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Infinite Derivative Gravity is able to resolve the Big Bang curvature singularity present in general
relativity by using a simplifying ansatz. We show that it can also avoid the Hawking-Penrose
singularity, by allowing defocusing of null rays through the Raychaudhuri equation. This occurs not
only in the minimal case where we ignore the matter contribution, but also in the case where matter
plays a key role.

We investigate the conditions for defocusing for the general case where this ansatz applies and
also for more specific metrics, including a general Friedmann-Robertson-Walker (FRW) metric and
three specific choices of the scale factor which produce a bouncing FRW universe.

INTRODUCTION

The theory of General Relativity (GR) has been shown
to describe gravity very accurately through a huge range
of experimental tests over the past century [1]. However,
it suffers from problems, generating both black hole and
cosmological singularities [2].

Previous attempts to solve this problem include f(R)
gravity and higher derivative gravity. Higher derivative
gravity suffers from the Ostrogradsky instability which
produces ghosts [3], which are physical excitations with
negative kinetic energy [4]. Infinite Derivative Gravity
(IDG) solves this problem by adding an infinite sum of
the d’Alembertian operator � = gμν∇μ∇ν , acting on
the curvature. There is no highest derivative operator,
so the Ostrogradsky instability does not apply. We must
show that there are no ghosts in other ways. It has been
shown that if the modification to the propagator con-
tains at most a single pole then the problem of ghosts is
avoided [5, 6].

Infinite derivative actions, which are used in string the-
ory [7], were first applied to gravity by Biswas, Gerwick,
Kovisto and Mazumdar [8]. IDG has been investigated
around flat Minkowksi backgrounds [9], (Anti) de Sit-
ter backgrounds [10–13], a rotating metric [14] and the
Schwarzschild black hole solution [15].

It is possible to find the gravitational entropy of a black
hole within IDG [12, 16]. The propagator can also be
found for this theory [5, 8, 10, 17–20], and it has been
shown that one can curtail the divergences of 1 and 2
loop diagrams [21, 22], while other work has investigated
the UV finiteness [23].

Within the Arnowitt-Deser Misner (ADM) decomposi-
tion, one can find the boundary terms of the theory [24].
IDG can be thought of as an extension to Starobinsky
inflation [25–29], allowing us to put a constraint on the
mass scale M [30]. It is also possible to put constraints on
M using the deflection of light by the Sun [31], or by com-
paring the Newtonian potential to experimental evidence
on the strength of gravity at small distances [32, 33].

GR suffers from the singularity problem. Due to
the Einstein equations, the Raychaudhuri equations [34]

make it impossible for null rays to defocus as long as
the Null Energy Condition holds, which by the Hawking-
Penrose singularity theorem means there must be a sin-
gularity. IDG has different equations of motion to GR
which generate the possibility of avoiding this singularity,
through adding extra terms to the Einstein-Hilbert ac-
tion. The conditions necessary to allow defocusing were
investigated around a Minkowski background [33, 36, 37],
around an (Anti) de Sitter background [38] and for an
FRW metric near the bounce [39].

THE RAYCHAUDHURI CONDITION

The Raychaudhuri equation is a model-independent
geometrical equation that tells us the expansion of a con-
gruence of null rays emerging from the centre of our coor-
dinate system, which have the tangent vectors kμ where
kμkμ = 0 [34, 35]. If we imagine that the outgoing null
rays form the surface of a sphere, then the expansion
parameter θ = ∇μkμ describes the change in volume of
that sphere. We would expect that for these outgoing null
rays, the sphere would be expanding, but for a trapped
surface, the volume actually decreases and θ < 0. By the
Raychaudhuri equation, θ fulfils the condition

dθ

dτ
+

1
2
θ2 ≤ −Rμνkμkν , (1)

where Rμν is the Ricci curvature tensor and τ is the affine
parameter. Here we have taken the twist to be zero and
we have used that the shear term is strictly positive to
turn the Raychaudhuri equation into an inequality1. If
the null rays are to defocus, then the expansion parame-
ter must be both positive and expanding, which implies
that

Rμνkμkν < 0, (2)

1 The rotation term vanishes if we take the congruence of null rays
to be orthogonal to a hypersurface and the shear term is strictly
positive because the shear tensor is purely transverse [34, 35].
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which we call the defocusing condition. Unless this con-
dition is satisfied, the Hawking-Penrose singularity theo-
rem says that a singularity will be generated [40].

