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Highlights

• A novel unified formulation for Hashing learning is put
forward that overall performance can be optimized.

• We give a general framework for OPH such that it can be
incorporated with different Hashing methods.

• For the orthogonality-constrained problem of OPH, we put
forward an effective learning algorithm.

• We carry out extensive experiments for ANN search and
CBDR . Results validate the effectiveness of OPH.
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ABSTRACT

Hashing, which seeks for binary codes to represent data, has drawn increasing research interest in
recent years. Most existing Hashing methods follow a projection-quantization framework which first
projects high-dimensional data into compact low-dimensional space and then quantifies the compact
data into binary codes. The projection step plays a key role in Hashing and academia has paid con-
siderable attention to it. Previous works have proven that a good projection should simultaneously 1)
preserve important information in original data, and 2) lead to compact representation with low quan-
tization error. However, they adopted a greedy two-step strategy to consider the above two properties
separately. In this paper, we empirically show that such a two-step strategy will result in a sub-optimal
solution because the optimal solution to 1) limits the feasible set for the solution to 2). We put forward
a novel projection learning method for Hashing, dubbed Optimized Projection (OPH). Specifically,
we propose to learn the projection in a unified formulation which can find a good trade-off such that
the overall performance can be optimized. A general framework is given such that OPH can be incor-
porated with different Hashing methods for different situations. We also introduce an effective gradi-
ent-based optimization algorithm for OPH. We carried out extensive experiments for Hashing-based
Approximate Nearest Neighbor search and Content-based Data Retrieval on six benchmark datasets.
The results show that OPH significantly outperforms several state-of-the-art related Hashing methods.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The demand for effective indexing structures emerged re-
cently which can perform Approximate Nearest Neighbor
(ANN) search efficiently given a large-scale database. One of
the best known structures is tree (Friedman et al., 1977) provid-
ing logarithmic searching complexity. But tree-based structure
may reduce to exhaustive linear search given high-dimensional
data (Gionis et al., 1999) which is more common in real world.
Hashing, which represents data by binary codes, can effectively
cope with such problem. For example, we just need about 1GB
memory to load 32 million points with each point represented
by 256 bits and performing ANN search needs less than 1 sec-
ond as only simple bit operations are required to compute Ham-
ming distance (He et al., 2013). Due to its low storage cost
and very high retrieval efficiency, in recent decade Hashing has
drawn increasing interest from both academia and industry.

∗∗Corresponding author: Tel.: +86-010-62773280; fax: +86-010-62773281;
e-mail: dinggg@tsinghua.edu.cn (Guiguang Ding)

Locality Sensitive Hashing (LSH) (Andoni and Indyk, 2006)
is one of the most celebrated models. It adopts random linear
projections to map original feature vector to binary codes. Such
coding method is quite fast. But in practice, long Hashcodes are
required to achieve satisfactory performance because it is data-
independent (Zhang et al., 2010). To tackle this problem, sev-
eral machine learning techniques have been adopted to design
effective and compact Hashcodes, such as Principle Compo-
nents Analysis, Manifold Learning, Semi-supervised Learning,
and Restricted Boltzmann Machine, which respectively lead to
PCA Hashing (Jegou et al., 2010), Spectral Hashing (Weiss
et al., 2008), and Semi-supervised Hashing (Wang et al., 2010).
Such deta-dependent Hashing methods can exploit important
information hidden in the original features, like global Eu-
clidean distance, local manifold structure, and etc.

Producing binary codes directly from original features is dif-
ficult in most cases (Weiss et al., 2008). Hence, most exist-
ing works follow a projection-quantization framework (Gong
and Lazebnik, 2011; Jegou et al., 2010; Liu et al., 2011; Ding
et al., 2016; Guo et al., 2017c; Liu et al., 2017c). Firstly, the
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Fig. 1. The flowchart of Hashing. Up) The projection-quantization frame-
work. Down) An extra re-projection is adopted for better result.

(high-dimensional) original features are projected into a low-
dimensional compact space whose dimensionality is always
equal to the target Hashcode length by a real-value projection
function. Secondly, the real-value compact representation is
quantified into binary codes by, in most cases, thresholding. A
flowchart of such framework is illustrated in Figure 1 Up. De-
spite the recent emerging research on quantization (He et al.,
2013; Kong and Li, 2012a; Liu et al., 2017a; Shen et al., 2018;
Guo et al., 2018), most researchers have paid and are paying
more attention to the projection step (Chen et al., 2014; Jegou
et al., 2010; Kumar and Udupa, 2011; Wang et al., 2010; Weiss
et al., 2008; Zhang et al., 2011; Liu et al., 2015) because this
lays the foundation for Hashing and more effective projection
can always lead to better result (Gong and Lazebnik, 2011).

Observed from literatures, an effective projection should sat-
isfy the following properties simultaneously: 1) preserving im-
portant information in original features, such as global Eu-
clidean (Jegou et al., 2010), local manifold structure (Liu et al.,
2011; Weiss et al., 2008), or pair-wise label information (Wang
et al., 2010; Guo et al., 2017a; Liu et al., 2017b), etc; and 2)
leading to projected data with low quantization error which oc-
curs when mapping real-value features to binary codes (Gong
and Lazebnik, 2011). Previous works mostly focus on the first
property. However, recent studies have demonstrated that the
second property is also quite important and optimization aiming
at it can result in much better performance (Gong and Lazeb-
nik, 2011; Xu et al., 2013). Thus they propose to adopt an extra
adjustment (a rotation is always utilized) after the initial pro-
jection to re-project the data for better result, as illustrated in
Figure 1 Down. However, this is a two-step strategy which con-
siders above two properties separately. Meanwhile, the second
step is limited by the result of initial projection and it only finds
the sub-optimal solution.

