Coordinated Adaptation for Adaptive

Context-aware Applications

Christos Efstratiou

M.Sc. (Lancaster 1998)
Diploma (Patras, Greece 1996)

Computing Department
Lancaster University

United Kingdom

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

MAY 2004

Abstract

Coordinated Adaptation for Adaptive Context-aware

Applications

Christos Efstratiou
Computing Department

Lancaster University

Submitted for the degree of Doctor of Philosophy.
May 2004.

The ability to adapt to change is critical to both mobile andtext-aware applica-
tions. This thesis argues that providing sufficient supfarradaptive context-aware ap-
plications requires support faoordinated adaptationSpecifically, the main argument
of this thesis is that coordinated adaptation requiresiegimns to delegate adaptation
control to an entity that can receive state information fnomltiple applications and
trigger adaptation in multiple applications. Furthermaeordination requires support
for reconfiguration of the adaptive behaviour and user wemlent. Failure to support
coordinated adaptation is shown to lead to poor system golitapon performance and
insufficient support for user requirements.

An investigation of the existing state-of-the-art in theas of adaptive and context-
aware systems and an analysis of the limitations of exigygiems leads to the es-
tablishment of a set of design requirements for the supgarbordinated adaptation.
Specifically, adaptation control should be decoupled froenmhechanisms implement-

ing the adaptive behaviour of the applications, applicegtishould externalise both state

information and the adaptive mechanisms they support anadaptation control mech-
anism should allow modifications without the need for redenpentation of either the

application or the support platform.

This thesis presents the design of a platform derived fragnaflorementioned re-
quirements. This platform utilises a policy based mechmarics controlling adaptation.
Based on the particular requirements of adaptive contear@applications a new pol-
icy language is defined derived from Kowalsky’s Event Calsuhgic programming
formalism. This policy language allows the specificatiorpoficy rules where condi-
tions are defined through the expression of temporal relstips between events and
entities that represent duration (ifauentg. A prototype implementation of this design
allowed the evaluation of the features offered by this platf. This evaluation reveals
that the platform can support coordinated adaptation witieptable performance cost.

Declaration

This thesis has been written by myself, and the work repdrezdin
is my own. Many of the ideas in this thesis were the producisifus-
sions with my supervisors Prof. Nigel Davies and Dr. Adriaid&y.
The work reported in this thesis has not been previously #tduirfor

a degree in this, or any other form.

Christos Efstratiou

Acknowledgements

My most sincere thanks are due to my first supervisor ProfeNd@vies. Throughout
my work his remarkable ability to see beyond the obvious asdnsightful comments
helped me get passed some difficult obstacles in my resebvedmt to thank him for
his patient supervision and most importantly the dedicatggbort he offered me during
the writing of this thesis. Moreover, | owe him thanks for tesearch opportunities he
offered me beyond the strict field of my Ph.D. | consider it andur to have worked
with and known him.

| would like to express my deepest thanks to my second sugmeridr. Adrian Fri-
day. His ability to boost my moral, his technical guidance anpportive supervision
were invaluable throughout my Ph.D. His technical knowkedgd his ability to suggest
feasible solutions to complex problems helped me overcdffieutt design and imple-
mentation issues. | owe him thanks for his enthusiasm anddmistructive criticism

over the past few years.

Thank you to my colleagues in the Computing Department at &stec, for helping
to create a pleasant and friendly work environment. Pdatidihanks are due to Dr.
Keith Cheverst who guided me during the first years of my Phviarit to thank him for
his guidance in research document writing and his valualggestions on my research.
I would also like to thank Prof. Gordon Blair and Dr. Lynn Blaarftheir interest in
my work over the past few years. Moreover, | would like to th&r. Keith Mitchell
and Dr. Matt Storey for their comments and discussions @s&zarch and non-research
related issues. Thanks to all the guys in the the Skylab thairked with: Maomao
Wu, Oliver Storz, Fahd Al-Bin-Ali, Prasad Boddupalli.

| would like to thank in particular my colleague and dearrddeDimitris Pezaros.
He has been both a person that | could chat with and complaiat vy work, but most

importantly he was the friend that | could share a beer witth @moy listening to his

guitar.

| would like to express my gratitude to all those beyond thgadement that made
my time at Lancaster so enjoyable, especially Dr. AntonigoBatzis for the nights

we've spent chatting and drinking ouzo.

Special thanks are due to Vassia Markidou for her emotiondl rmoral support

throughout most of my Ph.D. work. | owe her so much...

Contents

Abstract i
Declaration iii
Acknowledgements iV
Contents Vi
List of Tables Xii
List of Figures Xiii
1 Introduction 1
1.1 Adaptive and Context-Aware Applications 2
1.2 Motivation 3
1.3 RoadMapfortheThesis 9
2 Adaptive and Context-aware Systems 12
2.1 OVEeIVIEW e 13
2.2 The Emergence of Adaptive Systems 13
2.2.1 Adaptive Network Protocols 13
2.2.2 Distributed Multimedia 14
2.2.3 MobileSystems. 15
2.2.4 Context-aware Systemso 16
2.2.5 Application Aware Adaptation L. 17
2.3 Overview of Existing Adaptive Systems 18
2.3.1 Abstracting Adaptation 18

Vi

2.3.2 AssessmentCriteria 20

2.3.21 Coordination 21
2322 Extensibility 0. 21
2.3.2.3 Reconfigurability 22
2.3.2.4 Userlinvolvement 22
2.3.3 Independent Adaptive Applications 23
2.3.4 Middleware-based Systems. 24
2341 Coda 24
2342 0dyssey 25
2343 MOST 27
2344 Rover 28
2.3.45 TACOMA/TACOMALite 29
2346 Bayou 30
2.3.4.7 Mobiware 31
2348 Puppeteer 32
2349 TAO 33
23410 Open-ORB 34
23411 OpenCORBA 36
2.3.5 Context-aware Systems 37
2351 Guide 37
2352 Cyberguide. 38
2353 PARCTab 38
2.354 Contexttoolkit 39
2355 Cooltown 41
2.4 DISCUSSION o e 42
25 Summary ... e e e e e e 44
Analysis 45
3.1 OVerview 46
3.2 Challengesin Adaptation 46
3.2.1 Coordinated Adaptation 46
3.21.1 Scenario 46
3.21.2 Analysis 47

