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Abstract: The heterogeneity of a cement-based material results in a random spatial distribution of carbonation 
depth. Currently, there is a lack of both experimental and numerical investigations aiming at a statistical 
understanding of this important phenomenon. This paper presents both experimental and numerical supercritical 
carbonation test results of cement mortar blocks. The carbonation depths are measured along the carbonation 
boundary by the proposed rapid image processing technique, which are then statistically studied by calculating, 
e.g., their probability density and power spectral density (PSD). The results indicate that the distribution of the 
carbonation depth can be approximately represented by a lognormal distribution function and the PSD has 
quantitative correlation with some of the statistic parameters used in the simulations. In particular, the effects of 
the autocorrelation lengths and the coefficient of variation of porosity, which are used to define the random 
porosity field, on the irregularity of carbonation depth are analyzed numerically in details and validated by 
experimental results. The study has shown that using a random field of porosity with due consideration of spatial 
correlation and variance, the irregularity of carbonation depth can be realistically captured by the numerical 
model. The numerical results confirm that lognormal distributions represent the random nature of carbonation 
depth well and the average and variance of the irregular carbonation depth increase with the increase of 
carbonation time, autocorrelation length and coefficient of variation of porosity. The study also offers a potential 
method to numerically calibrate some of the statistic parameters required by a numerical carbonation model 
through comparing the PSD with that from experimental tests. Overall the methodology adopted in the paper 
can provide a foundation for future investigations on probability analysis of carbonation depth and other similar 
work based on multi-scale and -physics modelling.  
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1. Introduction 

Carbonation of cement-based materials is a complex multi-physics process [1-5], involving chemical 

reactions of CO2 with CH and C-S-H; gas-liquid two phase flow; dispersion and diffusion of CO2 in water and 

temperature propagation. Extensive research has been carried out on natural and accelerated carbonation, 

including the reviews on carbonation of cement-based materials [6, 7] and the life prediction model of cement-

based materials under natural carbonation [8, 9]. However, when the temperature and pressure exceed 304.12 K 

and 7.38 MPa, which are their respective critical values, CO2 is in a supercritical fluid state that has a similar 

density of fluid and can diffuse through porous materials, such as cement-based materials, like a gas [10]. When 

the state of CO2 is between supercritical fluid state and natural atmospheric environment, the carbonation of 



cement-based materials belongs to accelerated carbonation. Techniques have been developed in recent years to 

take advantages of the above carbonation processes to, e.g., modify composition and microstructure of cement-

based materials [11-13] and to improve material properties using CO2 curing [14-16]. The techniques have also 

important applications in CO2 capture and storage [1], carbonation of hazardous water materials [17-19] and 

treatment of recycled concrete [20-22]. 
Carbonation depth is one of the most important characteristics that are used to define the extent of the 

chemical process taken place during carbonation. Experimental research has shown that under both natural [23] 

and supercritical [3, 24] conditions, the boundary topography of a carbonation zone is irregular, characterized by 

a random distribution of depth along the boundary with distinctive maximum and minimum. However, current 

theoretical and numerical models are almost exclusively based on the assumption that the materials are isotropic 

and homogenous [25], resulting in an uniform carbonation depth [26]. There are very limited research on the 

irregularities of carbonation depth, including Huang, et al. [27] and Ruan, et al. [28]’s studies on the carbonation 

process of concrete where a non-uniform distribution of carbonation depth was observed by considering the 

influence of aggregates.  

It can be concluded that that it was the heterogeneity of cement-based materials that contributes mostly to 

the observed randomness [29]. This includes the presence of coarse aggregates [30, 31], the carbon dioxide gas 

diffusion paths caused by distribution of cracks [31, 32] and the randomly distributed porosity of cement mortar 
[24]. To study the irregularity of carbonation depth, Huang, et al. [27] found that the variation of carbonation depth 

increased with increased use of coarse aggregates. Jiang, et al. [33] proposed a normal distribution model for 

carbonation depth in fatigue-damaged concrete and found that the probability distributions of carbonation depth 

were comparable with realistic frequency distribution histograms. However, apart from revealing the random 

nature of carbonation depth, there is a lack of quantitative assessment on its random distribution in the current 

literature.   