It is intuitive and straightforward to raise a question: can
combining the two steps in projection learning together lead
to better result? This paper empirically studies it and obtains
a positive answer. Motivated by this observation, in this paper,
we propose a novel projection learning method for Hashing,
referred to as Optimized Projection (OPH). Besides, we also
make the following contributions in this paper:

• A unified formulation for Hashing projection learning is

put forward which can find a good trade-off between pre-
serving information and minimizing quantization error,
such that overall performance can be optimized.

• We give a general learning framework for OPH such that it
can be incorporated with different Hashing methods based
on specific situations. For example, when global Eu-
clidean information is important, we can combine OPH
with PCA, while Spectral is adopted if we concern more
for the local manifold structure of data.

• For the orthogonality-constrained optimization problem of
OPH, we also put forward an effective iterative learning
algorithm based on the gradient flow method.

• We carry out extensive experiments for Approximate
Nearest Neighbor (ANN) search and Content-based Data
(image and text) Retrieval (CBDR) based on Hashing on
several benchmark datasets. Experimental results validate
the effectiveness of OPH compared with several state-of-
the-art related Hashing methods.

2. Observation and Motivation

2.1. Problem and Notation

Given a set of training data X = [x1, ..., xn]T ∈ Rn×d, where
n is the number of samples and d is the dimensionality of orig-
inal features, we want to learn a Hashing function h which can
produce binary codes B = h(X) = [b1, ...,bn]T ∈ {−1, 1}n×k

for each sample, which are termed as Hashcodes, where k is
the length of Hashcodes. Generally, we require the Hashcodes
to be balanced (1nB = 0) and uncorrelated (BT B = nIk). De-
signing h directly is difficult and sometimes NP-hard (Weiss
et al., 2008), so we can adopt a projection-quantization strat-
egy. Specifically, we can find a projection matrix P ∈ Rd×k,
and let h(x) = sign(xP). Here sign(x) = 1 if x ≥ 0 or −1 other-
wise. The sign function is widely used in previous works (Gong
and Lazebnik, 2011; Jegou et al., 2010; Liu et al., 2011; Wang
et al., 2010; Weiss et al., 2008) for quantization. Of course we
can adopt more complicated quantization functions (He et al.,
2013; Kong and Li, 2012a). But this is not the focus of this and
some related previous papers thus we still use sign function for
fair comparison. Without loss of generality, in this paper we
assume the data to be zero centered, i.e.,

∑n
i=1 xi = 0. Conse-

quently, the projected data Y = XP is zero centered as well.

2.2. An Observation on PCA Projection

PCA projection has been widely utilized in several Hash-
ing methods (Gong and Lazebnik, 2011; He et al., 2013; Kong
and Li, 2012b) as the initial projection. Here we analyze the
property of PCA for Hashing. In PCA projection, the global
Euclidean structure is expected to be preserved by minimizing
the reconstruction error under a linear orthogonal projection P.
Specifically, such projection matrix can be learned by the opti-
mization problem as below

min
P,Y
‖X − YPT ‖2F , s.t. PT P = Ik,Y = XP (1)
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Fig. 2. Toy data. The value of ‖Y‖2F for left (right) is 264.4 (261.8). On the
other hand, the overall quantization error for left (right) is 2642.5 (2628.3).

where ‖ · ‖F denotes the Frobenius norm of matrix. Based on
the constraints, it is easy to verify that the projection error (re-
construction error mentioned above) can be computed as

ep = ‖X − YPT ‖2F = ‖X‖2F − ‖XP‖2F (2)

Since ‖X‖2F is a constant, by substituting Equation (2) into prob-
lem (1), we obtain the final objective function of PCA,

max
P
‖XP‖2F , s.t. PT P = Ik (3)

which can be regard as maximizing the total variance of pro-
jected data because the data is zero centered. Problem (3) can
be efficiently optimized by eigenvalue decomposition.

The projection P obtained above can preserve the global Eu-
clidean structure, i.e., it satisfies the first property. Now let
us consider the second property, minimizing quantization er-
ror. Given real-value data Y, and corresponding binary codes
B = sign(Y), the quantization error caused by sign function is
defined as the distance between them as follows,

eq = ‖B − Y‖2F = ‖B‖2F + ‖Y‖2F − 2‖Y‖1 (4)

where ‖Y‖1 =
∑

i, j |yi j|. We have the last term above because
bi j = sign(yi j) ⇒ bi jyi j = |yi j|. Since we have ‖B‖2F = nk is
a constant and Y = XP, the projection which can minimize the
quantization error can be learned as below

max
P

2‖XP‖1 − ‖XP‖2F , s.t. PT P = Ik (5)

Comparing problem (3) to (5), we can obtain an interesting
observation: directly maximizing (5) longs for smaller ‖XP‖2F
which is against maximizing (3). In most situations, the respec-
tive optimal solutions to (3) and (5) are different.