The Null Energy Condition (NEC) says that for non-
exotic matter, the stress-energy tensor Tμν contracted
with the tangent vectors is non-negative, i.e. Tμνkμkν ≥
0. Iif one inserts the Einstein equation into (2) it can
be seen that the defocusing condition is not fulfilled and
therefore by the Hawking-Penrose singularity theorem,
GR generates singularities. The defocusing condition has
also been investigated for f(R) gravity [41]. It was shown
for perturbations around Minkowski and for a bouncing
FRW solution near the bounce that IDG could allow de-

focusing of null rays [33, 36, 37, 39].

INFINITE DERIVATIVE GRAVITY

We will look at the IDG action

S =
1
2

∫
d4x

[
M2

P R + RF (�)R − 2Λ
]
, (3)

where R is the Ricci curvature scalar, Λ is the cosmologi-
cal constant with mass dimension 4 and MP is the Planck
mass. F (�) ≡

∑∞
n=0 fn�n/M2n is the infinite sum of the

d’Alembertian operator � ≡ gμν∇μ∇ν , regulated by the
mass scale M and with the dimensionless coefficients fn.
This action produces the equations of motion [44]

Tαβ = M2
p

(

Rαβ −
1
2
gαβR

)

+ gαβΛ + 4

(

Rαβ −
1
2
gαβR

)

F (�)R + gαβRF (�)R − 4 (∇α∇β − gαβ�) F (�)R

+
∞∑

n=1

fn

∞∑

l=0

[
gαβ

((
∂σ�lR

)
∂σ�

n−l−1R +�lR�n−lR
)
− 2

(
∂α�

lR
)
∂β�

n−l−1R
]
. (4)

where Tαβ is the stress-energy tensor and Rαβ is the Ricci
curvature tensor. If we contract (4) with tangent vectors
kαkβ , where kαkα = 0, we can find the full condition
for null rays to defocus (2), which allows us to avoid the
Hawking-Penrose singularity23

kαkβRαβ =
1

M2
p + 4F (�)R

[

kβkαTαβ + 4kβkα∇α∇βF (�)R

+2kβkα
∞∑

n=1

fn

M2n

n−1∑

l=0

(
∂α�

lR
)
∂β�

n−l−1R

]

< 0. (5)

The simplifying ansatz

In the next section we will show IDG also allows null
rays to defocus for solutions where the d’Alembertian
operator � acting on the Ricci scalar R fulfills the ansatz
�R = r1R+r2, where r1 and r2 are constants, as studied
in previous work [5, 6, 29, 42, 43]. In fact, [29] showed
that a metric of this form was the most general spatially
flat FRW solution within IDG.

Using this ansatz, [5, 6, 42, 43] were able to find vac-
uum solutions to the equations of motion (4). These fo-

cused on generating bouncing FRW cosmologies, in par-
ticular solutions where a(t) = cosh(σt) and a(t) = e

λ
2 t2 .

A simple toy model a(t) = 1+ a2t
2 was studied as a per-

turbation to flat space in [39]. These bouncing solutions
exhibit time symmetry about t = 0 and avoid the curva-
ture singularity at t = 0 present in GR, known as the Big
Bang singularity problem. We will examine the most gen-
eral metric where this ansatz is satisfied, and then look
at these more specific metrics, showing that we can avoid
the singularity generated by General Relativity through
the Hawking-Penrose singularity theorem [40].

