
Novel Component Middleware for Building

Dependable Sentient Computing Applications

Maomao Wu, Adrian Friday, Gordon Blair,

Thirunavukkarasu Sivaharan, Paul Okanda, and Hector Duran Limon

Department of Computing, Lancaster University,

Bailrigg, Lancaster, UK, LA1 4YR.

{maomao, adrian, t.sivaharan, okanda, gordon, duranlim}@comp.lancs.ac.uk

Carl-Fredrik Sørensen

Department of Computer and Information Science,

Norwegian University of Science and Technology (NTNU),

NO-7491 Trondheim, Norway.

carlfrs@idi.ntnu.no

Gregory Biegel and René Meier

Department of Computer Science,

University of Dublin, Trinity College,

Dublin 2, Ireland.

{Greg.Biegel, Rene.Meier}@cs.tcd.ie

Abstract

With advances in sensor-based computing and mobile communication, people have
started to explore ubiquitous or pervasive computing systems that aim to have computing
devices literally available everywhere, making them disappear into the physical environ-
ment. Novel ubiquitous computing applications such as intelligent vehicles, smart buildings,
and traffic management have special properties that traditional computing applications do
not possess, such as context-awareness, massive decentralisation, autonomous behaviour,
adaptivity, proactivity, and innate collaboration. In this paper we argue that such appli-
cations require a new computational model and middleware that can reflect the autonomy
and spontaneity of cooperative entities. The EU funded CORTEX1 project proposes the
sentient object model to support the construction of such large-scale applications. We re-
port on a flexible, run-time reconfigurable component based middleware that we have used
to engineer the sentient object programming paradigm. We demonstrate the appropriate-
ness of the novel computational model and validity of the middleware by constructing a
proof of concept demonstrator based on the notion of autonomous cooperating vehicles.

Keywords: Context-aware, Component, Middleware, Sentient object.

1The CORTEX (CO-operating Real-time senTient objects: architecture and EXperimental evaluation)
project is supported by the Future and Emerging Technologies programme of the Commission of the European
Union under research contract IST-FET-2000-26031, http://cortex.di.fc.ul.pt/.

1

1 Introduction

With advances in sensor-based computing and mobile communication, researchers have started
to explore ubiquitous computing (UbiComp) systems [26, 27] that aim to have computing devices
embedded literally everywhere, while making them disappear into the physical environment (e.g
in our cars, buildings, soft furnishings, appliances, clothing etc.). Novel applications are possible
in these environments, but many of the scenarios we can envision require elements to operate
independently of direct human control. Among the most popular examples of these kinds of ap-
plication are based around intelligent vehicles, traffic management systems, and smart buildings
or working/living environments. We believe that there are a number of special characteristics
that differentiate these classes of application from traditional computing applications, such as:

• Sentience: These applications are context-aware, i.e. have the ability to perceive the
state of the surrounding environment, through the fusion and interpretation of information
from possibly diverse sensors.

• Autonomy: Components of these applications will be capable of acting in a decentralised
fashion, based solely on the acquisition of information from the environment and on their
own knowledge.

• Decentralisation: There is no single central server that does intensive computation for
the clients. Typical applications consists of components that might be scattered across
geographical regions, e.g., street, buildings, cities, countries, and continents.

• Proactivity: These applications are able to act in anticipation of future goals or problems
without direct human intervention. They should have a certain degree of intelligence, and
be able to decide what action to take from gathered sensor data.

• Adaptivity: These applications will have to cope with changing conditions during their
lifetimes. Not only must the applications be designed to evolve, but their underlying
support must be adaptable as well.

• Time and Safety Criticality: These applications interact with physical environments
and are required to provide real-time services to human users. It is important to provide
real-time guarantees and dependability assurance through some system or middleware
modules, e.g., resource management and configuration, timing failure detection and Qual-
ity of Service (QoS) management.

These characteristics make it extremely challenging for application designers and system en-
gineers to design and implement ubiquitous computing systems and applications. We postulate
that an appropriate computational model, programming abstraction and supporting middle-
ware are crucial for realising the vision of UbiComp and assisting in constructing these forms
of novel application.

In the EU funded CORTEX [25] project, we propose a programming model that we believe
contributes an important abstraction for supporting the construction of these forms of applica-
tion. In our programming model, applications are constructed from large numbers of software
components which accept input (construct their view of the world) via a variety of sensors, and
autonomously react, acting upon the environment using a variety of actuators. These compo-
nents must have a certain level of “intelligence” to allow them to act autonomously based upon
this acquisition of information, and should be able to cooperate with each other using a range
of different networking technologies. We named these intelligent software components “sentient
objects”, and define a programming model for the development of such objects.

