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Abstract: 

The use of pesticides within agricultural ecosystems has led to wide 
concern regarding negative effects on the environment. One possible 
alternative is the use of predators of pest species that naturally occur 
within agricultural ecosystems. However, the mechanistic basis for how 
species can be manipulated in order to maximise pest control remains 
unclear. We carried out a meta-analysis of 51 studies that manipulated 
predator species richness in reference to suppression of herbivore prey to 
determine which components of predator diversity affect pest control. 
Overall, functional diversity (FD) based on predator’s habitat domain, diet 
breadth and hunting strategy was ranked as the most important variable. 
Our analysis showed that increases in FD in polycultures led to greater 

prey suppression compared to both the mean of the component predator 
species, and the most effective predator species, in monocultures. Further 
analysis of individual traits indicated these effects are likely to be driven by 
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broad niche differentiation and greater resource exploitation in functionally 
diverse predator communities. A decoupled measure of phylogenetic 
diversity, whereby the overlap in variation with FD was removed, was not 
found to be an important driver of prey suppression. Our results suggest 
that increasing FD in predatory invertebrates will help maximise pest 
control ecosystem services in agricultural ecosystems, with the potential to 
increase suppression above that of the most effective predator species. 
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Abstract 26 

The use of pesticides within agricultural ecosystems has led to wide concern regarding 27 

negative effects on the environment. One possible alternative is the use of predators of pest 28 

species that naturally occur within agricultural ecosystems. However, the mechanistic basis 29 

for how species can be manipulated in order to maximise pest control remains unclear. We 30 

carried out a meta-analysis of 51 studies that manipulated predator species richness in 31 

reference to suppression of herbivore prey to determine which components of predator 32 

diversity affect pest control. Overall, functional diversity (FD) based on predator’s habitat 33 

domain, diet breadth and hunting strategy was ranked as the most important variable. Our 34 

analysis showed that increases in FD in polycultures led to greater prey suppression 35 

compared to both the mean of the component predator species, and the most effective 36 

predator species, in monocultures. Further analysis of individual traits indicated these effects 37 

are likely to be driven by broad niche differentiation and greater resource exploitation in 38 

functionally diverse predator communities. A decoupled measure of phylogenetic diversity, 39 

whereby the overlap in variation with FD was removed, was not found to be an important 40 

driver of prey suppression. Our results suggest that increasing FD in predatory invertebrates 41 

will help maximise pest control ecosystem services in agricultural ecosystems, with the 42 

potential to increase suppression above that of the most effective predator species. 43 

 44 

 45 
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Introduction 51 

The predicted growth of global populations will lead to an ever-increasing demand for 52 

agricultural systems to deliver greater food production (25% - 75% increase in food by 2050; 53 

Hunter et al, 2017). Whilst this goal may be achieved through conventional forms of 54 

agricultural intensification, there are likely limitations to the extent to which chemical 55 

insecticides can be relied upon without facing a myriad of risks.  These range from the 56 

likelihood of pesticide resistance in pest species (Nauen & Denholm 2005; Bass et al. 2014), 57 

the revocation of active ingredients (NFU, 2014), damaging effects on non-target organisms 58 

(Easton & Goulson 2013; Hallmann et al. 2014; Woodcock et al. 2016, 2017), as well as diffuse 59 

pollution impacting on human and environmental health in general (Wilson & Tisdell 2001; 60 

Horrigan et al. 2002). An increased reliance on conservation biological control, where 61 

predators or parasitoids (here, referred to collectively as predators) of pest species are 62 

encouraged within agricultural ecosystems has the potential to address some of these issues 63 

(Begg et al. 2017). Fundamental to integrating conservation biological control into agricultural 64 

practices is understanding which components of invertebrate biodiversity need to be managed 65 

to maximise pest suppression.  66 

 67 

A number of meta-analyses (Bianchi et al. 2006; Letourneau et al. 2009; Griffin et al. 2013) 68 

have demonstrated that higher predator richness can increase prey suppression (reduction in 69 

herbivores by predators), however, species richness provides little elucidation as to the 70 

underlying mechanisms driving this trend. An important characteristic of multi-predator 71 

systems is the presence of significant variation in the response of prey suppression to increasing 72 

predator species richness; a consequence of the range of complex interactions between 73 

predators, and predators and prey (Ives et al. 2004; Casula et al. 2006; Schmitz 2007). For 74 

example, intraguild interactions can be positive (functional facilitation), whereby predators 75 
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facilitate the capture of prey by other predator species (Losey & Denno 1998). Niche 76 

complementarity is another interaction that can lead to overyielding of prey suppression by 77 

diverse assemblages, where individual predators may feed on different life stages of a prey 78 

species (Wilby et al. 2005). However, negative interactions also occur between predators 79 

reducing prey suppression in diverse assemblages.  One of the most commonly encountered of 80 

these is intraguild predation, whereby a top predator consumes not only the prey but also the 81 

intermediate predators (Rosenheim et al. 2004a; Finke & Denno 2005).  Interference 82 

competition can also occur whereby one predator species reduces prey capture by the other due 83 

to negative behavioural interactions (Lang 2003). Given the complexity of these interactions, 84 

the net effect of predator species diversity is often difficult to predict.  85 

 86 

Defining morphological or behavioral characteristics of individual species that potentially 87 

impact on prey suppression, often referred to as functional effect traits, provides an opportunity 88 

to elucidate the mechanistic link between predator biodiversity and the delivery of this 89 

ecosystem service (Wood et al. 2015). For example, Schmitz (2007) suggested that traits 90 

related to habitat domain (the spatial location of where the natural enemy feeds, e.g. ground or 91 

upper canopy of vegetation) and hunting method (how they catch prey, e.g. sit & wait) were 92 

important in understanding how predator interactions affected prey suppression.  Similarly, 93 

size differences between predators and prey can also influence intraguild interactions and play 94 

an important role in predicting consumption rates (Rosenheim et al. 2004b; Brose et al. 2008; 95 

Ball et al. 2015).  While these assumptions have been supported in part by several studies 96 

(Woodcock & Heard 2011; Miller et al. 2014; Northfield et al. 2014; Michalko & Pekár 2016) 97 

the direct implications of functional diversity (FD) between species on their capacity to deliver 98 

pest control remains poorly understood.   99 

 100 
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An understanding of how predator diversity and traits influence pest suppression has been 101 

identified by several reviews as being crucial to the implementation of sustainable pest 102 

management in agricultural ecosystems (Bianchi et al. 2010; Wood et al. 2015; Jonsson et al. 103 

2017; Perović et al. 2017). This information is a required step in bridging the gap between 104 

experimental small-scale mesocosm (cage) studies and generalizable rules that can be used by 105 

practitioners in field-scale management strategies, and a detailed meta-analysis directly 106 

addressing this question has yet to be undertaken (Woodcock et al. 2013).  107 

 108 

Here we address this knowledge gap by undertaking a meta-analysis to identify how 109 

dissimilarity in key functional effects traits of invertebrate predators can influence interactions 110 

between predators and their prey to affect pest suppression. The meta-analysis was undertaken 111 

using 51 studies (214 data points) comprising a total of 73 predator species attacking 35 species 112 

of arthropod prey.  We assess how both FD based on an a priori selection of traits, and 113 

phylogenetic diversity (PD) based on evolutionary history are linked to prey suppression 114 

(Cadotte et al. 2013). We use the meta-analysis to test the general prediction that increased 115 

predator species richness leads to greater prey suppression (prediction 1) (e.g. Letourneau et 116 

al. 2009; Griffin et al. 2013; Katano et al. 2015). We also test the following predictions related 117 

to explaining diversity effects; increased FD of key effects traits explains patterns in prey 118 

suppression in polycultures due to increased niche complementarity between predator species 119 

(prediction 2); PD has a smaller effect on prey suppression than FD as it accounts for broad 120 

differences in evolutionary history, compared to FD which is based on an a priori selection of 121 

traits (prediction 3); and finally related to body size differences between predators, and 122 

predators and prey we predict that, increased body size ratio between predators and prey will 123 

positively affect prey suppression, whilst greater size differences between predators will 124 
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negatively affect prey suppression due to increased intraguild predation (prediction 4) (Lucas, 125 

Coderre & Brodeur 1998; Rosenheim et al. 2004b; Brose 2010; Ball et al. 2015).  126 

 127 

Materials and Methods 128 

Study selection and data 129 

We carried out a systematic literature search of studies testing the impact of factorial 130 

combinations of increasing predator or parasitoid species richness on prey suppression. These 131 

experiments were all undertaken in mesocosms, representing an experimental arena within 132 

which population changes of the prey species could be monitored.  Literature searches were 133 

carried out between November 2016 – January 2017 using ISI Web of Science (search terms 134 

included in Appendix S1 in Supporting Information) and reference lists published in the 135 

following studies: Sih et al. 1998; Straub et al. 2008; Letourneau et al. 2009; Griffin et al. 136 

2013; Katano et al. 2015. In addition, unpublished sources (Asiry, 2011; Fennel, 2013) of 137 

literature were included and additional studies identified by E Roubinet (pers comm).  138 

 139 

Studies were selected based on their fulfilment of the following criteria: 1) the study system 140 

was of terrestrial arthropods, 2) predator species richness was manipulated in reference to the 141 

suppression of arthropod prey species, 3) the study considered two or more predator species, 142 

4) all predators of prey were included in monoculture (species A or species B) and polyculture 143 

(species A+B) treatments,  5) the study contained a quantifiable measure of prey suppression, 144 

6) the study included mean, standard deviations and the number of replicates for each 145 

treatment. Typically, individual published studies were composed of multiple experiments 146 

where factors other than predator species richness were manipulated.  These factors included 147 

prey species richness, habitat complexity, temperature/environmental conditions, predator life 148 

stage, predator density as well as methodological factors such as the use of additive and 149 
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substitutive experimental designs; of which factors could potentially impact the nature of multi-150 

predator trophic interactions and the observed outcome on prey suppression (Finke & Denno 151 

2002; Wilby & Orwin 2013; Ajvad et al. 2014; Drieu & Rusch 2017).  These experiments were 152 

therefore treated as separate data points. For studies investigating responses of multiple instars 153 

of the same predator species, only the life stages that provided the maximum and minimum 154 

prey suppression were included. This was done to avoid potential pseudo-replication due to 155 

strong functional similarity between successive larval instars while providing an indication of 156 

the full range of potential emergent impacts on prey suppression by that species (Cisneros & 157 

