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Abstract

Forecast selection and combination are regarded as two competing alterna-

tives. In the literature there is substantial evidence that forecast combination

is beneficial, in terms of reducing the forecast errors, as well as mitigating

modelling uncertainty as we are not forced to choose a single model. How-

ever, whether all forecasts to be combined are appropriate, or not, is typically

overlooked and various weighting schemes have been proposed to lessen the

impact of inappropriate forecasts. We argue that selecting a reasonable pool

of forecasts is fundamental in the modelling process and in this context both

forecast selection and combination can be seen as two extreme pools of fore-

casts. We evaluate forecast pooling approaches and find them beneficial in

terms of forecast accuracy. We propose a heuristic to automatically identify

forecast pools, irrespective of their source or the performance criteria, and
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demonstrate that in various conditions it performs at least as good as al-

ternative pools that require additional modelling decisions and better than

selection or combination.

Keywords: Forecasting, Model Selection, Forecast Combination, Forecast

Pooling, Cross-Validation

1. Introduction

There is nearly 40 decades of research and empirical evidence in favour of

forecast combination over selection (Elliott and Timmermann, 2016; Barrow

and Kourentzes, 2016). While the correct identification of the best forecast

for a given time series can lead to significant gains in accuracy and depen-

dent decisions (Fildes, 2001; Strijbosch et al., 2011; Fildes and Petropoulos,

2015), the uncertainty associated with identifying a ‘best model’ makes this

a challenging problem. These include sample, parameter and model uncer-

tainty (Breiman, 1996; Kourentzes et al., 2014a). Different sample size will

result in different parameter estimates, which in turn may result in differ-

ent model forms. Parameter estimation uncertainty may originate from the

estimation algorithm and setup; for instance different initial values may re-

sult in different estimates. Different model structures may impose specific

restrictions in parameters, simplifying, or not, the estimation problem, and

so on. Given these uncertainties, a standard approach in forecast building is

to use multiple alternative forecasting models or methods and pick the one

that is identified as most appropriate, given the data at hand.
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Assuming that we consider a family of models to produce the forecasts,

we can rely on information criteria, such as the Akaike Information Criterion

(AIC, Akaike, 1974). More generally, when we consider multiple model fam-

ilies or forecasts without a formal model, some appropriate fit criterion or

cross-validation statistic can be used (Fildes and Petropoulos, 2015; Barrow

and Crone, 2016). Naturally, using different criteria may lead to different

forecast selections and all these criteria are subject to the aforementioned

uncertainties. Therefore, they are not guaranteed to result in the best possi-

ble forecasting performance. Several of these criteria, especially those based

on likelihood or one-step ahead in-sample fit, suffer from an additional limi-

tation: implicitly they assume that the postulated forecasting model is true.

Otherwise, the likelihood function is not appropriate for any multi-step fore-

cast that we require from the model (Chatfield, 2000; Xia and Tong, 2011).

Fildes and Petropoulos (2015) provide empirical evidence of the disadvantage

of one-step ahead forecast based selection criteria.

Given these challenges, alternatively we can combine multiple forecasts.

There is ample literature that discusses why combinations of forecasts are

beneficial, or how to best perform these (for examples see, Timmermann,

2006; Kolassa, 2011; Aye et al., 2015; Elliott and Timmermann, 2016). How-

ever, the quality of the combined forecasts is always dependent on the in-

dividual forecasts that are combined. Although this is an intuitive point, it

is often overlooked in the literature, where these forecasts are assumed to

be as required, for example, uncorrelated (Clemen, 1989; De Menezes et al.,
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2000) or having sufficient diversity (de Menezes and Bunn, 1998; Brown et al.,

2005; Lemke and Gabrys, 2010) or not encompassed (Fang, 2003; Harvey and

Newbold, 2005). Alternatively the issue of forecast quality is subsumed in

the question of how to best weight the different forecasts that are combined

(de Menezes and Bunn, 1998; De Menezes et al., 2000; Tian and Ander-

son, 2014). For example, Granger and Ramanathan (1984) propose using a

restricted regression to estimate the combination weights of different fore-

casts, where a forecast can in principle be attributed zero weight and there-

fore effectively excluded. Given that the estimation of weights is subject to

the various uncertainties previously discussed, several alternative weighting

schemes have been proposed (an empirical evaluation is provided by Bar-

row and Kourentzes, 2016), while a common finding in the literature is that

unweighted combinations perform very competitively (Timmermann, 2006),

the latter effectively not excluding any forecasts.

It becomes obvious that a caveat in combination approaches is that they

assume that the forecasts to be combined are reasonable. As a mental exper-

iment, consider dealing with a series that exhibits no seasonality or trend and

combining only seasonal forecasts. Unweighted combinations will fail, as will

more complex approaches such as using AIC derived combination weights

(Kolassa, 2011). Since only seasonal forecasts will be combined, irrespective

of the weights, the resulting final forecast will be inappropriate. To overcome

this, an additional step can be considered: forecast pooling, which instructs

that from the complete set of forecasts only a subset is deemed relevant to
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be combined. For example, Aiolfi and Timmermann (2006) investigate the

construction of forecast pools by using forecasts that belong to arbitrarily

chosen top performing quantiles, or based on clustering methods. The au-

thors find that pooling can be beneficial, but recognise that the methods

proposed depend on multiple subjective choices by the modeller. Geweke

and Amisano (2011) conclude that pooling performs well, even when the

true model in not part of the considered models, contrasting results of typ-

ical selection or weighting schemes. This is very relevant to practice, as in

business forecasting this is the norm.

In this paper we investigate pooling for business forecasting. We take the

view that the forecast selection criteria and the different approaches that are

used to combine forecasts, can be considered as two independent types of

operations, that follow pooling. For example, forecast selection can be seen

as nothing more than combining ‘all’ forecasts from a pool of a single top

performing forecast. On the other hand, model combination assumes that all

forecasts add value and therefore are retained in the pool, yet the combination

weights are based on criteria that have equivalences to the criteria used for

model selection. For example, AIC-weights are the combination analogue

to AIC model selection (Burnham and Anderson, 2002). Forecast selection

and forecast combinations can be seen as the two extremes of a spectrum

that is defined by forecast pooling, combined with some selection/weighting

operator (figure 1).

