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Abstract. We show that any bounded t-structure in the bounded derived category of
a silting-discrete algebra is algebraic, i.e. has a length heart with finitely many simple
objects. As a corollary, we obtain that the space of Bridgeland stability conditions for
a silting-discrete algebra is contractible.

1. Introduction

Stability conditions on triangulated categories were introduced by Bridgeland in [12]
as a means of extracting geometry from homological algebra with a view to constructing
moduli spaces arising in the context of Homological Mirror Symmetry. They can be
thought of as a continuous generalisation of bounded t-structures. The main result of
[12] asserts that the space of stability conditions forms a complex manifold, the stability
manifold. This can be thought of as geometrically encoding most of the cohomology
theories on a given triangulated category.

Bounded t-structures admit a mutation theory given by HRS-tilts (see Proposition 2.3
below), giving rise to a graph that is closely related to the exchange graphs occurring in
cluster combinatorics [24], which is the skeleton of the stability manifold in the Dynkin
case. Despite being the focus of extensive investigation, for example [12, 14, 17, 18,
20, 26, 28, 31, 32], computations with stability conditions are difficult. For example, it
is widely believed that whenever the stability manifold is nonempty it is contractible.
However, this has been proved in only few cases, though the list is now growing, see
[14, 18, 20, 26, 28, 32].

Silting objects are a generalisation of tilting objects due to Keller and Vossieck in [23].
In the context of bounded derived categories of finite-dimensional algebras, silting objects
enable the detection of t-structures whose hearts are equivalent to module categories of
finite-dimensional algebras [25]. Silting-discreteness [4] is a finiteness condition on a
triangulated category that says there are only finitely many silting objects in any interval
in the poset of silting objects [5]; see below for precise definitions. Examples of silting-
discrete finite-dimensional algebras include hereditary algebras of finite representation
type, derived-discrete algebras [14], preprojective algebras of Dynkin type [6], symmetric
algebras of finite representation type [4], Brauer graph algebras whose Brauer graphs
contain at most one cycle of odd length and no cycles of even length [1], and local
algebras [5].

The purpose of this paper is to establish the following property of the bounded t-
structures in the bounded derived category Db(Λ) of a silting-discrete finite-dimensional
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algebra Λ. We recall that a bounded t-structure is algebraic if it is given by a silting
object; see Section 2 for the precise definition.

Theorem A. If Λ is a silting-discrete finite-dimensional k-algebra, then any bounded
t-structure in Db(Λ) is algebraic, i.e. has a length heart.

In particular, this result means that any bounded t-structure (X,Y) in Db(Λ) admits
only finitely many HRS tilts. Hence, the techniques and methods used in [14, 32] to show
that the stability manifold of a derived-discrete algebra is contractible can be applied
here.

Corollary B. If Λ is a silting-discrete finite-dimensional k-algebra, then the stability
manifold stab(Db(Λ)) is contractible.

In [3], Adachi, Mizuno and Yang have independently obtained similar results in the
setting of silting-discrete triangulated categories.

The outline of this paper is as follows. In Section 2 we recall the concepts and results
that will be necessary to establish Theorem A. In Section 3 we prove Theorem A. Once
one has Theorem A the proof of Corollary B is implicit in [14, 32]. For the convenience
of the reader we briefly sketch the narrative of the argument in [14, 32] in Section 4.

Convention. Throughout this paper all subcategories are full and strict, k is a field,
and all algebras are finite-dimensional k-algebras. For a finite-dimensional k-algebra Λ
we denote by mod(Λ) the category of finite-dimensional right Λ-modules; by Kb(proj(Λ))
we denote the bounded homotopy category of complexes of finite-dimensional projective
Λ-modules; by Db(Λ) we denote the bounded derived category of finite-dimensional right
Λ-modules; and by D(Λ) we denote the unbounded derived category of right Λ-modules.
Throughout D is a triangulated category and the shift functor is denoted by [1] : D→ D.