In this paper we describe our programming model in more detail (section 2) and report on
our experiences of building middleware to support this model (sections 3 and 4). Our component
based middleware in particular offers a number of important features including flexible, run-
time configuration and reconfiguration, and a novel unified mechanism for supporting both
context-aware and QoS adaptation. To demonstrate the appropriateness of the paradigm and
the validity of the middleware, we have also constructed a proof of concept demonstrator based
on the notion of autonomous cooperating vehicles (section 5). Section 6 contrasts our approach

2

with existing approaches in the area of middleware for ubiquitous computing. Finally, we
summarise our experiences in our concluding remarks and propose some future work.

2 Sentient Object Programming Model

In the sentient object programming model [3, 7], software entities are categorised into sensors,
actuators, and sentient objects. Sensors are defined as entities that produce software events in
reaction to a stimulus detected by some real-world hardware device. An actuator is defined as
an entity that consumes software events and reacts by attempting to change the state of the
real world in some way via some hardware device. Both of these may be a software abstraction
of actual physical devices. A sentient object is then defined as an entity that can both consume
and produce software events, and lies in some control path between at least one sensor and one
actuator.

� � �� �� � � �� 	 �
 �� � � � ��� � � � � ��� �� � � �� � � �� � �� � � �� � � � � � �� � �� �� � �� � �� � � � �
� � � � �

! � � � � �� �
! � � � � � � �� � � �� � " # $ � � �� % � �

Figure 1: Sentient Object Model

Sentient objects are cooperative and communicate with each other and with sensors and
actuators via an anonymous generative event based communication paradigm [17], permitting
loose coupling between objects which supports component reconfiguration and application evo-
lution. A sentient object and its internals are illustrated in Figure 1. The novel event-based
communication mechanism incorporated in the model is specifically designed for mobile ad-hoc
wireless environments such as those typified spontaneous device interactions and networking
found in embedded systems (e.g. mobile computing, sensor networking, cooperative vehicles,
etc.).

Three main components have been identified [7] in order for a sentient object to be context-
aware: sensory capture, context representation, and an inference engine. The major issues in
the area of sensory capture are data filtering and sensor fusion. Probabilistic sensor fusion
techniques can be used to provide more accurate estimates of contexts, and dead-reckoning can
be employed when there is insufficient traffic or delays in sensor data. The context representation
component deals with the representation of context information in a way that is useful to the
sentient object and may be easily exchanged among sentient objects. The inference engine is
analogous to the brain of a sentient object, and all the intelligent behaviour of the sentient
objects are attributable to the inference engine. It has the capability of generating high-level
context from low-level context or sensor data, and making actuation decisions on how to react
based on this contextual data.

3 Middleware Design Challenges

Middleware can conceal programming complexity from application developers, and provide ser-
vices to facilitate communication and coordination of distributed software components. Instead
of realising the sentient object programming model directly, we decided to design and implement

3

a flexible middleware so that it can be reused in different circumstances. Some key research
challenges we aimed to address in building our middleware were as follows:

• Context-awareness: We follow the sentient object paradigm to handle inputs from
diverse sources, e.g., different sensors or other sentient objects. Uncertainty is a major
problem in sensing the environment due to the inherent limitations of sensors with respect
to accuracy and precision. This has led to a crucial requirement for our middleware that
it provides uncertainty management for software components whose actions are based
on environmental perception. Additionally, “intelligent” software components that reason
based on context are required in order to make sentient objects autonomous and proactive.

• QoS management and fail safety: Due to the real-time nature of ubiquitous comput-
ing applications, the middleware needs to take into account the provision of incremental
real-time and reliability guarantees. QoS properties need to be expressed as a metric of
predictability in terms of timeliness and reliability. For distributed objects coordinating
in uncertain environments, the timing bounds for distributed actions could be violated
because of the timing failures. This requires a reliable timing failure detection service for
distributed operations.

• Communication model: Traditional communication models, such as client-server and
the RPC paradigm, are not well suited to mobile ad-hoc environment, because there is no
fixed infrastructure to host centralised services. Since disconnections are common in the
wireless communication environment, the communication paradigm should be decoupled
and asynchronous. Moreover, in novel applications with mobile or context-based elements,
the scope of information dissemination is dynamically determined by spatial parameters.
For example, in the cooperating cars scenario, one might wish to limit dissemination to
those vehicles directly affected by an obstacle on the road, and the information is only
valid in a restricted geographical area.

