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Abstract. We study the second moment of the L-function associated to a holomorphic primitive
cusp form of even weight perturbed by a new family of mollifiers. This family is a natural extension
of the mollifers considered by Conrey and by Bui, Conrey and Young. As an application, we improve
the current lower bound on critical zeros of holomorphic primitive cusp forms.

1. Introduction

1.1. Cusp forms and associated L-function. Let H = {x+ iy, x ∈ R, y > 0}. A modular form
of weight k for the congruence subgroup of a square-free integer N ,

Γ0(N) =

{(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣ c ≡ 0 mod N

}
,

is a complex valued function f : H→ C such that:

• f is holomorphic;
• (f |kγ)(z) := (cz + d)−kf(γz) = f(z) for each γ ∈ Γ0(N);
• f is holomorphic at all cusps of Γ0(N) (meaning that the Fourier series at those cusps is a

Taylor series in q := e2πiz). The cusps are given by γ(∞) = a
c where

γ =

(
a b
c d

)
is an element of Γ0(N) \ SL(2,Z).

Additionally, f is a cusp form if it is a modular form and if it vanishes at all cusps of Γ0(N).

Let f denote a primitive cusp form of even weight k. The Fourier expansion of f at the cusp ∞
is given by

f(z) =
∑
n≥1

λf (n)n(k−1)/2e2πinz,(1.1)

for every complex number z in the upper half-plane H. The arithmetic normalization is λf (1) = 1.
The Fourier coefficients λf (n) satisfy the multiplicative relations

λf (n)λf (m) =
∑

d|(m,n)
(d,N)=1

λf

(
mn

d2

)
and λf (mn) =

∑
d|(m,n)
(d,N)=1

µ(d)λf

(
m

d

)
λf

(
n

d

)
,(1.2)
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for all positive integers m and n. Here µ(n) is the Möbius function. For σ := Re(s) > 1, we consider

L(f, s) =
∑
n≥1

λf (n)

ns
=
∏
p

(
1−

λf (p)

ps
+ χ0(p)

1

p2s

)−1

=
∏
p

(
1−

αf (p)

ps

)−1(
1−

βf (p)

ps

)−1

,

(1.3)

which is an absolutely convergent and non-vanishing Dirichlet series. In the Euler product χ0

denotes the trivial character modulo N . Here αf (p), βf (p) are the complex roots of the equation
X2 − λf (p)X + χ0(p) = 0 and they are called Satake parameters. The function

Λ(f, s) =

(√
N

2π

)s
Γ

(
s+

k − 1

2

)
L(f, s) = L∞(f, s)L(f, s)

is called the completed L-function of L(f, s). It can be extended to a holomorphic function on C
and it satisfies the functional equation

Λ(f, s) = ε(f)Λ(f, 1− s),

where ε(f) = ±1 is the sign of the L-function. The sign is real because the L-function is self-dual.
We also use in the following pages the following function

χf (s) := ε(f)
L∞(f, 1− s)
L∞(f, s)

,

so that χf (s)L(f, 1− s) = L(f, s). The duplication formula of Γ(s) allows us to write

L∞(f, s) =

(
2k

8π

)1/2(√
N

2π

)s
Γ

(
s

2
+
k − 1

4

)
Γ

(
s

2
+
k + 1

4

)
.

It is well-known, following analogies of the Riemann zeta-function, that the non-trivial zeros ρf =
βf + iγf of L(f, s) are located inside the critical strip 0 < βf < 1.

1.2. Rankin-Selberg convolution. The Rankin-Selberg convolution of two L-functions coming
from primitive cusp forms f and g is the L-function defined by

L(f ⊗ g, s) = L(χ, 2s)
∞∑
n=1

λf (n)λg(n)

ns
=
∏
p

2∏
i=1

2∏
j=1

(
1−

αf,i(p)αg,j(p)

ps

)−1

.

This is an L-function of degree 4. For each prime p, αf,1(p), αf,2(p) and αg,1(p), αg,2(p) are the
roots of the quadratic equations

X2 − λf (p)X + χq(p) = 0, and X2 − λg(p)X + χN (p) = 0.

We may also write

L(χ0, s) =
∏
p

(
1− χ0(p)

ps

)−1

=
∏
p6 |N

(
1− 1

ps

)−1

=
∏
p|N

(
1− 1

ps

)
ζ(s) =: ζ(N)(s),

so that

L(f ⊗ f, s) = ζ(N)(2s)

∞∑
n=1

λ2
f (n)

ns
(1.4)

for Re(s) > 1. For an L-function of degree 2 we have the unconditional bound

|λf (n)| ≤ τ(n)nθ, where θ = 7/64,(1.5)

where τ(n) is the divisor function, which satisfies τ(n) � nε for each ε > 0. This bound, which
currently holds the record, is due to Kim and Sarnak [21]. However, we work primarily with
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primitive cusp forms and for those we have a much stronger bound. Indeed, it was proven by
Deligne [12] that

|λf (n)| ≤ τ(n).(1.6)

The Ramanujan hypothesis states that (1.6) is also true for all L-functions of degree 2, but it is
proven only for a few cases.

1.3. The zeros of the L-function. If Nf (T ) denotes the number of critical (or non-trivial) zeros
of L(f, s) up to height 0 < γf < T , then one can show by the argument principle that [20, §5]

Nf (T ) =
T

π
log

NT d

(2πe)d
+O(log q(f, iT )),

for T ≥ 1 and where d denotes the degree of L. Here q denotes the analytic conductor

q(f, s) = Nq∞(s) = N
d∏
j=1

(|s+ κj |+ 3),

where N ≥ 1 is the conductor or level of L(f, s), see [20, pp. 93-95].

Lastly, we will need to know a zero-free region [20, Theorem 5.10]. Specifically, we know that
provided the Rankin-Selberg convolutions L(f ⊗ f, s) and L(f ⊗ f̄ , s) exist with the latter having
a simple pole at s = 1 and the former being entire if f 6= f̄ , then there exists an absolute constant
c > 0 such that L(f, s) has no zeros in the region

σ ≥ 1− c

d4 log(N(|t|+ 3))
,(1.7)

except possibly for one simple real zero βf < 1, in which case f is self-dual.

1.4. Mollifiers. Let Q be a polynomial with complex coefficients satisfying Q(0) = 1 and Q(x) +
Q(1− x) = constant. Set

V (s) = Q

(
− 1

2 log T

d

ds

)
L(f, s),(1.8)

where, for large T , we set L = log T . Moreover, let P (x) =
∑

j ajx
j be a polynomial satisfying

P (0) = 0 and P (1) = 1, and let M1 = T ν1−ε where

0 < ν1 <
1− 2θ

4 + 2θ
,(1.9)

with θ as in (1.5). For convenience we adopt the notation

P [n] = P

(
logM/n

logM

)
for 1 ≤ n ≤M . By convention, we set P [x] = 0 for x ≥M . A mollifier ψ is a Dirichlet polynomial
that approximates the function (L(f, s))−1 on the critical line. One of the first mollifiers, introduced
by Levinson [23] and Conrey [8, 9] is (in the context of L-functions)

ψ1(s) =
∑
h≤M1

µf (h)hσ0−1/2

hs
P1[h],(1.10)

with P1(0) = 0 and P1(1) = 1 and here µf (h) is given by

∞∑
h=1

µf (h)

hs
=

1

L(f, s)
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for Re(s) > 1 and σ0 = 1/2 − R/L. Here R is a bounded positive number to be chosen later and
M1 is the length of the mollifier. It is well-known that the main idea behind the choice of ψ1(s) in
(1.10) is to replicate the behavior of 1/L(f, s) in the mean value integral

I =

∫ T

1
|V ψ(σ0 + it)|2dt,(1.11)

and to minimize the integral in this way. In [7], Bui, Conrey and Young attached a second piece
to this mollifier, i.e. they worked with

ψ(s) = ψ1(s) + ψ2(s),

where ψ1(s) is the same as in (1.10) and ψ2(s) has the shape

ψ2(s) = χf (s+ 1/2− σ0)
∑

hk≤M2

µf,2(h)hσ0−1/2k1/2−σ0

hsk1−s P2[hk],

with M2 = T ν2 where 0 < ν2 ≤ ν1. In this case P2 is some other polynomial such that P2(0) =
P ′2(0) = P ′′2 (0) = 0. The terms µf,2(h) are given by the Dirichlet convolution (µf ∗ µf )(h). By
convention µf,1 = µf . The reasoning behind this choice comes from the formal calculation

χf (s)

∞∑
h,k=1

µf,2(h)

hsk1−s =
χf (s)L(f, 1− s)

L2(f, s)
=

1

L(f, s)
.

This indicates that, up some extent, the second piece ψ2(s) also replicates the behavior of 1/L(f, s).
Set λ∗2f (k) = (λf ∗ λf )(k) and µf,3(h) = (µf ∗ µf ∗ µf )(h). With this in mind, we can also claim
that

ψ3(s) = χ2
f (s+ 1/2− σ0)

∑
hk≤M3

µf,3(h)λ∗2f (k)hσ0−1/2k1/2−σ0

hsk1−s P3[hk],

for an appropriate P3, is a suitable mollifier since (formally)

χ2
f (s)

∞∑
h,k=1

µf,3(h)λ∗2f (k)

hsk1−s =
χ2
f (s)L2(f, 1− s)

L3(f, s)
=

1

L(f, s)
.

Naturally, this welcomes a higher order generalization. Suppose that ` ∈ N. This idea may be
extended by taking

ψ`(s) = χ`−1
f (s+ 1

2 − σ0)
∑

hk≤M`

µf,`(h)λ∗`−1
f (k)hσ0−1/2k1/2−σ0

hsk1−s P`[hk],(1.12)

where µf,`(n) is given by

1

L`(f, s)
=

∞∑
n=1

µf,`(n)

ns
for Re(s) > 1,(1.13)

and λ∗kf stands for convolving λf with itself exactly k times; in other words λ∗kf (n) = (λf∗· · ·∗λf )(n).
The conditions on P` are

P`(0) = 0 and P`(1) = 1, when ` = 1,

P`(0) = P ′`(0) = P ′′` (0) = · · · = P
(`(`−1))
` (0) = 0, when ` > 1,(1.14)

where P (m) denotes the m-th derivative of P . Moreover M` = T ν` , where 0 < ν` ≤ ν1. Another
formal calculation shows that indeed one has

χ`−1
f (s)

∞∑
h,k=1

µf,`(h)λ∗`−1
f (k)

hsk1−s =
χ`−1
f (s)L`−1(f, 1− s)

L`(f, s)
=

1

L(f, s)
.(1.15)
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Clearly, when ` = 1 (by the use of (4.9) below) and ` = 2, the pieces of Conrey and Levinson and
of Bui, Conrey and Young follow as special cases, respectively. Consequently, the mollifier we will
be working with is given by

ψ(s) =
L∑
`=1

ψ`(s),(1.16)

where L ∈ N is of our choice. The reason behind this choice is due that one may think of ψ1(s) as
the main term of the mollifier and of {ψ`(s)}`≥2 as the perturbations to the main piece.

1.5. Proportions of zeros on the critical line. In this paper we revise the techniques of [7]
for a mollifier consisting of several pieces. This approach is extremely general. As an application,
we modestly increase the current proportion of critical zeros of L(f, s) and clarify the situation of
simple critical zeros. Our technique is based on developments by Conrey and Snaith [11] on ratios
conjectures, and by Conrey, Farmer and Zirnbauer [10] on autocorrelation of ratios of L-functions.

Let us define Nf,0(T ) to be the number of non-trivial zeros of L(f, s) up to height T > 0 such

that Re(s) = 1
2 and Nf (T ) the number of zeros inside the rectangle 0 < Re(s) < 1 also up to height

T . We moreover set

κf = lim inf
T→∞

Nf,0(T )

Nf (T )
.

In 2015, Bernard [4] revisited Young’s paper [30] and adapted it to modular forms (see [4,
Proposition 5] as well as [15, 16, 17, 26]). In particular, if one applies Littlewood’s lemma, and
then the arithmetic and geometric mean inequalities, one arrives at

κf ≥ lim sup
T→∞

(
1− 1

2R
log

(
1

T

∫ T

1
|V ψ(σ0 + it)|2dt

))
,(1.17)

where σ0 = 1/2−R/L with R a bounded positive number of our choice.

For holomorphic primitive cusp forms of even weight, square-free level and trivial character,
Bernard’s results [4, p. 203] are that κf ≥ 6.93%. For this result, Bernard requires the Ramanujan
hypothesis (θ = 0 in (1.5)), which is proven in this case. If one were to use instead the weaker
bound proven by Kim and Sarnak (θ = 7/64), one would get only κf ≥ 2.97%. Unfortunately, as
mentioned on [4, p. 203], the size of the mollifier, even under the Ramanujan hypothesis, is too
small to establish results for simple zeros on the critical line. Further details can be found in §5.

Because of (1.12) and (1.15), it is clear that the same mechanism that makes ψ2 be a useful
mollifier will also make ψ3, ψ4, · · · useful. Moreover, from [7, p. 38] and [28, p. 310] we know that

|ψ2(s)| �
√
t

(
M2

t

)σ
L2, |ψ3(s)| � t

(
M3

t2

)σ
L4,

and so on. Therefore, logψ(s), where ψ(s) is given by (1.16), is analytic and a valid mollifier that
replicates the behavior of 1/L(f, s) in a certain region of the complex plane. See [28, §10] for further
details.

Unfortunately, the presence of the powers of χ in (1.12) decreases the usefulness of the addi-
tional pieces as the exponential decay of the pre-factor χ overwhelms the Dirichlet polynomial.
Communications with K. Sono [29], who has computed the effect of the additional ψ` pieces for the
Riemann zeta-function, seem to indicate that the contribution of ψ3 will be smaller than 10−4.
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Moreover, we have full control over the additional pieces ψ` via the coefficients of the polynomial
inside the Dirichlet series. We may thus turn them off or finely calibrate them to suit our needs.
Therefore, these additional pieces cannot be harmful.

Furthermore, adding just another perturbation (of a different nature) to ψ1 and handling the
errors produced by the off-diagonal terms carefully has produced an increment of 0.421% for the
case of the Riemann zeta-function, see [24].

Finally, it is worth mentioning a situation in which these perturbations are very helpful. Following
[15, p. 215], if we place ourselves in the context of the Riemann zeta-function and conjecturally
take ν1 → 1 (currently ν1 <

4
7 is the best one can do, [9]), then one obtains that at least 58.65% of

non-trivial zeros of ζ(s) are on the critical line. If we were to add ψ2(s) and work with ψ1(s)+ψ(2),
in other words with L = 2, and conjecturally take ν1, ν2 → 1 (ν2 <

1
2 is currently the best as proved

in [7]), then we show in §5 that this figure increases to 60.586%.

1.6. Numerical evaluations. We will improve Bernard’s proportions a little bit by taking L = 2
in (1.16). As a consequence of our results we can now establish the following.

Theorem 1.1. One has

κf ≥

{
2.97607%, unconditionally,

6.93872%, under the Ramanujan conjecture.

The underlying polynomials and optimized value of R can be found in §5.

1.7. Proof techniques. The argumentation used in this paper is based on the techniques intro-
duced in [7, 30] for the Riemann zeta-function which in turn are borrowed from [10, 11]. For this,
we split the occurring expressions into the diagonal and off-diagonal contributions. The diagonal
contributions can handled by generalizing the results of [7]. However, the estimation of the off-
diagonal contributions is much more challenging and it cannot be done in the same way as for the
zeta-function. For this we use the pioneering work of Blomer on shifted convolution sums on aver-
age in [6], and its extension by Bernard in [4, pp. 208-217], see also [5]. The specific details are in §3.

An important difference with the Riemann zeta-function is that the lengths M` of the mollifiers
are in our setting much shorter. For Riemann zeta-function one can use T ϑ with ϑ < 4/7 for M1.
This was an accomplishment of Conrey [9] who used the work of Deshouillers and Iwaniec [13, 14],
see also [3]. For primitive cups forms, we can use only

M1 = T
1−2θ
4+2θ

−ε and M` = T
1−2θ
4+6θ

−ε for ` ≥ 2(1.18)

and ε > 0 small. As the Ramanujan hypothesis is proven in our situation, we have θ = 0 and we
can use

M` = T
1
4
−ε for ` ≥ 1.(1.19)

We thus see that the lengths of the mollifiers are much shorter than for the zeta-function and this
results in much smaller lower bounds for κf , see §4 for further details.

Lastly, as remarked by Farmer [15, p. 216], our improvements above are consistent with his
observations that it is substantially harder to work with L-functions of higher degrees. Indeed, the
efficiency of the mollifier is severely limited by the range of its length as the degree increases.
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2. Results

The method sketched in [7, 28] to deal with multiple piece mollifiers in the mean value integral
(1.11) carries through and our main results are as follows.

Theorem 2.1. Suppose that ν1 = 1−2θ
4+2θ − ε and ν` = 1−2θ

4+6θ − ε for ` ≥ 2 and ε > 0 small. Then

1

T

∫ T

1
|V ψ(σ0 + it)|2dt = c({P`}L`=1, R, {ν`}L`=1) + o(1),

where

c({P`}L`=1, Q,R, {ν`}L`=1) =
∑

k1+k2+···+kL=2

(
2

k1, k2, · · · , kL

) ∏
1≤`≤L

(c`,`+k`)
k`

and the different ci,j are given by (2.1) and (2.2).