2. Background

For a subcategory S of a triangulated category D we define

S[> n] = {S[i] | S ∈ S, i > n} and S[< n] = {S[i] | S ∈ S, i < n},

analogously for S[≤ n] and S[≥ n]. For subcategories X and Y of D we define

X ∗ Y = {D ∈ D | there exists a triangle X → D → Y → X[1] with X ∈ X and Y ∈ Y}.

A subcategory X is extension closed if X = X ∗ X. We shall denote the extension closure
of X by 〈X〉. We define the right and left perpendicular categories of X respectively by

X⊥ = {D ∈ D | HomD(X,D) = 0 for all X ∈ X};
⊥X = {D ∈ D | HomD(D,X) = 0 for all X ∈ X}.

For subcategories of an abelian category H we use the same notation for the analogous
definitions, using short exact sequences instead of triangles.

2.1. Torsion pairs and t-structures. The general notion of a torsion pair on an abelian
category goes back to [16].

Definition 2.1. A torsion pair in an abelian category H consists of a pair of full subcat-
egories (T ,F) such that T ⊥ = F , T = ⊥F , and H = T ∗ F . We call T the torsion class
and F the torsionfree class of the torsion pair.
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If the abelian category H is mod(Λ) for a finite-dimensional algebra Λ, then any sub-
category T closed under extensions, factor objects and direct summands gives rise to a
torsion class of a torsion pair; see, e.g. [8, Ch. VI]. A dual statement holds for torsionfree
classes. For M ∈ mod(Λ) we write Fac(M) for the full subcategory of all factor mod-
ules of finite direct sums of copies of M . When M is a support τ -tilting module (see
Section 2.2 below), Fac(M) is the smallest torsion class containing M .

The analogue of a torsion pair in a triangulated category is a t-structure [10].

Definition 2.2. A t-structure on a triangulated category D consists of a pair of full
subcategories (X,Y) such that X⊥ = Y, X = ⊥Y, D = X ∗ Y and X[1] ⊆ X (equivalently,
Y[−1] ⊆ Y). The subcategory H = X ∩ Y[1] is an abelian subcategory of D called the
heart of (X,Y). A t-structure is called bounded if

D =
⋃
n∈Z

X[n] =
⋃
n∈Z

Y[n].

For a bounded t-structure (X,Y) we have X = 〈H[≥ 0]〉 and Y = 〈H[< 0]〉. A t-structure
is called algebraic if it is bounded and H is a length category, i.e. H has finitely many
isomorphism classes of simple objects and each object of H is both Artinian and Noe-
therian.

There is a close connection between torsion pairs and t-structures.

Proposition 2.3 ([11, 29, 34]). Suppose (X,Y) is a t-structure on D with heart H. Then
there is a bijection

{t-structures (X′,Y′) with X[1] ⊆ X′ ⊆ X} 1−1←→ {torsion pairs (T ,F) in H};
(X′,Y′) p−→ (T = H ∩ X′,F = H ∩ Y′);

(X′ = 〈T ,X[1]〉,Y′ = 〈Y,F〉) ←−p (T ,F).

The t-structure (X′,Y′) in Proposition 2.3 is called a left HRS-tilt of (X,Y) at the
torsion pair (T ,F) and is called intermediate with respect to (X,Y); see [21, Proposition
I.2.1]. Note that X′ = X[1] ∗ T and Y ′ = F ∗ Y.

2.2. Silting, t-structures and τ-tilting. Silting was first introduced in [23]; however,
we follow the treatment of [5].

Definition 2.4. A subcategory S of D is silting if thick(S) = D and HomD(S, S ′[i]) = 0
for each S, S ′ ∈ S and i > 0, where thick(S) is the smallest triangulated subcategory of D
containing S that is closed under direct summands. An object S of D is a silting object
if add(S) is a silting subcategory, where add(S) consists of the direct summands of finite
coproducts of copies of S.

For a finite-dimensional algebra Λ we shall freely abuse notation and identify silting
subcategories with silting objects, since any silting subcategory in Kb(proj(Λ)) is of the
form add(S), for some silting object uniquely determined up to additive closure.