• Routing in mobile ad-hoc environment: In mobile ad-hoc networks, the senders and
receivers move constantly so that the network topology frequently changes. This poses a
challenge for routing packets in such dynamic environments. Multicast protocols based
on proactive and reactive ad-hoc routing, using shared state kept in the forms of routes
and adjacent information, is useful in environments with low node mobility. However, this
shared state and topology information can quickly become outdated in the highly mobile
environments. Hence, it requires a new type of routing protocol in highly dynamic ad-hoc
network environments.

We believe middleware support encourages the widespread development of aforementioned
novel applications. It is always important for middleware designer to bear in mind the issue of
reusability, configurability and reconfigurability. Previous research experience [8] in reflective
middleware also motivates us to use reflection, component technology, and component frame-
works to create a flexible and dynamically configurable middleware platform. In the following
section we discuss how these challenges have been addressed by the component frameworks that
are used to compose our sentient objects.

4 Component-oriented Reflective Middleware

4.1 Component Model and Component Frameworks

The autonomous feature of sentient objects requires that they adapt based on contextual infor-
mation, either communicated as high level contexts (e.g. as software events) or derived directly
from raw sensor information. To move from low level sensing to discernable contexts requires
both conditioning of the data (e.g. fusion and interpolation) and higher order reasoning (rule
based inferring). Clearly the demands of a given application and its associated environment will
vary over time and situation, both in terms of fine grained adaptation (tuning parameters on a
particular fusion algorithm for example), and at a courser grained level (switching behaviours

4

or between information sources). To support this level of configuration and reconfiguration we
have chosen to build our middleware based on a reflective component model called OpenCOM
[8]. This technology allows use to introspect the running system and adapt any aspect of the
system at run-time, permitting us ultimate flexibility.

OpenCOM is built atop a subset of Microsoft’s COM. Ignoring COM’s advanced features,
OpenCOM keeps its core aspects including the binary level interoperability standard, Microsoft’s
IDL, COM’s globally unique identifiers and the IUnknown interface as the basis of its imple-
mentation. The fundamental concepts of OpenCOM are interfaces, receptacles and connections
(bindings between interface and receptacles). An interface expresses a unit of service provision
while a receptacle describes a unit of service requirement. OpenCOM deploys a standard run-
time to manage the creation and deletion of components, and to act upon requests to connect
and disconnect components. Moreover, a system graph of the running components is maintained
to support the introspection of a platform’s structure.

Component Frameworks (CFs) were originally defined in [23] as “collections of rules and
interfaces that govern the interaction of a set of components plugged into them”. CFs constrain
the design space and scope for evolution, so that they are targeted at a specific domain and
embody “rules and interfaces” that make sense in that domain. To realise sentient objects,
the OpenCOM component model has been employed to construct families of middleware, each
of which is in turn created as a set of configurable CFs. We have designed and implemented
a number of CFs, including a Publish-Subscribe event channel CF, a Context CF, and a Re-
source and a QoS CF. As a result, reflection can be used to discover the current middleware
configuration and behaviour, and middleware configuration can also be changed at run-time.

4.2 Publish-Subscribe CF

The Publish-Subscribe (P-S) CF is a componentised prototype of the STEAM P-S system [17].
STEAM is based on an implicit event model and has been designed for mobile applications
and ad hoc networks. STEAM differs from other P-S systems in that it does not rely on the
presence of any separate infrastructure and supports distributed techniques for identifying and
delivering events of interest based on location. STEAM supports a decentralised approach for
discovering peers, for routing event notifications using a distributed addressing scheme, and for
event filtering based on combining multiple filters. Filters may be applied to the subject and the
content of events, and may be used to define geographical areas within which events are valid.
Such proximity-based filtering represents a natural way to filter events of interest in mobile
applications. The P-S CF support both publisher and subscriber side filtering, by using a query
or subscription language called Filter Event Language (FEL) [22] to express their preferences.
FEL can be used to create subject, content, and context filters, which are also componentised
and can be dynamically reconfigured.

Publishers and subscribers are anonymous, and subscribers should be able to interpret the
events without a priori knowledge. Therefore, we have the need for a generic event dialect which
can be understood by all publishers and subscribers in the system. The events in the P-S CF
are represented in XML, and a generic XML profile defines the generic event dialect. The XML
based events provide for easy interoperability and extensibility of the event dialect.

