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Abstract

Pharmacokinetic (PK) studies aim to study how a compound is absorbed, distributed, metabolised and ex-

creted (ADME). The concentration of the compound in the blood or plasma is measured at different time points

after administration and pharmacokinetic parameters such as the area under the curve (AUC) or maximum con-

centration (Cmax) are derived from the resulting concentration time profile. In this paper we want to compare

different methods for collecting concentration measurements (traditional sampling versus microsampling) on the

basis of these derived parameters. We adjust and evaluate an existing method for testing superiority of multiple

derived parameters that accounts for model uncertainty. We subsequently extend the approach to allow testing

for equivalence. We motivate the methods through an illustrative example and evaluate the performance using

simulations. The extensions show promising results for application to the desired setting.

1 Introduction

The purpose of this paper is to construct a method for comparing the traditional method of collecting concentration

samples in pharmacokinetic (PK) studies and the recently developed method of microsampling.1 The two blood

sampling methods differ in both the volume of blood collected and the method of analysis. The use of microsampling

offers many economic and ethical advantages. The reduction in blood volume of samples not only allows for the

possibility of elimination of satellite subjects in toxicokinetic studies, but also the opportunity to redesign the sam-

pling scheme to further reduce the number of subjects needed in both these and pharmacokinetic/pharmacodynamic

(PK/PD) studies. The nature of the comparison considered is both superiority and equivalence. While both ap-

proaches are possible, testing for equivalence is preferred for a study to provide evidence to support microsampling

as a valid blood sampling method.

Since PK studies measure the absorption, distribution, metabolism and excretion (ADME) processes over time

using multiple parameters derived from the estimated functional relationship, a simultaneous comparison of these
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multiple derived parameters between the two sampling methods will provide a comparison between the two methods

themselves.

These parameters may be estimated using non-compartmental analysis2,3 or using compartmental methods such as

fitting non-linear mixed effects models.4 However, in the latter approach there may be uncertainty in the choice of

model and hence the use of model averaging is an apt idea to incorporate this. Since there are multiple parameters to

compare simultaneously, a multiplicity adjustment must be made. In addition, the variance of the derived parameter

estimates in many cases cannot be directly calculated so we must rely on approximations. In order to incorporate

these properties, we use the method described by Jensen & Ritz5 as a starting point. We then investigate and

improve the performance of the method when testing for superiority before we adapt it for the more suitable case

for our question of testing for equivalence.

The motivation behind such a procedure is to conduct a study comparing the two sampling methods, such as the

following example. This study conducted by Janssen Pharmaceutica examines the PK profile a novel compound that

is administered intravenously. Plasma concentrations are taken from the same 5 rats at 3 time points using both

microsampling and traditional sampling, a total of 30 observations (Figure 1). Blood sampling and analysis was

undertaken by the same analyst and all animals entered the study on the same day.

Figure 1: Example dataset with individual concentrations (left) and spaghetti plot (right).

2 Superiority Testing

2.1 Baseline Method

Jensen & Ritz5 discuss simultaneous inference after model averaging parameters derived from a parametric function,

specifically for the use of finding the derived parameters Bench Mark Dose (BMD) and the lower limit of the confidence

interval for this (BMDL) in non-linear dose response modelling. A brief outline of the method is as follows: A set

of candidate models is fitted to the data and (approximate) estimates and variances of the derived parameters of

interest are calculated. These are combined using model averaging6 in order to account for uncertainty in the choice

of model and simultaneous confidence intervals are calculated.7 The purpose of using model averaging is to include

multiple candidate models, thus taking into account model uncertainty and reducing the possibility of model mis-
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specification. Of course this introduces the implication that some of the set of candidate models must be incorrect,

but we vastly improve our chances of including a good model by considering many candidates.

More specifically, let the K candidate models be parametrized by τ = (τ1, . . . , τK) of dimensions (p1, . . . , pK) with

p =
∑K
k=1 pk. Consider the case where for model k = 1, . . . ,K L derived parameters are of interest: θ1k, . . . , θLk. It

is assumed these are differentiable functions of the model parameters, so that θ1k = f1k(τk), . . . , θLk = fLk(τk). To

obtain an overall estimator across the K models, the following weighted average of parameter estimates from each

of the K candidate models is used5 :

θ̂l,MA =

K∑
k=1

wkθ̂lk =

K∑
k=1

wkflk(τ̂k),

where the wk’s are the model specific weights such that
∑K
k=1 wk = 1. Buckland et al.6 suggest to use:

wk =
exp(−Ik/2)∑K
k=1 exp(−Ik/2)

,

where Ik is some information criterion based on model fit for candidate model k. For the following applications, we

use these weights with information criterion AICc,8 although the method is valid for any reasonable specification of

weights.