How to quantitatively describe the topography of rough carbonation front is one of the challenging issues 

preventing an insight understanding of this important phenomenon. A quantitative description of this randomness 

front is important in many aspects in terms of not only providing a fundamental understanding of the carbonation 

process, but also providing a quantitative tool for evaluating material property changes due to carbonation and 

assessing, e.g., occurrence of steel corrosion due to CO2 penetration. A literature review by the authors showed 

that power spectral density (PSD) is a powerful quantitative tool to measure a randomly distributed subject. For 

instance, researchers have used PSD to quantitatively characterize the topography of a rough surface so that the 

roughness could be further considered in estimating its impact on the mechanical and chemical properties of a 

material. PSD is a mathematical tool that decomposes a random signal into contributions from different 
spatial frequencies (wavevectors). Mathematically, PSD is a Fourier transform of the autocorrelation 
function of a signal, which contains just the power (and not the phase) across a range of wavevectors [34, 35]. 
There are some applications of the spectral analysis in civil engineering, such as stochastic content of aggregate 

shape profiles [36], inelastic torsional response of buildings [37] and monitoring of corrosion of rebar embedded 

in mortar [38]. The primary utility of PSD in the above studies is that it contains unbiased statistical information 

on the randomness of objectives [39]. However, to the authors’ best knowledge, there have been no attempts made 

to use PSD to describe carbonation depth. In addition, since PSD can provide a quantitative description of a 

random distribution, it can be used in a carbonation analysis to quantitatively determine the influences of 



materials, geometric and spatial parameters that define, e.g., randomness of porosity, on carbonation depth 

through comparisons between the PSD of experimental results and that of numerical models.  

Due to the complex nature of the problem, this paper attempts, as a pioneer work, to focus on investigating 

the irregularity of carbonation depth of cement mortar caused by randomly distributed porosity before it can be 

developed further to include aggregates and micro cracks. Both supercritical carbonation experiments and multi-

physics numerical simulations are carried out. The numerical simulations are based on the multi-physics model 

developed and validated previously by the authors [24], by which random porosity of cement mortar can be 

considered. An image processing technique is proposed in this paper for the spectral analysis of the experimental 

results. The probability density function and the PSD of carbonation depth from both experimental and numerical 

studies are found and discussed. The effects of some of the statistics factors, such as the autocorrelation spatial 

lengths and the coefficient of variation of porosity, on the carbonation depth are also discussed in this paper. 

2. Experimental investigation on the irregularity of carbonation depth 

2.1 Specimens preparation and mercury intrusion porosimetry 

Cement mortar cubes with a dimension of 100 mm × 100 mm × 100 mm were cast for mercury intrusion 

porosimetry (MIP) to measure the average porosity of the material. The mix design proportions are given in 

Table 1. The specified 28-day cubic compressive strength of the cubes is 30 MPa. Ordinary Portland cement 

type P.O 42.5 was used as the binder for the mixtures. Normal river sands with fineness modulus of 2.7 were 

used as the fine aggregates. 

 

Table 1  

Mixture proportions (kg/m3). 
 Cement Water Sand Gravel water-binder ratio 
Cement mortar 444.4 222.2 1333.3 — 0.5 

 

Twenty-one cement mortar cubes were cast for the MIP and supercritical carbonation tests. After casting, 

the test specimens were covered with plastic sheets, and left in the casting room for 24 hrs. The specimens were 

then demolded and placed into a standard curing room with a constant temperature of 20oC and humidity of 95% 

until the 28-day strength was achieved. Eighteen of the cured cubes were divided into 3 groups, each of which 

had six samples, for the supercritical carbonation test. The remaining three cubes were used for the MIP. 

MIP is a widely-used technique for characterizing the distribution of pore sizes in cement-based materials. 

Three small cubic samples of approximately 1cm3 were taken at different locations of the cement mortar cubes 

mentioned above and tested by mercury intrusion porosimetry to obtain the average porosity of the cement 

mortar cube. The samples were then immersed in absolute ethyl alcohol to avoid further hydration. The threshold 

pressure was 7.11 Pisa for MIP. Fig. 1 shows cumulative mercury intrusion versus pore size diameter of the three 

small samples. The porosities were estimated at 11.5%, 10.8%, 13.5%, respectively, for samples A, B and C, 

which gave an average of 12.0%. The average value will be used in the following Sections as the average porosity 

of the cement mortar before carbonation. During the MIP, It was also found that the size of the pores ranged 

from 3 nm to 90 µm. 
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Fig. 1. Cumulative mercury intrusion vs. pore size diameter curve 

2.2 Supercritical carbonation tests: procedure and setup 

The supercritical carbonation tests were performed using a closed-cycle carbonation system that includes a 

sealed chamber, a vacuum pump, an air compressor, a booster pump and a CO2 cylinder unit, as shown in Fig. 