Events are published to a notional event channel allowing one-to-many distribution of events.
The event channel is supported by an underlying communication mechanism supported by a
group abstraction. The Group Communication CF provides a range of group communication
protocols. The Publish-Subscribe CF can flexibly select a group communication protocol from
Group Communication CF, which currently supports a probabilistic ad-hoc multicast protocol,
an IP multicast based protocol and a local (shared memory based) group communication proto-
col. The P-S CF is used to construct various event channels, which are required by the Context
CF (as describe below) and inter-sentient object communication.

4.3 Context CF

The Context CF consists of two parts: sensor capture and fusion, and the inference engine.

5

4.3.1 Sensor Capture and Fusion

The sensory capture and fusion components are able to receive sensor data through an event
channel and perform some data fusion algorithm in order to manage uncertainty of sensor data
and derive higher level context information from multi-modal data sources. We have explored
three different techniques for our middleware component design.

One of the widely-used methods in sensor fusion and machine learning is the Gaussian
modelling and multivariate Gaussian modelling [14]. Raw sensor data samples associated with
certain target values are gathered first to establish some multivariate Gaussian distribution
functions 2. We collected ultrasonic sensor’ readings at certain target values, i.e. various
distances from the sensors to the obstacle ahead. When new sensor readings arrive they are
fed into the established Gaussian distribution functions. The outputs of these functions are
compared, and the target value associated with the distribution function generating the highest
output is the most probable target value. In the ultrasonic sensor example, we can obtain
the most probable distance to the obstacle from the current sensor readings by feeding the
current sensor readings to the various Gaussian distribution functions associated with different
target values. Multivariate Gaussian is the one of the most important methods to get the best
statistical target value for current sensor readings.

Another probabilistic sensor fusion scheme is also employed, based upon Bayesian networks
[12], which provides a powerful mechanism for measuring the effectiveness of derivations of
context from noisy sensor data. A Bayesian network is a directed acyclic graph in which nodes
represent random variables and the absence of arcs represents conditional independence. A
Bayesian network graph allows us to manage the exponential increase in the size of a joint
probability distribution over a set of random variables, by exploiting conditional independence:
P (X1, ...,Xn) =

∏

n

i=1
P (Xi|pa(Xi)) where pa(Xi) are the parents of node Xi and P (Xi|pa(Xi))

is the conditional distribution of Xi given its parents. Using Bayesian networks to model the
uncertainty of sensor data and the dependencies between a set of sensors, gives us the ability
to efficiently reason that a hypothesis is true, given available evidence from sensors.

Finally, dead-reckoning has been used to compensate for insufficient data and latency in
transmissions. Instead of relying on the latent current sensor readings for fusion, historical data
can be processed during run-time to generate more reliable and real-time values. This technique
is especially useful for sensors, such as GPS, that may have unpredictable delays. In the case
of GPS, objects should be able to calculate their own dead-reckoned position and update their
own trajectory using extrapolation algorithms to make up for this latency. They could compute
their current position based on predictive algorithms that have a basis on a history log such
that there is continuity and timeliness in otherwise sporadic and delayed data from a source.

4.3.2 Inference Engine

The inference engine is a key part of the sentient object paradigm, and the intelligence of
a sentient object is realised by the inference engine and its associated knowledge base. An
inference engine in artificial intelligence terms, refers to a program that reasons about a set of
rules (a knowledge base) in order to derive an output [7]. An inference engine is actually a
part of an expert system, which also contains a domain-specific knowledge base. The knowledge
base contains the knowledge required to solve a certain problem, encoded as a set of production
rules. As a result, contexts can be represented and stored as some facts [19] within the inference
engine.

We chose the well-known rule-based inference engine CLIPS — C Language Integrated Pro-
duction System [19] as a base of our middleware component design. CLIPS provides a cohesive
tool for handling a wide variety of knowledge with support for three different programming
paradigms: rule-based, object-oriented and procedural, and the internal implementation of

2A Gaussian distribution is also known as a normal distribution, which has the form of

