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Abstract

The wide fluctuations of oil prices from 2003 to 2008 have attracted the interest of

academics and policy makers. A popular view is that these fluctuations were caused by

speculative bubbles due to the increased financialization of oil futures markets. This

hypothesis, however, is difficult to examine since the fundamental price of oil is un-

observable and, therefore, econometric evidence in favour of bubbles may actually be

due to misspecified market fundamentals. In this paper, we extend two recently pro-

posed methodologies for bubble detection that alleviate this problem by using market

expectations of future prices. Both methodologies provide no evidence of speculative

bubbles.

1 INTRODUCTION

Oil price shocks may be associated with significant changes in the overall economic perfor-

mance of countries (Blanchard and Gaĺı, 2010; Baumeister and Kilian, 2016c; Kilian, 2008a,

2014; Hamilton, 2009, 2013). As such, they have been subject to detailed scrutiny for more

than three decades (for comprehensive reviews, see Hamilton, 2013, and Baumeister and Kil-

ian, 2016a). Traditionally, research about the key drivers of oil price fluctuations has been

dominated by arguments about fundamental supply and demand shocks (Hamilton, 2003;

Kilian, 2008b, 2009; Barsky and Kilian, 2002). It is only recently that the role of speculation

has been put forward as a serious alternative (see, e.g., Hamilton, 2009; Kilian and Murphy,

2014; Knittel and Pindyck, 2016).

One of the reasons for this recent emphasis on speculation is the eruption of index trading

and financialization of oil markets from 2004, and an almost simultaneous surge in the

price of oil. The focus on speculative pressures was further fueled by press coverage of the

testimonies of Michael Masters before the U.S. Senate (Masters, 2008, 2010). The possibility

that financial speculation plays a central role in the determination of oil prices naturally raises

the issue of whether bubbles are a feature of the dynamics of oil prices. This view has found
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seeming support by studies providing evidence of bubbles in oil prices in the 2000s (see, e.g.,

Lammerding et al., 2013; Phillips and Yu, 2011; Tsvetanov et al., 2016).

Studies based on structural models, on the other hand, provide strong evidence that the

surge in the real price of oil was driven primarily by shifts in the demand for oil associated

with global business cycle fluctuations and that speculation did not have an important impact

on the spot price (for a summary of this literature, see Fattouh et al., 2013). For example,

Kilian and Murphy (2014) develop a structural vector autoregressive model of the global

market for crude oil that allows for shocks to the speculative demand for oil. They find that

expectations of agents about future demand and supply conditions not already captured by

flow demand and flow supply shocks accounted for less than ten percent of the long-run

variation in the real price of oil. The conclusion that speculative demand did not play a

significant role in the determination of the real price of oil since 2003 is robust to the use of

alternative proxies for inventory data and a wide range of values of price elasticities of oil

demand (Kilian and Lee, 2014).

In this paper, we contribute to this debate by employing prices and market expectations

to analyse the presence of speculative bubbles in the crude oil market. In particular, we

extend two recent methodologies, proposed by Pavlidis et al. (2017), to test for periodically

collapsing bubbles. The key idea behind these methodologies is simple: In the presence of

an ongoing speculative bubble, future spot and expected prices will diverge because market

participants rationally attach a non-zero probability to the bubble bursting when forming

expectations. Under general conditions, the deviation of the future spot price from the

expected price will be a function of the bubble process (and, as such, explosive) but it will

not depend on market fundamentals. Consequently, one can simply test for bubbles, first,

by running recursive right-tailed unit root tests on the difference between future spot and

expected prices and, second, by sequentially testing the unbiasedness hypothesis in the oil

market.

Various unit root tests have been proposed in the literature to test for explosive dy-
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namics in time series (see, e.g., Homm and Breitung, 2012; Gürkaynak, 2008). In principle,

any of these could be used to investigate the existence of bubbles. We choose to work with

the Generalized Supremum Augmented Dickey Fuller (GSADF) of Phillips et al. (2015a,b).

Simulation evidence in Phillips et al. and Pavlidis et al. (2017) suggests that the GSADF dis-

plays good size properties and is superior to its rivals in detecting multiple bubble episodes.

Furthermore, this test is accompanied by a date-stamping strategy that permits the identi-

fication of the exact periods of market exuberance. With regard to testing the unbiasedness

hypothesis, we adopt the rolling-window approach of Pavlidis et al. (2017). This approach

consists of sequentially estimating predictive regressions and drawing statistical inference

using the IVX instrumentation method of Phillips and Magdalinos (2009), Phillips and Lee

(2013), and Kostakis et al. (2015). The IVX method is particularly attractive in this setting

because it allows robust chi-square inference for a wide range of autoregressive processes,

from stationary to mildly explosive.

The main advantage of the above methodologies is that, by exploiting the information

incorporated in market expectations, they do not require the specification of market funda-

mentals and, thus, ameliorate the well-known joint hypothesis problem. Both methodologies

require, instead, a proper measure of market expectations.1 Pavlidis et al. (2017) use deriva-

tive prices to proxy for expectations in the foreign exchange and stock markets. However,

derivative prices are contaminated by a risk premium which, if large and persistent, may

confound the analysis. In this paper, we employ two alternative measures of expectations

that do not suffer from this shortcoming. The first measure is obtained as in Baumeister

and Kilian (2016b) by adjusting futures prices by an estimate of the risk premium based on

the term structure model of Hamilton and Wu (2014). The second is directly obtained from

survey data. By applying the GSADF and IVX tests to price and expectation data on the

crude oil market from 1990 to 2013, we find that the two expectation measures yield quali-

tatively similar results. Overall, there is no evidence in favour of speculative bubbles. This

is despite the fact that oil prices and expectations individually exhibit periods of explosive
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dynamics. Thus, our findings are consistent with the literature that supports the view that

oil price movements are driven by changes in fundamental factors.