2. Fig. 2 also shows that a temperature data logger, a pressure gauge and heating rods are mounted to the sealed 

chamber. For a typical test, 6 cubes can be placed in the chamber. 

Before CO2 gas injection, the chamber was vacuumed to -0.98 bar by the vacuum pump. CO2 gas was 

injected to the chamber driven by the pressure gradient between the CO2 tank and the chamber. The CO2 pressure 

and temperature in the chamber were controlled by a gas regulator. When the pressure in the CO2 tank was 

reduced and close to that of the chamber, the air compressor started to run to maintain the injection flow until 

the desired pressure and temperature in the chamber were achieved and kept at a constant level.  

 
 

a) Test setup b) Details of reaction still 
Fig. 2. Closed-cycle carbonation system 

The three groups of cubes were then carbonated to three different time periods with the temperature and 

atmospheric pressure exceeding, respectively, 304.12 K and 7.38 MPa. The pressure and temperature in the 

chamber were constantly monitored and recorded, as shown in Fig. 3(a), where the total carbonation time 

includes the inflating time, the supercritical carbonation time and the CO2 recycling time, denoted, respectively, 

by the ascending, plateaued and descending branches. From some preliminary results, which are not included 

here, it was observed that a minimum of 2-3 hours supercritical carbonation period was required for reliable data 

processing and a much longer carbonation time would lead to full carbonation with no or very short carbonation 

boundary to be analyzed. Therefore, 3 h, 4 h and 5 h supercritical carbonation times were selected to monitor 

the time dependent carbonation depth. In addition, time was also required to inject CO2 before the supercritical 
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pressure was reached and to recycle the CO2 to depressurize the chamber. The total carbonation time were, 

respectively, 4.5 h, 5.7 h and 7.5 h, as shown in Figs. 4(a-c). 

Figs. 3(a), (b) and (c) show the respective recorded temperature and pressure for a total carbonation time 

of 4.5 h, 5.7 h and 7.5 h, in which the respective supercritical carbonation times are 3 h, 4 h and 5 h.  

 
a) Group 1: Carbonated for 4.5 h (supercritically carbonated for 3 h) 

 
b) Group 2: Carbonated for 5.7 h (supercritically carbonated for 4 h) 

 
c) Group 3: Carbonated for 7.5 h (supercritically carbonated for 5 h) 

Fig. 3. Conditions of supercritical carbonation 

After the supercritical carbonation process was completed, the CO2 gas was recycled to the CO2 tank. The 

carbonated cement cubes were removed from the chamber.  

2.3 Test results of supercritical carbonation 

The carbonated cement cubes removed from the chamber were cut into two halves. The fresh cuts of the 

cubes were polished and cleaned. Phenolphthalein solution was sprayed on the cuts to reveal any non-carbonated 

zones identified by pink color, which also revealed the boundaries separating the carbonated and non-carbonated 

zones on the cuts. The colored surfaces were then scanned by a scanner. The scanned images are shown in Figs. 

4(a), (b) and (c), showing the cuts from the cubes carbonated for 4.5 h, 5.7 h and 7.5 h, respectively. As shown 
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in Fig. 4, the non-carbonized zones are all around the centers of the blocks and all have irregular boundaries of 

random nature. As a result, the maximum and minimum carbonation depths on a cut are shown, and are also of 

random nature. 

      
Sample-1 Sample-2 Sample-3 Sample-4 Sample-5 Sample-6 

a) Group 1: 4.5 hours carbonation (supercritically carbonated for 3 h) 

      
Sample-7 Sample-8 Sample-9 Sample-10 Sample-11 Sample-12 

b) Group 2: 5.7 hours carbonation (supercritically carbonated for 4 h) 

      
Sample-13 Sample-14 Sample-15 Sample-16 Sample-17 Sample-18 

c) Group 3: 7.5 hours carbonation (supercritically carbonated for 5 h) 
Fig. 4. Test results of supercritical carbonation of cement mortar 

3. Analysis of the irregularity of the experimental carbonation depth 

3.1 Imaging processing of the irregular carbonation depth 

Fig. 5(a) shows the carbonation boundary of the first sample in Fig. 4(a), which was from the scan image 

processed by Matlab as an assembly of pixels. To plot the carbonation depth against the location along the 

boundary in a rectangular co-ordinate system, the four corner points, identified as A, B, C and D at the 

carbonation boundary, are first located. The four points have the shortest distances to their respective nearest 

vertices formed by the edges of the section, as shown in Fig. 5(a). Starting from point A, the distances from the 

carbonation boundary to the edge of the cube were measured and are presented as the carbonation depth in Fig. 