This paper has three aims: (i) demonstrate empirically the usefulness of
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Figure 1: The spectrum of forecast pooling, with selection and combination featuring as
extreme cases, irrespective of the scoring criterion.

pooling in a variety of conditions (e.g., forecasting at a disaggregate product

level or at a more aggregate one, and at different tiers of a supply chain); (ii)

propose a heuristic that can automate the selection of the pool size that is

independent of the performance criterion, therefore making it easily imple-

mentable in practice and in existing setups; and (iii) focus the attention of the

business forecasting literature beyond the dichotomy of model combination

or selection, as both are potential outcomes of pooling.

The practical importance of this work is that it provides an approach to

increase forecast accuracy further, with minimal assumptions or requirements

for the individual forecasts that contribute to the pool. It is easy to accom-

modate various selection and combination operators, making it applicable to

a variety of existing forecasting support systems, and incorporate innovations

in either forecasting combination or selection. At the same time, the forecast

selection problem is avoided, simplifying the forecasting process for users,

with the decision making benefits stemming from forecast combinations. For

instance, in terms of inventory management, forecasting combinations have

been shown to result in lower requirements for safety stocks (Barrow and

Kourentzes, 2016).
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The paper is organised as follows; in section 2 an overview of forecast

selection and combination is presented, followed by section 3 that discusses

pooling and introduces the proposed forecast islands. Section 4 outlines

the empirical evaluation that is conducted to benchmark the performance

of pooling and presents the results. Section 5 discusses further properties

of the proposed pooling. Section 6 concludes with final remarks and future

research.

2. Selection and combination of forecasts

Although the question how to best select or combine forecasts is not

resolved, there has been a lot of research in both areas. In the following

subsections, we summarise the main findings and highlight the most common

approaches to perform these.

2.1. Selection

Identifying and selecting the best forecast is a challenging task. It is so

as there are many uncertainties that one needs to consider, but also because

what a ‘best’ forecast is often ill-defined. In the literature there have been

several advances in both aspects, yet there is no widely accepted best method

to select a forecast.

Traditionally simplistic criteria, such as the coefficient of determination

(R2), and its adjusted version that penalises models with more parameters,

have been commonly used to choose between alternatives. These have been
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shown to suffer from multiple weaknesses, in particular in a predictive con-

text, where more advanced metrics, such as information criteria, are nowa-

days the norm (Burnham and Anderson, 2002; Montgomery et al., 2015).

Nonetheless, simplistic criteria can often still be useful in the absence of a

full forecasting model. Irrespectively, criteria that do not penalise in-sample

fit will typically lead to choosing over-fitted methods or models and should

be avoided.

Akaike (1974) proposed an information criterion to select the best model

amongst various alternatives, which came to be known as the Akaike In-

formation Criterion (AIC). It balances the quality of fit, as measured by

the likelihood function for the model L, and its complexity as measured by

the number of parameters. Due to Burnham and Anderson (1998), who

used an information-theoretic approach to ground AIC, its use became more

widespread.

In using AIC we have to keep note of its requirements. AIC requires:

model parameters to maximise its likelihood; and the various alternative

models considered to be estimated on the same sample (Burnham and An-

derson, 2002). The latter translates to same sample size, but also scale,

which implies that even within a model family certain transformations do

not allow us to compare AIC values of competing models. For example, Au-

toregressive Integrated Moving Average (ARIMA) models, when formulated

using the Box-Jenkins notation (Box et al., 2015), cannot be compared on

AIC when the order of differencing varies, as the sample is not identical.
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Related metrics have appeared in the literature, for example, for small

sample sizes the AICc is preferable, while the Bayesian Information Criterion

(BIC Schwarz, 1978) imposes a stronger penalty for model complexity than

AIC. An obvious question is which information criteria to use in practice.

The literature provides diverging opinions (for a discussion see Burnham

and Anderson, 2002; Yang, 2005), however the work by Billah et al. (2005)

is interesting in that it demonstrates that although the criteria may result in

different selection of models, in terms of predictive accuracy the differences

are small.

Information criteria attempt to balance the quality of model fit against its

complexity, so as to avoid over-fitting. A more direct approach to this is to use

separate sample to fit the various alternative models and another to choose

the best one. This falls under the general framework of cross-validation

(CV). CV in its basic implementation separates the available sample in s

separate subsets. A model is estimated s times, using each time s−1 subsets

as fitting set and the one remaining sample to evaluate the out-of-sample

performance of the model. This is repeated until all s samples have been

used as out-of-sample. The hold-out performance is then averaged, providing

the cross-validation error. There are several variations of the basic cross-

validation idea (for a comprehensive review see Arlot et al., 2010), however

many cannot be applied in a time series context. Often time series models

try to capture time dynamics in the series, which does not permit splitting

the time series in any desirable way. Note that depending on the model used
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different types of cross-validation may become feasible (Barrow and Crone,

2016). For example, cross-validating multiple regression models is trivial.

When autoregressions are present these have to be accounted for, and the

problem becomes even more challenging when moving average components

are considered.

For time series models, at minimum, we can split a series into a fitting and

a validation set, where the later follows the first. We can then measure the

error in the validation set to choose the appropriate model. This ‘hold-out’

approach has been used successfully in the past (Makridakis et al., 1998).

Fildes and Petropoulos (2015) explored this in detail and found that using

rolling forecasts in the validation set of suitable steps-ahead forecast resulted

in appropriate selection of forecasts, as judged by forecasting accuracy. In

this format, cross-validation can be applied to any time series forecasting

model, and notably method. In contrast to information criteria no likelihood

expressions are required, nor even optimal parameters (as these cannot be

always uniquely defined for ad-hoc methods). Furthermore, the evaluation

metric can be any that the user deems appropriate.

It has been shown that AIC and BIC are connected to forms of cross-

validation asymptotically (Stone, 1977; Shao, 1997; Burnham and Anderson,

2002; Fang, 2011). Although this well known result is often used as an ar-

gument to the sufficiency of information criteria over cross-validation, which

is more complex to implement, in practice this argument has limited im-

portance, as cross-validation allows us to consider a variety of performance
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metrics, relevant forecast horizons and can be applied generally. However,

cross-validation comes at a sample cost, since it requires the use of both fit-

ting and validation sets, while information criteria need only fitting sample.