Above we show the direct connection and contradiction
between minimizing projection error and quantization error.
However, such relationship between above two errors is ignored
in previous works (Gong and Lazebnik, 2011; Kong and Li,
2012b). Consequently, a greedy two-step strategy considering
two properties separately is widely adopted. One representa-
tive work is Iterative Quantization (ITQ) (Gong and Lazebnik,
2011). Specifically, they first optimize problem (3) and obtain
an initial projection P. Then a rotation matrix R ∈ Rk×k is
learned by a Procrustean approach to minimize the quantiza-
tion error from projected data Y = XP. The objective function
of ITQ can be formulated as follows,

min
B,R
‖B − YR‖2F , s.t., B = sign(YR),RRT = Ik (6)

Table 1. ep and eq (×104) on SIFT1M.

ep eq

ITQ OPH ∆OPH ITQ OPH ∆OPH

16 bits 17.69 17.95 +1.47% 13.97 12.74 −8.80%
32 bits 10.29 10.56 +2.62% 14.31 12.51 −12.58%
64 bits 3.82 3.92 +2.61% 19.22 16.78 −12.70%
96 bits 1.17 1.20 +2.56% 28.07 25.11 −10.47%

The final projection is given by PR. A rotation matrix satisfies
tr(RT YR) = tr(Y) for any square matrix. So PR must be the
optimal solution to problem (3) too. Hence, their basic idea can
be summarized as: first minimizing projection error, then min-
imizing quantization error while fixing projection error. Since
‖XP‖2F is fixed now, problem (5) in a two-step strategy could be
rewritten as formulation below

max
P
‖XP‖1, s.t. PT P = Ik, ‖XP‖2F = c (7)

where c is the optimal value of problem (3). Here, the extra con-
straint limits the feasible set of P hence the obtained projection
may be only sub-optimal for the second property.

Let us take the toy data in Figure 2 as an example. Suppose
we have two different orthogonal projections P1 and P2 for orig-
inal data X and map data to 2-dimensional space, and then we
solve problem (6) to find the rotation which can minimize the
quantization error given the initial projection, whose results are
shown in 2(a) and 2(b) respectively. The value of ‖XP1‖2F is
larger than ‖XP2‖2F , indicating that P1 is a better solution to
problem (3) and has smaller projection error based on Equation
(2). However, after an optimal rotation, the quantization error
in 2(a) is larger than in 2(b), implying that the extra constraint
from ‖XP1‖2F = c indeed leads to a worse optimal solution to
problem (7). In addition, intuitively we also prefer the result in
2(b). Consequently we can say 2(b) achieves a better overall
performance for both properties than 2(a), even if its projection
is indeed not the optimum for the first property.

Based on above observation, it is straightforward to raise
a question: can we sacrifice some projection error to reduce
quantization error such that the overall performance is opti-
mized? We carried out experiment to empirically analyze this
question. We utilize a real-world dataset, SIFT1M, which con-
sists of 128-dimensional SIFT points, and we select 10,000
points for our experiment. We compare ITQ that adopts greedy
two-step strategy mentioned above, with OPH who optimizes
the overall errors in a unified formulation which will be intro-
duced latter. The projection error defined in Equation (2) and
quantization error in Equation (4) of ITQ and OPH with dif-
ferent Hashcode length are summarized in Table 1. We can
observe that OPH slightly increases the projection error (less
than 3%) but significantly reduces the quantization error (more
than 10% in average). Experiment results introduced in Section
5 also demonstrate that the overall performance of OPH is bet-
ter. This result suggests that 1) we have a positive answer to
above question, and in practice, it is possible to reduce much
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quantization error while increase little projection error, i.e., we
can find a better trade-off between them such that the overall
error is minimized; and 2) the two-step strategy indeed leads
to sub-optimal solution because the results from initial projec-
tion limit the feasible solution set for problem (7). Considering
the ultimate goal is to generate binary Hashcodes from original
features, the projection learning should take into account both
preserving information and minimization quantization error si-
multaneously, but not separately as ITQ. Therefore it is more
reasonable to learn an optimal projection function via jointly
optimizing the projection and quantization error.

3. Learning Optimized Projection

3.1. Objective Function

The observation in Section 2 is based on PCA projection.
However, the phenomenon can be observed for other projec-
tions, such as in Spectral Hashing (Weiss et al., 2008). To make
our formulation general, i.e., it can be incorporated into differ-
ent projections, we first need to investigate the projection and
quantization error for different projections. Observed from lit-
eratures (Jegou et al., 2010; Kumar and Udupa, 2011; Liu et al.,
2011; Weiss et al., 2008; Zhang et al., 2011), the following pro-
jection learning formulation is widely adopted,

max
P

tr(PT XT WXP), s.t. PT P = Ik (8)

where W ∈ Rn×n is a weight matrix. Actually, according to the
specific situations, we need to preserve different information in
original data hence different W can be adopted. For example,
when global Euclidean structure is concerned about (Gong and
Lazebnik, 2011; Jegou et al., 2010; Kong and Li, 2012b), like
in PCA, we set W = Ik and problem (8) is identical to problem
(3); when we want to exploit the local manifold structure, i.e.,
we want to preserve the local neighborhood relationship be-
tween data, like Spectral Hashing (Weiss et al., 2008), Anchor
Graph Hashing (Liu et al., 2011) and Locality Preserving Hash-
ing (Zhao et al., 2014), we can adopt the normalized adjacency
matrix constructed from nearest neighbor graph; to preserve the
pair-wise label information, such as in Semi-supervised Hash-
ing(Wang et al., 2010), we can adopt the label-sharing matri.

