

in the validation set is put forward to produce forecasts for the future. The decision maker

can choose the appropriate accuracy measure. The preferred measure can directly match

the actual cost function that is used to evaluate the final forecasts.

Forecasts for validation purposes may be produced only once (also known as fixed-origin

validation) or multiple times (rolling-origin), which is the cross-validation equivalent for

time series data. Evaluating forecasts over multiple origins has several advantages, most

importantly their robustness against the peculiarities in data that may appear within a

single validation window (Tashman, 2000). Model selection on (cross-)validation has two

advantages over selection based on information criteria. First, the performance of multiple-

step-ahead forecasts can be used to inform selection. Second, the validation approach is

able to evaluate forecasts derived from any process (including combinations of forecasts

from various models). The disadvantage of this approach is that it requires setting aside

a validation set, which may not always be feasible. Given that product life cycles are

shortening, having a validation sample available can be an out of reach luxury for forecasters.

A final category for automatic model selection involves measurement of various time

series characteristics (such as trend, seasonality, randomness, skewness, intermittence, vari-
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ability, number of available observations) as well as consideration of decision variables (such

as the forecast horizon). Appropriate models are selected based on expert rules (Collopy

and Armstrong, 1992; Adya et al., 2001) or meta-learning procedures (Wang et al., 2009;

Petropoulos et al., 2014). However, such approaches are very sensitive to the selected rules

or meta-learning features. No widely accepted set of such rules exists.

Regardless of the approach used for the automatic selection of the best model, all pro-

cesses outlined above (information criteria, validation, and selecting based on rules) are

based on statistics or can be implemented through an algorithmic process. A commonality

among all algorithmic model selection approaches is that selection is based on historical

data. None of these algorithms can evaluate forecasts when the corresponding actual values

(for example, actually realized demand) are not yet available. These statistical selection ap-

proaches have been adopted from non-time series modeling problems in which the predictive

aspect of a model may not be present. Therefore, forecasting is only implicitly accounted

for in these algorithmic approaches. Good forecasts, rather than good descriptions of the

series, are done with a “leap of faith”.

2.3. Model selection and judgment

Despite the fact that the automatic selection of forecasting models has been part of

many statistical packages and commercial software, what is often observed in practice is that

managers select a model (and in some cases parameters) in a judgmental way. Automatic

selection procedures are often hard to understand and communicate within companies. In

that sense, managers lack trust in automatic statistical forecasting (Alvarado-Valencia et al.,

2017). A standard issue is that automatic selection methods tend to change models between

successive planning periods, substantially altering the shape of the series of forecasts. This

issue reduces the users’ trust in the system, especially after the statistical selection makes

some poor choices (Dietvorst et al., 2015). Users then eventually resort to either fully

overriding the statistical selection or implementing custom ad-hoc judgmental “correction”

rules.

Moreover, managers often believe firmly that they better understand the data and the

business context that created the data. For example, even if the result of an algorithm

suggests that the data lacks any apparent seasonality (and as such a seasonal model would

not be appropriate), managers may still manually select a seasonal model because they

believe that this better represents the reality of their business. Lastly, the sense of ownership

of forecasts can drive experts to override statistical results because more often than not

evaluation of their work performance is associated with taking actions about the forecasts
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(Önkal and Gönül, 2005; Ord et al., 2017), or is influenced by organizational politics (Kolassa

and Siemsen, 2016; Ord et al., 2017).

To the best of our knowledge, the efficacy of judgmental model selection has not been

studied. We expect that when forecast models are presented in a graphical environment

(actual data versus fitted values plus forecasts, as is the case in the majority of forecasting

software), forecasters may pay little attention to the actual fit of the model in the in-sample

data (or the respective value of the AIC if provided). However, critical to the judgmental se-

lection will be the matching of the out-of-sample forecasts with the expected reality. Harvey

(1995) observed that participants in a laboratory experiment made predictions so that the

noise and patterns in the forecasts were representative of the past data. This finding leads

us to believe that forecasters perform a mental extrapolation of the available in-sample data,

rejecting the models that result in seemingly unreasonable forecasts and accepting the ones

that represent a possible reality for them. Thus, in contrast to algorithmic model selection,

forecasters will attempt to evaluate the out-of-sample forecasts, even if the future realized

values of the forecasted variable are not yet available.

As the amount of information increases, decision makers are unable to process it ef-

ficiently and simultaneously (Payne, 1976). Accordingly, research in decision analysis and

management judgment has established that decomposition methods, which divide a task into

smaller and simpler ones, lead to better judgment. Such methods have also been found to be

useful in judgmental forecasting tasks, especially for forecasts that involve trends, seasonal-

ity and/or the effect of special events such as promotions. Edmundson (1990) examined the

performance of judgmental forecasting under decomposition. Similar to the way exponential

smoothing works (Gardner, 2006), forecasters were asked to estimate the structural compo-

nents of the time series (level, trend, and seasonality) separately. The three estimates were

subsequently combined. (Edmundson, 1990) found that estimating the components inde-

pendently resulted in superior performance compared with producing judgmental forecasts

directly. In another study, Webby et al. (2005) observed similar results when the effects

of special events were estimated separately. Also, Lee and Siemsen (2017) demonstrated

the value of task decomposition on order decisions, especially when coupled with decision

support.