Rosenheim 1997). 158 

 159 

Quantification of herbivore suppression effect sizes 160 

Where possible, we extracted data on the impact of predator diversity on prey suppression 161 

directly from published studies, either from presented data or using WebPlotDigitizer 3.11 162 

(Rohatgi, 2017) to extract information from graphs.  Where the required information was not 163 

available, the raw data was requested directly from the corresponding author. A total of 51 164 

studies constituting 214 data points were included in analyses (see Appendix S2 for literature 165 

included).  As prey suppression was measured in several different ways, we used the 166 

standardised mean difference corrected for small sample sizes as our test statistic (Hedges 167 

1981; Hedges & Olkin 1985).   We also calculated the corresponding sampling variance for 168 

each experiment (Hedges 1981; Hedges & Olkin 1985).  Following Cardinale et al., 2006 and 169 

Griffin, Byrnes & Cardinale, 2013, we calculated two test statistics for each experimental data 170 

point.  The first is SMDmean, which is the standardised mean difference between the mean (𝑥̅) 171 

effect of the predator polyculture (p) on prey suppression compared to the mean effect of the 172 

component predator species in monocultures (m) calculated as:  173 

𝑆𝑀𝐷 =    
𝑥𝑝̅̅ ̅ −  𝑥𝑚̅̅ ̅̅  

𝑠
𝐽,  174 
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where s is the pooled standard deviation calculated as:  175 

 176 

𝑠 =  √
(𝑛𝑝 − 1)𝑆𝐷𝑝  

2 +  (𝑛𝑚 − 1)𝑆𝐷𝑚  
2  

𝑛𝑝 +  𝑛𝑚 − 2
 177 

 178 

and J a correction factor applied for small sample sizes:  179 

𝐽 =  
3

4(𝑛𝑝 +  𝑛𝑚) − 1
 180 

The variance (v) for each experiment was calculated as:  181 

𝑉 =  
𝑛𝑝 +  𝑛𝑚

𝑛𝑝𝑛𝑚
+ 

𝑆𝑀𝐷2

2 (𝑛𝑝 + 𝑛𝑚)
 182 

The second metric, SMDmax, is the standardised mean difference between the mean effect of 183 

the polyculture on prey suppression compared to the most effective predator species in a 184 

monoculture (mx), where mx replaces m in the above equations. Where the measure of prey 185 

suppression was negative (e.g. aphid population size decreased due to greater predation) then 186 

the sign of the mean was reflected (multiplied by minus 1) so that the measure could be more 187 

intuitively interpreted as a positive effect of increased prey suppression in polycultures (Griffin 188 

et al. 2013). All effect sizes and sampling variances were calculated in RStudio using the 189 

metafor package (Viechtbauer, 2010; R Core Team, 2016).  190 

 191 

Species richness 192 

Variables were included for predator species richness and prey species richness, as a meta-193 

analysis by Katano et al. (2015) demonstrated variation in herbivore suppression between 194 

different richness levels. Both variables were included as categorical due to a strong skew 195 

towards lower richness levels (prey richness = 1 (n = 177) and prey richness >1 (n = 37); 196 

predator richness = 2 (n = 152) and predator richness > 2 (n = 62)).  197 

 198 
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Effects traits describing functional diversity 199 

For each of the predator species we collected information on ‘effects traits’ which represent 200 

physical or behavioral characteristics that would have a direct impact on prey suppression.  Due 201 

to the taxonomic breadth of predator species we included effects traits based on: hunting 202 

strategy, defined as the method used by the predator species to capture prey; habitat domain, 203 

defined as the part of the experimental area where the predator predominantly hunts; and diet 204 

breadth, describing whether the predators were generalists or specialists. The trait categories, 205 

definitions and species within these groups are shown in Appendix S3; Table 1 and 2. Where 206 

possible trait classifications were obtained directly from the study included in the meta-207 

analysis. Where this was not possible information on species ecology was determined from a 208 

search of primary and grey literature, as well as the use of expert opinion.   These traits were 209 

selected as previous research suggests they play an important role in predator-predator 210 

interactions and the resultant effect on herbivore suppression (Losey & Denno 1998; Schmitz 211 

2007; Straub et al. 2008; Woodcock & Heard 2011; Ball et al. 2015). A Gower dissimilarity 212 

matrix (Gower 1971) was calculated using these effects traits. The square root of the Gower 213 

dissimilarity matrix was then subjected to principle coordinate analysis and used to calculate 214 

mean pairwise dissimilarity between the predator species within each experiment as an index 215 

of functional diversity (FD) (see functional and phylogenetic diversity measures for a 216 

description). Functional dissimilarity pairwise matrices were calculated using the decouple 217 

function supplied in de Bello et al. 2017.  218 

 219 

Phylogentic diversity 220 

Whilst the functional effects traits were selected due to their direct importance in predicting 221 

prey suppression based on previous research, these do not describe the full functional identity 222 

of individual species.   This functional identity would be defined by both response traits as well 223 
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as potentially undefined effects traits linked to pest control delivery.  These between species 224 

differences in combined functional characteristics can be explained by phylogenetic history, 225 

with the assumption that a common evolutionary origin will explain a large component of the 226 

functional similarity in traits that characterise predator species (Cadotte et al. 2013).  We used 227 

the Linnaean taxonomic classification (phylum, class, order, family, genus) for the predator 228 

species to construct a surrogate phylogenetic tree in the ape package in RStudio (Paradis, 229 

Claude and Strimmer, 2004).  From this tree, a matrix of phylogenetic dissimilarity was 230 

calculated from the square root branch lengths between the tips of the tree for each species. 231 

The overlap in variation between the functional dissimilarity and phylogenetic dissimilarity 232 

between each species was then decoupled using the decouple function described in de Bello et 233 

al, (2017). This was carried out to ensure that the two measures for each species were 234 

explaining unique components of predator diversity. This was then used to derive a decoupled 235 

phylogenetic dissimilarity matrix between predator species. The functional diversity metric 236 

incorporates diversity linked to both individual traits and an inherent component resulting from 237 

phylogenetic links between species (referred to as FDist in de Bello et al., 2017). As such this 238 

is typical of other existing functional diversity metrics (for example Rao’s quadratic entropy 239 

(de Bello et al., 2017)).  However, the decoupled phylogenetic diversity metric represents the 240 

residual phylogenetic variation not accounted for through the functional traits (referred to as 241 

dcPDist in de Bello et al., 2017).  This decoupled measure of phylogenetic diversity was 242 

included as it allowed us to identify if other unmeasured traits captured by phylogenetic 243 

diversity were important in prey suppression.  244 

 245 

Functional and phylogenetic diversity measures 246 
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From each functional and phylogenetic dissimilarity matrix, we calculated the mean pairwise 247 

dissimilarity between species in each experiment using the melodic function supplied in de 248 

Bello et al., (2016); 249 

 250 

Mean pairwise dissimilarity =  
1

∑ 𝑝𝑖𝑝𝑗
𝑁
𝑖>𝑗

 ∑ 𝑝𝑖𝑝𝑗𝑑𝑖𝑗 ,

𝑁

𝑖>𝑗

 251 

 252 

where N is the number of species in a community, dij is the dissimilarity between each pair of 253 

different species i and j, respectively, pi and pj are the relative abundances of species i and j, 254 

respectively, divided by the total of all species abundances in a community. We used an 255 

unweighted index based on presence/absence (where pi = 1/N) as predator numbers were equal 256 

in the majority of experiments included in the meta-analysis.   Mean pairwise dissimilarity was 257 

selected for all the phylogenetic and functional diversity measures (see Table 1) as it has been 258 

found to be relatively insensitive to species richness where richness levels are low (de Bello et 259 

al. 2016).  260 

 261 

Body size  262 

Body size has been shown to influence predator-predator interactions where large body sized 263 

generalist predators may consume smaller predators as well as prey (Lucas, Coderre & Brodeur 264 

1998; Rosenheim et al. 2004b). Additionally, body size ratios between predators and prey have 265 

been shown to affect consumption rates (Lucas et al. 1998; Rosenheim et al. 2004b; Brose 266 

2010; Ball et al. 2015).  We defined a mean body size (body length in mm) for each predator 267 

species (Appendix S3). Where different life stages of single predator species were used in 268 

experiments, this was accounted for with life-stage specific mean body size.  We also included 269 

a mean body size for each of the prey species. From these measures of body size, we calculated 270 
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the mean size difference in predator body sizes, and the ratio between the smallest predator and 271 

prey body size (Table 1).  We did not include the individual sizes of smallest and largest 272 

predators as covariates as these were both highly inter-correlated with either predator-predator 273 

size differences or predator-prey body size ratios (see Appendix S4: Table 1).  Similarly, a high 274 

level of collinearity was also found between the prey and the largest predator body size ratio 275 

(ratiolarge), and prey and the smallest predator size ratio (ratiosmall) variables.  The highest ranked 276 

model sets including ratiosmall  had lower AICc scores than the highest ranked ratiolarge models; 277 

therefore only ratiosmall was included in final analysis (Appendix S4: Table 2-5).  278 

 279 

Experimental factor moderator variables  280 

In addition to factors associated with predator and prey species richness and traits, a number 281 

of experimental factors were also included in analysis that have previously been shown to 282 

influence prey suppression. These included: experimental arena volume (cm3; log transformed 283 

to improve linearity), duration of study following predator addition (hours) and study setting 284 

(field, or greenhouse/lab). Additionally, a factor was included to test between study designs 285 

(additive or substitutive) as this has been shown to lead to different conclusions about prey 286 

suppression depending on the design used (Schmitz 2007; Byrnes and Stachowicz, 2009).  287 

Additive studies increase the number of predators in the polyculture based on the sum of the 288 

component predators in monocultures, whereas substitutive designs maintain the same number 289 

of predators in polycultures and monocultures.  290 

 291 

Statistical analysis 292 

Intercept only random effects models were used for both SMDmean and SMDmax to determine 293 

whether there was an overall effect of greater prey suppression in polycultures. Models 294 

included study identity as a random factor to account for the fact that multiple points came 295 
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from single studies.  The restricted maximum likelihood was used (REML) to estimate between 296 

study variance. The meta-analysis was unweighted as weighting by inverse variance has been 297 

shown to result in bias against small sample sizes (Hedges & Olkin 1985; Letourneau et al. 298 