G(x; µ, Σ) =
1

√

(2π)d|Σ|
e−

1

2
(x−µ)T Σ−1(x−µ)

where µ is the mean or average vector, and Σ refers to the covariance matrix

6

CLIPS is based upon the RETE net [10]. Using the rule-based programming paradigm pro-
vided by CLIPS, we can specify rules to generate high-level contexts from fused sensor data or
derived low-level contexts. A CLIPS rule consists of two parts: an if part and a then part.
The if part of a rule is a series of patterns which specify the facts (or data) that cause the rule
to be applicable. The then part of a rule is the set of actions to be executed when the rule is
applicable. Here is an example of CLIPS rule named will be triggered when obstacle distance
is near. The if part of the rule contains two facts, “car-id” and “obstacle”. CLIPS automati-
cally matches facts against the patterns specified in the if part of the rules, and executes the
actions (then part) of applicable rules. The sample rule activates two actions: “retract” or
delete the fact referenced and call user defined function “publish”. CLIPS also provides ways
for the programmers to define their own functions, which can also be specified in the rules.
This makes it possible to automatically perform actuation when certain contexts are derived
from the inference engine. The user defined function “publish” in the sample actually makes
use of the P-S CF to publish the “stop” command to the car speed control event channel. This
use of inference on the basis of contextual information makes it possible to do Context-based
Reasoning (CxBR) [11].

(defrule rule -obstacle -near "CLIPS rule for obstacle near"

(car -id (id ?id))

?f1 <- (obstacle (distance near))

=>

(retract ?f1)

(publish ?id stop)

)

One of the important features of our approach is that the paradigm facilitates uniform
treatment of both context and QoS. End-to-End QoS violations are provided by the Timely
Computing Base (TCB) [5]. The TCB provides the facility to monitor timeliness of event
delivery on distributed event channels, thus providing estimations and awareness of timing
failure probability for a given required stability coverage. The detection of timing failures
by TCB can be used to trigger the timely execution of fail safe-procedures and adaptation
strategies. QoS rules can be included in the inference engine that trigger adaptations based
on changes in measure QoS or coverage stability from the TCB (see the following sample rule
below that slows the vehicle in our demonstrator when intra-vehicle communication becomes
too unpredictable).

(defrule rule -network -coverage -bad "CLIPS rule for network coverage bad"

(car -id (id ?id))

?f1 <- (network -coverage (value bad))

=>

(retract ?f1)

(publish ?id slow)

)

Note that this uniform approaches allows QoS to become part of context descriptions. More-
over, both changes in context and/ or changes in QoS can trigger adaptations and actuations.

We have wrapped the CLIPS into a DLL and created OpenCOM components for both
WinNT and WinCE. This component can perform adaptation at the rule-level (by loading and
unloading different rules at run-time).

5 Autonomous Cooperative Vehicles Application

To demonstrate the appropriateness of the sentient object model and validity of the compo-
nentised middleware, we constructed a proof of concept demonstrator based on the notion of
autonomous cooperating vehicles. The vehicles have the objective of travelling on a given path
(a virtual circuit), predefined by a set of GPS waypoints. Each vehicle needs to build a real-time

7

image of its surrounding environment within some bounded error to make informed decisions
regarding its next move. The cooperation between vehicles is critical to avoid collisions, to
follow a leading vehicle and to travel safely. The vehicles also need to obey external traffic
signals and give way to pedestrians who cross the road by sensing their presence, and adapt to
QoS data such as network coverage stability.

We have built a small number of autonomous cooperative vehicles by modifying remote con-
trolled robot cars and augmenting them with multiple sensors and driven them by our software
running on iPAQ PocketPC2002s. A GPS receiver is used to sense location, a digital compass
is integrated to sense direction, and eight units of ultrasonic sensors are fixed to detect the
presence of neighbouring physical objects. The PocketPC has two WaveLAN cards configured
in ad-hoc mode. One is exclusive to the TCB control channel, and the other is for the event
channels (payload) used for inter-vehicle communications. Each vehicle uses an onboard Con-
troller Area Network (CAN) [20] to connect the hardware devices, e.g, sensors, actuators and
iPAQ. The onboard network is a bespoke ring topology with single break failure resilience, and
the design enables addition of further devices on to the ring in a plug and play fashion.� �� ��� ���	
� ��� �

�

� ��� � ������ � �������� �� ��� � !"# $� !� %& '���" �()(� ! *)(�+ !"(,�"�� !�)(� ! *)(�+ !"(- !�("� !�)(� ! *)(�+ !"(
� �� ��� � !"#$� !� ./0)#$� !� %/0)#$� !� .- !* !�� �1 �23���#$� !�

4 5(�("()(�+ !"(1 , 40)4 5(�("(6 * ! (7 8 9
�:�� ; � �� �
�� � �< 	� :��� �

 =� �>< 	� :�� � �? �@ �� � �7�A =�� �
� �� � �

B � C� � D � C�	 ��
� �� �� �� B EF � 	�
�;�G � �� HI � �� 9�� � �;� 	�7 �A =��� ��J� 	� =� � 	 ��
Figure 2: Middleware Configuration for Autonomous Cooperative Vehicles Application