We expect that these insights may be applied to judgmental model selection. When

judgmentally selecting between forecasting models (through a graphical interface), we ex-

pect a model-build approach to outperform the simple choice between different models. In

a model-build approach, forecasters are asked to verify the existence (or not) of structural
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components (trend and seasonality). This changes the task from identifying the best ex-

trapolation line to determining whether the historical information exhibits specific features

that the expert believes will extend into the future.

2.4. Combination and aggregation

Forecast combinations can result in significant improvement in forecast accuracy (Arm-

strong, 2001). There is also ample evidence that combining the output of algorithms with

the output of human judgment can confer benefits. Blattberg and Hoch (1990) used a simple

(50-50%) combination and found significant gains in combination methods compared with

the separate use of algorithms and judgment. Their results have been repeatedly confirmed

in the forecasting literature. Franses and Legerstee (2011) found that a simple combination

of forecasts outperformed both statistical and judgmentally adjusted forecasts. Petropou-

los et al. (2016) demonstrated that a 50-50 combination of forecasts in the period after a

manager’s adjustments have resulted in significant losses can indeed increase accuracy by

14%. Wang and Petropoulos (2016) found that a combination is as good, if not better, than

selecting between a statistical or an expert forecast. Trapero et al. (2013) demonstrated

further gains with more complex combination schemes. We anticipate that a combination

will also be beneficial in the context of forecast model selection.

The concept of the wisdom of crowds refers to the aggregation of the judgments of a group

of decision makers/stakeholders. Surowiecki (2005) provided several cases in which this

concept has been found to increase performance compared with individual judgments. Ferrell

(1985) also argued for the importance of combining individual judgments and discussed

the significantly improved performance of judgmental aggregation. He suggested that the

process of the combination itself is of little significance. However, a later study added that

aggregation done mechanically is better than if it is done by one of the forecasters to avoid

the possibility of biased weights (Harvey and Harries, 2004). In any case, we expect that

the aggregation of judgmental model selections will lead to improved performance compared

with selecting a single model, either judgmentally or statistically.

3. Design of the behavioral experiment

3.1. Selecting models judgmentally

Specialized forecasting software lists forecast methods and models. The users of such

systems must choose one from the list to extrapolate the data at hand. In some cases, this list

of choices is complemented by an option that, based on an algorithm, automatically identifies
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and applies the best of the available methods. However, in the context of the current paper,

we assumed that forecasters do not have such a recommendation available and instead rely

solely on their own judgment. We also assumed that the choice set is constrained to four

models able to capture various data patterns (level, trend, and seasonality). This is not

an unreasonable setup, with some established systems offering such specific options (such

as the well established SAP APO-DP system). We resorted to the exponential smoothing

family of models (Hyndman et al., 2008) and focused on the four models presented in Table

1 (mathematical expressions are provided in Appendix A).

Table 1: The four forecasting models considered in this study.

Model description ETS Model Trend Seasonality
Simple exponential smoothing (SES) A,N,N 8 8

SES with additive seasonality A,N,A 8 4

Damped exponential smoothing (DES) A,Ad,N 4 8

DES with additive seasonality A,Ad,A 4 4

To emulate the simple scenario implied by standard forecasting support systems (choose

one of the available forecasting models), we used radio buttons to present the different

model-choices as a list, as depicted in the left part of Figure 1. A user can navigate across

the different choices and examine the forecasts produced by each method. Once the forecasts

produced by a method are considered satisfactory, then a manager can submit the choice

and move to the next time series. We call this approach “judgmental model selection”.

We also considered a second approach where the user builds a model instead of selecting

between models. In the “model-build” condition, we ask a user to identify the existence of

a trend and/or seasonality in the data; the response can be used to select the respective

model from the Table 1. For example, identification of a trend implies damped exponential

smoothing; identification of seasonality without a trend implies SES with seasonality. This

can be implemented in the software design by including two check-boxes (right panel of

Figure 1). Once a change in one of these two check-boxes has been made, the forecasts of

the respective model are drawn. To facilitate identification, we provide trend and seasonal

plots (with usage instructions) in an attempt to aid the users with the pattern identification

task.

In both cases, once a participant submits his or her decisions, we use the selected fore-

casting method to produce one-year-ahead (12 months) forecasts for that time series. The
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Figure 1: Screens of the Web-based environment of the behavioral experiment. The left panel shows the
implementation of model selection; the right panel presents the model-build.

forecasts are compared with the actual future values, which were withheld, to find the fore-

cast accuracy of the submitted choice.

3.2. Data

To compare the performance of statistical versus judgmental model selection, we used a

subset of time series from the M3-Competition dataset (Makridakis and Hibon, 2000). This

dataset consists of 3,003 real time series of various frequencies and types. It has been used

many times in empirical evaluations of new forecasting models or processes (Hyndman et al.,

2002; Taylor, 2003; Hibon and Evgeniou, 2005; Crone et al., 2011; Athanasopoulos et al.,

2017; Petropoulos et al., 2018). We did not disclose the data source to the participants.

We focused on series with a monthly frequency and handpicked 32 time series. We

selected series so that in half of them, the statistical model selection based on minimizing

the value of the AIC succeeds in identifying the best model as evaluated in the hold-out

sample (out-of-sample observations). For the other half, this minimum-AIC model fails to

produce the best out-of-sample forecast. Moreover, the 32 time series were selected so that

all four exponential smoothing models considered in this paper (Table 1) are identified as

best in some time series according to the AIC criterion.