With the formulation in (8), the projection error is no longer
just the reconstruction error in Euclidean space. But we can
define the projection error analogous to PCA below,

Definition 1. Given a weight matrix W, the projection error is
defined as the loss of weighted similarity among data,

ep =

n∑

i=1

n∑

j=1

wi jxixT
j −

n∑

i=1

n∑

j=1

wi j(xiP)(x jP)T

= tr(XT WX) − tr(PT XT WPX), PT P = Ik

(9)

It is not difficult to verify that the ep defined in Equation (2) is
a special case of (9) with W = In. Also, since the first term is
fixed, minimizing projection error in above definition is equiv-
alent to problem (8). Furthermore, here is another explanation
for above definition. The essential purpose of Hashing is to

preserve data similarity, i.e., the similar points should be sim-
ilar after projection. Therefore, given a similarity measure (in
this paper, we adopt the weighted inner product as (Wang et al.,
2010)), the overall loss of data similarity resulted from a pro-
jection reflects how well it preserves the similarity.

The generalized projection error in DEFINITION 1 consid-
ers the information preserving property, and the quantization er-
ror in Equation (4) considers the other property. Intuitively, we
can jointly optimize them such that the overall result is better,
as illustrated in Table 1. Specifically, we can define the overall
error under a projection P as the weighted sum of projection
and quantization error as follows

e = λep + eq = c + tr(PT XT (In − λW)XP) − 2‖XP‖1 (10)

where c = tr(XT WX) + nk is a constant, and λ is the weight pa-
rameter. Therefore we just need to minimize such overall error
to learn optimized projection. Based on the unified formulation,
we can obtain the objective function for Optimized Projection
in a general learning framework as

max
P
O = tr(PT XT APX) + ‖XP‖1, s.t. PT P = Ik (11)

where A = 1
2 (λW − In). As we have mentioned, we formulate

this framework to be general such that it can be incorporated
with different Hashing methods given specific W. Setting W =

In, we obtain the learning problem below

max
P
OPCA = α‖XP‖2F + ‖XP‖1, s.t. PT P = Ik (12)

where α = 1
2 (λ− 1). Above is the joint optimization framework

of PCA, which optimizes the overall performance of preserv-
ing global Euclidean structure and minimizing quantization er-
ror, which is intrinsically different from ITQ which optimizes
them separately. Our results shown in Table 1 are obtained by
it. We can see we do not aim at optimizing either of it, but
focus on finding a good trade-off which, compared to ITQ,
works slightly worse for projection but much better for quan-
tization. Such formulation looks simple but not trivial. To our
best knowledge, we are the first to notice and analyze the con-
nection between the projection error and quantization error, and
empirically prove the reasonability and effectiveness of (12).

Another important information in data is the local manifold
structure (Cai et al., 2011). In CBDR task, we care more about
obtaining data sharing the same semantic label as the query
where manifold distance is a better measure than global Eu-
clidean distance (Liu et al., 2011). Preserving the manifold
structure is always formulated as preserving the local nearest
neighbor (NN) relationship in data. Specifically, we can con-
struct a p-NN graph with the weight of each edge as below

S i j =


e−

‖xi−x j‖2
σ , if xi ∈ N(x j) or x j ∈ N(xi)

0, otherwise
(13)

where N(xi) is the p-NN of xi and σ is the band width (Guo
et al., 2017b). Then we obtain a diagonal degree matrix D
whose diagonal elements are Dii =

∑n
j=1 S i j. Now we can de-

fine W as the normalized adjacency matrix for the p-NN graph

W = D−1/2SD−1/2 (14)
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With this symmetric normalized adjacency matrix, we can learn
an optimized projection by (11) which can find a good trade-
off between preserving local manifold structure and minimizing
quantization error. We can also utilize other definitions of W
for specific purposes. But because of the limitation of space, in
this paper we just incorporate OPH with two of the most widely
used deifnitions. These two simple definitions can yet lead to
state-of-the-art performance.

3.2. Learning Algorithm

Considering problem (12) is just a special case of problem
(11), we only show the learning algorithm for (11). In this pa-
per, we use the gradient flow (Wen and Yin, 2013) to solve
the orthogonality constrained `1 norm regularized maximiza-
tion problem. Obviously, we can also utilize some accelerated
proximal gradient methods (APG) for optimization (Lan et al.,
2015, 2018). But to make the algorithm more general, we still
use the original one. The basic idea is to firstly find the upgra-
dient at a point, secondly project the upgradient to the tangent
space of feasible set defined by the orthogonality constraint,
and thirdly move the point with a properly small step size to-
wards this direction in the feasible set. We can iterate above
three steps until convergence. Specifically, the feasible set for
the solution is defined asMP = {P ∈ Rd×k : PT P = Ik}. Given
point Pt ∈ MP, we first compute the upgradient of O at Pt

Ut = −DO(Pt) = −XT (AXPt + sign(XPt)) (15)

To project Ut to tangent space, we need the theorem below,
Theorem 1. Given a direction Ut at Pt, the projection of Ut

onto the tangent space ofMP at Pt is computed below

Dt = MtPt, where Mt = UtPT
t − PtUT

t (16)

The detailed proof can be found in (Wen and Yin, 2013). Then
we need to move Pt to a new point Pt+1. Directly moving it like
in conventional gradient descent (Pt+1 = Pt − τDt) will move
Pt+1 out of the feasible set. So in practice (Goldfarb et al., 2009;
Vese and Osher, 2002; Wen and Yin, 2013), we will compute
the next point by the Crank-Nicolson-like scheme:

Pt+1 = Pt − τMt(
Pt + Pt+1

2
) (17)

which can lead to the following closed form solution for Pt+1

Pt+1 = (Id +
τ

2
Mt)

−1(Id − τ2Mt)Pt (18)