The rest of the paper is structured as follows. Section 2 describes the theoretical frame-

work. Section 3 discusses the evidence of risk premia in the oil futures market and the

implications for tests based on derivative prices. Section 4 deals with the measurement of

market expectations. Section 5 provides a brief outline of the econometric methods employed

in the paper. Section 6 presents the empirical application, and the final section concludes.

2 THEORETICAL FRAMEWORK

We adopt a general rational expectations asset pricing framework in which the spot price of

oil, St, consists of a fundamental component, Xt, and a periodically-collapsing speculative

bubble, Bt,

St = Xt +Bt. (1)

Previous studies that deal with the presence of speculative bubbles in oil markets typically

make use of Pindyck’s (1993) present value model of rational commodity pricing. In this

model, similarly to the present value model for stocks and bonds, the fundamental price of a

commodity, Xt, is given by the sum of current and expected discounted future benefits from

physically holding the commodity. This stream of benefits, termed the convenience yield,

includes the operational flexibility of refiners that hold inventories to smooth production

in the presence of unexpected changes in demand, avoid stockouts, and accommodate the

scheduling of production and sales (Alquist and Kilian, 2010; Alquist et al., 2014; Pindyck,

2001). Putting Bt aside, the present value model predicts that movements in oil prices can

be attributed to changes in the latent convenience yield, which in turn reflect changes in

current and expected future market conditions. As such, the model can be considered a

reduced-form model of dynamic supply and demand. In many empirical applications, the

marginal convenience yield is assumed to be integrated of order one, I(1), so that, in the
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absence of bubbles, prices and fundamentals are co-integrated (see, e.g., Pindyck, 1993). For

our analysis, a specific model for market fundamentals is not required. We make a much less

restrictive assumption, that the forecast errors made by rational agents for future market

fundamentals are non-explosive. For illustration purposes, we let Xt follow an autoregressive

model

Xt = φXt−1 + θt, (2)

where φ is unrestricted to take values in the I(0), I(1), and explosive regions, and θt is a

white noise process.

With regard to the second component of the spot price, the speculative bubble Bt satisfies

the rational expectations condition of Diba and Grossman (1988)

Et(Bt+1) = (1 + r)Bt, (3)

where r > 0 is a structural parameter that depends on the model describing the economy.

A direct implication of this condition and equation (1) is that, if bubbles are present in oil

markets, then the spot price will display explosive dynamics. Under risk neutrality, the price

of a futures contract at time t with maturity n-periods ahead, defined as F n
t ≡ Et(St+n), will

also be explosive since, from equations (2) and (3), the expected price is a linear function of

the bubble process

Et(St+n) = Et(Bt+n) + Et(Xt+n) = (1 + r)nBt + φnXt. (4)

On this basis, researchers have tested for bubbles by applying right-tailed unit root tests

to data for St and F n
t (Gilbert, 2010; Tsvetanov et al., 2016). One drawback of such an

approach is that it relies on the implicit assumption that the fundamental component is

itself non-explosive. Relaxing this assumption by allowing φ to exceed unity implies that

the spot rate may inherit explosive dynamics from fundamentals rather than bubbles, which
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renders the results of unit root tests inconclusive. Another drawback is that such tests are

prone to generating spurious rejections during temporary, but persistent oil demand booms.

An alternative approach that has been employed in the oil literature consists of obtaining

an estimate X̂t for the unobserved market-fundamentals component and, conditional on this

estimate, test whether the deviation process from fundamentals St − X̂t is non-stationary

(Lammerding et al., 2013; Brooks et al., 2015; Shi and Arora, 2012). This approach is also

problematic in that it heavily relies on the researcher using the correct economic model for

the oil market. As argued by Flood and Garber (1980), among others, any omitted variable

or measurement errors in fundamentals can bias bubble detection tests in favour of rejection

of the no-bubble null hypothesis. To put it differently, econometric tests for bubble detection

are subject to the well-known joint-hypothesis problem: Rejection of the null hypothesis may

be due to misspecified fundamentals, speculative bubbles, or both (Hamilton and Whiteman,

1985; Gürkaynak, 2008).

To mitigate this problem, Pavlidis et al. (2017) propose two novel methodologies that

exploit the fact that, in finite samples, periodically-collapsing bubbles cause future spot prices

and market expectations -as approximated by futures prices- to diverge. These methods are

general enough to cover the most popular types of bubble processes, such as the types

proposed by Blanchard (1979) and Evans (1991). To illustrate the basic idea most simply,

we let Bt follow the rational bubble process proposed by Blanchard (1979). This process has

two states that occur with probabilities π and 1− π. In the first state, the bubble grows at

the rate (1 + r)/π − 1, while in the second it collapses to a white noise

Bt+1 =


(1+r)
π
Bt + εt+1, with prob. π

εt+1, with prob. 1− π.
(5)

It is easy to verify that this bubble process satisfies the rational expectation condition (3).

Under the scenario that a bubble is erupting between time periods t and t+n, the actual
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spot rate at t+ n is given by

St+n = φnXt +

(
1 + r

π

)n
Bt + ε?t+n, (6)

where ε?t+n consists of two stationary moving average processes,
∑n

i=1 φ
n−iθt+i and

∑n
i=1

(
1+r
π

)n−i
εt+i.

