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Key points: (140 characters for each) 20 

1. Response of Jupiter’s aurora to mass loading from Io was investigated with a newly-21 

developed model and data from the Hisaki satellite. 22 

2. The estimated mass loading rate indicated increase and decay during volcanic eruptions at 23 

Io. 24 

3. During volcanic eruptions at Io, impulsive variation of aurora responded to the mass loading 25 

rate rather than the solar wind.  26 

 27 

Abstract: (250 words) 28 

[1] The production and transport of plasma mass are essential processes in the dynamics of 29 

planetary magnetospheres. At Jupiter, it is hypothesized that Io’s volcanic plasma carried out of 30 

the plasma torus is transported radially outward in the rotating magnetosphere and is recurrently 31 

ejected as plasmoid via tail reconnection. The plasmoid ejection is likely associated with particle 32 

energization, radial plasma flow, and transient auroral emissions. However, it has not been 33 

demonstrated that plasmoid ejection is sensitive to mass loading because of the lack of 34 

simultaneous observations of both processes. We report the response of plasmoid ejection to 35 

mass loading during large volcanic eruptions at Io in 2015. Response of the transient aurora to 36 

the mass loading rate was investigated based on a combination of Hisaki satellite monitoring and 37 

a newly-developed analytic model. We found the transient aurora frequently recurred at a 2–6-38 

day period in response to a mass loading increase from 0.3 to 0.5 ton/s. In general the recurrence 39 

of the transient aurora was not significantly correlated with the solar wind although there was an 40 

exceptional event with a maximum emission power of ~10 TW after the solar wind shock arrival. 41 

The recurrence of plasmoid ejection requires the precondition that amount comparable to the 42 



 

total mass of magnetosphere, ~1.5 Mton, is accumulated in the magnetosphere. A plasmoid mass 43 

of more than 0.1 Mton is necessary in case that the plasmoid ejection is the only process for mass 44 

release. 45 

 46 

Main Text:  47 

1. Introduction 48 

[2] Jupiter’s rotating magnetosphere is filled with magnetized plasmas provided by the 49 

moons, rings, external solar wind, and Jupiter’s atmosphere. The dominant plasma source is the 50 

moon Io. Io’s volcanoes supply neutral gases, which mainly consist of mainly sulfur dioxide 51 

(SO2) and constitutive atoms. Oxygen and sulfur atoms are created via dissociation of the neutral 52 

gases by impacts with magnetospheric ions and electrons and by photolysis. These neutral atoms 53 

escape from Io’s atmosphere to the magnetosphere.  Neutral gas is ionized via collisional 54 

processes with the magnetospheric electrons and is picked up by Jupiter’s intrinsic magnetic 55 

field. The Iogenic plasma corotates with the planet, forming the Io plasma torus in the inner 56 

magnetosphere. The net rate of plasma mass transported out of the torus is estimated to be 0.26–57 

1.4 ton/s (1 ton = 1000 kg) (Delamere and Bagenal, 2003; Delamere et al. 2004; Steffl et al., 58 

2006). In the present study, we refer to this net rate as the ‘plasma mass loading rate’ or simply 59 

‘mass loading rate’. The loaded plasma circulates throughout the magnetosphere. Thermal 60 

energy, kinetic energy, and angular momentum, which are essential for magnetospheric 61 

dynamics, as well as the mass, are carried by the circulating plasma. See the reviews in Bagenal 62 

et al. (2004), Bagenal and Delamere (2011), Delamere et al. (2015a), Achilleos et al (2014), 63 

Kivelson (2014) and references therein for properties of the plasma circulation.  64 

[3] Previous theoretical studies predicted that the plasma mass would be transported out of 65 

the Io plasma torus via the interchange instability, driven by the centrifugal force attributed to 66 



 

the corotational motion (e.g., Ioannidis and Brice, 1971; Siscoe and Summers, 1981; Southwood 67 

and Kivelson, 1987, 1989). As a result of this instability, inward moving flux tubes carry the hot 68 

and tenuous plasmas originating outside the torus into the central torus, while outward moving 69 

flux tubes carry the cold and dense plasmas of the central torus outside. The net transport of 70 

magnetic flux is required to be zero by theoretical consideration of previous studies (Delamere et 71 

al., 2015b). The net transport of the plasma mass is directed outward and is referred to as the 72 

mass loading. ‘Finger’-shaped cross sections on the equatorial plane are formed by the inward 73 

and outward moving flux tubes in numerical magnetohydrodynamics (MHD) simulations (e.g., 74 

Yang et al., 1994; Wu et al., 2007; Hiraki et al., 2012; Ma et al., 2016), although these shapes are 75 

subject to the initial perturbations.  76 

[4] In situ measurements of the magnetic field, plasma waves, and energetic particles 77 

actually indicated signatures suggestive of the inward moving flux tubes filled with hot tenuous 78 

plasma (Kivelson et al., 1997; Thorne et al., 1997; Russell et al., 2000, 2005). The inward hot 79 

plasma transport was also confirmed from radial distribution of hot electron fraction in the torus 80 

plasma, which was diagnosed based on extreme ultraviolet (EUV) spectroscopy from the Hisaki 81 

satellite (Yoshioka et al., 2014, 2017).  82 

[5] Radially-outward transported plasma is finally released from the magnetosphere in some 83 

form. The plasmoid ejection via the Vasyliūnas type reconnection in the tail region (Vasyliūnas, 84 

1983) is thought to be the most significant mass release process, despite the still outstanding 85 

uncertainty in plasmoid size, density, and total mass (e.g., McComas et al., 2007, 2014; Vogt et 86 

al., 2014, Cowley et al., 2015). Previous studies have reported bursty inward/outward plasma 87 

flows in the tail region from midnight to dawn associated with the Vasyliūnas reconnection 88 

having a recurrence frequency of 1.5–7 days (e.g., Woch et al., 1998, 2002; Krupp et al., 1998; 89 

Kronberg et al., 2005, 2007, 2008, 2009; Kasahara et al., 2013). The previous studies expected 90 



 

that plasma mass release is likely to recur at such a frequency if the bursty inward/outward 91 

plasma flows correspond to the plasmoid ejections. It should be noted that the small-scale 92 

‘drizzle’ of plasma on the closed field lines from noon to the dusk side is also one of the mass 93 

release candidates (Bagenal, 2007; Delamere et al., 2015b). In the present study, we refer to the 94 

plasmoid ejection in the tail region from midnight to the dawn sector as the ‘large-scale’ 95 

Vasyliūnas reconnection to distinguish the small-scale drizzle from noon to the dusk side.  96 