To conduct a test of superiority the multiple null hypotheses of interest are:

H01 : θ1,MA = κ1, . . . , H0l : θl,MA = κl, . . . , H0L : θL,MA = κL,

where κ1, . . . , κL are the values the parameters are tested against. If κl is in each corresponding confidence interval

with simultaneous error rate α, we fail to reject the null hypothesis at simultaneous level α. If at least one κl is not

in its corresponding interval, then the null hypothesis can be rejected.

In order to calculate simultaneous confidence intervals for the multiple derived parameters with simultaneous coverage

1 − α, the methods of Pipper et al.,7 described below, which depends on the pk-dimensional asymptotic expansion

of the maximum likelihood estimator τ̂k for each of the K models is used.

An asymptotic approximation for a single model-averaged estimate may be obtained by use of the delta method

which uses a first order Taylor expansion to approximate the estimate for the model averaged parameter and its

variance. The variance of the model-averaged estimate, θ̂l,MA, is approximated as5 :

var(θ̂l,MA) ≈ n−1
{(

dflk
dτ

)
w

}T
Σ̂

(
dflk
dτ

)
w,

where w = (w1, . . . , wk) and dflk
dτ is the K × p matrix

(
d
dτ fl1(τ̂1)T , . . . , ddτ flK(τ̂K)T

)
for l = 1, . . . , L and n is the

number of observations. The covariance matrix Σ̂ = n−1
∑n
i=1 Ψ̂T

i Ψ̂i where the Ψ̂i are estimates of Ψi = Ψ1i, . . . ,ΨKi.

Ψki = (I−1k )Ψ̃ki with I−1k being the inverse Fisher information matrix for model k and Ψ̃ki the score function for

observation i of model k, both evaluated at the parameter value τk.

To obtain 1 − α simultaneous confidence intervals for all of the derived parameters, intervals of the form θ̂l,MA ±
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Q
√

var(θ̂l,MA) are used. The quantile Q is calculated so that an L-dimensional random vector X with standard

multivariate z distribution with correlation structure the same as the parameter estimates’ satisfies:

P(

L⋂
l=1

(−Q ≤ Xl ≤ Q)) = 1− α,

for a 100(1− α)% confidence interval.

Jensen & Ritz5 use a Normal distribution is used to calculate the quantiles for the simultaneous intervals, although

the t-distribution may be more appropriate for the smaller sample sizes and estimations of variance using these small

samples. This relies on an estimate of the degrees of freedom associated with the parameter estimators, which can

be obtained from the residual degrees of freedom when fitting the model to the data; an estimate that depends on

the number of data points and parameters in the fitted model.

2.1.1 Example

To illustrate the performance of the approach described above we begin by estimating PK parameters of interest,

t 1
2
, the time taken for the concentration to reach half its initial value and Cmax, the maximum concentration, in this

example, for both sampling methods in the example study data shown in Figure 1. For this dataset we will model

the concentrations in a single model to ensure that the residual error variance is the same for both methods:

E(Yt) = (1− IM )E(g(τS, t)) + IME(g(τM, t)),

where IM is the indicator variable for the use of microsampling, τS and τM are the model parameters for standard

sampling and microsampling respectively, t is time and g is the PK model, the same for standard and microsampling.

Note, however, that such an assumption is not necessary in order to apply the method and one could equally use

two separate models instead. An example using two separate models is discussed later.

To account for the uncertainty about the models form we consider the following two candidate models:

Candidate Model 1: Log Linear

g(τ, t) = β′0exp(β1t) + ε. (1)

Candidate Model 2: Log Log Linear

g(τ, t) = exp(β′0exp(β1t)) + ε. (2)

We assume ε ∼ N(0, σ2) for model fitting. Based on these models we can then derive the analytical form of the

PK parameters of interest as functions of the model parameters (See Appendix A for the full details). In order

to compare the sampling methods, we are then interested in the differences between each parameter when using

microsampling and standard sampling. These difference may be expressed as t 1
2

(S) − t 1
2

(M) and Cmax
(S) −Cmax(M)

where the superscripts S and M indicate standard sampling and microsampling respectively. For both candidate

models, these derived parameters can be expressed as differentiable functions of the respective model parameters,
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and importantly have the same interpretation for each model. In this case, candidate model 1 has weight 0.461 and

candidate model 2 has weight 0.539.

For this particular example, applying the method described by Jensen & Ritz5 gives the 95% model averaged

confidence intervals as (-38.2 , 37.1) and (-33.2 , 27.3) for t 1
2

(S)− t 1
2

(M) and Cmax
(S)−Cmax(M) respectively. Since 0

is in both intervals fail to reject the null hypothesis suggesting that the two methods are similar. It is clear however

that this does not show equivalence of the methods and it is perhaps worth observing that these intervals are rather

wide, likely due to the small sample size of the study.