Subtracting the expectation formed at time t for the oil price at t+ n from the actual spot

price at time t+ n yields

St+n − Et(St+n) = (1 + r)n
(

1

πn
− 1

)
Bt + ε?t+n. (7)

The above expression reveals that the future spot price and the expected price will diverge

as the bubble process explodes. This wedge between the two prices arises because, when

forming expectations, agents rationally attach a positive weight to the event of the bubble

bursting. Consequently, their forecast for the growth of the bubble component falls short

of the actual realization. The fact that (7) does not depend on market fundamentals but

it depends on bubbles implies that explosive dynamics in St+n − Et(St+n) can be solely

attributed to the latter. Thus, contrary to St+n and Et(St+n), right-tailed unit root test

results on St+n−Et(St+n) can provide conclusive evidence in favour of speculative dynamics.

Pavlidis et al. (2017) focus on the time series properties of the difference between future

spot prices and market expectations as proxied by futures prices. However, using the same

rationale as above, it is easy to show that the presence of periodically collapsing bubbles will

also create a wedge between expectations for St made at different time points in the past.

From equation (4), we can obtain the following expression for the difference in expectations
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of the spot price at time t made n1 and n2 periods prior to t, with n1 < n2

Et−n1(St)− Et−n2(St) = (φn1Xt−n1 + (1 + r)n1Bt−n1)− (φn2Xt−n2 + (1 + r)n2Bt−n2)

=

n2−n1−1∑
i=0

φn1+iθt−n1−i + (1 + r)n2

(
1

πn2−n1
− 1

)
Bt−n2 +

+

n2−n1−1∑
i=0

(
(1 + r)n1+i

πi

)
εt−n1−i. (8)

In the absence of a bubble in the price series, the revision of expectations will simply be

a stationary moving average of the shocks to fundamentals between periods t − n1 and

t− n2. While, if bubbles are present, it will be explosive. On this basis, we suggest running

recursive right-tailed unit root tests on Et−n1(St) − Et−n2(St) as a complement to the tests

on the difference between the future spot price and its expectation described above. This

can provide reassuring evidence about the presence, or absence, of speculative bubbles.

Apart from unit root tests, periodically-collapsing bubbles also have important implica-

tions for predictive regressions. Consider the following Fama-type regression

St+n − Et(St+n) = αn + βn(E(St+n)− St) + ut+n, (9)

where αn and βn are regression coefficients, and ut+n is an error term. Regression (9) and

variants of it have been widely used to test the efficiency of asset markets under quadratic loss.

In the absence of speculative bubbles, under rational expectations and risk neutrality, the

Efficient Market Hypothesis (EMH) postulates that the expected spot price is an unbiased

predictor of the actual spot price so that the slope coefficient in (9) is zero. Pavlidis et

al. (2017) show that this prediction fails in the presence of an ongoing bubble. By letting

fundamentals follow a random walk, they obtain the following expression for the plim of the

slope coefficient2

plim β̂n =
(1 + r)n

(
1
πn − 1

)
(1 + r)n − 1

> 0 = βEMH. (10)
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Since speculative dynamics drive the slope coefficient in the Fama-type regression above the

EMH value, researchers can investigate the presence of bubbles by sequentially testing the

null hypothesis H0 : βn = 0 against the alternative H1 : βn > 0.

3 RISK PREMIA IN THE OIL FUTURES MARKET

The methodologies of Pavlidis et al. (2017) are based on the assumption of risk neutrality,

a direct implication of which is that expected and futures oil prices are indistinguishable.

However, under the more realistic scenario of risk-averse behaviour in commodity markets,

hedgers will be willing to pay a ‘risk premium’ in the futures market to relieve themselves

of commodity price risk, while arbitrageurs will enter the futures market only if they have

the expectation of collecting a premium in the form of positive expected returns (Keynes,

1930; Johnson, 1960; De Roon et al., 2000). Recent research provides evidence of significant

time-variation of risk premia in the crude oil market. For instance, Hamilton and Wu (2014)

document a considerable change in the pricing of risk from 2005, coinciding with an increase

in the volume of trading in futures oil contracts. Baumeister and Kilian (2016b) report

estimates for a battery of alternative risk-premium models and are the first to quantify risk

premia in dollars. The authors show that risk premia are economically significant and exhibit

substantial fluctuations over time. The presence of time-varying risk premia in oil markets

is also supported by the large number of studies that find predictability in oil futures returns

by using various financial and macroeconomic variables (De Roon et al., 2000; Pagano and

Pisani, 2009; Etula, 2013).

In light of these results, futures prices constitute a poor measure of market expectations

and their use for detecting bubbles may confound econometric tests. By letting ρnt denote

the horizon-specific risk premium, the definition of the futures oil price changes to

F n
t ≡ Et(St+n) + ρnt (11)
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and the difference between the future spot and futures prices becomes

St+n − F n
t = (1 + r)n

(
1

πn
− 1

)
Bt + ε?t+n − ρnt . (12)

Clearly, in this framework, the time series properties of St+n − F n
t depend on ρnt . From

both a theoretical and an empirical perspective, it seems unlikely that ρnt displays explosive

dynamics and, thus, it may lead to spurious inference in favour of bubbles. But, if large

and persistent, the risk premium may mask the bubble process in small samples, lowering

the power of unit root tests. That is, a risk premium may lead to higher frequencies of

Type II errors. The risk premium can also impact on EMH tests. Following Fama (1984),

several studies have illustrated that, if risk premia and fundamentals are correlated, then the

presence of a risk premium will cause the slope coefficient in the Fama regression to deviate

from the EMH value (e.g., Obstfeld et al., 1996). To avoid complications associated with

the use of futures data, we utilize two alternative measures of crude oil price expectations:

a financial market expectation measure proposed by Baumeister and Kilian (2016b) and a

survey expectation measure based on data from Consensus Economics Inc.