2009).  All meta-analyses were undertaken using the rma.mv function in the package metafor 299 

(Viechtbauer, 2010; RStudio, 2015). Wald-type 95% confidence intervals are given. 300 

Assessments of publication bias in response to an underrepresentation of non-significant results 301 

were undertaken using funnel plots (Koricheva, Gurevitch and Mengersen, 2013). Some 302 

evidence of publication bias was found whereby studies with lower precision were more likely 303 

to detect negative effects for SMDmax (See Appendix S5).  However, as this result was not 304 

detected for SMDmean, this is likely caused by the calculation of the SMDmax metric (see Schmid 305 

et al. 2008).  306 

 307 

We used a meta-regression with a maximal model including FD, PD, ratiosmall, predator size 308 

difference, prey size, prey richness and predator richness to quantify how emergent effects on 309 

prey suppression were effected by aspects of invertebrate community structure (Table 1).  The 310 

response variables were the two metrics SMDmean and SMDmax. An information theoretic 311 

approach was used to identify the best set of candidate models from the full model and we then 312 

used multi-model averaging to obtain parameter estimates (Burnham & Anderson 2004). 313 

Maximum-likelihood was used to allow model comparison with a study subject identifier 314 

included as a random effect. All possible model combinations of the variables included in the 315 

full model were run. Models that had ΔAICc values of <2 were then used to rank variable 316 

importance and obtain model averaged parameter estimates based on AICc relative importance 317 

weights (Burnham & Anderson 2004). Variables were transformed where required to improve 318 

linearity (Table 1). All model averaging was carried out in the glmulti package in RStudio 319 

(Calcagno and Mazancourt, 2010).  320 
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 321 

Whilst the FD metric allowed for comparisons to be made to phylogenetic diversity, the 322 

inclusion of a number of different traits meant it was difficult to discern which aspects of FD 323 

were driving any potential trends. To account for this, we analysed differentiation within each 324 

trait using mixed models comparing all possible model combinations based on AICc values. 325 

Full models started with diet breadth, hunting strategy and habitat domain included as fixed 326 

effects with the study subject identifier as a random effect. Models that had ΔAICc of <2 were 327 

then ranked to obtain model-averaged parameter estimates based on AICc relative importance 328 

weights (Burnham & Anderson 2004). Models were also run including just FD, so that a 329 

comparison of AICc values of the individual traits with the composite metric of functional 330 

diversity could be made.  331 

 332 

We also individually tested whether the experimental moderator variables had a significant 333 

effect on the two SMD metrics using mixed effects models, again using REML with a study 334 

subject identifier included as a random factor. We did not include experimental variables in 335 

model averaging as the focus of this analysis was to identify the importance of factors related 336 

to predator and prey community structure on prey suppression, not experimental design. 337 

Variables were tested individually as information was absent from several studies for some of 338 

the experimental explanatory variables.  339 

 340 

Results 341 

General effects across studies  342 

Overall trends showed greater prey suppression in predator polycultures compared to the mean 343 

effect of the component species in a monoculture (SMDmean), as the average effect size for 344 

SMDmean was significantly greater than zero (SMDmean = 0.444; 95% CI [0.265, 0.623]; Z = 345 

4.858, p = <0.001). However, SMDmax (suppression of herbivores in the polyculture compared 346 
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to the most effective predator) was not found to differ significantly from zero with a mean 347 

effect size of -0.109 (95% CI [-0.308, 0.090], Z = -1.078, p = 0.281). This shows that increased 348 

predator richness in polycultures did not result in significantly greater levels of prey 349 

suppression than the most effective predator in a monoculture.  350 

 351 

Predator and prey variables 352 

SMDmean 353 

Functional diversity was ranked as the most important variable based on relative model 354 

weights of the 2AICc subset, and was the only parameter included in the top ranked model 355 

(Table 2: Figure 1) (See Appendix S6 for 2AICc subset). Functional diversity (parameter 356 

estimate = 0.448, 95% CI [0.065, 0.831]) had a positive effect on SMDmean. Ratiosmall 357 

(parameter estimate = -0.080, 95% CI [-0.344, 0.184]) was ranked as the second most 358 

important variable, however had confidence intervals that overlapped zero, as did the 359 

variables prey richness, predator richness, size difference, prey size and decoupled 360 

phylogenetic diversity (Table 2; Figure 1).  361 

 362 

Where the individual traits were analysed separately, diet breadth was the only variable 363 

included in the top ranked model (See Appendix S7; Table 1). Differentiation within diet 364 

breadth (parameter estimate = 0.371, 95% CI [0.096, 0.646]) was found to have a positive 365 

effect on SMDmean. Hunting strategy was also included in the 2AICc subset, however had 95% 366 

confidence intervals that overlapped zero (hunting parameter estimate =  0.023, 95% CI [-367 

0.098, 0.144]). The FD only model showed a positive effect of FD (parameter estimate = 368 

0.453, 95% CI [0.072, 0.831]).  When compared to the diet breadth only model, the FD 369 

model had a higher AICc value (Diet breadth only model AICc = 443.960; Functional 370 

diversity model AICc = 445.671). Suggesting that the beneficial effects of FD on SMDmean in 371 

Page 16 of 94Ecology



For Review Only

 16 

the main predator and prey model may have largely been driven by differentiation in diet 372 

breadth.   373 

 374 

SMDmax 375 

Functional diversity, predator richness and ratiosmall were all included in the top ranked model 376 

for SMDmax (Appendix S6). Functional diversity (parameter estimate = 0.461, 95% CI [0.049, 377 

0.873]) was again found to have a positive effect, whereas both predator richness of >2 species 378 

(parameter estimate = -0.276, 95% CI [-0.541, -0.011]) and ratiosmall (parameter estimate = -379 

0.282, 95% CI [-0.754, 0.190]) had a negative effect on SMDmax (although the 95% CI for 380 

ratiosmall overlapped zero). Variables also included in the top ranked models were prey size and 381 

size difference between predators, however, these were only included in models in combination 382 

with functional diversity and had confidence intervals that overlapped zero (Table 2; Figure 2). 383 

Decoupled phylogenetic diversity was included in one model in the 2AICc subset, however it 384 

too had confidence intervals that overlapped zero (Table 2; Figure 2).  385 

 386 

Where the traits were analysed separately, a null model was included in the 2AICc subset 387 

(Appendix S7; Table 4). This indicated that none of the individual traits explained a greater 388 

amount of the variation than a model without any factors included. In comparison to the trait 389 

model, the FD model showed a clear positive effect of FD (parameter estimate = 0.458, 95% 390 

CI [0.049, 0.867]) on SMDmax, and had a lower AICc by a value of <2 compared to the null 391 

model (Appendix S7). This indicates that the positive effect of FD on SMDmax is likely 392 

dependent on a composite measure of diversity including all three traits.  393 

 394 

Experimental factors 395 
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Of the experimental variables tested, study design (additive or substitutive) was found to have 396 

a significant effect on SMDmax metric (Table 3). Compared to additive designs, substitutive 397 

designs were found to have a significantly lower mean effect size (whilst the mean for additive 398 

designs was positive, the 95% CI still overlapped zero) (Table 3; Figure 3). As this is indicative 399 

of a potential density effect, where positive diversity effects in polycultures could be a product 400 

of predator densities, we re-analysed the predator and prey variables for SMDmax only including 401 

studies that accounted for density. This had no qualitative effect on our results (See Appendix 402 

S8). None of the other experimental variables included had a significant effect on SMDmean or 403 

SMDmax, suggesting that the results were not artefacts of differences in spatio-temporal scale 404 

or the study setting (Table 3).  405 

 406 

Discussion 407 

When compared to the pest suppression achieved by individual predator species, combining 408 

predators in polycultures increased the top-down control of herbivores.  This is consistent with 409 

our first prediction that increased predator species richness leads to greater prey suppression.   410 

However, this was only the case when considering the average level of prey suppression across 411 

all predators (SMDmean), with polyculture effects not exceeding those of the most effective 412 

predator (SMDmax). Interestingly, increased species richness above that of simple two predator 413 

systems was shown to have a negative effect when polycultures were compared to the most 414 

effective predator species. This result is likely an artefact of bias in the calculation of SMDmax 415 

metric (Schmid et al. 2008; Griffin, Byrnes & Cardinale 2013).   Where predator assemblages 416 

are species rich they are increasingly likely to include species that affect the extreme ranges of 417 

prey suppression. Therefore, whilst sampling effects increase the likelihood that diverse 418 

polycultures will include a highly effective predator, when polycultures are compared to the 419 

most effective predator in a monoculture, they may be as probable to perform badly due to an 420 
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increased likelihood of poorly performing predatory species also being present (Schmid et al. 421 

2008). In an agricultural context, this would suggest that management should be targeted 422 

towards the most effective predator species rather than increasing overall richness (Straub & 423 

Snyder 2006; Straub et al. 2008). 424 

 425 

However, the results of our meta-regression supported our second prediction that greater FD 426 

positively affects prey suppression. Further analysis, where we compared the polyculture to the 427 

mean of the component species in monocultures, revealed that this was most likely to be driven 428 

by differences in diet breadth. Several studies suggest that intraguild predation by generalists 429 

on specialist predators can lead to herbivore communities being released from predation (e.g. 430 