Minimum defocusing condition using the ansatz

If we take the ansatz �R = r1R + r2, then for n > 0,

�nR = rn
1

(
R + r2

r1

)
and

F (�)R =
∞∑

n=0

fn
�n

M2n
R = F (r1)

(

R +
r2

r1

)

− f0r2/r1, (6)

where f0 is the zero-order coefficient of F (�), i.e. the
coefficient of R2 in the action. The minimum defocusing
condition (5) becomes4

2 (5) reduces to the defocusing condition found for a bouncing
FRW cosmology [39] if we take the Ricci scalar R to be a function
of t only and consider only even powers of t (as happens at the
bounce), so that H → 0 and take α = 1/2.

3 The cosmological constant does not feature in (5) due to the
condition kαkβgαβ = 0.

4 We can return to a local theory by taking r1R = −r2, which
removes the dependence on higher orders of � in (6). This can

be clearly seen in the denominator of (7). It is not explicitly seen
in the numerator of (7) because the derivatives of r2 vanish, so
r1R = −r2 implies that the derivatives of r1R also vanish, so the
higher order terms do not contribute.
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1

M2
p + 4F (r1)

(
R + r2

r1

)
− 4f0r2/r1

[

kβkαTαβ + 4kβkα
∞∑

n=0

f1n

M2n
∇α∇β (rn

1 R)

+2kβkα
∞∑

n=1

fn

M2n

n−1∑

l=0

∂α

(
rl
1R
)
∂β

(
rn−l−1
1 R

)
]

< 0, (7)

where we are looking at vacuum solutions, so neglect
the stress-energy tensor term and have also removed the
derivatives of the constants r1 and r2. We can simplify
(7). rn−2

1 and the partial derivatives of R have no l de-

pendence and can therefore be pulled out of the sum.
By observing that

∑n−1
l=0 1 = n and kβkα (∂αR) ∂βR =

(kα∂αR)2, our final condition for the conditions for de-
focusing for any metric which fulfils �R = r1R + r2 can
be written as5

1

M2
p + 4F (r1)

(
R + r2

r1

)
− 4f0r2/r1

[

kβkαTαβ + 4
∞∑

n=0

f1n

M2n
rn
1 kβkα∇α∇βR + 2

∞∑

n=1

nfn

M2n
rn−1
1 (kα∂αR)2

]

< 0, (8)

or more succinctly as6

1
M2

P + 4F (r1)(R + r2
r1

) − 4f0
r2
r1

[

kβkαTαβ + 4F (r1) kβkα∇α∇βR + 2F ′(r1) (kα∂αR)2
]

< 0, (9)

where F ′(�) is defined as

F ′(�) ≡
∞∑

n=1

nfn

M2n
�n−1. (10)

THE FRW METRIC

FRW metrics describe universes that are time-
dependent, homogenous and isotropic. These metrics can
suffer from curvature singularities at t = 0. We will in-
vestigate some bouncing universes that can avoid these
curvature singularities and see whether they can avoid
the Hawking-Penrose singularity.

An FRW metric in spherical coordinates takes the form

ds2 = −dt2 + a2(t)

(
dr2

1 − κr2
+ r2dΩ2

)

, (11)

where a(t) is the scale factor of the universe and κ is the

spatial curvature.
Using the condition on the tangent vectors kμkμ = 0

gives (noting that R = R(t) even if the spatial curvature
κ is non-zero)

kβkα∇α∇βR(t) = (k0)2
(
∂2
0 − H∂0

)
R(t). (12)

We can also simplify the defocusing condition (9)
by noting that for an FRW metric, the background
d’Alembertian acting on a time-dependent scalar quan-
tity S(t) is given by �S(t) = −∂2

0S(t) − 3H∂0S(t), so
∂2
0S(t)−H∂0S(t) = −�S(t)− 4H∂0S(t), where H is the

Hubble parameter. Therefore by comparing this to the
ansatz, we find ∂2

0R(t)−H∂0R(t) = −r1R(t)−4H∂0R(t).
We can divide by (k0)2 as it is strictly positive and use
that H ≈ 0 near the bounce point. Finally, note that
for FRW, the null tangent vectors contracted with the
stress-energy tensor gives κμκνTμν = (k0)2(ρ + p) where
ρ and p are density and pressure respectively.