Remark 2.1. The following two points ought to be noted.

a) We need in our computations of the cross-term I`,`+1 in Theorem 2.4 the condition ν` +
ν`+1 < 1. We also need in our computations of the cross-term I`,`+j in Theorem 2.5 with
j ≥ 2 the condition ν`+ν`+j < 2(j−1). As θ ≥ 0, we get ν ≤ 1/4 and thus both conditions
are automatically fulfilled. However, the mollifiers in this paper can be adapted to the
study of the Riemann zeta-function and other L-functions. For those other functions, one
has to check carefully if these conditions are fulfilled.

b) There is no need to explicitly compute c`,`+j where j = 2, 3, · · · since the contribution of
the associated integral is O(TL−1+ε), see Theorem 2.5 below.

2.1. The smoothing argument. The idea of smoothing the mean value integrals was worked
out in [4, 7, 30] and it makes the following computations more convenient. Let w(t) be a smooth
function satisfying the following properties:

(a) 0 ≤ w(t) ≤ 1 for all t ∈ R,
(b) w has compact support in [T/4, 2T ],

(c) w(j)(t)�j ∆−j , for each j = 0, 1, 2, · · · and where ∆ = T/L.

Note that for the Fourier transform of w, we have ŵ(0) = T/2+O(T/L). This allows us to re-write
Theorem 2.1 as follows.

Theorem 2.2. Let ν` for ` ≥ 1 be as in Theorem 2.1. For any w satisfying conditions (a), (b)
and (c) and σ0 = 1/2−R/L,∫ ∞

−∞
w(t)|V ψ(σ0 + it)|2dt = c({P`}L`=1, Q,R, {ν`}L`=1)ŵ(0) +O(T/L),

uniformly for R� 1, where

c({P`}L`=1, Q,R, {ν`}L`=1) =
∑

k1+k2+···+kL=2

(
2

k1, k2, · · · , kL

) ∏
1≤`≤L

(c`,`+k`)
k` ,

where the different ci,j given by (2.1) and (2.2).

The technique of a multi-piece mollifier was developed in [7, 19]. In [28] a 4-piece mollifier was
handled. The idea is to open the square in the integrand∫

|V ψ|2 =

∫
|V ψ1|2 +

∫
|V |2ψ1ψ2 +

∫
|V |2ψ1ψ2 + · · ·+

∫
|V ψL|2

=
∑

1≤`≤L
{I`,` + I`,`+1 + I`+1,` + I`,`+j + I`+j,`},

for j = 2, 3, 4, · · · . We will compute these integrals in the next sections. The integral I`,`+1 is

asymptotically real, thus I`+1,` follows from I`,`+1, i.e. I`,`+1 ∼ I`+1,`.



8 PATRICK KÜHN, NICOLAS ROBLES, AND DIRK ZEINDLER

2.2. The main terms. The main terms coming from integrals I`,`, I`,`+1 and I`,`+j where j =
2, 3, 4, · · · are now stated as theorems.

Theorem 2.3. Let ` ∈ N. Let ν` for ` ≥ 1 be as in Theorem 2.1. Then we have for ` ≥ 1∫ ∞
−∞

w(t)|V ψ`(σ0 + it)|2dt ∼ c`,`(P`, Q,R, ν`)ŵ(0) +O(TL−1+ε)

uniformly for R� 1, where

c`,` =
1

Γ2(`− 1)

22`(`−1)

(`2 + (`− 1)2 − 1)!

d2`

dx`dy`

×
[ ∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(
2

ν`
+ (x+ y − v(y + r)− u(x+ r))

)
(1− r)`2+(`−1)2−1

× e−
ν`
2
R[x+y−v(y+r)−u(x+r)]e2Rt[1+

ν`
2

(x+y−v(y+r)−u(x+r))]

×Q
(
ν`
2

(−x+ v(y + r)) + t

(
1 +

ν`
2

(x+ y − v(y + r)− u(x+ r))

))
×Q

(
ν`
2

(−y + u(x+ r)) + t

(
1 +

ν`
2

(x+ y − v(y + r)− u(x+ r))

))
× (x+ r)`−1(y + r)`−1u`−2v`−2

× P (`(`−1))
` ((1− u)(x+ r))P

(`(`−1))
` ((1− v)(y + r))dtdrdudv

]
x=y=0

.(2.1)

Remark 2.2. The case ` = 1 has to be handled with a certain amount of care as it superficially
seems divergent due to the presence of u`−2 and v`−2 in the integrands. This is taken care of by

1
Γ2(`−1)

in the denominator of the first line. By the use of (4.13) below, the term 1
Γ2(`−1)

cancels

out the integrals with respect to u and with respect to v, leaving us with

c1,1(P,Q,R, ν1) = 1 +
1

ν1

∫ 1

0

∫ 1

0
e2Rv

[
d

dx
(eRνxQ(v + ν1

2 x)P (x+ u))|x=0

]2

dudv,

which is precisely the term recovered by Conrey [9] and Bernard [4], see also (4.8) and [30, p. 544].

Theorem 2.4. Let ` ∈ N and ν` be as in Theorem 2.1. Then∫ ∞
−∞

w(t)V ψ`ψ`+1(σ0 + it)dt ∼ c`,`+1(P`, P`+1, Q,R, ν`, ν`+1)ŵ(0) +O(TL−1+ε)

uniformly for R� 1, where

c`,`+1 =
22`2

(2`2 − 1)!

(
ν`+1

ν`

)`(`+1)

eR
d2`

dx`dy`

[ ∫∫
a+b≤1
a,b≥0

∫ 1

0
u2`(1− u)2`2−1eR[

ν`
2

(y−x)+u
ν`+1

2
(a−b)]

×Q
(
−xν` + auν`+1

2

)
Q

(
1 +

yν` − buν`+1

2

)
× P (`(`−1))

`

(
x+ y + 1− (1− u)

ν`+1

ν`

)
P

(`(`+1))
`+1 ((1− a− b)u)(ab)`−1dudadb

]
x=y=0

.(2.2)

Theorem 2.5. Let ` ∈ N, j ≥ 2 and ν` and ν`+j be as in Theorem 2.1. Then∫ ∞
−∞

w(t)V ψ`ψ`+j(σ0 + it)dt�` TL
−1+ε

uniformly for α, β � L−1.
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The smoothing argument is helpful because we can easily deduce Theorem 2.1 from Theorem
2.2 and so on. By having chosen w(t) to satisfy conditions (a), (b) and (c) and in addition to
being an upper bound for the characteristic function of the interval [T/2, T ], and with support
[T/2−∆, T + ∆], we get∫ T

T/2
|V ψ(σ0 + it)|2dt ≤ c(P1, P`, Q, 2R, ν1/2, ν2/2)ŵ(0) +O(T/L).

Note that ŵ(0) = T/2 +O(T/L). We similarly get a lower bound. Summing over dyadic segments
gives the full result.

2.3. The shift parameters α and β. Rather than working directly with V (s), we shall instead
consider the following three general shifted integrals

I`,`(α, β) =

∫ ∞
−∞

w(t)L(f, 1
2 + α+ it)L(f, 1

2 + β − it)ψ`ψ`(σ0 + it)dt,

I`,`+1(α, β) =

∫ ∞
−∞

w(t)L(f, 1
2 + α+ it)L(f, 1

2 + β − it)ψ`ψ`+1(σ0 + it)dt,

I`,`+j(α, β) =

∫ ∞
−∞

w(t)L(f, 1
2 + α+ it)L(f, 1

2 + β − it)ψ`ψ`+j(σ0 + it)dt,

for j = 2, 3, 4, · · · . The computation is now reduced to proving the following three lemmas.

Lemma 2.1. We have
I`,` = c`,`(α, β)ŵ(0) +O(T/L),

uniformly for α, β � L−1, where

c`,`(α, β) =
1

Γ2(`− 1)

22`(`−1)

(`2 + (`− 1)2 − 1)!

d2`

dx`dy`

×
[ ∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
(1− r)`

2+(`−1)2−1u`−2v`−2

× T ν`(β(x−v(y+r))+α(y−u(x+r)))(T 2+ν`(x+y−v(y+r)−u(x+r)))−t(α+β)

×
(

2

ν`
+ (x+ y − v(y + r)− u(x+ r))

)
(x+ r)`−1(y + r)`−1

× P (`(`−1))
` ((1− u)(x+ r))P

(`(`−1))
` ((1− v)(y + r))dtdrdudv

]
x=y=0

.

Lemma 2.2. We have
I`,`+1 = c`,`+1(α, β)ŵ(0) +O(T/L),

uniformly for α, β � L−1, where

c`,`+1(α, β) =
22`2

(2`2 − 1)!

(
ν`+1

ν`

)`(`+1) d2`

dx`dy`

[
×
∫∫

a+b≤1
a,b≥0

∫ 1

0
u2`(1− u)2`2−1(M−x` Mau

`+1)
−α

(My
`M

−bu
`+1 T

2)
−β

× P (`(`−1))
`

(
x+ y + 1− (1− u)

ν`+1

ν`

)
P

(`(`+1))
`+1 ((1− a− b)u)(ab)`−1dudadb

]
x=y=0

.

Lemma 2.3. For j = 2, 3, 4, · · · , we have∫ ∞
−∞

w(t)V ψ`ψ`+1(σ0 + it)dt� TL−1+ε
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uniformly for α, β � L−1.

To get Theorems 2.3 and 2.4 we use the following technique. Let I? denote either of the integrals
in questions, and note that

I? = Q

(
− 1

2 log T

d

dα

)
Q

(
− 1

2 log T

d

dβ

)
I?(α, β)

∣∣∣∣
α=β=R/L

.

Since I?(α, β) and c?(α, β) are holomorphic with respect to α, β small, the derivatives appearing
in the equation above can be obtained as integrals of radii � L−1 around the points −R/L, using
Cauchy’s integral formula. Since the error terms hold uniformly on these contours, the same error
terms that hold for I?(α, β) also hold for I?. That the above differential operator on c?(α, β) does
indeed give c? follows from

Q

(
−1

2 log T

d

dα

)
X−α = Q

(
logX

2 log T

)
X−α/2.

Note that from the above equation we get

Q

(
−1

2 log T

d

dα

)
Q

(
−1

2 log T

d

dβ

)
(M−x` Mau

`+1)−α(My
`M

−bu
`+1 T )−β

= Q

(
logM−x` Mau

`+1

2 log T

)
Q

(
logMy

`M
−bu
`+1 T

2 log T

)
(M−x` Mau

`+1)−α(My
`M

−bu
`+1 T )−β

= Q(−xν`/2 + auν`+1/2)Q(1 + ν`y/2− buν`+1/2)(M−x` Mau
`+1)−α/2(My

`M
−bu
`+1 T )−β/2,

as well as

Q

(
−1

2 log T

d

dα

)
Q

(
−1

2 log T

d

dβ

)
T ν`(β(x−v(y+r))+α(y−u(x+r)))(T 2+ν`(x+y−v(y+r)−u(x+r)))−t(α+β)

= Q(ν`/2(−x+ v(y + r)) + t(2 + ν`/2(x+ y − v(y + r)− u(x+ r))))

×Q(ν`/2(−y + u(x+ r)) + t(2 + ν`/2(x+ y − v(y + r)− u(x+ r))))

× T ν`/2(β(x−v(y+r))+α(y−u(x+r)))(T 2+ν`/2(x+y−v(y+r)−u(x+r)))−t(α+β).

Hence using the differential operators Q((−1/2 log T )d/dα) and Q((−1/2 log T )d/dβ) on the last
line of c`,`+1(α, β) we get in the integrand

e2Re2R[ν`(y−x)/2+uν`+1(a−b)/2]Q(−xν`/2 + auν`+1/2)Q(1 + yν`/2− buν`+1/2),

by setting α = β = −R/L and using T z/L = T z/ log T = ez. Hence Theorem 2.4 follows. Simi-
larly, when we use the differential operators Q((−1/2 log T )d/dα) and Q((−1/2 log T )d/dβ) on the
integrand of c`,`(α, β) it becomes

e−
ν`
2
R[x+y−v(y+r)−u(x+r)]e2Rt[1+

ν`
2

(x+y−v(y+r)−u(x+r))]

×Q(ν`(−x+ v(y + r))/2 + t(1 + ν`/2(x+ y − v(y + r)− u(x+ r))))

×Q(ν`(−y + u(x+ r))/2 + t(1 + ν`/2(x+ y − v(y + r)− u(x+ r)))),

by the same substitutions. This proves Theorem 2.3.

3. Preliminary tools

The following results are needed throughout the paper. The first lemma is used to compute the
”square” terms I`,`. We start by quoting a result from Bernard’s paper [4, Lemma 1], who in turn
quoted it with small modifications from [20, Theorem 5.3].
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Lemma 3.1. Let G be any entire function which decays exponentially fast in vertical strips, is even
and normalised by G(0) = 1. Then for any α, β ∈ C such that 0 ≤ |Re(α)|, |Re(β)| ≤ 1

2 , one has

L(f, 1
2 + α+ it)L(f, 1

2 + β − it) =
∑
m≥1

∑
n≥1

λf (m)λf (n)

m1/2+αn1/2+β

(m
n

)−it
Vα,β(mn, t)

+Xα,β,t(t)
∑
m≥1

∑
n≥1

λf (m)λf (n)

m1/2−βn1/2−α

(m
n

)−it
V−β,−α(mn, t),

where

gα,β(s, t) =
L∞(f, 1

2 + α+ s+ it)L∞(f, 1
2 + β + s− it)

L∞(f, 1
2 + α+ it)L∞(f, 1

2 + β − it)
,

and

Vα,β(x, t) =
1

2πi

∫
(1)

G(s)

s
gα,β(s, t)x−sds,

as well as

Xα,β,t(t) =
L∞(f, 1

2 − α− it)L∞(f, 1
2 − β + it)

L∞(f, 1
2 + α+ it)L∞(f, 1

2 + β − it)
.

Lemma 3.2. Suppose that w satisfies the three conditions (a), (b), (c), and suppose that h, k are
positive integers with h, k ≤ T ν . Then one has∫ ∞
−∞

w(t)

(
h

k

)−it
L(f, 1

2 + α+ it)L(f, 1
2 + β − it)dt =

∑
hm=kn

λf (m)λf (n)

m1/2+αn1/2+β

∫ ∞
−∞

w(t)Vα,β(mn, t)dt

+
∑

hm=kn

λf (m)λf (n)

m1/2−βn1/2−α

∫ ∞
−∞

w(t)V−β,−α(mn, t)Xα,β,tdt

+Oε((hk)(1+θ)/2T 1/2+θ+ε),

for α, β � L−1.

Proof. This is proved by applying Lemma 3.1 to the right-hand side above∫ ∞
−∞

w(t)

(
h

k

)−it
L(f, 1

2 + α+ it)L(f, 1
2 + β − it)dt

=
∑
m≥1

∑
n≥1

λf (m)λf (n)

m1/2+αn1/2+β

∫ ∞
−∞

(
hm

kn

)−it
w(t)Vα,β(mn, t)dt

+
∑
m≥1

∑
n≥1

λf (m)λf (n)

m1/2−βn1/2−α

∫ ∞
−∞

(
hm

kn

)−it
w(t)Xα,β,t(t)V−β,−α(mn, t)dt.

Clearly the main terms appearing in the statement of the lemma are given by the diagonal case
hm = kn. Let us now look at the off-diagonal terms. Following [4] we set

IND1
h,k (α, β) =

∑
hm6=kn

λf (m)λf (n)

m1/2+αn1/2+β

∫ ∞
−∞

(
hm

kn

)−it
w(t)Vα,β(mn, t)dt,

and

IND2
h,k (α, β) =

∑
hm 6=kn

λf (m)λf (n)

m1/2−βn1/2−α

∫ ∞
−∞

(
hm

kn

)−it
w(t)Xα,β,t(t)Vα,β(mn, t)dt.
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By [4, Lemma 3], we have that for any ε > 0, 0 < γ < 1 and for any real A > 0

IND1
h,k (α, β) =

∑
km6=hn

mn�T 2+ε

|hmkn −1|�T−γ

λf (m)λf (n)

m1/2+αn1/2+β

∫ ∞
−∞

w(t)

(
hm

kn

)−it
Vα,β(mn, t)dt+O(T−A),

provided that h, k ≤ T ν and α, β � L−1. Now fix an arbitrary smooth function ρ :]0,∞[7→ R,
compactly supported in [1, 2] and with

∞∑
l=−∞

ρ(2−l/2x) = 1.

For each integer l, we define

ρl(x) = ρ(x/Al) with Al = 2l/2T γ .

By [4, Lemma 4] one has

IND1
h,k (α, β) =

∑
Al1Al2�hkT

2+ε

Al1�Al2
Al1 ,Al2�T

γ

∑
0<|h|�T−γ

√
Al1Al2

∑
km−hn=q

λf (m)λf (n)Fq;l1,l2(km, hn) +O(T−A),

where h, k ≤ T ν are positive integers and γ is as above. Here

Fq;l1,l2(x, y) =
k1/2+αh1/2+β

x1/2+αy1/2+β
ρl1(x)ρl2(y)

∫ ∞
−∞

w(t)
(

1 +
q

h

)−it
Vα,β

(xy
hk
, t
)
dt.