Vil

3.2.2 Conflicting Adaptation 48

3.221 Scenario 48

3.222 Analysis 49

3.23 Extensibility 49

3.23.1 Scenario 49

3232 Analysis 50

3.24 Userlinvolvement 51

3.24.1 Scenario 51

3.242 Analysis 51

3.25 Conclusions 52

3.3 Requirements 53
3.3.1 RQ1l. Decouple Adaptation Control and Adaptive Actions .54

3.3.2 RQ2. ExportApplicationState 54

3.3.3 RQ3. Export Adaptive Mechanisms 55

3.3.4 RQ4. Enable Modification of Adaptive Behaviour 55

3.4 Summary ... e e e e e e 56
Design 57

4.1 OVEIVIEW e 58
4.2 Architectural Discussiono 58
4.3 Architectural Overview 36

4.4 Application Interface and Communication 65

441 Background 65
4411 Corba 66
4412 Java/lRMI. 67
4413 WebServices 68

4.4.2 Application Interface Design 8 6
4421 Service Interface Definition 70

4.4.3 ApplicationManager L oo o 73

4.5 Internal CommunicationLayer 57

451 Background 75
4511 Jdini ... 75
4512 Elvin 76

4.5.1.3 Cambridge Event Architecture (CEA) 77

4514 Bimbo 77
4515 EventHeap, 78
4.5.2 The Design of the EventManager 79
4.6 System ManagerDesign 00 81
4.6.1 Background 81
46.1.1 Ponder 82
46.1.2 PDL 83
4.6.2 PolicyManager. 84
4.7 PolicyLanguage e 85
4.7.1 ChoosingaPolicy Language 86
47.2 TheEventCalculus. 87
4.7.3 The Event Calculus Policy Language 88
474 Examples 95
4.8 SUMMAIY o e e 99
Implementation 100
5.1 OVerview 101
5.2 Platform Configuration 101
5.2.1 Non Distributed with Local Applications 101
5.2.2 Non Distributed with Remote Applications 102
5.2.3 Partially Distributed Platform 103
5.2.4 Fully Distributed Platform 30
5.3 Prototype 104
5.3.1 ComponentOverview, 105
5.3.2 ApplicationReqistry o L L. 107
5.3.3 ApplicationController 108
5.3.4 EventDispatcher 111
535 SystemManager e 113
5.3.5.1 Evaluationof PolicyRules 114
5.3.5.2 Policy Evaluation Example 119
5.3.6 ApplicationStub o oo 121
5.3.6.1 ApplicationAPI 122

5.4 Platform Operation 125

5.4.1 Platform Initialisation 32
5.4.2 Application Initialisation 126
5.4.3 State Change Notification 126
54.4 Adaptation 127
55 Summary e e e e 127
Evaluation 128
6.1 OVerview 129
6.2 Qualitative Evaluation 291
6.2.1 Applications and Monitoring Tools 3
6.2.1.1 VideoPlayer 130
6.2.1.2 WebBrowser, 132
6.2.1.3 E-mailclient 134
6.2.1.4 NetworkInterface 136
6.2.1.5 PowerMonitor 137
6.2.1.6 Location Monitor, 137
6.2.1.7 User AwarenessModule 138
6.2.1.8 Applications Summary 139
6.2.2 Coordination 139
6.2.3 ConflictResolution 143
6.2.4 Extensibility 0 . 147
6.25 Userinvolvement. 150
6.2.6 Qualitative Evaluation Summary 521
6.3 Performance Evaluation., . 531
6.3.1 Methodology 154
6.3.2 Number of Applications 155
6.3.3 NumberofRules, 156
6.3.4 Rulecomplexity 157
6.3.5 Rulesperevent 159
6.3.6 Performance Summary 160
6.4 SummMary e e e e e e 160

7 Conclusions 162

7.1 OVeIVIEW o 163
7.2 Contributions 165
C1l. The Problem of Uncoordinated Adaptation 516
C2. An Architecture for Supporting Coordinated Adaptation 166
C3. A Policy Language Supporting Temporal Relationships167
C4. Feasibility of Coordinated Adaptation 691
7.3 Future Work 170
7.3.1 Support Conflict Detection 170
7.3.2 Policy Management, 171
7.3.3 Application to Ubiquitous Computing 72
7.4 ConcludingRemarks 173
References 174

Xi

List of Tables

2.1
5.1
5.2
6.1
6.2
6.3
6.4
6.5
6.6

Current adaptive and context-aware systems

Finite State Automata representing Event Calculus Pagzs
Evaluation walk through for a sample policy rule

Video Player: Adaptation Interface

Web Browser: Adaptation Interface
E-mail: Adaptation Interface L.

Network Interface: Adaptation Interface

Power Monitor: Adaptation Interface

Location Monitor: Adaptation Interface

Xii

List of Figures

11
2.1
2.2
2.3
2.4
2.5
2.6
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.1
6.2

Relationship of context-aware adaptive systems
Block diagram of a feedback control system
Basic adaptationcycle
The Coda state transition diagram

The Odyssey system
The Puppeteersystem

Supporting multiple triggers, coordination and recgunfation. . . .
Basic adaptationcycle
Decouple adaptation control and adaptation action

Externalise applicationstate

Externalise application adaptive mechanisms

Architecture for supporting adaptive context-awarngliaptions

A request passing from client to object implementation..
Sample XML description of an adaptive web browser
Application Managers for multiple communication piaits.
Asamplepolicyrule,
Platform configurations
Platform componentoverview
Application registration L.
Forwarding notification events trough the Event Manager. . . .
Applicationstub L o
Value Tree for variable notifications
Applicationstub APl

Sample code: using the applicationstub

Operation of the coordinated adaptation platform

System setup for the evaluation of the adaptation platfo.
Adaptive video player throughan RTCP proxy

Xiii

6.3
6.4
6.5
6.6
6.7
6.8

Adaptive web browser based on a pair of proxies

Notification message from the User Awareness Module

Overhead in relation to the number of applications

Overhead in relation to the number of rules

Overhead in relation to the complexity of therules”

Overhead in relation to the number of rules triggeredrbg\eent . . .

Xiv

. 132
. 138
. 155
. 156
. 158
. 159

CHAPTER |

| ntroduction

Contents

1.1 Adaptive and Context-Aware Applications

1.2 Motivation e
1.3 RoadMapfortheThesis

Introduction

1.1 Adaptive and Context-Aware Applications

During the last decade we have witnessed a significant dtitieacomputing industry’s
focus towards the mobile user. A range of handheld compuighsvarying capabili-
ties are now widely available and technologies providingeleiss communication are
offered in many forms (e.g. GSM [Adams95, Mouly92], IEEE 8(P[IEEE97], Blue-
tooth [Bluetooth99a, Bluetooth99b]) as required by differgoplication domains. This
increasing interest in mobile computing has highlighteslfdct that the characteristics
of mobile environments have significant differences coragap those of traditional
desk-top computing. In particular, mobile environments @ghtly coupled with the
notion of change[Davies98c]. Indeed, mobility is by definition related toaclyes in
users’ environments as they move. Moreover, the charatitsriof mobile devices im-
ply changes related to the availability and quality of reses, such as power supply and
connectivity. These facts have been one of the main driveeeiearch in the area of
mobile computing. From this broad area two dominant re$gtiemes have emerged of
interest to this thesis: the support fapbile adaptive applicationsnd the development

of context-aware systems/ applications

Adaptation became an important research issue during giéélf of the '90s when
efficient support for streaming multimedia applicationswae of the leading research
targets [Campbell94, Diot95]. Most of the knowledge acqliderring this time was
transferred into the mobile world where the requirementftaptation was further in-
tensified by the variation in resource availability suchetswork connectivity and power
supply. Indeed, in mobile environments adaptation has bpphed not just for multi-

media applications, but rather for every system component.

The “birth” of context-aware applications was stimulatgdark Weiser when his
vision of ubiquitous computing required context-awarectionality to be offered by
future mobile systems [Weiser93]. Following the incregdmerest of the computing
industry in mobile computing, a range of new technologies(theld computers, envi-
ronment sensing technologies, etc.) offered new pogssilior applications that can

monitor the user’s environment and modify their behaviaaoadingly.