[6] It has long been suggested that the association of the large-scale Vasyliūnas reconnection 97 

with ‘energetic events’ is a global disturbance, spreading from the inner to outer magnetosphere. 98 

(Louarn et al., 1998, 2000, 2007, 2014). During energetic events, transient energetic particle 99 

injections and magnetic field perturbations with a duration of a few hours take place in the inner 100 

magnetosphere, simultaneously with excitations of the hectometric radio emission (HOM) 101 

emitted from the auroral region and narrow-band kilometric emission (nKOM) emitted from the 102 

outer torus. These phenomena recur at a frequency of one event every few days. When the 103 

International Ultraviolet Explorer (IUE) observed variability in the UV aurora like energetic 104 

events, thinning of the current sheet, and magnetic field fluctuation around the current sheet 105 

crossing were detected in the in situ measurements of Galileo (Prangé et al., 2001). The 106 

energetic events highly suggest that the large-scale Vasyliūnas tail reconnection onsets the 107 

planetward transport of energy and/or plasma, which are dissipated at the middle magnetosphere, 108 

inner magnetosphere, and auroral region. 109 

[7] Recently, continuous monitoring of EUV aurora with Hisaki has indicated that auroral 110 

brightening with durations of less than 10 hours recur at a frequency of every few days (Kimura 111 

et al., 2015, 2017). In this study, a ‘transient aurora’ refers to an impulsive brightening with 112 

typical duration less than 10 hours. Transient auroral events occurred during periods when the 113 

solar wind was relatively quiet. Kimura et al. (2015, 2017) argued that the transient auroral is 114 



 

‘internally-driven’ by internal plasma supply from Io and Jupiter’s rotation. Auroral imaging by 115 

the Hubble Space Telescope (HST) during the transient aurora showed enhancement of poleward 116 

auroral structures, which is related to the solar wind interaction, and dawn-storm-like structure 117 

(Clarke et al., 2004, 2009; Nichols et al., 2009), which were followed by outer emissions within 118 

a few hours (Badman et al., 2016; Gray et al., 2016; Kimura et al., 2017; Nichols et al., 2017). 119 

See, e.g., Grodent (2015) and Clarke et al. (2014) for details of the poleward aurora, dawn-120 

storm, and outer emission. Although there are still controversial discussions on magnetospheric 121 

disturbances corresponding to each structure of aurora (e.g., Clarke et al., 2004, 2009; Nichols et 122 

al., 2009, 2017), the poleward aurora and dawn storm might be suggestive of magnetopause and 123 

tail reconnections, respectively. The outer emissions are highly suggestive of the energetic 124 

particle injections (Mauk et al., 2002; Radioti et al., 2009; Dumont et al., 2014). Kimura et al. 125 

(2015, 2017) interpreted the transient aurora as a part of the energetic event. The Vasyliūnas 126 

reconnection is the most plausible candidate for the initiation of the transient aurora, as 127 

suggested by the energetic event. Gray et al. (2016) actually indicated that during the transient 128 

aurora, an auroral spot merged into the dawn storm from high latitudes, which is suggestive of 129 

the reconnection return flow in the outer magnetosphere. 130 

[8] In spite of the circumstantial evidence, it has not been observationally demonstrated that 131 

mass release via the Vasyliūnas reconnection should be a consequence of the mass loading.  132 

[9] On January 20 2015, de Kleer and de Pater (2016) and Yoneda et al. (2015) found that 133 

on January 20, 2015, volcanic eruptions started at Io. This finding is based on the mid-infrared 134 

observation of Io’s surface and visible observation of the sodium nebula extending around Io’s 135 

orbit. Hisaki monitored EUV spectrum of torus during the volcanic eruptions and found that the 136 

number densities of major ions and electrons in the torus increased up to ~2 times greater than 137 

pre-eruption values ~50 days after the start of volcanic eruptions (Yoshikawa et al., 2017). 138 



 

Yoshikawa et al. (2017) also showed that ~20 days after the start of volcanic eruptions the 139 

transient aurora started to recur with a few-day period. This is likely an indication of a mass 140 

release process responding to a high mass loading rate associated with volcanic eruptions.  141 

[10] This study proposes a new simple analytical model that can quantitatively estimate the 142 

mass loading rate based on continuous monitoring of the EUV luminosity of the torus. Response 143 

of the recurrent transient aurora to the estimated mass loading rate is investigated with Hisaki. 144 

The recurrent transient aurora is hypothesized to be an indicator of the Vasyliūnas reconnection 145 

and also that of the energetic event because these three phenomena are likely ‘internally-driven’ 146 

with a few-day period by the mass loading from Io and Jupiter’s rotation (e.g., Vasyliūnas, 1983; 147 

Louarn et al., 2014; Kimura et al., 2015). Based on the auroral response to the estimated mass 148 

loading rate, the budget of mass stored in the magnetosphere is discussed.  149 

2. Analytical model for plasma mass loading estimation 150 

[11] In the present study, we develop a simple analytical model for estimating the net rate of 151 

plasma mass loading based on the torus EUV emission. The torus EUV emission consists of 152 

sulfur and oxygen ion emissions sensitive to electron temperature in the torus. One can estimate 153 

plasma parameters of torus based on the EUV spectral diagnostics, e.g., ion density, cold core 154 

electron temperature, and fraction of minor hot electrons. Our new analytical model does not 155 

require high spectral resolution UV spectroscopy, as has been required for the spectral 156 

diagnostics and physical chemistry models of previous studies (e.g., Yoshioka et al., 2014, 2017). 157 

This is because our model associates the total emission power from the torus, not EUV spectral 158 

shape, to the mass loading rate (see below). The entire region of the torus EUV emission is 159 

spatially integrated to obtain the total emission power. This is possible because the dominant 160 

emission region of the torus has a width of ~+/-8 Rj (~320 arcsec at opposition; Rj = Jovian 161 

radius) in the east-west direction from Jupiter and a height of ~2 Rj (~40 arcsec) in the north-162 



 

south direction from the centrifugal equator, which are entirely enclosed in the ‘dumbbell-163 

shaped’ slit of Hisaki EUV spectrometer with an aperture of 140 × 360 arcsec.  164 