As mentioned in the introduction, the key aspect of the proof of this lemma relies on a strong
result about shifted convolution sums on average due to Blomer, [6, Theorem 2]. Fortunately, the
tool needed from [6] can be quoted almost verbatim (a straightforward adaption is needed and it
is supplied by Bernard in [4, Theorem 3]). The statement is as follows.

Lemma 3.3 (Bernard, 2015). Let l1, l2, H and h1 be positive integers. Let M1,M2, P1 and P2 be
real numbers greater than 1. Let {gn} be a family of smooth functions supported in [M1, 2M1] ×
[M2, 2M2] with ||g(ij)

h ||∞ �i,j (P1/M1)i(P2/M2)j for all i, j ≥ 0. Let {a(h)} be a sequence of
complex numbers such that

a(h) 6= 0 ⇒ h ≤ H, h1|h and (h1, h/h1) = 1.

If l1M1 � l2M2 � A and if there exists ε > 0 such that

H � A

max{P1, P2}
1

(l1l2M1M2P1P2)ε
,

then one has

H∑
h=1

a(h)
∑

m1,m2≥1

λf (m1)λf (m2)gh(m1,m2)

� A1/2hθ1||a||2(P1 + P2)3/2

[√
P1 + P2 +

(
A

max{P1, P2}

)θ(
1 +

√
(h1, l1l2)H

h1l1l2

)]
× (l1l2M1M2P1P2H)ε,

for all ε > 0.
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The required bounds for the test function were established in [4, Lemma 5]. Specifically, let
α, β � L−1 be complex numbers and let σ be any positive real number. For all non-negative
integers i and j, we have

xiyj
∂i+j

∂xi∂yj
Fq;l1,l2(x, y)�i,j

(
a

Al1

)1/2+Re(α)+σ( b

Al2

)1/2+Re(β)+σ

T 1+2σlogjT,(3.1)

where the implicit constant does not depend on q. The trivial bound for shifted convolution sums
would have yielded ∑

`1m1−`2m2=∆

λf (m1)λf (m2)gh(m1,m2)�ε min{M1,M2}(M1M2)ε,

so that when we combine this with (3.1) we get

IND1
h,k (α, β)�ε min{h, k}T 1+ε,

which is clearly not useful. As explained by Bernard, using [27, Theorem 6.3] would give

IND1
h,k (α, β)�ε min(hk)3/4+θ/2T 3/2+ε+ε.

If instead of the trivial bound we now use [5, Theorem 1.3] along with (3.1), then

IND1
h,k (α, β)�ε min(hk)3/4+θ/2T 1/2+ε+ε,

see [4, pp. 215-217] for further details. It is only by using Lemma 3.3 with H = T−γ
√
Al1Al2 ,

h1 = 1 and

a(h) =

{
1, if h ≤ H,
0, otherwise,

as well as the previous results on Fq;l1,l2 that we get

IND1
h,k (α, β)�ε (hk)(1+θ)/2T 1/2+θ+ε.(3.2)

Similarly, one has

IND2
h,k (α, β)�ε (hk)(1+θ)/2T 1/2+θ+ε,

and this can be shown by a similar argument. �

Remark 3.1. Specifically we shall use the pole annihilator

G(s) = es
2
p(s) and p(s) =

(α+ β)2 − (2s)2

(α+ β)2 .

The function G(s) can be chosen from a wide class of functions. This choice is taken from [7]. All

that is needed is that G should have rapid decay and that it vanishes at s = ±α+β
2 .

The following lemma, which is an adaption of the approximate functional equation, is needed
for the computation of the term ”crossterms” I`,`+1.

Lemma 3.4. Let σα,−β(f, l) =
∑

ab=l a
−αbβλf (a)λf (b). For L2 ≤ |t| ≤ 2T we have

L(f, 1
2 + α+ it)L(f, 1

2 − β + it) =

∞∑
`=1

σα,−β(f, `)

`1/2+it
e−`/T

6
+O(T−1+ε)

uniformly for α, β < L−1.

Proof. See Lemma 4.1 of [7] and [20] for the appropriate bounds. �
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Lemma 3.5. Let {f(m)}m∈N be a sequence of complex numbers and suppose that∑
m≤M

f(m) = cM +O(M3/5)(3.3)

as M →∞ for some c ∈ C. We then have for k ∈ N∑
m≤M

(f∗k)(m) = ckM
logk−1M

k!
+O(M logk−2M)(3.4)

as M →∞. Furthermore, we have∑
m≤M

(f∗k)(m)

m
= ck

logkM

k!k
+O(logk−1M)(3.5)

as M → ∞. Let n ≥ 1 and M ′ ≥ 1 with logM ′ � logM be given. We then have uniformly in γ
for all |γ| ≤ 1/2∑

m≤M
(f∗k)(m)

(log M ′

m )n

m

(
M ′

m

)−γ
=
ckM−γ logkM

k!

∫ 1

0
Mγrrk−1(log(M ′/M r))n dr

+O((logM)k+n−1),(3.6)

as M →∞, and the expression in (3.6) has order of magnitude (logM)k+n if c 6= 0.

Proof. We first prove (3.4). We do this by induction over k. For k = 1, this is trivial. We thus
assume (3.4) is true for k − 1. To simplify the notation, we write g(m) := (f∗k−1)(m) and get∑

m≤M
(f∗k)(m) =

∑
m≤M

(g ∗ f)(m) =
∑
m≤M

∑
d|n

g(d)f(m/d) =
∑
ab≤M

g(a)f(b)

=
∑
a≤M

g(a)
∑

b≤M/a

f(b) =
∑
a≤M

g(a)

(
cM

a
+O

((
M

a

)3/5))
.(3.7)

We first consider the main term. We use partial summation and get∑
a≤M

g(a)
cM

a
= cM

∑
a≤M

1

a
g(a) = cM

(
1/M

∑
a≤M

g(a)−
∑

m≤M−1

(∑
a≤m

g(a)

)(
1

m+ 1
− 1

m

))

= O(M logk−2M) + cM
∑

m≤M−1

(
ck−1m

logk−2m

(k − 1)!
+O(m logk−3m)

)
1

m(m+ 1)

=
ckM

(k − 1)!

∑
m≤M−1

logk−2m

m+ 1
+O

(
M logk−2M +M

∑
m≤M−1

logk−3m

m

)

= ckM
logk−1M

k!
+O(M logk−2M).

It remains to show that the error term in (3.7) is of lower order. We have∑
a≤M

g(a)O

(
M

a

)3/5

= O

(
M3/5

∑
a≤M

1

a3/5
g(a)

)

= M3/5O

(
1

M3/5

∑
a≤M

g(a)−
∑

m≤M−1

(∑
a≤m

g(a)

)(
1

(m+ 1)3/5
− 1

m3/5

))

= O(M logk−2M) +O

( ∑
m≤M−1

m logk−2m · 1

m6/5

)
= O(M logk−2M).
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This completes the proof of (3.4). The proof of (3.5) is almost the same as (3.6) and we thus prove
only (3.6). We first consider the case γ = 0 and get

∑
m≤M

(log M ′

m )n

m
(f∗k)(m) = −

∑
m≤M−1

(∑
a≤m

(f∗k)(a)

)((
logn(M ′/(m+ 1))

m+ 1

)
−
(

logn(M ′/m))

m

))
.

(3.8)

Note that

logn(M ′/(m+ 1))

m+ 1
=

(log(M ′)− log(m+ 1))n

m

1

1 + 1/m

=
(log(M ′)− log(m)− log(1 + 1/m))n

m

(
1− 1

m
+O

(
1

m2

))
=

(log(M ′/m)− 1/m+O(1/m2))n

m

(
1− 1

m
+O

(
1

m2

))
=

(log(M ′/m))n

m
− 1

m2
(log(M ′/m))n − n

m2
(log(M ′/m))n−1 +O

(
logn−1M ′

m3

)
.

Inserting this and (3.4) in (3.8) gives∑
m≤M−1

(
ckm

logk−1m

k!
+O(m logk−2m)

)

×
(

1

m2

(
log(M ′/m)

)n
+

n

m2

(
log(M ′/m)

)n−1
+O

(
logn−1M ′

m3

))
.

Applying Euler-Maclaurin summation to the leading term yields

ck

k!

∑
m≤M−1

(logm)k−1(log(M ′/m))n =
ck

k!

∫ M

1

1

y
(log y)k−1(log(M ′/y))ndy +O(logk+n−1M)

=
ck

k!
(logM)k

∫ 1

0
(log y)k−1(log(M ′/M r))ndr +O(logk+n−1M).

Using the variable substitution y = M r supplies the main term in (3.6). Applying Euler-Maclaurin

summation to the remaining terms, one sees immediately that they are O(logk+n−1M). This
completes the proof of (3.6). The argumentation for γ 6= 0 is almost identical and requires that

1

(m+ 1)1−γ =
1

m1−γ
1

(1 + 1/m)1−γ =
1

m1−γ

(
1− (1− γ)

1

m
+O(1/m2)

)
,

with O(1/m2) uniform in γ for |γ| ≤ 1/2. This completes the proof of the lemma. �

This lemma can be upgraded to read like Lemma 3.3 of [28] and Lemma 4.4 of [7] by incorporating
smooth functions F and H. Our choice of c will be

c =
Ress=1 L(f ⊗ f, s)

ζ(N)(2)
,(3.9)

as per the asymptotic behavior∑
n≤x

λ2
f (n) = x

Ress=1 L(f ⊗ f, s)
ζ(N)(2)

+O(x3/5),(3.10)

as x→∞, found by Rankin [25].
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4. Evaluation of the shifted mean value integrals I?(α, β)

4.1. The mean value integral I`,`(α, β). The strategy is to insert the definition of ψ` into the
mean value integral I`,` and then compute this integral by using the tools we have developed. One
key aspect will be the evaluation of a certain arithmetical sum into a ratio of L-functions. This has
the effect of transforming the problem from an arithmetical one to an analytic counterpart. Using
(1.12) on I`,`, we obtain

I`,`(α, β) =

∫ ∞
−∞

w(t)L(f, 1
2 + α+ it)L(f, 1

2 + β − it)ψ`ψ`(σ0 + it)dt

=

∫ ∞
−∞

w(t)χ`−1
f (1

2 − it)χ
`−1
f (1

2 + it)L(f, 1
2 + α+ it)L(f, 1

2 + β − it)

×
∑

h1k1≤M`

µf,`(h1)λ∗`−1
f (k1)

h
1/2−it
1 k

1/2+it
1

P`[h1k1]
∑

h2k2≤M`

µf,`(h2)λ∗`−1
f (k2)

h
1/2+it
2 k

1/2−it
2

P`[h2k2]dt

=
∑

h1k1≤M`

∑
h2k2≤M`

µf,`(h1)µf,`(h2)λ∗`−1
f (k1)λ∗`−1

f (k2)

(h1h2k1k2)1/2
P`[h1k1]P`[h2k2]J2,f ,

where

J2,f =

∫ ∞
−∞

w(t)

(
h2k1

h1k2

)−it
L(f, 1

2 + α+ it)L(f, 1
2 + β − it)dt,

since χf (1
2 + it)χf (1

2 − it) = 1 for all values of t. We now use Lemma 3.2 and rewrite J2,f as

J2,f =
∑

h2k1m=h1k2n

λf (m)λf (n)

m1/2+αn1/2+β

∫ ∞
−∞

w(t)Vα,β(mn, t)dt(4.1)

+
∑

h2k1m=h1k2n

λf (m)λf (n)

m1/2−βn1/2−α

∫ ∞
−∞

w(t)V−β,−α(mn, t)Xα,β,tdt

+Oε((h2k1h1k2)(1+θ)/2T 1/2+θ+ε),

with Vα,β, V−β,−α and Xα,β,t as in Lemma 3.2. This means that we can write I`,`(α, β) = I ′`,`(α, β)+

I ′′`,`(α, β) +E(h1, h2, k1, k2), where E is the error term above. Note that I ′′`,`(α, β) can be obtained

from I ′`,`(α, β) by switching α by −β and multiplying by

Xα,β,t =

(
t
√
N

2π

)−2(α+β)(
1 +

i(α2 − β2)

t
+O(t−2)

)
,

(
t
√
N

2π

)−2(α+β)

= T−2(α+β) +O(1/L),

(4.2)

which implies that if wN (t) = w(t)( t
√
N

2π )−2(α+β), then ŵN (0) = T−2(α+β)ŵ(0) + O(T/L), see [4,

Lemma 2 and p. 229]. We are left with I ′′`,`(α, β) = T−2(α+β)I ′`,`(−β,−α) +O(T/L).

We now estimate the error terms. We begin with the case ` = 1. With µf (h)� 1 we get∑
h1k1≤M1

∑
h2k2≤M1

µf (h1)λ∗0f (k1)µf (h2)λ∗0f (k2)

(h1k1h2k2)1/2
E(h1, h2, k1, k2)

=
∑

h1≤M1

∑
h2≤M1

µf,`(h1)µf,`(h2)

(h1h2)1/2
E(h1, h2, 1, 1)

�
∑

h1≤M1

∑
h2≤M1

∣∣∣∣∣µf,`(h1)µf,`(h2)

(h1h2)1/2

∣∣∣∣∣T 1/2+θ+ε(h1h2)(1+θ)/2
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� T 1/2+θ+ε
∑

h1≤M1

∑
h2≤M1

(h1h2)θ/2 � T 1/2+θ+ε
(
M

θ/2+1
1

)2
� T 1/2+θ+ε+ν1(θ+2)(4.3)

where we have used M1 = T ν1 . This now has to be O(T 1−ε) and thus we require

ν1 <
1/2− θ

2 + θ
=

1− 2θ

4 + 2θ
.(4.4)

Next, we estimate the error terms for ` ≥ 2. We know that

µf (h)� 1 and |λf (k)| ≤ τ(k)kθ � kθ+ε

with θ = 0 if we use (1.6) and θ = 7/64 if we use (1.5). Induction over ` then gives for all ` ≥ 2

µf,`(h)�` h
ε, and λ

∗(`−1)
f (k)�` k

θ+ε.(4.5)

Using these bounds yields∑
h1k1≤M`

∑
h2k2≤M`

µf,`(h1)λ∗`−1
f (k1)µf,`(h2)λ∗`−1

f (k2)

(h1k1h2k2)1/2
E(h1, h2, k1, k2)

�
∑

h1k1≤M`

∑
h2k2≤M`

∣∣∣∣∣µf,`(h1)λ∗`−1
f (k1)µf,`(h2)λ∗`−1

f (k2)

(h1k1h2k2)1/2

∣∣∣∣∣T 1/2+θ+ε(h1k1h2k2)(1+θ)/2

= T 1/2+θ+ε
∑

h1k1≤M`

∑
h2k2≤M`

∣∣∣µf,`(h1)λ∗`−1
f (k1)µf,`(h2)λ∗`−1

f (k2)
∣∣∣ (h1k1h2k2)θ/2

= T 1/2+θ+ε

( ∑
hk≤M`

∣∣∣µf,`(h)λ∗`−1
f (k)(hk)θ/2

∣∣∣ )2

�` T
1/2+θ+ε

( ∑
hk≤M`

hθ/2+εk3θ/2+2ε

)2

�` T
1/2+θ+ε

( ∑
hk≤M`

h3θ/2+2εk3θ/2+2ε

)2

= T 1/2+θ+ε

(
τ(M`)M

3θ/2+1+2ε
`

)2

� T 1/2+θ+ε(M
3θ/2+1+3ε
` )2 = T 1/2+θ+ε+T 2ν`(3θ/2+1+3ε),

In order that this error be O(T 1−ε), we need

ν` <
1/2− θ

2 + 3θ
=

1− 2θ

4 + 6θ
.(4.6)

where we have used M` = T ν` .

By employing the Mellin representation of the polynomial P`, i.e.

P`[h1k1] =

degP`∑
i=0

a`,i

logiM`

(logM`/h1k1)i =
∑
i

a`,ii!

logiM`

1

2πi

∫
(1)

(
M`

h1k1

)s ds
si+1

,(4.7)

we see that

I ′`,`(α, β) =

∫ ∞
−∞

w(t)
∑
i

∑
j

a`,ii!a`,jj!

logi+jM`

∑
h2k1n=h1k2m

µf,`(h1)µf,`(h2)λ∗`−1
f (k1)λ∗`−1

f (k2)

h
1/2
1 h

1/2
2 k

1/2
1 k

1/2
2 m1/2+αn1/2+β

×
(

1

2πi

)3 ∫
(1)

∫
(1)

∫
(1)

(
M`

h1k1

)s( M`

h2k2

)u( t

2πmn

)zG(z)

z
dz

ds

si+1

du

uj+1
dt.

Now comes the part where we evaluate the arithmetic sum
∑

h2k1n=h1k2m
.
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Lemma 4.1. Let Ωα,β be the set of vectors u, v, s ∈ C3 satisfying

Re(s) + Re(u) > −1/2,

Re(z) > −1/4− Re(α)/2− Re(β)/2,

Re(s) + Re(z) > −1/2− Re(α),

Re(u) + Re(z) > −1/2− Re(β).