At a high level, these two trends may appear like two indepahgarallel paths
dealing with different aspects of mobility. The formerem by the inherent restrictions

of mobile technologies (varying network quality, limitedttery life, etc.) is focusing on

Introduction

the development of adaptive applications as a solutionfferiag the best utilisation of
resources. The latter, motivated by the availability of mewironment monitoring tech-
nologies (location tracking, service discovery, etc.)osusing on enriching the mobile
user’s experience through the development of applicatapsble of modifying their
behaviour according to the mobile user’s context withowedtiinteraction. However,
in this thesis we identify that the underlying principles lbmth categories of systems is
the sameapplications that modify their behaviour due to externadiches

Even though present researchers have tended to focus orf threse domains, it is
reasonable to conceive that future mobile systems will doemboth of these charac-
teristics (adaptation triggered by changing network Qafygy availability, user con-
text, service availability, etc.). Therefore, each indual mobile application will allow
adaptation triggered by a variety of different system ortegtual attributes. The con-
sideration of a system that supports such adaptive applisaits the main target of this

thesis.

1.2 Motivation

The importance of adaptation in distributed systems, apaiticular mobile distributed
systems, has been identified by a number of researchersg§®\b, Noble95, Katz94].
In [BadrinathO0] a conceptual framework for network and riliadaptation that fits
most currently available mobile adaptive systems is dieedriln this framework, adap-
tation is illustrated as a mechanism where applicatiorcifipedapters are triggered to
perform modifications on a network stream when certain cea@ge monitored in the
system’s environment or the availability of resources sThgh level description of net-
work adaptation, where the behaviour of the system is mabiifeeording to changes in
the system’s environment bears many similarities with thledviour of context-aware

systems.

Context-aware computing was first defined by Schilit and Tleeif8chilit94b] in
1994 to be software that “adapts according to its locatiamsef the collection of nearby
people and objects, as well as changes to those objectsmedr This early definition

was based on a quite limited notion of context (location araximity). Dey offers a

IHere we don’'t make any distinction between context relatehges (e.g. location) and resource
related changes (e.g. power availability). Indeed for glsimpplication both cases refer to changes that
are external to the application.

Introduction

broader definition of context :

Definition 1: Context is any information that can be used to characterisesttuation
of an entity. An entity is a person, place, or object that issidered relevant to the
interaction between the user and the application, includivguser and the applications
themselvefDey01]

This definition of context can practically include any kinfdimformation that can
characterise the situation of a participant in an inteoactbe that the availability of
resources or the quality of a network channel. In this sesasg application defined as

adaptive in traditional terms, is actually a context-awnagplication.

It may be quite clear that adaptive applications are agtualsub-set of context
aware applications, however not all context aware apjdinatcan fit in the conceptual
framework describing adaptive systems. Indeed, conteare@applications can support

features such as [Dey01]:

e presentation of information and services to a user.
e automatic execution of a service for a user.

e tagging of context to information for later retrieval.

This list includes possible ways that context can be usedh@rdevelopment of
context-aware applications. The second feature identHiesvay that applications can
respond to changes by modifying their behaviour. This isretionality that has clear
similarities to the operation of an adaptive system: chamgake an application modify
its behaviour.

In order to explicitly specify the target domain of this tisesnd also, avoid conflicts

with terminology, it is necessary to define adaptive congexare applications:

Definition 2: Adaptive context-aware applications are applications tmatdify their
behaviour (adapt) according to changes in the applicatocdontext. The term con-
text is used in accordance with definition 1 being any inforamathat can be used to
characterise the situation of an entity.

According to the above definition, the set of adaptive carsevare applications is a
subset of context-aware applications and a superset dfiorzal adaptive applications

(Fig 1.1). Following Dey’s definition of context, the apm@ten’s context can be any

4

Introduction

Context-aware systems

Adaptive context-aware
systems

Adaptive systems

Figure 1.1: Sub-set relationship of context-aware, adaptontext-aware and tradi-
tional adaptive systems

information that characterises the application’s situatiThis can include the availabil-
ity of resources, the preferences of the user, or the existehother applications in the

system that may interfere with the application.

An adaptive context-aware application should be expediduetable to adapt to
a variety of contextual triggers. However, adaptive aians typically consider a
particular resource that is the prime cause of adaptatismally the quality of the net-
work connection), while context-aware applications cdesthe application’external
context. Further more context-aware applications tendat@mo consideration of co-

existing applications that they may share resources with.

The approach followed by existing researchers to isol&ealttimains of adaptation
and context-awareness raises questions about the pasgieations for a system that
should be able to support both adaptive and context-awgukcapons. In particular,
it is not clear how a system should behave when applicatiomsapable of adapting
to both contextual and resource related triggers. Thednotem of multiple context-
aware adaptive applications adapting to a number of diftdvat possibly inter-related
environmental triggers may cause instabilities and umdeks behaviour. Furthermore,
coordination between these applications will need to a®rdboth the abilities of the
applications to adapt, as well as the multiple triggers thay require adaptation. The
problem of coordination and interdependent adaptatioartbér intensified by the fact
that applications are developed with no prior knowledgetbéoapplications that may
coexist at runtime and the effects their predefined behaviay have on the system or
the user expectations (this issue is discussed in detadldtiosn 3). Considering these
observations it is possible to identify a number of potdrdiertcomings or problems
that may occur when adaptive context-aware applicatiams@tocated within the same

system, in an ad-hoc approach:

Introduction

¢ Inefficient use of available resources:Consider a scenario where an applica-
tion that is power-aware may run on the same system with alicappn that is
network-aware (able to adapt in response to changes onélilelae bandwidth).
In a situation where the first application reduces the uséefrietwork in re-
sponse to limited power supply, expecting power consumpbtde reduced, the
second application may monitor the consequent increaseaitable bandwidth
and increase their network usage. As a result of these indiepé adaptations,
the power saving action taken by the first application wowddnkegated by the

actions of the second.

e Conflicts: The previous scenario is actually a case of conflicting adape-
actions of two applications. Given that both applications developed inde-
pendently without awareness of co-existing applicatioitk different adaptation
objectives, it is unreasonable to expect that the apptinatthemselves will be
able to resolve such a conflict without help from a coordingtovided by the

system or the user.

e Disregard of user preferencesMost current adaptive or context-aware applica-
tions either ignore the user involvement in the specificatbbthe application’s
behaviour, or restrict that involvement to the specific stitid context triggers
they are aware of. However, user requirements can havedatigins on the way
applications collaborate. In more detail, allowing theras® specify the be-
haviour of individual applications may not always providsisfactory over-all
system behaviour. Indeed, user requirements may nedessiardinated adapta-
tion of multiple applications. A possible scenario migldlirde a video-streaming
player that will degrade the stream bandwidth when the gsettheir car, in order
to allow timely delivery of traffic information for a co-rumrmyg traffic monitoring
application. Such a configuration scheme would require tesysvide approach
to coordinated adaptation allowing combination of sevétghering attributes
(location and network bandwidth in this scenario) and adrdaver multiple ap-

plications.

e No extensibility: In the two scenarios presented above one solution is to allow
the system to make certain applications aware of more ctugkiiggers than
the ones they were designed for. These contextual triggaysratate to external

contextual information or the state of coexisting applaat The first scenario,

Introduction

for example, could be resolved either by requiring the séapplication to in-
corporate power awareness in its behaviour or to be awarbkeo&dtivities of
other applications in the system. The support for exteligithiowever, can not
be left to the application designers, most importantly heeahe specific exten-
sions that may be required depend on the configuration ofygters and the user

preferences.