The demonstrator application — “autonomous cooperating sentient vehicles” is implemented
using instances of our middleware CFs, and the detailed configuration of the software compo-
nents is illustrated in Figure 2. Different sensing service components are responsible for receiving
related software events from a particular sensor and fusing the sensor data. These sensing ser-
vice components make use of data fusion algorithm components, which can be plugged in and
out at run-time. For example, the obstacle distance sensing service can dynamically swap be-
tween two different ultrasonic sensor fusion components: Gaussian modelling and a customised
fusion algorithm. Context information is derived from these fusion components, and is fed into
the inference service component. The inference service component makes use of the CLIPS
inference engine to derive higher level contexts and decide actuation actions. The CLIPS rules
are predefined in CLIPS script files that can be dynamically loaded into and unloaded from the
inference engine. We have three sets of independent rules to do speed control, steer control of
the vehicle, and derive network coverage stability context. By matching the current contexts
to the actuation rules, the inference engine component decides how to actuate the vehicle by
transmitting software events to actuators, which in turn interact with the hardware to fulfill
the task.

The rulesets can send special adaptation “commands” using the event channel to trigger
middleware component level adaptation (both swapping components to change algorithm and
finer grained internal tuning of algorithms) and CLIPS rule level adaptation (which changes
behaviour of the system). We have found this simple yet elegantly consistent approach to context

8

and QoS adaptation provides us with with a great deal of expressive power and flexibility in
our demonstration.

6 Related Work

A tremendous amount of activity, particularly from the car manufacturers themselves, has
been taken under the former category of application. In BMW’s ConnectedDriv [2], research
vehicles can communicate with each other by using ad-hoc network networking technology, e.g.,
Wireless LAN. Each vehicle acts as a sensor registering and monitoring the road traffic, and it
can recognise congestion traffic and transmit a local traffic report to other vehicles in the nearby
area, requiring no human intervention. Motorola laboratory in Arizona, US, Delphi Safety &
Interior Systems in Michigan, US and DaimlerChrysler research centre in Ulm, Germany [13] are
all trying to build very similar “smart cars” that will make the road travel safer. By monitoring
the driver’s physical status, such as body movements, eye-blink pattern, and respiration, as
well as driving behaviour, e.g., the number and the severity of steering corrections, smart cars
are proposed to be able to either alert the driver by some means, e.g., sound or vibration,
or even take over some tasks from the driver, such as braking or steering. The Intelligent
Transportation Systems (ITS) program at the General Motors [1] is more ambitious, which
proposes to harmonize traffic flow, e.g., reducing speed fluctuations and traffic shock waves,
and maximising highway capacity by not only constructing closely coordinated vehicles but also
developing automated highways. Such complex real time dependable applications are difficult
to engineer using traditional systems development techniques and paradigms. We believe the
sentient object paradigm may highlight a useful approach that can be adopted by the developers
of systems such as these. Moreover, our paradigm offers intrinsic scope for flexibility, reuse and
reconfiguration to offer new behaviours and applications.

Different approaches of reflective middleware in Ubicomp have been investigated, e.g., Gaia
and UIC. Gaia [21] is a metaoperating system built as a distributed middleware infrastructure
that coordinates software entities and heterogeneous networked devices contained in a physical
space. Gaia supports development and execution of portable applications in active spaces. Ac-
tive spaces are programmable ubiquitous computing environments in which users interact with
several devices and services simultaneously. Users, services, data, and locations are represented
in the active spaces, and are manipulated dynamically and in coordination. Context is impor-
tant to Gaia’s applications, which have access to context via a “context file system”. However,
context is externalised and is not a first class entity that drives the behaviour of the active space
systems. We believe that active space applications could easily be modelled as sentient objects
and potentially benefit from our paradigm.

Reflective middleware has been adopted by other projects interested in adaptation and re-
configurability. UIC (Universally Interoperable Core) [24] is targeted to mobile devices as a
minimal reflective middleware. Heterogeneity issues are solved by UIC in a set of pluggable
components that allow developers to specialise the middleware to different devices and environ-
ments. The configuration of the middleware can be updated both at compile- and run-time.