2.1.2 Simulation Studies

For a first evaluation of the performance of the method, we find the empirical overall type I error rate by simulating

10,000 datasets under the null hypothesis. The same derived parameters of interest and candidate models as used in

the previous example are considered in these simulation studies. Data are generated from the same data generating

model for both sampling methods, standard and microsampling. The data generating model used is the best model

fit to the example data as judged by the AICc8 which corresponds to model 2 and parameter values β′0 = 4.436733,

β1 = −0.006318. An additive normally distributed error with σ = 5 is used in order to replicate the variation seen

in the example dataset. For simplicity, we assume independent subjects at each time point for the time being, and

return to longitudinal data at a later point.

Different numbers of subjects, n = 5, 10, 100, 1000, are simulated independently at each time point. The smaller

sample sizes are more realistic in terms of conducting these studies but the larger sample sizes show the asymptotic

behaviour of the method. Between 3 and 10 timepoints (see Table 1 in Appendix B for details) are considered. For a

true coverage of 95%, the estimate of familywise type I error rate is expected to be between 0.0457 and 0.0543 due to

simulation error. Figure 2 shows how the number of time points and number of subjects affects the coverage of the

simultaneous confidence intervals based on normal and t-quantiles. It is apparent that the method is conservative

when small sample sizes are used while inflated type I error rates are observed for large sample sizes (and a large

number of time points). The use of t quantile results in type I errors closer to target, but even there conservatism

for small sample sizes and anticonservatism is seen for a large number of data points. In terms of bias of the model

averaged derived parameters, we see as expected, larger bias for the smaller sample sizes and smaller number of time

points. For example, we see an average bias of -0.06 for Cmax for 1000 subjects at 10 time points, but an average

bias of -0.32 for 5 subjects at 3 time points. Please refer to Table 2 in Appendix D for the full range of values. All

things considered, this amount of bias is not too concerning for the procedure.

2.2 Extension

Based on the brief simulations above we are now interested in evaluating if a better approximation of the variance,

the current method uses a first order delta method, can be used to improve the results of the method. To do so we

consider a second order Taylor approximation to estimate the variance of a function of parameter estimates which

can be found as follows: τ is a vector of model parameters with τ̂ the estimates from the model; µ = E[τ̂ ], a vector

of the expectations; θ̂ = f(τ̂), the derived parameter estimates as a differentiable function of the model parameter
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Figure 2: Comparison of observed type I error rate for varying number of time points and subjects for use of z and
t quantile. Horizontal dotted lines show error bounds for 10,000 simulations

estimates (including the weights from the model averaging step); Σ̂(τ̂) is the covariance matrix of τ̂ ; D = ∂τf(τ̂) is

the gradient of f(τ) evaluated at µ and H = ∂2τf(τ̂) is the Hessian of f(τ) evaluated at µ.

Then a second order Taylor approximation of f is given by:

f(τ̂) ≈ f(µ) + DT (τ̂ − µ) +
1

2
(τ̂ − µ)TH(τ̂ − µ)

This gives as approximations of the expectation and variance of f :

E[f(τ̂)] ≈ f(µ) +
1

2
tr{HΣ̂(τ̂)}. (3)

and

Var[f(τ̂)] ≈ DT Σ̂(τ̂)D +
1

2
tr{(HΣ̂(τ̂))2}.

See Appendix C for the full derivations.

2.2.1 Example revisited

When applied to the example dataset, the use of the second order approximation yields the new intervals (-44.1 ,

43.2) for t 1
2

(S)− t 1
2

(M) and (-33.3 , 27.4) for Cmax
(S)−Cmax(M) compared to the previous (-38.2 , 37.1) and (-33.2 ,

27.3) respectively. The interval for the t 1
2

difference is noticeably wider for the use of the second order approximation,

and the interval for the Cmax difference is slightly wider. Since they both still contain 0, we remain with the same
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conclusion with this modification, there is no evidence of a difference between the two methods.

2.2.2 Simulations

To explore the difference in the confidence intervals based on first and second order approximations a small sim-

ulation trial is conducted. The confidence intervals for the half-life difference t 1
2

(S) − t 1
2

(M), one of the derived

parameters considered previously, are considered. The introduction of the second order term increases the estimate

of the variance, and so the width of the intervals is increasing from the use of first to second order approximation

for all simulation runs. Note that the introduction of the second order term also slightly changes the actual point

estimate due to the second term in (3).

The implications of these changes can be seen in Figure 3 that shows the difference between type I error rate when

using the first and second order approximation and a t quantile. We find that the type I error is closer to the

target level for small sample sizes while the difference is negligible for large sample sizes. Most notable, the trend

of increasing observed type I error rate for increasing number of time points is still apparent. This suggests that,

while the use of the second order approximation of the variance and the estimate is an improvement, it does not

remove the type I error inflation for large sample sizes. For typical PK studies, it is the smaller sample sizes that

are of primary interest. Note also, that the calculation of the second derivatives Hessian matrix for each simulation

increased the computational cost of the method.

