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Abstract 

The goal of this paper is to promote the use of Non-Parametric Regression (NPR) for 

hypothesis testing in hospitality and tourism research. In contrast to linear regression 

models, NPR frees researchers from the need to impose a priori specification on functional 

forms, thus allowing more flexibility and less vulnerability to misspecification problems. 

Importantly, we discuss in this paper a Bayesian approach to NPR using a Gaussian Process 

Prior (GPP). We illustrate the advantages of this method using an interesting application on 

internationalization and hotel performance. Specifically, we show how in contrast to linear 

regression, NPR decreases the risk of making incorrect hypothesis statements by revealing 

the true and full relationship between the variables of interest.  

1. Introduction 

Despite the increased popularity of non-parametric regression (NPR), its use in the tourism 

and hospitality literature remains very limited. We aim in this note to highlight the 

advantages of NPR, and illustrate how it can be used to provide a more accurate reflection 

on the true relationship between a set of variables. We show through an example that 

hospitality researchers might be missing some important input for hypothesis testing when 

estimating the traditional linear regression model.  

NPR, like linear regression, estimates mean outcomes for a given set of covariates. However, 

unlike linear regression, NPR is not subject to misspecification error arising from potentially 

wrong functional forms as it does not impose a priori a functional form on the regression 

model, (Müller, 2012; Mammen et al. 2012). . The linear model ( 0y x u    ) is generally 

assumed for convenience, and not because we truly believe that  the model is linear in reality. 

Researchers in the field often model nonlinearities using extensions of the linear model, for 

example, 2

0 1 2y x x u      . It is clear, however, that this model accounts only for 

limited types of nonlinearity of U or inverted U shape, and cannot capture more complicated 

patterns in the data. When more than one regressor is available, nonlinearities are often  

modeled using interactions: 0 1 2 3y x z xz u        . The interpretation is that the 

effect of x on y depends on z: 1 3

( )E y
z

x
 


 


.  This is, of course, a deviation from the 

simple linear model where the main assumption is that the effect of x on y is constant across 

all values of x or other explanatory variables. However, the effect of x on y depends on z in a 



linear way, an assumption that may or may not hold in practice. Moreover, the effect of x on 

y does not depend on x, a questionable assumption. 

Let us illustrate here the above with a small example: we generate for instance, 100 

observations from the model: exp( sin( )) 0.5 ,i i iy x     where the 
i s are standard normal 

random variables. The 
ix s are generated as a sequence in the interval [-3, 3] with step 6/99. 

The results (Figure 1) illustrate nicely what happens when a linear model is fitted to data, 

which have been generated through a nonlinear model. It is a complete miss! As mentioned, 

the linear model is only an approximation to an unknown regression function of the form: 

( )y f x u  . The non-parametric regression does not assume that f () is linear; it can in fact 

be non-linear. NPR does not also assume that f () is linear in the parameters. It could be 

actually anything!  In nonparametric analysis, we seek to estimate directly the unknown 

function ( )f x  when observations  , , 1,...,i ix y i n  are available. The model for each 

observation is ( )i i iy f x u   or , 1,...,i i iy f u i n    where ( )i if f x . The unknown 

function values 
1,..., nf f  are then treated as parameters. Clearly, the number of parameters in 

this instance, rises with the sample size. However, it is possible to obtain consistent estimates 

if we assume that the regression function is sufficiently smooth (i.e. possesses continuous 

derivatives of a certain order). 

Some popular non-parametric techniques include the Nadaraya – Watson estimator, kernel 

smoothing, local linear estimation etc. The situation is more difficult when the underlying 

model is:  ( )i i iy f x u  , where k

ix   is a vector of explanatory variables. This situation 

is of interest because rarely if ever we have only one explanatory variable. The problem of 

non-parametric regression with multiple explanatory variables is a difficult problem. One 

approach is additive non-parametric regression: 
1 1 2 2( ) ( ) ... ( )i i i k ik iy f x f x f x u     , 

where 1 2, ,..., kf f f  are unknown functional forms. In this model, however, the effect of any 

regressor on the dependent variable does not depend on the values of the other regressors; 

an assumption that is unlikely to be met in practice.  

In this paper, we describe a Bayesian approach to NPR, using a Gaussian Process Prior 

(GPP), which is a popular and effective way of dealing with the problems of non-parametric 

multivariate regression (Williams and Rasmussen, 1996; Williams, 1998; MacKay, 1998; 

Vivarelli and Williams, 1999).  We elaborate more on this method in the next section. We 

also present an application from the hotel literature. 