4 MEASURES OF OIL PRICE EXPECTATIONS

Oil price expectations, besides their use in forward-looking economic models, play a central

role in generating economic projections, in understanding the extent to which energy mar-

kets anticipate changes in economic policy, and in the determination of the value and size of

strategic petroleum reserves (Baumeister and Kilian, 2016b; Baumeister et al., 2017; Newell

and Prest, 2017). Given their importance and wide use, it is no surprise that different ex-

pectation measures have been proposed in the literature. The question of which expectation

measure is the best is addressed in a recent study by Baumeister and Kilian (2016b).

Baumeister and Kilian (2016b) argue that, in the absence of a fully articulated economic

decision problem, the conventional metric in evaluating the accuracy of oil price predictions
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is the Mean Square Prediction Error (MSPE), E(St+n − S̃t+n)2. As is well-known, under a

quadratic loss function, the optimal prediction for the future spot price, S̃t+n, is given by the

conditional mean of the price process, Et(St+n) (Granger, 1969).3 It follows directly from

the definition of the futures price (11) that, if a risk premium in the oil futures market exists,

then the price of a futures contract will constitute a suboptimal predictor of the future spot

price. Furthermore, expectation measures that are based on inaccurate or biased estimates

of the risk premium would also be suboptimal. Thus, different expectation measures can be

ranked according to their MSPE relative to the MSPE of the futures price.

Baumeister and Kilian (2016b) use the MSPE criterion to identify the most accurate

expectation measure for the price of West Texas Intermediate (WTI) crude oil for the period

from January 1992 to June 2014 -an exercise that is of direct relevance to our study since we

also focus on the WTI price over approximately the same sample period. The authors con-

sider a battery of expectation measures that are obtained by adjusting the futures price by an

estimate of the risk premium. These measures fall into three distinct categories. Following

Fama and French (1987, 1988), the first category exploits the information contained in the

commodity futures basis to form predictions of the risk premium. The second category uses

a variety of macroeconomic and financial variables that have been proposed in the literature

on oil return predictability; and the third category utilizes estimates of the risk premium

generated by term structure models. In total, the authors examine seventeen expectation

measures. In addition to these measures, the authors also investigate the predictive ability of

a model-averaging strategy, an encompassing model that includes the entire set of macroeco-

nomic and financial variables, and a ‘pre-test’ model that includes only those macroeconomic

and financial variables that are found to be statistically significant. On the basis of their

extensive investigation, Baumeister and Kilian (2016b) conclude that, by far, the single most

accurate measure of oil price expectations is the financial market expectations measure based

on the term structure model of Hamilton and Wu (2014).4 This measure yields the largest

reductions in MSPE with respect to the MSPE for the futures price benchmark (ranging
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from 19 percentage points for the 3-month horizon to 36 percentage points for the 12-month

horizon) and it always significantly outperforms the simple no-change model.

INSERT FIGURES 1 and 2

Figures 1 and 2 plot financial market expectations together with futures prices and actual

future spot prices for 3- and 12-month horizons, respectively. Two points are particularly

noteworthy (for a more thorough discussion, see Baumeister and Kilian, 2016a,b). First,

it is evident from the figures that financial market expectations perform remarkably better

than futures prices in tracking the evolution of actual spot prices, especially at long horizons.

Most notably, during the oil market surge of January 2003 to March 2008, financial market

expectations are on average higher than future prices. While, after the oil price collapse, from

April to September 2008, they are on average lower than futures prices. This implies that

the systematic failure of oil futures prices to predict the behaviour of the actual spot price

in the 2000s can be partly attributed to the presence of large and time-varying risk premia.

Second, while futures prices exhibit wide fluctuations, similar in magnitude to those of actual

prices, financial market expectations suggest an evolution of expected prices which is much

smoother. As shown by Baumeister and Kilian (2016b), the evolution of financial market

expectations over time is also smoother than that of alternative expectation measures. This

makes them more plausible from an economic point of view. On the grounds of its predictive

accuracy and economic plausibility, we choose to work with the financial market expectation

measure proposed by Baumeister and Kilian (2016b) in our empirical application. Other

recent studies that apply the same methodology for measuring financial market expectations

include Baumeister et al. (2017) and Newell and Prest (2017).

As a complement to financial market expectations, we adopt a second measure based on

survey data. Although survey measures may not perform well in terms of predictive accuracy

(see, e.g., Alquist et al., 2013), they have the major advantage over all other expectation

measures of not being model dependent. As such, they allow us to remain agnostic about the

way market expectations are formed. We obtain survey data from Consensus Economics Inc.
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This is a world-leading international economic survey organization that polls professional

economists from a variety of countries each month to acquire their forecasts for energy and

metal prices as well as for key macroeconomic variables.5 The organization was established

in October 1989 and, from its inception up to December 2012, it collected data on 3- and

12-month expectations for the price of WTI crude oil - which matches the type and grade

delivered under the NYMEX futures contract (Alquist et al., 2013). In January 2013, the

variable of interest in the survey changed to the price of Brent.

The Consensus Economics dataset includes the arithmetic mean, range, and standard

deviation of the cross-sectional professional forecasts. We employ the former statistic as our

survey expectation measure. The results in Pesaran and Weale (2006) and Pesaran (2006,

Appendix A) indicate that the cross-sectional mean displays some attractive properties.

