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Abstract 1	

We analysed the flora of 46 forest inventory plots (25m x 100m) in old growth 2	

forests from Amazon region in order to identify the role of environmental (topography) 3	

and spatial variables (obtained using Principal Coordinates of Neighborhood Matrix, 4	

PCNM) for rare and common species. For the analyses, we used Multiple Partial 5	

Regression in order to partition the specific effects of the topography and spatial variables 6	

on the univariate data (standardised richness, total abundance and total biomass) and 7	

partial RDA (Redundancy Analysis) for partitioning these effects on composition 8	

(multivariate data) based on incidence data, abundance and biomass. Our results showed 9	

that different attributes (richness, abundance, biomass and composition based in 10	

incidence, abundance and biomass) used to study this metacommunity responded 11	

differently to environmental and spatial processes. Considering standardised richness, 12	

total abundance (univariate) and composition based on biomass, the results for common 13	

species differ from those obtained for all species. On the other hand, for total biomass 14	

(univariate) and for compositions based on incidence and abundance, there was 15	

correspondence between the data obtained for the total community and for common 16	

species. Except for total abundance, the environmental and spatial factors measured were 17	

insufficient to explain the attributes of communities of rare species. These results indicate 18	

that predicting the attributes of rare species tree communities based on environmental and 19	

spatial factors is a huge challenge. Our data show that niche-related processes are 20	

important; however, the spatial component is also important, possibly because of the mass 21	

effect. As the spatial component was relevant for several community attributes, our results 22	

demonstrate the importance of a metacommunities approach when attempting to 23	

understand the main ecological processes underlying the diversity of forest communities 24	

in the Amazon region.  25	

Keywords: tropical forest, diversity, rarity, topography 26	
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Introduction 1	

Throughout the history of ecology, researchers have sought to understand the 2	

effects of environmental and spatial process on biodiversity. This quest has led to the 3	

collection of a large number of datasets and the formulation of competing theories, such 4	

as the niche and the neutral theories. Niche theory has been one of the most important 5	

theoretical approaches in ecology and assumes that the combination of resources and 6	

conditions determines the local characteristics of a community [1]. In this context, it is 7	

expected that communities structured by niche-related processes have similar values of 8	

local attributes (e.g. species richness, species abundance, biomass and composition) when 9	

in similar habitat patches. In contrast, the neutral theory is based on functional 10	

equivalence between species and considers dispersion and demographic stochasticity as 11	

central phenomena [2,3]. According to the neutral theory, it is expected that similar values 12	

for local attributes of a community in a particular patch can be determined by influence 13	

from communities of nearby patches, stressing the importance of spatial variables. 14	

Megadiverse tropical forests can be important model ecosystems for 15	

understanding the relative roles of environmental and spatial variables on communities. 16	

The endeavour to understand these roles may help clarifying the importance of different 17	

processes in maintaining species diversity of these forests. Concerning the niche theory, 18	

variables representative of topography are likely to play an important role in local 19	

environmental conditions which may determine species diversity, functional and 20	

structural attributes and composition of tree communities [4–7]. One advantage of using 21	

topography in vegetation studies is that it can be assessed at large scales by remote 22	

sensing. Moreover, it is considered a good surrogate to several important variables for 23	

vegetation structure that would be difficult to measure on a larger scale, including nutrient 24	

availability, soil moisture and texture, insolation, etc. [6]. 25	

Despite their known importance, the influence of spatial process has long been 26	

ignored in ecological studies, and until the 1990s, the main focus of ecology was the study 27	

of niche-related processes [8]. Since the 1990s, the spatial process has been strongly 28	

embedded in ecology [9]. Since then new methods and analytical strategies have been 29	

proposed and empirical and theoretical data have been collected, generating a new body 30	

of knowledge about the structuring factors of communities [10–12]. This knowledge, 31	
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along with other information (functional, phylogenetic, etc.), has provided a much more 1	

detailed   understanding of  the processes involved in community structure [13–15], 2	

supporting the search for better conservation and biodiversity monitoring strategies [16]. 3	