In order to understand the reasons that can lead to suchitatdedehaviour taking
place, it is necessary to investigate the fundamental cterstics of adaptation. In

particular, adaptation can be defined as a combination eétbonceptual entities:

e A monitoringentity to monitor a number of contextual attributes that rivegger
the application to adapt. The monitoring entity can eitheepart of an application
or the system itself. The information monitored may be oéiest to more than
one application.

e An adaptation policythat is responsible for deciding if and when the application
should adapt based on the information gathered by the morgtentity. An ap-
plication is designed with a set of policies that impleméwetapplication’s default
behaviour. These default policies cannot perform specigdgse coordinated de-
cisions, mainly because the application developer is nareawf the possible
configuration of the target system.

e The adaptivanechanisnthat performs the necessary changes when triggered by
the adaptation policy. The adaptive mechanism is tightlypéed with the seman-

tics of the application.

Based on these definitions, this thesis claims that the masore for the shortcom-
ings of existing systems supporting adaptive context-avagplications relate to their

design approach. Specifically:

e Adaptive systems tend to couple adaptation policies andtatian mechanisms.
In most cases these are both implemented as a single conpbatis bound to

the semantics of the actual application.

e The monitoring entities offering information about attribs that can cause adap-

tation typically do not allow sharing of that informationtiother applications

7

Introduction

in the system. Specifically, adaptation policies can noaiobinformation about
other monitoring entities related to either the state oko#pplications or new

contextual attributes.

e Adaptation policies are usually hard-coded either withmmadaptive applications
or the system platform supporting coordination. This famsinot allow recon-
figuration of the system and moreover does not allow userdveweent in order

to specify their requirements in relation to the behaviduhe system.

Following these observations this thesis claims that sefftcsupport for coordi-
nation, conflict resolution, extensibility and user inv@ient can be achieved through
the design of an adaptation support platform that satidfie$allowing design require-
ments:

1. Decoupling adaptation policies and adaptation mechenisSince adaptation
mechanisms are generally related to the semantics of afiphs it is necessary
for them to be part of an application’s implementation. Hegreadaptation poli-
cies that define when and how an application should adapigheudecoupled

from the application’s implementation.

2. Externalisation of application state. Monitoring destthat may be part of ap-
plications or system components monitoring the systenvg@mment (e.g. a lo-
cation monitoring module) should externalise that infatiora This would allow
the adaptation support platform to retrieve informatioroas multiple applica-

tions and/or multiple system components.

3. Externalisation of applications’ adaptation mechasisivith the decoupling of
adaptation policies and adaptation mechanisms, an agaptatpport platform
can handle adaptation policies in a system-wide manners flinictionality re-
quires applications to allow the adaptation support ptatfto trigger adaptation
as defined by the adaptation policies. Thus the applicastosild expose an

interface that allows the invocation of adaptation methmdthe platform.

4. Enable the modification of the adaptation policies. Asestaarlier, one of the
reasons for insufficient support for multiple adaptive estdaware applications is
the fact that applications do not have any prior knowledgdefconfiguration of

the end-system and possible interdependencies betweexistorg applications.

8

Introduction

Therefore, the adaptation support platform should allogv réeconfiguration of
the system’s behaviour in order to achieve coordination @ndlict resolution.
Moreover, the user should be able to express their requiveniby modifying the
adaptation policies that govern existing applications.

In order to prove this claim this thesis presents the desigm@daptation support
platform that satisfies the aforementioned requirementss platform uses a policy
based mechanism for specifying adaptation policies. Thsaach allows the modifi-
cation of the system’s behaviour without the need for a rplémentation of either the
applications or the platform. In the process of identifyangolicy language that satisfies
the requirements for adaptive context-aware applicationsw language was defined
that was derived from the Event Calculus logic programmingtdism [Kowalsky86].
The Event Calculus Policy Language allows the definition afpdadtion policies that
can incorporate state information from multiple applica and system components,
invoke adaptation over multiple applications and allowubker to modify existing adap-

tation policies or add new ones.

This thesis also presents a prototype implementation sfdlsign and a thorough
evaluation of the features of this prototype. Specificdtyg ability of the adaptation
platform to invoke adaptation actions in multiple applioas is shown to allow the co-
ordinated adaptation of multiple applications. The incogion of multiple triggering
information is shown to allow the extensibility of existiaglaptive applications by al-
lowing the definition of policy rules that incorporate adulital adaptation triggers from
the default triggers defined by the applications. Finahlg support for modification of
the adaptation policies allows the resolution of conflistd ¢he active involvement of

the user in the specification of the system’s behaviour.

1.3 Road Map for the Thesis

This thesis is established in the following steps:

e Chapter 2 presents an investigation of existing adaptivecantext-aware sys-
tems. The chapter provides a brief historical overview @nativances in adap-
tation and context-aware computing. Following the histroverview, a critical

analysis of existing adaptation systems and context-agygs®ms is presented.

9

Introduction

This critical analysis is driven by a set of criteria quesing the support of ex-
isting systems in terms of coordination, extensibilitycaefiguration and user

involvement. The chapter concludes with a summary of thieal analysis.

Chapter 3 presents an analysis of the potential problemsrtagtoccur when
multiple adaptive context-aware applications are contbinean ad-hoc manner.
In particular, a set of theoretical scenarios are presaniddliscussed. This anal-
ysis allows the identification of some general conclusidrmuathe behaviour of
existing systems and the reasons that specific problemsocam when support-
ing multiple adaptive context-aware applications. Theptdaconcludes with a
set of design requirements that should be satisfied by aoptatthat supports

coordinated adaptation for multiple adaptive application

Chapter 4 presents the design of a platform supporting coatell adaptation
for multiple adaptive applications. The chapter includeisaussion about how
the requirements defined in the previous chapter can be rdapge a platform
that supports coordination, extensibility, reconfiguatand user involvement.
More specifically, the design of this platform requires &mgilons to externalise
their adaptation interface specifying their adaptive na@itms and a set of state
variables reporting their state. The platform uses thossafaces in order to re-
trieve state information from the applications and triggeéaptation as and when
needed. The adaptation control mechanism is realised ghraupolicy based
mechanism. Specifically, the Event Calculus Policy Langusdefined as a pos-

sible language for defining adaptation policies.

Chapter 5 presents the implementation of a prototype impi¢atien of the archi-
tecture for supporting coordinated adaptation. The chaghéatifies the possible
configurations for the implementation of this architectwrith respect to the level
of distribution of the platform’s components. The presgataof the prototype
supporting adaptation on a single host includes a deta#edrgption of the pro-
totypes components and an analysis of the evaluation emgplemented for the

processing of Event Calculus Policy rules.

Chapter 6 presents an evaluation of the prototype platforhis &valuation in-
cludes a qualitative evaluation of the platform’s charasties and a quantitative
evaluation of the platform’s performance. In more detdik gualitative evalu-

ation examines the level of support offered by the prototypterms of coordi-

10

Introduction

nation, conflict resolution, extensibility and user invaivent. The performance
evaluation examines the behaviour of the platform agaisst af scalability fac-
tors, including the number of applications in the systene, ramber of policy

rules, the complexity of the policy rules, etc.

e Chapter 7 summarises the work presented in this thesis. @pé#tention is drawn
to the main contributions of this work and further reseasslues that arise from

this work are discussed.

