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Abstract: A novel code based on non-linear Lagrangian 

formulation of beam wave interaction in traveling wave 

tubes is presented, modified for non-rotationally symmetric 

slow wave structures, such as the double corrugated 

waveguide. By including axial variations in the electric 

field along the period of the structure, as well as radial and 

angular variations and a model for the space charge forces 

in the double corrugated waveguide, a code capable of 

describing the behavior of the double corrugated 

waveguide is written.     
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Introduction 
In the sub-terahertz frequency regime, applications such as 

high data rate communications and radar, and imaging 

techniques, have been demonstrated [1]. These emerging 

technologies often require high power amplifiers for full 

exploitation. Traveling wave tubes (TWTs) are presently 

the only devices able to produce high output power over a 

wide frequency band. However, the traditional helically 

based slow wave structure is not feasible from a 

manufacturing point of view when the wavelengths begin 

to approach the millimeter wave range. Novel structures 

have been proposed for the purpose, but most of them, such 

as the double corrugated waveguide, do not have the 

cylindrical symmetry as the helix. In case of helix TWT, 

fast codes based on the Lagrangian method are available to 

avoid the long computational time of commercial 3D 

electromagnetic simulation codes. However, the 

Lagrangian method is based on a cylindrical symmetry of 

the structure. The purpose of the paper is to present a code 

based upon the Lagrangian formulation [2, 3] modified to 

model not-cylindrical symmetry. In the following, the 

approach to model the differing effects of space charge and 

field distribution in the double corrugated waveguide 

(DCW)-TWT are described. A comparison of the result 

with Ka-Band DCW TWT simulated by 3D Particle in Cell 

code will be shown [4]. 

 

Double Corrugated Waveguide model  
The modifications to the Lagrangian model, aim to provide 

more accuracy by the calculation of the field values 

representative of the axial component of the electric field 

distribution in the structure. By this method, space charge 

weighting functions and interaction impedance weighting 

functions are calculated based upon position in the periodic 

structure. 

 

Space Charge: The space charge fields supported by the 

double corrugated waveguide differ from those of the 

helix. Whilst the helix has invariant space charge forces 

with respect to angular position, this is not the case for the 

DCW, where the distance from the electron beam to the 

wall of the waveguide varies significantly. This determines 

a not symmetric distribution of the space charge forces. A 

method was derived for the derivation of the space charge 

forces for different parts of the electron beam, dependent 

on its angular position in the waveguide.  

The model of the DCW to compute the space charge forces 

in shown in Fig.1. Using the transcendental equations 

derived in [5] and the method for deriving the distance of 
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Figure 1. Diagram depicting the angles used in the 

construction of the r’, the effective radius of the DCW 

with respect to the beam center. 

 

Figure 2. Weighting factor superimposed on a drawing 

of the DCW for 34 GHz DCW TWT 
 

 

 



the electron beam to the nearest metal surface, with the new 

radii of the DCW, is given by equations (1) and (2). 

Electric Field Variance: While the helix waveguide is 

axially invariant with respect to the field along the 

structure, the electric field distribution of the DCW varies 

axially due to the shape of the structure being axially 

varying. As the interaction impedance is dependent on the 

magnitude of the axial component of the electric field, this 

value, too, varies along the structure. As such, it is useful 

to have a dynamic weighting function to account for this 

varying strength of interaction. An equation was derived to 

accurately locate each particle’s position in the field 

axially, such that the appropriate weighting function can be 

assigned. This is done for each particle on each iteration. 

This is an important step, as previously, the weighting of 

the field along the axis was averaged, at the cost of 

accuracy as the nonlinearity of the interaction was lost. The 

particle position is given as 
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where 𝜙0,𝑛 is the initial phase of a charge group with 

respect to the rf wave, and 𝑟0,𝑛 and 𝜃0,𝑛 are the initial radial 

and angular position of the charge groups. 𝛽 is the 

propagation constant of the rf wave, N is the iteration 

number and dz is the step length of each iteration. This 

equation permits to take into account the dynamic beam-

wave coupling along the structure.  

Fig. 2 shows how the weighting function changes over one 

period of the DCW. Although the average interaction 

impedance across the entire period is ~1 Ohm, the 

interaction impedance differs by an order of magnitude 

along the structure, which drastically affects the simulated 

interaction. 

The weighting functions are extracted from simulations by 

CST eigenmode solver [6]. The weighting functions are 

normalized with respect to the average interaction 

impedance, which is the interaction impedance used as 

input for the code. 

When allocating the phase velocity values, great care must 

be taken in the calculation as a small change in phase 

velocity for a given frequency can drastically alter the 

calculated output, especially at the fringe of the band.  

 

Results 
The proposed model has been compared with CST-PS [6]. 

The results for a Ka-Band DCW-TWT [4] are considered, 

where the model describes well the beam wave interaction 

for most of the frequency band. The comparison of the 

output power (Fig. 3a) and gain (Fig. 3b) between the 

Lagrangian model and the CST-PS simulations shows a 

good agreement. The lower side of the band is not yet well 

modelled. It could be due to the edge of the synchronous 

region where the difference in beam velocity and wave 

phase velocity become too different. A further 

investigation is in progress. 

 

Conclusions 
A method has been described for the conversion of a code 

for the beam wave interaction in a helical TWT to one 

suitable for application in non-rotationally symmetric 

structures, and applied to a DCW TWT. Good accuracy is 

found most of the frequency band, with the model breaking 

down near the lower edge of the band.  
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Figure 3. Comparison Lagrangian model with PIC 

simulations for the Ka-Band DCW-TWT [5] 