Thus, understanding the role of spatial factors in community structure at different 4	

landscape scales is essential, especially given the current scenario of rapid biodiversity 5	

loss due to habitat degradation and fragmentation [17]. 6	

Metacommunity theory recognises that communities are not isolated entities, but 7	

they are connected by movements of individuals of different species [18,19]. Thus, the 8	

metacommunity can be defined by groups of communities connected to each other by 9	

dispersal of individuals. Metacommunity theory has benefited from discussions regarding 10	

niche and neutral theory, and both have helped to understand the role of environmental 11	

and spatial variables on the diversity and composition of the biota [18,19]. According to 12	

the theory, the group of species occurring in a community is determined both by a 13	

combination of local factors (interaction between species, interaction of species with local 14	

factors) and by the ability of the species to reach that community (by dispersion) [18,20]. 15	

In metacommunities structured by the principles of niche theory, it is expected that the 16	

environmental component plays a more important role. On the other hand, in 17	

metacommunities subject to the principles of neutral theory, it is expected that the spatial 18	

component plays a more important role. The metacommunity theory encompasses four 19	

main models (species sorting, mass effect, patch dynamics and neutral) which represent 20	

points of a continuum formed by different combinations of environmental (niche) and 21	

dispersal (spatial) processes [18,19,21,22].  22	

A remarkable feature of most communities is the presence of a few common 23	

species and many rare species [23,24]. Rare and common species can respond to 24	

ecological processes differentially [25], depending on the features of organisms (e.g. 25	

competition and dispersion capacities) and spatial temporal dynamics. For example, 26	

based on the niche theory, Tokeshi [8] proposed the composite niche model, arguing that 27	

more than one process may be acting on the community. According to this model, rare 28	

species should fit a random assortment model, while common species should fit any 29	

model of niche apportionment. On the other hand, Siqueira et al. [24] studied 30	

metacommunities of aquatic macroinvertebrates and showed that common and rare 31	

species responded similarly and both were mainly structured by niche processes. 32	
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The analysis of different attributes of communities while considering groups of 1	

common and rare species allows testing some hypotheses about the processes involved in 2	

the structuring of metacommunities [24,26]. Empirical studies have shown that most of 3	

the metacommunities are structured principally by niche processes [21,24]. Our first 4	

hypothesis is that the niche processes are more important for structuring the 5	

metacommunity studied [24], at least for the common species, which we expect to be 6	

those most affected by competition [27]. In the case of rare species, as they can be more 7	

affected by ecological drift [27], we expect spatial factors to be more relevant. Taking 8	

into account that habitat generalist and habitat specialist species differ in terms of 9	

population dynamics, we also propose an alternative hypothesis [24,28]. While generalist 10	

species occupy habitats with a wide environmental variation, specialist species 11	

preferentially occupy habitats with specific environmental characteristics, which are 12	

generally rare in the landscape [28,29]. In this context, assuming that common species 13	

are habitat generalists and rare species are habitat specialists, our alternative hypothesis 14	

is that spatial factors are more important for common species, while environmental factors 15	

are crucial for rare species [28].  16	

To test these hypotheses and to identify the role of environmental (topography) 17	

and spatial variables for rare and common species, our aim was to analyse the flora of 46 18	

forest inventory plots in the old growth forests of the eastern Amazon region. These 19	

analyses were based on vegetation data collected in the field and topographic variables 20	

obtained by remote sensing data. 21	

Material and Methods 22	

Study area 23	

This study was conducted in the Tapajós National Forest (TNF). The TNF is a 24	

large protected area of about 545,000 ha, located in Amazon biome, west of Pará State, 25	

Brazil (Fig 1). This area has average annual temperature of 25.5°C and average annual 26	

rainfall of 1,820 mm. The local topography ranges from flat to strongly undulating terrain. 27	