11

cHAPTER I

Adaptive and
Context-aware Systems

Contents

21 Overview e 13

2.2 The Emergence of Adaptive Systems 13
2.2.1 Adaptive Network Protocols 13
2.2.2 Distributed Multimedia 14
223 MobileSystems. 15
2.24 Context-awaresystems 16
2.2.5 Application Aware Adaptation 17

2.3 Overview of Existing Adaptive Systems 18
2.3.1 Abstracting Adaptation 18
2.3.2 AssessmentCriteria 20
2.3.3 Independent Adaptive Applications 23
2.3.4 Middleware-based Systems 24
235 Context-aware Systems 37

2.4 DISCUSSION e e 42

25 Summary ... e e e e 44

12

Adaptive and Context-aware Systems
2.1 Overview

The objective of this chapter is to provide an overview ofstate of the art in the field
of adaptive systems and to examine current adaptive anéxteatvare systems against
a set of criteria that will be used as the basis for the amafygsented in chapter 3. The
first sections of this chapter provide a historical survegl@felopments in adaptation
and context-aware computing. Next a set of criteria ardoiskeed for a critical analysis
of existing adaptive and context-aware systems. The @itkefined are: the level of
support of existing systems in terms of coordination, esitahty, reconfiguration and
user involvement. A detailed presentation of a range of tajand context-aware
systems is presented in the following sections. Finally ghiapter concludes with a set

of general observations derived from the critical analg$isxisting systems.

2.2 The Emergence of Adaptive Systems

Throughout the history of computer science, the tawhaptationhas been used in a
variety of different contexts. While no uniform definitionrfadaptation has been iden-
tified, adaptation in the field of mobile systems is most comiyndinked to resource

availability [Noble98] or network quality of service [Dag94a, Katz94]. As described
in chapter 1 the target domain of this thesis includes apfptin adaptation triggered
by any type of context. Therefore this overview section @ékcribe advances in both

adaptive and context-aware systems.

2.2.1 Adaptive Network Protocols

Since the Internet was first established the varying charatts of the underlying
infrastructure and the “best effort” approach adopted leyltiternet imposed a require-
ment for adaptive flow control. The transmission controltpcol (TCP) used by the
Internet for reliable communication provides a minimumelesf adaptive congestion
control [Jacobson88]. Specifically, in order to handle mekircongestion TCP uses a
congestion windouwhat determines the amount of data allowed for transmiseiorder
to avoid congestion. TCP increases or decreases the cangestidow in response to
perceived network congestion (i.e. lost segments) in admechieve better utilisation
of the available bandwidth.

13

Adaptive and Context-aware Systems

Since congestion control was introduced in TCP in 1980 seg#drar enhancements
have been proposed to provide more adaptive network balrainoluding adaptive

gueue management in routers and adaptive retransmissierotiits.

With the widespread deployment of wireless communicat®m requirements were
established for offering sufficient support for error pram@nmunication. Early re-
search identified TCP’s adaptation strategy as inappredoatvireless communication
[Caceres94]. Wireless networks are characterised by lekse$o transmission errors
and handoffs. Caceres found that TCP interprets these lossesgestion and invokes
congestion control mechanisms and retransmission of #teségments, degrading the
performance of the communication. To address such probdemsnber of communi-
cation protocols have been developed in order to supporexpbcit requirements of
wireless communication [Bakre95, Amir95].

2.2.2 Distributed Multimedia

With the emergence of the Web at the beginning of the '90sfdbes of the research
community was targeted on the efficient dissemination oftimeldia content. The
prime aim of this effort was the efficient support for reahd video and audio com-

munication over the Internet.

One of the characteristics of multimedia is its high depecgi®n the timely trans-
mission of their data. Video and audio packets that do nafréae destination on time
for playback are considered useless packets. Thus pretsgoh as TCP are unsuitable
for multimedia traffic as they involve retransmission oftlpackets, adding unnecessary
delays.

The Real Time Protocol (RTP) [Schulzrinne96] was introduaed transport proto-
col suitable for realtime multimedia traffic. RTP uses UDRhaesunderlying transport
protocol and time-stamping for controlling the sequenakfiow of packets. Each RTP
packet is time-stamped at the source with the time the patketld be played out at the
destination. The flow of multimedia traffic is controlledaligh the Real Time Control
Protocol (RTCP).

The introduction of the RTP/RTCP protocol allowed the depglent of simple
adaptive mechanisms in multimedia applications. Delaytd#n, for example, uses

buffering at the destination to allow adaptation to vareaicpacket delays (jitter). The

14

Adaptive and Context-aware Systems

well knownvat audio-tool [Jacobson94] maintains an estimate of the geesad stan-
dard deviation of the transmission delay. Based on thesemgdeasvat can compute
a correctly sized play out buffer eliminating any distonsocaused by various packet
delays.

Another research trend that had great impact in the devedapwf adaptive mul-
timedia applications was the introduction of a wide variefymultimedia encoding
schemes. Such schemes include MPEG-1, MPEG-2, MPEG-4,eApQluicktime,
H261, H320, etc. Each of these schemes has different ckasditss in terms of re-
qguired bandwidth, tolerance to packet loss, required CPUepastc.

These transmission requirements expressed by the encpobigrols introduced
the need for a mechanism that can allow applications to egpilgese requirements
to the underlying network infrastructure and request guisea that they can be satis-
fied. The notion of Quality of Service (QoS) refers to the dalgs of a network to
provide guaranties on the quality of service offered to avoet application. Typical
QoS support includes an API that applications can use irr dockxpress their resource
requirements (e.g. maximum delay, throughput, packet jatsr, etc.) and possibly
reserve these resources. When these requirements can adisfieg by the underlying

network the application is notified in order to renegotidueiit requirements.

The combination of QoS support and different multimediaoeiig protocols al-
lowed the development of much more sophisticated adaptidémedia applications.
Typical examples include video tools that can switch betwdiferent encoding mech-
anisms [Davies98a], dynamic fine tuning of encoding pararseif a single encoding
protocol [Yeadon96, Walpole97] (allows adaptation whatew encoding schemes can-
not be changed through the dynamic introduction of filtelis)nulticast environments
like MBONE, tools like vic [McCanne95b] and vat use adaptivehtaques to allow

media streaming over the multicast backbone of the Internet

2.2.3 Mobile Systems

Early developments in mobile computing were mostly conedmmith file system access
and the problems caused by disconnected operation. CODAldkKdg] is a typical
example of a system dealing with disconnected file accessilaéBiproblems but in a

more specific domain were also targeted by projects dealitigdisconnected database

15

Adaptive and Context-aware Systems

access [Demers94].

The popularity of the Web in the Internet gave a push to areaming effort to allow
wireless access to web content. In these efforts the acimaslaifted away from the
disconnected operation and moved to issues concernirapleliransmission of data
over low bandwidth links. The typical network infrastrutwsed by most systems was
based on a client-proxy-server scheme. A web client wagvatido access the content
of a web server through a proxy that was responsible for aés®ary transformation-
s/adaptations before the data was transmitted over thdegdrdink. The techniques
used by these systems included re-encoding of images,daxtression, data perfect-
ing, etc. The result of this effort was the specification & WAP [WAP99] standard
for web access over GSM networks.

The second half of the '90s shaw a shift of the research corityjpwabandoning
special purpose mobile applications using ad-hoc devedoptechniques and moving
towards the development of general purpose middleware édilsnenvironments. Here
the lessons learned by the support for adaptive distribomgitimedia were transferred

to the mobile environment.