[12] The interchange instability is assumed to take place in the central torus, i.e., ~6 Rj, where 165 

magnetic flux tubes filled with hot tenuous plasma move radially inward while those filled with 166 

cold dense plasma move radially outward. The system is assumed to be axisymmetric: the 167 

rotation axis is aligned with the magnetic axis, and plasma has longitudinally symmetric 168 

structure. Figure 1 shows a schematic of the setting. Equatorial cross sections of the 169 

inward/outward moving flux tubes have finger- or bubble-like shapes, which are expected from 170 

the in situ magnetic field measurements (Kivelson et al., 1997; Thorne et al., 1997). The finger-171 

shape was often set for initial conditions in the MHD simulations (Yang et al., 1994; Wu et al., 172 

2007; Hiraki et al., 2012; Ma et al., 2016). The finger-like shape is displayed in Figure 1.  173 

[13] At a radial distance r  around the central torus at ~6Rj, a cold dense flux tube with 174 

azimuthal width dl
out

 moves outward at radial velocity v
out

. The cold flux tube is filled with 175 

plasma with electron density n
c
, electron temperature T

c
 in energy units, and magnetic flux 176 

density B . A hot tenuous flux tube moves inward at radial velocity v
in

 with width dl
in

, filled 177 

with plasma with electron density n
h

, electron temperature T
h
 in energy units, and flux density178 

B+dB , where dB  is difference in the magnetic flux density between the inward and outward 179 

moving flux tubes. All quantities are assumed to be constant in longitude and latitude. The ion 180 

and electron densities have the same value at the equatorial plane and exponentially decrease 181 

along the background magnetic field lines with a scale height H . The temperature, velocity, and 182 

width are spatially uniform along the background field lines within ±H  from the centrifugal 183 

equator.  184 



 

[14] We require the net magnetic flux within a radial distance r  to be conserved. This leads to 185 

a balance between the magnetic fluxes carried by the inward and outward flows per unit time:  186 

 . 
(1) 

Here, the fluxes carried by inward and outward flows are integrated over all longitudes. The 187 

integration  corresponds to the total azimuthal length (or area) of the inward/outward 188 

moving flux tube at r . This equation is solved for v
out

  189 

 

 

 (2), 

which we expand to a first-order Taylor series with  and dB / B <<1. The ratio 190 

 is justified by the in situ magnetic field measurements by Galileo (Kivelson et 191 

al., 1997; Russell et al., 2000, 2005), which indicated that the observing time of the inward 192 

moving flux tube was less than 1% in total, suggesting a small azimuthal area for the inward 193 

moving flux tube. In the present study, we refer to the ratio of the inward flux tube area to the 194 

outward flux tube area  as the ‘inward/outward (I/O) area ratio’. The flux 195 

density difference dB / B <<1
 
is also justified by the previous studies mentioned above, which 196 

showed that the magnetic flux density of the inward moving flux tube is a few percent larger 197 

than that of the ambient plasma.  198 

[15] To associate the outward/inward moving flux tubes with the torus EUV emissions, we 199 

consider the total energy of hot electrons carried by the inward moving flux tube. The hot 200 

electrons are input into the torus through the interchange instability and interact with the ambient 201 

electrons and ions via collisional processes, e.g., ionization, radiative excitation, and Coulomb 202 

interaction. Consequently, EUV photons are emitted from collisionally excited ions. Although 203 



 

the number density fraction of the hot electrons is less than 15% of the ambient torus electron 204 

density (e.g., Yoshioka et al., 2014), the input energy of hot electrons contributes to 26–66% of 205 

the total EUV emission power (Bagenal and Delamere, 2011). The total input energy of hot 206 

electrons is expressed by the inward moving flux tube parameters as  207 

 
. (3) 

This gives the total azimuthal length of the inward moving flux tube 208 

 
. (4) 

The outward velocity can be associated with the hot electron energy by substituting equation (4) 209 

into  (2): 210 

 

v
out

=
W

in

2p 3/2rHn
h
T

h

. 
(5) 

[16] The plasma mass carried by the outward moving flux tube is evaluated as 211 

 where the mass density r
out

 is assumed to be dominated by ions with mean 212 

mass mi  in a single charge state, resulting in r
out

=m
i
n

c
. One should note that the inward 213 

moving flux tube re-circulates the mass inward at a rate of  with r
in

=m
i
n

h
, 214 

reducing the net rate of plasma mass loading. The net rate of mass loading  is rewritten as  215 

 
. (6) 

For the sake of an estimate, we assume that H  is the same for the inflow and outflow, 216 

recognizing that H  is temperature dependent (see e.g., equation 4 in Delamere et al., 2005). For 217 

the temperature-dependent scale height, hot plasma filled in the inward moving flux tube is 218 



 

spread along the field line more broadly than cold plasma in the outward moving flux tube. This 219 

would reduce the net rate of  in equation (6). Combining equations (1) and (5) with equation 220 

(6),  is reduced to a simple form 221 

 

. 
(7) 

[17] The inward moving flux tube density n
h

 was investigated based on the in situ magnetic 222 

field measurements by Galileo. Under the assumption of isothermal plasma, Kivelson et al. 223 

(1997) and Thorne et al. (1997) estimated the ‘density differential’ dn / n
c
= 0.4-0.47, which is 224 

the density difference between the inward moving flux tube and the ambient plasma, normalized 225 

by the ambient plasma density. With the density differential, we obtain the inward moving flux 226 

tube density as n
h

= n
c

1-dn / n
c( ) , which leads to the final form 227 

 

. 
(8) 

[18] With n
h

= n
c

1-dn / n
c( ) , other essential parameters v

out
 and  are 228 

rewritten as 229 

 

v
out

=
W

in

2p 3/2rHn
c
T

h
1-dn / n

c( )
 

(9) 

and 230 

 

A=
W

in

2p 3/2rHn
c
T

h
1-dn / n

c( )vin

. 
(10) 

[19] We can estimate from the mean ion mass, hot electron temperature, density 231 

differential, and total input power of hot electrons. The parameters m
i
 and T

h
 have been 232 



 

constrained by the previous EUV spectral diagnostics (m
i
~ 25[amu] and T

h
~100-400[eV]), 233 

and W
in

 can be estimated by Hisaki EUV spectroscopy (see details in Section 3.2). The most 234 

uncertain parameter is dn / n
c
 because there have been only a few estimates from the in situ 235 

measurements. In the next section, we constrain dn / n
c
 based on previous studies.  236 

3. Parameter constraints 237 

3.1. Density differential and source location of inward moving flux tube 238 

[20] From equation (8), W
in

 is expressed as 239 

 

. 