There is a partial order on silting subcategories of D (see [5]): for silting subcategories
S and T,

S ≥ T if and only if HomD(S, T [i]) = 0 for all S ∈ S, T ∈ T and i > 0,

which is equivalent to T ⊆ (S[< 0])⊥. We denote this poset by P1(D). A silting subcate-
gory T is called two term with respect to S if S ≥ T ≥ S[1], which happens if and only if
T ∈ S ∗ S[1]; see, for example, [22].
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Definition 2.5 ([4, Definition 3.6 & Proposition 3.8]). A finite-dimensional algebra Λ is
silting-discrete if for any silting object S and any natural number n there are only finitely
many silting objects T such that S ≥ T ≥ S[n]. Note that, via [32, Lemma 2.14], this is
equivalent to there being only finitely many silting objects T such that S ≥ T ≥ S[1].

In the case that D = Db(Λ) for a finite-dimensional algebra Λ, there is a correspondence
between silting subcategories and algebraic t-structures.

Theorem 2.6 ([25] & [22]). Let Λ be a finite-dimensional k-algebra. Then there is a
bijection

{silting subcategories of Kb(proj(Λ))} 1−1←→ {algebraic t-structures on Db(Λ)};
S p−→

(
XS = (S[< 0])⊥,YS = (S[≥ 0])⊥

)
.

Moreover, this restricts to a bijection with intermediate algebraic t-structures,

{silting subcategories T ⊆ S∗S[1]} 1−1←→ {algebraic t-structures (X,Y) with XS[1] ⊆ X ⊆ XS}.

Definition 2.7. Let Λ be a finite-dimensional k-algebra and denote the Auslander–Reiten
translation on mod(Λ) by τ . Write |M | for the number of nonisomorphic indecomposable
summands of a Λ-module M .

(1) ([2, Definitions 0.1 & 0.3]) A pair (M,P ) ∈ mod(Λ) × proj(Λ) is a τ -rigid pair if
HomΛ(M, τM) = 0 and HomΛ(P,M) = 0. A τ -rigid pair is a support τ -tilting
pair if |M | + |P | = |Λ|. In this case M is called a support τ -tilting module. If in
a support τ -tilting pair P = 0, we call M a τ -tilting module.

(2) ([15, Definition 1.1]) The algebra Λ is τ -tilting finite if there are only finitely many
isomorphism classes of basic τ -tilting Λ-modules.

The following characterisation of support τ -tilting pairs will be useful.

Lemma 2.8 ([2, Corollary 2.13], see also [7, Theorem 2.5(3)]). Let M ∈ mod(Λ) and

P1
σ→ P0 →M → 0

be its minimal projective presentation. The pair (M,P ) is support τ -tilting if and only if
Fac(M) consists of the N ∈ mod(Λ) such that HomΛ(σ̃, N) is surjective, where σ̃ =

[
σ 0

]
in the projective presentation

P1 ⊕ P
σ̃→ P0 →M.

A result of [15] relates τ -tilting finiteness with functorial finiteness of torsion classes;
we refer the reader to, for example [8], for the definition of functorial finiteness.

Theorem 2.9 ([15, Theorem 3.8]). A finite-dimensional algebra Λ is τ -tilting finite if and
only if every torsion class (equivalently, every torsionfree class) in mod(Λ) is functorially
finite.

The results of [2] combined with [22] give the following theorem.

Theorem 2.10 ([22, Theorem 4.6] and [2]). Let D be a Krull-Schmidt, Hom-finite, k-
linear triangulated category and let S = add(S) for a silting object S. Let Γ = EndD(S).
Then there is a bijection between the following sets.