The research in the area of middleware for mobile systemgavakstill is) spread
over a wide range of different methodologies and researettitbns. A number of sys-
tems utilised the tuple space paradigm to allow commurnatecoupling across space
and time [Davies98c, Johanson02]. Other systems incagabi@en/reflective archi-
tecture designs in order to allow flexible adaptation [Bl@jrOMiddleware supporting
mobile agents and code mobility was introduced in order lmwaapplications to split
their processing and network requirements between mohdéoa fixed nodes in the

network.

An additional research topic that gradually became immoathe end of the '90s
and beginning of '00s, is the support for low power consumptapplications and

power-aware adaptation [Flinn99, Havinga99].

2.2.4 Context-aware systems

The first generation of context-aware systems was mostlyantied by the visions
of Mark Weiser [Weiser93] and the work on the PARC Tab projeckerox PARC

[Schilit94a]. One interesting characteristic of the firshtext-aware systems is that, in

16

Adaptive and Context-aware Systems

most cases, the only type of context considered was theqaiyscation of the user and

the proximity of other users and services.[Long96, Brown95]

Following the PARC Tab experiment, new research projecesneldd the notion of
context beyond the physical location, including inforroatisuch as the user prefer-
ences, the existence of other users in the surroundingaemaint, the quality of the
wireless network connectivity, etc. [Davies99]. Howewmren these systems followed

an ad-hoc approach to the development of context-awaréapphs.

The end of the '90s and beginning of this millennium was a tintere a lot of
research was focused on context representation and théodment of middleware
platforms that could be used for the creation of context avegplications [Salber99,
Dey00]. However, even today the question “what is contexstill open for debate. To-
day, there are no standards concerning context represendaid most research groups

follow their own proprietary designs.

2.2.5 Application Aware Adaptation

One of the aims of early research in mobile computing was ¢éveldpment of systems
that can provide transparent mobility support. The tardehis approach was to push
all the functionality related to mobility into the systemdaailow applications to operate
as if they were operating in a fixed environment. The spe@&fijcirement for adaptation
was considered a feature that should be provided tranghavathout any involvement
of the application. Systems such as Coda [Kistler91], fomgxa, offers application

transparent adaptation for file system access.

Research in the second half of the '90s indicated that traeepadaptation has
certain limitations. In particular, it is not possible fogmeral purpose adaptation plat-
form to provide sufficient adaptation support for the regoients of all applications.
Noble in [Noble95] suggests the use of application-awar@tation. In particular,
middleware platforms supporting adaptation should naplications about possible
changes in the environment and allow them to adapt. Thisoagprallows applications
to implement adaptive mechanisms that are more fitting tio tequirements. Indeed,
application developers have better knowledge about thesers of the applications.
Therefore adaptive applications can implement their owchrarisms for adaptation

and rely on the middleware platform for general purpose &dim support. A number

17

Adaptive and Context-aware Systems

Disturbance

Controler '

Reference

Value @ —> Actuator —> System
[EE— Comperator

Monitor <«

Figure 2.1: Block diagram of a feedback control system

of middleware platforms follow this trend [Friday96, Bla0 A particularly interest-
ing example is the work on Odyssey [Noble95] where the Codesfitgem offering

transparent adaptation is modified in order to allow appbcaaware adaptation.

The work presented in this thesis follows an applicatiom@mapproach in support-

ing adaptation.

2.3 Overview of Existing Adaptive Systems

As highlighted in the previous section, the physical liidas of mobile environments
along with the increasing need for multimedia and contexdra services drove the
research community towards the adoption of adaptive appesain the development of
such systems. The following sections offer a deeper inyatin of current research in
these areas, revealing their possible limitations in supgpmultiple adaptive context-

aware applications.

2.3.1 Abstracting Adaptation

In order to identify in more detail what are the actual litida of current approaches,
it is first necessary to examine the fundamental mechanigpyosting adaptation.

The theoretical model that has been proposed for descramiagtive systems is
based on feedback control theory [Cen97, Meng00, Kokar99g f€edback control
theory was initially used in engineering for developingdveaire control systems. Fig-
ure 2.1 shows a typical feedback control system. ddwroller helps the system main-
tain a reference value of a control variable, while redudhmg system’s sensitivity to
disturbance. The controller interacts with the systemughomonitorsandactuators
A monitor measures the controlled variable, and is the soofdhe feedback. The

18

Adaptive and Context-aware Systems

Figure 2.2: Basic adaptation cycle

controller’'s output causes the actuator to adapt the systeemaviour in response to

disturbance, or changes in the system’s environment.

In the analysis presented here we propose a simplified cllosgdsystem as the
basic abstraction of an adaptive system, borrowing fromdiggn of the feedback
control systems. This abstraction includes three disfimettional elements (Figure
2.2).

e Monitor: The first element performs the monitoring of a specific sewfinfor-
mation that is ‘interesting’ for the adaptive mechanismisTihformation source
could be, for example, the availability of a specific reseusach as power or a

contextual trigger such as the system’s physical location.

e Controller. The second element is the controlling mechanism that @deisions
concerning the adaptive reaction of the system. This datis based on the
information received by the monitor. This controller cquidr example, state
that when the power supply drops below a specific thresh@d threaction is

necessary.

e Actuator. The third element is the actual adaptation mechanism grébns the
specific adaptive action as directed by the controller. Kamgle, an actuator
might reduce the network bandwidth consumed by an apphicatiote that this
reaction may in turn have an impact on the initial source @rimation, i.e. to
change the rate that the available power drops. This ldsbitween the actuator
and the initial resource being monitored does not necégsxist in all systems.
Most context-aware systems for example do not affect tht@imesource that

triggered their change of behaviour.

19

Adaptive and Context-aware Systems

This theoretical model allows the description of abstractoepts such as “extensi-
bility”, “reconfigurability”, etc. as explicit design chacteristics that adaptive systems
should satisfy. In the next section these abstract coneeptssed as the bases for estab-
lishing a set of criteria for the analysis of existing ade@@nd context-aware systems.

These criteria are defined in relation to the abstract madedaptation discussed.

2.3.2 Assessment Criteria

Before analysing the design characteristics of currenttagapnd context-aware sys-
tems, it is necessary to establish a set of criteria thatguilile this investigation. These
criteria will allow us to establish some general principddé®ut how these systems op-
erate focusing on the issues that are of importance for thrgk.wlhese principles will

be the basis for the analysis presented in chapter 3.

In this thesis we are concerned with supporting mobile systiat consist of a col-
lection of independently developed adaptive context-aveguplications. As described
in Definition 2, adaptive context-aware applications anggiaptions capable of adapting
to a variety of contextual triggers such as the availabdityesources, the preferences
of the user, or the existence of other applications in théesyshat may interfere with
the application. Considering the focus of this thesis we taarly identify a number of

key characteristics that are of importance for this work:

e Each adaptive application may require information abouidewariety of con-

textual attributes that may be used as triggers for adaptati

e The target environment is a system where multiple adapppéiGations will co-
exist and possibly interfere with each other.

e The application developer may not be aware of any possitdef@rence or unde-
sirable side-effects between applications when desigihieig own application.

Based on these observations we define a set of criteria thabvevilsed in the as-

sessment of the existing mobile adaptive and context-asyestems.

20

Adaptive and Context-aware Systems

2.3.2.1 Coordination

In an environment with multiple coexisting adaptive cottaware applications it is
important to support coordinated adaptation (Chapter 3)aptide responses by indi-
vidual applications may have contradicting effects or eaunstabilities [Efstratiou00].
Coordinated adaptation can overcome conflicting situagmasincrease overall system
stability.