This success rate of 50% for the statistical algorithm to pick the correct model probably

overestimated (but not by much) the true success rate. When the four models presented in
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Figure 2: A typical time series used in this research, along with the forecasts from the four models.

section 3.1 were applied on the 1,428 monthly series of the M3-competition, selection based

on AIC is accurate in 36% of the cases. As such, if any bias is introduced by our time

series selection, we favor the statistical algorithm by giving the algorithm a higher chance

of picking the correct model. Consequently, the true effect size with which human judgment

improves upon performance may be underestimated in our analysis.

Because time series from the M3-Competition are of various lengths, we truncated all

selected series to a history of 72 months (six years). The first five years of data (60 months)

were treated as the in-sample data, on which the models were fitted. The last year (12

months) was used for out-of-sample evaluation. Figure 2 depicts a typical time series used

in this behavioral experiment. Along with the historical data that cover five years, we also

draw the (unobserved) future of the series. Moreover, we show the statistical point forecasts

of the four exponential smoothing models considered in different colors. For this example,

the AIC method identifies the ETS(A,Ad,A) model as best and, in fact, produced the best

out-of-sample forecasts.

3.3. Participants

The behavioral experiment was introduced as an elective exercise to groups of under-

graduate and postgraduate students studying at various universities (Institutions with at

least 20 participants include Bangor University, Cardiff University, Lancaster University, the

National Technical University of Athens, and Universidad de Castilla-La Mancha). Details
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regarding the modules where the experiment was introduced as an elective exercise are pro-

vided in table B.6 of Appendix B. We ran the exercise as a seminar (workshop) session

during the respective modules. The experiment was also posted to several relevant groups on

LinkedIn and three major forecasting blogs. As an incentive, the participants were told they

would receive £50 if their performance ranked within the top-20 across all the participants

(see Lacetera et al., 2014, for some positive effects in rewarding volunteers).

We recruited more than 900 participants; 693 of them completed the task. Upon com-

mencing the task, the participants were asked to self-describe themselves as undergradu-

ate/postgraduate students, researchers, practitioners, or other. At the same time, each

participant was randomly assigned to either the “model selection” or “model-build” condi-

tion. Table 2 presents the distribution of participants across roles (rows) and experimental

conditions (columns).

Table 2: Participants per role and experiment.

Role Model Selection Model-Build Total
UG students 139 137 276
PG students 103 108 211
Researchers 13 31 44
Practitioners 46 44 90
Other 40 32 72
Total 341 352 693

Most previous behavioral studies of judgmental forecasting were limited to students’

participation (Lee et al., 2007; Thomson et al., 2013), which is common in behavioral ex-

periments (Deck and Smith, 2013). In this study, our sample of student participants was

complemented by a sample of practitioners (90 forecasting experts). Practitioner partic-

ipants come from a variety of industries, as depicted in table B.7 of Appendix B. Our

analysis also considered this sub-sample separately to check for differences and similarities

between the practitioners and the students.

The completion rate was high for student participants (at 83%). This was expected, as

the experiment was conducted in a lab for several cohorts of this population. The rate was

lower for the other groups (practitioners 67%, researchers 57%, and other participants 56%).

These observed completion rates are slightly lower than other professional web-based surveys

(78.6%2); this difference may be explained by the duration of this behavioral experiment

2http://fluidsurveys.com/university/response-rate-statistics-online-surveys-aiming/
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(around 30 minutes, as opposed to the recommended 15 minutes3).

3.4. The process of the experiment

After being randomly assigned to experimental conditions, participants were given a

short description of the experimental task. The participants assigned to the model-build

condition were given brief descriptions of the trend and seasonal plots.

The 32 time series we selected from the M3 Competition were divided into four groups of

8 time series each (the same for all participants), and the actual experiment consisted of 4

rounds. In each round, the participants were provided with different information regarding

the forecasts and the fit derived from each model. The purpose was to investigate how

different designs and information affect judgmental model selection or model-build. The

information provided in each round is as follows:

• Only the out-of-sample forecasts (point forecasts for the next 12 months) were pro-

vided.

• The out-of-sample forecasts and the in-sample forecasts (model fit) were provided.

• The out-of-sample forecasts and the value of the AIC, which refers to the fit of the

model penalized by the number of parameters, were provided.

• The out-of-sample forecasts, the in-sample forecasts, and the value of the AIC were

provided.

The order of the rounds, as well as the order of the time series within each round, was

randomized for each participant. Attention checks (Abbey and Meloy, 2017) were not per-

formed. To maximize participant attention, round-specific instructions were given at the

beginning of each round so that the participants were able to identify and potentially use

the information provided.

Our experiment has both a between-subjects factor (model selection vs. model-build)

as well as a within-subjects factor (information provided). Since the latter produced little

meaningful variation, our analysis focuses on the former. We chose this design since we

believed that the difference between model selection vs. model-build could introduce signif-

icant sequence effects (making this more suited for between-subjects analysis), but we did

not believe that differences in information provided would lead to sequence effects (making

this more suited for within-subjects analysis).