Predominant soil types in the area are dystrophic oxisol (US classification) or dystrophic 28	

yellow latosol (Brazil classification)) and red-yellow podzol. Vegetation is mainly 29	

ombrophilous dense forest and ombrophilous open forest [30]. 30	
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Fig 1. Study area in the Tapajós National Forest (FNT), Pará State, Brazil with detail of 1	

the five geomorphometric variables (elevation, slope, HAND, profile curvature and plan 2	

curvature) of four areas where the 46 plots are distributed. 3	

We sampled 46 forest inventory plots (Fig 1) of 25 x 100 m in TNF. Our plots 4	

representing a sampling area of 11.5 ha. We installed the plots in different vegetal 5	

typologies and topographies [5] using the phyto-ecologic classes from RADAM-BRASIL 6	

project [31]. Our plots encompassed different floristic and geomorphological 7	

characteristics [31]. We sampled and identify all individual trees with diameter at breast 8	

height (dbh) ≥10 cm. The abundance was represented by number of individuals and 9	

aboveground biomass (hereafter referred just as biomassa) was calculated by the 10	

allometric equation [32], considering the measurements of DBH (diameter at breast 11	

height) and TH (total height).  12	

Biomass = 0.044 ∗ ((DBH2) ∗ TH)0.9719 13	

Topographic data derived from SRTM 14	

We used geomorphometric attributes (elevation, slope, profile curvature and plane 15	

curvature) from Brazilian Geomorphometrics Database (TOPODATA) [33]. The 16	

TOPODATA is based on SRTM (Shuttle Radar Topography Mission-version 1, NASA, 17	

2006) and has different neighbourhood operations to calculate geomorphometric 18	

variables [33]. The TOPODATA is free and the layers are easily accessible 19	

(http://www.dsr.inpe.br/topodata/acesso.php). We also used the vertical distance to the 20	

nearest drainage or HAND (height above the nearest drainage). Hand was derivate from 21	

SRTM and describes the vertical distance of each point regarding the nearest drainage 22	

channel detected by remote sensing [34]. All data used in this study has 30 m of spatial 23	

resolution (Table 1). 24	

Table 1. Definitions of the topographic variables used in this study. 25	

Topographic 
variables 

Description 

Elevation (h) Terrain altitude. This is related to the altitude distribution of soil and 
climate, determining different landscape vegetation patterns. 

Slope (G) Inclination angle of the local surface. This has a direct effect on the 
balance between soil water infiltration and surface runoff and 
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controls the intensity of flows of matter and insolation. This set of 
factors results in environments with different physical and biological 
characteristics, allowing the establishment of different types of 
vegetation. 

Profile curvature 
(kv) 

Concave/convex character of the terrain. This characterizes the land 
surface, which is directly associated with hydrological and transport 
properties and may directly influence the distribution and 
development of vegetation. 

Plan curvature 
(kh) 

Divergent/convergent character of flows of matter on the ground 
when analysed on a horizontal projection. As with the profile 
curvature, the plan curvature characterises the land surface, which is 
directly associated with hydrological and transport properties and 
may indirectly influence vegetation. 

Height above the 
nearest drainage 
(HAND) 

Describes the vertical distance of each point regarding the nearest 
drainage. The lower the HAND value, the closer the water table is to 
the surface and, consequently, the more easily the area could be 
flooded. 

Topographic variables obtained on the basis of SRTM have been used to explain 1	

or predict the properties of vegetation [35, 36]. These studies have helped understanding 2	

the effects of topography on the distribution of different types of vegetation [37–41], 3	

floristic composition [5,42] and forest structure [7,43], particularly in tropical areas. 4	

Data analysis 5	

We defined common and rare species using the criterion of the inflection point of 6	

the curve of species abundance (or species biomass) [24]. We defined the inflection point 7	

visually; species left of this point were considered as common and those ones to the right 8	

as rare [24]. As matrices with different amounts of information can affect the results, we 9	

made comparisons considering the same information content. First of all, the information 10	

content of the matrices of common and rare species was calculated considering the 11	

binomial variance of the incidence matrix, ∑pi(1-pi), where pi is the proportion of plots 12	

occupied by ith species [24,44]. As the matrix of rare species had a higher information 13	

content, we removed rare species, following species rank, until this matrix had the same 14	

information content than that of common species.  15	

After defining the common and rare species with the same information content, 16	

we performed data analyses considering univariate and multivariate community 17	

attributes. The univariate attributes were standardised richness (residuals of regression 18	

between abundance and richness), total abundance (sum of the abundance of all species 19	
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per plot) and total biomass (total biomass of all species per plot). The multivariate 1	

attributes (species x plots) were represented by three different matrices of composition 2	