(11) 

Based on this relation, we investigate response of W
in

 with respect to the input parameters 240 

and T
h
 to constrain dn / n

c
. Bagenal and Delamere (2011) constrained W

in  
to 0.2–0.9 TW based 241 

on their UV spectral diagnostics with Cassini and Voyager and the physical chemistry model 242 

made by Delamere and Bagenal (2003), Delamere et al. (2004), and Steffl et al. (2006).  has 243 

been estimated to be 0.26–1.4 ton/s (1 ton = 1000 kg) based on the physical chemistry model and 244 

observations (e.g., Smyth and Marconi, 2003; Saur et al., 2003; Bagenal, 1997; Delamere and 245 

Bagenal, 2003; Delamere et al., 2004, 2005). We use a typical temperature of 100–400 eV for 246 

T
h
, referring to the in situ measurements with Voyager and Galileo (Sittler and Strobel, 1987; 247 

Frank and Paterson, 1999) and the remote monitoring and spectral diagnostics from the Hisaki 248 

satellite (Yoshioka et al., 2014, 2017; Yoshikawa et al., 2016, 2017).  249 

[21] Figure 2a shows the distribution of W
in

 as a function of and T
h

 for a density 250 

differential dn / n
c
= 0.7 . It is evident that some sets of parameters ( , T

h
,W

in
) satisfy 251 



 

constraints from previous studies, e.g., W
in

= 0.9 TW  at ( , T
h

) = (1.4 ton/s, 400 eV). For 252 

dn / n
c
> 0.7 , the set of parameters is inconsistent with the previous constraints, e.g., 253 

W
in

= 0.9 TW  cannot be derived from the parameter space if  and 254 

T
h

=100-400 eV . Therefore, we constrain dn / n
c  

to ~0.7 as the maximum value. In the same 255 

manner, the minimum value of dn / n
c
 is constrained to be ~0.35 as shown in Figure 2b. The 256 

observed density differential dn / n
c
= 0.4-0.47  (Kivelson et al., 1997; Thorne et al., 1997) is 257 

between these maximum and minimum values, validating of the assumption and formulation of 258 

our analytical model.  259 

[22] We briefly consider the source location of the inward moving flux tube based on the 260 

constraint dn / n
c

~ 0.35-0.7. Figure 3 shows radial profiles of the equatorial plasma density n  261 

and quantity nL4  associated with the total flux tube content (see e.g., Siscoe, 1978 for details of 262 

the flux tube content). Here, the background magnetic field is assumed to be a dipole field. The 263 

density profile is the empirical model constructed from the in situ measurements from Galileo 264 

and Voyager (Bagenal and Delamere, 2011). The two dotted lines in Figure 3a show hot density 265 

profiles with density differentials dn / n
c
= 0.35 and 0.7, respectively. The quantity nL4  for hot 266 

flux tubes with dn / n
c
=0.35 and 0.7 is also shown in Figure 3b, represented as dotted lines.  267 

[23] Given that the flux tube content is conserved in the interchange instability, flux tubes 268 

with dn / n
c

= 0.35 and 0.7 at 6 Rj have the same content as plasmas at 6.7 and 8.0 Rj, 269 

respectively (two intersections of the horizontal broken lines with the solid line in Figure 3b). 270 

This indicates that the inward moving flux tube at 6 Rj originates from 6.7–8.0 Rj, suggesting 271 

that in the torus flux tubes are interchanged with those in the adjacent outer region.  272 



 

[24] The in situ phase space density (PSD) measurements of energetic ions by Thorne et al. 273 

(1997) suggested that a flux tube with spiky PSD found at 6.03 Rj originates from 6.3 Rj if the 274 

energetic ions in the flux tube move adiabatically inward. Bagenal and Delamere (2011) showed 275 

that the outward transport speed at L<10 is less than 1 km/s, while that at L>10 reaches a few 276 

100 km/s. This implies that transport is diffusive in the central torus and gets advective outside 277 

the torus. The diffusive transport is consistent with our concept of adjacently interchanged flux 278 

tubes. 279 

3.2. Adopted parameters 280 

[25] To estimate the plasma mass loading rate, equation (8) is rewritten in practical form 281 

 

, 
(12) 

where WHisaki
 is the total EUV emission power of torus measured with Hisaki, the ratio 282 

W
in

/W
total

é
ë

ù
û is the fraction of the total hot electron input energy to torus emission power for all 283 

wavelengths from UV to infrared Wtotal
, and the ratio W

total
/W

Hisaki
é
ë

ù
û is the conversion factor from 284 

the power measured with Hisaki to Wtotal
.  285 

[26] The present study uses a ratio W
in

/W
total

é
ë

ù
û= 0.26, which is the canonical value adopted by 286 

Bagenal and Delamere (2011) from the range 0.26–0.66, which was estimated from the energy 287 

balance in the physical chemistry model fitted to the Voyager and Cassini observations 288 

(Delamere and Bagenal, 2003; Delamere et al., 2004; Steffl et al., 2006). Actually the ratio 289 

W
in

/W
total

é
ë

ù
û is temporally variable in response to volcanic activity at Io. However, in the present 290 

study we keep the ratio temporally constant for a primary order estimation of mass loading. One 291 

should note that the constant W
in

/W
total

é
ë

ù
û leads to uncertainty in the estimated mass loading. The 292 



 

factor Wtotal /WHisaki[ ]  is estimated to be 2.1 by taking the ratio of the emission power at 570–1460 293 

Å to that at 0–10
4
 Å, modeled by the CHIANTI database with the canonical density and 294 

temperature of the torus (see e.g., Steffl et al., 2004a, b, 2006, 2008; Yoshioka et al., 2011, 2014 295 

for details of the spectral modeling). Based on the previous section, dn / n
c
 is set to 0.44, which 296 

is the mean of the estimations by Kivelson et al. (1997) and Thorne et al. (1997). The average 297 

ion mass m
i
is approximately 25 amu with reference to the recent chemical model by Yoshioka et 298 

al. (2017). The hot electron temperature T
h

= 300eV  is adopted from the range 100–400 eV, 299 

estimated from the recent Hisaki observations as referred to above (Yoshikawa et al., 2016, 300 

2017). These adopted parameters are summarized in Table 1.  301 

[27] One should note that some of the input parameters have uncertainties that likely reach 302 

several tens of percent with respect to their standard values. The derived mass loading rate also 303 

has a similar uncertainty because of the linear propagation of the input parameter uncertainty. 304 

4. Dataset 305 

[28] The Extreme Ultraviolet Spectroscope for Exospheric Dynamics (EXCEED) (Yoshioka et 306 

al., 2013) onboard Hisaki measures EUV photons from 470 to 1530 Å, which are reduced to 307 

spatio-spectral images with 1024 × 1024 pixels. Spatial resolution is 17 arcsec, corresponding to 308 