 

 

 



 

 

Figure 1.  NPR vs. Linear Regression: Results from Artificial Data 
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2. Bayesian nonparametric regression through Gaussian process prior 

Let us assume we have a dataset  , ; 1,...,i iy x i n  where d

ix   is a vector of predictors  

and 
iy  is the dependent variable. It is customary to use a linear regression model to perform 

statistical inferences. The linear regression model is 

 , 1,..., ,i i iy x u i n                                                                    (1) 

where d   is a vector of fixed coefficients. The linear regression model is, in reality, only 

an approximation to a true regression model of the form 

 ( ) , 1,..., ,i i iy f x u i n                                                                 (2) 

where ( )if x  is an unknown functional form. We assume  2~ 0,iu iidN  . 

We use here a Gaussian Process Prior (GPP) to approximate the true but unknown 

functional form. Suppose  1,..., ny y y   and  1,..., nf f f  represent, respectively, the 

vector of observations for the dependent variable and the vector of unknown function 

values at the observed regressors. Denote also  1,..., nX x x    be the n d  matrix of 

observations on the regressors. The model can be written in the form: 



 2| ~ ( , ).y f N f I                                                                       (3) 

The GPP places a prior upon the class of unknown functional forms: 

  ~ 0, ,f N                                                                         (4) 

where  is an n n  matrix whose elements are defined by: 

  , , , 1,..., ,ij i jx x i j n    

where  ,i jx x  is a certain kernel function that measures the distance between different 

points. A popular choice is 

  
2( ) ( )/2, ,i j i jx x x x

i jx x e


 
  

                                                  (5) 

where   and   are hyperparameters to be selected along with  . 

 

It is instructive to consider what types of functions can be delivered through a GPP. 

Samples from a GPP with 2, 1    are shown in Figure 2a and in Figure 2b when 

3, 3    in which case the resulting functions are closer to what we would expect in 

typical economic and management studies. 

 

Figure 2a. Samples from a Gaussian Process Prior (τ=2, η=1) 
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Figure 2b. Samples from a Gaussian Process Prior (τ=3, η=3) 
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Typically, we are interested in evaluating (and presenting graphically) the unknown 

functional form at a different set of points, say * * *

1 ,..., mX x x      where * , 1,..., .d

ix i m   

Let * * *

1 ,..., mf f f     denote the function values at these points. Therefore, we are interested 

in the posterior distribution *( | )p f y . Our model then is as follows: 

 
*

* * *

*

    0
~ , ,

0     

xx xx

xx x x

f
N

f

     
             

                                                 (6) 

 where    ,xx i jij
x x ,    *

*,i jxx ij
x x ,    * *

* *,i jx x ij
x x . It is simple to show 

that we have: 

 * *| ~ ( , ),f y N f V                                                                     (7) 

where  

  *

* 2 ,xxxx
f I y                                                            (8) 

  * * * *

2 .xxx x xx xx
V I                                                 (9) 

Based on (8) we can plot the unknown function at selected points. The log marginal 

likelihood of the model is: 

 11 1
2 2 2

log ( ) log(2 ) log | | ,nM y y y                                     (10) 



where  , ,      and   shows explicitly the dependence of matrix  on the 

hyperparameters in  . The log marginal likelihood can be maximized numerically with 

respect to the hyperparameters to provide the best possible choices that can, in turn, be used 

in (8) to provide the function values at the desired points. 

4. Application 

We illustrate the Bayesian non-parametric regression using an interesting application on the 

relationship between the degree of internationalization and hotel performance. We use data 

on 45 international hotels companies over a 5-year period (2008-2012).  

In line with the literature (Assaf et al. 2017), we measure the degree of internationalization 

for each company as the percentage of hotel brand properties operating in foreign countries 

divided by the total number of properties. For hotel performance, we use the Revenue per 

available room (RevPAR)1 (Canina, Enz, & Harrison, 2005; Higgins, 2006; Ismail, Dalbor, & 

Mills, 2002), a global and standard performance measure adopted in the hotel industry. In 

our model we also controlled for firm size (total number of rooms) and the purchasing 

power partity (PPP) of the destination where the hotel is located. 