(1. composition based on incidence; 2. composition based on abundance, and 3. 3	

composition based on biomass)  4	

The richness of species is usually positively correlated with abundance. As 5	

abundance can explain part of the variation in richness, without due caution, we can 6	

erroneously conclude that similar factors are important in explaining both community 7	

attributes. Thus, disentangling the richness from abundance is necessary to understand 8	

the real effect of topography on richness (free of abundance). For this reason, we used the 9	

residuals of the regression between abundance and richness as standardised measure of 10	

richness (standardised richness). In this case, the residuals indicate the part of variation 11	

in richness that cannot be explained by abundance, in other words, richness free of 12	

abundance.  13	

In general, the community matrix based on abundance has many zeros, which is a 14	

problem for multivariate analysis based on Euclidian distances, such as Principal 15	

Components Analysis (PCA) and Redundancy Analysis (RDA). A strategy to minimise 16	

this problem is using the Hellinger transformation [45]. Thus, in the case of composition 17	

based on abundance, prior to analyses, we transformed the data matrix using the Hellinger 18	

method [46].  19	

For the analyses, we used a multiple partial regression in order to partition the 20	

specific effects of the topography and spatial variables on the univariate response 21	

variables (standardised richness, abundance and total biomass) and partial RDA for 22	

partitioning these effects on multivariate response matrices represented by incidence data, 23	

abundance and biomass [10,47,48]. The RDA is a direct gradient analysis based on 24	

multiple regression that deals with the variation in a multivariate response matrix (in our 25	

case, composition based on incidence, abundance and biomass) and one or more matrices 26	

of explanatory variables (in our case, topographic and spatial variables) [48]. 27	

Spatial variables were obtained using the PCNM method (Principal Coordinates 28	

of Neighborhood Matrix) [48]. The PCNM is based on Coordinates Principal Analysis 29	

obtained from a geographic distance matrix. The eigenvectors (axes) obtained from this 30	

analysis are called PCNMs, are uncorrelated and represent different spatial patterns, from 31	
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coarse (axes with higher eigenvalues) to more refined (axes with smaller eigenvalues) 1	

[48,49]. Thus, in this paper, we extracted the spatial variables (PCNMs) from a Euclidean 2	

distance matrix between plots, which were represented by eigenvectors with positive 3	

eigenvalues and with spatial autocorrelation according to Moran’s I index [50]. For the 4	

analyses, we selected variables using the forward selection method to evaluate only the 5	

environmental and spatial variables that were more related to the studied metacommunity. 6	

We assessed the following fractions: environmental (topography) component 7	

independent of the space (a), environmental component inseparable of the spatial 8	

component (b), spatial component independent of the environment (c) and component not 9	

explained (d). As the coefficient of determination (R2) is influenced by the sample size 10	

and number of predictor variables, we used the adjusted R2 to obtain the importance of 11	

each assessed fraction [51]. We performed the analyses in the computing environment R 12	

version 2.13 [52], associated with the PCNM package [53] to obtain the spatial variables, 13	

Packfor [54] for variable selection and Vegan [55] for multiple regression and RDA. 14	

Results 15	

The results revealed that, when considering the inflection points of the abundance 16	

curves, 22 species are considered common and 208 rare (Fig 2a). The 93 rarest species 17	

have the same information content as the 22 most common species. When the inflection 18	

of the curves of species biomass is considered, 35 species are considered common and 19	

195 rare (Fig 2b). In this case, the 94 rarest species have the same information content as 20	

the 35 most common species.  21	

	Fig 2. Rank of abundance (a) and rank of biomass (b) of Amazonian tree species of a 22	

metacommunity of Tapajós National Forest, Pará State, Brazil. * indicate the rare species 23	

with the same information content than common species. 24	

Standardized richness, abundance and total biomass 25	

Total standardised richness (without the abundance effect) and standardised 26	

richness of rare species cannot be explained by any of the measured factors (topographic 27	

or spatial variables) (Table 2). Nevertheless, standardised richness of common species is 28	

significantly explained by topography (Table 2). The data also show that total abundance 29	
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is explained by spatial variables. Moreover, the abundance of common species is 1	

significantly explained both by topographic and spatial variables, whereas rare species 2	

are explained by topography (Table 2). The data show that in general, the topography 3	

explains the total tree biomass, both for total and common species, but not for rare species 4	