Above updating rule is called Cayley transformation and τ is
a step size satysfying Armijo-Wolfe conditions (Nocedal and
Wright, 1999). Considering that Ut is a skew-symmetric ma-
trix, i.e., UT

t = −Ut, the matrix Id + τ
2 Mt is definitely invertable

and Pt+1 is also orthogonal, i.e., Pt+1 ∈ MP, and it results in
nonincreasing objective function value. For more detail please
see the proof to Lemma 3 in (Wen and Yin, 2013). We can ran-
domly generate an orthogonal matrix to initialize P and repeat
above steps until a stationary point is achieved, i.e., Pt+1 = Pt,
which is the solution to problem (11). The overall learning al-
gorihm for Optimized Projection is summarized in Algorithm 1.
To this end, the Hashing function is given as h(x) = sign(xP).

Algorithm 1 Learning Optimized Projection
Input:

Training matrix X, Hashcode length k,
weight matrix W, balance parameter λ

Output:
Optimized Projection P

1: Construct A = 1
2 (λW − In);

2: Initialize P0 by a random orthogonal matrix, t=0
3: repeat
4: Compute the upgradient Ut by (15);
5: Compute the skew-symmetric matrix Mt by (16);
6: Compute the new point Pt+1 by (18);
7: t = t + 1;
8: until Convergence.
9: Return Pt;

4. Discussion

Now we discuss the time complexity of Algorithm 1. The
time complextity to compute the upgradient Ut is O(ndk + n2k),
to compute the skew-symmetric matrix is O(d2k). And to com-
pute new point by Equation (18), the complexity is O(d2k +

dk2 + k3). Actually, the complextity for inverting an arbi-
trary d × d matrix should be O(d3). However, since we al-
ways have k � d, especially for high-dimensional image and
text data, the rank of matrix Mt is at most 2k. Hence follow-
ing the Sherman-Morrison-Woodbury theorem (Sherman and
Morrison, 1950), the complexity for inverting (Id + τ

2 Mt) is
O(dk2 + k3). Therefore, the overall complextity for Algorithm 1
isO(t(ndk+n2k+d2k+dk2 +k3)), where t is the number of itera-
tions to convergence. In Figure 3, we plot the objective function
value w.r.t. the number of iterations on two real-world datasets
under different Hashcode length. Here we set W = In, i.e., we
incorporate OPH with PCA. We can observe that the objective
function value increases steadily with more iterations, and it
can converge within 200 iterations, validating the effectiveness
of Algorithm 1, which also guarantees the training efficiency.

In above section, we have mentioned that the proposed OPH
can be incorporated with different Hashing methods who have
the learning formulation in (8) with specific W, such as PCA
Hashing (Jegou et al., 2010) and Spectral (Anchor Graph)
Hashing (Liu et al., 2011; Weiss et al., 2008), and etc. Actu-
ally, those Hashing methods can be regared as the special cases
of OPH with λ → ∞, i.e., they only focus on preserving in-
formation while ignoring the quantization error. And there are
three Hashing methods recently having close relation to OPH.
The first is Iterative Quantization (ITQ) (Gong and Lazebnik,
2011) which we have introduced in Section 2. It adopts the
greedy two-step learning strategy considering two properties
separately resulting in sub-optimal solution. The second is
Isotropic Hashing (IsoH) (Kong and Li, 2012b). It is also two-
step method combining PCA and an extra rotation to balance
the variance of each dimension. Actually, balancing the vari-
ance can also reduce the quantization error thus we can regard
it as a variant of ITQ hence its solution is sub-potimal. In addi-
tion, it is unstable in large-scale and high-dimensional data (Xu
et al., 2013). The third is Harmonious Hashing (HamH) (Xu
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Fig. 3. Objective function w.r.t. #iterations.

et al., 2013) which is derived from Spectral Hashing. It finds
a rotation to minimize the distance between the rotated data
and a matrix whose variance of each dimension is close. How-
ever, such strict requirement and its non-iterative optimization
algorithm may fail to find a good enough solution. Above
three methods all adopt two-step strategy so their overall per-
formance is worse than OPH. Furthermore, those three meth-
ods are derived from specific projection and there is no clue
that they can still perform satisfactorily when combined with
other projections. But OPH is quite general and based on the
generalized projection error defined in Equation (9). It is ro-
bust to different projections, which will be demonstrated in our
experiments.

5. Experiment

5.1. Baselines, Metrics and Settings

We utilize the following related Hashing methods. Lo-
cality Sensitive Hashing (LSH) (Andoni and Indyk, 2006),
PCA Hashing (PCAH) (Jegou et al., 2010), Spectral Hashing
(SpH) (Weiss et al., 2008), Anchor Graph Hashing (AGH) (Liu
et al., 2011) with two-layer Hashing function, Iterative Quan-
tization (ITQ) (Gong and Lazebnik, 2011), Isotropic Hash-
ing (IsoH) (Kong and Li, 2012b), and Harmonious Hashing
(HamH) (Xu et al., 2013). For meaningful comparison, we
carefully tuned the model parameters for all baselines and the
best performance is shown.

Recently, some deep learning based hashing approaches (Lai
et al., 2015; Liong et al., 2015; Liu et al., 2016; Xia et al., 2014;
Zhuang et al., 2016) have achieved promising results. However,
it should be noted that they mostly focus on image hashing and
using raw pixels as input, while our approaches and selected
baselines focus on feature hashing which is more flexible so
that they can use any kinds of features as input. Therefore, we
do not choose deep hashing approaches as baselines.