Hodge, 1999; Rosenheim, Wilhoit and Armer, 1993; Snyder and Ives, 2001). However, our 431 

analysis would suggest that the combination of both generalist and specialist predators in 432 

polyculture treatments can lead to greater prey suppression than the mean of the component 433 

species. A number of mechanisms are proposed for this; firstly, complementary predation may 434 

occur between a generalist predator and specialist parasitoids where the predator prefers 435 

feeding on alternate or unparasitised prey, thus minimising intraguild predation on the 436 

parasitoid (Cardinale et al., 2003; Snyder et al., 2004). Secondly, it is possible that spatial 437 

resource partitioning commonly occurs between generalist and specialist predators feeding on 438 

different parts of the plant (Northfield et al., 2010; Gable et al., 2012). Consequently, our metric 439 

of diet breadth may have captured more subtle separation in predator feeding locations between 440 

specialist and generalists that were not captured by broader distinction within the habitat 441 

domain category. Thirdly, through sampling effects alone, a polyculture containing both 442 

specialist and generalist predators may lead to greater prey suppression when compared to the 443 

mean of the component species, due to inclusion of the most effective predator. Thus, in our 444 

analysis, this may have led to polycultures with increased diversity in the diet breadth category 445 
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causing greater prey depletion than the mean of the component predator species.  Where this 446 

occurs positive sampling effects cannot be ruled out. This mechanism is supported by empirical 447 

evidence from Straub and Snyder (2006), who found that the inclusion of an aphid specialist 448 

within polycultures led to significantly greater aphid depletion than communities without the 449 

specialist present. Finally, communities made up of both generalist and specialist predators 450 

may provide more stable herbivore control than monocultures of either type of predator alone 451 

due to the insurance hypothesis (Snyder et al., 2006).   452 

 453 

When we compared polycultures to the most effective predator, none of the single traits (diet 454 

breadth, habitat domain and hunting strategy) had a clear effect on prey suppression. Instead, 455 

only the composite measure of the functional diversity FD had a positive effect. Functional 456 

diversity based on these traits is likely to reflect broad niche partitioning between predators 457 

leading to fewer antagonistic interactions, and greater exploitation of available resources (Ives 458 

et al. 2004; Finke & Snyder 2008; Northfield et al. 2010; Gontijo et al. 2015; Northfield, 459 

Barton and Schmitz., 2017). Previous meta analyses by Cardinale et al. (2006) and Griffin, 460 

Byrnes & Cardinale (2013) found that increased predator species richness provided greater 461 

prey suppression than the mean of the component species, but not to a greater extent than the 462 

most effective predator. The results of our main meta-analysis are consistent with these studies, 463 

however, we have built on this previous research to suggest conditions under which predator 464 

polycultures can provide greater prey suppression than the most effective predator, as a result 465 

of functional diversity effects mediated through aggregate effects traits. Griffin, Byrnes & 466 

Cardinale (2013) used taxonomic distinctness (similar to our measure of phylogenetic 467 

diversity) as a proxy for functional diversity and found it had a positive effect on prey 468 

suppression in polycultures when compared to the mean of the component species, but not 469 

when compared to the most effective predator. In our analysis, when phylogeny was decoupled 470 
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from aspects of FD it was found to have no clear effect on prey suppression, supporting our 471 

third prediction that PD has a smaller effect on prey suppression than FD. One of the reasons 472 

that phylogeny was not identified as an important driver of prey suppression may be because 473 

only a few effects traits impact on prey suppression in the context of mesocosm studies, and 474 

these traits were represented through the FD metric in our analysis. Phylogenetic diversity is 475 

often used as a surrogate to represent all functional differences between species, however the 476 

variation explained by the key effects traits can be concealed by irrelevant traits also 477 

encompassed within the metric, which are a result of divergent evolutionary histories. This has 478 

led to contradicting results among different studies. For example, a study by Rusch et al. (2015) 479 

found that functional traits selected a priori, based on their link to prey suppression, better 480 

predicted aphid pest control compared to a taxonomic approach. Whereas a study by Bell et al. 481 

(2008) selected broad ranging functional traits that were incorporated into a single metric and 482 

had little effect in predicting the predation rates of a range of invertebrate predators compared 483 

to using taxonomy. Therefore, careful consideration of appropriate functional traits would 484 

appear imperative to discerning biodiversity and ecosystem functioning relationships where 485 

multiple traits are incorporated into a single metric. Furthermore, the relative usefulness of 486 

phylogenetic diversity/taxonomic approaches in predicting ecosystem services are also limited 487 

by the fact that they do not allow a direct link between traits and a function to be ascertained. 488 

This does not preclude the importance of phylogeny between species being of general 489 

importance, however in the case of prey suppression where appropriate traits were identified 490 

PD did not have a clear effect.   491 

 492 

Previous literature suggests that hunting mode and habitat domain play important roles in 493 

emergent impacts on prey suppression. However, in the current meta-analysis neither trait was 494 

identified to be individually important. The absence of detected effects of these traits within 495 
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this meta-analysis may be due to limitations in the data set.  For example, biases in the source 496 

data meant that ‘sit and wait’ and ‘mobile-active’ predators occurring within the same habitat 497 

made up a small proportion (18%) of the studies included in the analysis.  This would limit the 498 

capacity of the analysis to differentiate between effects of these hunting modes. A further issue 499 

may relate to how well broad habitat categorisations capture fine scale differences in predator’s 500 

habitat use across diverse study systems. It is possible that while the application of hunting 501 

domain and habitat domain to predict overyielding is effective, its definition within these 502 

categories needs to be defined on a community by community basis. Independent of these 503 

issues linked to limitations in the data, our results still suggest that broad niche differentiation 504 

through FD leads to overyielding.  It is highly likely that this is at least in part a function of 505 

complementarity between predators within combinations of habitat domain, hunting mode 506 

and/or the diet preferences.  This study ultimately provides evidence for the importance of 507 

predator functional diversity as a prerequisite for effective pest control across compositionally 508 

different predator-prey systems.  However, pulling apart the exact nature of the mechanisms 509 

that underpin this will be dependent on new methodological approaches to classification of 510 

factors like hunting strategy and habitat domain that allow for making high resolution 511 

comparisons between fundamentally different predator-prey systems. Northfield, Barton and 512 

Schmitz, (2017) present a spatially explicit theory to describe predator interactions across 513 

landscapes that is not dependent on temporal or spatial scale. They suggest that where there is 514 

complete overlap in spatial resource utilisation between predators, antagonistic interactions are 515 

likely to decrease the capacity of predators to suppress herbivore prey. Our results, whilst not 516 

from a spatially explicit standpoint, also broadly suggest that separate resource utilisation by 517 

predators will promote positive intraguild interactions across diverse systems.   518 

 519 

Page 22 of 94Ecology



For Review Only

 22 

In contradiction to our fourth prediction, we found an increase in the body size ratio between 520 

the smallest predator and prey species had a negative impact on prey suppression in 521 

polycultures, although there was large variation within this result. This is surprising as 522 

consumption rates and handling times are predicted to be larger and smaller, respectively, 523 

where the size difference between a predator and its prey is large (Petchey et al. 2008; Ball et 524 

al. 2015). A possible explanation is that as animals with larger body sizes tend to consume prey 525 

with a wider range of body sizes (Cohen et al. 1993), top generalist predators may consume 526 

smaller predators as well as prey where the difference in energy gain between prey items is 527 

large (Heithaus, 2001; Lima, 2002).  However, it could have been expected that the size 528 

difference variable between predators would have had a greater effect in our analysis. Size 529 

differences between predators may become more important where predators occupy the same 530 

habitat and show little specialisation in diet breadth. For example, Rusch et al., (2015) found 531 

that size differences weakened pest suppression in predatory ground beetles, which not only 532 

occur in the same habitat domain but are also generalist predators.  533 

 534 

Our meta-analysis highlights the importance of trait identification when discerning the 535 

relationships between biodiversity and ecosystem functioning, i.e. true effects traits like diet 536 

breadth, hunting strategy and habitat domain as used in this study that have been shown in 537 

quantitative research to play a direct role in the provision of an ecosystem service (Losey & 538 

Denno 1998; Schmitz 2007; Straub et al. 2008; Woodcock & Heard 2011; Ball et al. 2015). 539 

Understanding how species will respond to environmental perturbation through key response 540 

traits and how this will in turn affect functioning through fluctuations in effects traits is 541 

important in ascertaining the stability of ecosystem services in a changing environment 542 

(Jonsson et al., 2017; Oliver et al. 2015; Perović et al. 2017). Theoretically, where FD is 543 

concomitant with redundancy amongst predators and there is little correlation between 544 
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response and effects traits, this should provide greater stability of pest control ecosystem 545 

services (Oliver et al. 2015). This is because systems are more resilient to the loss of individual 546 

predators as long as their functions are maintained within the ecosystem (Oliver et al. 2015). 547 

However, whilst redundancy should theoretically lead to greater ecosystem service stability, 548 

this does not always occur.  For example, functional redundancy between parasitoids species 549 

was not found to improve the temporal stability of parasitism rates, with food web connectivity 550 

appearing more important in stability (Peralta et al., 2014). Consequently, more research is 551 

needed to determine the role of FD and functional redundancy in ecosystem service stability.  552 

 553 

Of the experimental variables, only study design (additive vs substitutive) had a significant 554 

effect on prey suppression.  Prey suppression in polycultures compared to monocultures was 555 

lower in substitutive than additive designs. The predominant reason for this could be that higher 556 

predator density in additive experimental polycultures may increase prey suppression where 557 

predation rates are density dependant and intraspecific interactions between heterospecific 558 

predators are neutral or positive (Griffen 2006). Importantly, this also highlights the possibility 559 

that increasing predator density within agro-ecosystems has beneficial effects on pest 560 

suppression. 561 

 562 

Conclusion  563 

Our results suggest that maximising functional diversity in predatory invertebrates within 564 

agricultural ecosystem will improve natural pest control. Relatively simple management 565 

measures, such as the inclusion of tussock-forming grasses in buffer strips surrounding crop 566 

fields, have been found to increase the FD of ground beetle assemblages on arable farmland 567 

(Woodcock et al. 2010). However, it is currently difficult to advocate single management 568 

options as other field margin types, such as grass leys, have conversely been found to increase 569 
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the functional similarity in spider communities (Rusch et al. 2014). It is therefore likely that 570 

habitat complexity plays an important role with a diversity of non-crop habitats needed to 571 

promote FD across a wide range of predators (Woodcock et al. 2010; Lavorel et al., 2013; 572 

Rusch et al. 2016). However, it is difficult to ascertain the precision with which this can be 573 

achieved in practice. Whilst mesocosms are useful for identifying basic species interactions 574 

they represent a simplified environment. Real-world agricultural ecosystems are host to an 575 

array of predator and pest species with complex life cycles. Mesocosm studies fail to account 576 

for fluctuations in predator numbers/assemblages both spatially and temporally.   Therefore, 577 

traits related to phenology and dispersal are likely to be relevant in field conditions and would 578 

be important to consider in any management practices (Landis, Wratten and Gurr, 2000). The 579 

results of our meta-analysis fall short of identifying a generalizable rule across all predator 580 

interactions that lead to overyielding. However, the findings do highlight the need to quantify 581 

how important context is, in terms of predator community assemblage and habitat, in 582 

determining which trait combinations promote beneficial effects from functional diversity for 583 

pest control ecosystem services. Future studies should aim to identify complimentary sets of 584 

traits within different predator communities to determine whether certain trait combinations 585 

consistently lead to overyielding, or whether the context dependency of differing predator 586 

communities and habitat means that the importance of different trait combinations fluctuates 587 

depending on the ecological setting. As we found no clear effects of individual traits, and only 588 

our overall metric of FD affected overyielding, our results would suggest that the latter is more 589 

likely. However, further research is required in realistic field based studies to determine this.  590 
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Table 1. Species variables included in analysis. 941 

Variable Measure Description 

Functional diversity 

(FD) 

Continuous Mean pairwise functional dissimilarity 

between species in each experiment 

based on the traits included in 

Appendix S3 (excluding body size).  