Specifically, they illustrate that average expectations can be rational even if individual ex-

pectations are biased and display a high degree of heterogeneity. Thus, the conditions under

which average expectations are rational are much looser that those required for individual

expectations. We plot 3- and 12-month survey expectations in Figures 1 and 2. A glance at

the figures reveals that survey expectations are not much smoother than futures prices and

are substantially less smooth in comparison to financial market expectations.

5 ECONOMETRIC METHODS & TECHNICAL DE-

TAILS

In this section, we provide a brief description of the econometric tests used in the empirical

analysis in order to facilitate the interpretation of the results. We first discuss unit root

tests for bubble detection, and then tests for drawing statistical inference in a predictive

regression framework with a persistent regressor.
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Unit Root Tests Researchers have employed a variety of unit root tests to examine

the presence of speculative bubbles in asset markets. We focus on the recently proposed

Generalized Supremum Augmented Dickey Fuller (GSADF) of Phillips et al. (2015a,b). This

test has several features that make it particularly attractive in our framework: First, contrary

to its predecessor -the Supremum ADF (SADF)- the GSADF test is consistent with the

presence of multiple boom-bust episodes, such as those experienced in the oil market over the

last decades; second, it has good size properties; third, it displays higher power in detecting

bubbles that burst in sample than tests that allow for a single change in persistence; and,

fourth, it allows dating episodes of explosive dynamics (Homm and Breitung, 2012; Phillips

et al., 2015a,b; Pavlidis et al., 2017).

The GSADF test is based on the following rolling-window type ADF regression

∆yt = ar1,r2 + γr1,r2yt−1 +
k∑
i=1

ψir1,r2∆yt−i + εt, (13)

where εt
iid∼ N(0, σ2

r1,r2
), and r1 and r2 denote fractions of the total sample size that specify

the starting and ending points of a subsample period. The t-ratio corresponding to the null

hypothesis of a unit root, H0 : γr1,r2 = 0, is given by

ADFr2r1 = γ̂r1,r2/s.e.(γ̂r1,r2),

and the alternative hypothesis is that of explosive behaviour, H1 : γ̂r1,r2 > 0. Note that

setting the beginning of the sample to the first available observation, r1 = 0, and the end of

the sample to the last, r2 = 1, yields the standard ADF test, ADF 1
0 . Following Evans (1991),

numerous studies have illustrated that this test displays very low power in the presence of

market rallies that are followed by market crashes.

To deal with the effect of a single market collapse on the performance of unit root tests,

Phillips et al. (2011) propose a recursive procedure which is based on the estimation of the

ADF regression (13) using a forward expanding sample. In this procedure, the beginning
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of the sample period is fixed at the first available observation, r1 = 0, and the end of the

sample period r2 varies from a user-specified minimum window size, r2 = r0, to the end of

the entire sample, r2 = 1. The supremum of the ADF statistics is defined as

SADF(r0) = sup
r2∈[r0,1]

ADFr20 .

The SADF test is designed to perform well when there is a single boom-bust episode, but

is inconsistent when there are more than one episodes. The GSADF test of Phillips et al.

(2015a) overcomes this deficiency by allowing both the start, r1, and the end, r2, of the

sample used to estimate regression (13) to vary. The GSADF statistic is defined as

GSADF(r0) = sup
r2∈[r0,1],r1∈[0,r2−r0]

ADFr2r1 .

The extra flexibility of covering a larger number of subsamples makes the test consistent with

multiple boom-bust episodes, and it also translates in significant power gains. Moreover, if

the GSADF test rejects the null hypothesis of a unit root, Phillips et al. (2015a) propose an

econometric strategy that allows the identification of the periods during which the yt series

displays explosiveness. The strategy consists of, first, estimating the sequence of Backward

sup ADF statistics

BSADFr2(r0) = sup
r1∈[0,r2−r0]

BADFr2r1 , (14)

and then identifying the origination date of the bubble as the first observation that the

BSADF statistic exceeds its critical value

r̂e = inf
r2∈[r0,1]

{r2 : BSADFr2(r0) > scuβTr2 },

and the termination date as the first date after which the BSADF falls below its critical
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value

r̂f = inf
r2∈[r0,1]

{r2 : BSADFr2(r0) < scuβTr2 },

where scuβTr2 is the 100βT% critical value of the SADF based on br2T c observations and βT

is the significance level.

The implementation of the above unit root tests requires the specification of the lag

length k and the limit distributions of the SADF and GSADF test statistics. Following the

recommendation of Phillips et al. (2015a), we use a short lag length for the spot, St, futures,

F n
t , and expectation, Et(St+n), series. Specifically, we set k to one. With regard to differences

between future spot and expectations, St+n − Et(St+n), and differences between market

expectations made at different points in time, Et−n1(St)− Et−n2(St), these series follow, by

construction, a process with serially correlated errors (see equations (7) and (8)). To account

for serial dependence, we use the general-to-specific method of Ng and Perron (1995) which

determines k by using a sequential t-test for the significance of the regression coefficient on

the last lag. We consider a maximum lag length of k = 11, so that the longest lag length

specification exploits annual information. With regard to the limit distributions of the SADF

and GSADF test statistics, these distributions are non-standard and depend on the minimum

window size r0. We use the rule-of-thumb of Phillips et al. (2015a), r0 = 0.01 + 1.8/
√
T , to

select the minimum window size, and obtain finite-sample critical values by simulating 2,000

random walk processes with N(0, 1) errors.6

Predictive Regressions A source of concern when testing the unbiasedness hypothesis is

that the predictor in the Fama regression maybe highly persistent, even explosive under the

alternative of bubbles. It is a well-known fact that conventional predictability tests of asset

prices based on the regression

yt+1 = βxt + ut+1, (15)

may be invalid in the presence of a persistent regressor whose innovations are correlated with

the regressand.7 Under local-to-unity asymptotics, the ordinary least squares estimator of
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the slope coefficient in (15) is biased and has a non-standard and non-pivotal distribution that

depends on nuisance parameters (Elliott and Stock, 1994; Stambaugh, 1999; Phillips, 2014).