5(b). In addition, by following this process, the measured carbonation depths under the small areas close to both 

sides of a corner were moved from data to be processed, which was intended to reduce the influences of higher 

area of CO2 penetration around corners. This can be seen from Fig. 5(b) where the measured carbonation depth 

is along a length (the horizontal axis) that is shorter than 400mm. We have also compared the carbonation depths, 

including the average, maximum and minimum depths, and the PDS measured from the image process described 

below with those measured only from the middle 50mm of each sides. The comparisons have shown that no 

significant differences between the two sets of results. Therefore, we assume that the corner effect after the image 

process on the test results is not significant. 
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 a) Binary image b) Distribution of carbonation depth 
Fig. 5. Distribution of the measured carbonation depth of sample-1 

The above procedure was applied to all the samples shown in Fig. 4 to record the distribution of the 

carbonation depths of all the tested cement mortar blocks carbonated, respectively, for 4.5, 5.7 and 7.5 hours. In 

summary, the carbonation depths of all the samples starting from point A are shown in Fig. 6, where the average 

carbonation depths of each samples are also shown. There is no question that the carbonation depths are 

randomly distributed for all the cases.  

 
a) Group 1: 4.5 hours carbonation  

 
b) Group 2: 5.7 hours carbonation  
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c) Group 3: 7.5 hours carbonation  

Fig. 6. Distribution of carbonation depth along the boundary of carbonation zone 

3.2 Average and variance of the irregular experimental carbonation depth 

In this section, the randomly distributed carbonation depths of the tested blocks are characterized by their 

average, maximum and minimum carbonation depths, which are extracted from Fig. 6 and presented in Fig. 7. 

It can be seen that within a group of the cement mortar blocks, the average carbonation depths across the 6 

samples agree with each other reasonably well, while the maximum and minimum carbonation depths across the 

six samples exhibit greater discrepancies.  

   
a) 4.5 hours carbonation b) 5.7 hours carbonation c) 7.5 hours carbonation 

Fig. 7. Test results of carbonation depth of the cement mortar samples 
 Table 2 presents the average carbonation depths and their variances across the six samples of each groups. 

As expected, the results show that both the average and the variance of the carbonation depths from the 

experiments increase with the increase of carbonation time. 

Table 2  

Average values of average carbonation depth and their variances of test blocks. 

Group Carbonation time, T (h) 
Average value 
Average carbonation depth, µ1 (mm) Variance, v1 (mm2) 

Group 1 4.5 7.8 12.4 
Group 2 5.7 10.0 15.8 
Group 3 7.5 11.6 20.4 

3.3 Probability density of the experimental carbonation depths  
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There have been studies done on the statistical analysis of accelerated and natural carbonation depth by 

applying normal distribution [33] and lognormal distribution functions [40], respectively. In order to study the 

distribution characteristics of supercritical carbonation depth, both the normal distribution function and 

lognormal distribution function were applied and compared in this paper. The respective probability density 

functions of the above two distributions are shown by Eq. ((1) and Eq. ((2). The relationship between the average, 

µ1, standard deviation, σ1, log average, µ2 and log standard deviation, σ2, are shown in Eq. ((3) and Eq. ((4): 

   (1) 

   (2) 

   (3) 

   (4) 

in which, x denotes carbonation depth; f1(x) is the probability density of normal distribution of x; f2(x) is the 

probability density of lognormal distribution of x. 

In order to evaluate statistically the irregularity of the carbonation depth, the average probability density of 

carbonation depth measured from the experimental results shown in Figs. 6(a), (b) and (c), respectively are 

compared with the probability density calculated from the analytical normal and the lognormal distribution 

functions defined in Eq. ((1) and Eq. ((2). Table 3 presents the parameters that are required to calculate the 

normal and the lognormal distribution probability densities of the tested carbonation depth by Eqs. ((1) and ((2) 

and were evaluated from the test results. 