Figure 3: Comparison of observed type I error for varying number of time points and subjects for use of 1st and 2nd
order approximation. Horizontal dotted lines show error bounds for 10,000 simulations.
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3 Equivalence Testing

After this initial exploration of the properties of the procedure by Jensen & Ritz,5 we now focus on the main setting

of interest. In the application for the comparison of traditional and microsampling, we are in fact interested in

evidence of equivalence of the two sampling methods rather than superiority. This changes the nature of the tests

we conduct, an overview of the differences is explored by Schuirmann.9 The null hypotheses now state that the

difference between parameters are at least as big as some given limit. Therefore the multiple test procedure breaks

down into the following multiple two one sided null hypotheses:

H011 : θ1 ≤ γ1 or H021 : θ1 ≥ γ2,
...

H01l : θl ≤ γ1 or H02l : θl ≥ γ2,
...

H01L : θL ≤ γ1 or H02L : θL ≥ γ2,

where γ2 > γ1 are the equivalence margins.

The main difference in the method proposed required for this setting is how confidence intervals are constructed and

more specifically how the familywise type I error rate is controlled. We will use the method proposed by Quan et

al.10 for assessment of equivalence of multiple correlated endpoints which uses the following adjustment. Assuming

the endpoints, or in this case, derived parameter estimates θ̂ have a multivariate normal distribution with mean θ

and variance Σ, with σl =
√

Σll, where Σll is the variance of the lth derived parameter estimate. Then for L derived

parameter estimates, since we are considering two one-sided hypotheses, we require for 100(1 − 2α)% simultaneous

intervals

P

(
L⋂
l=1

(−γ ≤ θ̂l ±Qσl ≤ γ) | H0

)
= α,

which is equivalent to

P

(
L⋂
l=1

(Qσl − γ ≤ θ̂l ≤ γ −Qσl) | H0

)
= α.

Therefore replacing the unknown Σ with its estimate Σ̂, then we find C such that

P

(
L⋂
l=1

(−C ≤ θ̂l ≤ C) | H0

)
= α.

In order to control the familywise type I error, find the maximum of the Ql = γ−C
σ̂l

to give the adjusted quantile Q.

With that adjustment in place we may now apply the standard procedure for equivalence testing: If all intervals fall

within the previously stated bounds then we reject the null, there is evidence of equivalence. If at least one interval

falls outside the specified range then we fail to reject.
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3.1 Example revisited

Since the equivalence margins must be prespecified, a sensible approach is to follow a standard setup of a test for

bio-equivalence such as that described by.11 We calculate the log of the ratio of the two parameters, in this case

we consider log(Cmax
(S)) − log(Cmax

(M)) and log(t 1
2

(S)) − log(t 1
2

(M)) as the derived parameters of interest. The

approximations of the estimates and their variances are calculated using the same methods previously discussed

for superiority testing and simultaneous confidence intervals are calculated using this and the adjusted quantile Q.

We then observe whether the entire confidence interval for this lies between γ1 = log(0.8) and γ2 = log(1.25), the

standard bio-equivalence margins.

Although testing for equivalence between two sampling methods is of course different to testing for bio-equivalence,

it suffices to use the same equivalence margins as a basis for analysis. Should one wish to be harsher or more lenient

with one’s definition of equivalence, then alternative equivalence margins may be used (with the possibility of taking

γ1 6= −γ2), however this would not affect any conclusions drawn from simulation results.

The equivalence test is applied to the example dataset using the same candidate models as used previously in the

superiority test. The simultaneous confidence intervals of the log of the ratio of derived parameters are (-0.421 ,0.387)

and (-0.135,0.066) for t 1
2

and Cmax respectively. The first is clearly outside (log(0.8),log(1.25))=±0.223. Hence there

is insufficient evidence to reject the null hypothesis, there is no evidence of equivalence. Although this is possibly

due to the small sample size being used in the trial.

3.2 Simulation Studies

To evaluate the method for testing equivalence more formally, we still wish to simulate data under the null hypothesis

in order to evaluate the type I error rate. To do so we must consider a difference between the parameters and

therefore generate data for each sampling method from the same models but differing parameter values such that

the ratio of one pair of parameters is equal to 0.8, (log(t 1
2

(S)) − log(t 1
2

(M)) = log(0.8)), and the other equal to 1,

(log(Cmax
(S)) − log(Cmax

(M)) = 1). In order to observe the maximal type I error, we use the situation under the

null that is closest to the alternative - that is only one ratio is outside equivalence and that it is on the border.

Identical candidate and data generating models (Models 1 and 2) are used as previously when testing for superiority.