At the same time, the quality of the cross-validation result depends on the

size of the validation set and its representativeness, a problem that has been

discussed to a great extent in the forecast evaluation literature (Tashman,

2000).

As different selection approaches may lead to different forecasts being

selected, a relevant question is what constitutes a ‘best’ forecast. The fore-

casting competition literature has discussed this issue in length (Makridakis

and Hibon, 2000; Ord, 2001; Fildes and Ord, 2002). Yet, it is clear that the

relevant application driven forecasting objective should be considered, at each

case. This can often mean that a sub-optimal forecast with respect to the

alternative approaches discussed above, may still be desirable as it exhibits

other useful properties. For example in a production or inventory manage-

ment setting, a very robust to shocks forecast will lead to easier planning

which may outweight potential inaccuracy costs. Another relevant example

is when the selection method would advise switching forecasting models too

frequently, with adverse effects to planning, but also to the confidence that

users will put in statistical forecasting.
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2.2. Combination

An alternative to selecting a single forecast is to combine different fore-

casts in an aggregate one. It is widely accepted that forecast combinations

are beneficial (Elliott and Timmermann, 2016), leading to a reduction of

forecast error variance, as well as mitigating the forecast selection problem.

Futhermore, Chan and Pauwels (2018) demonstrate that simply selecting a

single model on cross-validated errors will lead to biased selection, supporting

a combination approach. The research has focused mainly on two questions:

which are useful combination operators and what are the best combination

weights.

Typically, the combined forecast is constructed as a linear combination

of the initial forecasts:

ỹ = Ŷw, (1)

where ỹ is the resulting vector of combined forecasts for various forecast

horizons, Ŷ a matrix containing the separate individual predictions for the

various forecast horizons and w is a vector of combination weights. Fore-

cast combination research has primarily focused on the problem of weight

estimation (Newbold and Granger, 1974; Granger and Ramanathan, 1984;

Diebold and Pauly, 1990; Kolassa, 2011; Tian and Anderson, 2014; Elliott

and Timmermann, 2016). A full overview of various alternatives to derive

combination weights is beyond the scope of this paper, however we will draw

some analogues to the selection approaches discussed above.
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Burnham and Anderson (2002) provide an extensive discussion of com-

bination weighting schemes that are based on information criteria, which

Kolassa (2011) demonstrates to result in superior accuracy over selection

by information criteria. One such common approach is using AIC-weights.

Given a set of k forecasting models, for which comparable AIC(k) = {AICi}

and i = 1, . . . , k are available, the following steps can be used to derive the

combination weights w:

∆AICi = AICi −min(AIC(k)),

wi =
e(−0.5∆AICi)∑k
i=1 e

(−0.5∆AICi)
.

Similar weights can be derived from AICc and BIC. Akaike weights calculated

in this manner can be interpreted as being the probability that a given model

is the ‘best’ model, given the model set and data.

Although there is accuracy evidence supporting the use of information cri-

teria for combination over selection, one should not overlook the more subtle

benefits. The parameters of any model will be estimated given some uncer-

tainty; combining forecasts will mitigate this. Furthermore, selecting a single

model assumes that the resulting model is close to the underlying true data

generating process, if one exists (Chatfield, 2000). On the other hand, combi-

nation avoids this strong assumption and in particular when AIC-weights (or

similar) are employed the various models are weighted according to the evi-

dence of how appropriately each model describes the observed data (Burnham
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and Anderson, 2002). Similar arguments can be made for other weighting

schemes. However, Geweke and Amisano (2011) notes that even with com-

bination, many weighting schemes will tend to show preference to a small

number of models, even when none of these is the true underlying model.

Naturally, following the same logic, one can construct ad-hoc weights from

any selection metric, expanding the calculation of combination weights across

different model families and forecasting methods. Barrow and Crone (2016)

show that cross-validation, in its various forms, can be used for forecast

combination, improving forecasting accuracy over model selection.

Empirically unweighted combination has been found to perform very well,

often at least as good as complex weighting schemes (Genre et al., 2013;

Elliott and Timmermann, 2016), even though the later appear to be more

theoretically elegant. Smith and Wallis (2009) argue that this is due to

estimation uncertainty of the combination weights. Claeskens et al. (2016)

distinguish between fixed and random combination weights and demonstrate

the importance of the weight estimation uncertainty, explaining further the

strong performance of simple , sub-optimal, weighting schemes. Elliott (2011)

notes that there is second part to this argument, that is the relative gain from

optimally combining forecasts, given any losses due to estimation uncertainty.

He provides forecast clustering (most experts erring on the same side of the

actual) as an example where combination gains would be relatively small

and out-weighted by estimation issues. Petropoulos and Kourentzes (2015)

provide a similar argument as to why forecast combinations do not seem to
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provide benefits for intermittent demand forecasts.

Irrespective of the combination weighting scheme, the other line of re-

search in forecast combination has looked at the combination operator. Equa-

tion (1), when no constant is incorporated, is a weighted average. Agnew

(1985) found that the median outperformed the mean, and recommended

its use. Barrow and Kourentzes (2016) found the median performing best

amongst a large variety of alternative combination schemes, as it was robust

against outlying forecasts. Alternatively, one can employ the trimmed mean

(Elliott and Timmermann, 2016). On the other hand, Stock and Watson

(2004) found support for the mean, while McNees (1992) found no signifi-

cant differences between the two. Kourentzes et al. (2014a) compared the use

of mean, median and mode of forecasts, as estimated using kernel density,

and found that the mean required a substantial number of forecasts to con-

verge to a stable good forecasting performance, while the median converged

very fast. When an adequate number of forecasts was available for the ker-

nel density estimator (around 30) then the mode performed best. However,

weighting schemes have not been explored for such combination operators,

although such extensions are simple.

In the literature, combination of forecasts have been gaining popularity,

resulting in more exotic approaches. Examples of this are algorithms such as

the Random Forests, that combines multiple decision trees for classification

and regression problems (Breiman, 2001), bagging of time series to improve

the performance of exponential smoothing (Bergmeir et al., 2016), and com-
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bining forecasts from different temporally aggregated versions of the data

(Kourentzes et al., 2014b; Kourentzes and Petropoulos, 2015; Athanasopou-

los et al., 2017), amongst others. The motivation behind all these combina-

tion approaches is to reduce the modelling uncertainty and avoid relying on a

single model, while potentially gaining accuracy benefits. Nonetheless, fore-

cast combination has parallels to model selection, and although the choice of

a single model is avoided, the modeller fundamentally has to decide on the

criterion to assess the performance of each forecast to be combined, so as to

construct appropriate combination weights, given a combination operator.