We adopt mean Average Precision (mAP) as the numeric
evaluation metric. mAP shows good discriminative power and
stability to evaluate the performance of retrieval task. A larger
mAP indicates better performance that true positive samples
have higher rank. Given a query and R retrieved samples based
on Hamming ranking, the Average Precision (AP) is

AP =
1
L

R∑

r=1

P(r)δ(r) (19)

where L is the number of true positive samples in the retrieved
set, P(r) denotes the precision of top r retrieved samples defined
as the ratio between the number true positive samples and the
number of retrieved samples (i.e., r), and δ(r) is an indicator
function which is equal to 1 if the r-th sample is true positive or
0 otherwise. Averaging the AP of all queries leads to mAP. We
also adopt the Precision-Recall curve and the Recall curve.

In this paper, we implement two Hashing methods based on
OPH. The first utilizes PCA projection, i.e., the projection is
learned by problem (12). When implementing it, the parameter
α is chosen from {0.01, 0.1, 1} based on the change in projection
and quantization error in training data compared to ITQ. We
select the value which maximizes the sum of ∆OPH for ep and eq.
This method is denoted as PCA-OPH. The second considers the
local manifold structure, i.e., the weight matrix W is defined as
in Equation (14) and constructed from a p-NN graph where we
set p as 0.1% of training data. The parameter λ is chosen from
{0.1, 1, 2, 5, 10}. This method is denoted as Sp-OPH following
Spectral Hashing. When learning P with Algorithm 1, we stop
at the 200th itertation. The binary Hashcodes of a new coming
sample x is computed by h(x) = sign((x − x̄)P), where x̄ is
the mean value of training data which is utilized to centralize
training data. For fair comparison, our baseline methods also
adopt such schema for generating Hashcodes.

When compute mAP, we set R = 50. To remove any random-
ness caused by random initialization or random training data
selection, all results are the average over 10 repeated runs. All
experiments are carried out on a computer which equips Intel
Core i7-2600 CPU @3.40GHz and 16GB RAM.

5.2. Approximate Nearest Neighbor Search

5.2.1. Datasets
The ANN search is a practical and important task in real

world. Its purpose is to find some Euclidean neighborhood from
database for a given query. In this task, we adopt two widely
used large-scale and high-dimensional datasets. The first
dataset is SIFT1M (Jegou et al., 2011) which consists of 1 mil-
lion 128-dimension SIFT (Lowe, 2004) points and 10,000 inde-
pendent points as the query. The second is GIST1M (Torralba
et al., 2008) containing 1 million 960-dimension GIST (Oliva
and Torralba, 2001) poits and 1,000 independent queries. Fol-
lowing (Gong and Lazebnik, 2011; Kong and Li, 2012b; Xu
et al., 2013), for each query, its true positive samples are the
first 100 nearest neighbors in database obtained by brute force
search with Euclidean distance. And to test the ability of differ-
ent Hashing methods to deal with out-of-sample data, we ran-
domly select 10,000 points from database as the training data
to learn Hashing functions. Then we generate Hashcodes for
samples in both database and query set by the learned Hashing
functions as in (Ding et al., 2014; Song et al., 2013).

5.2.2. Results
The first important result is shown in Table 1, which we have

introduced in Section 2. It demonstrates that we can indeed
sacrifice some projection performance for much better quanti-
zation to promote overall result by a joint optimization frame-
work instead of the greedy two-step strategy.
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Fig. 4. ANN search. Recall curves on SIFT1M with different Hashcode length.
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Fig. 5. ANN search. Recall curves on GIST1M with different Hashcode length.

More extensive results are given in Figures 4 and 5. We can
observe that PCA-OPH achieve best performance in all experi-
ments and markedly outperform the two-step methods (ITQ and
IsoH) in most cases. And Sp-OPH also outperforms baselines
in most experiments and it shows superior performance to the
two-step HamH in 10 out of 12 experiments. Such results val-
idate the effectiveness of OPH for ANN search. Moreover, we
can observe the following points.

Firstly, OPH achieves more improvement over ITQ, IsoH and
HamH with shorter Hashcodes. Besides, the improvement is
more obvious on GIST1M (960 dimensions) than SIFT1M (128
dimensions). The reason is as below. For shorter Hashcodes,
OPH needs to pick fewer directions such that it has more free-
dom hence it can find a better trade-off from a large number
of candidates. However, for two-step methods, its feasible set
is limited by the initial projection. Actually, fewer directions
lead to more limitation therefore the overall solution is farther
from the optimum. In addition, we can even observe that ITQ
performs worse than PCAH in some cases, typically with short
Hashcodes. This phenomenon also demonstrates that the initial
projection will limit the following adjustment step and the two-
step strategy leads to sub-optimal solution. With longer Hash-
codes, ITQ has more freedom after initial projection so we can
observe it significantly outperforms PCAH. But it still suffers
from some limitation to some extent such that its overall result
is worse than OPH. This result validates again the reasonability
of the unified formulation adopted in OPH.

Secondly, OPH and methods considering the quantization
error, such as ITQ, perform much better with longer Hash-
codes, while methods like PCA may perform worse. Such in-
teresting phenomenon has also been observed by previous re-
searchers (Gong and Lazebnik, 2011; Wang et al., 2010; Xu

et al., 2013). Intuitively, longer Hashcodes can encode more
information thus better results are expected. However, the vari-
ance in PCA projected data is quite imbalanced and many di-
mensions in long Hashcodes contain little information such that
they may severely degrade the overall quality of long Hash-
codes. Because of the quantization step, the information pre-
served in the projection may be destroyed. So considering the
quantization error is important for projection learning.