3http://fluidsurveys.com/university/finding-the-correct-survey-length/
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3.5. Measuring forecasting performance

The performance of both algorithmic (based on AIC) and judgmental model selection

is measured on the out-of-sample data (12 monthly observations) that were kept hidden

during the process of fitting the models and calculating the AIC values. Four metrics were

used to this end. The first metric was a percentage score based on the ranking of the

selections. This was calculated as follows: A participant receives 3 points for the best choice

(the model that leads to the best forecasts) for a time series, 2 points for the second best

choice, and 1 point for the third best choice. Zero points were awarded for the worst (out

of four) choices. The same point scheme can be applied to both judgmental forecasting

approaches (model selection and model-build) once the identified patterns are translated to

the respective model. The mean absolute error (MAE) was used as the cost function for

evaluation. The range of points that anyone could collect is (given the number of time series)

0-96, which was then standardized to the more intuitive scale of 0-100. The percentage score

of each participant, along with a pie chart presenting the distribution of best, second best,

third best, and worst selections, was presented at the very last page of the experiment.

Apart from the percentage score based on the selections, we also use three formal mea-

sures of forecasting performance: (1) Mean Percentage Error (MPE) is a measure suitable

for measuring any systematic bias in the forecasts, (2) Mean Absolute Percentage Error

(MAPE) and (3) Mean Absolute Scaled Error (MASE; Hyndman and Koehler, 2006) are

suitable for measuring the accuracy of the forecasts. Although the MAPE suffers from

several drawbacks (Goodwin and Lawton, 1999), it is intuitive, easy to interpret, and widely

used in practice. MASE is the Mean Absolute Error scaled by the in-sample Mean Abso-

lute Error of the naive method that uses the last observed value as a forecast. The intuition

behind this scaling factor is that it can always be defined and only requires the assumption

that the time series has no more than one unit root, which is almost generally true for real

time series. Other scaling factors, such as the historical mean, impose additional assump-

tions, such as stationarity. MASE has desirable statistical properties and is popular in the

literature. In particular, MASE is scale independent without having the computational

issues of MAPE. It is always defined and finite, with the only exception being the extreme

case where all historical data would be equal. Note that MAE and MASE would both give

the same rankings of the models within a series and, as a result, the same percentage scores.

However, MAE is a scale-dependent error measure and not suitable for summarizing across

series. For all three measures, MPE, MAPE, and MASE, values closer to zero are better.

Moreover, whereas MPE can take both positive and negative values, the values for MAPE

14



and MASE are always non-negative.

The values of MPE, MAPE, and MASE for a single time series across forecast horizons

are calculated as

MPE =
100

H

H∑
i=1

yn+i − fn+i

yn+i

,

MAPE =
100

H

H∑
i=1

| yn+i − fn+i |
| yn+i |

,

MASE =
(n− 1)

∑H
i=1 | yn+i − fn+i |

H
∑n

j=2 | yj − yj−1 |
,

where yt and ft refer to the actual and the forecasted value at period t, n is the size of the

training sample, and H is the forecast horizon.

4. Analysis

4.1. Individuals’ performance

We next examined the performance of the judgmental model selection and judgmen-

tal model-build approaches. We contrasted their performance with the algorithmic model

selection by AIC (Hyndman and Khandakar, 2008).

How do judgmental model selection and judgmental model-build perform based on the

percentage score? The left panel of Figure 3 presents the percentage scores of the partici-

pants under the two approaches. The performance of each participant is depicted with a dot

marker (blue for the practitioner participants, gray for all other participants), and the re-

spective box-plots are also drawn. The square symbol represents the arithmetic mean of the

percentage score for each approach. The horizontal (red) dashed line refers to the statistical

benchmark (performance of automatic model selection based on AIC). Generally, partici-

pants performed better under the model-build approach than the model selection approach.

In essence, the average participant in model-build performs as well as the participant in the

75tth percentile of the model selection approach. More importantly, participants under the

model-build approach perform on average as well as the statistical selection. However, the

differences in scores between individuals are large, with the range spanning between 32%

and 83%.

Do humans select similarly to the algorithm? The middle and right panels of Figure

3 present, respectively, how many times the participants selected the best, second best,
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Figure 3: Performance of model selection and model-build in terms of scores and distributions of best/worst
selections.

third best, and worst models under the model selection and model-build approaches. The

differences in performance (in terms of percentage scores) between model selection and

model-build derives from the fact that model-build participants were able to identify the

best model more frequently. By comparing how frequently algorithms (red squares) and

humans make the best and worst model selection, we can observe that humans are superior

to algorithms in avoiding the worst model, especially in the model-build case. The differences

are statistically significant according to t-tests for both best and worst selections and both

strategies, model selection and model-build (p < 0.01). The frequencies that algorithms

and humans selected each model are presented in table 3, along with how many times each

model performs best in the out-of-sample data. We observe that algorithms generally select

the level models (SES and SES with seasonality) more often compared to their trended

counterparts. AIC, as with other information criteria, attempts to balance the goodness-of-

fit of the model and its complexity as captured by the number of parameters. More uniform

distributions are observed for human selection and out-of-sample performance.

Table 3: Frequencies of selected models.

Selection method SES Seasonal SES DES Seasonal DES
Selection based on AIC 46.88% 31.25% 6.25% 15.62%
Judgmental model selection 17.27% 33.68% 17.64% 31.41%
Judgmental model-build 18.44% 27.85% 24.48% 29.23%
Best out-of-sample performance 34.38% 21.88% 21.88% 21.88%
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Figure 4: Performance of model selection and model-build in terms of error measures when all participants
are considered.