Hunting strategy Continuous Mean pairwise dissimilarity between 

species in each experiment based on 

hunting (sit and wait, ambush and 

pursue or active).  

Habitat domain Continuous Mean pairwise dissimilarity between 

species in each experiment based on 

habitat (ground/base of plant, foliar or 

broad).  

Diet breadth Continuous Mean pairwise dissimilarity between 

species in each experiment based on 

diet breadth (specialist or generalist).  

Phylogenetic 

diversity (PD) 

Continuous Mean pairwise phylogenetic 

dissimilarity between species based on 

Linnaean taxonomic classification 

decoupled from the functional traits. 

ratiolarge Continuous Body size ratio between the largest 

predator species and the prey species 

(largest predator body size/prey body 

size). Sqrt transformed. *Excluded 

from analysis. 

ratiosmall Continuous Body size ratio between the smallest 

predator species in the polyculture and 

the prey species (smallest predator 

body size/prey body size). Sqrt 

transformed. 

Size difference  Continuous Mean pairwise difference in body size 

(length in mm) between predator 

species in each experiment.  

Prey size (mm) Continuous Body length of the prey. Where 

multiple prey were included in a 

treatment the mean of their body sizes 

was used. Log transformed. 

Predator species 

richness 

Factor (2 or >2) Two level factor categorising 

polyculture treatments on whether they 

contained two predators or more than 

two predators (max predator species 

richness = 4). 

Prey species richness Factor (1 or >1) Two level factor categorising whether 

one or more than one prey species was 

present in the study (max prey species 

richness = 4).  

 942 
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Table 2. Multimodel average parameter estimates for SMDmean (predator polyculture 943 

compared to the mean of the component predator species in monocultures) and SMDmax 944 

(predator polyculture compared to the most effective predator species in a monoculture). Prey 945 

richness and predator richness estimate is the difference between the reference level (predator 946 

richness = 2 species; prey richness = 1). Parameters in bold indicate that the variable was 947 

included in the highest ranked model.  948 

Metric Parameter Estimate Importance  95% CI lower 

bound 

95% CI upper 

bound 

SMDmean       

 Prey richness >1 0.007 0.062  -0.033 0.047 

 Predator richness >2 0.011 0.120  -0.044 0.066 

 Prey size -0.011 0.133  -0.062 0.04 

 Phylogenetic 

diversity 

0.099 0.233  -0.284 0.482 

 Size difference -0.008 0.320  -0.035 0.019 

 ratiosmall -0.080 0.336  -0.344 0.184 

 Functional diversity 0.448 1.000  0.065 0.831 

       

SMDmax       

 Phylogenetic 

diversity 

0.038 0.122  -0.147 0.223 

 Prey size -0.032 0.211  -0.149 0.085 

 Size difference -0.005 0.245  -0.026 0.016 

 ratiosmall -0.282 0.747  -0.754 0.190 

 Predator richness >2 -0.276 1.000  -0.541 -0.011 

 Functional diversity 0.461 1.000  0.049 0.873 

 949 

 950 

 951 

 952 

 953 

 954 

 955 

 956 

 957 

 958 
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Table 3. Tests for experimental moderator variables. Parameter estimates are shown for 959 

continuous variables. Categorical variable estimate is the reference level then the difference 960 

between the other levels of the factor. QM statistic is the omnibus test for the factors and 961 

Wald z-tests show differences between levels.  SMDmean is predator polyculture compared to 962 

the mean of the component predator species in monocultures. SMDmax is the predator 963 

polyculture compared to the most effective predator species in a monoculture. 964 

 965 

 966 

 967 

 968 

 969 

 970 

Metric Factor n Estimate 95% CI  

lower 

bound 

95% CI  

upper 

bound 

QM df P-value 

SMDmean Log cage 

volume (cm3) 

186 0.049 

 

-0.018 0.116 2.084 

 

1 0.149 

 Duration of 

study (hours) 

209 -0.0002 

 

-0.001 0.0002 0.892 

 

1 0.345 

 Design     3.188 1 0.074 

 Additive 

(reference)  

99 0.569 0.341 0.797    

 Substitutive 115 -0.277 

 

-0.581 0.027   0.074 

 Study setting     0.191 1 0.662 

 Field (reference) 89 0.487 0.222 0.752    

 Lab/Greenhouse 125 -0.072 -0.393 0.250   0.662 

SMDmax Log cage 

volume (cm3) 

186 0.037 

 

-0.036 0.109 0.988 

 

1 0.320 

 

 Duration of 

study (hours) 

209 -0.0002 -0.001 0.0003 0.707  0.401 

 Design     9.351 1 0.002 
 Additive 

(reference)  

99 0.122 -0.136 0.379    

 Substitutive 115 -0.519 -0.852 -0.186   0.002 

 Study setting     0.003 1 0.955 

 Field (reference) 89 -0.104 -0.392 0.185    

 Lab/Greenhouse 125 -0.010 -0.353 0.333   0.955 
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Figure 1. Multimodel average parameter estimates for SMDmean (predator polyculture 971 

compared to the mean of the component predator species in monocultures); lines indicate 972 

±95% confidence intervals. Predator richness and prey richness are factors and show the 973 

difference between the reference level (reference level for predator richness = 2 species and 974 

prey richness = 1 species). 975 

 976 

Figure 2. Multimodel average parameter estimates for SMDmax (predator polyculture 977 

compared to the most effective predator species in a monoculture); lines indicate ±95% 978 

confidence intervals. Predator richness is the difference between the reference level (predator 979 

richness = 2 species). 980 

 981 

Figure 3. SMDmax (predator polyculture compared to the most effective predator species in a 982 

monoculture) for additive (n = 99) and substitutive (n = 115) designs; lines indicate ±95% 983 

confidence intervals.  984 

 985 
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Figure 2 1023 
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Figure 3 1046 
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Appendix S1 

Search terms used in web of science: 

(predator OR predation OR natural enemy OR parasitoid) AND (richness OR biodiversity 

OR diversity) AND (pest OR prey OR suppression OR biocontrol OR biological control OR 

ecosystem function* OR ecosystem process* OR diversity-function) AND (insect* or 

invertebrate*) AND (experiment OR experimental OR manipulation)   

(predator OR predation OR natural enemy OR parasitoid) AND (pest OR prey OR 

suppression OR biocontrol OR biological control OR ecosystem function* OR ecosystem 

process* OR diversity-function) AND (insect* or invertebrate*) AND (experiment OR 

experimental OR manipulation OR cage OR mesocosm)  
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Studies included in the meta-analysis.  
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Appendix S3 

 

Table of species functional traits and their definitions. Also shown are the trait categorisations for each of the species included in the meta-

analysis. 

Table 1. Species functional trait categories and their definitions.  

 

Trait Categories Definition 

Habitat domain Foliar Predator species that predominantly hunt on plant foliage. 

Example Coccinellidae and Miridae. 

 Ground or base of plant (BPG) Predators that predominantly hunt on the ground or around the 

base of plant. Example Carabidae. 

 Broad Predators that are likely to hunt in both foliar and ground 

domains. Examples Lycosidae and Phalangiidae.  

Hunting strategy Sit and wait (SW) Predator species waits for prey as opposed to actively pursuing 

prey. Examples Nabis species. 

 Ambush and pursue (AP) Predator species waits for prey and then actively pursues once a 

prey item has been identified. Example Misumenops species.  

 Active Predator actively searches and pursues prey. Example 

Cocinnellidae. 

Diet breadth Generalist Broad arthropod diet with little or no feeding specialisation 

documented for a particular herbivore species. Example 

Lycosidae.  

 Specialist Specialisation documented for particular herbivore species, 

however this categorisation does not preclude intraguild 

predation or alternate prey species. This category also includes 

parasitoid species. Example Phytoseiulus.  

   

Body size (mm)  Mean body length across the life stage of the predator species in 

mm.  
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Table 2. All the species included in the studies used in the meta-analysis; their code used in analysis; trait categorisations for diet breadth, 

hunting strategy and habitat domain; mean body size (mm); and sources used for trait information.  

 

Predator Code Diet breadth Habitat 

domain 

Hunting 

strategy 

Size (mm) Ref 

Adalia bipunctata 

(adult) 

Ab_a Specialist Foliar Active 4.5 Agarwala, B.K. and Dixon, A.F. (1993). Kin 

recognition: egg and larval cannibalism in 

Adalia bipunctata (Coleoptera: 

Coccinellidae). Eur. J. Entomol., 90,.45-50. 

 

Pervez, A. (2005). Ecology of two‐spotted 

ladybird, Adalia bipunctata: a review. J. 

Appl. Entomol., 129,  465-474.   

Adalia bipunctata 

(larvae) 

Ab_l Specialist Foliar Active 3.25 Agarwala, B.K. and Dixon, A.F. (1993). Kin 

recognition: egg and larval cannibalism in 

Adalia bipunctata (Coleoptera: 

Coccinellidae). Eur. J. Entomol., 90,.45-50. 

 

Pervez, A. (2005). Ecology of two‐spotted 

ladybird, Adalia bipunctata: a review. J. 

Appl. Entomol, 129,  465-474.   