 
Table 3  
Parameters for the normal and lognormal distributions probability density of the experimental carbonation 
depth. 

Carbonation time, 
T (h) 

Normal distribution Lognormal distribution 

Average, µ1 (mm) 
Standard deviation, σ1 

(mm) 
Log Average, µ2 (mm) 

Log standard 
deviation, σ2 (mm) 

4.5 7.8 3.5 2.0 0.4 
5.7 10.0 4.0 2.2 0.4 
7.5 11.6 4.5 2.4 0.4 

 

The comparisons between the test results and the distributions calculated from Eq. ((1) and Eq. ((2) are 

shown in Fig. 8. It can be seen that the probability density functions of carbonation depth of the three groups, 

i.e., for the blocks carbonated for 4.5 h, 5.7 h and 7.5 h, can all be represented reasonably well by both the normal 

and the lognormal distribution functions, while the lognormal one shows better approximation. This is judged 

by comparing both the overall shape of the curves and also the carbonation depth at which the maximum 

probability density occurs. Obviously, the carbonation depth at which the probability density reaches maximum 
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shows good agreement between the test results and the lognormal distribution function.  

   
a) 4.5 hours for cement mortar b) 5.7 hours for cement mortar c) 7.5 hours for cement mortar 

Fig. 8. Probability density function of test carbonation depth 

3.4 Power spectral density of the irregular experimental carbonation depth 

To quantitatively describe the random nature of the experimental carbonation depths, the PSD of them are 

studied in this Section. Before the PSD of the experimental carbonation depths is calculated, the raw data 

measured from the image process were pre-processed using a five-point running mean [41, 42] approach to remove 

some very high frequency elements, which can be potentially noises of the spectrum. The spectrum was also 

shifted downward by nullifying the carbonation depth represented by the trend line, which can eliminate the 

distortion of waveform caused by the deviation of the base line [43]. Fig. 9 shows how the date of sample-1 were 

processed from the non-zero baseline to the zero baseline distributions and that the processed curves become 

smoother after removing some of the high frequency. 

 
Fig. 9. Processing of experimental carbonation depth (sample-1) 

To find the underlying rule of the randomly distributed carbonation depth of cement mortar, the PSD of 

carbonation depth is calculated below. Mathematically, PSD is calculated from the autocorrelation function as 
[44].  

   (5) 

where PXX(ω) is PSD; ω is frequency; RXX(τ) is the autocorrelation function of x(t); x(t) is the carbonation depth 

as a function of location along the boundary; t and τ are the location co-ordinates along the boundary of the 

carbonation zone; RXX(τ) can be expressed as[44]: 
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   (6) 

where ttotal is the total length of the boundary of carbonation zone. The PSD of the carbonation depth calculated 

from Eqs. ((5) and ((6) for the six samples of each of the three groups are, respectively, shown in Figs. 10(a), (b) 

and (c). Fig. 10(d) presents the average PSD of each group. From observation, it was found that the distributions 

of the PSD for all the cases were close to a probability function of lognormal distribution. Therefore, curve 

fitting is used to present their respective average PSD explicitly in the form of probability function of lognormal 

distribution, as follows. 

   (7) 

where µ and σ are the parameters that are determined in the fitting process. As shown in Fig. 10(d), the fitted 

probability density function of lognormal distributions (solid lines) agree with their respective original data well. 

Thus, Eq. ((7) can be used with reasonable accuracy to represent the PSD of carbonation depth. In this paper, 

the frequency is defined as cycles completed within a unit length. It can be seen that carbonation time has little 

effect on the distribution of experimental carbonation depth in the frequency domain. For all the three cases, the 

power spectral density peaks approximate at a frequency of 0.015 mm-1 or 66.7 mm in wavelength. 

  

a) 4.5 hours carbonation  b)  5.7 hours carbonation  

  

c)  7.5 hours carbonation  d)  Average values of the 6 samples 
Fig. 10. Power spectral density of carbonation depth 

 

4. Numerical investigation on the irregularity of carbonation depth 
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the autocorrelation lengths on the average and variance of carbonation depth, probability density of irregular 

carbonation depth and the PSD of supercritical carbonation depth are discussed. 