Several methods have been proposed in the literature to draw valid statistical inference in this

setting, such as the efficient Q-test of Campbell and Yogo (2006), the conditional likelihood

approach of Jansson and Moreira (2006), and the nearly optimal test of Elliott et al. (2015).

We choose to work with the IVX instrumentation method of Phillips and Magdalinos (2009),

Phillips and Lee (2013), and Kostakis et al. (2015).

The key idea behind the IVX method is to create an instrument, which relies solely on

the regressor (hence the name IVX) but falls within the class of near-stationary processes,

and use it to remove endogeneity. Specifically, the IVX instrument is initialized at zero and

sequentially computed according to

zt = δzzt−1 + ∆xt,

where δz = 1 + cz/T
ζ is an artificial autoregressive scalar, ζ ∈ (0, 1), and cz < 0.8 Given this

instrument, the IVX estimator for β is

β̂IVX =

∑
ztyt+1∑
ztxt

,

and the corresponding IVX test statistic

IVX =
β̂IVX − β
σ̂IVX

,

follows a standard normal distribution (Phillips and Magdalinos, 2009; Kostakis et al., 2015;

Phillips and Lee, 2013). In addition to allowing standard hypothesis testing, the IVX has

several advantages over alternative tests: First, it is valid for autoregressive processes that

cover the whole spectrum from stationary to mildly explosive; second, it displays good finite-

sample properties (Kostakis et al., 2015; Pavlidis et al., 2017); third, it is easy to implement
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since it is based on simple filtering techniques and linear regression; and, finally, it can be

extended to long-horizon predictive regressions (see Phillips and Lee, 2013).

To test for periodically collapsing bubbles, we adopt a rolling-window regression frame-

work, where the window size is set, again, according to the rule of Phillips et al. (2015a),

r0 = 0.01 + 1.8/
√
T . Due to the fact that, in a rolling-regression framework, the null hy-

pothesis of no-bubbles is examined multiple times, the probability of rejecting a true null

may exceed the desired significance level. To address this issue, we perform a Bonferroni

correction which adjusts the nominal significance level by the number of hypotheses tested.

In general, Bonferroni corrections lead to conservative tests. However, simulation results in

Pavlidis et al. (2017) indicate that the IVX method still performs comparably or better than

recursive unit root tests.

6 DATA & EMPIRICAL RESULTS

We construct a dataset that includes spot prices, 3- and 12-month futures prices, and 3- and

12-month expectations for the price of WTI crude oil. Survey expectations are, as already

mentioned, obtained from Consensus Economics Inc. Spot and futures price series are

downloaded from Bloomberg. The sample spans the period from January 1990 to December

2013. The start date is chosen so as to avoid the period of low volume in oil futures markets

that commenced in 1983 (see Hamilton and Wu, 2014), and the period of regulation of

the WTI market which lasted until the early 1980s (Kilian, 2014). Furthermore, it almost

coincides with the first data release of survey expectations, which occurred in October 1989.

The end of the sample period, on the other hand, corresponds to the last set of survey

expectations.

INSERT FIGURE 3

The period under examination includes several significant historical events that, to dif-

ferent degrees, are believed to have affected the price of crude oil. These include the 1990
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Iraq’s invasion of Kuwait and its aftermath, the Iraq war of 2002-03, the financialization of

oil futures markets since 2003, the Libyan crisis in 2011, the Arab spring, the oil embargo to

Iran in 2012, and, most notably, the price fluctuations of 2008 associated with the financial

crisis. Figure 3 displays the spot price of WTI crude oil. A look at the figure reveals why the

price fluctuations of 2008 stand out as one of the five most significant oil shocks in history.

From 92 dollars in December 2007, the oil price jumped to an all-time-high of 145 dollars

in July 2008, and then collapsed to 40 dollars by December 2008. These price fluctuations

drew the attention of the popular press and of policy makers. For example, in his testimony

before the U.S. Senate Commerce Committee in June 2008,9 George Soros described the

surge in oil prices as part of a “super-bubble” in the economy.

INSERT TABLE 1

The volatile behaviour of oil markets in the 2000s also motivated researchers to test for

periodically collapsing bubbles. A number of studies applied unit root tests to spot and

futures oil prices. In Table 1, we report ADF, SADF, and GSADF statistics for these series,

as well as for survey expectations from Consensus Economics Inc. and financial market

expectations, derived as in Baumeister and Kilian (2016b). In line with previous studies, the

results for the two recursive tests provide strong evidence in favour of explosive dynamics,

with all SADF and GSADF statistics exceeding the 95% critical values. In contrast, the

standard ADF test fails to reject the null of a unit root in all cases. The large difference

between recursive and whole-sample ADF tests results is expected given the extremely low

power of the latter.

INSERT FIGURES 4 and 5

In order to identify the specific periods of explosive dynamics in oil prices, Figures 4

and 5 plot BSADF statistics together with the corresponding 95% critical value sequence.