Then one has∑
h2k1n=h1k2m

µf,`(h1)µf,`(h2)λ∗`−1
f (k1)λ∗`−1

f (k2)λf (m)λf (n)

h
1/2+s
1 h

1/2+u
2 k

1/2+s
1 k

1/2+u
2 m1/2+α+zn1/2+β+z

=
L`

2+(`−1)2(f ⊗ f, 1 + s+ u)L(f ⊗ f, 1 + α+ β + 2z)

L`(`−1)(f ⊗ f, 1 + 2s)L`(`−1)(f ⊗ f, 1 + 2u)

× L`−1(f ⊗ f, 1 + α+ s+ z)L`−1(f ⊗ f, 1 + β + u+ z)

L`(f ⊗ f, 1 + β + s+ z)L`(f ⊗ f, 1 + α+ u+ z)
Aα,β(s, u, z),

where Aα,β(s, u, z) is given by an absolutely convergent Euler product on Ωα,β.

Proof. Let us set

S`,` =
∑

h2k1n=h1k2m

µf,`(h1)µf,`(h2)λ∗`−1
f (k1)λ∗`−1

f (k2)λf (m)λf (n)

h
1/2+s
1 h

1/2+u
2 k

1/2+s
1 k

1/2+u
2 m1/2+α+zn1/2+β+z

.

We now write this as an Euler product over primes so that

S`,` =
∏
p

∑
`2+`3+`6=`1+`4+`5

µf,`(p
`1)µf,`(p

`2)λ∗`−1
f (p`3)λ∗`−1

f (p`4)λf (p`5)λf (p`6)

(p`1)
1/2+s

(p`2)
1/2+u

(p`3)
1/2+s

(p`4)
1/2+u

(p`5)
1/2+α+z

(p`6)
1/2+β+z

,

where we have employed the substitutions h1 = p`1 , h2 = p`2 , k1 = p`3 , k2 = p`4 and m = p`5 , n =
p`6 . Using the fact µ`+1(p) = −(`+ 1)λf (p) and λ∗`−1

f (p) = (`− 1)λf (p) we have

S`,` =
∏
p

(
1 +

λf (p)2(`2 + (`− 1)2)

p1+s+u
−
λf (p)2`(`− 1)

p1+2s
−

λf (p)2`

p1+β+s+z
−
λf (p)2(`− 1)`

p1+2u

+
λf (p)2(`− 1)

p1+β+u+z
−

λf (p)2`

p1+α+u+z
+
λf (p)2(`− 1)

p1+α+s+z
+

λf (p)2

p1+α+β+2z
+O(p−2+δ(s,u,z,α,β))

)
=
L`

2+(`−1)2(f ⊗ f, 1 + s+ u)L(f ⊗ f, 1 + α+ β + 2z)

L`(`−1)(f ⊗ f, 1 + 2s)L`(`−1)(f ⊗ f, 1 + 2u)

× L`−1(f ⊗ f, 1 + α+ s+ z)L`−1(f ⊗ f, 1 + β + u+ z)

L`(f ⊗ f, 1 + β + s+ z)L`(f ⊗ f, 1 + α+ u+ z)
Aα,β(s, u, z),

where δ(s, u, z, α, β) ∈ Ωα,β and

Aα,β(s, u, z) =
∏
p

(
1 +

∑
r,l

ap,l,`(p)

pr+Xr,l,`(s,u,z,α,β)

)
.

Here |ap,l,`| � `2 and Xr,l,`(s, u, z, α, β) are linear forms in s, u, z, α, β and the sum over r, l is
absolutely convergent in Ωα,β. �

Note that when ` = 1, the above reduces to∑
h2n=h1m

µf (h1)µf (h2)λf (m)λf (n)

h
1/2+s
1 h

1/2+u
2 m1/2+α+zn1/2+β+z
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=
L(f ⊗ f, 1 + s+ u)L(f ⊗ f, 1 + α+ β + 2s)

L(f ⊗ f, 1 + β + s+ z)L(f ⊗ f, 1 + α+ u+ z)
Aα,β(s, u, z),(4.8)

since

(4.9) lim
`→1
`∈N

λ∗`−1
f (k) =

{
1, if k = 1,

0, otherwise.

Consequently, we arrive at

I ′`,`(α, β) =

∫ ∞
−∞

w(t)
∑
i

∑
j

a`,ii!a`,jj!

logi+jM`

(
1

2πi

)3 ∫
(1)

∫
(1)

∫
(1)
M s+u
`

(
t

2π

)zG(z)

z

× L`
2+(`−1)2(f ⊗ f, 1 + s+ u)L(f ⊗ f, 1 + α+ β + 2z)

L`(`−1)(f ⊗ f, 1 + 2s)L`(`−1)(f ⊗ f, 1 + 2u)

× L`−1(f ⊗ f, 1 + α+ s+ z)L`−1(f ⊗ f, 1 + β + u+ z)

L`(f ⊗ f, 1 + β + s+ z)L`(f ⊗ f, 1 + α+ u+ z)
Aα,β(s, u, z)dz

ds

si+1

du

uj+1
dt.

Now that we have transformed the arithmetic part of the problem into its analytic counterpart, we
can proceed to compute these integrals. To do so, we move the s-, u- and z-contours of integration
to δ > 0 small. This is then followed by deforming the z-contour to −δ + ε, thereby crossing the
simple pole of 1/z at z = 0. Recall that G(z) vanishes at the pole of ζ(1 + α + β + 2z). The new
contour of integration yields a contribution of size∫ ∞

−∞
w(t)

∑
i

∑
j

a`,ii!a`,jj!

logi+jM`

(
1

2πi

)3 ∫
Re(s)=δ

∫
Re(u)=δ

∫
Re(z)=−δ+ε

M s+u
`

(
t

2π

)zG(z)

z

× L`
2+(`−1)2(f ⊗ f, 1 + s+ u)L(f ⊗ f, 1 + α+ β + 2z)

L`(`−1)(f ⊗ f, 1 + 2s)L`(`−1)(f ⊗ f, 1 + 2u)

× L`−1(f ⊗ f, 1 + α+ s+ z)L`−1(f ⊗ f, 1 + β + u+ z)

L`(f ⊗ f, 1 + β + s+ z)L`(f ⊗ f, 1 + α+ u+ z)
Aα,β(s, u, z)dz

ds

si+1

du

uj+1
dt

�
∫ ∞
−∞
|w(t)|dtT 2(−δ+ε)M2δ

` � T 1−(2−2ν`)δ+ε � T 1−ε

for sufficiently small ε. Let us now write I ′`,`(α, β) as I ′`,`(α, β) = I ′`,`,0(α, β) + O(T 1−ε), where

I ′`,`,0(α, β) corresponds to the residue at z = 0, i.e.

I ′`,`,0(α, β) =

∫ ∞
−∞

w(t)
∑
i

∑
j

a`,ii!a`,jj!

logi+jM`

(
1

2πi

)2 ∫
(δ)

∫
(δ)

Res
z=0

M s+u
`

(
t

2π

)zG(z)

z

× L`
2+(`−1)2(f ⊗ f, 1 + s+ u)L(f ⊗ f, 1 + α+ β + 2z)

L`(`−1)(f ⊗ f, 1 + 2s)L`(`−1)(f ⊗ f, 1 + 2u)

× L`−1(f ⊗ f, 1 + α+ s+ z)L`−1(f ⊗ f, 1 + β + u+ z)

L`(f ⊗ f, 1 + β + s+ z)L`(f ⊗ f, 1 + α+ u+ z)
Aα,β(s, u, z)

ds

si+1

du

uj+1
dt

= ŵ(0)L(f ⊗ f, 1 + α+ β)
∑
i

∑
j

a`,ii!a`,jj!

logi+jM`

K`,`,

where

K`,` =

(
1

2πi

)2 ∫
(δ)

∫
(δ)
M s+u
`

L`
2+(`−1)2(f ⊗ f, 1 + s+ u)

L`(`−1)(f ⊗ f, 1 + 2s)L`(`−1)(f ⊗ f, 1 + 2u)

× L`−1(f ⊗ f, 1 + α+ s)L`−1(f ⊗ f, 1 + β + u)

L`(f ⊗ f, 1 + β + s)L`(f ⊗ f, 1 + α+ u)
Aα,β(s, u, 0)

ds

si+1

du

uj+1
.
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Before we compute K`,`, we need to sort out the situation with Aα,β. One can see that

A0,0(s, s, s) =
∑

h2k1n=h1k2m

µf,`(h1)µf,`(h2)λ∗`−1
f (k1)λ∗`−1

f (k2)λf (m)λf (n)

(h1h2k1k2mn)1/2+s

=
∞∑
j=1

j−1−2s

( ∑
h2k1n=j

µf,`(h2)λ∗`−1
f (k1)λf (n)

)( ∑
h1k2m=j

µf,`(h1)λ∗`−1
f (k2)λf (m)

)

=

∞∑
j=1

j−1−2s

(
(µf,` ∗ λ∗`−1

f ∗ λf )(j)

)2

.

It now follows by the definition of λf and µf,`, see (1.3) and (1.13), that

A0,0(s, s, s) = 1,

for all values of s. We next use the Rankin-Selberg convolution L-function given by (1.4) and
reverse the order of summation

K`,` =
∑
n≤M`

(λ2
f (n))

∗`2+(`−1)2

m

(
1

2πi

)2 ∫
(δ)

∫
(δ)

{ζ(N)(2(1 + s+ u))}`
2+(`−1)2

L`(`−1)(f ⊗ f, 1 + 2s)L`(`−1)(f ⊗ f, 1 + 2u)

×
(
M`

m

)s+uL`−1(f ⊗ f, 1 + α+ s)L`−1(f ⊗ f, 1 + β + u)

L`(f ⊗ f, 1 + β + s)L`(f ⊗ f, 1 + α+ u)
Aα,β(s, u, 0)

ds

si+1

du

uj+1
.

To simplify the calculations that will follow shortly, we will set the integrand to be

r`,`(α, β, i, j, s, u) =
(M`/m)s+u

si+1uj+1

{ζ(N)(2(1 + s+ u))}`
2+(`−1)2

L`(`−1)(f ⊗ f, 1 + 2s)L`(`−1)(f ⊗ f, 1 + 2u)

× L`−1(f ⊗ f, 1 + α+ s)L`−1(f ⊗ f, 1 + β + u)

L`(f ⊗ f, 1 + β + s)L`(f ⊗ f, 1 + α+ u)
Aα,β(s, u, 0).

We are going to follow a reasoning analogous to [7] and [22] by using the zero-free region of
L(f ⊗ f, s), see [20, Theorem 5.10]. More precisely, by taking (1.7) into account, we consider the
contour γ = γ1 ∪ γ2 ∪ γ3 given by

γ1 = {iτ : |τ | ≥ Y },
γ2 = {σ ± iY : −c/ log Y ≤ σ ≤ 0},
γ3 = {−c/ log Y + iτ : |τ | ≤ Y },

with c > 0 and Y ≥ 1 large, where c is chosen so that there are no zeros between the curve γ and
Re = δ. Since L(f ⊗ f, s) does not vanish, we replace the double integrals of Re(u) = Re(v) = δ by
the contour of integration γ so that by the Cauchy residue theorem we have(

1

2πi

)2 ∫
(δ)

∫
(δ)
r`,`(α, β, i, j, s, u)dsdu

= Res
s=0

1

2πi

∫
Re(u)=δ

r`,`(α, β, i, j, s, u)du+

(
1

2πi

)2 ∫
s∈γ

∫
Re(u)=δ

r`,`(α, β, i, j, s, u)dsdu

= Res
s=u=0

r`,`(α, β, i, j, s, u) + Res
s=0

1

2πi

∫
u∈γ

r`,`(α, β, i, j, s, u)du

+ Res
u=0

1

2πi

∫
s∈γ

r`,`(α, β, i, j, s, u)ds+

(
1

2πi

)2 ∫
s∈γ

∫
u∈γ

r`,`(α, β, i, j, s, u)dsdu.(4.10)
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The first estimation will be that of Ress=0
1

2πi

∫
s∈γ r`,`(α, β, i, j, s, u)ds. To estimate this, we will

first write the residue as a contour integral over a small circle of radius 1/L centered at 0, i.e.

Res
s=0

1

2πi

∫
u∈γ

r`,`(α, β, i, j, s, u)du =

(
1

2πi

)2 ∫
u∈γ

(M`/m)uL`−1(f ⊗ f, 1 + β + u)

L`(`−1)(f ⊗ f, 1 + 2u)L`(f ⊗ f, 1 + α+ u)

×
∮
D(0,L−1)

(
M`

m

)s
{ζ(N)(2(1 + s+ u))}`

2+(`−1)2

Aα,β(s, u, 0)

× L`−1(f ⊗ f, 1 + α+ s)

L`(`−1)(f ⊗ f, 1 + 2s)L`(f ⊗ f, 1 + β + s)

ds

si+1

du

uj+1
.

We also have the bound [4, 20]

1

L(f ⊗ f, σ + iτ)
� log |τ |.(4.11)

Next we use the fact that

ζ(N)(2(1 + s+ u))Aα,β(s, u, 0)� 1

in this contour of integration, as well as the bound

1

si+1

L`−1(f ⊗ f, 1 + α+ s)

L`(`−1)(f ⊗ f, 1 + 2s)L`(f ⊗ f, 1 + β + s)
� (2s)`(`−1)−i−1 (β + s)`

(α+ s)`−1
� Li−`(`−1),

since s � 1/L. Using the fact that the arclength of the curve is � 1/L, we obtain

Res
s=0

1

2πi

∫
u∈γ

r`,`(α, β, i, j, s, u)du

� Li−1−`(`−1)

∫
u∈γ

(M`/m)Re(u)L`−1(f ⊗ f, 1 + β + u)

L`(`−1)(f ⊗ f, 1 + 2u)L`(f ⊗ f, 1 + α+ u)

du

|u|j+1

� Li−1−`(`−1)

∫
|τ |≥Y

(log τ)`(`−1)+`

|τ |j+1
dτ + Li−1−`(`−1)(log Y )`(`−1)+`

∫ 0

−c/ log Y

dσ

|σ + iY |j+1

+ Li−1−`(`−1)

(
M`

m

)−c/ log Y

(log Y )`(`−1)+`

∫
|τ |≤Y

dτ

|τ − ic/ log Y |j+1

� Li−1−`(`−1)(log Y )`(`−1)+`

(
1

Y j
+

(
M`

m

)−c/ log Y

(log Y )j
)
.

Consequently, we get

Res
s=0

1

2πi

∫
u∈γ

r`,`(α, β, i, j, s, u)du� Li−1−`(`−1)(log Y )`(`−1)+`

(
1

Y j
+ (log Y )j

(
M`

m

)−c/ log Y)
.

For reasons of symmetry, i.e. r(α, β, i, j, s, u) = r(β, α, j, i, u, s), we also get

Res
u=0

1

2πi

∫
s∈γ

r`,`(α, β, i, j, s, u)du� Lj−1−`(`−1)(log Y )`(`−1)+`

(
1

Y i
+ (log Y )i

(
M`

m

)−c/ log Y)
.

Keeping this bound in mind, we can bound the double integrals over γ as(
1

2πi

)2 ∫
s∈γ

∫
u∈γ

r`,`(α, β, i, j, s, u)dsdu

�
∫
s∈γ

(M`/m)Re(s)L`−1(f ⊗ f, 1 + α+ s)

L`(`−1)(f ⊗ f, 1 + 2s)L`(f ⊗ f, 1 + β + s)

ds

|s|i+1
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×
∫
u∈γ

(M`/m)uL`−1(f ⊗ f, 1 + β + u)

L`(`−1)(f ⊗ f, 1 + 2u)L`(f ⊗ f, 1 + α+ u)

du

|u|j+1

� (log Y )2(`(`−1)+`)

(
1

Y i
+ (log Y )i

(
M`

m

)−c/ log Y)( 1

Y j
+ (log Y )j

(
M`

m

)−c/ log Y)
� (log Y )2(`(`−1)+`)

(
1

Y i+j
+ (log Y )i+j

(
M`

m

)−c/ log Y)
.

Let us now set

Ω(`, q) :=
∑
n≤M`

(λ2
f (n))

∗`2+(`−1)2

n

(
1

Y q
+ (log Y )q

(
M`

m

)−c/ log Y)
.