The data for this study were mainly collected from three databases: (1) the Euromonitor, (2) 

the Smith Travel Research (STR), and (3) the World Bank’s DataBank. The data for the 

dependent (revenue per available room) and independent variables (degree of 

internationalization) were taken from the Euromonitor database.  

 

5. Results 

Table 1 provides some descriptive statistics of the model variables. We estimate the Bayesian 

NPR using the Gauss software. For comparison, we also estimate a simple linear regression.  

Table 2 presents the marginal effects results we obtained from both models. In Figures 3 to 

5 we also present the kernel densities for each variable obtained from the non-parametric 

regression. As mentioned, the key advantage of the non-parametric regression is that it 

provides much richer information than OLS. For instance, Figures 3-5 reflect the entire 

relationship and not just the average effect.  

Table 2 clearly highlights the significant differences between the linear regression and non-

parametric results. For instance, while linear regression shows a negative effect of 

internationalization and size on firm performance, the non-parametric results indicate the 

opposite. The size of the coefficients is also different between the two methods.  

                                                           
1 We use the log of RevPAR due to the highly skewed nature of this variable. 



Why such differences’? Because, it is clear from Figures 3 and 5 that the effect of 

internationalization and size is not linear.  Performance and internationalization, for instance, 

are related through an inverted-U relationship; performance first rises and then declines (but 

not rapidly). The relationship between performance and size is more complicated. There is 

an inverted-U shape followed by a rapid increase of performance after a certain point 

signifying that large size is beneficial for better performance. The relationship between 

performance and PPP is monotonic and only slightly nonlinear. 

In fact, this should help explain why the linear regression yields very different results as it is 

assuming a linear relationship and is only considering the average effect. The non-parametric 

regression, on the other hand, does not impose in advance a functional form and reflects the 

overall and true relationship between two variables. In fact, our non-parametric results seem 

also to be more in line with the literature (Lu and Beamish, 2004) which, for the most part, 

clearly indicate a non-linear relationship between internationalization and firm performance.  

 

6. Concluding Remarks 

The goal of this note was to promote the use of NPR in hospitality and tourism research.  

NPR models are not subject to misspecification error of the functional form and “provide a 

means of assessing a broad range of hypotheses such as whether the sign of the slope of a 

relationship changes or whether the relationship is additive, concave, or homothetic” 

(Yatchew, 1998, p.715). We believe there are many applications in the field where researchers 

are misspecifying the true functional forms between the hypothesized relationships. We 

clearly showed through this application the risk of assuming a linear relationship on a 

relationship that is not linear. As the literature indicates that internationalization and firm 

performance are related in a nonlinear way, the use of linear regression would be 

inappropriate and this is something we know in advance. Indeed, our application shows that 

the relationship is nonlinear in interesting ways and the use of linear regression would have 

been misleading. We presented a particularly well suited approach to nonparametric analysis 

in hospitality and tourism research, known as Gaussian Process Priors (GPP). GPPs can deal 

effectively with the problem of multivariate regression (i.e. in the presence of many 

covariates) and Bayesian computations are straightforward, requiring only matrix 

manipulations that can be performed in standard and widely available software. 

One can also estimate NPR in a non-Bayesian framework. For instance, STATA can provide 

such estimates through the “npregress” command. Unlike Bayesian estimation, however, the 

non-Bayesian framework requires a larger sample size than linear regression to lead 

consistent estimates. For instance, on the model used in our application, around 500 

observations should be at least needed to provide consistent estimates.    

 



 

Table 1. Descriptive Statistics of Model Variables 

Variable Mean St.Dev Median 

RevPAR 4.355 0.477 4.323 

Internationalization 0.511 0.404 0.417 

PPP 2195.56 3626.89 134.908 

Size 51.569 67.880 23.600 

 

 

Table 2. Marginal Effects: Non-Parametric Regression vs. Linear Regression 

Variable NPR Linear Regression 

Internationalization 0.055 (0.101) -0.085(0.077) 

PPP 0.463 (0.078) 5.01E-05 (9.23E-06) 

Firm Size 0.860 (0.130) -0.003 (0.000) 

Numbers in parentheses represent the standard deviations.  

 

 

 

 

 

 

 

 

 

 



Figure 3. Functional Form between Internationalization and Performance 

 

Figure 4. Functional Form between PPP and Performance 

 

Figure 5. Functional Form between Firm Size and Performance 
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