Amblyseius 

fallacis 

Af Specialist Foliar Active 0.5 Appliedbio-nomics. (2017).  Amblyseius 

(Neoseiulus) fallacis. [online] Available at: 

https://www.appliedbio-nomics.com/wp-

content/uploads/201-fallacis.pdf. [Accessed 

4 Jul. 2017]. 

 

Hogmire, H. (1995). Mid-Atlantic orchard 

monitoring guide. Ithaca, N.Y. Northeast 

Regional Agricultural Engineering Service, 
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Cooperative Extension.  

Amblyseius 

cucumeris 

Ac Specialist Foliar Active 0.4 Evergreen Growers Supply. (2017). 

Amblyseius cucumeris. [online] Available 

at: 

https://www.evergreengrowers.com/thrips-

control/amblyseius-cucumeris-thrips-

control/amblyseius-cucumeris.html 

[Accessed 4 Jul. 2017].  

 

Wiethoff, J., Poehling, H.M. & Meyhofer, 

R. (2004). Combining plant- and soil-

dwelling predatory mites to optimise 

biological control of thrips. Experimental 

and Applied Acarology, 34, 239–261.  

Anthocoris 

nemorum (adult) 

An_a Generalist Foliar Active 3.5 Meyling, N.V., Enkegaard, A. and 

Brødsgaard, H. (2004). Intraguild predation 

by Anthocoris nemorum (Heteroptera: 

Anthocoridae) on the aphid parasitoid 

Aphidius colemani (Hhymenoptera: 

Braconidae). Biocontrol Sci.Techn, 14, 627-

630. 

 

Sigsgaard, L. (2010). Habitat and prey 

preferences of the two predatory bugs 

Anthocoris nemorum (L.) and A. nemoralis 

(Fabricius) (Anthocoridae: Hemiptera-

Heteroptera). Biol.l Control., 53, 46-54. 

Anyphaena 

pacifica (juvenile) 

Ap Generalist Broad Active 4.2 Hogg, B.N. and Daane, K.M. (2014). The 

roles of top and intermediate predators in 

herbivore suppression: contrasting results 

from the field and laboratory. Ecol. 

Entomol., 39, 49-158.  
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Aphidius ervi Ae Specialist Foliar Active 2.5 Applied Bio-nomics. (2017). Aphidius 

(Aphidius matricariae, A. colemani, A. ervi) 

Aphid Parasites. [online] Available at: 

http://www.appliedbio-nomics.com/wp-

content/uploads/242-aphidius.pdf [Accessed 

4 Jul. 2017]. 

Aphidius 

floridaensis 

(adult) 

Aflor Specialist Foliar Active 2.5 Ferguson, K.I. and Stiling, P. (1996). Non-

additive effects of multiple natural enemies 

on aphid populations. Oecologia, 108, 375-

379. 

Aphidius 

matricariae 

Amat Specialist Foliar Active 2.5 Applied Bio-nomics. (2017). Aphidius 

(Aphidius matricariae, A. colemani, A. ervi) 

Aphid Parasites. [online] Available at: 

http://www.appliedbio-nomics.com/wp-

content/uploads/242-aphidius.pdf [Accessed 

4 Jul. 2017]. 

Aphidoletes 

aphidimyza 

(larvae) 

Aaphi Specialist Foliar Active 2.5 Cornell University College of Agriculture 

and Life Science. (2017). Aphidoletes 

aphidimyza. [online] Available at: 

https://biocontrol.entomology.cornell.edu/pr

edators/Aphidoletes.php [Accessed 4 Jul. 

2017]. 

Atypena 

formosana 

(juvenile) 

Afor Generalist Broad SW 3 Sigsgaard, L. (2007). Early season natural 

control of the brown planthopper, 

Nilaparvata lugens: the contribution and 

interaction of two spider species and a 

predatory bug. B. Entomol. Res., 97, 533-

544. 

 

Sigsgaard, L., Toft, S. and Villareal, S. 

(2001). Diet‐dependent fecundity of the 

spiders Atypena formosana and Pardosa 
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pseudoannulata, predators in irrigated 

rice. Agr. Forest Entomol., 3, 285-295.  

Calathus fuscipes Cf Generalist BPG Active 12 Expert opinion.  

Cheiracanthium 

mildei  (juvenile) 

Cm Generalist Broad Active 5.17 Hogg, B.N. and Daane, K.M. (2011). 

Diversity and invasion within a predator 

community: impacts on herbivore 

suppression. Journal of Applied Ecology, 

48, 453-461. 

 

Spiders.us. (2017). Cheiracanthium mildei 

(Longlegged Sac Spider) Pictures and 

Spider Identification. [online] Available at: 

http://www.spiders.us/species/cheiracanthiu

m-mildei/ [Accessed 4 Jul. 2017]. 

Chrysoperla 

carnea (larvae) 

Cc_l Specialist Foliar Active 4.85 Hanskumar, S.V. (2012). Feeding potential 

and insecticidal safety evaluation of 

Chrysoperla sp.(carnea-group) (Doctoral 

dissertation, Iari, Division Of Entomology). 

 

Mochizuki, A., Naka, H., Hamasaki, K. and 

Mitsunaga, T. (2006). Larval cannibalism 

and intraguild predation between the 

introduced green lacewing, Chrysoperla 

carnea, and the indigenous trash-carrying 

green lacewing, Mallada desjardinsi 

(Neuroptera: Chrysopidae), as a case study 

of potential nontarget effect 

assessment. Environ. Entomol., 35, 1298-

1303. 

 

Ulhaq, M.M., Sattar, A., Salihah, Z., Farid, 

A., Usman, A. and Khattak, S.U.K. (2006). 
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Effect of different artificial diets on the 

biology of adult green lacewing 

(Chrysoperla carnea 

Stephens). Songklanakarin J Sci 

Technol, 28, 1-8. 

Chrysoperla 

plorabunda 

(larvae) 

Cp_l Specialist Foliar Active 4.85 Hanskumar, S.V. (2012). Feeding potential 

and insecticidal safety evaluation of 

Chrysoperla sp.(carnea-group) (Doctoral 

dissertation, Iari, Division Of Entomology). 

 

Mochizuki, A., Naka, H., Hamasaki, K. and 

Mitsunaga, T. (2006). Larval cannibalism 

and intraguild predation between the 

introduced green lacewing, Chrysoperla 

carnea, and the indigenous trash-carrying 

green lacewing, Mallada desjardinsi 

(Neuroptera: Chrysopidae), as a case study 

of potential nontarget effect 

assessment. Environ. Entomol., 35, 1298-

1303. 

 

Ulhaq, M.M., Sattar, A., Salihah, Z., Farid, 

A., Usman, A. and Khattak, S.U.K. (2006). 

Effect of different artificial diets on the 

biology of adult green lacewing 

(Chrysoperla carnea 

Stephens). Songklanakarin J Sci 

Technol, 28, 1-8. 

Clubiona saltitans Csal Generalist Broad Active 7.55 Finke, D.L. and Denno, R.F. (2005). 

Predator diversity and the functioning of 

ecosystems: the role of intraguild predation 

in dampening trophic cascades. Ecol. 
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Lett., 8, 1299-1306. 

Coccinella 

septempunctata 

(adult) 

Csem_a Specialist Foliar Active 7.6 Cornell University College of Agriculture 

and Life Science. (2017). Coccinella 

septempunctata. [Online]. [4 July 2017]. 

Available from: 

https://biocontrol.entomology.cornell.edu/pr

edators/Coccinella.php Accessed 4 Jul. 

2017]. 

Coccinella 

septempunctata 

(larvae) 

Csem_l Specialist Foliar Active 5.5 Cornell University College of Agriculture 

and Life Science. (2017). Coccinella 

septempunctata. [Online]. [4 July 2017]. 

Available from: 

https://biocontrol.entomology.cornell.edu/pr

edators/Coccinella.php Accessed 4 Jul. 

2017]. 

Coleomagilla 

maculata (adult) 

Cmac_a Specialist Foliar Active 5.5 Cornell University College of Agriculture 

and Life Science. (2017). Coleomegilla 

maculata. [Online]. [4 July 2017]. Available 

from: 

https://biocontrol.entomology.cornell.edu/pr

edators/Coleomegilla.php. [Accessed 4 Jul. 

2017]. 

Cycloneda 

sanguinea (adult) 

Csang Specialist Foliar Active 4.75 Gordon, R. D. (1985).  The Coccinellidae 

(Coleoptera) of America North of Mexico  

Journal of the New York Entomological 

Society, Vol. 93 

 

Işıkber, A.A. and Copland, M.J.W., 2002. 

Effects of various aphid foods on Cycloneda 

sanguinea. Entomol. Exp. Appl., 102, 93-97. 

Cyclotrachelus 

sodalis 

Csod Generalist BPG Active 15 Snyder, W.E. and Wise, D.H. (2000). 

Antipredator behavior of spotted cucumber 
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beetles (Coleoptera: Chrysomelidae) in 

response to predators that pose varying 

risks. Environ. Entomol., 29, 35-42. 

Cyrtorhinus 

lividipennis 

(adult) 

Cl_a Specialist Foliar Active 2.85 Wilby, A., Villareal, S.C., Lan, L.P., Heong, 

K.L. & Thomas, M.B. (2005). Functional 

benefits of predator species diversity depend 

on prey identity. Ecological Entomology, 

30, 497–501. 

Diaeretiella rapae Dr Specialist Foliar Active 2.15 Kant, R., Minor, M.A. and Trewick, S.A. 

(2012). Fitness gain in a koinobiont 

parasitoid Diaeretiella rapae (Hymenoptera: 

Aphidiidae) by parasitising hosts of 

different ages. J. Asia-Pacific Entomol., 15, 

83-87. 

 

Karad, N.K., Korat, D.M. (2014). Biology 

and morphometry of Diaeretiella rapae 

(Mclntosh) - a parasitoid of aphids*. 

Karnataka J. Agric. Sci., 27, 531-533 

Dicyphus 

tamaninii (nymph) 

Dt Generalist Foliar Active 4.5 Agustí, N., Gabarra, R. (2009). Effect of 

adult age and insect density of Dicyphus 

tamaninii Wagner (Heteroptera: Miridae) on 

progeny. J. Pest Sci., 82, 241–246. 

 

Wheeler, A. G. (2000). Predacious plant 

bugs (Miridae),. In C. W. Scaefer and A. R. 