Using (3.10) and Lemma 3.5, we can bound Ω(`, q) by

Ω(`, q)� 1

Y q
(logM`)

`2+(`−1)2 +M
−c/ log Y
` (log Y )qM

c/ log Y
` (logM`)

`2+(`−1)2

� (log T )`
2+(`−1)2

Y q
+ (log Y )q(log T )`

2+(`−1)2 ,(4.12)

since log T � logM`. Choosing Y = log T , we obtain Ω(`, q) �q (log T )`
2+(`−1)2+ε. When we sum

over m, we see that

K`,` =
∑
m≤M`

(λ2
f (m))

∗`2+(`−1)2

m
Res
s=u=0

r`,`(α, β, i, j, s, u)

+O(Li−1−`(`−1)Ω(`, j)(log Y )`(`−1)+` + Lj−1−`(`−1)Ω(`, i)(log Y )`(`−1)+`

+ Ω(`, i+ j)(log Y )2(`(`−1)+`))

=
∑
m≤M`

(λ2
f (m))

∗`2+(`−1)2

m
Res
s=u=0

r`,`(α, β, i, j, s, u)

+O((log T )`
2+(`−1)2+ε(Li−1−`(`−1) + Lj−1−`(`−1) + 1)),

Recall that we have i, j ≥ `2 − `+ 1. Therefore,

K`,` =
∑
m≤M`

(λ2
f (m))

∗`2+(`−1)2

m
Res
s=u=0

r`,`(α, β, i, j, s, u) +O(log T i+j−1+ε).

Let us now move on to the main term. We first notice that

{ζ(N)(2(1 + s+ u))}`
2+(`−1)2

Aα,β(s, u, 0)

L`(`−1)(f ⊗ f, 1 + 2s)L`(`−1)(f ⊗ f, 1 + 2u)

L`−1(f ⊗ f, 1 + α+ s)L`−1(f ⊗ f, 1 + β + u)

L`(f ⊗ f, 1 + β + s)L`(f ⊗ f, 1 + α+ u)

=
{ζ(N)(2)}`

2+(`−1)2
(2s)`(`−1)(2u)`(`−1)

(Ress=1L(f ⊗ f, s))`2+(`−1)2+1

(α+ u)`(β + s)`

(α+ s)`−1(β + u)`−1
+O(1/L2`(`−1)+3),

since A0,0(0, 0, 0) = 1. We now get the product of two neatly separated integrals

Res
s=u=0

r`,`(α, β, i, j, s, u) = 22`(`−1)

(
ζ(N)(2)

Ress=1L(f ⊗ f, s)

)`2+(`−1)2 1

Ress=1 L(f ⊗ f, s)

× 1

2πi

∮
D(0,L−1)

(
M`

m

)s (β + s)`

(α+ s)`−1

ds

si+1−`(`−1)
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× 1

2πi

∮
D(0,L−1)

(
M`

m

)u (α+ u)`

(β + u)`−1

du

uj+1−`(`−1)
.

Let us remark that the second integral is the same as the first integral except that i has to be
replaced by j and α has to be replaced by β. Consequently, it is enough to compute any of these
two integrals. The first integral is computed below.

Lemma 4.2. One has that

1

2πi

∮
D(0,L−1)

(
M`

m

)s (β + s)`

(α+ s)`−1

ds

si+1−`(`−1)
=

1

(`− 2)!

1

(i− `(`− 1))!

d`

dx`

(
x+ log

M`

m

)`−1+i−`(`−1)

×
∫ 1

0
u`−2(1− u)i−`(`−1)ex(β−αu)

(
M`

m

)−αu
du

∣∣∣∣
x=0

,

for i ≥ `(`− 1) + 1.

Proof. The first observation is that

(β + s)` =
d`

dx`
e(β+s)x

∣∣∣∣
x=0

for all integer values of `. Next, set

Υ1(α, β, `) =
1

2πi

∮
D(0,L−1)

(
M`

m

)s (β + s)`

(α+ s)`−1

ds

si+1−`(`−1)

so that

Υ1(α, β, `) =
d`

dx`
eβxΥ11(x)|x=0 where Υ11(x) =

1

2πi

∮
D(0,L−1)

(
ex
M`

m

)s 1

(α+ s)`−1

ds

si+1−`(`−1)
.

Now taking a power series of the exponential inside Υ11 yields

Υ11(x) =
∑
r≥0

1

r!

(
x+ log

M`

m

)r 1

2πi

∮
D(0,L−1)

sr−i−1+`(`−1)

(α+ s)`−1
ds.

The poles of the integrand are s = −α and when r− i−1+`(`−1) ≤ −1, thus the easiest approach
is the one put forward in [7], namely that of computing the residue at infinity. By making the
change of variables s 7→ 1/s we get

Υ11(x) =
∑
r≥0

1

r!

(
x+ log

M`

m

)r 1

2πi

∮
D(0,L−1)

si−r−`
2+2`−2

(1 + αs)`−1
ds.

We take a power series of (1 + αs)1−` by the use of the binomial theorem with fractional powers

1

(1 + αs)`−1
= (1 + αs)1−` =

∑
k≥0

(
1− `
k

)
(αs)k.

Here (
1− `
k

)
=

(1− `)(1− `− 1)(1− `− 2) · · · (1− `− k + 1)

k!
.

When we insert this into Υ11 we have

Υ11(x) =
∑
r≥0

1

r!

(
x+ log

M`

m

)r∑
k≥0

(
1− `
k

)
αk

1

2πi

∮
D(0,L−1)

sk+i−r−`2+2`−2ds.
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This integral picks out r = k + i− `2 + 2`− 1, thus

Υ11(x) =

(
x+ log

M`

m

)i−`2+2`−1∑
k≥0

(
1− `
k

)
αk

(k + i− `2 + 2`− 1)!

(
x+ log

M`

m

)k
.

To end this calculation we invoke the confluent hypergeometric function of the first kind 1F1, see
e.g. [1]. This allows us to write

Υ11(x) =

(
x+ log

M`

m

)i−`2+2`−1 1

(i− `2 + 2`− 1)!

× 1F1

(
`− 1, i+ 2`− `2,−a

(
x+ log

M`

m

))
=

(
x+ log

M`

m

)i−`2+2`−1 1

(i− `2 + 2`− 1)!

Γ(i+ 2`− `2)

Γ(i+ `− `2 + 1)Γ(`− 1)

×
∫ 1

0
e−a(x+log

M`
m )uu`−2(1− u)i+2`−`2−`du

=

(
x+ log

M`

m

)i−`2+2`−1 1

(i+ `− `2)!Γ(`− 1)

∫ 1

0
e−aux

(
M`

m

)−au
u`−2(1− u)i+`−`

2

du,

provided ` > 1. Moreover, we remark that

lim
`→1

1

Γ(`− 1)

∫ 1

0
e−auu`−2(1− u)i+`−`

2

du = 1(4.13)

provided i > −1. Putting these results together we see that

Υ1(α, β, `) =
d`

dx`
eβx
(
x+ log

M`

m

)i−`2+2`−1 1

(i+ `− `2)!(`− 2)!

×
∫ 1

0
e−aux

(
M`

m

)−au
u`−2(1− u)i+`−`

2

du

∣∣∣∣
x=0

,

as it was to be shown. This ends the proof. �

We can now insert this result in the residue at s = u = 0 to obtain

K`,` = 22`(`−1)

(
ζ(N)(2)

Ress=1L(f ⊗ f, s)

)`2+(`−1)2 1

Ress=1L(f ⊗ f, s)

× 1

Γ2(`− 1)

1

(i− `(`− 1))!

1

(j − `(`− 1))!

× d2`

dx`dy`

∑
m≤M`

(λ2
f (n))

∗`2+(`−1)2

m

(
x+ log

M`

m

)`−1+i−`(`−1)(
y + log

M`

m

)`−1+j−`(`−1)

×
∫ 1

0

∫ 1

0
u`−2v`−2(1− u)i−`(`−1)(1− v)j−`(`−1)ex(β−αu)ey(α−βv)

(
M`

m

)−αu−βv
dudv

∣∣∣∣
x=y=0

+O(Li+j−2+ε).

Let us perform the sums over i and j in the expression for I ′`,`,0. For the first sum we have

∑
i

a`,ii!

logiM`

1

(i− `(`− 1))!

(
x+ log

M`

m

)`−1+i−`(`−1)

(1− u)i−`(`−1)
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= (logM`)
−`(`−1)

(
x+ log

M`

m

)`−1

×
∑
i

a`,ii(i− 1)(i− 2) · · · (i− `(`− 1) + 1)

(
(1− u)

(x+ log M`
m )

logM`

)i−`(`−1)

= (logM`)
−`(`−1)

(
x+ log

M`

m

)`−1

P
(`(`−1))
`

(
(1− u)

(x+ log M`
m )

logM`

)
.

Similarly, for the second sum we get∑
j

a`,jj!

logjM`

1

(j − `(`− 1))!

(
y + log

M`

m

)`−1+j−`(`−1)

(1− u)j−`(`−1)

= (logM`)
−`(`−1)

(
y + log

M`

m

)`−1

P
(`(`−1))
`

(
(1− u)

(y + log M`
m )

logM`

)
.

Therefore, the expression for I ′`,`,0 becomes

I ′`,`,0(α, β) =
22`(`−1)ŵ(0)

α+ β

(
ζ(N)(2)

Ress=1L(f ⊗ f, s)

)`2+(`−1)2

× 1

((`− 2)!)2

d2`

dx`dy`

[
eαy+βx

∫ 1

0

∫ 1

0
u`−2v`−2e−αux−βvy

×
∑
m≤M`

(λ2
f (m))

∗`2+(`−1)2

m

(x+ log M`
m )

`−1
(y + log M`

m )
`−1

log2`(`−1)M`

(
M`

m

)−αu−βv

× P (`(`−1))
`

(
(1− u)

(x+ log M`
m )

logM`

)
P

(`(`−1))
`

(
(1− v)

(y + log M`
m )

logM`

)
dudv

]
x=y=0

,

+O(TL−1+ε),(4.14)

where we have used the Laurent expansion

L(f ⊗ g, 1 + α+ β) =
Ress=1 L(f ⊗ g, s)

α+ β
+O(1).

We shall write the main in a more convenient way as

I ′`,`,0(α, β) =
22`(`−1)ŵ(0)

α+ β

(
ζ(N)(2)

Ress=1L(f ⊗ f, s)

)`2+(`−1)2

× 1

((`− 2)!)2

d2`

dx`dy`

[ ∫ 1

0

∫ 1

0
u`−2v`−2M

x(β−αu)+y(α−βv)
`

×
∑
m≤M`

(λ2
f (m))

∗`2+(`−1)2

m

(x+ log(M`/m)
logM`

)
`−1

(y + log(M`/m)
logM`

)
`−1

log2`(`−1)M`log2M`

(
M`

m

)−αu−βv

× P (`(`−1))
`

(
(1− u)

(
x+

log M`
m

logM`

))
P

(`(`−1))
`

(
(1− v)

(
y +

log M`
m

logM`

))
dudv

]
x=y=0

+O(T 1−ε).

By the Euler-Maclaurin result of Lemma 3.5, with k = `2 + (`− 1)2, s = −αu − βv, x = z = M`,

F (r) = (x+ r)`−1P
(`(`−1))
` ((1− u)(x+ r)) as well as H(r) = (y + r)`−1P

(`(`−1))
` ((1− v)(y + r)), we
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obtain∑
m≤M`

(λ2
f (m))

∗`2+(`−1)2

m1−αu−βv

(
x+

logM`/n

logM`

)`−1(
y +

logM`/n

logM`

)`−1

× P (`(`−1))
`

(
(1− u)

(
x+

logM`/n

logM`

))
P

(`(`−1))
`

(
(1− v)

(
y +

logM`/n

logM`

))
=

(
Ress=1L(f ⊗ f, s)

ζ(N)(2)

)`2+(`−1)2 (logM`)
`2+(`−1)2

(`2 + (`− 1)2 − 1)!M−αu−βv`

×
∫ 1

0
(1− r)`

2+(`−1)2−1(x+ r)`−1(y + r)`−1

× P (`(`−1))
` ((1− u)(x+ r))P

(`(`−1))
` ((1− v)(y + r))M

r(−αu−βv)
` dr +O(L`

2+(2`−1)2−1).

Consequently, we are left with

I ′`,`(α, β) =
22`(`−1)ŵ(0)

(α+ β) logM`

1

Γ2(`− 1)

1

(`2 + (`− 1)2 − 1)!

× d2`

dx`dy`

[ ∫ 1

0

∫ 1

0

∫ 1

0
M

β(x−v(y+r))+α(y−u(x+r))
`

× u`−2v`−2(1− r)`2+(`−1)2−1(x+ r)`−1(y + r)`−1

× P (`(`−1))
` ((1− u)(x+ r))P

(`(`−1))
` ((1− v)(y + r))drdudv

]
x=y=0

+O(TL−1+ε).

As we discussed earlier, to form the full I`,`(α, β) we need to add I ′`,`(α, β) and I ′′`,`(α, β), where

I ′′`,`(α, β) is formed by taking I ′`,`(α, β), then we switch α and −β, and finally we multiply by

T−2(α+β). To accomplish this, we first let

U(α, β) =
M

β(x−v(y+r))+α(y−u(x+r))
` − T−2(α+β)M

−α(x−v(y+r))−β(y−u(x+r))
`

α+ β
.

This implies that

I`,`(α, β) =
22`(`−1)ŵ(0)

logM`

1

Γ2(`− 1)

1

(`2 + (`− 1)2 − 1)!

× d2`

dx`dy`

[ ∫ 1

0

∫ 1

0

∫ 1

0
U(α, β)u`−2v`−2(1− r)`2+(`−1)2−1(x+ r)`−1(y + r)`−1

× P (`(`−1))
` ((1− u)(x+ r))P

(`(`−1))
` ((1− v)(y + r))drdudv

]
x=y=0

+O(TL−1+ε).

However, we can also write

U(α, β) = M
β(x−v(y+r))+α(y−u(x+r))
`

1− (T 2M
x+y−v(y+r)−u(x+r)
` )

−α−β

α+ β
.

Finally, the identity
1− z−α−β

α+ β
= log z

∫ 1

0
z−t(α+β)dt,

combined with the fact that M` = T ν` yields

c`,`(α, β) =
1

Γ2(`− 1)

22`(`−1)

(`2 + (`− 1)2 − 1)!

d2`

dx`dy`
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×
[ ∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
(1− r)`2+(`−1)2−1u`−2v`−2

× T ν`(β(x−v(y+r))+α(y−u(x+r)))(T 2+ν`(x+y−v(y+r)−u(x+r)))−t(α+β)

×
(

2

ν`
+ x+ y − v(y + r)− u(x+ r)

)
(x+ r)`−1(y + r)`−1

× P (`(`−1))
` ((1− u)(x+ r))P

(`(`−1))
` ((1− v)(y + r))dtdrdudvc

]
x=y=0

.

This proves Lemma 2.1. Theorem 2.3 follows by using

c`,` = Q

(
−1

2 log T

d

dα

)
Q

(
−1

2 log T

d

dβ

)
c`,`(α, β)

∣∣∣∣
α=β=−R/L

=
1

Γ2(`− 1)

22`(`−1)

(`2 + (`− 1)2 − 1)!

d2`

dx`dy`

×
[ ∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(
2

ν`
+ (x+ y − v(y + r)− u(x+ r))

)
(1− r)`2+(`−1)2−1

× e−
ν`
2
R[x+y−v(y+r)−u(x+r)]e2Rt[1+

ν`
2

(x+y−v(y+r)−u(x+r))]

×Q
(
ν`
2

(−x+ v(y + r)) + t

(
1 +

ν`
2

(x+ y − v(y + r)− u(x+ r))

))
×Q

(
ν`
2

(−y + u(x+ r)) + t

(
1 +

ν`
2

(x+ y − v(y + r)− u(x+ r))

))
× (x+ r)`−1(y + r)`−1u`−2v`−2

× P (`(`−1))
` ((1− u)(x+ r))P

(`(`−1))
` ((1− v)(y + r))dtdrdudv

]
x=y=0

.

This ends the computation of the I`,` term.

4.2. The mean value integral I`,`+1(α, β). We shall follow a similar strategy to that of the case
I`,`+1, except that now we will have the factor χf (1/2 + it) inside the integral J2,f below. This
fact will account for the presence of the arithmetic term σα,−β(f, l) in the p-adic sum. We start by
plugging in the definitions of ψ` and ψ`+1 into the mean value integral I`,`+1 so that

I`,`+1(α, β) =

∫ ∞
−∞

w(t)L(f, 1
2 + α+ it)L(f, 1

2 + β − it)ψ`ψ`+1(σ0 + it)dt

=

∫ ∞
−∞

w(t)χ`−1
f (1

2 − it)χ
`
f (1

2 + it)L(f, 1
2 + α+ it)L(f, 1

2 + β − it)

×
∑

h1k1≤M`

µf,`(h1)λ∗`−1
f (k1)

h
1/2−it
1 k

1/2+it
1

P`[h1k1]
∑

h2k2≤M`+1

µf,`+1(h2)λ∗`f (k2)

h
1/2+it
2 k

1/2−it
2

P`+1[h2k2]dt

=
∑

h1k1≤M`

∑
h2k2≤M`+1

µf,`(h1)µf,`+1(h2)λ∗`−1
f (k1)λ∗`f (k2)

(h1h2k1k2)1/2
P`[h1k1]P`+1[h2k2]J1,f ,

where

J1,f =

∫ ∞
−∞

w(t)

(
h2k1

h1k2

)−it
χf (1

2 + it)L(f, 1
2 + α+ it)L(f, 1

2 + β − it)dt,
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since χf (1
2 + it) = χf (1

2 − it)
−1 for all values of t. At this point we employ the functional equation

of L(f, 1
2 + β − it) as well as the Stirling approximation [4, Lemma 2]

χf (1
2 + β − it)χf (1

2 + it) =

(
t
√
N

2π

)−2β

(1 +O(t−1)),

to write

J1,f =

∫ ∞
−∞

w(t)

(
h2k1

h1k2

)−it( t√N
2π

)−2β

L(f, 1
2 + α+ it)L(f, 1

2 − β + it)dt+O(T ε).