3. Pooling methods

With pooling a subset of the available forecasts is used instead of using all

available ones. The aim is to attempt to reduce forecast errors further, while

improving computational efficiency and lowering the number of forecasting

approaches that need to be maintained by the users.

As we reasoned in the introduction, pooling is a separate step from select-

ing the criteria to rank the forecasts or how the combination is performed.

The first is associated with the allocation of appropriate combination weights,

or forecast selection if the pool becomes a single model. For instance, these

could be based on information criteria (see examples by Burnham and An-

derson (2002) and Kolassa (2011) for the respective combination weights or

Chatfield (2000) and Hyndman et al. (2002) for forecast selection), or fore-

cast errors, considering error correlation, error variance and error covariance
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(Bates and Granger, 1969; Newbold and Harvey, 2002; Timmermann, 2006;

Barrow and Kourentzes, 2016). The second is associated with the operator

that is used for constructing the combined forecast, which at a fundamental

level can be unweighted mean, median or mode, or weighted variants that

were discussed in section 2.2.

In the forecasting literature there is limited discussion of pooling. De Menezes

et al. (2000), based on a review of prior research, suggest combining forecasts

which are uncorrelated, to avoid high weight estimation errors (Miller et al.,

1992). Approaches using the error covariance matrix are not without issues.

The estimation of the error variances and covariance can be challenging due

to limited sample size, changes of the behaviour of forecast errors over time

and other unexplained variations that may occur in the data (Newbold and

Harvey, 2002; Tian and Anderson, 2014; Elliott and Timmermann, 2016).

Aiolfi and Timmermann (2006) take a different approach. They argue in

favour of conditional combination strategies, as they find that there is strong

evidence of persistence for top and bottom performing forecasts. They in-

vestigate grouping the forecasts either by assigning them into quartiles or

k-means clusters based on their historical performance. The authors then

consider a variety of ways to combine the forecasts within a pool. Geweke

and Amisano (2011) demonstrate the benefits of pooling in predicting S&P

500 returns, noting that models that are clearly inferior by the usual scoring

criteria, result in well performing pooled forecasts. Elliott (2011) combines

aspects of unweighted averaging and optimal combination weights using the
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Best Subset Averaging procedure to construct pools of forecasts. This proce-

dure performs robustly against unweighted average or optimal weights com-

binations, in a variety of settings. Matsypura et al. (2017) successfully use

pooling to combine expert forecasts.

Below we discuss in more detail the use of quantiles to form groups and

propose a heuristic that allows us to automatically identify appropriate cut-

off points from forecast pools. The key advantage of the latter is that it

does not rely on an appropriately chosen quantile by the modeller. Although

we discuss pooling without assuming a specific performance criterion, the

resulting pools will depend on that. This is in line with our previous argument

that pooling provides a data driven continuum between selecting a single

forecast or combining.

3.1. Top quantiles

Let C = {ci} be the values of an appropriate criterion to assess the

forecasts for i = 1, . . . , k forecasts. This criterion can be an information

criterion like AIC, a CV statistic, or a weaker metric, such as the adjusted

R2. Depending on the criterion this may be based on in-sample data (for

instance AIC or adjusted R2) or some validation sample (for example for

cross-validated errors).

Irrespective of the nature of C we rank forecasts from best to worst per-

forming, and use the top quantile to form a forecast pool to be combined. It

is up to the modeller to decide what quantilisation to use. The extreme cases
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are using k-quantiles, where using the top is equivalent to forecast selection,

and using 1-quantile, where all forecasts are included in the single quantile

and is equivalent to forecast combination. If we use quartiles, we can pool

together the top 25%, 50% or 75% of the forecasts. However, there is no

statistic to guide our choice and the cut-off point is selected in an arbitrary

manner.

Note that using the top quantiles, as described here, is different from the

use of quartiles described by Aiolfi and Timmermann (2006), who combine

all forecasts within the different quartiles and then perform a weighted com-

bination of the combined quartile forecasts. Their motivation is to reduce

the number of forecasts for which optimal combination weights need to be

calculated, rather than reducing the number of base forecasts used that we

focus on here.

3.2. Forecast Islands

We propose a heuristic to form forecast pools, irrespective of whether the

forecasts are originating from models for which a likelihood can be calculated,

or forecasting methods that lack such derivations.

Given some appropriate criterion of performance C, first, we transform

it so as to ensure that a smaller value is better. No change is required for

information criteria such as AIC, AICc and BIC, or CV statistic which are

already sorted in this manner. For metrics, such as adjusted R2 where a

higher value is better, we multiply them by -1. Next we order the forecasts
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from best to worst. Figure 2 provides an example for AIC and Adjusted R2

considering 19 alternative exponential smoothing (ETS) models (for the ex-

ample we use the first monthly series of the M3 competition dataset, N1402;

see section 4.1). The models are named following the convention introduced

by Hyndman et al. (2008b); ETS(Error, Trend, Season), where each compo-

nent can be: ‘N’ for none, ‘A’ for additive, ‘M’ for multiplicative. For the

trend component an additional letter ‘d’ indicates damped trend. Observe

that AIC provides a gradual increase, while for Adjusted R2 several steep

increases are observed.
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Figure 2: Sorted metric values for the 19 alternative ETS models considered.

Next, from the sorted metric we construct C ′ = {0,∆C}, where ∆ is

the differencing operator, and a 0 is included for the first forecast, which

is assigned no value by ∆C. C ′ captures the rate of increase of the metric

assigned to each forecast. Based on this, we include in the pool all forecasts

until the first steep increase.

20



To detect the first steep increase we resort to using the same approach

used for detecting outliers in boxplot, i.e. T = Q3 + 1.5IQR, where Q3 is the

3rd quartile and IQR is the inter-quartile range. T is calculated gradually as

each additional forecast is considered, as illustrated in figure 3. We include

all forecasts in the pool up until C ′ ≥ T . Observe how the different metrics

in our example provide different pools of forecasts. Note that the calculation

of T is appropriate as C ′ does not exhibit any trend, due the differencing in

its construction.
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Figure 3: C ′ together with threshold T , as it is updated for each additional forecast
considered. Once C ′ ≥ T we stop adding forecasts to the pool.