Thus the defocusing condition for an FRW metric near
the bounce fulfilling �R = r1R + r2 is

1
M2

P + 4F (r1)(R + r2
r1

) − 4f0
r2
r1

[

2F (r1) (r1R + r2) − F ′(r1) (∂0R)2 − (ρ + p)

]

> 0. (13)

5 This matches what we find if we apply the ansatz to pertur-
bations around a Minkowski or de Sitter background when we
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where f0 is the zeroeth order coefficient of F (r1) =
F (� = r1). Note that (13) does not depend explicitly on
the curvature κ, which is encoded into the Ricci scalar
R(t).

SIMPLIFYING OUR CONDITION

We can simplify the defocusing condition by placing
conditions on F (�) and F ′(�) by inserting a simple so-
lution to the equations of motion.

Inserting the equations of motion

The vacuum trace equation for metrics satisfying the
ansatz is [6, 42, 43]

A1R + A2

(
2r1R

2 + ∂μR + ∂μR
)

+ A3 = 0, (14)

where the coefficients Ai are given by

A1 = −M2
P + 4F ′(r1)r2 − 2

r2

r1
(F (r1) − f0) + 6F (r1)r1,

A2 = F ′(r1),

A3 = 4Λ +
r2

r1

(
M2

P + A1

)
− 2

r2
2

r1
F ′(r1). (15)

The simplest solution to (14) is to assume Ai = 0 which
gives the identities

F ′(r1) = 0, r2 = −
r1

(
M2

P − 6F (r1)r1

)

2 (F (r1) − f0)
,

Λ = −
r2M

2
P

4r1
= M2

P

(
M2

p − 6F (r1)r1

)

8 (F (r1) − f0)
, (16)

which allows us to remove f0 from our defocusing condi-
tion (13), which becomes

2F (r1) (r1R + r2) − (ρ + p)
F (r1)(4R + 6r1) − M2

P

> 0, (17)

where again the spatial curvature κ does not feature ex-
plicitly, but is encoded within R.

In the early universe, we expect the curvature to be
very large and we can assume r1, r2 � R, so

2r1RF (r1) − (ρ + p)
4RF (r1) − M2

P

> 0. (18)

There are two cases where the defocusing condition is
fulfilled

discard the appropriate terms [36, 37].
6 This correctly reduces to R + R2 gravity [45] in the limit r1 =

r2 = 0.

1. 2r1RF (r1) − (ρ + p) > 0 and 4RF (r1) − M2
P > 0

2. 2r1RF (r1) − (ρ + p) < 0 and 4RF (r1) − M2
P < 0

Note that if ρ + p is very large, as it would be at the
bounce point, then it is unsatisfactory (but possible) for
this to be cancelled out by an even larger curvature term.
However, we do note that it would be natural for the
curvature to be large at this time. It is indeed pleasing
that in the second case, having r1 > 0 and RF (r1) < 0
means that the condition is fulfilled and the singularity
is avoided.

We have shown that it is possible to not only avoid the
singularity in the minimal case where we ignore matter,
but actually for the matter to aid in the defocusing! We
now look at examples where this can apply.

SPECIFIC BOUNCING MODELS

Toy model

If we take a simplistic flat bouncing model with the
scale factor

a(t) = 1 + a2t
2, (19)

which fulfills the ansatz with r1 = −6a2 and r2 = 48a2
2

and was investigated in [39].
The defocusing condition for the simple solution to the

equations of motion (17) at small times and neglecting
matter becomes

M2
P + 16a2f0 − 5

12 (ρ + p)

M2
P + 96f0a2

> 0 (20)

which is fulfilled for −M2
P

16 < a2f0 < −M2
P

96 .