Now that we have opposite signs in front of α and β we apply Lemma 3.4 to get

J1,f =
∞∑
l=1

σα,−β(f, l)

l1/2
e−l/T

6

∫ ∞
−∞

w(t)

(
h2k1l

h1k2

)−it( t√N
2π

)−2β

dt+O(T ε).

When we plug this back into I`,`+1 we see that

I`,`+1(α, β) =
∑

h1k1≤M`

∑
h2k2≤M`+1

∞∑
l=1

µf,`(h1)µf,`+1(h2)λ∗`−1
f (k1)λ∗`f (k2)σα,−β(f, l)

(h1h2k1k2l)
1/2

e−l/T
6

× P`[h1k1]P`+1[h2k2]ŵ0

(
1

2π
log

h2k1l

h1k2

)
,

where w0(t) := w(t)( t
√
N

2π )−2β.

4.3. Bounding the off-diagonal terms. Let C`,`+1 denote the contribution to I`,`+1 from the
off-diagonal terms, so that

C`,`+1(α, β) =
∑

h1k1≤M`
h2k2≤M`+1

l≥1
h1k2 6=h2k1l

µf,`(h1)µf,`+1(h2)λ∗`−1
f (k1)λ∗`f (k2)σα,−β(f, l)

(h1h2k1k2l)
1/2

e−l/T
6
P`[h1k1]P`+1[h2k2]

× ŵ0

(
1

2π
log

h2k1l

h1k2

)
.

Given that M` = T ν` and M`+1 = T ν`+1 , we have to estimate the above term. Since we define

w0(x) = w(x)( t
√
N

2π )−2β, we have
∫∞
−∞w0(x) dx� T . Furthermore, it was shown in [7] that

w0

(
1

2π
log x

)
�B

T

(1 + T
L log x)B

(4.15)

for any B ≥ 0. Let us split C`,`+1 into

C`,`+1 = C ′`,`+1 + C ′′`,`+1 with C ′`,`+1 =
∑

1≤l≤T 8

and C ′′`,`+1 =
∑
l≥T 8

.(4.16)

For the second term, we get the bound

C ′′`,`+1 �
∑
l≥T 8

∑
h1k1≤M`
h2k2≤M`+1
h1k2 6=h2k1l

|µf,`(h1)µf,`+1(h2)λ∗`−1
f (k1)λ∗`f (k2)σα,−β(l)|

(h1h2k1k2l)
1/2

e−l/T
6

∫ ∞
−∞

w0(x) dx

�` T
∑
l≥T 8

∑
h1k1≤M`
h2k2≤M`+1
h1k2 6=h2k1l

(h1h2l)
ε(k1k2)ε+θ

(h1h2k1k2l)1/2
e−l/T

6
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� T

( ∑
l≥T 8

l−1/2+εe−l/T
6

)( ∑
h1k1≤M`

(h1k1)θ−1/2+ε

)( ∑
h2k2≤M`

(h2k2)θ−1/2+ε

)
� T 8e−TT (θ+1/2)(ν`+ν`+1)+3ε � T−2017,

where we have used (4.5). We now come to C ′`,`+1. We choose ν` and ν`+1 so that ν` + ν`+1 < 1

and thus we have for h2k1l
h1k2

6= 1 that∣∣∣∣1− h2k1l

h1k2

∣∣∣∣ ≥ 1

h1k2
≥ 1

M`M`+1
≥ T−1+ε.(4.17)

Therefore

w0

(
1

2π
log

h2k1l

h1k2

)
�B

T

(1 + T
L log(h2k1lh1k2

))B
=

T

(1 + T
L log(1 + (h2k1lh1k2

− 1)))B

�B
T

(1 + T
LT
−1+ε)B

� T 1−εB.

Using this as well as the bounds from (4.5) yields

C ′`,`+1 �
∑

1≤l≤T 8

∑
h1k1≤M`
h2k2≤M`+1
h1k2 6=h2k1l

|µf,`(h1)µf,`+1(h2)λ∗`−1
f (k1)λ∗`f (k2)σα,−β(l)|

(h1h2k1k2l)
1/2

e−l/T
6

∣∣∣∣ŵ0

(
1

2π
log

h2k1l

h1k2

)∣∣∣∣
�` T

1−εB
∑
l≤T 8

∑
h1k1≤M`
h2k2≤M`+1
h1k2 6=h2k1l

(h1h2l)
ε(k1k2)θ+ε

(h1h2k1k2l)1/2
e−l/T

6

� T 1−εB
( ∑
l≤T 8

lε−1/2e−l/T
6

)( ∑
h1k1≤M`

(h1k1)θ−1/2+ε

)( ∑
h2k2≤M`

(h2k2)θ−1/2+ε

)
� T 9−εBT (θ+1/2)(ν`+ν`+1)+3ε � T−2017,

by choosing B large enough and using lε−1/2e−l/T
6 ≤ 1. This shows that for ν` + ν`+1 < 1 the

off-diagonal terms get absorbed in the error term and do not contribute to our final results. Note
that the condition ν` + ν`+1 < 1 is needed only for bound of w0.

4.4. The diagonal terms h1k2 = h2k1l and their reduction to a contour integral. By
employing the Mellin identities

P`[h1k1] =

degP`∑
i=0

a`,i

logiM`

(logM`/h1k1)i =
∑
i

a`,ii!

logiM`

1

2πi

∫
(1)

(
M`

h1k1

)s ds
si+1

,

and

P`+1[h2k2] =

degP`+1∑
j=0

a`+1,j

logjM`+1

(logM`+1/h2k2)j =
∑
j

a`+1,jj!

logjM`+1

1

2πi

∫
(1)

(
M`+1

h2k2

)u du

uj+1
,

as well as the Cahen-Mellin integral

e−y =
1

2πi

∫
(c)

Γ(z)y−zdz, c > 0, Re(y) > 0,
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we arrive at

I`,`+1(α, β) = ŵ0(0)
∑
i

∑
j

a`,ii!a`+1,jj!

logiM`logjM`+1

(
1

2πi

)3 ∫
(1)

∫
(1)

∫
(1)
T 3zΓ(z)M s

`M
u
`+1

×
∑

h2k1l=h1k2

µf,`(h1)µf,`+1(h2)λ∗`−1
f (k1)λ∗`f (k2)σα,−β(f, l)

h
1/2+s
1 h

1/2+u
2 k

1/2+s
1 k

1/2+u
2 l1/2+z

dz
ds

si+1

du

uj+1
+O(T 1−ε).

We must now evaluate the arithmetic sum
∑

h2k1l=h1k2
and turn into a ratio of L-functions.

Lemma 4.3. Let Υα,β be the set of vectors u, s, z ∈ C3 satisfying

Re(s) > −1/4,

Re(u) > −1/4,

Re(z) + Re(u) > −1/2− Re(α),

Re(z) + Re(u) > −1/2 + Re(β),

Re(s) + Re(z) > −1/2− Re(α),

Re(s) + Re(z) > −1/2 + Re(β).

Then one has∑
h2k1l=h1k2

µf,`(h1)µf,`+1(h2)λ∗`−1
f (k1)λ∗`f (k2)σα,−β(f, l)

h
1/2+s
1 h

1/2+u
2 k

1/2+s
1 k

1/2+u
2 l1/2+z

=
L2`2(f ⊗ f, 1 + s+ u)L`(f ⊗ f, 1 + α+ u+ z)L`(f ⊗ f, 1− β + u+ z)

L`(`−1)(f ⊗ f, 1 + 2s)L`(`+1)(f ⊗ f, 1 + 2u)L`(f ⊗ f, 1 + α+ s+ z)L`(f ⊗ f, 1− β + s+ z)

×Bα,β(s, u, z),

where Bα,β(s, u, z) is given by an absolutely convergent Euler product on Υα,β.

Proof. Let us set

S`,`+1 =
∑

h2k1l=h1k2

µf,`(h1)µf,`+1(h2)λ∗`−1
f (k1)λ∗`f (k2)σα,−β(f, l)

h
1/2+s
1 h

1/2+u
2 k

1/2+s
1 k

1/2+u
2 l1/2+z

.

The definition of σα,−β(f, l) =
∑

ab=l λf (a)λf (b)a−αbβ allows us to write

S`,`+1 =
∑

h2k1ab=h1k2

µf,`(h1)µf,`+1(h2)λ∗`−1
f (k1)λ∗`f (k2)λf (a)λf (b)

h
1/2+s
1 h

1/2+u
2 k

1/2+s
1 k

1/2+u
2 a1/2+α+zb1/2−β+z

.

We now translate this into an Euler product over primes so that

S`,`+1 =
∏
p

∑
`2+`3+`5+`6=`1+`4

µf,`(p
`1)µf,`+1(p`2)λ∗`−1

f (p`3)λ∗`f (p`4)λf (p`5)λf (p`6)

(p`1)
1/2+s

(p`2)
1/2+u

(p`3)
1/2+s

(p`4)
1/2+u

(p`5)
1/2+α+z

(p`6)
1/2−β+z

,

where we have used the substitutions h1 = p`1 , h2 = p`2 , k1 = p`3 , k2 = p`4 and a = p`5 , b = p`6 .
Note that we can consider only first order terms in p since they are enough to determine the
expression in the lemma. Using the facts that µf,`(p) = −`λf (p) and λ∗`f (p) = `λf (p) we have

S`,`+1 =
∏
p

(
1 +

(`+ 1)` λf (p)2

p1+s+u
−
`(`− 1) λf (p)2

p1+2s
−

`λf (p)2

p1+α+s+z
−

`λf (p)2

p1−β+s+z
−

(`+ 1)` λf (p)2

p1+2u

+
(`− 1)` λf (p)2

p1+s+u
+

`λf (p)2

p1+α+u+z
+

`λf (p)2

p1−β+u+z
+O(p−2+ε(s,u,z,α,β))

)
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=
L2`2(f ⊗ f, 1 + s+ u)L`(f ⊗ f, 1 + α+ u+ z)L`(f ⊗ f, 1− β + u+ z)

L`(`−1)(f ⊗ f, 1 + 2s)L`(`+1)(f ⊗ f, 1 + 2u)L`(f ⊗ f, 1 + α+ s+ z)L`(f ⊗ f, 1− β + s+ z)

×Bα,β(s, u, z),

where ε(s, u, z, α, β) ∈ Υα,β and

Bα,β(s, u, z) =
∏
p

(
1 +

∑
r,l

bp,l,`(p)

pr+Yr,l,`(s,u,z,α,β)

)
,

with |bp,l,`(p)| � `2 and Yr,l,`(u, s, z, α, β) are linear forms in s, u, z, α, β and the sum over r, l is
absolutely convergent in Υα,β. �

This means that we are left with

I`,`+1(α, β) = ŵ0(0)
∑
i

∑
j

a`,ii!a`+1,jj!

logiM`logjM`+1

(
1

2πi

)3 ∫
(1)

∫
(1)

∫
(1)
T 3zΓ(z)M s

`M
u
`+1

× 1

L`(`+1)(f ⊗ f, 1 + 2u)L`(f ⊗ f, 1 + α+ s+ z)`(f ⊗ f, 1− β + s+ z)

× L`(f ⊗ f, 1 + α+ u+ z)`(f ⊗ f, 1− β + u+ z)

L`(`+1)(f ⊗ f, 1 + 2u)

× L2`2(f ⊗ f, 1 + s+ u)Bα,β(s, u, z)dz
ds

si+1

du

uj+1
+O(T 1−ε).

The next step is to move the s- and u- contours of integration to Re(s) = Re(u) = δ, and then
move the z-contour to −2δ/3, where δ > 0 is some fixed constant such that the arithmetical factor
converges absolutely. This has the effect of crossing a simple pole at z = 0. Also, on the new
paths the integral can be bounded in a straightforward way by using absolute values. Thus, the
contribution to I`,`+1 is∫ ∞
−∞

w(t)
∑
i

∑
j

a`,ii!a`+1,jj!

logiM`logjM`+1

(
1

2πi

)3 ∫
Re(s)=δ

∫
Re(u)=δ

∫
Re(z)=−2δ/3

T 3zΓ(z)M s
`M

u
`+1

× L2`2(f ⊗ f, 1 + s+ u)L`(f ⊗ f, 1 + α+ u+ z)L`(f ⊗ f, 1− β + u+ z)

L`(`−1)(f ⊗ f, 1 + 2s)L`(`+1)(f ⊗ f, 1 + 2u)L`(f ⊗ f, 1 + α+ s+ z)L`(f ⊗ f, 1− β + s+ z)

×Bα,β(s, u, z)dz
ds

si+1

du

uj+1
dt�

∫ ∞
−∞
|w(t)|dt

(
M`M`+1

T 2

)δ
� T 1−ε,

since ν` + ν`+1 < 2. This implies that

I`,`+1(α, β) = ŵ0(0)
∑
i

∑
j

a`,ii!a`+1,jj!

logiM`logjM`+1

(
1

2πi

)2 ∫
(δ)

∫
(δ)

Res
z=0

T 3zΓ(z)M s
`M

u
`+1

× 1

L`(`+1)(f ⊗ f, 1 + 2u)L`(f ⊗ f, 1 + α+ s+ z)`(f ⊗ f, 1− β + s+ z)

× L`(f ⊗ f, 1 + α+ u+ z)`(f ⊗ f, 1− β + u+ z)

L`(`+1)(f ⊗ f, 1 + 2u)

× L2`2(f ⊗ f, 1 + s+ u)Bα,β(s, u, z)
ds

si+1

du

uj+1
+O(T 1−ε)

= ŵ0(0)
∑
i

∑
j

a`,ii!a`+1,jj!

logiM`logjM`+1

K`,`+1(α, β, i, j) +O(T 1−ε),
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where

K`,`+1(α, β, i, j) =

(
1

2πi

)2 ∫
(δ)

∫
(δ)
M s
`M

u
`+1L

2`2(f ⊗ f, 1 + s+ u)Bα,β(s, u, 0)

× 1

L`(`+1)(f ⊗ f, 1 + 2u)L`(f ⊗ f, 1 + α+ s)`(f ⊗ f, 1− β + s)

× L`(f ⊗ f, 1 + α+ u)`(f ⊗ f, 1− β + u)

L`(`+1)(f ⊗ f, 1 + 2u)

ds

si+1

du

uj+1
.

Before we proceed we note that

Bα,β(s, s, s) =
∑

h2k1l=h1k2

µf,`(h1)µf,`+1(h2)λ∗`−1
f (k1)λ∗`f (k2)σα,−β(f, l)

(h1h2k1k2l)
1/2+s

=
∑

h2k1l=h1k2

µf,`(h1)µf,`+1(h2)λ∗`−1
f (k1)λ∗`f (k2)σα,−β(f, l)

(h1k2)1+2s

=

∞∑
j=1

( ∑
h1k2=j

µf,`(h1)λ∗`f (k2)

(h1k2)1+2s

)( ∑
h2k1l=j

σα,−β(f, l)µf,`+1(h2)λ∗`−1
f (k1)

)
= 1,

because the first bracket is 0 if j 6= 1 and 1 if j = 1 and since∑
h2k1l=j

σα,−β(f, l)µf,`+1(h2)λ∗`−1
f (k1) = 1,

when j = 1 by the definition of σα,−β(f, l). This means that Bα,β(s, s, s) = 1 for all values of s.
Let us recall that the Rankin-Selberg convolution L-function is given

L(f ⊗ g, s) = L(χ, 2s)
∞∑
n=1

λf (n)λg(n)

ns
,

from which we obtain (since ν`+1 ≤ ν`) that

K`,`+1(α, β, i, j) =
∑

n≤M`+1

(λ2
f (n))

∗2`2

n

(
1

2πi

)2 ∫
(δ)

∫
(δ)
{ζ(N)(2(1 + s+ u))}2`

2

× 1

L`(`+1)(f ⊗ f, 1 + 2u)L`(f ⊗ f, 1 + α+ s)`(f ⊗ f, 1− β + s)

× L`(f ⊗ f, 1 + α+ u)`(f ⊗ f, 1− β + u)

L`(`+1)(f ⊗ f, 1 + 2u)

×
(
M`

n

)s(M`+1

n

)u
Bα,β(s, u, 0)

ds

si+1

du

uj+1
.