(1) Basic silting objects T of D with T ∈ S ∗ S[1], modulo isomorphism.
(2) Basic support τ -tilting pairs of mod(Γ), modulo isomorphism.
(3) Torsion pairs (T ,F) in mod(Γ) in which T and F are functorially finite.
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Remark 2.11. Suppose we are in the setup of Theorem 2.10. Recall from [22, Remark
4.1(ii)] that there is an equivalence Mod(S) ' Mod(Γ), where Mod(S) is the category of
contravariant functors from S to the category of abelian groups. Let (M,P ) be a support
τ -tilting pair of mod(Γ) with minimal projective presentation

P1
σ→ P0 →M → 0

and the ‘extended’ presentation

P̃ = P1 ⊕ P
σ̃→ P0 →M → 0

of Lemma 2.8. One can uniquely lift this presentation to Mod(S) as

HomD(−, S̃)|S
(−,f)→ HomD(−, S0)|S,

where HomD(−, D)|S denotes the image of D under the restricted Yoneda functor [9]; cf.
[22, Remark 3.1]. The corresponding silting object T ∈ S ∗ S[1] is then the mapping cone

of f : S̃ → S0 in D.

3. Proof of Theorem A

We start by showing that when Λ is silting-discrete any HRS-tilt of an algebraic t-
structure is again algebraic.

Proposition 3.1. Let Λ be a silting-discrete finite-dimensional algebra. Let S ⊆ Kb(proj(Λ))
be a silting subcategory and let (XS,YS) be the corresponding algebraic t-structure on
Db(Λ). If (X,Y) is a t-structure intermediate with respect to (XS,YS) then (X,Y) is alge-
braic.

Proof. Suppose (X,Y) is a t-structure intermediate with respect to an algebraic t-structure
(XS,YS), where S = add(S) for some basic silting object S. First observe that since (X,Y)
is intermediate with respect to a bounded t-structure (XS,YS) it is automatically bounded.
Let Γ = EndKb(proj(Λ))(S) and note that HS ' mod(Γ) by [25]. Since Λ is silting-discrete,
there are finitely many silting objects in S ∗S[1], and therefore, by Theorem 2.10, finitely
many support τ -tilting pairs in mod(Γ), whence Γ is τ -tilting finite.

By Proposition 2.3, there exists a torsion pair (T ,F) on HS such that X = 〈T ,XS[1]〉
and Y = 〈YS,F〉. By Theorem 2.9, T and F are functorially finite, so that by the
correspondence in Theorem 2.10, T = Fac(M) for some support τ -tilting pair (M,P ) of
mod(Γ), which in turn corresponds to some silting object T ∈ S ∗ S[1]. By Theorem 2.6,
this corresponds to an algebraic t-structure (XT,YT) that is intermediate with respect to
(XS,YS). Invoking Proposition 2.3 again, there is a torsion pair (TT,FT) on HS such that
XT = 〈TT,XS[1]〉 and YT = 〈YS,F〉. Furthermore, TT = XT ∩ HS.

We claim that TT = T . First observe that any N ∈ HS satisfies N ∈ (T[< −1])⊥

because T ⊆ S ∗ S[1]. Therefore N ∈ HS lies in TT if and only if N ∈ (T[−1])⊥. By
Lemma 2.8, N ∈ Fac(M) if and only if HomHS

(σ̃, N) is surjective, where we use the
notation of Remark 2.11. By Remark 2.11, we can lift σ̃ to the functor category as

HomD(−, S̃)|S
(−,f)→ HomD(−, S0)|S, and note that via the restricted Yoneda functor (e.g.

[22, Remark 3.1]), HomHS
(σ̃, N) is surjective if and only if

HomMod(S)(HomD(−, S0)|S,HomD(−, N)|S)
(f∗,(−,N))

// HomMod(S)(HomD(−, S̃)|S,HomD(−, N)|S)

HomD(S0, N)|S
(f,N)

//

∼

OO

HomD(S̃, N)|S

∼

OO
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is surjective, where the vertical arrows are given by the Yoneda embedding. But since an
additive generator of T is given as the mapping cone

S̃
f→ S0 → T → S̃[1]

and HomD(S0[−1], N)|S = 0 since N ∈ HS, we have N ∈ (T[−1])⊥ if and only if
N ∈ Fac(M). Hence TT = T . It follows that (X,Y) = (XT,YT), i.e. any t-structure
intermediate with respect to (XS,YS) is algebraic. �

In order to prove the key lemma, Lemma 3.5, we shall need two auxiliary results. The
first one is the following straightforward observation; cf. [32, Lemma 2.9].