~1 Rj around Jupiter’s opposition. The ‘dumbbell-shaped’ slit with a width of 360 arcsec in the 309 

east-west direction and a thickness of 140 arcsec in the north-south direction was positioned on 310 

the northern aurora. The observation period spans from day of year (DOY) 34 to 134 in 2015 311 

(November 27, 2014 to May 14, 2015), during which Yoshikawa et al. (2017) discovered 312 

enhancements in the torus ion emission that are suggestive of some volcanic eruptions at Io 313 

starting around DOY 20. An enhancement in Jupiter’s sodium nebula, which is associated with 314 

Io’s volcanic eruptions, also started to increase on DOY 20 (de Kleer and de Peter, 2016; 315 



 

Yoneda et al., 2015). Time variations in the emission power of the aurora at 900–1480 Å were 316 

extracted from the imaging spectra, as described in Kimura et al. (2015, 2016, 2017), excluding 317 

geocoronal emissions as well as those monitored with Hisaki described in Kuwabara et al. 318 

(2017). The torus emission power was extracted from the 570–1460 Å range in the same manner 319 

as the aurora and converted to that at 0–10
4
 Å. Time resolutions of the aurora and torus power 320 

were 10 minutes.  321 

[29] The solar wind was not monitored near Jupiter during the present observation period. We 322 

estimate the solar wind variation at Jupiter using a 1D magnetohydrodynamic (MHD) model that 323 

propagates the solar wind measured at the vicinity of Earth (Tao et al., 2005). Uncertainty in the 324 

arrival time of the solar wind shock structures, the Corotating Interaction Region (CIR) and 325 

Coronal Mass Ejections (CME), at Jupiter is dependent on the Earth-Sun-Jupiter angle, which 326 

was 82°–180° for the present analysis period. The arrival time uncertainty is estimated to be 327 

approximately a few days or more, as discussed in Kimura et al. (2015, 2016), Kita et al. (2016), 328 

and Tao et al. (2016a,b).  329 

5. Data analysis 330 

5.1. Identification of transient aurora 331 

[30] Figure 4 shows the emission powers of the aurora (panel (a)) and torus (panel (c)) in the 332 

present analysis period. The transient aurora is identified by ‘demodulating’ and ‘detrending’ the 333 

observed emission power. A sinusoidal function with an offset Asin W
j
t( )+B , where t  is time, 334 

W
j
 is Jupiter’s rotation frequency ( 2p radians per one planetary rotation, i.e., ~0.63 radians/h), 335 

and A and B are free parameters, is fitted to the observed emission power (Figure 4a) to model 336 

the periodic modulation caused by the corotation of the auroral structure. Subtracting the 337 

sinusoidal function Asin W
j
t( )  from the observed power demodulates the rotational modulation. 338 



 

The demodulated data (black dots in Figure 4b) has a day-to-day variability associated with the 339 

solar wind (see Kita et al., 2016 for the solar wind associated variability) and a variability with 340 

typical duration of less than 10 hour corresponding to the transient aurora. Long-term variability 341 

is extracted from the demodulated data by calculating the running median with a temporal 342 

window of 4 days. Subtracting the smoothed data (the red solid line in Figure 4b) from the 343 

demodulated data finally derives the detrended data (Figure 5a). The day-to-day (timescales on 344 

>~4 days) variability associated with the solar wind is suppressed by this processing. From the 345 

detrended data, we identify the transient auroras that are maintained for more than 30 minutes 346 

with amplitudes of more than two standard deviations 2σ (the horizontal black solid line in 347 

Figure 5a) of the dataset. The gray-shaded periods in Figure 5a are the identified transient 348 

auroras. We identified 23 transient auroras in the present analysis period from DOY 34 to 134.  349 

[31] We used the model developed by Tao et al. (2016a, b) to convert the emission power in 350 

the 900-1480 Å range to the corresponding unabsorbed total emission power from the northern 351 

hemisphere in the 700–1800 Å UV range. This removes the effects of Jupiter’s atmospheric 352 

absorption and rotational modulation from the data (see Tao et al., 2016a, b for details). Based 353 

on the unabsorbed power, we found that the identified 23 transient auroral events emitted energy 354 

of ~10
15

 to 10
17

 J/event, which corresponds to total electron energy of ~10
16

 to 10
18

 J/event 355 

precipitating into the auroral region. The precipitating electron energies are equivalent to ~0.1–356 

10% of the total kinetic energy stored in the corotating magnetospheric plasma, which is thus on 357 

the order of ~10
19

 J (Bagenal and Delamere, 2011).  358 

5.2. Response of transient aurora to mass loading rate 359 

[32] As shown in Figure 5a, the transient auroral power spans 250 (equivalently 2σ) to 2000 360 

GW, which is 10 times larger than the emission power at periods when no transient aurora is 361 

observed. The transient aurora recurs during the period from DOY 34 to 17 followed by a 362 



 

long quiescent period continuing for ~60 day. The recurrence restarted on DOY 41 and then 363 

continued to DOY 134. The temporal interval between each transient aurora in Figure 5b shows 364 

that 2–10 day is the most frequent (21 events) interval. This interval is equivalent to the 365 

recurrence frequency of the large-scale Vasyliūnas reconnection and energetic event as discussed 366 

in Section 1.  367 

[33] The plasma mass loading rate is estimated from equation (12) with the input parameters 368 

listed in Table 1. The estimated mass loading rate in Figure 5c shows variability that spans 0.3–369 

0.5 ton/s: a moderate decrease from ~0.35 ton/s to ~0.3 ton/s on DOY 34 to 20, an increase 370 

from ~0.3 ton/s to a peak at ~0.5 ton/s on DOY 20–70, a decrease down to ~0.35 ton/s on 371 

DOY 70–125, and finally a small increase up to 0.4 ton/s on DOY 125–140. The mass loading 372 

enhancement on DOY 20–125 corresponds to several eruptions of volcanoes at Io, as reported by 373 

de Kleer and de Pater (2016). Yoshikawa et al. (2017) indicated an enhancement in the EUV line 374 

emissions of sulfur and oxygen ions in multiple charge states. Based on the difference in the 375 

temporal evolution between each ion species and charge state, they concluded that neutral gases 376 

erupted from Io’s volcanoes on DOY 20-125, as actually detected by Hisaki during this time 377 

(Koga et al., 2017), underwent charge exchange and electron impact, and were finally picked up 378 

as the ions in the torus. The mass loading rate in the present study shows that picked-up ions 379 

provide plasma mass to the magnetosphere during the volcanic event at a relatively higher rate 380 