4.1 Numerical simulation method of irregularity of carbonation depth 

4.1.1 Introduction to the numerical model of carbonation depth 

In this section, the test results presented in Section 3 are used to validate the probability density and the 

PSD of the carbonation depth predicted by the 2-D Multiphysics supercritical carbonation model developed 

previously by the authors [24], where a random field of porosity of cement-based on the method of the modified 

ellipsoidal autocorrelation function was used to simulate the random voids distribution. The developed random 

field model of porosity offered a porosity distribution ranged from 0 to 1 and considered the following spatial 

correlation by selecting the values of a and b [24]. 

   (8) 

where f is an ellipsoidal autocorrelation function; a and b are the autocorrelation lengths in the x and y directions, 

respectively; r is the roughness factor (when r=0, it is the Gaussian autocorrelation function). In the previous 

work, it was assumed that the autocorrelation lengths, a and b, in equation (8) were both 0.005 m [24]. It was 

observed that the introduction of spatial correlation resulted in more realistic results than those from other 

random models without considering it. The random porosity model of cement mortar blocks, considering the 

spatial correlation, can satisfactorily capture the irregular boundaries of the non-carbonated zones. Therefore, it 

is clear that the autocorrelation lengths, a and b, and coefficient of variation of porosity, CVp, have played 

important roles in defining the topography of the carbonation front.  

To simulate the random nature of the carbonation front, there are three main parameters that have to be 

considered, including the average porosity, the autocorrelation lengths and the coefficient of variation of porosity. 

The average porosity, 0.12 in this case, were obtained by mercury intrusion porosimetry. However, the 

autocorrelation lengths and the coefficient of variation of porosity cannot be directly measured easily. Therefore, 

numerical simulations, supported by experimental tests, can be used to evaluate the effect of autocorrelation 

lengths and coefficient of variation of porosity on the irregularity of carbonation depth, such that these 

parameters can be effectively validated.   

 

4.1.2 Test verification and analysis of numerical model 

In order to study the effects of the above two factors on the topography of carbonation depth, random 

porosity with autocorrelation lengths and coefficient of variation of porosity are studied. The average initial 

porosity is 0.12 from the mercury intrusion porosimetry test in Section 2.1. Other parameters used in the 

supercritical carbonation model are listed in Table 4. 

 

Table 4  

Parameters of supercritical carbonation model. 
Items Value References 

Intrinsic permeability, k0 1.5×10-20 m2 [45] 
Initial porosity, n0 0.12 From MIP 

12 2
1

2 2( , ) exp ( ) rx yx y
a b

f +
é ù

= - +ê ú
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Capillary pressure curve coefficient, α 4×10-8 Pa-1 [45] 
Relative permeability coefficient, m 0.49 [45] 

Relative humidity, h0 0.82 Measured  

 

The random porosity field with different autocorrelation lengths and coefficients of variation of porosity 

are shown in Fig. 11. Figs. 11(a), (b) and (c) show the porosity distribution of a cement mortar that has a fixed 

coefficient of variation of porosity CVp=0.3 and varying autocorrelation lengths, i.e., a=b=0.005 m, 0.008 m, 

0.01 m. Their respective carbonation profiles are shown in Figs. 11(d), (e) and (f), where the effect of spatial 

correlation on carbonation depth is evident. Figs. 11(g), (h) and (i) are the porosity distribution of the cement 

mortar with varying coefficient of variation of porosity CVp=0.1, 0.2 and 0.3, while the autocorrelation length is 

fixed to a=b=0.01 m. The respective carbonation results are shown in Figs. 11(j), (k) and (l). 

   
a) a=b=0.005 m b) a=b=0.008 m c) a=b=0.01 m 

   
d) Carbonation of model (a) e) Carbonation of model (b) f) Carbonation of model (c) 

   
g) CVp=0.1 h) CVp=0.2 i) CVp=0.3 

   
j) Carbonation of model (g) k) Carbonation of model (h) l) Carbonation of model (i) 

Fig. 11. Random distribution of porosity and the corresponding carbonation results 

All the cement mortar blocks tested in Section 2 were simulated in the supercritical condition using the 

numerical model presented in [3] with a total carbonation time of 4.5, 5.7, 7.5 hours, respectively. For a given 

carbonation time, 6 samples with the same coefficient of variation and autocorrelation length were studied. For 

given values of a, b and CVp, 18 samples with varying properties were simulated. Therefore, a total of 162 cases 
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were studied. 