The double integral K`,`+1 can be computed by similar methods to those employed in the calculation
of K`,`. We define the integrand to be

r`,`+1(α, β, i, j, s, u) =
{ζ(N)(2(1 + s+ u))}2`

2

L`(`+1)(f ⊗ f, 1 + 2u)L`(f ⊗ f, 1 + α+ s)`(f ⊗ f, 1− β + s)

× L`(f ⊗ f, 1 + α+ u)`(f ⊗ f, 1− β + u)

L`(`+1)(f ⊗ f, 1 + 2u)

(
M`

n

)s(M`+1

n

)u 1

si+1

1

uj+1
Bα,β(s, u, 0).
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Let us follow the strategy of I`,` and that of Lemma 5.7 of [7] by using the zero-free region of
L(f ⊗ f, s), see [20]. Since L(f ⊗ f, s) does not vanish, we replace the double integrals of Re(u) =
Re(v) = δ by the contour of integration γ on page 20. We get by the Cauchy residue theorem(

1

2πi

)2 ∫
(δ)

∫
(δ)
r`,`+1(α, β, i, j, s, u)dsdu

= Res
s=0

1

2πi

∫
Re(u)=δ

r`,`+1(α, β, i, j, s, u)du+

(
1

2πi

)2 ∫
s∈γ

∫
Re(u)=δ

r`,`+1(α, β, i, j, s, u)dsdu

= Res
s=u=0

r`,`+1(α, β, i, j, s, u) + Res
s=0

1

2πi

∫
u∈γ

r`,`+1(α, β, i, j, s, u)du

+ Res
u=0

1

2πi

∫
s∈γ

r`,`+1(α, β, i, j, s, u)ds+

(
1

2πi

)2 ∫
s∈γ

∫
u∈γ

r`,`+1(α, β, i, j, s, u)dsdu.

Again, the first estimation will be that of Ress=0
1

2πi

∫
s∈γ r`,`+1(α, β, i, j, s, u)ds. We start by writing

the residue as a contour integral over a small circle of radius 1/L centered at 0, i.e.

Res
s=0

1

2πi

∫
u∈γ

r`,`+1(α, β, i, j, s, u)du

=

(
1

2πi

)2 ∫
u∈γ

(
M`+1

n

)uL`(f ⊗ f, 1 + α+ u)L`(f ⊗ f, 1− β + u)

L`(`+1)(f ⊗ f, 1 + 2u)

×
∮
D(0,L−1)

(
M`

n

)s {ζ(N)(2(1 + s+ u))}2`
2

Bα,β(s, u, 0)

L`(`−1)(f ⊗ f, 1 + 2s)L`(f ⊗ f, 1 + α+ s)L`(f ⊗ f, 1− β + s)

ds

si+1

du

uj+1
.

Next we use the fact that ζ(N)(2(1 + s+ u))Bα,β(s, u, 0)� 1 in this contour of integration and

1

L`(`−1)(f ⊗ f, 1 + 2s)L`(f ⊗ f, 1 + α+ s)L`(f ⊗ f, 1− β + s)
� (2s)`(`−1)(α+ s)`(−β + s)`

� L−`(`+1),

since s � 1/L, to write

Res
s=0

1

2πi

∫
u∈γ

r`,`+1(α, β, i, j, s, u)du

� Li−`(`+1)

∫
u∈γ

(
M`+1

n

)Re(u) ∣∣∣∣L`(f ⊗ f, 1 + α+ u)L`(f ⊗ f, 1− β + u)

L`(`+1)(f ⊗ f, 1 + 2u)

∣∣∣∣ du

|u|j+1
.

The novelty is that in addition to the bound (4.11), we shall also use [20, Chapter 5]

L(f ⊗ f, σ + iτ)�N,ε |τ |4(α′+ε), α′ = max{1
2(1− σ), 0},(4.18)

for all ε > 0 and where N is the level of the L-function. This enables us to obtain∫
u∈γ

(
M`+1

n

)Re(u) ∣∣∣∣L`(f ⊗ f, 1 + α+ u)L`(f ⊗ f, 1− β + u)

L`(`+1)(f ⊗ f, 1 + 2u)

∣∣∣∣ du

|u|j+1

�
∫
|τ |≥Y

log`(`+1)|τ |
|τ |j+1−ε dτ + (log Y )`(`+1)

∫ 0

−c/ log Y

dσ

|σ + iY |j+1−4c`/ log Y−ε

+

(
M`+1

n

)−c/ log Y

(log Y )`(`+1)

×
(∫

c/ log Y≤|τ |≤Y
+

∫
0≤|τ |≤c/ log Y

)
dτ

|τ − ic/ log Y |j+1−4c`/ log Y−ε
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� (log Y )`(`+1)

Y j
+ (log Y )j+`(`+1)+ε

(
M`+1

n

)−c/ log Y

.

This means that

Res
s=0

1

2πi

∫
u∈γ

r`,`+1(α, β, i, j, s, u)du� Li−`(`+1)(log Y )`(`+1)+ε

(
1

Y j
+ (log Y )j

(
M`+1

n

)−c/ log Y)
.

By using a similar technique, one gets

Res
u=0

1

2πi

∫
s∈γ

r`,`+1(α, β, i, j, s, u)ds� Lj−`(`−1)(log Y )`(`+1)+ε

(
1

Y i
+ (log Y )i

(
M`

n

)−c/ log Y)
.

Now we bound the double integral over s ∈ γ and u ∈ γ, i.e.(
1

2πi

)2 ∫
s∈γ

∫
u∈γ

r`,`+1(α, β, i, j, s, u)dsdu

�
∫
s∈γ

(
M`

n

)Re(s) 1

L`(`−1)(f ⊗ f, 1 + 2s)L`(f ⊗ f, 1 + α+ s)L`(f ⊗ f, 1− β + s)

ds

si+1

×
∫
u∈γ

(
M`+1

n

)Re(u)L`(f ⊗ f, 1 + α+ u)L`(f ⊗ f, 1− β + u)

L`(`+1)(f ⊗ f, 1 + 2u)

du

uj+1

�
(

log`(`+1)Y

Y j
+ (log Y )j+`(`+1)

(
M`+1

n

)−c/ log Y)
×
(

log`(`+1)Y

Y i
+ (log Y )i+`(`+1)

(
M`

n

)−c/ log Y)
� (log Y )2`(`+1)

(
1

Y i+j
+ (log Y )i+j

(
M`

n

)−c/ log Y)
,

since max(M`,M`+1) = M`. Let us recall that

Ω(q) =
∑

n≤M`+1

(λ2
f (n))

∗2`2

n

(
1

Y q
+ (log Y )q

(
M`

n

)−c/ log Y)
.

We use Lemma 3.5 regarding the convolution λ2
f (n)∗k, to write

Ω(q) =
∑

n≤M`+1

(λ2
f (n))

∗2`2

n

(
1

Y q
+ (log Y )q

(
M`

n

)−c/ log Y)

� 1

Y q

∑
n≤M`+1

(λ2
f (n))∗2`

2

n
+ (log Y )q

∑
n≤M`+1

(λ2
f (n))∗2`

2

n

(
M`

n

)−c/ log Y

� log2`2(M`+1)

Y q
+ (log Y )q(logM`+1)2`2 .

The choice of Y has to be such that Y = o(T ), specifically we take Y = log T = L. Thus we get

Ω(q) � L2`2+ε. Using that i ≥ (` + 1)2 − (` + 1) + 1 and j ≥ `2 − ` + 1 and putting all pieces
together, we obtain

K`,`+1(α, β, i, j) =
∑

n≤M`+1

(λ2
f (n))

∗2`2

n
Res
s=u=0

r`,`+1(α, β, i, j, s, u)

+O(Li−`(`+1)Ω(j) log Y + Lj−`(`−1)Ω(i) log Y + Ω(i+ j)log2Y )
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=
∑

n≤M`+1

(λ2
f (n))

∗2`2

n
Res
s=u=0

r`,`+1(α, β, i, j, s, u) +O(Li+j−1).

In order to get the main term of the lemma we need to compute the residue at s = u = 0 of r`,`+1.
This is accomplished by expressing the residue as two contour integrals over small circles of radii
1/L centered at 0. In other words,

Res
s=u=0

r`,`+1(α, β, i, j, s, u) =

(
1

2πi

)2 ∮
D(0,L−1)

∮
D(0,L−1)

(
M`

n

)s(M`+1

n

)u
× {ζ(N)(2(1 + s+ u))}2`

2

L`(`+1)(f ⊗ f, 1 + 2u)L`(f ⊗ f, 1 + α+ s)`(f ⊗ f, 1− β + s)

× L`(f ⊗ f, 1 + α+ u)`(f ⊗ f, 1− β + u)

L`(`+1)(f ⊗ f, 1 + 2u)
Bα,β(s, u, 0)

ds

si+1

du

uj+1
.

Now we must separate the complex variables s and u to decouple these two integrals. To do this,
we recall that s � u � 1/L and hence

ζ(N)(2(1 + s+ u))2 = ζ(N)(2)2 +O(1/L),

Bα,β(s, u, 0) = B0,0(0, 0, 0) +O(1/L),

1

L(f ⊗ f, 1 + α+ s)
=

α+ s

Ress=1L(f ⊗ f, s)
(1 +O(1/L)),

L(f ⊗ f, 1 + α+ u) =
Resu=1L(f ⊗ f, u)

α+ u
(1 +O(1/L)),

and we recall that we had shown that B0,0(0, 0, 0) = 1. Thus

{ζ(N)(2(1 + s+ u))}2`
2

L`(f ⊗ f, 1 + α+ u)L`(f ⊗ f, 1− β + u)Bα,β(s, u, 0)

L`(`−1)(f ⊗ f, 1 + 2s)L`(`+1)(f ⊗ f, 1 + 2u)L`(f ⊗ f, 1 + α+ s)L`(f ⊗ f, 1− β + s)

=
{ζ(N)(2)}2`

2

(Ress=1L(f ⊗ f, s))2`2

(α+ s)`(−β + s)`

(α+ u)`(−β + u)`
(2s)`(`−1)(2u)`(`+1) +O(L−2`2−1).

Indeed, we now get the product of two cleanly separated integrals

Res
s=u=0

r`,`+1(α, β, i, j, s, u) =
{ζ(N)(2)}2`

2

(Ress=1L(f ⊗ f, s))2`2

×
(

2`(`−1)

2πi

∮
D(0,L−1)

(
M`

n

)s
(α+ s)`(−β + s)`

ds

si+1−`(`−1)

)
×
(

2`(`+1)

2πi

∮
D(0,L−1)

(
M`+1

n

)u 1

(α+ u)`(−β + u)`
du

uj+1−`(`+1)

)
+O(Li+j−1).

We shall compute these integrals by the use of Cauchy’s integral theorem. We will proceed in more
generality than strictly needed. First, we have

1

2πi

∮
D(0,L−1)

(
M`

n

)s
(α+ s)p(−β + s)q

ds

sk+1
=

dp+q

dxpdyq

(
eαx−βy

2πi

∮
D(0,L−1)

(
M`

n
ex+y

)s ds

sk+1

)∣∣∣∣
x=y=0

=
1

k!

dp+q

dxpdyq

(
eαx−βy

(
x+ y + log

M`

n

)k)∣∣∣∣
x=y=0

.
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Our case of interest naturally follows by taking p = q = ` and k = i− `(`− 1). For the u-integral
we proceed in a slightly different way. We will use the equality∫ 1

1/q
rα+u−1logτrdr =

(−1)ττ !

(α+ u)τ+1 −
q−α−u

(α+ u)τ+1P (u, α, log q),(4.19)

which is valid for all complex numbers α, u, positive q and τ = 0, 1, 2, · · · . Here P is a polynomial
in log q of degree τ − 1. We temporarily set q = M`+1/n so that

1

2πi

∮
D(0,L−1)

qu
1

(α+ u)m(−β + u)n
du

uk+1

=
(−1)m−1

(m− 1)!

1

2πi

∮
D(0,L−1)

qu
1

(−β + u)n

∫ 1

1/q
rα+u−1logm−1rdr

du

uk+1
+ E(q),

where E(q) is the term arising from the second part of (4.19), i.e.

E(q) = −(−1)m−1

(m− 1)!
q−α

1

2πi

∮
P (u, α, log q)

(α+ u)m(−β + u)n
du

uk+1
.(4.20)

It can be seen, by taking the contour to be arbitrarily large, that this term vanishes. Reversing the
order of integration in the main term yields

1

2πi

∮
D(0,L−1)

qu
1

(α+ u)m(−β + u)n
du

uk+1

=
(−1)m−1

(m− 1)!

∫ 1

1/q
rα−1logm−1r

1

2πi

∮
D(0,L−1)

(qr)u
1

(−β + u)n
du

uk+1
dr.

Applying again (4.19) but with the lower boundary of integration at 1/(qr) and seeing that the
second term of (4.19) will also vanish by the same reason as the previous second term (4.20), we
then obtain

(−1)m−1

(m− 1)!

∫ 1

1/q
rα−1 1

2πi

∮
D(0,L−1)

(qr)u
1

(−β + u)m
du

uj−k+1
logm−1rdr

=
(−1)m+n

(m− 1)!(n− 1)!

∫ 1

1/q

∫ 1

1/qr
rα−1t−β−1logm−1rlogn−1t

1

2πi

∮
(qrt)u

du

uk+1
dtdr

=
(−1)m+n

k!(m− 1)!(n− 1)!

∫ 1

1/q

∫ 1

1/qr
rα−1t−β−1logm−1rlogn−1t

(
log rt

M2

n

)k
dtdr.

The last step is to make the change of variables r = q−a and t = q−b so that the above becomes

logk+n+mq

k!(m− 1)!(n− 1)!

∫∫
a+b≤1
a,b≥0

(1− a− b)k
(
M2

n

)−aα+bβ

am−1bn−1dadb.

Our case of interest in this setting follows by taking m = n = ` and k = j − `(` + 1). The end
result of this reasoning is that

Res
s=u=0

r`,`+1(α, β, i, j, s, u) =
{ζ(N)(2)}2`

2

(Ress=1L(f ⊗ f, s))2`2

× 2`(`−1)

(i− `(`− 1))!

d2`

dx`dy`

(
eαx−βy

(
x+ y + log

M`

n

)i−`(`−1))∣∣∣∣
x=y=0

× 2`(`+1)logj−`(`+1)+2`(M`+1/n)

(j − `(`+ 1))!
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×
∫∫

a+b≤1
a,b≥0

(1− a− b)
j−`(`+1)

(
M`+1

n

)−aα+bβ

(ab)`−1dadb+O(Li+j−2`2−1).

When we go back to K`,`+1 with this new information we get

K`,`+1(α, β, i, j, s, u) =

(
1

2πi

)2 ∫
(δ)

∫
(δ)
r`,`+1(α, β, i, j, s, u)dsdu

=
{ζ(N)(2)}2`

2

(Ress=1L(f ⊗ f, s))2`2

2`(`−1)

(i− `(`− 1))!

d2`

dx`dy`
2`(`+1)logj−`(`+1)+2`(M`+1/n)

(j − `(`+ 1))!

×
∑

n≤M`+1

(λ2
f (n))

∗2`2

n

(
eαx−βy

(
x+ y + log

M`

n

)i−`(`−1))∣∣∣∣
x=y=0

×
∫∫

a+b≤1
a,b≥0

(1− a− b)
j−`(`+1)

(
M`+1

n

)−aα+bβ

(ab)`−1dadb+O(Li+j−2`2−1).

Recall that in the last expression for I`,`+1, we have sums over i and over j. The sum over i is∑
i

a`,i

logiM`

i!

(i− `(`− 1))!

(
x+ y + log

M`

n

)i−`(`−1)

=
1

log`(`−1)M`

∑
i

a`,ii(i− 1) · · · (i− `(`− 1) + 1)

(
x+ y

logM`
+

log(M`/n)

logM`

)i−`(`−1)

=
1

log`(`−1)M`

P
(`(`−1))
`

(
x+ y

logM`
+

log(M`/n)

logM`

)
,

whereas the sum over j is∑
j

a`+1,jj!

logjM`+1

logj−`(`+1)+2`(M`+1/n)

(j − `(`− 1))!
(1− a− b)j−`(`+1)

=
log2`(M`+1/n)

log`(`+1)M`+1

∑
j

a`+1,jj(j − 1) · · · (j − `(`− 1) + 1)

(
(1− a− b) log(M`+1/n)

logM`+1

)j−`(`+1)

=
log2`(M`+1/n)

log`(`+1)M`+1

P
(`(`+1))
`+1

(
(1− a− b) log(M`+1/n)

logM`+1

)
.

Plugging these results into I`,`+1 we see that

I`,`+1(α, β) =
22`2ŵ0(0)

log`(`−1)M`log`(`+1)M`+1

(
{ζ(N)(2)}

Ress=1L(f ⊗ f, s)

)2`2 d2`

dx`dy`

× eαx−βy
∑

n≤M`+1

(λ2
f (n))

∗2`2

n
log2`(M`+1/n)P

(`(`−1))
`

(
x+ y

logM`
+

log(M`/n)

logM`

)
|x=y=0

×
∫∫

a+b≤1
a,b≥0

P
(`(`+1))
`+1

(
(1− a− b) log(M`+1/n)

logM`+1

)(
M`+1

n

)−aα+bβ

(ab)`−1dadb+O(T/L).

Making the changes x→ x/ logM` and y → y/ logM` puts this in the more comfortable form

I`,`+1(α, β) =
22`2T−2βŵ(0)

log`(`−1)+2`M`log`(`+1)−2`M`+1

(
{ζ(N)(2)}

Ress=1L(f ⊗ f, s)

)2`2 d2`

dx`dy`
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×Mαx−βy
`

∑
n≤M`+1

(λ2
f (n))

∗2`2

n

log2`(M`+1/n)

log2`M`+1

P
(`(`−1))
`

(
x+ y +

log(M`/n)

logM`

)
|x=y=0

×
∫∫

a+b≤1
a,b≥0

P
(`(`+1))
`+1

(
(1− a− b) log(M`+1/n)

logM`+1

)(
M`+1

n

)−aα+bβ

(ab)`−1dadb+O(T/L).