The Mobile Platform for Actively Deployable Service (MobiPADS) system [6] is another
reflective-based middleware designed to support context-aware processing by providing an exe-
cution platform to enable active service deployment and reconfiguration of the service composi-
tion in response to environments of varying contexts. MobiPADS supports dynamic adaptation
at both the middleware and application layers to provide flexible configuration of resources
to optimize the operations of mobile applications. To alleviate the adverse conditions of a
wireless environment, services (known as mobilets) are configured as chained service objects to
provide augmented services to the underlying mobile applications. The reflective model in Mobi-
PADS provides metainterfaces to make applications able to directly participate in computation
adaptation in response to the changing context. A mobile application can access contextual
information, the service configuration and adaptation strategy, and examine and modify these
entities to obtain optimal service provision through the metalevel object representation of the
internal event system and service reconfiguration mechanism.

9

Also other approaches have been developed that focus on meta-data representation for ser-
vices and application-dependent policies. Capra et al. [4] have e.g. developed mechanisms for
dynamic adaptation and conflict resolutions. Several approaches to data-sharing middleware for
mobile and ad hoc environments have been developed the last decade. Many of these are based
on tuple spaces (e.g. LIME [18], TOTA [15], and L2imbo [9]). The approaches have in common
that they aim to let data be de-coupled and de-centralised. Data sharing though XML-based
structures have been proposed in e.g. XMIDDLE [16] to support more complex data models
than what a tuple represent.

7 Concluding Remarks

This paper has described a novel componentised reflective middleware for engineering depend-
able sentient computing applications based on the sentient object model. A proof of concept
demonstrator based on the notion of autonomous cooperating vehicles has been fully imple-
mented to investigate the appropriateness of the novel computational model and validity of the
middleware. Based on the experience of designing such a flexible middleware and engineering
the fully-fledged demonstrator, we can identify a number of key results:

• The sentient object model has proved to be an excellent programming abstraction for the
development of real-time, cooperative, context-aware applications, particularly because of
its intrinsic support for decoupled event channel communication and context-awareness.
The demonstrator shows it can be used to handle both context adaptation, e.g., responding
to the traffic light signals, and QoS adaptation, e.g., reacting when network coverage
stability is low, in a self-consistent and uniform way.

• OpenCOM component model and CFs are the two key enabling technologies underpinning
the construction of the middleware. The component-oriented approach for engineering the
middleware offers benefits of flexible configuration and reconfiguration of the middleware
components, supporting the development of context and QoS adaptive applications. For
example, the sentient object instance constructed from CFs can dynamically reconfigure
its internal architecture by responding to events from the event channels, e.g, the sensor
fusion service components can plug out and in different sensor fusion components at run-
time.

• The middleware architecture also provides the management of non-functional concerns
such as timeliness and reliability properties. The integration of these modules is greatly
eased by following the sentient object model. For example, the data from TCB is dis-
tributed using the anonymous communication paradigm, and it in turn goes through the
inference engine to derive high-level network coverage stability context and trigger actu-
ation events being published to the car speed control channel.

We believe that our middleware is reusable, and we are keen to investigate the generality
of our approach by applying our middleware to other application domains involving embedded
autonomous components. This is a key aspect of our future work.

Acknowledgements

We would like to thank Joe Finney and Angie Chandler for the construction of the robot cars
augmented with a token ring network with an array of sensors. Trimble Component Tech-
nology Europe also supported the construction of the demonstrator by providing us free GPS
development kits.

10

References

[1] Steven Ashley. Smart Cars and Automated Highways. Mechanical Engineer-
ing Magzine, May 1998. http://www.memagazine.org/backissues/may98/features/
smarter/smarter.html.

[2] Automotive Intelligence News. Talking Cars For Less Congestion — The Future
Of Telematics. http://www.autointell-news.com/News-2003/October-2003/October-2003-
1/October-01-03-p6.htm, 2003.

[3] Gregory Biegel and Vinny Cahill. A Framework for Developing Mobile, Context-aware Ap-
plications. In 2nd IEEE Conference on Pervasive Computing and Communications (Percom
2004), pages 361–365, Orlando, Florida, March 14-17 2004. IEEE Computer Society Press.

[4] Licia Capra, Wolfgang Emmerich, and Cecilia Mascolo. A Micro-Economic Approach to
Conflict Resolution in Mobile Computing. ACM SIGSOFT Software Engineering Notes,
27(6):31–40, 2002.

[5] Antonio Casimiro and Paulo Verissimo. Using the Timely Computing Base for Dependable
QoS Adaptation. In 20th IEEE Symposium on Reliable Distributed Systems, pages 208–217.
IEEE Computer Society Press, 2001.