In order to extend the application of the method, we have also evaluated the procedure under the assumption of a

multiplicative error framework. Therefore in addition to the additive error framework we have previously assumed,

we repeat the simulations under the assumption of a multiplicative error framework using the following two candidate

models:

Candidate Model 4: Log Linear with Multiplicative Error

g(τ, t) = exp(β′0exp(β1t))ε, (4)

Candidate Model 5: Log Linear with Multiplicative Error

g(τ, t) = β′0exp(β1t)ε, (5)
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where log(ε) ∼ N(0, σ2). Model 4 is used in the data generation with σ = 0.05.

Using the new rejection criteria, we can observe the coverage. That is we observe the percentage of cases in our

simulation that all intervals do not fall within the equivalence margins. Since this is a two one-sided test procedure,

constructing a 95% confidence interval and assessing its position is equivalent to each one sided test having nominal

level of 2.5%. Therefore since we are only simulating from one side of the null interval, we now expect a type I error

of 2.5% instead of the previous 5%.

Figure 4: Comparison of observed type I error for varying number of time points and subjects for equivalence testing.
Horizontal dotted lines show error bounds for 10,000 simulations.

Figure 4 show the observed type I error rate using the 2nd order approximation and z quantile for both the additive

and multiplicative error structure. A similar trend presents itself here to previously, with smaller type I error rate

for the smaller numbers of subjects for the case of the additive error structure. For the multiplicative error structure,

only for the small number of subjects and time points does the type I error rate fall below the simulation error

interval.

It is also important to consider the power of the procedure to detect equivalence when the underlying ratio of

parameters is within the equivalence bounds. As an illustration of the difference in power curve of the procedure

between the differing sample sizes when varying the underlying ratio to different values within the equivalence bounds,

Figure 5 shows the curve for 5, 20 and 100 subjects at each time point. For the larger sample sizes the procedure

shows high power in detecting equivalence, however for the smaller numbers of subjects, the power is noticeably

lower.

In order to evaluate further this method for testing for equivalence between the two blood sampling methods,

simulations are also conducted under the assumption of an oral administration of a compound.
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Figure 5: Power of procedure for equivalence testing with 5, 20 and 100 subjects at 3 time points.

For candidate models, the following standard one-compartmental oral dose model is used with two different error

structures:

Candidate Model 6: Oral Dose with Multiplicative Error

g(τ, t) =

(
kaFD

V (ka − ke)
(e−ket − e−kat)

)
ε, (6)

with ε ∼ N(0, σ2).

Candidate Model 7: Oral Dose with Additive Error

g(τ, t) =
kaFD

V (ka − ke)
(e−ket − e−kat) + ε, (7)

with log(ε) ∼ N(0, σ2).

Candidate model 6 is used for data generation where we take ke = 0.0693, ka = 0.231, V = 10, D = 500 and F = 1

as described by Gibaldi & Perrier,12 assuming the log(ε) ∼ N(0, σ2) with σ = 0.05. σ is chosen larger than that

considered by Lunn & Aarons13 and identical to one example evaluated by Tod et al.14 We believe that this is a

reasonable standard deviation to use in the simulations to ensure the models of the two sampling methods are well

separated. A larger standard deviation would mean the models were less well separated and although the procedure

still works with differing values, this level of variation balances between separating the models well, and being realistic

in terms of the variation expected between subjects at these concentrations.

Possible PK parameters to consider are Cmax, tmax and AUC24 and simultaneous inference is performed on all
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combinations of pairs of these parameters and all three. See Appendix A for the form of these parameters. In the

same process as previously, simulations are conducted to investigate the type I error rate and power of the procedure.

In order to simulate under the null hypothesis, as previously, we generate the data so that the true log ratio of one

PK parameter for the two sampling methods is equal to 0.8 and all others are equal to 1. In these simulations, the

scenario with three time points has been omitted due to insufficient data to fit the more complex model. For the

simulations to investigate the power of the procedure, the true log ratio of one PK parameter for the two sampling

methods is varied between 0.8 and 1, and the scenario with seven time points is considered.

Results show that type I error rate is controlled well for all combinations of these PK parameters, see Tables 3

and 4 in Appendix E. The power is also sufficient for a reasonable sample size. Figure 6 shows the power of the

procedure, indicating that even with only 5 subjects per time point, an adequate power is achieved. For this case,

the multiplicative error candidate model has average weight 0.9 over the 10,000 simulations and the additive error

candidate model had average weight of 0.1. Although these weights are quite different, it is clear that we are not

consistently in the situation where we have weights 1 and 0, supporting the need for the model averaging in the

procedure.

Figure 6: Power of procedure for equivalence testing with 5, 20 and 100 subjects at 7 time points for an oral
administration of a compound.