Once the pool has been identified then the forecasts included can be

combined, using any desired combination approach. Note that the process

described here is identical to considering k-quantiles with the arbitrarily se-

lection of the cut-off point of how many quantiles to use, replaced with the

proposed approach.

We name this approach forecast ‘islands’, due to the several small groups
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of forecasts that can be seen in figure 2. Although the proposed approach is

ad-hoc, it can be applied in a wide range of cases, as it does not require the

forecasts to be outputs of models. Any method or even judgmental forecasts

can be used with an appropriate performance metric. Even if model based

forecasts are available, there is no need for these to belong to the same family,

again assuming the use of an appropriate metric, such as CV statistic.

If forecasts are linearly combined, using (1), the combination weights for

model independent criteria, such as cross-validated errors, with xi being the

value of the criterion for i = 1, . . . , k different forecasts, are calculated as:

wi =
x−1
i∑k

i=1 x
−1
i

. (2)

This expression ensures that
∑k

i=1 wi = 1 and that 0 ≤ wi ≤ 1.

3.3. When should we expect pooling to be beneficial?

The existing theoretical framework of the combination literature focuses

on identifying when the variance of the combined forecast improves. Side-

stepping the weight estimation issue (for a summary the reader is referred

to Elliott and Timmermann, 2016), we compare the variance of combination

of all forecasts (yc) and a pooled forecast (yp) with given (fixed) weights.

Let y = (y1, . . . , yk)′ vector of unbiased forecasts, w = (w1, . . . , wk)′ the

respective combination weights with
∑

iwi = 1, and Σyy the finite variance

of y. The combined forecast is yc = w′y and its variance var(yc) = w′Σyyw

(Claeskens et al., 2016).
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Pooling can be seen as an operation to eliminate forecasts (yi) from the

combination, which is reflected in assigning zero weights to these forecasts.

Suppose the weights are calculated as w = x−11/1′x−11, where x is a diag-

onal matrix containing the values of the criterion used for each forecast and

1 is a vector of k ones. Note this is the same as (2). We can devise a k × k

matrix p, where the diagonal for any included forecast is equal to 1 and all

other elements are zero and calculate the pooled weights as:

wp =
(pxp)−11

1′(pxp)−11
. (3)

Note that by construction pxp is singular, as its determinant will always be

zero due to p. However, given the structure of p and x, its pseudoinverse is

simply px−1p. From (3) we can see that two things will happen, all excluded

forecasts will be given zero weight, and the remaining weights will be re-

weighted (increased) to ensure that their sum is equal to 1.

In general, for pooling to be beneficial over combining all forecasts var(yp) ≤

var(yc), that is wp
′Σyywp ≤ w′Σyyw. Bringing all terms to the left side and

expanding it to its bilinear form we get:

∑
pi 6=0

∑
pj 6=0

σi,j(wpiwpj − wiwj)−
∑
pi=0

∑
pj=0

σi,jwiwj ≤ 0, (4)

where σi,j and pi,j are elements of Σyy and p with i, j = (1, . . . , k). Re-

member that when pi,j 6= 0, then wpi,j > wi,j. Therefore, (4) tells us that
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any contributions to the variance of the combined forecast by the increased

pooled weights, must be smaller to the contributions by the excluded fore-

casts, for pooling to be beneficial. Naturally, this is easy to observe when the

pool of forecasts contains very outlying and poor fitting forecasts, rather than

when all forecasts are well designed. The first case can happen easily with

many existing forecasting support systems in companies, such as SAP APO

that is widely used in practice, which offers a fixed repertoire of forecasting

methods that often do not match at all the data on hand. Furthermore, when

the number of forecasts considered is small, it is relatively easy to seek the

optimal set of forecasts to contain in the pool. However, when k increases,

the computational cost can increase substantially as well (as wp will change

with the pool, thus complicating the search), and therefore heuristics such

as the one proposed above can be helpful.

4. Empirical evaluation

In this section we outline the dataset and the experimental setup that

we use to empirically evaluate pooling against conventional forecast selection

and combination, as well as present the results.

4.1. Data

We use four datasets to evaluate the benefits of pooling. The first set of

time series is comprised by monthly M3 competition time series (Makridakis

and Hibon, 2000) that have at least 120 observations. This dataset includes
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1,020 time series with sample size ranging from 120 to 144 periods. The time

series capture various items that are broadly classified in microeconomic,

macroeconomic, industry, finance, demographic and other series. The second

set of series contains monthly time series from the Federal Reserve Economic

Data (FRED, Federal Reserve Bank of St. Louis, 2016), filtered with the

tags: inventories ; nsa (non-seasonally adjusted); and monthly that have only

positive values and sample size of 120 observations or more. The dataset has

323 time series, ranging from 120 to 588 observations. The series in this

dataset describe size of inventories in various sectors and goods.

The third dataset originates from a UK fast moving consumer good man-

ufacturer, and contains 229 weekly times of 173 observations each. The

series record sales at stock keeping unit level of household and personal care

products. The fourth dataset originates from a US supermarket chain and

describes sales of various food related products. Sales for 854 items are

recorded for 91 days.

The behaviour of the series in all datasets is quite diverse, offering a wide

variety of time series patterns, including disaggregate produce level sales,

or aggregate figures, at different sampling frequencies. Time series have

adequate sample to construct both validation and test sets, when needed.

The validation set is necessary for the calculation of the cross-validated error,

otherwise it is not used. We also restrict time series to be positive so that

we can use models with both additive and multiplicative components, giving

a wider pool of potential forecasts.
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4.2. Experimental setup

Here we provide details of the evaluation scheme and metrics, the fore-

casting models, and the selection and combination operators used in the

empirical evaluation.

4.2.1. Evaluation scheme

For the empirical evaluation we use a rolling origin evaluation scheme

(Ord et al., 2017). From each forecast origin we produce the required fore-

casts, and expand the in-sample set by one observation and repeat the pro-

cess. This provides us with multiple forecast error measurements, reinforcing

the validity of our results, as the effect of potential outliers is mitigated. At

each origin the forecasting models are re-optimised, following the recommen-

dations by Fildes and Ord (2002). Given a validation or test set of size m and

forecast horizon h, for each set q = m− h+ 1 forecasts are constructed. For

this experiment both validation and test sets are 36 periods and we forecast

up to 18 periods ahead, providing 19 forecast traces in each set. The choice

of forecast horizon is based on the M3 competition that most time series

originate from (Makridakis and Hibon, 2000) and is retained for all datasets

for convenience in presenting the results.