Mapping this statement to the theoretical framework of thsidadaptation cycle
(Section 2.3.1) by the termoordinationwe specify the ability of a controller to trigger
actuators that relate to more than one application. In metalda coordinated adaptive
reaction involves multiple applications triggered to pemfi particular actions, in con-
trast to isolated adaptation where a controller triggefg one application. In practice,
this functionality requires adaptation controllers to béedo retrieve information from
multiple applications (i.e. have access to multiple mami entities) and be able to

trigger adaptation on multiple applications (i.e. be abl&igger multiple actuators).

2.3.2.2 Extensibility

As previously described (Chapter 1), the target of this thssto provide support for
adaptive applications able to adapt to an extensible sebregtual triggers. Current
research efforts have already identified certain contéxtiebutes that can become
triggers for adaptation. These include, among others,or&t®oS [Davies98c], power
supply [FIinn99] and physical location [Cheverst00]. Hoeeuwhe possible types of
contextual attributes that may trigger adaptive reactlmnapplications can not be de-
fined as a static set of triggers, since future mobile systdrasld be able to incorporate

new adaptation triggers as and when they become regardetgpagant.

Mapping this statement to the theoretical framework of thsidadaptation cycle,
by the termextensibilitywe specify the ability of a controller to receive input by mor
than one monitor. Moreover, we consider how possible it isafo existing controller
with a given set of monitors to be modified in order to receiyauit by more, possibly
newly created monitors. Most value is given to the abilitysg$tem to allow existing

applications to extend their behaviour without the needdemplementation.

21

Adaptive and Context-aware Systems

2.3.2.3 Reconfigurability

Independently developed adaptive applications are amctstli under a set of assump-
tions that the developer had to make about the target opgrativironment. However,
in environments where multiple adaptive applications igr the same system, it is
expected that interdependencies between adaptive reaaifandividual applications
will lead to undesirable behaviour or even conflicts (Chaptéor a detailed discus-
sion).

In situations such as these, the ability of the mobile systemllow reconfigura-
tion of their adaptive behaviour is vital: under certain ditions applications may be
required to modify the default adaptive strategies definethb developer. Therefore

the system should provide the means for modifying the systadaptive behaviour.

Mapping this criterion into the theoretical framework, e termreconfigurability
we specify the ability of a controller to allow modificatior their behaviour. These
modifications may be considered as related to the previanstytioned criteria. In par-
ticular, the incorporation of additional monitors and attus into an existing adaptation
cycle may require modifications to the behaviour of the aul@r.

2.3.2.4 User Involvement

The importance of user involvement in the operation of adeslystems has often been
neglected in current adaptive systems [Efstratiou01]. system where adaptive be-
haviour may require to be modified, as described in the posvioiterion, user involve-
ment can allow the user to specify the desirable modification

According to our theoretical framework, we require the coliter to allow the user to
inspect its behaviour and potentially modify it accordindtieir requirements. In terms
of existing systems we investigate the ability of the systemrovide user awareness
about its adaptive behaviour and allow the user to modify/lieaaviour.

The following sections present a survey of existing systeppsrting adaptation
and context-awareness. In particular, this survey indystejects that support adapta-
tion following a wide range of design approaches such adicapipn aware adaptation
middleware, mobile agent based middleware, reflective levdare, etc. The context-

aware related section focuses on projects that are relatdtetreactive response of

22

Adaptive and Context-aware Systems

applications to contextual changes, e.g. location trigdeproximity triggered adapta-

tion.

2.3.3 Independent Adaptive Applications

Independent adaptive applications (also known as LaiBagzAdaptation [Noble98])
are applications that adapt independently without the feeany system support. Ap-
plications in this category include commercial system$isagcthe Microsoft Windows
Media Player [Microsoft03] or the RealPlayer [Real03] anctegsh tools, such as Vic
[McCanne95a] and Vat [Jacobson94]. In such systems, agiplisamonitor the avail-
ability of resources and make their own adaptation decssioisolation of other appli-

cations or the system.

The laissez-faire approach provides a substantial bemditsystem support is re-
quired, a feature that is essential for commercial systehesathe operating system is

a fixed commaodity.

However, the laissez-fair approach does not support agfit concurrency: appli-
cations, operate in isolation from the rest of the systerayame of other applications
possibly sharing the same resources. Moreover, the morgtoformation received by
an individual application may not always reflect the mettiest can be achieved by a

system monitor that is aware of all involved parties.

Criteria based analysis:

Coordination: Not possible. Applications act in isolation.

Extensibility: Not possible. Applications have a fixed set of adaptive &igg

that they can react to.

Reconfiguration: Depends on the application, but most available systems tdo no

provide any mechanisms for reconfiguration.

User involvement: Depends on the application, but most available systems do

not allow the user to modify the application’s behaviour.

23

Adaptive and Context-aware Systems

Hoarding

Connection

disconnected

Disconnection

Figure 2.3: The Coda state transition diagram
2.3.4 Middleware-based Systems
2.3.4.1 Coda

The Coda filesystem [Satyanarayanan90] was developed ingiamellon University
as an extension to the work done on the Andrew File SystemggBatayanan85]. Coda
is a highly available replicated file system offering discected operation for mobile
clients. In Coda file servers maintain a state transition meisim consisting of three
states [Kistler91, Mummert95hoarding emulatingandwrite disconnectegsee figure
2.3).

In the hoarding state, a mobile client pre-fetches in thallcache the user’s set of
working files. The pre-fetching can be initiated periodicar at the user’s request. The
set of files to be cached is determined by the hoarding dagdbasis constructed using

file access traces and can be modified by the user.

When the client looses connection with the file server, Codaasmavo the emula-
tion state. In this state the file system allows modificatibthe cached files as if they

were still connected to the file server.

All file access operations performed in the emulation stagel@yged in order to
be replayed when the client re-connects to the file serveraRieyg the logged actions
allows Coda to update the database with any changes took wlaee disconnected.
This update process is performed in the write disconnecdtdd.sAfter the logged ac-
tions have been replayed, the files in the file server are «ate with the files in the

client’s local cache. However, certain situations may mequser intervention. In par-

24

Adaptive and Context-aware Systems

ticular, when the client is connected through a low speedhection, file updates may
take relatively long time. When the estimated time for a fildatp exceeds a certain
threshold (called thpatience thresholduser intervention is required to specify whether
updates should be postponed until a high speed connectestablished. During the
update state, inconsistencies may be discovered. Thesasistencies can be resolved
by either application specific resolvers or by direct useerivention. At the end of the
write disconnected state, if the client is connected to #rges through a high speed
link, the file system moves back to the hoarding state.

Criteria based analysis:

e Coordination: No mechanisms to support coordination are offered.

e Extensibility: Not applicable. Coda is a special purpose system targetsogioh
nected file access.

e Reconfiguration: Coda offers mechanisms to specify how conflicts should be
resolved. However, the general behaviour of the systenmatg sind can not be
reconfigured.

e User involvement: User involvement is required as part of the resolution ofcon
flicts in data updates.

2.3.4.2 Odyssey

The Odyssey system [Noble98] was created as a generatis#tine Coda system in
order to support media-specific adaptive communicatiomfobile clients. As with
Coda, Odyssey works on the assumption that a mobile netwarisis of light weight
mobile clients connected over wireless links to fixed sexvéth high processing capa-

bilities and no power limitations.