(0.5 ton/s) than usual (0.3 ton/s). 381 

[34] It is remarkable that the recurrent frequency of the transient aurora is insensitive to the 382 

solar wind dynamic pressure (Figure 4d). The 60-day aurora quiescent period spans from 383 

DOY 17 to 41 although there are significant spikes in the dynamic pressure. However, there is a 384 

significant dependence of aurora on the mass loading. The transient aurora started the frequent 385 

recurrence (2–10-day period) on DOY 41 after the mass loading started to increase. The 386 



 

recurrence stopped for ~20 days in the end of mass loading decrease around DOY 120. The 387 

disappearance of the recurrent aurora on DOY 17 could also be associated with the decrease in 388 

the mass loading from DOY 34 to DOY 0. These observational results do not contradict 389 

implications that the transient aurora and energetic event are likely associated with the mass 390 

loading and are basically independent of the solar wind, i.e., they are ‘internally-driven’ 391 

processes, as recently argued in Kimura et al. (2015, 2017) and other studies.   392 

[35] However, we suggest that there is an exceptional correspondence between the transient 393 

aurora and the solar wind. The transient aurora with a peak power of ~2 TW, which is the 394 

strongest auroral power in the present analysis period, occurs during the interplanetary shock 395 

arrival at Jupiter on DOY 87. The unabsorbed emission power of the peak is estimated to be ~10 396 

TW by the Tao et al. (2016a, b) model. The temporal intervals between the strongest event and 397 

adjacent transient auroras are ~10 days, which are longer than the most frequent interval of 2–6 398 

days. This correspondence implies that the transient aurora is, in some cases, forced to occur due 399 

to the solar wind disturbance. On DOY 142 in 2017, when Juno detected a solar wind forward 400 

shock arriving at Jupiter, Hisaki observed the transient aurora with one of the largest peak 401 

powers that has been measured through the entire Hisaki observing period from November 2013 402 

to July 2016 (Kimura et al., 2017; Nichols et al., 2017). This solar wind associated brightening 403 

was also fragmentally observed by Cassini (Tsuchiya et al., 2010), supporting the idea suggested 404 

by the present study that the transient aurora is correlated with the solar wind disturbance. 405 

6. Discussion 406 

6.1. Validity of our analytical model 407 

[36] The two-dimensional MHD simulation by Hiraki et al. (2012) reproduced the interchange 408 

motion of the equatorial plasma in the plasma torus. Their study indicated an extreme example of 409 

radially outward transport via the interchange instability, of which the transport timescale is 2–3 410 



 

day (Figure 3 and 4 in their paper). In their case, the initial distribution of the radial density 411 

profile is limited to 10 Io radii, which is much narrower than the actual scale length 412 

(approximately some Jovian radii). The interchange instability is strongly amplified by a steep 413 

density gradient. Thus, the radial transport timescale of 2–3 day is regarded as an extremely fast 414 

case. The timescale of 11–60 day that was observationally estimated by Bagenal and Delamere 415 

(2011), and that of 30-40 days was estimated by the radial diffusion model of Copper et al. 416 

(2016). 417 

[37] If the plasma torus mass contained in a 10 Rj radius disc, which is approximately the total 418 

mass of magnetosphere ~1.5 Mton (Bagenal and Delamere, 2011), is transported out of the torus 419 

within the 2–3-day period, the mass loading rate corresponds to 1.5–2.1 ton/s. Therefore, the 420 

mass loading rate is constrained to be less than 2.1 ton/s with a transport timescale longer than 421 

~2 day. Our estimation from the Hisaki observation is 0.3–0.5 ton/s, which is consistently less 422 

than the extremely fast case.  423 

[38] In the present analysis period, the outward transport velocity v
out

 is estimated to be 25–424 

40 m/s from equation (9) with the parameters presented in Table 1, cold plasma density 425 

n
c
= 2000 / cm3, scale height H =1 Rj, and radial distance r = 6 Rj . Parameter v

out
 peaked at 426 

40 m/s on DOY 70 when the mass loading rate also reached a maximum. This is naturally 427 

consistent with the outward velocity of 20–100 m/s at 6 Rj previously estimated from in situ 428 

observations and the physical chemistry model by Bagenal and Delamere (2011) and Yoshioka 429 

et al. (2017).  430 

[39] The I/O area ratio A  is estimated to be 0.5–0.8% from equation (10) with the parameters 431 

presented in Table 1, n
c
= 2000 / cm3 , H =1 Rj , r = 6 Rj , and v

in
= 5 km/s . Yoshikawa et al. 432 



 

(2016) estimated the inward moving velocity of hot electrons v
in

 to be 2–12 km/s under the 433 

assumption of hot electron temperature at 100–400 eV.  434 

[40] Here we assume again that the scale heights of the inward and outward moving flux tubes 435 

are the same quantity. This leads to v
out

 and I/O area ratio greater than those with the 436 

temperature-dependent scale height. 437 

[41] The given inward velocity of 5 km/s also agrees with another estimation by Russell et al. 438 

(2005), who inferred a velocity of a few km/s from magnetic field measurements of the hot 439 

inward moving flux tube. They assumed that the occurrence frequency of the inward moving 440 

flux tube is equivalent to the fraction of the azimuthal area of the inward moving flux, as 441 

described in Section 2 of the present study. Assuming conservation of magnetic flux, they 442 

estimated v
in

to be a few km/s for a canonical mass loading rate of 1 ton/s, with an I/O area ratio 443 

of 0.3%. Thus, we adopt v
in

= 5 km/s
 
in this discussion. Our resultant A  of 0.5–0.8% is 444 

comparable with the estimation of 0.3% by Russell et al. (2005). It should be noted that in the 445 

present analysis period, A  increased from 0.5% up to 0.8% as the mass loading rate increased. 446 

Under the assumption of a constant v
in

, this implies that the inward moving flux tube occurred 447 

more frequently due to the higher volcanic activity.  448 

[42] Thorne et al. (1997) estimated the inward velocity to be ~100 km/s based on the in situ 449 

measurements of magnetic field and keV particle by Galileo. However, this estimation does not 450 

agree with the inward velocity of a few km/s recently estimated from dynamics and distribution 451 

of hot electron at 100-400 eV observed with Hisaki (Yoshikawa et al., 2016; Yoshioka et al., 452 

2017). Here we keep adopting the inward velocity of a few km/s to ensure consistency with the 453 

recent Hisaki observation by Yoshikawa et al. (2016) and Yoshioka et al. (2017). 454 



 