Therefore for the purpose of our comparison between microsampling and traditional sampling, the proposed method

for equivalence testing is applicable. Although in some cases conservative for the smaller sample sizes, the type

I error rate is controlled, with expected asymptotic behaviour for the larger sample sizes. An adequate power is

achievable for a sample size that is manageable for a one-off study to confirm equivalence between the two sampling

methods. Hence the suggested procedure provides an effective approach to the considered problem of providing a
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comparison between microsampling and traditional sampling.

3.3 Extension to Longitudinal Data

Although in these previous studies it is assumed that different subjects are sampled at each time point, extending

to longitudinal data and fitting non linear mixed-effects models can be done without further complication. The

derivations for this extension are not too dissimilar to those for the previous method and therefore are not included

here. The ingredients are essentially the same; we use the estimates and variance matrix for the fixed effects from

the fitted model For the interested reader, we refer you to further details.15,16 We now consider the same subjects

to be sampled at each time point, which may help somewhat to reduce the sample size needed for a realistic power

to detect superiority or equivalence. In this section, sample size now refers to the total number of subjects in the

study. This is an important extension in order to be able to conduct a study with fewer overall subjects to confirm

equivalence between the sampling methods.

One may also wish to use separate models for the two sampling methods instead of combining them in a single model.

This removes the restriction on the residual variances. This is implemented in the following simulations. However,

fitting non linear mixed effects models greatly increases the computational intensity required to conduct simulations

and therefore the number of simulations has been reduced to 1000. For this same reason, the scenario with 1000

subjects has been eliminated from these simulations. A reduced range of time points is also considered.

The population model used is identical to that used in previous simulations for an oral administration of a compound

for both the data generating model and the candidate models. Normally distributive additive random effects are

assigned to V , ke and ka identically for the two sampling methods, with the ratio of the underlying population PK

parameters of interest for each sampling method (AUC and Cmax in this case) fixed as previously.

It is clear from Figure 7 that the Type I error rate is within simulation error bounds for 100 subjects, and is

conservative when 5 and 10 total subjects are used. Figure 8 shows that even for 5 and 10 total subjects, we achieve

a reasonable power for underlying ratios between 0.9 and 1. Therefore this extension, if physically feasible to collect

such samples, provides a framework that could indeed be used to detect equivalence between the two blood sampling

methods for a small sample size.

4 Discussion

The method by Jensen & Ritz5 showed varying performance in terms of coverage in the simulation studies conducted

in the application of comparison of PK parameters. It is noted that these methods5 do need adjustment in order to

be applied to our desired setting. However since our choice of designs are different to those discussed5 then of course

it is expected to be necessary to make such adjustments. The simulation studies are conducted in order to evaluate

the power and type I error rate of varying designs so that we are able to make recommendations for such a study

needed to detect equivalence of the sampling methods. Some noteworthy relationships between the coverage and the

number of time points and the size of the sample emerged in this analysis.

The use of the second order delta approximation instead of the first order delta approximation showed coverage closer

to 95% in the simulations, and in spite of the increase in computational cost, would be preferred over the first order
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Figure 7: Type I error rate for varying numbers of time points for 5, 10 and 100 total subjects considering AUC and
Cmax as PK parameters for an oral administration of a compound. Horizontal dotted lines show error bounds for
1000 simulations. (Equivalence testing)

approximation. For the smaller sample sizes that are more representative of the type of studies this methodology

is aimed at, the second order approximation does offer an improvement. For the larger sample sizes, it does not

offer much improvement. However since the smaller sample sizes are typical of such studies, we have continued to

recommend the use of second order approximation.

The extension to equivalence testing gives promising results that this could be applied in the desired setting. The

method can be applied to different error structures and can even be used to account for uncertainty in the error

structure. It can be applied to both simple and complex models, with both giving encouraging results. The simula-

tions also give strong indications of the required sample size for such studies to have the power to detect equivalence

between the two blood sampling methods.

When applied to the example dataset, neither the superiority or equivalence test found evidence to reject the null

hypothesis. Hence with this particular example results were inconclusive, due to the small sample size. However,

if a study were designed for this purpose with the power to detect equivalence, then it is hoped that results will

be useful for the comparison of the two sampling methods. Thus the method developed to detect equivalence is an

advantageous tool in this practical application of comparison between microsampling and standard sampling.

The extension to longitudinal data shows great promise to reduce the total sample size needed for such a study.

However there may be physical restrictions on the collection of such samples using traditional methods. Therefore

one may want to introduce a sparse sampling scheme, where not all subjects are sampled at each time point. This

may provide some middle ground between the two scenarios previously considered, balancing between a practical
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Figure 8: Power of procedure for equivalence testing for 5 time points for 5 and 10 total subjects considering AUC
and Cmax as PK parameters for an oral administration of a compound.

total sample size and a practical sampling schedule for each subject in terms of blood volume sampled.