The sum over n is computed by the use of Lemma 3.5 with k = 2`2, s = −αa + bβ, x = M`,

z = M`+1, F (u) = P
(`(`−1))
` (x+ y + u), H(u) = u2`P

(`(`+1))
`+1 ((1− a− b)u). The result is

∑
n≤M`+1

(λ2
f (n))

∗2`2

n1−aα+bβ

(
log(M`+1/n)

logM`+1

)2`

× P (`(`−1))
`

(
x+ y +

log(M`/n)

logM`

)
P

(`(`+1))
`+1

(
(1− a− b) log(M`+1/n)

logM`+1

)
=

(
Ress=1L(f ⊗ f, s)
{ζ(N)(2)}

)2`2 log2`2M`+1

(2`2 − 1)!M−aα+bβ
`+1

×
∫ 1

0
(1− u)2`2−1P

(`(`−1))
`

(
x+ y + 1− (1− u)

logM`+1

logM`

)
× u2`P

(`(`+1))
`+1 ((1− a− b)u)M

u(−aα+bβ)
`+1 du+O(L2`2−1).

This means that we are left with

I`,`+1(α, β) =
22`2T−2βŵ(0)

(2`2 − 1)!

(
logM`+1

logM`

)`(`+1) d2`

dx`dy`

×Mαx−βy
`

∫∫
a+b≤1
a,b≥0

∫ 1

0
(1− u)2`2−1P

(`(`−1))
`

(
x+ y + 1− (1− u)

logM`+1

logM`

)
× (ab)`−1P

(`(`+1))
`+1 ((1− a− b)u)M

u(−aα+bβ)
`+1 u2`dudadb

∣∣∣∣
x=y=0

+O(T/L).

Setting M` = T ν` and M`+1 = T ν`+1 we obtain Lemma 2.2, i.e.

c`,`+1(α, β) =
22`2

(2`2 − 1)!

(
ν`+1

ν`

)`(`+1) d2`

dx`dy`

[
×
∫∫

a+b≤1
a,b≥0

∫ 1

0
u2`(1− u)2`2−1(M−x` Mau

`+1)
−α

(My
`M

−bu
`+1 T

2)
−β

× P (`(`−1))
`

(
x+ y + 1− (1− u)

ν`+1

ν`

)
P

(`(`+1))
`+1 ((1− a− b)u)(ab)`−1dudadb

]
x=y=0

.

Therefore, the main term of Theorem 2.4 is given by

c`,`+1 = Q

(
−1

2 log T

d

dα

)
Q

(
−1

2 log T

d

dβ

)
c`,`+1(α, β)|α=β=−R/L

=
22`2

(2`2 − 1)!

(
ν`+1

ν`

)`(`+1)

eR
d2`

dx`dy`

[ ∫∫
a+b≤1
a,b≥0

∫ 1

0
u2`(1− u)2`2−1eR[

ν`
2

(y−x)+u
ν`+1

2
(a−b)]

×Q
(
−xν` + auν`+1

2

)
Q

(
1 +

yν` − buν`+1

2

)
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× P (`(`−1))
`

(
x+ y + 1− (1− u)

ν`+1

ν`

)
P

(`(`+1))
`+1 ((1− a− b)u)(ab)`−1dudadb

]
x=y=0

.

This ends the computation of I`,`+1.

4.5. The mean value integral I`,`+j(α, β) for j ∈ N\{1}. We must now examine the case
I`,`+j(α, β) where j = 2, 3, 4, · · · . We will show that I`,`+j(α, β)� TL−1+ε and therefore the mean
value integral contribution of these terms to κf is zero. As before, we start by inserting

ψ`(s) = χ`−1
f (s+ 1

2 − σ0)
∑

h1k1≤M`

µf,`(h1)λ∗`−1
f (k1)h

σ0−1/2
1 k

1/2−σ0
1

hs1k
1−s
1

P`[h1k1],

and

ψ`+j(s) = χ`−1+j
f (s+ 1

2 − σ0)
∑

h2k2≤M`+j

µ`+j(h2)λ∗`−1+j
f (k2)h

σ0−1/2
2 k

1/2−σ0
2

hs2k
1−s
2

P`+j [h2k2],

into the mean value integral I, i.e.

I`,`+j(α, β) =

∫ ∞
−∞

w(t)L(f, 1
2 + α+ it)L(f, 1

2 + β − it)ψ`ψ`+j(σ0 + it)dt

=
∑

h1k1≤M`

∑
h2k2≤M`+j

µf,`(h1)λ∗`−1
f (k1)

h
1/2
1 k

1/2
1

P`[h1k1]
µ`+j(h2)λ∗`−1+j

f (k2)

h
1/2
2 k

1/2
2

P`+j [h2k2]J3,f ,

where

J3,f =

∫ ∞
−∞

w(t)L(f, 1
2 + α+ it)L(f, 1

2 + β − it)
(
k1h2

h1k2

)−it
χjf (1

2 + it)dt

=

∫ ∞
−∞

w(t)

(
t
√
N

2π

)−2β

L(f, 1
2 + α+ it)L(f, 1

2 − β + it)

(
k1h2

h1k2

)−it
χj−1
f (1

2 + it)dt+O(T ε),

by the use of the functional equation of L(f, s). We remark that so far this is the same procedure

as in the I`,`+1 case except for the presence of χj−1
f in the integrand, and in this case j is an integer

strictly greater than one. Inserting the duplication formula for the Γ function we obtain

χf (s) =
N

s−1
2 (2π)s−1Γ

(
1− s+ k−1

2

)
N−

s
2 (2π)−sΓ

(
s+ k−1

2

) .

One can show using Stirling’s approximation formula that

(χf (1
2 + it))j−1 = F j−1

(
1 +

j∑
n=1

bnt
−n +O(t−j−1)

)
with F (t) =

(√
Nt

2πe

)−2it

,

where bn are complex numbers depending only on j and k, where k was the weight of the cusp form,

see §1.1. Let us handle the error term first. We have E(t) := (
√
Nt

2πe )−2it(j−1)O(t−j−1) = O(t−2). By
power moment estimates (see e.g. [4, Corollary 2] or [31]) we have∫ ∞

−∞
w(t)

(
t
√
N

2π

)−2β

L(f, 1
2 + α+ it)L(f, 1

2 − β + it)

(
k1h2

h1k2

)−it
E(t)dt

� 1

T 2

∫ 2T

T/4
|L(f, 1

2 + α+ it)||L(f, 1
2 − β + it)|dt

≤ 1

T 2

(∫ 2T

T/4
|L(f, 1

2 + α+ it)|2dt
)1/2(∫ 2T

T/4
|L(f, 1

2 − β + it)|2dt
)1/2
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� 1

T 2
(T log T )1/2(T log T )1/2 =

log T

T
,

by the Cauchy-Schwarz inequality. We next consider the term∫ ∞
−∞

t−nw(t)

(
t
√
N

2π

)−2β

L(f, 1
2 + α+ it)L(f, 1

2 − β + it)

(
k1h2

h1k2

)−it
F j−1(1

2 + it)dt.

We now use Lemma 3.4 together with the definition of σα,−β(f, l) to further rewrite this as

∞∑
l=1

σα,−β(f, l)

l1/2
e−l/T

6

∫ ∞
−∞

t−nw(t)

(
t
√
N

2π

)−2β(
k1h2l

h1k2

)−it
F j−1(1

2 + it)dt

=

∞∑
l=1

σα,−β(f, l)

l1/2
e−l/T

6

∫ ∞
−∞

t−nw(t)

(
t
√
N

2π

)−2β(
t
√
N

2πe

)−2(j−1)it(
k1h2l

h1k2

)−it
dt.

The key observation comes from noticing that for all 1 ≤ h1, k1 ≤ M` and 1 ≤ h2, k2 ≤ M`+j as
well as for any l ≥ 1, one has(

t
√
N

2πe

)2(j−1)k1h2l

h1k2
≥ T 2(j−1)

22(j−1)

1

(2πe)2(j−1)M`M`+j
=

T 2(j−1)

(4πe)2(j−1)T ν`+ν`+j
≥ T ε0 ,(4.21)

provided that

ν` + ν`+j < 2(j − 1)− ε.(4.22)

From the conditions of the test function w we have w(r)(t) � (L/T )r. Using this, it is straight
forward to show that we have for each r ≥ 1 and n ≥ 0

dr

dtr

(
t−nw(t)

(
t
√
N

2π

)−2β)
�r,j 1 for T/2 ≤ t ≤ 2T.(4.23)

Hence, picking up from (4.21) and (4.23) and using integration by parts, we arrive at∫ ∞
−∞

(
t−nw(t)

(
t
√
N

2π

)−2β)((
t
√
N

2πe

)2(j−1)
k1h2l

h1k2

)−it
dt�r,ε0

1

T r
,(4.24)

for any fixed integer r and uniformly in l. Thus, using (4.24) we can further bound J3,f as

J3,f �r,ε0

1

T r

∞∑
l=1

σα,−β(f, l)

l1/2
e−l/T

6
+Oε,f (T−1+ε)�ε,ε0 T

−1+ε.

The last step is to plug this back into I`,`+j(α, β) to see that

I`,`+j(α, β)�ε,ε0 T
−1+ε

∑
h1k1≤M`

∑
h2k2≤M`+j

|µf,`(h1)µ`+j(h2)λ∗`−1
f (k1)λ∗`−1+j

f (k2)|

(h1h2k1k2)1/2
|P`[h1k1]P`+j [h2k2]|

�`,ε,ε0 T
−1+2ε

∑
h1k1≤M`

∑
h2k2≤M`+j

(h1h2k1k2)θ−1/2+ε,

by the use of (4.5). Recognizing that the sums can be consolidated by employing the divisor
function we obtain

I`,`+j(α, β)�`,ε,ε0 T
−1+2ε

∑
n≤M`

τ(n)nθ−1/2+ε
∑

m≤M`+j

τ(m)mθ−1/2+ε

�`,ε,ε0 T
−1+4εM

θ+1/2+ε
` M

θ+1/2+ε
`+j = T−1+6ε+(ν`+ν`+j)(θ+1/2).(4.25)

By our assumptions on ν` and ν`+j , we can choose ε so small that I`,`+j(α, β) � T/L. This ends
the proof of Lemma 2.3 and Theorem 2.5.
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5. Numerical evidence and situation of simple zeros

In this section we supply the numerical procedure to obtain Theorem 1.1 and explain the situa-
tion regarding the simple zeros and the ν1, ν2 → 1 conjecture of Farmer.

As shown in [4, p. 230] and [15, p. 216],

1

T

∫ T

1
|V ψ(σ0 + it)|2dt

produces the constants c1,1, c1,2 and c2,2 with 2R and ν1/2, ν2/2. We use Mathematica to numeri-
cally evaluate c1,1(PL, Q, 2R, ν1/2) and c1,2(PL, Q, 2R, ν1/2, ν2/2) with the following parameters:

θ = 0, so that ν1 = ν2 = 1
4 , as well as R = 2.82505,

as well as polynomials

Q(x) = .498939 + 1.53685(1− 2x)− 2.7925(1− 2x)3 + 2.77524(1− 2x)5 − 1.01853(1− 2x)7,

P1(x) = .921756x+ .150879x2 − .371912x3 + .488862x4 − .189585x5,

P2(x) = −.0000537029x3 + .0000752763x4 − .000142568x5.

This leads to κf ≥ .0693872. Note that we have used for this result that the Ramanujan’s hypothesis
is proven for primitive cusp forms (see (1.5) and (1.6)). We therefore could use θ = 0 in the above
computation. If we work instead with the weaker θ = 7/64, obtained by Kim and Sarnak, then we
use the following choices of parameters:

θ = 7
64 , so that ν1 = 5

27 and ν2 = 25
149 , as well as R = 3.21,

and for the polynomials we take

Q(x) = .499386 + 1.58992(1− 2x)− 2.99061(1− 2x)3 + 3.01825(1− 2x)5 − 1.11694(1− 2x)7,

P1(x) = .93271x+ .147723x2 − .35572x3 + .444208x4 − .168921x5,

P2(x) = −.0000665503x3 − .00016405x4 + .0000736009x5.

This gives κf ≥ .0297607. We therefore see that the Ramanujan’s hypothesis has a significant
influence to the result obtained by the methods of this paper.

Finally, as described in the introduction, we explain what happens if we are in the context of the
Riemann zeta-function and adapt our results mutatis mutandis with ν1, ν2 → 1 following Farmer’s
conjecture [15]. In that case, if we take R = 0.75 and

Q(x) = .521417 + .488276(1− 2x)− .0155446(1− 2x)3 + .00683032(1− 2x)5 − .0320679(1− 2x)7,

P1(x) = .702374x+ .00612233x2 + .281569x3 + .296314x4 − .286379x5,

P2(x) = .0690439x3 − .0187972x4 + .0319485x5,

then we get κ ≥ .60563, where κ is the lim inf of N0(T )/N(T ) as T →∞.

As mentioned earlier, from numerical experiments, one would need a size of about ν = 2/5 to get
a proportion of simple critical zeros (recalling that we use ν/2 in the constants c). The following
plots will illustrate this phenomenon. If we take only L = 1, and for the sake of simplicity P (x) = x
and Q(x) = 1−x (in fact, having Q(x) be a polynomial of degree one is necessary to obtain simple
critical zeros, see [2] and [18] as well as [7, p. 37] and [19, p. 513]), then

c1,1 = 1 +
1

ν1

∫ 1

0

∫ 1

0
e2Rv

(
d

dx
eRν1xP (x+ u)Q(v + ν1x)|x=0

)2

dudv
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= 1− 3 + 6R− 2R3(ν1 − 3)ν1 + 2R4ν2
1 +R2(6 + ν2

1)− e2R(3 +R2ν2
1)

12R3ν1
,(5.1)

and

κ ≥ 1− 1

R
log c1,1 + o(1).

Let us now graph κ̂ = κ̂(R, ν1) = RHS of (5.1) to see the proportion of simple zeros as a function
of R and of ν1.

Figure 5.1. Left-hand side: κ̂(R, ν1) for ν1 = 1/2 (light blue), ν1 = 1/3 (brown),
ν1 = 1/4 (purple), ν1 = 1/5 (red), ν1 = 1/6 (green), ν1 = 1/8 (orange), ν1 = 5/54
(dark blue). Right-hand side: surface plot of κ̂(R, ν1) with 1

10 ≤ R ≤ 10 and
1

100 ≤ θ ≤ 1.

We note that when ν1 = 1
2 , this was considered in [30] and the optimal value is R ≈ 1.3.

6. Acknowledgments

The first author wishes to acknowledge partial support from SNF grant PP00P2 138906.
The second author wishes to thank Keiju Sono for a cordial correspondence while working on similar
results. Sono’s results in [29] for the Riemann zeta-function overlap with our computations and
these were produced independently of ours.
The authors are extremely grateful to the anonymous referees for their comments and suggestions.
Their corrections have removed inaccuracies and greatly increased the clarity of the manuscript.

References

[1] M. Abramowitz and I. A. Stegun (Eds.). Confluent Hypergeometric Functions in Ch 13 of Handbook of Mathe-
matical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.

[2] R. J. Anderson. Simple zeros of the Riemann zeta-function. J. Number Theory, (17):176–182, 1983.
[3] R. Balasubramanian, B. Conrey and D. R. Heath-Brown. Asymptotic mean square of the product of the Riemann

zeta-function and a Dirichlet polynomial. J. reine angew. Math., (357):161–181, 1985.
[4] D. Bernard. Modular case of Levinson’s theorem. Acta Arith., (167.3):201–237, 2015.
[5] V. Blomer. Shifted convolution sums and subconvexity bounds for automorphic L-functions. Int. Math. Res.

Notices, 3905–3926, 2004.
[6] V. Blomer. Rankin-Selberg L-functions on the critical line. Manuscripta Math., (117):111–133, 2005.
[7] H. M. Bui, B. Conrey, and M. P. Young. More than 41% of the zeros of the zeta function are on the critical line.

Acta Arith., (150.1):35–64, 2011.
[8] J. B. Conrey. Zeros of derivatives of the Riemann’s ξ-function on the critical line. J. Number Theory, (16):49–74,

1983.



ON MEAN VALUES OF MOLLIFIERS AND L-FUNCTIONS 43

[9] J. B. Conrey. More than two fifths of the zeros of the Riemann zeta function are on the critical line. J. reine
angew. Math., (399):1–26, 1989.

[10] J. B. Conrey, D. W. Farmer and M. R. Zirnbauer. Autocorrelation of ratios of L-functions. Comm. Number
Theory Phys., (2)94:593-636, 2008.

[11] J. B. Conrey and N. C. Snaith. Applications of the L-functions ratios conjectures. Proc. London Math. Soc.,
(3)94:594-646, 2007.

[12] P. Deligne. La conjecture de Weil. I. Publications Mathématiques de l’IHÉS, (43):273–307, 1974.
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