How do the judgmental approaches perform based on error measures? Figure 4 presents

the performance of all 693 participants for MPE, MAPE, and MASE, the three error

measures considered in this study. In both the model selection and the model-build treat-

ments, human judgment is significantly better (less biased and more accurate) than statis-

tical selection in terms of MPE and MAPE. At the same time, although the judgmental

model-build performs on a par with statistical selection for MASE, the judgmental model

selection performs worse than the statistical selection. Differences in the insights provided

by the different error measures can be attributed to their statistical properties.

It is noteworthy that statistical selection is, on average, positively biased (negative values

for MPE). However, this is not the case for all participants. In fact, slightly more than 30%

of all participants (42% of those that were assigned in the model selection experiment) are,

on average, negatively biased. The positive bias of statistical methods is consistent with the

results of Kourentzes et al. (2014) who investigated the performance of statistical methods

on all M3-competition data.

Do the results differ if only the practitioners’ subgroup is analyzed? Independent sample

t-tests were performed to compare the performance of practitioners and students. The results

showed that differences are not statistically significant, apart from the case of model-build

and MASE where practitioner participants perform significantly better. The similarities

in the results between student and practitioner participants are relevant for the discussion
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of the external validity of behavioral experiments using students (Deck and Smith, 2013).

Similar to Kremer et al. (2015), our results suggest that student samples may be used for

(at least) forecasting behavioral experiments.

4.2. Effects of individuals’ skill and time series properties

Going beyond the descriptives presented thus far, we constructed a linear mixed effects

model to account for the variability in the skills of individual participants, as well as for

the properties of each time series that was used. We model values of MASE (containing

the performance of the participants on each individual response: 693 participants × 32 time

series) considering the following fixed effects: (i) experimental condition (model selection

or model-build); (ii) interface information (out-of-sample only, in- and out-of-sample and

these options supplemented with fit statistics; see section 3.4); and (iii) the role of the

participants (see Table 2 in which both under- and postgraduate students were grouped

together). We accounted for the variation between participants as a random effect that

reflects any variability in skill. Similarly, we consider the variability between time series as

a second random effect, given that they have varying properties.

To conduct the analysis we use the lme4 package (Bates et al., 2015) for R statistical

computing language (R Core Team, 2016). We evaluated the contribution of each variable

in model by using two information criteria (AIC and BIC). To facilitate the comparison of

the alternative model specification using information criteria, we estimated the model using

maximum likelihood. We found only marginal differences between the models recommended

by the two criteria, a result suggesting that the most parsimonious option was the better

choice.

We concluded that only the effect of the experimental condition was important, and that

the interface information and role of participant did not explain enough variability to justify

the increased model complexity. Consequently, these two effects were removed from the

model. Both random effects were deemed useful. We investigated for random slopes as well,

but found that such slopes did not explain any additional variability in MASE. Therefore,

they were not considered further.

The resulting fully crossed random intercept model is reported in Table 4. The estimated

model indicates that model-build improves MASE by 0.0496 over model select, which is

consistent with the analysis so far. The standard deviations of the participant and series

effects, respectively, are 0.0314 and 0.5551 (the intraclass correlations are 0.0026 and 0.8178).

This shows that the skills of the participants account for only a small degree of the variability

of MASE. This helps explain the insignificant role of the participant background. To put
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these values into perspective, the standard deviation of MASE on individual time series

responses is 0.6144.

Table 4: Linear mixed effects model output

Fixed effects
Estimate Standard Error

Intercept 1.0313 0.0982
Experiment setup -0.0496 0.0042

Random effects
Standard Deviation

Participant (intercept) 0.0314
Time series (intercept) 0.5551
Residual 0.2601

Model statistics
AIC BIC Log Likelihood

3742.3 3782.3 -1866.1

4.3. 50% statistics + 50% judgment

The seminal work by Blattberg and Hoch (1990) suggested that combining the outputs of

statistical models with managerial judgment will provide more accurate outputs than each

single-source approach (model or manager), while a 50-50% combination is “a nonoptimal

but pragmatic solution” (Blattberg and Hoch, 1990, p. 898). Their result has been con-

firmed in many subsequent studies. In this study, we considered the simple average of the

two predictions, i.e., the equal-weight combination of the forecasts produced by the model

selected by the statistics (AIC) and the model chosen by each participant.

How does a 50-50 combination of statistical and judgmental selection perform? Figure 5

presents the performance of the simple combination of statistical and judgmental selection

for the three error measures considered in this study and categorized by the two judgmental

approaches. We observed that performance for both judgmental model selection and model-

build was improved significantly compared with using statistical selection alone (horizontal

dashed red line). In fact, the combination of the statistical + judgmental selection is less

biased than statistical selection in 86% of the cases and produces lower values for MAPE

and MASE for 99% and 90% of the cases, respectively. Moreover, the differences in the

performance of the two approaches are now minimized.

Does a 50-50 combination bring robustness? On top of the improvements in performance,

an equal-weight combination also reduces the between-subject variation in performance. Fo-
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Figure 5: Performance of 50-50% combination of statistical and judgmental selection.

cusing, for instance, on MASE and the judgmental model-build approach, Figure 4 suggests

a range of 0.314 (between 0.882 and 1.196) between best and worst performers. The com-

parable range according to Figure 5 is 0.136 (between 0.864 and 1). Therefore, a 50-50

combination renders the judgmental selection approaches more robust.