To measure the performance of the competing approaches we use the

Average Relative Mean Absolute Error (AvgRelMAE) by Davydenko and
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Fildes (2013):

AvgRelMAEi = n

√√√√ n∏
r=1

(
MAEi,r

MAEb,r

)
,

MAE = (qh)−1

q∑
j=1

h∑
t=1

|yt+j−1 − ŷt+j−1|,

where n is the number of time series that we summarise accuracy over, MAEi

is the Mean Absolute Error of forecast i, over m origins, and yt and ŷt are

the actuals and forecasts respectively. MAEb is the error of the benchmark

forecast.

As AICc and cross-validated MSE use quadratic loss, we also construct

the Average Relative Root Mean Squared Error (AvgRelRMSE), following

the same logic as AvgRelMAE:

AvgRelRMSEi = n

√√√√ n∏
r=1

(
RMSEi,r

RMSEb,r

)
,

RMSE =

√√√√(qh)−1

q∑
j=1

h∑
t=1

(yt+j−1 − ŷt+j−1)2.

Both metrics are very simple to interpret. When their value is below 1

then the forecast is better than the benchmark and vice versa. Davydenko

and Fildes (2013) discuss the advantages of AvgRelMAE over several over

common accuracy metrics, such as the Mean Absolute Percentage Error or

the Mean Absolute Scaled Error that are biased. Therefore, our choices
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are due to their desirable statistical properties and ease of interpretation.

However, note that as the ratios are formed on summary error statistics,

reported differences by AvgRelMAE and AvgRelRMSE tend to be appear

smaller than with other metrics. To test whether the reported differences in

accuracy are statistically significant we rely on the use of the nonparametric

Friedman and post-hoc Nemenyi tests, following the suggestions by Koning

et al. (2005) and Demšar (2006), to avoid performing multiple comparisons.

4.2.2. Forecasting models

To produce forecasts we use the complete family of exponential smooth-

ing models, as formulated in the state space framework (Hyndman et al.,

2008a). Exponential smoothing is one of the most widely used forecasting

models in business, with multiple papers attesting to its good performance

and robustness (Holt, 2004). Furthermore, exponential smoothing is imple-

mented in most commercial forecasting systems, making it very relevant for

practice (Gardner, 2006).

Different model forms allow capturing varying trend (no trend, additive or

multiplicative, which may be damped or not) and seasonality (none, additive

or multiplicative). Additionally the error term may be additive or multiplica-

tive, giving in total 30 alternative models. We follow the notation introduced

by Hyndman et al. (2008a), as introduced in section 3.2. For example, the

well known single exponential smoothing is denoted as ETS(A,N,N), the

damped trend model as ETS(A,Ad,N) and so on.
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The smoothing parameters, as well as any initial values, are optimised by

maximum likelihood. For each model we can calculate various information

criteria, which can be used for model selection and combination. We restrict

the generation of our forecasts within a single model family so as to be

able to use both information criteria and simpler performance metrics in our

analysis.

Given how established the model is in both research and practice, for

brevity we will not provide any further details here, but instead refer the

reader to Hyndman et al. (2008a) or Ord et al. (2017). All forecasts are

produced using the smooth package for the R language (Svetunkov, 2018).

4.2.3. Selection and combination operators

We use three alternatives for selecting a forecast, or analogously calcu-

lating combination weights: (i) uninformative (EW ); (ii) AICc; and (iii)

cross-validated mean squared error (CV ).

The uninformative relates to the equal weight combination, where we do

not have information that any forecast is preferable to others. As a selection

operator this translates to choosing a forecast at random. Although there

is evidence that equal weights combination is effective, naturally there is no

expectation that this is successful as a forecast selection scheme. Given k

forecasts, each forecast is given 1/k combination weight, or probability to be

chosen as best.

Using AICc for model selection is well established and has been shown to
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be effective for the exponential smoothing family of models (Hyndman et al.,

2002), but also for creating combined forecasts using AICc derived weights

(Kolassa, 2011). Nonetheless, it is important to stress that AICc, as other

information criteria, have strict requirements as discussed in section 2.1. This

restricts its use to forecasting model families, or even narrower, and therefore

cannot be used to select or combine forecasts from disparate model families

or ad-hoc methods. As the calculation of AvgRelMAE requires a benchmark,

we use as such the performance of AICc selected forecast.

A more general approach that avoids such restrictions is based on cross-

validated mean squared errors. Although there are many alternatives for

calculating cross validation statistics (Barrow and Crone, 2016), not all of

them are generally applicable to time series modelling, as they break the

continuity of the series. Here we use a validation set, over which rolling

origin forecasts are produced and assessed. The assessment metric matches

the forecast horizon, as recommended by Fildes and Petropoulos (2015).

We use mean square errors, but this is not necessary and different metrics

can be used. Note that there is no need to use scale-independent metrics

that typically introduce various biases and calculation problems. To select a

forecast we pick the one that has the minimum cross-validated error.

For this analysis we combine forecasts linearly, as prescribed by equa-

tion (1). Six alternatives are considered: (i) top performing forecast, which

is equivalent to model selection; (ii) use all forecasts, which is the conven-

tional forecast combination; (iii)–(iv) form forecast pools using 25% and 50%
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quartiles of top performing forecasts respectively; and (v)–(vi) form forecast

pools using forecast islands based on AICc and cross-validated mean squared

errors. These are combined with the three selection operators above to give

in total 18 alternatives. Note that we do not report the results for random

model selection, corresponding to uninformative selection due to its poor

performance. Furthermore, in this case, any forecast pools also include ran-

domly selected forecasts and so are not reported.