The equivalence margins used are standard for testing for population bioequivalence of a test formulation of a drug

against a reference formulation. However one may want to be more stringent when comparing sampling methods

in order to reduce compounding of error. As a possible extension, one may also want to consider following the

procedure for testing for individual bioequivalence as opposed to population bioequivalence. This may also enforce

stricter conditions on claiming equivalence, which for practical reasons ought to be considered.
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A PK Parameters as Functions of Model Parameters

A.1 For Candidate Model 1

t 1
2

= − log(2)

B1

Cmax = B0

A.2 For Candidate Model 2

t 1
2

=
1

B1
log(

B0 − log(2)

B0
)

Cmax = exp(B0)

A.3 For Candidate Models 6 and 7

AUC24 =
kaFD

V (ka − ke)

((
exp(−24ka)− 1

ka

)
−
(

exp(−24ke)− 1

ke

))

tmax =
log(ke)− log(ka)

ke − ka

Cmax =
kaFD

V (ka − ke)

((
ka
ke

)( ke
ke−ka

)
−
(
ka
ke

)( ka
ke−ka

)
)

B Sampling Time Points for Simulations

C Derivation of Second Order Approximation

Using the notation defined in Section 2.2, a first order Taylor approximation of f is given by:

f(τ̂) ≈ f(µ) + DT (τ̂ − µ)

17



Table 1: Sampling Time Points Used in Simulation Studies

Number of Time Points Time Points

3 (1, 10, 24)
4 (1, 8, 18, 36)
5 (1, 7, 14, 21, 36)
6 (1, 6, 12, 18, 24, 36)
7 (1, 4, 8, 12, 18, 24, 36)
8 (1, 3 ,6, 8, 12, 18, 24, 36)
9 (1, 2, 4, 6, 8, 12, 18, 24, 36)
10 (1, 2, 3, 4, 6, 8, 12, 18, 24, 36)

Hence we may approximate the variance of f by:

Var[f(τ̂)] ≈ Var[f(µ) + DT (τ̂ − µ)]

= Var[DT (τ̂ − µ)]

= DTV ar[(τ̂ − µ)]D

= DT Σ̂(τ̂)D

A second order Taylor approximation of f is given by:

f(τ̂) ≈ f(µ) + DT (τ̂ − µ) +
1

2
(τ̂ − µ)TH(τ̂ − µ)

Since taking the variance of this is not as straightforward as in the first order case, we use that Var[f(τ̂)] =

E[f2(τ̂)]− E2[f(τ̂)] so need to calculate f2(τ̂) and E[f(τ̂)]. Firstly, f2(τ̂) :

f2(τ̂) ≈
(
f(µ) + DT (τ̂ − µ) +

1

2
(τ̂ − µ)TH(τ̂ − µ)

)2

=f2(µ) + DT (τ̂ − µ)(τ̂ − µ)TD +
1

4
(τ̂ − µ)TH(τ̂ − µ)(τ̂ − µ)TH(τ̂ − µ)

+ 2f(µ)DT (τ̂ − µ) + f(µ)(τ̂ − µ)TH(τ̂ − µ) + DT (τ̂ − µ)(τ̂ − µ)TH(τ̂ − µ).

Hence

E2[f(τ̂)] ≈ E

 f2(µ) + DT (τ̂ − µ)(τ̂ − µ)TD + 1
4 (τ̂ − µ)TH(τ̂ − µ)(τ̂ − µ)TH(τ̂ − µ)

+2f(µ)DT (τ̂ − µ) + f(µ)(τ̂ − µ)TH(τ̂ − µ) + DT (τ̂ − µ)(τ̂ − µ)TH(τ̂ − µ).

 (8)

= f2(µ) + DT Σ̂(τ̂)D +
1

4
E[(τ̂ − µ)TH(τ̂ − µ)(τ̂ − µ)TH(τ̂ − µ)] + f(µ)tr{HΣ̂(τ̂)} (9)

= f2(µ) + DT Σ̂(τ̂)D +
1

4

(
tr{HΣ̂(τ̂)}

)2
+

1

2
tr{(HΣ̂(τ̂))2}+ f(µ)tr{HΣ̂(τ̂)}. (10)

Where (9) follows from (8) since the expectations of first and third order moments of normal random variables with

mean 0 is 0 (the fourth and last terms disappear). By Theorem 10.9.10 from Graybill,17 which states:

Theorem. Let x be an n×1 vector with distribution N(x : 0,V); let A, B and C be symmetric matrices of constants.