Overall, the BSADF statistics for spot, futures and expected price series exhibit a similar
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pattern. Neglecting a few extremely short-lived episodes of explosiveness in the first part of

the sample, the BSADF statistics rise above the critical value sequence around the inception

of the financialization of oil futures markets in 2003, then drop (in some cases below the

critical value sequence), and then rise rapidly again to reach their peak value in 2008 -with

the exception of 12-month financial market expectations. Shortly after their 2008 peak, all

series fall below the critical value sequence and remain insignificant until the end of the

sample.

It follows from the analysis of Section 2 that episodes of explosive dynamics in oil prices

per se do not constitute evidence in favour of speculative bubbles, since such dynamics may

actually reflect changes in fundamental factors. Thus, unit root test results on prices alone

should be interpreted with caution. To alleviate this problem, we examine the behaviour of

deviations of future spot prices from market expectations.

In order to formally test for the presence of speculative bubbles in the oil market, we

run unit root tests on the difference between future spot prices and market expectations,

as well as on the difference between market expectations made at different points in time.

Table 2 reports the unit root tests results. We observe that the ADF, SADF, and GSADF

statistics are below the 95% critical value for all expectation measures and for all horizons.

The finding that spot and expected prices display episodes of explosive dynamics but their

differences do not is in line with the view that fundamentals are the driving force of oil price

movements. In accordance, the fact that there are periods of explosiveness in expected prices

but there are no such periods in the difference between expectations made at different points

in time implies that revisions to expectations can be attributed to news about fundamentals.

With respect to the interpretation of the fluctuations of the 2000s in the difference between

actual future spot prices and their corresponding expectations, Kilian and Hicks (2013) report

large and persistent positive GDP forecast surprises in the major emerging and industrialised

economies for the period June 2003 to June 2008, and large and persistent negative forecast

surprises for the period July 2008 to December 2008. Similar results are obtained based
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on various proxies for global real economic activity (Kilian, 2009; Kilian and Zhou, 2017).

Thus, a possible explanation for those large deviations is that the unexpected component of

oil price movements during this period is due to flow demand shocks.

INSERT TABLE 2

As a complement to unit root tests, we run IVX tests using the rolling Fama-type regres-

sion framework outlined in the previous section. The IVX test results, reported in Table 3,

suggest that the null hypothesis that the slope coefficient in the Fama regression is zero (no

bubbles) against the alternative that it is positive cannot be rejected at the 5% significance

level. This conclusion holds, again, across expectation measures and horizons.

INSERT TABLE 3

Overall, our findings are consistent with the arguments put forward by Alquist and

Gervais (2013), Fattouh et al. (2013), Hamilton (2009), Kilian and Murphy (2014), Kilian

and Lee (2014), and Knittel and Pindyck (2016) that economic fundamentals are responsible

for the fluctuations in crude oil prices over the sample period under consideration.

7 CONCLUSIONS

The fluctuations in the price of crude oil in the 2000s generated an intense debate among

academics, financial analysts and policy makers. Many of the arguments put forward in

the debate centred on the issue of whether financialization of the oil futures market and

the proliferation of index trading created a non-fundamental pathway, a speculative bubble

that subsequently collapsed. Such arguments dominated policy discussions, and efforts to

regulate speculation in oil markets soon followed.

From an empirical perspective, investigating whether speculative bubbles drove oil prices

away from their fundamental value is complicated. In this paper, we employ market ex-

pectations of future oil prices to address this problem. Our framework is similar to that of
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Pavlidis et al. (2017), with the difference that Pavlidis et al. use derivative prices to mitigate

the joint hypothesis problem. A clear advantage of using market expectations over derivative

prices is that the latter is not contaminated by a risk premium. This is particularly relevant

for oil markets given the strong evidence in favour of significant time-varying, and persistent

movements in the risk premium.

In our empirical analysis, we use two alternative measures of expectations to examine the

behaviour of the crude oil market from 1990 until 2013. One measure is directly taken from

survey data, while the second one is computed by adjusting futures prices by an estimate of

the risk premium. In summary, we do not find any evidence of speculative bubbles despite the

fact that the individual spot price and expectation series exhibit episodes of exuberance. The

results are similar across expectation measures and horizons. We conclude that fundamental

factors were the key drivers of the price of crude oil. This finding complements recent research

on structural models of the crude oil market that has explicitly incorporated speculation as

an independent contributing factor of prices, but found only a limited quantitative effect.
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Notes

1. In the speculative bubbles literature, the joint hypothesis problem typically refers to the difficulty in

differentiating between a misspecified model for fundamentals (either in terms of functional form, or omitted

variables, or both) and the presence of speculative bubbles (Gürkaynak, 2008). Our approach addresses this

problem by exploiting the beliefs of economic agents about the evolution of the intrinsic value of crude oil.

However, we still require a good proxy for market expectations and, therefore, we face a -though different-

joint hypothesis problem. We examine the issue of measuring market expectations in Section 4.

2. It can be shown that the EMH prediction that βn = 0 holds even if fundamentals are explosive. Thus,

explosive fundamentals cannot explain the failure of EMH.

3. In a more general setting where the loss function is non-quadratic or asymmetric, expectation uncertainty

may also matter (see Patton and Timmermann, 2007a, and Patton and Timmermann, 2007b, for the analysis

of the properties of optimal forecasts under general loss functions). Measuring expectations uncertainty is

not straightforward because it requires information on the degree of confidence that survey respondents

attach to their point expectations (Pesaran and Weale, 2006). There are only a few surveys that gather such

data and, to the best of our knowledge, none of them covers the oil market.