5.3. Content-based Image Retrieval

5.3.1. Datasets

Hashing has been widely utilized in Content-based Image
Retrieval (CBIR) (Ding et al., 2014; Gong and Lazebnik, 2011;
Guo et al., 2015; Liu et al., 2011; Zhou et al., 2014). Different
from ANN, CBIR aims to obtain samples from database which
are semantically related to the query. In this task, we utilize two
celebrated benchmarks. The first is CIFAR-10 (Krizhevsky,
2009), which consists of 60,000 images from 10 classes such
as airplane and dog. Each image is represented by a 512-
dimension GIST descriptor. We select 10,000 images as the
query set and the remained images form the database. The sec-
ond one is NUS-WIDE (Chua et al., 2009) dataset containing
186,577 images from 10 classes. we adopt the deep features
for images which are extracted by the ILSVRC2014 challenge
winner GoogLeNet (Szegedy et al., 2015) pre-trained on Im-
ageNet. Specifically, we adopt the outputs of the last fully-
connected layer as the feature for each image which is a 1, 024-
dimensional vector. In this task, the true positive samples are
the ones sharing the same semantic label with the query (Liu
et al., 2011; Zhou et al., 2014). We randomly select 10,000
samples from the database as the training set.
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Table 2. mAP Comparison. The bold numbers indicate the best two results.

CIFAR-100 NUS-WIDE
16 bits 32 bits 48 bits 64 bits 80 bits 96 bits 16 bits 32 bits 48 bits 64 bits 80 bits 96 bits

LSH 0.2204 0.2372 0.2745 0.2750 0.3002 0.2999 0.4222 0.4397 0.4327 0.4478 0.4575 0.4629
PCAH 0.2962 0.3249 0.3297 0.3340 0.3312 0.3311 0.4853 0.4958 0.4893 0.4865 0.4880 0.4870
SpH 0.2801 0.3064 0.3340 0.3338 0.3495 0.3500 0.4195 0.4220 0.4377 0.4734 0.4569 0.4873
AGH 0.3012 0.3427 0.3487 0.3508 0.3525 0.3524 0.4679 0.4855 0.4881 0.4902 0.4892 0.4912
ITQ 0.3115 0.3421 0.3670 0.3708 0.3801 0.3868 0.4832 0.5083 0.5032 0.5108 0.5141 0.5132

HamH 0.2963 0.3224 0.3291 0.3486 0.3524 0.3585 0.4892 0.4967 0.4892 0.4901 0.4917 0.4863
IsoH 0.3052 0.3397 0.3521 0.3672 0.3759 0.3807 0.4866 0.4966 0.4963 0.4975 0.4973 0.5033

PCA-OPH 0.3269 0.3689 0.3863 0.3997 0.4111 0.4222 0.4964 0.5165 0.5283 0.5341 0.5428 0.5486
Sp-OPH 0.3074 0.3517 0.3769 0.4007 0.4141 0.4185 0.4871 0.5037 0.5147 0.5190 0.5343 0.5378
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Fig. 6. CBIR. Precision-recall curves on CIFAR-10 with different Hashcode length.
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Fig. 7. CBIR. Precision-recall curves on NUS-WIDE with different Hashcode length.

5.3.2. Results

The mAP comparison on two datasets among different meth-
ods with various Hashcode length is summarized in Table 2,
and the corresponding Precision-recall curves are shown in Fig-
ures 6 and 7. We can observe OPH outperforms other baseline
methods regardless of the datasets and Hashcode length, which
demonstrates the superiority of OPH for CBIR task. And we
have other two important observations.

Firstly, our OPH improves the performance over ITQ and
other baselines more with longer Hashcodes. This observation
is different from the one in ANN task but in fact they are not
contradictory at all. In ANN, the data distribution is simple
and we care about the Euclidean neighbors. As we have dis-
cussed above, the freedom to select directions is important for
ANN. In contrast, CBIR faces more complicated data distri-
bution and we care about high-level semantic relationship be-
tween data. In such situation, encoding information effectively
becomes the key problem. With short Hashcodes, the available

information is too little to achieve good performance. But given
long Hashcodes, more information is available. Our OPH can
preserve more information from original data to Hashcodes be-
cause it adopts a unified framework considering the overall per-
formance while the two-step strategy in ITQ, IsoH and HamH
can only obtains sub-optimal solution. In addition, the itera-
tive optimization strategy in ITQ and IsoH leads to local opti-
mum. With longer Hashcodes and more variables, their local
optimum will be farther from the global optimum therefore the
performance gap between OPH and them will be larger.

Secondly, Sp-OPH outperforms PCA-OPH in some cases.
Also, SpH and AGH defeat PCAH in several cases. This phe-
nomenon indicates that the local manifold structure is impor-
tant for CBIR task (Liu et al., 2011) because samples with short
manifold distance tend to have the same semantic label (Cai
et al., 2011). However, we can observe that the manifold based
HamH performs worse than PCA based ITQ and IsoH almost in
all cases. Actually, these three methods focus on the adjustment
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Table 3. mAP Comparison. The bold numbers indicate the best two results.