Then
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1. E[(xTAx)(xTBx)] = [tr(AV)][tr(BV)] + 2tr(AVBV),

2. Cov[xTAx,xTBx] = 2tr(AVBV),

3. Var[xTAx] = 2tr(AV)2.

along with the fact that for these conditions, E[xTAx] = tr(AV), the fifth term from (8 )to (9) follows. The above

theorem provides reasoning for (9) to (10). Now we calculate E[f(τ̂)]:

E[f(τ̂)] ≈ E[f(µ) + DT (τ̂ − µ) +
1

2
(τ̂ − µ)TH(τ̂ − µ)]

= f(µ) + DTE[(τ̂ − µ)] +
1

2
E[(τ̂ − µ)TH(τ̂ − µ)]

= f(µ) +
1

2
tr{HΣ̂(τ̂)}.

Now combining the above:

Var[f(τ̂)] =E[f2(τ̂)]− E2[f(τ̂)]

≈f2(µ) + DT Σ̂(τ̂)D +
1

4

(
tr{HΣ̂(τ̂)}

)2
+

1

2
tr{
(
HΣ̂(τ̂)

)2
}

+ f(µ)tr{HΣ̂(τ̂)} − (f(µ) +
1

2
tr{HΣ̂(τ̂)})2

=f2(µ) + DT Σ̂(τ̂)D +
1

4

(
tr{HΣ̂(τ̂)}

)2
+

1

2
tr{
(
HΣ̂(τ̂)

)2
}

+ f(µ)tr{HΣ̂(τ̂)} − f2(µ) + f2(µ)tr{HΣ̂(τ̂)} − 1

4

(
tr{HΣ̂(τ̂)}

)2
=DT Σ̂(τ̂)D +

1

2
tr{(HΣ̂(τ̂))2}.

The first part is recognizable as the estimate of the variance for the first order Taylor approximation, and the second

part is therefore the second order part of the approximation.

D Average Bias of Parameter Estimates

Table 2: The average bias of the estimate of the PK parameters. The true values are t 1
2

= 42.80264 and Cmax =
110.9412

# Subjects

5 10 100 1000

# Time Points t 1
2

Cmax t 1
2

Cmax t 1
2

Cmax t 1
2

Cmax

3 0.913 -0.317 0.132 -0.203 -0.591 -0.149 -0.573 -0.0937
4 0.348 -0.211 -0.0657 -0.218 -0.291 -0.192 -0.141 -0.0987
5 0.481 -0.338 0.0809 -0.326 -0.268 -0.233 -0.136 -0.0933
6 0.398 -0.341 -0.0164 -0.279 -0.296 -0.239 -0.150 -0.0856
7 0.157 -0.270 -0.0918 -0.290 -0.327 -0.216 -0.138 -0.0847
8 0.128 -0.272 -0.121 -0.291 -0.333 -0.202 -0.141 -0.0789
9 0.0625 -0.235 -0.143 -0.261 -0.354 -0.182 -0.138 -0.0671
10 0.0128 -0.212 -0.263 -0.196 -0.374 -0.168 -0.149 -0.058
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E Additional Type I Error Rate Results

Table 3: Type I error rate for varying numbers of time points and combinations of PK parameters for an oral
administration of a compound. Error bounds for 10,000 simulations are 2.214 and 2.806 for equivalence testing.

Parameter Combination / # Subjects

AUC24 & Cmax AUC24 & tmax

# Time Points 5 10 100 1000 5 10 100 1000

4 3.01 2.55 2.28 2.48 2.73 2.75 2.57 2.66
5 2.71 2.59 2.61 2.68 2.76 2.63 2.63 2.65
6 2.93 2.49 2.36 2.51 2.96 2.47 2.47 2.28
7 2.47 2.50 2.50 2.30 2.65 2.63 2.63 2.31
8 2.53 2.33 2.80 2.67 2.87 2.60 2.60 2.54
9 2.88 2.59 2.51 2.64 2.41 2.39 2.39 2.45
10 2.98 2.58 2.36 2.51 2.50 2.65 2.65 2.27

Table 4: Type I error rate for varying numbers of time points and combinations of PK parameters for an oral
administration of a compound. Error bounds for 10,000 simulations are 2.214 and 2.806 for equivalence testing.

Parameter Combination / # Subjects

tmax & Cmax AUC24, Cmax & tmax

# Time Points 5 10 100 1000 5 10 100 1000

4 2.53 2.51 2.59 2.15 2.78 2.66 2.32 2.60
5 2.81 2.38 2.53 2.65 2.48 2.67 2.43 2.55
6 2.85 2.59 2.55 2.35 2.67 2.58 2.58 2.68
7 2.60 2.50 2.69 2.84 2.44 2.39 2.60 2.25
8 2.57 2.57 2.23 2.53 2.58 2.51 2.48 2.92
9 2.37 2.40 2.26 2.54 2.34 2.54 2.65 2.47
10 2.73 2.30 2.80 2.60 2.40 2.40 2.24 2.16
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