4.4. Wisdom of crowds

An alternative to combining the statistical and judgmental selections is judgmental ag-

gregation – a combination of the judgmental selections of multiple participants. The concept

of the “wisdom of crowds” is not new (Surowiecki, 2005) and has repeatedly been shown to

improve forecast accuracy as well as the quality of judgments in general.

For example, consider that a group of 10 experts is randomly selected. Given their

selections regarding the best model, we can derive the frequencies that show how many

times each model is identified as best. In other words, experts preferences are equally

considered (each expert has exactly one vote, and all votes carry the same weight). This

procedure leads to a weighted combination of the four models for which the performance

can be measured. We consider groups of 1 to 25 experts randomly re-sampled 1000 times.

Does judgmental aggregation improve forecasting performance? Figure 6 presents the

results of judgmental aggregation. The light blue area describes the range of the perfor-

mance of judgmental aggregation for various group sizes when the model-build approach is

considered. The middle-shaded blue area refers to the 50% range of performances, and the
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Figure 6: Wisdom of crowds’ performance for different numbers of experts.

dark blue line refers to the median performance. In other words, if one considers a verti-

cal line (i.e., for particular group size), the points at which this line intersects provide the

minimum, first quartile, median, third quartile, and maximum descriptive summary of the

performance. For the judgmental model selection approach, only the median is drawn in the

black dotted line, and the performance of statistical selection is represented by a red dashed

horizontal line. We observed significant gains in performance as the group size increased,

coupled with lower variance in the performance of different equally sized groups. We also

observed the convergence of performance, meaning that no further gains were noticed in the

average performance for group sizes higher than 20. Judgmental aggregation outperforms

both statistical and individual selection.

How many experts are enough? A careful examination of Figure 6 reveals, on top of the

improvements if aggregation is to be used, the critical thresholds for deciding on the optimal

number of experts in groups. We observed that if groups of five participants are considered,

then their forecasting performance was almost always better than that of the statistical se-

lection on all three measures, regardless of their role (undergraduate/postgraduate students,

practitioners, researchers, or other). Of even more interest, the third quartile of groups of

size two always outperforms the statistical benchmark. It is not the first time that the

thresholds of two and five appear in the literature. These results confirm previous findings:

“only two to five individuals’ forecasts must be included to achieve much of the total im-

provement” (Ashton and Ashton, 1985, p. 1499). This result holds even if we only consider
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specific sub-populations of our sample, e.g. practitioners only. Once judgmental aggregation

is used, the results from practitioners are all-but identical to results from students and other

participants.

Note that in this study we consider only unweighted combinations of the judgmental

model selections. If the same exercise were carried dynamically (over time), then one could

also consider, based on past performance, weighted combinations that have been proven to

enhance performance in other forecasting tasks (Tetlock and Gardner, 2015).

How does the model with the most votes perform? Instead of considering a weighted-

combination forecast based on votes across the four models, we have also examined a case

in which the aggregate selection is the model with the most votes. In case two (or more)

models are tied for first place in votes, then an equal-weight combination among them was

calculated. The performance of this strategy is worse, in terms of the accuracy measures

considered, than the wisdom of crowds with weighted combinations; moreover, the quality of

the performance depends heavily on the sample selected (the variance is high even for groups

with a large number of experts). However, on average, merely choosing the most-popular

model still outperforms statistical selection.

4.5. Evaluation summary and discussion

Table 5 summarizes the results presented in the above sections. As a sanity check, we

also provide the performance of four additional statistical benchmarks:

• Random selection refers to a performance obtained by randomly selecting one of the

four available choices. We have reported the arithmetic mean performance when such

a procedure is repeated 1000 times for each series. This benchmark is included to

validate the choice of the time series and to demonstrate that non-random selection is

indeed meaningful (in either a statistical or a judgmental manner).

• Equal-weight combination refers to the simple average of the forecasts across all four

models. In other words, each model was assigned a weight of one-quarter. It is included

as a benchmark of the performance of 50-50 combinations and the wisdom of crowds.

• Weighted combinations based on AIC were proposed by Burnham and Anderson (2002)

and evaluated by Kolassa (2011). This approach showed improved performance over

selecting the model with the lowest AIC. It is used in this study as a more sophisticated

benchmark for the wisdom of crowds.

• Combination of best two based on AIC refers to the equal-weight combination of the

best and second-best models based on the AIC values.
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Table 5: Summary of the results; top-method is underlined; top-three methods are in boldface.

Method MPE (%) MAPE (%) MASE
Individual selection

Random selection -2.91 24.52 1.104
Selection based on AIC -5.93 24.59 0.971
Judgmental model selection -1.52 23.48 1.031
Judgmental model-build -2.45 23.30 0.982

Combination
Equal-weight combination -2.90 21.96 0.985
Weighted combination based on AIC -4.84 23.39 0.931
Combination of best two based on AIC -4.65 23.12 0.921
50-50% combination of AIC and judgment -3.96 22.93 0.930
Wisdom of crowds: 5 humans (model-build) -2.43 21.68 0.903

Focusing on the first four rows of Table 5 that refer to selecting a single model with

different approaches, random selection performs poorly compared with all other approaches.