(Table 2). 5	

Composition (incidence, abundance and biomass) 6	

Our data reveal that topographic and spatial variables explained relevant 7	

proportions of the variability, both when the analysis is based on an incidence matrix and 8	

on an abundance matrix (Table 2), and both for total and common species (Table 2). 9	

Topographic and spatial variables do not explain the variation of rare species (Table 2). 10	

When the analysis is based on biomass, its variability is explained significantly by 11	

topographic and spatial variables for total species, only by topography for common 12	

species and by no factor for rare species (Table 2). 13	

Table 2. Results of Partial Multiple Regression and Partial Redundancy Analysis with 14	

the coefficient of determination (R2) for common and rare species.  15	

 Topography (%) Shared (%) Space (%) Not explained (%) 
Std Richness     

Total - - - 100.00 
Common (1-22) 10.4* - - 89.6 
Rare (137-230) - - - 100.00 

     
 Abundance (Total)     

Total - - 25.9** 74.1 
Common (1-22) 11.4** - 10.3** 78.3 
Rare (137-230) - - 26.3** 73.7 

     
Biomass (Total)     

Total 27.4*** 15.1 - 57.5 
Common (1-35) 14.2** 12.5 - 73.3 
Rare (136-230) - - - 100.00 
     

C. Incidence     
Total 2.8*** 1.8 6.6*** 88.8 
Common (1-22) 2.7** 2.7 5.4*** 89.2 
Rare (137-230) - 0.9 0.3ns 98.8 

     
C. Abundance     

Total 6.2*** 0.4 10.4*** 83.0 
Common (1-22) 5.1** 2.7 10.6*** 81.6 
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Rare (137-230) 0.1ns 0.8 0.4ns 98.7 
     
C. Biomass     

Total (1-230) 3.1** 3.2 1.6 92.1 
Common (1-35) 4.0** 4.2 1.9ns 89.9 
Rare (136-230) - - - 100.00 

Topography refers to the effects of geomorphometric variables without spatial factors; 1	
shared refers to the effects of common variation between topographic and spatial factors; 2	
and space refers to the spatial effects (PCNMs) without topography. Common and rare 3	
species are delimited based on the inflection point species x abundance curve (in the case 4	
of abundance), or species x biomass curve (in the case of biomass). Numbers in 5	
parentheses refer to the rank position of the species. Std Richness (standardised richness, 6	
residuals of regression between abundance and richness); composition based on incidence 7	
(C. Incidence); composition based on abundance (C. Abundance) and composition based 8	
on biomass (C. Biomass). *p < 0.05; **p < 0.01; ***p < 0.001; ns non-significant. 9	

Discussion 10	

Our results show that different attributes (richness, abundance, biomass and 11	

composition based on incidence, abundance and biomass) used to study this 12	

metacommunity respond differently to environmental and spatial processes. This 13	

indicates that the studied attributes represent different dimensions of the community and 14	

that their analysis may provide insights about the main processes that structure the studied 15	

metacommunity. Common and rare species differ in terms of biological traits [56–58] and 16	

how they relate to environmental factors [28,29,59]. Our expectation was that the role of 17	

environment and spatial variables differed between common and rare species. Our results 18	

confirm our expectation, suggesting that common and rare species are subject to different 19	

combinations of environmental and spatial variables and/or different ecological 20	

processes. 21	

The communities are composed of few common species and many rare species. 22	

Due to the greater number of individuals, common species interact strongly with the 23	

various components of the system. A common question is therefore whether the common 24	

species are sufficient to describe the attributes (e.g. richness, abundance and composition) 25	

of the whole community [44,59,60]. If this is the case, studies on communities could focus 26	

on common species, which are more easily sampled. Most studies go in this direction, 27	

since, in general, the results found for all species are equivalent to those found using only 28	

common species [59–61]. Our results only partially confirm this expectation and show 29	