[6] Alvin T.S. Chan and Siu-Nam Chuang. MobiPADS: A Reflective Middleware for Context-
Aware Mobile Computing. IEEE Transactions on Software Engineering, 29(12):1072–1085,
2003.

[7] CORTEX. Final definition of CORTEX programming model. Technical Report CORTEX
Deliverable D6 version 1.0, CORTEX, April, 2003.

[8] Geoff Coulson, Gordon S. Blair, Michael Clark, and Nikolaos Parlavantzas. The Design of
a Highly Configurable and Reconfigurable Middleware Platform. ACM Distributed Com-
puting Journal, 15(2):109–126, April 2002.

[9] Nigel Davies, Adrian Friday, Stephen P. Wade, and Gordon S. Blair. L2imbo: A Distributed
Systems Platform for Mobile Computing. Mobile Networks and Applications – Special
Issue on Protocols and Software Paradigms of Mobile Networks, 3(2):143–156, August 1998.
Internal report number MPG-97-03.

[10] Charles Lanny Forgy. RETE: A Fast Algorithm for the Many Patterns/Many Objects
Pattern Match Problem. Artificial Intelligence, 19(1):17–37, September 1982.

[11] Avelino J. Gonzalez and Robert Ahlers. Context-Based Representation of Intelligent Be-
haviour in Training Simulations. Transactions of the Society for Computer Simulation
International, 15(4):153–166, 1999.

[12] Finn V. Jensen. Bayesian Networks and Decision Graphs. Springer Verlag, 2001.

[13] Willie D. Jones. Building Safer Cars.
http://www.spectrum.ieee.org/WEBONLY/publicfeature/jan02/road.html, 2002.

[14] A. Schmidt G. Kortuem K. Van Laerhoven, N. Villar and H.-W. Gellersen. Using an
Autonomous Cube for Basic Navigation and Input. In ICMI/PUI 2003, pages 203–211.
ISBN: 1-58113-621-8, ACM Press, 2003.

[15] Marco Mamei and Franco Zambonelli. Programming Pervasive and Mobile Computing
Applications with the TOTA Middleware. In Second IEEE International Conference on
Pervasive Computing and Communications (PerCom’04), pages 263–273, Orlando, Florida,
March 14-17 2004. IEEE Computer Society Press.

11

[16] Cecilia Mascolo, Licia Capra, Stefanos Zachariadis, and Wolfgang Emmerich. XMIDDLE:
A Data-Sharing Middleware for Mobile Computing. Personal and Wireless Communica-
tions Journal, 21(1), April 2002.

[17] René Meier and Vinny Cahill. Exploiting Proximity in Event-Based Middleware for Collab-
orative Mobile Applications. In 4th IFIP International Conference on Distributed Applica-
tions and Interoperable Systems (DAIS’03), pages 285–296, Paris, France, 2003. Springer
Verlag, Heidelberg, Germany. LNCS 2893.

[18] Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman. Developing Mobile Com-
puting Applications with LIME. In 22nd International Conference on Software Engineering
(ICSE’2000), pages 766–769, Limerick, Ireland, 2000. ACM Press.

[19] Gary Riley. CLIPS homepage. http://www.ghg.net/clips/CLIPS.html, 2002.

[20] Robert Bosch GmbH. CAN Homepage of Robert Bosch GmbH.
http://www.can.bosch.com.

[21] Manuel Román, Christoher Hess, Renato Cerqueira, Anand Ranganathan, Roy T. Camp-
bell, and Klara Nahrstedt. A Middleware Infrastructure for Active Spaces. IEEE Pervasive
Computing, 1(4):74–82, October–December 2002.

[22] Thirunavukkarasu Sivaharan. Publish Subscribe Component-based Middleware for PDAs
in Wireless Ad-hoc Network. Technical report, Lancaster University, 2002. MSc thesis.

[23] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley, 1997.

[24] UbiCore. Universally Interoperable Core. http://www.ubi-core.com, Last accessed August
5th 2003.

[25] Universidade de Lisboa, Lancaster University, Trinity College Dublin and Universität Ulm.
CORTEX project homepage. http://cortex.di.fc.ul.pt, 2001.

[26] Mark Weiser. Some Computer Science Issues in Ubiquitous Computing. Communications
of the ACM, 36(7):75–84, July 1993.

[27] Mark Weiser. The Computer for the 21st Century. IEEE Pervasive Computing, 1(1):18–25,
January-March 2002. Reprinted from Scientific American, 1991.

12