Lemma 3.2. Suppose (X,Y) is a bounded t-structure on Db(Λ) and (XS,YS) is an alge-
braic t-structure on Db(Λ). There exist integers m ≥ n such that XS[m] ⊆ X ⊆ XS[n].

Proof. Note that XS[m] ⊆ X ⊆ XS[n] is equivalent to YS[m] ⊇ Y ⊇ YS[n]. Since
(XS,YS) is algebraic, there exist finitely many simple objects X1, . . . , Xt ∈ HS such that
〈X1, . . . , Xt〉 = HS. The boundedness of (X,Y) asserts the existence of an integer k such
that Xi ∈ X[k] for each 1 ≤ i ≤ t, whence HS[≥ 0] ⊆ X[k]. Thus, (HS[≥ 0])⊥ = YS ⊇ Y[k],
and we can take m = −k. Analogously, there also exists an l such that Xi ∈ Y[l] for each
1 ≤ i ≤ t, so that HS[< 0] ∈ Y[l − 1] and ⊥(HS[< 0]) = XS ⊇ X[l − 1], and we can take
n = 1− l. �

Our second auxiliary result is the following lifting and restriction lemma.

Lemma 3.3. If (X,Y) is a t-structure on Db(Λ), then (X̃, Ỹ) := (⊥(X⊥),X⊥) is a t-

structure on D(Λ) such that (X̃ ∩ Db(Λ), Ỹ ∩ Db(Λ)) = (X,Y). Moreover, if there are
integers m ≥ n such that XS[m] ⊆ X ⊆ XS[n] for some algebraic t-structure (XS,YS), then

we also have X̃S[m] ⊆ X̃ ⊆ X̃S[n].

Proof. Since Db(Λ) is essentially small, [33, Corollary 3.5] says that (X̃, Ỹ) is indeed a

t-structure. Since HomD(Λ)(X, Ỹ) = 0 by definition, the inclusion X ⊆ X̃ holds. Since

HomD(Λ)(X,Y) = 0 we also get Y ⊆ Ỹ . Thus, (X̃ ∩ Db(Λ), Ỹ ∩ Db(Λ)) = (X,Y). For the
final statement, note that XS[m] ⊆ X ⊆ XS[n] if and only if (XS[m])⊥ ⊇ X⊥ ⊇ (XS[n])⊥,

that is ỸS[m] ⊇ Ỹ ⊇ ỸS[n]. �

Remark 3.4. We observe that the lift (X̃S, ỸS) of an algebraic t-structure (XS,YS) on
Db(Λ) is a silting t-structure on D(Λ) in the sense of [7]. Namely, let U = (S[< 0])⊥ and

V = (S[≥ 0])⊥, where the orthogonals are taken in D(Λ). We claim that (U,V) = (X̃S, ỸS).

Since S is a silting subcategory we have S[≥ 0] ⊆ XS. Thus, (S[≥ 0])⊥ ⊇ XS
⊥, i.e. ỸS ⊆ V.

For the reverse inclusion, observe that XS ⊆ U, so that ỸS = XS
⊥ ⊇ U⊥ = V.

We are now ready for the key lemma.

Lemma 3.5. Let Λ be a silting-discrete finite-dimensional algebra. Suppose (X,Y) is a
bounded t-structure on Db(Λ). Then there exists a silting subcategory S = add(S) and an
algebraic t-structure (XS,YS) such that XS[1] ⊆ X ⊆ XS.

Proof. Without loss of generality, we may assume XT[m] ⊆ X ⊆ XT for some algebraic
t-structure (XT,YT). By Lemma 3.3, we can lift the t-structures and inclusions to D(Λ);
these t-structures restrict to the given t-structures on Db(Λ) and are decorated with tildes.