Assuming a cosh solution

In this section we assume the solution a(t) = cosh(σt),
where σ is a constant. This vacuum solution to the equa-
tions of motion was investigated in [5, 6, 43] and return
to the de Sitter metric at late times. This solution re-
quires a cosmological constant and radiation. This metric
fulfills the ansatz 7 �R = r1R + r2 with r1 = 2σ2 and
r2 = −24σ4.

Therefore the defocusing condition (13) at t ≈ 0 near
the bounce point for an FRW metric with the scale factor

7 Note that r1 and r2 have opposite signs for both the simple
solution 1 + t2 and the cosh solution. Therefore by (16), this is
equivalent to a positive Λ, whereas for the exponential bouncing
solution, a negative Λ is produced.
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a(t) = cosh(σt) and non-zero spatial curvature κ is8

24σ2
(
κ − σ2

)
F (r1) − (ρ + p)

M2
P + 24F (2σ2) (κ − σ2) + 48σ2f0

< 0. (21)

Taking the simple solution (16) to the equations of mo-
tion and neglecting matter, (21) is fulfilled for zero spa-

tial curvature κ if − 1
24

M2
P

σ2 < f0 < − 1
96

M2
P

σ2 . If matter is
included, and gives a very large contribution, then defo-

cusing occurs for f0 < − 1
96

M2
P

σ2 .
We have shown that it is possible for a bouncing cosh

solution, which was already shown to avoid the Big Bang
curvature singularity, to avoid the Hawking-Penrose sin-
gularity for certain curvature.

Exponential bouncing solution

Finally we look at a flat FRW metric with the exponen-
tial bouncing scale factor which was studied in [42, 43]
where

a(t) = e
λ
2 t2 . (22)

where λ is a positive constant with dimensions of mass
squared. This scale factor gives the Ricci scalar R =
3λ
(
1 + λt2

)
which fulfills the ansatz with �R(t) =

−6λR(t)−12λ2. The defocusing condition (13) for small
times becomes

5λ2F (r1) + (ρ + p)
M2

P + 20λF (r1) − 8f0λ
< 0. (23)

and with the simple solution to the equations of motion
(16), we find that there is defocusing for − 1

4M2
P < λf0 <

1
28M2

P if we neglect matter, or λf0 < 1
28M2

P if the contri-
bution of matter is large.

The exponential bouncing solution (22) generated us-
ing ghost-free Infinite Derivative Gravity was already
known to avoid the Big Bang curvature singularity, but
we have shown it can avoid the Hawking-Penrose singu-
larity, and that the addition of matter can actually aid
this process.

CONCLUSION

We have shown that IDG can allow defocusing of null
rays, and thus avoid Hawking-Penrose singularities, for
more general spacetimes as long as our simplifying ansatz
holds. We first looked at completely general spacetimes
where this ansatz applies, before restricting ourselves to
time-dependent Ricci scalars and then time-dependent

8 Note that (21) matches (13) when we take r1 = 2σ2 and r2 =
−24σ4.

metrics. We looked at an FRW metric and showed that
this could defocus given certain conditions.

We investigated three specific scale factors within an
FRW metric. We first looked at a simple polynomial
bouncing universe, then a cosh scale factor and finally
an example of a exponentially bouncing time-dependent
metric. We showed that all of these metrics allowed de-
focusing in the minimal case, but they also allowed defo-
cusing in the case where matter gave a large contribution,
as in the early universe.

It has previously been shown that IDG would permit a
bouncing universe which avoided a curvature singularity.
We have now shown that it is also possible to avoid the
Hawking-Penrose singularity in these universes.
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