Finally, we use one additional benchmark, the Best Subset Averaging

Procedure, which was introduced by Elliott et al. (2013) and discussed for

the univariate forecast case by Elliott (2011), hereafter named Subset. This

approach aims to merge the advantages of the empirically successful un-

weighted averaging and the theoretically elegant approach of optimal combi-

nation weights. First, given k forecasts, we construct all possible subsets of 2

up to k forecasts. Then, we calculate the unweighted average of the forecasts

in each subset and finally select the combined forecast that exhibits the low-

est error. For example, if k = 3, then we construct one subset containing all 3

forecasts and three subsets containing all possible pairs of the forecasts. We

construct from the subsets the four average forecasts and pick the best. This

process is easy to implement for any forecast, irrespective of its source and

for a small number of forecasts it is very fast. However, when the number of

forecasts increases, then the number of combinations can become unwieldy.

Elliott et al. (2013) consider this problem and find that randomly sampling

subsets is a fast solution that does not compromise the performance of the
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method. In our case, where k = 30, when the number of combinations ex-

ceeds 5× 104 we randomly sample that many subsets, otherwise we consider

them all. Obviously, this benchmark is an alternative pooling approach.

Ultimately, all forecasts are benchmarked against model selection and

model combination (according to three different criteria) and Subset fore-

casts, that is a well performing existing forecasting pooling method (for an

evaluation the reader is referred to Elliott, 2011).

4.3. Results

Table 1 provides the AvgRelMAE and AvgRelRMSE for the various

datasets, while Table 2 presents the overall results across all datasets. The

most accurate result in each column is highlighted in boldface (excluding

EW that contains only benchmarks). Results that are more accurate than

all benchmarks (forecast selection, Select, combination of all forecasts, All,

and Subset) in a column, are highlighted in italicised letters.

The two error metrics provide similar insights. Considering the equal

weights (EW) results, only benchmark results are provided as any pooling

method would pick forecasts at random. The Subset typically improves on

the unweighted combination of all forecasts, in agreement with the literature

(Elliott, 2011), with the only exception being the Manufacturer dataset. In

general the equal weights combinations do not perform very well and this is

to be expected, given the diversity of forecasts produced by the 30 forms of

ETS.
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Table 1: AvgRelMAE and AvgRelRMSE results for the four datasets

Pool
AvgRelMAE AvgRelRMSE

EW AICc CV EW AICc CV

M3 monthly (1020 series)
Select - 1.000 0.991 - 1.000 0.992
All 1.033 0.981 0.955 1.036 0.982 0.958
Subset 0.991 0.991 0.991 0.993 0.993 0.993
Quartile 25% - 0.981 0.966 - 0.983 0.969
Quartile 50% - 0.981 0.958 - 0.982 0.961
Islands (AICc) - 0.981 0.967 - 0.983 0.969
Islands (CV) - 0.982 0.967 - 0.983 0.968

Inventory (323 series)
Select - 1.000 1.016 - 1.000 1.017
All 1.077 0.992 1.020 1.078 0.993 1.022
Subset 1.033 1.033 1.033 1.036 1.036 1.036
Quartile 25% - 0.992 0.991 - 0.993 0.993
Quartile 50% - 0.992 0.988 - 0.993 0.990
Islands (AICc) - 0.992 0.995 - 0.993 0.996
Islands (CV) - 0.993 0.994 - 0.993 0.995

Manufacturer (229 series)
Select - 1.000 1.009 - 1.000 1.008
All 1.019 0.991 1.002 1.021 0.993 1.004
Subset 1.041 1.041 1.041 1.041 1.041 1.041
Quartile 25% - 0.992 1.002 - 0.993 1.004
Quartile 50% - 0.991 1.000 - 0.993 1.002
Islands (AICc) - 0.993 0.999 - 0.994 1.000
Islands (CV) - 0.992 0.998 - 0.994 1.000

Supermarket (854 series)
Select - 1.000 1.019 - 1.000 1.012
All 1.041 0.991 1.021 1.018 0.990 1.004
Subset 1.037 1.037 1.037 1.032 1.032 1.032
Quartile 25% - 0.989 0.994 - 0.988 0.985
Quartile 50% - 0.989 1.007 - 0.988 0.995
Islands (AICc) - 0.990 1.008 - 0.989 0.996
Islands (CV) - 0.989 1.005 - 0.988 0.996
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Table 2: Overall AvgRelMAE and AvgRelRMSE across all time series

Pool
AvgRelMAE AvgRelRMSE

EW AICc CV EW AICc CV

Select - 1.000 1.006 - 1.000 1.004
All 1.040 0.987 0.991 1.034 0.987 0.987
Subset 1.017 1.017 1.017 1.017 1.017 1.017

Quartile 25% - 0.987 0.983 - 0.987 0.981
Quartile 50% - 0.986 0.983 - 0.987 0.981
Islands (AICc) - 0.987 0.988 - 0.987 0.985
Islands (CV) - 0.987 0.987 - 0.987 0.985

Looking at the AICc column we can observe that any combination is

better than selecting a single forecast, but the differences between alternative

pools are negligible. Again, given the calculation of AIC weights this is not

unexpected, as they effectively reduce the contribution of models that do not

fit the series well to the series. Forecasts that are regarded as improbable to

match the data generating process are given almost zero weights, which is

similar to the effect of the various pooling approaches.

On the other hand, there are more promising gains when CV is used.

We can observe that the CV column typically outperforms all other selec-

tion/weighting metrics (exception is the Manufacturing dataset). We can also

observe that all pooling approaches outperform selecting a single forecast,

combining all of them, or using Subsets for most datasets. The combination

of all forecasts performs particularly well on the M3 monthly dataset, yet the

pools perform relatively close to it, and substantially better than choosing

a single model. The differences between the various pooling approaches are
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again relatively small.

Focusing on the comparison between the two alternative pooling ap-

proaches, quartiles and forecast islands, only small differences are observed,

in favour of the quartiles. However, the quartiles are based on an arbitrary

cut-off, while the forecast islands are not. In this case, we investigated the

performance of the two top quartiles, but one could very well attempt to

evaluate any number of quantiles. Note that the benchmarks model selec-

tion and combination are options of this continuum. Forecast islands avoid

this search, by identifying a reasonably performing cut-off point and not

requiring the modeller to identify one. We explore this further in section 5.