Following [19, Section 2], we set Ỹ1 = ỸT[1] ∩ Ỹ, which, by [13, 33], gives rise to a

t-structure (X̃1, Ỹ1). It has the following properties: ỸT[1] ⊇ Ỹ1 ⊇ ỸT (equivalently,
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X̃T[1] ⊆ X̃1 ⊆ X̃T); by [19, Lemma 2.12] we have Ỹ1[m − 1] ⊇ Ỹ ⊇ Ỹ1, i.e. X̃1[m − 1] ⊆
X̃ ⊆ X̃1.

Now, by Proposition 2.3, there exists a torsion pair (T̃ , F̃) on H̃T such that X̃1 =

〈T̃ , X̃T[1]〉 and Ỹ1 = 〈ỸS, F̃〉. By [27, Corollary 3] or [30, Corollary 4.7], HT ' Mod(Γ),
where Γ = End(T ). Since any torsion pair on Mod(Γ) restricts to a torsion pair on mod(Γ),

the t-structure (X̃1, Ỹ1) restricts to a t-structure (X1,Y1) on Db(Λ) such that XT[1] ⊆ X1 ⊆
XT. By Proposition 3.1, (X1,Y1) is an algebraic t-structure with X1[m − 1] ⊆ X ⊆ X1.
The lemma now follows by induction. �

Proof of Theorem A. Let (X,Y) be a bounded t-structure in Db(Λ) for a silting-discrete
finite-dimensional algebra Λ. By Lemma 3.5, (X,Y) is intermediate with respect to an
algebraic t-structure (XS,YS). By Proposition 3.1, (X,Y) is therefore algebraic. �

4. Stability conditions

4.1. Stability conditions. Rather than give a formal definition of stability conditions,
we give an equivalent formulation; see [12]. Let H = {r exp(iπϕ) | r > 0 and 0 < ϕ ≤
1}. A stability function on an abelian category H consists of a group homomorphism
Z : K0(H) → C such that Z(H) ∈ H for each H ∈ H. If H is a length category then a
stability function is uniquely determined by its action on the simple objects.

Proposition 4.1 ([12, Proposition 5.3]). Specifying a stability condition σ = (Z,H) on a
triangulated category D is equivalent to specifying a bounded t-structure on D together with
a stability function Z : K0(H) → C on its heart H that satisfies the Harder-Narasimhan
(HN) property.

Since any stability function on a length heart satisfies the HN property and, by Theo-
rem A, all the bounded t-structures in Db(Λ) are algebraic when Λ is silting-discrete, we
refrain from defining the HN property and refer the reader to [12]. From now on, since a
bounded t-structure is determined by its heart we shall identify it with its heart.

Definition 4.2 ([12, Theorem 1.2]). Let D be a triangulated category. The set stab(D)
of stability conditions σ = (Z,H) forms a complex manifold called the stability manifold
of D.

The set of stability conditions σ = (Z,H) for some fixed H identifies a ‘chamber’ CH of
stab(D). If H is algebraic, then CH

∼= Ht, where t is the number of nonisomorphic simple
objects of H; see [34].

4.2. Finite-type components. In [32] the tilting poset of a triangulated category D,
denoted tilt(D), consists of bounded t-structures in D with the following partial order,

(X,Y) ≤ (X′,Y′) ⇐⇒ (X′,Y′) is obtained from (X,Y) by finitely many left HRS-tilts.

The subposet tiltalg(D) consists of algebraic t-structures, where (X,Y) ≤ (X′,Y′) if and
only if (X′,Y′) is obtained from (X,Y) through finitely many left HRS-tilts, where each
intermediate t-structure in the sequence of tilts is again algebraic. A component tilt◦(D)
of the tilting poset has finite type if each t-structure in tilt◦(D) is algebraic and has
only finitely many torsion pairs in its heart. The following proposition is an immediate
consequence of Theorem A and Theorem 2.6.