[43] Based on the above discussion, we conclude that the present estimation of the three 455 

quantities, , v
out

, and A , are consistent with previous observations and theories. This justifies 456 

the assumptions and formulations of our analytical model.  457 

6.2. Plasma mass accumulated in magnetosphere 458 

We estimate the total mass accumulated in the magnetosphere from the observed mass loading 459 

rate, shown with the solid black line in  460 

[44] Figure 6a. The observed mass loading rate is temporally integrated from the time when 461 

the transient aurora dimmed out on DOY 15. Here, it is assumed that there is no mass release 462 

from the magnetosphere. It should be noted that plasma mass was already accumulating in the 463 

magnetosphere before the starting time of integration. The present analysis just indicates a 464 

difference in the cumulative mass from the epoch. One should also note that mass release by the 465 

drizzle is not considered here for simplicity. Therefore our estimated cumulative mass is 466 

potentially overestimated. 467 

[45] When the transient aurora recurred again on DOY 41 after the quiescent period, the 468 

cumulative mass reached the total mass of the magnetosphere, ~1.5 Mton, which is comparable 469 

with that estimated from the radial profile of mass density measured by the in situ observations 470 

(Bagenal and Delamere, 2011). Although it is still unclear what magnetospheric disturbance 471 

corresponds to the transient aurora, if we suppose the transient aurora is an indicator of plasmoid 472 

ejection via the larges-scale Vasyliūnas reconnection, the recurrence of plasmoid ejection likely 473 

requires the ‘precondition’ that amount comparable to the total mass of magnetosphere is 474 

supplied from the torus. 475 

6.3. Balance between mass loading and plasmoid ejection  476 



 

[46] Jupiter’s magnetosphere likely releases the plasma mass via the processes introduced in 477 

Section 1. The recurrent plasmoid ejection associated with the large-scale Vasyliūnas 478 

reconnection has been thought to be the most significant mass release process in previous studies 479 

(e.g., Vasyliūnas, 1983; Woch et al., 1998; Krupp et al., 1998; Kronberg et al., 2005, 2007, 2008, 480 

2009). However, the contribution of the plasmoid ejection to the total mass balance of the 481 

magnetosphere is still a big open question, mainly because of the large uncertainty in the 482 

plasmoid mass. 483 

[47] Recent studies estimated the plasmoid mass with different sizes and occurrence 484 

frequencies based on the in situ observations of reconnection sites (~100 Rj) (Bagenal, 2007; 485 

Kronberg et al., 2008; Vogt et al., 2014; McComas et al., 2014), ranging from 28 to ~10,000 ton. 486 

With these plasmoid masses, the temporally averaged rate of mass release from the 487 

magnetosphere reaches only 120 kg/s or less, which does not balance the typical mass loading 488 

rate of 0.26–1.4 ton/s. Bagenal (2007) and Delamere et al. (2015b) proposed the small-scale  489 

‘drizzle’ process to resolve the discrepancy between the mass loss and source rates. 490 

[48] Cowley et al. (2015) attributed the discrepancy to small plasmoid sizes from 230 to 491 

~20,000 Rj
3
. They modified the size to a larger value by introducing a flux tube stretching 492 

process in the distant tail region. In the modification, they referred to global MHD simulation by 493 

Fukazawa et al. (2010), which indicated the creation of large plasmoids with ~300 Rj cross-tail 494 

length and ~25 Rj radius in the nightside meridian plane, i.e., a volume of 6 × 10
5
 Rj

3
. This large 495 

plasmoid is consistent with those discovered by the in situ observations of a distant tail region of 496 

> 500 Rj by New Horizons (McComas et al., 2007). With a size of 6 × 10
5
 Rj

3
, density of 497 

0.02/cc, and particle mass of 20 amu in the tail region (Fukazawa et al., 2010), the plasmoid 498 

mass is approximately 0.14 Mton (1.4 × 10
5
 ton).  499 



 

In the present analysis, we investigate the balance between the mass release via the heavy 500 

plasmoid ejection and the mass loading. Here, the plasmoid is assumed to be ejected from the 501 

magnetosphere simultaneously as the transient aurora, followed by the recurrent reduction of the 502 

cumulative mass. The black broken lines in  503 

Figure 6b show the mass balance in the same format as  504 

[49] Figure 6a. The upper broken line is estimated with a plasmoid mass of 28 ton while the 505 

bottom line is estimated with a mass of 0.14 Mton. The light blue region shows a possible range 506 

of cumulative mass. It should be noted that for plasmoid ejections of 0.14 Mton, the cumulative 507 

mass is suppressed down to the total mass of magnetosphere on DOY 40–106, while the 508 

ejections of 28 ton shows insignificant contribution to the mass loss. Although it is unclear 509 

whether recurrence of plasmoid ejection restarted from DOY 134 due to lack of observations, the 510 

recurrence of plasmoid could restart after ~0.9 Mton was accumulated throughout the long 511 

quiescent period on DOY 106–134.  512 

[50] Variability in plasmoid mass is also investigated under the assumption that plasma mass 513 

loading during the temporal interval between two adjacent transient auroras is entirely ejected at 514 

the time of the subsequent transient aurora. In other words, the total mass of the magnetosphere 515 

is assumed to be constant by plasmoid ejections with the variable mass. Figure 7 shows the 516 

variable plasmoid mass DM t2( ) at plasmoid ejection time t2 , which is estimated from the 517 

temporal integration of the mass loading rate , where  is the mass 518 

loading as function of time, t1  is starting time of the previous transient aurora, and t2  is the 519 

starting time of the subsequent transient aurora. The variability in plasmoid mass during 520 

DOY 41–106 spans from 0.09 to 0.5 Mton.  521 



 

[51] Based on the discussion regarding temporally constant and variable plasmoid masses, we 522 

conclude that a plasmoid mass greater than ~0.1 Mton is necessary in case that the recurrent 523 

plasmoid ejection is the only process for mass release. 524 

7. Summary 525 

[52] We developed an analytic method for estimating the mass loading at Jupiter based on the 526 

interchange instability in the Io torus. This analytic model was used to constrain the parameters 527 

associated with the interchange instability:  528 

1. According to previous in situ measurements and a physical chemistry model, the density 529 

differential of the inward moving flux tube dn / n
c  

was constrained to be 0.35–0.7. 530 

2. The constrained density differential suggests that in the torus flux tubes are interchanged 531 

with those in the adjacent outer region, e.g., a flux tube at 6 Rj is likely interchanged 532 

with that at 6.7–8 Rj. 533 

[53] Following our analytic model, the mass loading rate was estimated from the torus EUV 534 

monitoring during Io’s volcanic eruptions in 2015 and compared with the transient aurora. We 535 

obtained the following observation results:  536 

3. Mass loading rate varied over a range of 0.3–0.5 ton/s during the volcanic eruptions on 537 

DOY 20-125. 538 

4. During the relatively low mass loading period of DOY 17 to 41, the transient aurora 539 

dimmed out even at the solar wind shock arrival. 540 

5. During the relatively high mass loading period of DOY 41–125, the transient aurora 541 

indicated the recurrence typically at a 2–6-day period. 542 



 