Panizzi (eds.), Heteroptera of economic 

importance. CRC press, Boca Raton, FL. p 

657–693 

Episyrphus 

balteatus (larvae) 

Eb Specialist Foliar Active 15 Biopol. (2017). Episyrphus balteatus. 

[online] Available at: 

http://www.biopol.nl/en/solutions/biological
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-pest-control/aphids/hoverfly/episyrphus-

balteatus/ [Accessed 4 Jul. 2017]. 

Erigone atra Ea Generalist BPG SW 2.25 Dinter, A. (2002). Microcosm studies on 

intraguild predation between female 

erigonid spiders and lacewing larvae and 

influence of single versus multiple predators 

on cereal aphids. Journal of Applied 

Entomology, 126, 249-257. 

 

Expert opinion.  

 

Harvey, P.R., Nellist, D.R. & Telfer, M.G. 

(eds) 2002. Provisional atlas of British 

spiders (Arachnida, Araneae), Volumes 1 & 

2. Huntingdon: Biological Records Centre. 

Forficula 

auricularia 

Fa Generalist Broad Active 13.5 Department of Entomology (Penn State 

University). (2017). European Earwigs 

(Department of Entomology). [online] 

Available at: 

http://ento.psu.edu/extension/factsheets/ear

wigs [Accessed 4 Jul. 2017].  

Geocoris 

pallens and Geoc

oris punctipes* 

(adult) 

Geo Generalist Foliar Active 4 Bao‐Fundora, L., Ramirez‐Romero, R., 

Sánchez‐Hernández, C.V., Sánchez‐

Martínez, J. and Desneux, N. (2016). 

Intraguild predation of Geocoris punctipes 

on Eretmocerus eremicus and its influence 

on the control of the whitefly Trialeurodes 

vaporariorum. Pest Manag. Sci., 72, 1110-

1116. 

 

Utah Pests Fact Sheet. (2011). Beneficial 

True Bugs: Big-Eyed Bugs. [online] 
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Available at: 

http://extension.usu.edu/files/publications/fa

ctsheet/big-eyed-bugs.pdf [Accessed 4 Jul. 

2017]. 

Grammonota 

trivitatta  

Gt Generalist BPG SW 3 Denno, R.F., Mitter, M.S., Langellotto, 

G.A., Gratton, C. and Finke, D.L. (2004). 

Interactions between a hunting spider and a 

web‐builder: consequences of intraguild 

predation and cannibalism for prey 

suppression. Ecol. Entomol., 29, 566-577. 

 

Wimp, G.M., Murphy, S.M., Lewis, D., 

Douglas, M.R., Ambikapathi, R., Van-Tull, 

L.A., Gratton, C. and Denno, R.F. (2013). 

Predator hunting mode influences patterns 

of prey use from grazing and epigeic food 

webs. Oecologia, 171,1-11  

Harmonia 

axyridis (adult) 

Haxy_a Generalist Foliar Active 6.75 University of Michigan - Animal Diversity 

Web. (2017). Hippodamia convergens 

(convergent lady beetle). [online] Available 

at: 

http://animaldiversity.org/accounts/Hippoda

mia_convergens/ [Accessed 4 Jul. 2017]. 

Harmonia 

axyridis (larvae) 

Haxy_l Generalist Foliar Active 6.3 University of Michigan - Animal Diversity 

Web. (2017). Hippodamia convergens 

(convergent lady beetle). [online] Available 

at: 

http://animaldiversity.org/accounts/Hippoda

mia_convergens/ [Accessed 4 Jul. 2017]. 

Harpalus 

pennsylvanicus 

(adult) 

Hpen Generalist BPG Active 14.5 Department of Entomology (Penn State 

University). (2017). Ground and Tiger 

Beetles (Coleoptera: Carabidae) 
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(Department of Entomology). [online] 

Available at: 

http://ento.psu.edu/extension/factsheets/grou

nd-beetles [Accessed 4 Jul. 2017]. 

 

NC State University. (2017). The Ground 

Beetles of Eastern North Carolina 

Agriculture. [online] Available at: 

http://www4.ncsu.edu/~dorr/Insects/Predato

rs/Ground_Beetle/Ground_Beetles1_final.p

df [Accessed 4 Jul. 2017]. 

Hippodamia 

convergens 

(adult) 

Hc_a Specialist Foliar Active 6 University of Florida Entomolgy and 

Nematology. (2017). convergent ladybug - 

Hippodamia convergens. [online] Available 

at: 

http://entnemdept.ufl.edu/creatures/BENEFI

CIAL/convergent_lady_beetle.html 

[Accessed 4 Jul. 2017]. 

 

University of Michigan - Animal Diversity 

Web. (2017). Hippodamia convergens 

(convergent lady beetle). [online] Available 

at: 

http://animaldiversity.org/accounts/Hippoda

mia_convergens/ [Accessed 4 Jul. 2017].  

Hippodamia 

convergens 

(larvae) 

Hc_l Specialist Foliar Active 5.5 University of Florida Entomolgy and 

Nematology. (2017). convergent ladybug - 

Hippodamia convergens. [online] Available 

at: 

http://entnemdept.ufl.edu/creatures/BENEFI

CIAL/convergent_lady_beetle.html 

[Accessed 4 Jul. 2017]. 
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University of Michigan - Animal Diversity 

Web. (2017). Hippodamia convergens 

(convergent lady beetle). [online] Available 

at: 

http://animaldiversity.org/accounts/Hippoda

mia_convergens/ [Accessed 4 Jul. 2017]. 

Hippodamia 

sinuata (larvae) 

Hs_l Specialist Foliar Active 5.5 PDF at 

http://mint.ippc.orst.edu/ladybeetfact.pdf 

modified from: Berry, R., Hall, B., Mooney, 

P. and Delaney, D. (1998). Insects and 

Mites of Economic Importance in the 

Northwest. 2
nd

 ed. Corvallis, Or. Dept. of 

Entomology, Oregon State University 

Hippodamia 

tredecimpunctata 

(larvae) 

Ht_l Specialist Foliar Active 5.45 Chinery, M., 1986. Collins guide to the 

insects of Britain and western Europe. 

London: Collins. p 258 

 

 

 

 

Hippodamia 

variegata (larvae) 

Hv_l Specialist Foliar Active 4 Farhadi, R., Allahyari, H. and Juliano, S.A. 

(2010). Functional response of larval and 

adult stages of Hippodamia variegata 

(Coleoptera: Coccinellidae) to different 

densities of Aphis fabae (Hemiptera: 

Aphididae). Environ. Entomol., 39, 1586-

1592. 

 

Rebolledo, R., Sheriff, J., Parra, L. and 

Aguilera, A., 2009. Life, seasonal cycles, 

and population fluctuation of Hippodamia 
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variegata (Goeze)(coleoptera: 

coccinellidae), in the Central plain of La 

Araucanía region, Chile. Chilean J. Agr. 

Res., 69, 292-298. 

Hogna helluo Hh Generalist BPG Active 19.5 Expert opinion.  

 

Snyder, W.E. & Wise, D.H. (2001). 

Antipredator behavior of spotted cucumber 

beetles (Coleoptera : Chrysomelidae) in 

response to predators that pose varying 

risks. Environmental Entomology, 29, 35–

42. 

Hypoaspis 

aculeifer 

Hacul Specialist BPG Active 0.6 Biological Services. (2017). Killer mites 

(Hypoaspis aculeifer) – Biological Services, 

Australia. [online] Available at: 

http://www.biologicalservices.com.au/produ

cts/killer-mites-23.html [Accessed 4 Jul. 

2017].  

 

Wiethoff, J., Poehling, H.M. & Meyhofer, 

R. (2004). Combining plant- and soil-

dwelling predatory mites to optimise 

biological control of thrips. Experimental 

and Applied Acarology, 34, 239–261.  

Laricobius 

nigrinus 

Lnig Specialist Foliar Active 3 Cornell Chronicle. (2017). Cornell releases 

predator beetle to battle hemlock pest | 

Cornell Chronicle. [online] Available at: 

http://news.cornell.edu/stories/2009/11/corn

ell-releases-predator-beetle-battle-hemlock-

pest [Accessed 4 Jul. 2017]. 

 

Zilahi-Balogh, G.M.G., Humble, L.M., Kok, 
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L.T. and Salom, S.M. (2006). Morphology 

of Laricobius nigrinus (Coleoptera: 

Derodontidae), a predator of the hemlock 

woolly adelgid. Canadian Entomol., 138, 

595-601. 

Laricobius 

nigrinus (larvae) 

Lnig_l Specialist Foliar Active 2.69 Cornell Chronicle. (2017). Cornell releases 

predator beetle to battle hemlock pest | 

Cornell Chronicle. [online] Available at: 

http://news.cornell.edu/stories/2009/11/corn

ell-releases-predator-beetle-battle-hemlock-

pest [Accessed 4 Jul. 2017]. 

 

Zilahi-Balogh, G.M.G., Humble, L.M., Kok, 

L.T. and Salom, S.M. (2006). Morphology 

of Laricobius nigrinus (Coleoptera: 

Derodontidae), a predator of the hemlock 

woolly adelgid. Canadian Entomol., 138, 

595-601. 

Macrolophus 

caliginosus 

Mc Generalist Foliar Active 3.25 Bonato, O., Couton, L. and Fargues, J. 

(2006). Feeding preference of Macrolophus 

caliginosus (Heteroptera: Miridae) on 

Bemisia tabaci and Trialeurodes 

vaporariorum (Homoptera: Aleyrodidae). J. 

Econ. Entomol., 99, 1143-1151.  

 

Lucas, E. and Alomar, O. (2001). 

Macrolophus caliginosus (Wagner) as an 

intraguild prey for the zoophytophagous 

Dicyphus tamaninii Wagner (Heteroptera: 

Miridae). Biol. Control, 20, 147-152.  

Marpissa pikei Mpik Generalist Foliar Active 8 Expert opinion. 
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Brodeur, J. and Boivin, G. eds., 

2006. Trophic and guild interactions in 

biological control. New York: Springer. p 

249 

Meteorus ictericus Mict Specialist Foliar Active 5.15 Bürgi, L.P. and Mills, N.J. (2013). 