Proposition 4.3. Let Λ be a silting-discrete finite-dimensional algebra. Then tilt(Db(Λ)) =
tiltalg(D

b(Λ)) and each component tilt◦(Db(Λ)) of tilt(Db(Λ)) has finite type.
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By [32, Lemma 4.3], if tilt◦(D) is a finite-type component of tilt(D) then

stab◦(D) =
⋃

H∈tilt◦(D)

CH

is a component of stab(D) called a finite-type component. The main theorem of [32] is
the following.

Theorem 4.4 ([32, Theorem 4.9]). If stab◦(D) is a finite-type component of stab(D) then
stab◦(D) is contractible.

4.3. Connectedness of the silting poset. Recall that the Hasse diagram (or quiver)
of a poset (S,≤) has as vertices the elements of S, and there is an arrow s → t in the
diagram if and only if s < t and there is no element x ∈ S such that s < x < t. A poset
is called connected if its Hasse quiver is connected.

By [25, Theorem 7.13] and [5, Theorem 2.35], there is an arrow (X,Y) → (X′,Y′) in
the Hasse quiver of tilt(Db(Λ)) if and only if the second t-structure can be obtained from
the first by HRS tilt with respect to a torsion pair in the heart generated by a simple
object. These are called simple left tilts in [32]. In particular, it follows that the poset
tiltalg(D

b(Λ)) and the silting poset P1(Kb(proj(Λ))) from Section 2.2 have isomorphic Hasse
quivers.

Recall from [14] that a silting pair (M,M′) consists of a silting subcategory M of a
triangulated category D and a functorially finite subcategory M′ ⊆ M. The poset of
silting pairs P2(D) was defined in [14] via the opposite of the following partial order:

(N,N′) ≥ (M,M′)
def⇐⇒ RM′(M) ≥ RN′(N) ≥ N ≥ M,

where on the right-hand side the partial order is that of P1(D) defined in Section 2.2 and
RM′(M) is the right mutation of M at M′; see [5] and [14, Section 5] for details. One gets
the following theorem by observing that the proof in [14] works in this level of generality.

Theorem 4.5 ([14, Corollary 6.2 and Theorem 7.1]). Suppose Λ is a silting-discrete
finite-dimensional algebra. Then P2(Kb(proj(Λ))) is a CW poset and BP2(Kb(proj(Λ))),
the classifying space of the poset, is contractible.

Corollary 4.6. If Λ is a silting-discrete finite-dimensional k-algebra then tiltalg(D
b(Λ)) =

tilt(Db(Λ)) is connected.

Proof. By Proposition 4.3, we have that tiltalg(D
b(Λ)) = tilt(Db(Λ)), and we only need to

check that
tiltalg(D

b(Λ)) ∼= P1(Kb(proj(Λ)))

is connected. This is a generalisation of [14, Corollary 7.2]: the Hasse quiver of P1(Kb(proj(Λ)))
is the 1-skeleton of BP2(Kb(proj(Λ))), which is contractible by Theorem 4.5, whence
P1(Kb(proj(Λ))) is connected. �

Remark 4.7. We prove Corollary 4.6 using Theorem 4.5 above because we believe the
stronger statement that BP2(Kb(proj(Λ))) is contractible for any silting-discrete algebra
is of independent interest. However, there is a direct argument, which we give below.

Given any T ∈ P1(Kb(proj(Λ))) we have Λ[m] ≤ T ≤ Λ[n], for some integers m ≥
n. Silting discreteness together with [5, Proposition 2.36] give that Λ[m] can be ob-
tained from T by a finite number of irreducible left mutations. Therefore, each T ∈
P1(Kb(proj(Λ))) is connected to some shift Λ[m] in the Hasse quiver of P1(Kb(proj(Λ))).
But, applying this argument with T = Λ[m − 1], we get that Λ[m] and Λ[m − 1] are
connected in that Hasse quiver. Therefore P1(Kb(proj(Λ))) is connected.
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Corollary B now follows directly from Corollary 4.6 by applying Theorem 4.4.

Corollary 4.8. If Λ is a silting-discrete finite-dimensional k-algebra then the stability
manifold stab(Db(Λ)) is contractible.
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