6. There was an exceptional transient auroral event with an emission power of 10 TW 543 

around the solar wind shock arrival at Jupiter on DOY 87. 544 

7. Energies equivalent to 0.1–10% of the total kinetic energy stored in the corotating 545 

magnetospheric plasma are input to each transient aurora. 546 

[54] Based on the observation results, we speculate the circulation and release of plasma mass: 547 

8. The I/O area ratio and outward moving flux speed likely varied over ranges of 0.5–0.8% 548 

and 25–40 m/s in correlation with the mass loading rate, respectively. 549 

9. The recurrence of plasmoid ejection requires the precondition that amount comparable to 550 

the total mass of magnetosphere, ~1.5 Mton, is carried out of the torus. 551 

10. A large plasmoid mass of greater than 0.1 Mton is necessary in case that the recurrent 552 

plasmoid ejection is the only process for mass release. 553 

 554 
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Tables:  792 

Table 1: Input parameters for the plasma mass loading rate estimation 793 

 Value Reference and source 

Average ion mass m
i
 25 amu Yoshioka et al. (2017) 

Hot electron temperature T
h
 300 eV Yoshikawa et al. (2016) 

Density differential dn / n
c
 0.44 

Kivelson et al. (1997) 

Thorne et al. (1997) 

Ratio of W
in

to Wtotal
, W

in
/W

total
é
ë

ù
û 0.26 Bagenal and Delamere (2011) 

Conversion factor of WHisaki
 to Wtotal

, 

Wtotal /WHisaki[ ]  
2.1 Spectra modeled with CHIANTI 

Observed EUV power WHisaki
  Observation with Hisaki 
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Figures:  796 

 797 

Figure 1. Schematic of the interchange instability in the Io plasma torus. At a radial distance r
 

798 

around Io’s orbit, the flux tube with magnetic flux density B  is filled with a cold plasma with 799 

density n
c
 at electron temperature T

c
. The cold flux tube azimuthally extends with width dl

out
 800 

and moves outward at velocity v
out

. The hot flux tube with B+dB , where dB  is difference in 801 

the magnetic flux density between the hot and cold flux tubes, filled with a hot tenuous plasma 802 

with density n
h  

at temperature T
h
 azimuthally extends with width dl

in
 and moves inward at 803 

velocity v
in

. 804 

 805 

Figure 2. The hot electron energy input to the torus W
in

 as a function of the hot electron 806 

temperature T
h
 and mass loading rate (see equation (11)). (a) W

in
 for a density differential 807 

dn / n
c
= 0.7  and (b) that for dn / n

c
= 0.35 . The white solid lines show the maximum and 808 

minimum values of W
in

 constrained by previous studies (W
in

= 0.2,0.9). 809 

  810 

Figure 3. Radial profiles of the equatorial plasma density n  and quantity nL4  that is associated 811 

with the total flux tube content. (a) The black line is n  as a function of radial distance in Jovian 812 

radii adopted from Bagenal and Delamere (2011). The dotted lines are the density profile 813 

decreased by the density difference dn / n
c
=0.35 and 0.7.  (b) The radial profile of nL4  in a 814 

similar format to panel (a) computed based on n  and the dipole field L-value. The horizontal 815 

broken lines show nL4  at 6 Rj for dn / n
c
=0.35 and 0.7. 816 

 817 



 

Figure 4.  The powers of the EUV emission from the aurora and torus measured by Hisaki. (a) 818 

The power of the EUV aurora at 900–1480 Å. (b) The power demodulated by the sinusoidal 819 

function fitting (black dots) and that smoothed by running median with a temporal window of 4 820 

days (red solid line). (c) The total power of the torus emission at 0–10
4
 Å. 821 

 822 

Figure 5.  Time series of (a) the emission power and (b) recurrence frequency of the transient 823 

aurora, (c) estimated mass loading, and (d) solar wind dynamic pressure in the present analysis 824 

period. The gray shades in panel (a) show the periods when the transient aurora occurred with an 825 

amplitude two times larger than the standard deviation of the dataset for duration greater than 30 826 

minutes. The recurrence frequency in panel (b) is the temporal interval between the onsets of the 827 

adjacent transient auroras. The black dot in panel (c) is the raw mass loading rate estimated with 828 

use of equation (12), and the red solid line is that mass loading rate smoothed by running median 829 

with a temporal window of 4 days. The dynamic pressure in panel (d) is extrapolated from 830 

Earth’s orbit by a one-dimensional MHD simulation (Tao et al., 2005) 831 

 832 

Figure 6. (a) Total mass accumulated in the magnetosphere without mass release process. The 833 

black solid line is the total mass temporally integrated from the epoch on DOY 15, shown with 834 

the black vertical dotted line. The gray shades show intervals when the transient auroras were 835 

observed. The estimated mass loading rate is shown with the red broken line in arbitrary units. 836 

The black horizontal dotted line shows the total mass of magnetosphere (Bagenal and Delamere, 837 

2011). (b) Total mass accumulated in the magnetosphere with mass release via plasmoid ejection 838 

in the same format as panel (a). The upper black broken line shows the cumulative mass with 839 

mass release via recurrent plasmoid release at a rate of 28 ton/plasmoid, while the bottom black 840 

broken line shows the mass with release at a rate of 0.14 Mton/plasmoid.  841 

 842 



 

Figure 7. Plasmoid mass estimated from temporal interval of the transient aurora and mass 843 

loading rate. The plasmoid mass DM  at time of transient aurora is given by the temporal 844 

integration of the mass loading rate  where  is the mass loading as 845 

function of time, t1  is starting time of the previous transient aurora, and t2  is transient aurora of 846 

interest. Horizontal thick black bars show the estimated DM corresponding to each transient 847 

aurora that occurred at the right edge of the black bar.   848 

 849 



Figure 1.





Figure 2.





Figure 3.





Figure 4.





Figure 5.





Figure 6.





Figure 7.




	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6
	Figure 7 legend
	Figure 7