Developmental strategy and life history 

traits of Meteorus ictericus, a successful 

resident parasitoid of the exotic light brown 

apple moth in California. Biol. Control, 66, 

173-182. 

Metioche 

vittaticollis 

Mvit Specialist Foliar Active 10 Expert opinion.  
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Appendix S4  

Table showing the collinearity between predator and prey body size variables (Table 1). Also shown is the model results where ratiolarge (body 

size ratio between the largest predator and prey) was included instead of ratiosmall (body size ratio between the smallest predator and prey).  

 

Table 1. Pearson correlation coefficient between predator-prey size variables. Correlation where r >0.5 have been in highlighted in bold. 

 Size of largest 

predator 

(mm)* 

Size of 

smallest 

predator 

(mm)* 

Size 

difference 

between 

predators 

ratiosmall ratiolarge* Prey size 

(mm) 

Size of largest predator (mm)* 1.00 0.60 0.82 -0.05 0.26 0.43 

Size of smallest predator (mm)* 0.60 1.00 0.11 -0.04 -0.26 0.75 

Size difference between predators 0.82 0.11 1.00 0.01 0.45 0.03 

ratiosmall -0.05 -0.04 0.01 1.00 0.62 -0.44 

ratiolarge* 0.26 -0.26 0.45 0.62 1.00 -0.41 

Prey size (mm) 0.43 0.75 0.03 -0.44 -0.41 1.00 

Parameters marked with * indicates variable was removed from analysis due to a high level of collinearity with other variables. 

 

Ratiosmall = body size ratio between the smallest predator and prey  

Ratiolarge = body size ratio between the largest predator and prey  

Size difference = mean pairwise distance in body size between the predator species 
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Ratiolarge models  

 

Table 2. 2AICc model subset for SMDmean (predator polyculture compared to the mean of the component predator species in monocultures). 

Rank Model AICc Weight Relative weight 

1 Functional diversity 445.671 0.087 0.201 

2 Functional diversity + Size difference 446.136 0.069 0.159 

3 Functional diversity + Phylogenetic diversity 446.481 0.058 0.134 

4 Functional diversity + Phylogenetic diversity + Size difference 447.097 0.043 0.099 

5 Functional diversity + Predator richness 447.260 0.040 0.091 

6 Functional diversity + Prey richness 447.378 0.037 0.086 

7 Functional diversity + ratiolarge 447.570 0.034 0.078 

8 Functional diversity + Predator richness + Size difference 447.615 0.033 0.076 

9 Functional diversity + Prey size 447.616 0.033 0.076 
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Table 3. Multimodel averaged parameter estimates for SMDmean (predator polyculture compared to the mean of the component predator species 

in monocultures). Prey richness and predator richness estimate is the difference between the reference level (predator richness = 2 species and 

prey richness = 1 species). Parameter in bold indicate that the variable was included in the highest ranked model.  

Parameter Estimate Importance 95% CI lower bound 95% CI upper bound 

Prey size -0.002 0.076 -0.020 0.016 

ratiolarge -0.003 0.078 -0.024 0.018 

Prey richness >1 0.010 0.086 -0.045 0.065 

Predator richness >2 0.016 0.167 -0.058 0.09 

Phylogenetic diversity 0.102 0.233 -0.287 0.491 

Size difference -0.009 0.334 -0.037 0.019 

Functional diversity 0.452 1.000 0.070 0.834 
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SMDmax ratiolarge models 

Table 4. 2AICc model subset for SMDmax (predator polyculture compared to the most effective predator species in a monoculture). 

Rank Model AICc Weight Relative 

weight 

1 Predator richness + Functional diversity 543.920 0.086 0.242 

2 Predator richness + Functional diversity + Size difference 544.817 0.055 0.154 

3 Predator richness + Functional diversity + ratiolarge 545.036 0.049 0.139 

4 Predator richness + Functional diversity + Phylogenetic diversity 545.133 0.047 0.132 

5 Functional diversity 545.170 0.046 0.130 

6 Functional diversity + ratiolarge 545.482 0.039 0.111 

7 Functional diversity + Size difference 545.806 0.033 0.094 
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Table 5. Multimodel averaged parameter estimates for SMDmax (predator polyculture compared to the most effective predator species in a 

monoculture). Predator richness estimate is the difference between the reference level (predator richness = 2). Parameter in bold indicate that the 

variable was included in the highest ranked model.  

Parameter Estimate Importance 95% CI lower bound 95% CI upper bound 

Phylogenetic diversity 0.052 0.132 -0.180 0.282 

Size difference -0.006 0.248 -0.029 0.017 

ratiolarge -0.030 0.249 -0.143 0.083 

Predator richness >2 -0.158 0.666 -0.464 0.148 

Functional diversity 0.471 1.000 0.057 0.885 
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Appendix S6 

Model 2AICc subset for SMDmean and SMDmax metrics.  

 

SMDmean  

Table 1. 2AICc model subset for SMDmean (predator polyculture compared to the mean of the 

component predator species in monocultures). 

Rank Model AICc Weight Relative 

weight 

1 Functional diversity 445.671 0.070 0.145 

2 Functional diversity + Size difference 446.136 0.055 0.115 

3 Functional diversity + ratiosmall 446.167 0.054 0.113 

4 Functional diversity + Phylogenetic diversity 446.481 0.046 0.097 

5 Functional diversity + Size difference + ratiosmall 446.860 0.038 0.080 

6 Functional diversity + Prey size + ratiosmall 446.906 0.037 0.078 

7 
Functional diversity + Phylogenetic diversity + 

Size difference 447.097 0.034 0.071 

8 Functional diversity + Predator richness 447.260 0.031 0.065 

9 
Functional diversity + Phylogenetic diversity + 

ratiosmall 447.266 0.031 0.065 

10 Functional diversity + Prey richness 447.378 0.030 0.062 

11 
Functional diversity + Predator richness + Size 

difference 447.615 0.026 0.055 

12 Functional diversity + Prey size 447.616 0.026 0.055 
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SMDmax 

Table 2. 2AICc model subset for SMDmax (predator polyculture compared to the most 

effective predator species in a monoculture). 

Rank Model AICc Weight Relative 

weight 

1 Predator richness + Functional diversity + 

ratiosmall 

542.820 0.090 0.267 

2 Predator richness + Functional diversity + 

ratiosmall + Prey size 

543.295 0.071 0.211 

3 Predator richness + Functional diversity 543.920 0.052 0.154 

4 Predator richness + Functional diversity + Size 

difference + ratiosmall 

544.029 0.049 0.146 

5 Predator richness + Functional diversity + 

Phylogenetic diversity + ratiosmall 

544.398 0.041 0.121 

6 Predator richness + Functional diversity + Size 

difference 

544.817 0.033 0.099 
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Appendix S7  

Analysis of the individual traits diet breadth, hunting strategy and habitat domain on SMDmean 

(predator polyculture compared to the mean of the component predator species in 

monocultures) and SMDmax (predator polyculture compared to the most effective predator 

species in a monoculture). A functional diversity only model has also been included for 

comparison. 

SMDmean  

Table 1. 2AICc model subset for SMDmean. 

Rank Model AICc Weights Relative weight 

1 Diet breadth 443.960 0.479 0.709 

2 Diet breadth + Hunting strategy 445.743 0.197 0.291 

 

Table 2. Multimodel averaged parameter estimates for SMDmean. 

Parameter Estimate  Importance 95% CI lower bound 95% CI upper bound 

Hunting strategy 0.023 0.291 -0.098 0.144 

Diet breadth 0.371 1.000 0.096 0.646 

 

Table 3. Functional diversity only model for SMDmean.  

AICc = 445.671 

Parameter Estimate  95% CI lower bound 95% CI upper bound 

Functional diversity 0.453 0.072 0.831 

 

SMDmax   

Table 4. 2AICc model subset for SMDmax. 

Rank Model AICc Weights Relative weight 

1 Diet breadth 547.266 0.220 0.278 

2 Hunting strategy 547.864 0.163 0.206 

3 Diet breadth + Hunting strategy 547.882 0.162 0.204 

4 Null model 547.942 0.157 0.198 

5 Diet breadth + Habitat domain 549.028 0.091 0.115 
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Table 5. Multimodel averaged parameter estimates for SMDmax. 

Parameter Estimate Importance  95% CI lower bound 95% CI upper bound 

Habitat domain 0.012 0.115 -0.058 0.082 

Hunting strategy 0.084 0.410 -0.17 0.338 

Diet breadth 0.141 0.596 -0.179 0.461 

 

Table 6. Functional diversity only model for SMDmax.  

AICc = 545.170 

Parameter Estimate  95% CI lower bound 95% CI upper bound 

Functional diversity 0.458 0.051 0.865 
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Appendix S8 

As study design had a significant effect on the SMDmax metric (predator polyculture compared 

to the most effective predator species in a monoculture) (see Main paper; Table 3). We re-

analysed SMDmax removing additive design studies that did not account for predator density. 

This left 140 data points from a total of 26 studies. The model results from this subset of data 

supported our main result that functional diversity had a positive effect on SMDmax (Table 1 

and 2). The only difference was the absence of ratiosmall from the 2AICc subset. However, our 

main analysis showed large variation of the impact of ratiosmall on SMDmax. Thus, indicating 

no clear positive or negative effect of this variable.  

Table 1. 2AICc model subset for SMDmax . 

 

 Table 2. Multimodel average parameter estimates for SMDmax. Predator richness estimate is 

the difference between the reference level (predator richness = 2 species). Parameters in bold 

indicate that the variable was included in the highest ranked model.  

 

 

Rank Model AICc Weight Relative weight 

1 Functional diversity + Predator richness 355.877 0.122 0.385 

2 Functional diversity + Predator richness + 

Phylogenetic diversity 

356.524 0.089 0.279 

3 Functional diversity + Predator richness + 

Prey size 

357.294 0.060 0.190 

4 Functional diversity + Predator richness + 

Size difference 

357.794 0.047 0.148 

Parameter   Estimate  Importance  95% CI lower bound 95% CI upper 

bound 

Size difference 0.002 0.148 -0.01 0.014 

Prey size -0.023 0.189 -0.122 0.076 

Phylogenetic diversity 0.161 0.278 -0.412 0.734 

Predator richness >2 -0.487 1.000 -0.794 -0.18 

Functional diversity 0.688 1.000 0.067 1.309 
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