From the simulation results, the average carbonation depths and their average values of variance of each of 

the groups are calculated and listed in Table 5. As expected, the average carbonation depth from the calculation 

increases with the increase of carbonation time. It is noted that the variance of the depth is also increasing with 

time. The effect of the autocorrelation lengths on the average carbonation depth are not significant. The variance 

of carbonation depth increases with an increase of the autocorrelation lengths, which explains well why use of 

the modified ellipsoidal autocorrelation function can pick up the random nature of carbonation depth caused by 

random porosity. The variance of carbonation depth increases also with an increase of the coefficient of variation 

of porosity. The effect of the coefficient of variation of porosity on the average carbonation depth are not 

significant.  

Table 5  

Average values of average carbonation depth and variance. 

Carbonation time, T 
(h) 

Autocorrelation length, 
a=b (m) 

Coefficient of variation of 
porosity, CVp 

Average value 

Carbonation depth, µ1 
(mm) 

Variance, v1 

(mm2) 

4.5 0.01 0.3 9.3 10.8 
5.7 0.01 0.3 10.5 13.1 
7.5 0.01 0.3 12.2 16.0 

7.5 0.005 0.3 12.6 6.1 
7.5 0.008 0.3 13.2 7.4 
7.5 0.01 0.3 12.2 16.0 

7.5 0.01 0.1 12.4 1.5 
7.5 0.01 0.2 12.3 5.8 
7.5 0.01 0.3 12.2 16.0 

The comparisons shown in Figs. 12 (a) and (b) are, respectively, for the average carbonation depths obtained 

by using the three different autocorrelation lengths and coefficient of variation of porosity for a fixed carbonation 

time of 7.5h. Fig. 12 (c) shows the comparisons of the test and simulation results when the autocorrelation 

lengths are fixed at a=b=0.01 m. In Fig. 12, the colored bars represent the average carbonation depth and the 

error bars provide the maximum and minimum depths of each cases. In general, the model has predicted the 

average depth well and agreed satisfactorily with the test results, though the model slightly overestimates the 

average values and underestimates the scatters when a small value of CVp is used. 

It is worth noting that the discrepancies between the test and simulation results can be attributed to other 

factors, such as the size and distribution of fine aggregates, the size of individual pores and micro cracks, etc. It 

is not possible, to take full consideration of all these in a macro scale model. Thus, the use of coefficients of 

variant and, especially, the introduction of the autocorrelation function in this paper aimed at offsetting the errors, 

which appeared to be reasonably effective.  

Formatted: Font: Not Bold

Deleted: 5

Deleted: 12

Deleted: 12

Deleted: 12



 

 

4.2 Effects of carbonation time on the irregularity of carbonation depth 

4.2.1 Effects on the probability density of irregular carbonation depth  

In order to statistically describe the randomness of carbonation depth, the average probability density of 

carbonation depth of 6 cement mortar cubes were calculated from the simulations and compared with those 

calculated from the normal and the lognormal distribution equations ((1) and ((2). Without loss of generality, 

only one set of the results, which are for a=b=0.01 m, CVp=0.3, are presented here. The parameters for 

calculating the normal distribution and the lognormal distribution probability densities from Eqs. ((1) and ((2) 

are taken from Fig. 13. 

The comparisons are shown in Fig. 13. It is observed that the probability density functions of carbonation 

depth for 4.5 h, 5.7 h and 7.5 h carbonation time all agree better with the lognormal than the normal distributions, 

judging again by both the overall shape of the curves and the horizontal position of the peak probability density.  

   
a)  4.5 hours carbonation  b)  5.7 hours carbonation  c)  7.5 hours carbonation  

Fig. 13. Probability density function of the simulated carbonation depth (a=b=0.01 m, CVp=0.3) 

 

4.2.2 Effects on the power spectral density of irregular carbonation depth  

In this Section, the simulated random carbonation depths are characterized by their PSD to quantitatively 

define the underlying rule of the irregularity of supercritical carbonation depth of cement mortar and the effects 

of carbonation time on the PSD. Without loss of generality, only the PSD of the carbonation depths shown in 

Table 5 are calculated and presented in Fig. 14(a), for a carbonation time of 4.5 hours. Fig. 14(b) shows the 
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a) CVp=0.3 b) a=b=0.010 m c) Comparison of test and 

simulated carbonation depth 
Fig.  

12. Test and simulated carbonation depth (T=7.5 h) 
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average PSD, where the PSD calculated from the respective test results are also presented for comparisons. From 

the comparisons, it can be observed that the carbonation time has little effect on the PSD distribution in the 

frequency domain and the frequency of maximum PSD. 