This is especially true in terms of MASE. Moreover, although it seems to be less biased

than statistical selection, random selection’s absolute value of MPE is larger than any of

the two judgmental approaches.

The last five rows of Table 5 present the performance of the various combination ap-

proaches. First, we observe that the equal-weight combination performs very well according

to all metrics, apart from MASE. A weighted combination based on AIC improves the per-

formance of the statistical benchmark, confirming the results by Kolassa (2011); however, it

is always outperformed by both 50-50 combinations of statistical and judgmental selection

and by the wisdom of crowds. Combination of the best two models based on AIC performs

slightly better than weighted combination based on AIC.

We also present in boldface the top three performers for each metric. The top performer

is underlined. We observe that the wisdom of crowds (which is based on model-build) is

always within the top three and ranked first for two of the metrics. The wisdom of crowds

based on model selection also performs on par. We believe that this is an exciting result

because it demonstrates that using experts to select the appropriate method performs best

against state-of-the-art benchmarks.

5. Implications for theory, practice, and implementation

This work provides a framework for judgmental forecasting model selection, and high-

lights the conditions for achieving maximal gains. We now discuss the implications of our
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work for theory and practice as well as issues of implementation.

Statistical model selection has been dominated by goodness-of-fit derived approaches,

such as information criteria, and by others based on cross-validated errors (Fildes and

Petropoulos, 2015). The findings of our research challenge these approaches and suggest

that an alternative approach based on human judgment is feasible and performs well. Elic-

iting how experts perform the selection of forecasts may yield still more novel approaches

to statistical model selection. Our research provides evidence that a model-build approach

works better for humans. We postulate that model-build implies a suitable structure (and

a set of restrictions) that aid selection. Statistical procedures could potentially benefit from

a similar framing.

Our findings are aligned with the literature on judgmental forecasting as well as research

in behavioral operations. The good performance of the 50-50 combination (of judgment and

algorithm) and judgmental aggregation resonates with findings in forecasting and cognitive

science (Blattberg and Hoch, 1990; Surowiecki, 2005).

Our research looks at an everyday problem that experts face in practice. Planners

and managers are regularly tasked with the responsibility of choosing the best method

to produce the various forecasts needed in their organizations. We not only benchmark

human judgment against a state-of-the-art statistical selection but also provide insights into

how to aid experts. Another exciting aspect of this research is that it demonstrates that

expert systems that rely on algorithms to select the right model, such as Forecast Pro,

Autobox, SAP Advanced Planning and Optimization - Demand Planning (APO-DP), IBM

SPSS Forecasting, SAS, etc., may be outperformed by human experts, if these experts are

supported appropriately in their decision making. This has substantial implications for the

design of algorithms for both expert systems algorithms and the user interfaces of forecasting

support systems.

Judgmental model selection is used in practice because it has some endearing properties.

It is intuitive: A problem that necessitates human intervention is always more meaningful

and intellectually and intuitively appealing for users. It is interpretable: Practitioners un-

derstand how this process works. The version of model-build that is based on judgmental

decomposition is easy to explain and adapt to real-life setups. This simplicity is a welcome

property (Zellner et al., 2002). In fact, the configuration used in our experiment is already

offered in a similar format in popular software packages. For example, SAP APO-DP pro-

vides a manual (judgmental) forecasting model selection process, providing clear guidance

of a judgmental selection to be driven from prevailing components (most notably trend and
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seasonality) as perceived by the user (manager). Specialized off-the-shelf forecasting support

systems like Forecast Pro also allow their optimal algorithmic selection to be overridden by

the user.

At its most basic form, implementing judgmental model selection requires no investment.

Nonetheless, to obtain maximum gains, existing interfaces will need some redesign to allow

incorporation of the model-build approach. However, a crucial limitation is the cost of using

human experts. Having an expert going through all items that need to be forecasted may

not be feasible for many organizations, such as large retailers that often require millions of

forecasts. Of course, using the judgmental aggregation approach requires even more experts.

In a standard forecasting and inventory setting, ABC analysis is often used to classify the

different stock keeping units (SKUs) into importance classes. In this approach, the 20% most

important and the 50% least important items are classified as A and C items, respectively.

Additionally, XYZ analysis is used in conjunction with ABC analysis to further classify the

products into easy-to-forecast (X items) to hard-to-forecast (Z items). As such, nine classes

are considered, as depicted in Figure 7 (Ord et al., 2017). We propose the application of

the wisdom of crowds for judgmental model selection/build on the AZ items (those of high

importance but difficult to forecast). This class is shaded with gray color in Figure 7. In

many cases, these items represent only a small fraction of the total number of SKUs. Thus,

judgmentally weighted selections across the available models of a forecasting support system

should be deduced by the individual choices, either in terms of models or patterns, of a small

group of managers; our analysis showed that selections from five managers would suffice.

A potential limitation of our current study, especially in the big data era, is the number

of series and respective contexts examined. As a future direction, we suggest the extension

of our study by increasing the amount of time series represented in each context and the

number of contexts to allow the evaluation of the robustness of the superior performance

of the judgmental model selection in each context. This could include more and higher

frequencies and exogenous information. Such extensions would also benefit the ongoing

limitation of controlled experimental studies towards more generalizable results.