TDT2 Reuters
16 bits 32 bits 48 bits 64 bits 80 bits 96 bits 16 bits 32 bits 48 bits 64 bits 80 bits 96 bits

LSH 0.4270 0.6368 0.7447 0.7750 0.8246 0.8515 0.5918 0.6439 0.6902 0.7298 0.7448 0.7717
PCAH 0.6488 0.7348 0.7455 0.7672 0.8047 0.8105 0.6844 0.7203 0.7579 0.7978 0.7964 0.7990
SpH 0.3291 0.3678 0.4103 0.4726 0.4783 0.5082 0.4977 0.6162 0.6415 0.6592 0.6641 0.6739
AGH 0.4183 0.6181 0.7416 0.7488 0.7659 0.7683 0.4513 0.5821 0.6569 0.7150 0.7282 0.7297
ITQ 0.6629 0.7529 0.7902 0.8368 0.8286 0.8638 0.6977 0.7724 0.7916 0.8012 0.8061 0.8172

HamH 0.6788 0.7548 0.7855 0.7972 0.8147 0.8205 0.7344 0.7703 0.7879 0.7978 0.7964 0.7990
IsoH 0.7032 0.7683 0.8131 0.8349 0.8523 0.8604 0.6826 0.7518 0.7739 0.7849 0.7992 0.8042

PCA-OPH 0.7288 0.7740 0.8428 0.8727 0.8978 0.9094 0.7357 0.7830 0.8162 0.8376 0.8489 0.8507
Sp-OPH 0.6807 0.7641 0.8205 0.8495 0.8602 0.8785 0.6537 0.7682 0.7859 0.8144 0.8231 0.8375
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Fig. 8. CBTR. Precision-recall curves on TDT2 with different Hashcode length.
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Fig. 9. CBTR. Precision-recall curves on Reuters with different Hashcode length.

after initial projection. This result implies that the optimization
algorithm of HamH is less effective than ITQ and IsoH in prac-
tice. We need to say that the adjustment in HamH helps to some
extent because HamH is still better than SpH and AGH. This re-
sult also reveals the importance of optimization. The superior
results of Sp-OPH over ITQ and IsoH show our unified learning
framework indeed works.

5.4. Content-based Text Retrieval

5.4.1. Datasets
The Content-based Text Retrieval (CBTR) is analogous to

CBIR except it is for text data which is another application
of Hashing (Salakhutdinov and Hinton, 2009). In this task,
two benchmark datasets are involved. The first is TDT2 (J-
Fiscus et al., 1999) collected from newswires, radio and tele-
vision programs. It contains 64,527 documents classified into
100 semantic categories. Each document is represented by
a term frequency-inverted document frequency (tf-idf) vector

with 36,771 dimensions. The other is Reuters (Lewis et al.,
2004) dataset which consists of 21,578 documents from 135
categories. For each document, we use a 18,933-dimension tf-
idf vector as original feature. For both datasets, we randomly
select 1,000 documents as the query set and the remained form
the database. We construct the training set by randomly select-
ing 10,000 documents from database. True positives are docu-
ments sharing labels with the query.

5.4.2. Results
In Table 3, we show the mAP of all methods, and the

Precision-recall curves are plotted in Figures 8 and 9. Again,
OPH can achieve better performance than baseline methods,
especialy PCA-OPH. And some trends similar to CBIR appear
in CBTR too. For example, OPH achieves more improvement
given longer Hashcodes. Actually, this phenomenon is more
reasonable in CBTR because text data has higher dimensional-
ity such that we need longer codes to capture the information.
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Fig. 10. mAP of PCA-OPH w.r.t. α.
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Fig. 11. mAP of OPH w.r.t. training size.

However, Sp-OPH is consistently worse than PCA-OPH in all
experiments for CBTR. One possible reason might be that the
p-NN graph is less precise in high-dimensional data like text
given the imprecise distance computing, and the local manifold
structure can not be effectively exploited with such low-quality
graph. But in PCA-OPH, we do not need to compute the dis-
tance between data thus such problem can be avoided.

5.5. Other Issues

Now we investigate the balance parameter in OPH. For sim-
plicity, we show the effect of α on PCA-OPH. This param-
eter controls the balance of projection error and quantization
error. Results on CIFAR-10, TDT2 and Reuters with differ-
ent α are plotted in Figure 10. Indeed, the value of α has in-
fluence on OPH to some extent, but we can also notice that
statisfactory trade-off can be obtained with a proper α. Typi-
cally, α ∈ [0.01, 1] always works. Actually, if α is too big (like
10,000), PCA-OPH degenerates to PCAH.

Then we show the effect of the size of training data. The
performance of PCA-OPH and Sp-OPH on CIFAR-10, NUS-
WIDE and TDT2 is plotted in Figure 11. Given more training
data, OPH can perform slightly better because more informa-
tion is available. But it is also obvious that the improvement
is quite small when the size is larger than 10,000. When the
training size grows from 10,000 to 50,000, the improvement in
mAP is less than 0.01. In fact, given enough training data (say,
10,000), the model can be well trained and extra data is redun-
dant. This phenomenon is also observed in baseline methods,
like PCAH, ITQ, AGH, and etc.

6. Conclusion

Previous projection learning methods for Hashing con-
sider preserving information and minimizing quantization er-
ror seperately. In this paper, we empirically study this prob-
lem and prove that only sub-optimal solution can be achieved
in this two-step strategy. Hence we propose a unified and gen-
eral projection learning framework for Hashing to find the best
trade-off between them and learn an Optimized Projection for
better overall performance. An effective optimization algorithm
is given. Extensive experiments for ANN and CBDR on several
benchmarks compared to state-of-the-art related Hashing meth-
ods validate the effectiveness of OPH.
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