Comparing the two alternative forecast islands specifications, on AICc or

CV, we observe small differences in favour of the latter. This reflects the

better performance of CV overall. However, it is interesting to observe that

the forecast islands in Tables 1 and 2 mix various selection criteria. For

example, using both Islands (CV) and CV based weighting is reasonable,

however the use of Islands (CV) with AICc derived combination weights is

more questionable, as the various forecasts are ranked differently on different

criteria. Although we do not advocate mixing the criteria, it is important to

note that this case is quite common in practice. For example, consider se-

lecting the best ARIMA model from a pool of ARIMA candidate models. It

is not guaranteed that this pool will contain the ‘best’ ARIMA, and typically

the pool will be formed based on some arbitrary modelling decisions. Essen-

tially, the construction of the forecast pool and the selection or combination
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of forecasts is typically done on different criteria, and specifically we often do

not state explicitly the criterion used for the formation of the forecast pool.

We use the Friedman test to initially test whether there are significant

differences in the performance of the forecasts by AICc and by CV. In both

cases there is evidence of this (p-value is 0.000 in both cases) and proceed

to apply the post-hoc Nemenyi test. Figure 4 presents the results at 5%

significance level. For each forecast the mean rank is provided, according

to MAE, with the lowest indicating the most accurate one. When there is

not adequate evidence to suggest statistically significant differences between

forecasts (i.e., the differences of the mean ranks is lower than the critical

distance of 0.184), then these are connected by a vertical line. In agreement

with the results in Tables 1 and 2, there are only minimal differences between

the Island and Quartile pools. For the case of AICc, the weighted combina-

tion performs very well, together with the pooling methods. For the case of

CV, the pooling methods significantly outperform all three benchmarks.

Overall, we find very strong evidence in favour of forecast combinations,

particularly given a reliable performance metric, such as CV. Furthermore,

pooling via quartiles or forecast islands offers additional accuracy gains. The

latter avoids the arbitrary modelling decision of selecting the cut-off point,

or considering the dichotomy between model selection and combination (that

are the extreme quantile options) and therefore using forecast islands is rec-

ommended.
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All − 3.60

Quartile 50% − 3.78

Islands (CV) − 3.81

Quartile 25% − 3.84

Islands (AICc) − 3.87

Select − 4.31

Subset − 4.80

(a) AICc

Quartile 25% − 3.65

Islands (CV) − 3.75

Quartile 50% − 3.80

Islands (AICc) − 3.83

All − 4.04

Select − 4.26

Subset − 4.68

(b) CV

Figure 4: Visualisation of the Nemenyi test results at 5% significance level. There is
no evidence of statistically significant differences between forecasts connected by vertical
lines. The multiple lines provided for AICc indicated different groups, depending on the
starting forecast.

5. Discussion

Building on the results presented above, we discuss the ability of the

proposed heuristic to identify a well-performing cut-off point. In section 3.2

we argued their connection with the top-quantile pools, which require the

modeller to choose a cut-off point for the number of forecasts to consider.

The performance of islands already suggests their ability to identify useful

cut-off points, as seen in section 4.3. Here we explore this connection further.

To do this, we use as an example, a time series of monthly wine sales that is

available in the forecast package for the R language (Hyndman, 2016). We

retain the last 3 years as a test set and use the preceding equal sample as

validation set, when needed. We set the forecast horizon to a full year. We

follow the experimental setup described in section 4.2, with the following
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further changes: instead of using only two top-quartiles pools, we construct

30 top-quantiles pools that start from a single up to all thirty forecasts. We

also construct forecast island pools and measure the AvgRelMAE, using the

performance of AICc forecast selection as benchmark.

Figure 5 plots the AvgRelMAE for pools constructed using AICc and

cross-validated errors. We highlight the best performing top-quantile with

a vertical line and the forecast island identified cut-off point with a dashed

vertical line. We can observe that in both cases the island based cut-off is

close to the best possible top-quantile. Note that the best quantile pool is

identified on the test set, after the experiment is conducted and would not

be known in advance, while the island cut-off is identified using only past

data and therefore can be used to produce forecasts.
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Figure 5: AvgRelMAE performance for top-quantile and forecast island pools constructed
using AICc and cross-validated errors. The top performing quantile is marked with a
vertical line and the forecast island with a dashed line.

The forecast island pools are close to the best cut-off point that is possible
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using top-quantile derived pools and is done without requiring to manually

set how many forecasts to include in the pool.

6. Conclusions

Forecast selection and combination have been regarded as two competing

alternatives. In the context of forecast pooling these are merely two extreme

pools. The way that the individual forecasts are ranked, or weighted, results

in the well established alternatives in the literature and practice. Typically

we construct arbitrary pools, on which we select or combine forecasts. In

this paper we proposed a heuristic to formulate appropriate pools, without

having the modeller decide on an arbitrary cut-off point: which forecasts

should be included in the combination or not.

Our empirical evaluation over four diverse datasets shows that forecast

pooling has overall better forecast accuracy than either selection or com-

bination of all forecasts. This is achieved by eliminating particularly poor

forecasts from the combination pool, as well as capitalising on the well es-

tablished advantages of forecast combination. Moreover, we find that the

proposed forecast islands approximate the unknown best-quantile of top per-

forming forecasts that a modeller could have selected only ex-post, for a

variety of performance criteria, thus removing that modelling decision and

enabling forecast automation further. We argue that this is particularly rel-

evant for practical demand planning situations, as well as wider business

forecasting cases, where the number of time series to be forecasting is high,
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often with limited expertise and/or supporting tools from the available sys-

tems, making reliable automatic forecasting desirable.

We argue that model pooling is part of the forecast building process

and should be considered explicitly as such, rather than assuming that the

available forecasts are adequate or sensible, which typically are arbitrarily

generated and may or may not contain the ‘best’ forecast. It is important to

note that forecast pooling, as discussed in this paper, does not eliminate this

aspect fully, but rather allows the modeller to consider a larger number of

forecasts that will be streamlined through pooling, before the rest of standard

forecasting process takes place.

Forecast pooling and the proposed heuristic are shown to be effective in

our empirical evaluation, however, as implemented here, there are several ad-

hoc selections and lack a concrete statistical rationale. Forecast islands seem

to be able to identify reasonable sets of forecasts, facilitating automation.

Although we provide some insight as the to nature of included and excluded

forecasts for pooling to be beneficial, this is far from a complete statistical

grounding. We argue that this research helps motivate the use of pooling

in a supply chain forecasting context, and provides further evidence of good

forecast accuracy. Given this promising performance, future research should

investigate an appropriate statistical grounding.
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