that this depends on the analysed attribute. For example, for standardised richness, total 30	
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abundance (univariate) and for composition based on biomass, the results for common 1	

species differ from those obtained for all species. However, for total biomass (univariate) 2	

and for compositions based on incidence and abundance, there is a correspondence 3	

between the data obtained for the total community and for common species. Thus, our 4	

data suggest that for these last attributes, it is possible to draw appropriate conclusions 5	

for a whole community based on common species. 6	

Considering the standardised richness, our results are in disagreement with the 7	

results of studies at different scales, which have shown that the richness patterns (total 8	

community) can be predicted by richness of common species [43,62]. In our study, 9	

topography only significantly explained the variability of common species, and neither 10	

topographic nor spatial variables explained the variability of the total community or of 11	

rare species. According to Lennon et al. [59], the richness of common species can be more 12	

easily explained by simple environmental gradients when compared to the richness of 13	

rare species. As the richness of rare species can be associated with rare environments 14	

[29,59], it is harder to predict it. Thus, the absence of the effect of the environment on the 15	

richness of rare species may be due to the fact that a part of the environmental factors 16	

important for these species is not registered, since these must be associated to uncommon 17	

niches [29], determined mainly by environmental factors that are difficult to measure. In 18	

this context, our results show that on the scale of our study, part of the variation of the 19	

standardised richness of common species can be predicted by the environmental gradient 20	

(in our case, topography), which does not happen with rare species. 21	

Total abundance (univariate) and biomass (univariate) were explained by different 22	

processes when the total community, common species and rare species were considered. 23	

For total abundance, in all combinations (total community, common and rare species), 24	

spatial variables were important in explaining variability. These results show that spatial 25	

processes determine a relevant part of total abundance variation, suggesting that the 26	

effects of mass are important when abundance is considered. For common species, in 27	

addition to spatial processes, the environmental variables were also important. In the case 28	

of total biomass of the whole community, only environmental factors were important. 29	

Topography influences other extremely important variables, such as soil texture, 30	

availability of nutrients and water [4,63,64]. This may explain the results found. Our 31	

observations may have practical consequences. For example, we have sought ways to 32	
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predict and monitor the biomass at larger scales, and this relationship with topography 1	

can be important since it influences other extremely important factors for the 2	

accumulation and maintenance of biomass. Therefore, topography can be a surrogate of 3	

several variables difficult to be measured in building predictive models that facilitate 4	

monitoring of the biomass and carbon stocks in tropical forests. 5	

Considering the composition data based on incidence, abundance and biomass, 6	

one of our initial expectations was that the niche-related factors were the most relevant to 7	

explain data variability and that the studied metacommunity would follow the model 8	

species sorting (SS) [21]. Our results showed that both topography and spatial variables 9	

were relevant to explain variability, both for total and for common species (except for 10	

biomass, which was explained only by environmental processes). These results suggest 11	

that within the range studied, data fit the model species sorting (SS) + mass effect (ME). 12	

The SS and SS + ME have been the most frequently adjusted models to empirical data. 13	

For example, Cottenie [21] studied 158 metacommunities and found that 44% of them fit 14	

the SS model and 29% the SS + ME model. These patterns (SS or SS + ME) have been 15	

confirmed by most studies since Cottenie [21]. It is important to point out that the 16	

inclusion of other relevant environmental variables could increase the percentage of 17	

explanation of the environment and reduce the importance of spatial variables, whose 18	

effects may be a reflection of both mass effects and dispersion difficulties, as well as 19	

responses to no measured environmental factors [11]. Therefore, many SS + ME results 20	

observed in the literature may indeed be SS, since many important variables may not have 21	

been measured, suggesting that niche processes are highly relevant in structuring 22	

metacommunities. 23	

The data presented here show that the ecological processes underlying 24	

composition based on incidence, abundance and biomass differ between common and 25	

rare species, agreeing with Tsang & Bonebrake [61], which studied the composition of 26	

butterflies. On the other hand, this result disagrees with other data for different organisms 27	