6. Conclusions

Model selection of appropriate forecasting models is an open problem. Optimal ex-ante

identification of the best ex-post model can bring significant benefits regarding forecasting

performance. The literature has so far focused on automatic/statistical approaches for

model selection. However, demand managers and forecasting practitioners often tend to
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Figure 7: A visual representation of ABC-XYZ analyses; resources for judgmental model selection should
be allocated towards the important and low-forecastable items.

ignore system recommendations and apply judgment when selecting a forecasting model.

This study is the first, to the best of our knowledge, to investigate the performance of

judgmental model selection.

We devised a behavioral experiment and tested the efficacy of two judgmental approaches

to select models, namely simple model selection and model-build. The latter one was based

on the judgmental identification of time series features (trend and seasonality). We compared

the performance of these methods against that of a statistical benchmark based on informa-

tion criteria. Judgmental model-build outperformed both judgmental and statistical model

selection. Significant performance improvements over statistical selection were recorded for

the equal-weight combination of statistical and judgmental selection. Judgmental aggrega-

tion (weighted combinations of models based on the selections of multiple experts) resulted

in the best performance of any approaches we considered. Finally, an exciting result is that

humans are better, compared to statistics, in avoiding the worst model.

The results of this study suggest that companies should consider judgmental forecasting

selection as a complementary tool to statistical model selection. Moreover, we believe that

applying the judgmental aggregation of a handful of experts to the most important items

is a trade-off between resources and performance improvement that companies should be

willing to consider. However, forecasting support systems that incorporate simple graphical

interfaces and judgmental identification of time series features are a prerequisite to the
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successful implementation of do-it-yourself (DIY) forecasting. This does not seem too much

to ask for software in the big data era.

Given the good performance of judgment in model selection forecasting tasks, the emula-

tion of human selection processes through artificial intelligence approaches seems a natural

way forward toward eventually deriving an alternative statistical approach. We leave this

for future research. Furthermore, we expect to further investigate the reasons behind the

difference in the performance of judgmental model selection and judgmental model-build.

To this end, we plan to run a simplified version of the experiment of this study that will be

coupled with the use of an electroencephalogram (EEG) to record electrical brain activity.

Future research could also focus on the conditions (in terms of time series characteristics,

data availability, and forecasting horizon) under which judgmental model selection brings

more benefits. Finally, field experiments would provide further external validity for our

findings.
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Appendix A. Forecasting models

We denote:

α: smoothing parameter for the level (0 ≤ α ≤ 1).

β: smoothing parameter for the trend (0 ≤ β ≤ 1).

γ: smoothing parameter for the seasonal indices (0 ≤ γ ≤ 1).

φ: damping parameter (usually 0.8 ≤ φ ≤ 1).

yt: actual (observed) value at period t.

lt: smoothed level at the end of period t.

bt: smoothed trend at the end of period t.

st: smoothed seasonal index at the end of period t.

m: Number of periods within a seasonal cycle (e.g., 4 for quarterly, 12 for monthly).

h: forecast horizon.

ŷt+h: forecast for h periods ahead from origin t.

SES, or ETS(A,N,N), is expressed as:

lt = αyt + (1− α)lt−1, (A.1)

ŷt+h = lt. (A.2)

SES with additive seasonality, or ETS(A,N,A), is expressed as:

lt = α(yt − st−m) + (1− α)lt−1, (A.3)

st = γ(yt − lt) + (1− γ)st−m, (A.4)

ŷt+h = lt + st+h−m. (A.5)

DES, or ETS(A,Ad,N), is expressed as:

lt = αyt + (1− α)(lt−1 + φbt−1), (A.6)

bt = β(lt − lt−1) + (1− β)φbt−1, (A.7)

ŷt+h = lt +
h∑

i=1

φibt. (A.8)

31



DES with additive seasonality, or ETS(A,Ad,A), is expressed as:

lt = α(yt − st−m) + (1− α)(lt−1 + φbt−1), (A.9)

bt = β(lt − lt−1) + (1− β)φbt−1, (A.10)

st = γ(yt − lt) + (1− γ)st−m, (A.11)

ŷt+h = lt +
h∑

i=1

φibt + st+h−m. (A.12)

Appendix B. Participants details

Table B.6: University modules with at least 20 participants where the behavioral experiment was introduced
as an elective exercise.

University Module (and keywords) Level
Bangor University Applied Business Projects: Operations Management PG

operations, strategy, competitiveness, supply chain, capacity,
planning, inventory, forecasting

Cardiff University Logistics Modelling PG
business statistics, forecasting, stock control, system dynamics,
bull-whip effect, queuing analysis, simulation

Lancaster University Business Forecasting UG
time series, forecasting, regression, evaluation, model selection,
judgment

Lancaster University Forecasting PG
time series, forecasting, univariate and causal models,
evaluation, model selection, judgment

National Technical
University of Athens

Forecasting Techniques UG
time series, forecasting, decomposition, univariate and causal
models, evaluation, support systems, judgment

Universidad de
Castilla-La Mancha

Manufacturing planning and control UG
planning, forecasting, manufacturing, just-in-time, stock control,
inventory models
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Table B.7: Industries associated with the practitioner participants.

Industry Participants
Consulting (including analytics) 14
Banking & Finance 11
Software (including forecasting software) 9
Advertising & Marketing 9
Retail 8
Health 8
Government 6
Manufacturing 5
Food & Beverage 4
Energy 3
Logistics 3
Telecommunications 3
Automotive 2
Other 5
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