  

a)  4.5 hours carbonation b)  Average values of the 6 samples 
Fig. 14. Power spectral density of numerical carbonation depth (a=b=0.01 m, CVp=0.3) 

 

4.3 Effects of coefficient of variation and autocorrelation length of porosity on the irregularity of 

carbonation depth   

4.3.1 Effects on the probability density of irregular carbonation depth  

In order to statistically describe the irregularity of carbonation depth, the average probability density of the 

carbonation depth of the 6 cement mortar cubes were calculated and compared with the normal and the lognormal 

distribution according to Eq. ((1) and Eq. ((2). Also without loss of generality, only selected sets of the results 

are presented here. Figs. 15 (a), (b) and (c) are the probability density for a=b=0.01 m, CVp=0.1, 0.2, 0.3, and 

T=7.5 h. Figs. 15 (f), (g) and (h) are for a=b=0.005 m, 0.008 m, 0.010 m, CVp=0.3, and T=7.5 h. The statistical 

distribution parameters are also shown in Fig. 15. 

 

   
a)  CVp=0.1, a=b=0.01 m b)  CVp=0.2, a=b=0.01 m c)  CVp=0.3, a=b=0.01 m 
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d)  a=b=0.005 m, CVp=0.3 e)  a=b=0.008 m, CVp=0.3 f)  a=b=0.01 m, CVp=0.3 

 
Fig. 15. Probability density function of simulated carbonation depth (T=7.5 h) 

The comparisons from Fig. 15 clearly show that the distributions from the simulations are closer to the 

lognormal distributions for all the cases, which confirmed the observation from Fig. 13.  

4.2.2 Effects on the power spectral density of irregular carbonation depth 

The effects of coefficient of variation of porosity and the autocorrelation length on the PSD of carbonation 

depth are discussed below. Fig. 16(a) is the average PSD of the carbonation depth of 6 cement mortar cubes for 

combinations of a=b=0.005 m, CVp=0.1, 0.2, 0.3 at T=7.5 h. The frequency of maximum PSD at different 

autocorrelation lengths and with varying CVp are shown in Fig. 16(b). It can be seen that for the cement blocks 

the simulated frequencies of maximum PSDs are clearly affected by the chosen values of a and b, and, in this 

case, have better agreement with the test results when a=b=0.005 m. For all the cases the PSD are not 

significantly affected by the varying CVp.  

  

a) a=b=0.005 m b) Frequencies of maximum PSD 
Fig. 16. Effects of coefficient of variation of porosity on the power spectral density of 

carbonation depth (T=7.5 h) 

5. Conclusions and outlook 

Experimental and numerical investigations on the irregularity of supercritical carbonation depth of cement 

mortar have been presented in this paper. The irregularity of supercritical carbonation depth of cement mortar 

was modelled by introducing random field of porosity to simulate the heterogeneous geometry of the carbonation 

profile. An image processing technique was proposed to effectively capture the distributions of carbonation 

depth from both the experiments and simulations. The random nature of the carbonation depths was then studied 
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statistically by calculating the relevant average, variance, probability density and power spectrum density. 

Parametric studies were carried out to assess the effect of carbonation time, coefficient of variation of porosity 

and autocorrelation lengths of the random porosity field on the power spectral density of carbonation depth. 

From the present study, the following conclusions can be drawn: 

1) The proposed image processing technique can be used satisfactorily to capture the random distribution 

of carbonation depth of cement mortar. 

2) The average and variance of the irregular carbonation depth increase with the increase of carbonation 

time, autocorrelation length and coefficient of variation of porosity. 

3) Both the experimental and the numerical results indicate that the probability density function of 

carbonation depth is better represented by the lognormal than the normal distributions.  

4) The carbonation time and the coefficient of variation of porosity have little effect on the frequency of 

maximum PSD of carbonation depth that, however, increases as the autocorrelation depth increases. This unique 

feature can be used to calibrate the values of autocorrelation length, which are critically important in the 

numerical carbonation model.  

5) To have better and more realistic understanding of carbonation depth formation, further studies are 

required to include random distribution of aggregates, micro cracks and varying composition in the statistical 

model. To this end, further experiments will be carried out and new algorithms for generating random aggregates 

and micro cracks are to be developed.  
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