(e.g. aquatic macroinvertebrates [24,60] and macrophytes [26]), which show that 28	

common and rare species are governed by the same processes, in these cases by processes 29	

related to the niche. Specifically for vegetation, Wang et al. [65], studying the effects of 30	

topography on the species composition of a subtropical forest, also verified that the 31	

environmental factors are important determinants of the variation of the composition of 32	
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common and rare species. On the other hand, this relation was much weaker for rare 1	

species. Our initial hypothesis was that the composition of rare species could be explained 2	

by the environment or by spatial factors. Our results refute this hypothesis, since none of 3	

the components (environmental or spatial) explained the variation of the composition of 4	

rare species. This may be a reflection of stochastic factors and of the non-inclusion of 5	

specific variables important for rare species. 6	

In this study, we found that much of the variability was neither explained by 7	

environment (represented by the topography) nor by space. This is a relatively common 8	

result in studies of metacommunities [10,12]. Two main factors can help explain this 9	

common result: 1) there are a lot of environmental factors in tropical forests that affect 10	

the biota, and often only one portion of them is measured, in our case, notably factors 11	

related to topography; 2) tropical forests have a large number of biotic interactions which, 12	

despite having the potential to affect the biota structure, are impossible to be measured to 13	

capture their complexity. Thus, the proportion of unexplained variability is probably due 14	

to stochastic and unmeasured factors. Baldeck et al. [11] showed that in addition to 15	

topography, the inclusion of variables such as nutrients can improve a model’s 16	

explanatory power. Thus, despite the topography being a good substitute for other 17	

variables that are difficult to measure, the inclusion of additional relevant variables should 18	

decrease the proportion of unexplained variability by the model. 19	

Our results revealed that for the common species, the variation of the attributes 20	

measured was explained by topography and/or spatial variables. On the other hand, except 21	

for total abundance, none of the factors measured explained the measured attributes of 22	

the rare species. These results indicate that predicting the attributes of rare species tree 23	

communities from environmental and spatial variables is a huge challenge. Our data show 24	

that niche-related processes are important; however, the spatial component, possibly 25	

because of the mass effect, was also important. As the spatial component was important 26	

for several community attributes, our results demonstrate the importance of a 27	

metacommunity approach when attempting to understand the main ecological processes 28	

underlying the diversity of forest communities in the Amazon region.  29	

 30	
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S1 Table. Selected topographic and spatial variables for Partial Multiple Regression and 21	

Partial Redundancy according to forward selection.  22	

 23	

 24	



S1 Table. Selected topographic and spatial variables for Partial Multiple Regression and Partial 

Redundancy according to forward selection.  

 Topographic variables Spatial variables 
  Std Richness   

Total (1-230) None selected None selected 
Common (1-22) h, HAND None selected 

Rare (137-230) None selected None selected 

   

  Abundance(Total)   

Total (1-230) None selected PCNM 2, PCNM 3 
Common (1-22) kh PCNM 4 

Rare (137-230) None selected PCNM 2, PCNM 3 

   

  Biomass (Total)   

Total (1-230) h, G PCNM 1, PCNM 2 
Common (1-22) h PCNM 1 

Rare (136-230) None selected None selected 

   

C. Incidence   

Total (1-230) h HAND, kv PCNM 1, PCNM 2, PCNM 3, PCNM 4, PCNM 
5 

Common (1-22) h, G PCNM 1 

Rare (137-230) G PCNM 1 

   

  C. Abundance   

Total (1-230) h, HAND, kv PCNM 1, PCNM 2, PCNM 3, PCNM 4, PCNM 
5 

Common (1-22) G, HAND,kv PCNM 1, PCNM 2, PCNM3, PCNM 5 

Rare (137-230) G, HAND PCNM 1 

   

 C. Biomass   

Total (1-230) h, G  PCNM 1, PCNM 2 
Common (1-35) h, G PCNM 1, PCNM2 

Rare (136-230) None selected None selected 

Composition based on incidence (C. Incidence); Composition based on abundance (C. 
Abundance) and Composition based on biomass (C. Biomass). Variables: Elevation (h); Slope 
(G); Profile curvature (kv); Plan curvature (kh); Height above the nearest drainage (HAND); 
Spatial variables (PCNM) based on Coordinates Principal.	