4. By adapting the bond market models in Vayanos and Vila (2009) and in Hamilton and Wu (2015) to

commodity markets, Hamilton and Wu (2014) show that the interaction between hedging demands from

commercial producers or index-fund investors and arbitrageurs that hold optimal mean-variance portfolios

generates an affine factor structure for futures prices. The authors also develop estimation algorithms and

diagnostic tools for this family of models which they have kindly made available at: http://econweb.ucsd.

edu/~jhamilto/software.htm. We follow Hamilton and Wu’s methodology and employ these algorithms

to compute point estimates of the risk premium using weekly data, which we subsequently convert to the

monthly frequency.

5. Among others, Frankel (2014) advocates the use of Consensus Economics professional forecasts for mea-

suring expected future changes in spot commodity prices, and Batchelor (2001) their use in macroeconomic

forecasting.

6. As a robustness check, we have examined the sensitivity of the unit root test results to the lag length

specification by running unit root tests with k = 1, . . . , 11 and also by employing an alternative information-

based method which utilizes BIC to select k. Both exercises suggest that the results are robust to the choice

of the lag length specification. Furthermore, rather than using Monte-Carlo simulations to obtain the limit

distributions of the unit root test statistics, we have employed a residual-based bootstrap to draw statistical

inference. The advantage of this approach is twofold. First, it takes into account the lag structure of the
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time series process, and second it allows for deviations of the error term from normality. The results of the

residual-based bootstrap are qualitatively the same as those based on Monte-Carlo simulations. All results

are available upon request.

7. Kilian (1999) and Kilian and Taylor (2003) show that bootstrap versions of these tests, if properly

implemented, are immune from these problems in practice and have good size, even in small samples.

8. Monte Carlo simulation results in Kostakis et al. (2015) suggest setting cz = −1 and ζ = 0.95.

9. George Soros, Testimony before the U.S. Senate Commerce Committee Oversight Hearing on FTC

Advanced Rulemaking on Oil Market Manipulation, Washington DC, 3 June 2008.
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TABLES & FIGURES

Table 1: Unit root tests (levels)
Series/Test ADF SADF GSADF

St -1.370 4.934? 5.407?

EC
t (St+3) -1.649 3.832? 4.416?

EF
t (St+3) -0.961 3.689? 4.055?

F 3
t -1.344 4.455? 4.702?

EC
t (St+12) -1.089 5.146? 5.318?

EF
t (St+12) -0.201 4.110? 4.716?

F 12
t -1.098 4.871? 4.912?

Notes: The table reports unit root test statistics for the spot oil price, S, the expected 3-
and 12-month-ahead spot prices from Consensus Economics Inc., EC , the expected 3- and
12-month-ahead spot prices obtained as in Baumeister and Kilian (2016b), EF , and the 3-
and 12-month futures prices, F . An asterisk indicates significance at the 5% level. The lag
length is set equal to 1. The minimum window size is 32 months.
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Table 2: Unit root tests (differences)
Series/Test ADF SADF GSADF

St+3 − EC
t (St+3) -5.655 0.802 0.989

St+3 − EF
t (St+3) -5.090 -0.136 1.510

St+12 − EC
t (St+12) -5.169 1.460 1.482

St+12 − EF
t (St+12) -4.885 -1.199 0.520

EC
t−3(St)− EC

t−12(St) -4.461 0.257 1.372
EF
t−3(St)− EF

t−12(St) -3.964 -0.259 0.995

Notes: The table reports unit root test statistics for the difference between the future spot
oil price and i) the expected 3- and 12-month-ahead spot prices from Consensus Economics
Inc., EC , and ii) the expected 3- and 12-month-ahead spot prices obtained as in Baumeister
and Kilian (2016b), EF . It also reports unit root statistics for the difference between i) the
expected 3- and 12-month-ahead prices at time t from Consensus Economics Inc. and ii)
the expected 3- and 12-month-ahead prices at time t obtained as in Baumeister and Kilian
(2016b). An asterisk indicates significance at the 5% level. The lag length is selected using
the general-to-specific method of Ng and Perron (1995). The minimum window size is 32
months.
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Table 3: IVX tests
Horizon Survey Expectations Financial Market Expectations

3 months 2.794 1.866
12 months 2.325 3.277

Notes: The table reports maximum IVX statistics corresponding to the null hypothesis that
the slope coefficient in the Fama-type regression (9) is zero against the alternative that it is
positive. An asterisk indicates significance at the 5% level. The size of the rolling window is
32 months.
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Figure 1: Time series of the actual 3-month-ahead spot oil price, S, the expected 3-month-
ahead price from Consensus Economics Inc., EC , the expected 3-month-ahead spot price
obtained as in Baumeister and Kilian (2016b), EF , and the 3-month futures price, F .
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Figure 2: Time series of the actual 12-month-ahead spot oil price, S, the expected 12-month
spot price from Consensus Economics Inc., EC , the expected 12-month spot price obtained
as in Baumeister and Kilian (2016b), EF , and the 12-month futures price, F .
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Figure 3: Time series of the spot price of WTI crude oil.
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Figure 4: BSADF statistics for the spot oil price, S, the expected 3-month-ahead spot
price from Consensus Economics Inc., EC , the expected 3-month-ahead spot price obtained
obtained as in Baumeister and Kilian (2016b), EF , the 3-month futures price, F , and the
95% BSADF critical value sequence. The lag length is set equal to 1 for all series. The
minimum window size is 32 months.
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Figure 5: BSADF statistics for the expected 12-month-ahead spot price from Consensus Eco-
nomics Inc., EC , the expected 12-month-ahead spot price obtained obtained as in Baumeister
and Kilian (2016b), EF , the 12-month futures price, F , and the 95% BSADF critical value
sequence. The lag length is set equal to 1 for all series. The minimum window size is 32
months.
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