The general model of operation is based on monitoring theldesf resources such
as network QoS, CPU and battery power and notifying adapppéications when the
levels of these resources do not satisfy the applicati@wgiirements. When such noti-
fications reach an application, it is the application’s cegbility to perform the neces-
sary adaptations and renegotiate new resource levelshatplatform.

The monitoring and negotiation of resources is performedhgyviceroy. The

viceroy is the common point where all applications exprasg requirements in terms

25

Adaptive and Context-aware Systems

. Odysse
Application yoeey
) > Video Warden
Odyssey Lib s
'§ Web Warden
Upcall Lib
Upcalls /
Net BSD Interceptor
Kernel

Figure 2.4: The Odyssey system

of resource windows (an application will be satisfied as lasdhe resource levels are
within the bounds of the resource windows). The viceroy spomsible for monitoring
the system’s available resources and sending notificatmtie applications when the

resource levels exceed the bounds of the resource windows.

The notifications sent to an application will in most caseginee an adaptive re-
action from the application and a specification of a new resowindow. Odyssey
offers a set of media specific agents that can perform motiditmon the fidelity of
media transmitted over the network, in response to changisgurce levels. Each of
these agents, callednaarden is specialised for a certain media type (video, audio) etc.
and can offer media specific adaptation. For example a videdem can modify the
frame rate, encoding, dimensions, etc. of a video streawrditg to different levels of

required resources.
Criteria based analysis:

e Coordination: Odyssey considers coordination as a mechanism for shaging r
sources between applications. In this sense Odyssey al@xordinated shar-
ing of resources between multiple applications throughvtberoy notifications.
The available system resources are handled by the Odysaéyrpi according to
the requirements of all applications in the system. Whenawedaptive action is
necessary Odyssey can trigger multiple applications agateddowever, this co-
ordination support does not fully satisfy the criterion@fied in section 2.3.2.1

as no explicit coordination of actions is involved.

e Extensibility: In Odyssey it is possible to extend the existing system apgdat
a number of resource attributes that can trigger adaptaitnmuding network
QoS, power, cost, etc. However, any such extension wouldnethe implemen-

26

Adaptive and Context-aware Systems

tation of the necessary viceroys that would deal with théi@dar resource and
the re-implementation of applications that will use thatevoy. The prototype

implementation supports adaptation triggered by changatgork QoS only.

¢ Reconfiguration: The Odyssey platform does not offer any mechanisms for mod-

ifying the default adaptive behaviour of applications @ flystem itself.

e User involvement: There is no support for user involvement in modifying the
system’s adaptive behaviour.

2.3.43 MOST

The MOST system is a collection of tools supporting collabon among field workers

in the power distribution industry [Friday96]. The undénly support for adaptation in

MOST is achieved through an application aware platform taeilitates the creation

of explicit binding objects that encapsulate network catioas between two or more
applications. The explicit binding object allows queryiaigout the connection’s QoS
attributes thus breaking the transparency between theection’s characteristics and
the application. Therefore the applications are able ttop@radaptation in response to
changing network QoS levels.

At the application level MOST supports user awareness. ttiqodar, the MOST
interface offers indications about the quality of the comination links with other par-
ties. These indications however do not give an informatiooud any possible adaptive
reactions that the application might have taken.

Criteria based analysis:

e Coordination: The open binding approach followed by MOST (and by a number
of middleware platforms discussed later) allows the slgaghinformation be-
tween applications. In particular each binding objectvaiononitoring of their
interface by multiple applications. This fact means thailigations can poten-
tially adapt based on information related to other applicetin the system. How-
ever, this cannot be considered as coordination as agphsatio not coordinate
the actions they take.

e Adaptation attributes: MOST supports adaptation triggered by changing net-
work QoS only.

27

Adaptive and Context-aware Systems

e Reconfiguration: There is no built-in support for modifying the system’s adap

tive behaviour.

e User involvement: MOST supports user awareness of the attributes being mon-
itored but there are no mechanisms that allows the user tafynibe adaptive

behaviour of the system.

2.3.4.4 Rover

Rover is a toolkit developed at MIT thattmbines re-locatable dynamic objects and
gueued remote procedure calls to provide unique service&dwing” mobile appli-
cations” [Joseph97]. The Rover toolkit offers applications a distidal object system
based on a client/server architecture. It supports mobitensunication based on two
ideas: relocatable dynamic objec{®kDOs) andqueued remote procedure call@R-
PCs)

An RDO is an object (code and data) that can be dynamicallyeld&ala server from
a client or vice versa. A mobile aware application includesCRDor the data types
manipulated by the application and exchanged with the sevimreover, it defines
portions of the application that run on the client and pagidhat run on the server.
By transferring part of the application’s functionality teetserver, the application can

reduce the client-server communication requirements.

The communication between RDOs is performed through quearadte procedure
calls. QRPCs is a communication mechanism that allows apigisato continue to
make non-blocking remote procedure calls even when a hadisc®nnected. The
gueued requests and responses are exchanged upon neteakeaetion. Conflict de-

tection and resolution is offered by the RDOs involved in asetion.

Criteria based analysis:

e Coordination: In the Rover toolkit each client/server couple is isolateahir
any other coexisting client/server applications. Theawetbere is no exchange of
information between applications and there is no mechatesupport coordina-

tion.

e Extensibility: The Rover toolkit supports adaptation triggered by changigty
work QoS only.

28

Adaptive and Context-aware Systems

e Reconfiguration: There is no system support for reconfiguration.

e User involvement: There is no consideration for user involvement. Such func-

tionality is the application’s responsibility.

2.3.45 TACOMA/TACOMA Lite

The TACOMA project [Johansen97] developed at the Univerdifiromosg focuses on
the idea of code mobility and agent technology. The TACOMAgrboffers a full set
of tools for the development of mobile agents.

TACOMA offers support forweak mobility[Fuggetta98] where individual agents
are responsible for saving their execution state (and plysBitering out unnecessary
state information) before migrating to a new host. This isantrast tastrong mobility
[Fuggetta98] where the system forces the agent to move liygthe agent’s state and
restoring it after migration. Strong mobility is supporteg systems such as Telescript
[White94], Agent-Tcl [Gray96] and Ara [Peine97] while wealohility is supported by
Aglets [Tai99] and Voyager [Glass99].

In order to make the state saving and restoring processrdasithe developer,
TACOMA uses an abstraction of folders, briefcases and mgetperations. Agents
keep their data in folders that they can either carry witlmtlog store in folder cabinets
on hosts. An agent can exchange data with a local or a remet# aging briefcases.

The meet operation is the abstraction of a remote procedlirbetween agents.

TACOMA Lite is an extension of the TACOMA project targetinghigweight hand
held devices. The main difference between TACOMA and TACOM#elis that the
latter provides support for disconnected operation: whenagents need to migrate to

a disconnected host, they are queued and transferred upamection.

Criteria based analysis:

e Coordination: TACOMA supports the exchange of information between appli-
cations. However, this feature alone is not sufficient ehdogallow applications

to coordinate their actions.
e Extensibility: Not applicable.

e Reconfiguration: There is no system support for reconfiguration. The mobile

29

Adaptive and Context-aware Systems

application is responsible for providing the necessarylhaeisms that will allow

different configurations.

e User involvement: There is no consideration for user involvement. Such func-

tionality is, again, the application’s responsibility.

2.3.4.6 Bayou

Bayou [Terry95, Demers94] is a weakly consistent replicaetdbase system that sup-
ports read or update operations by mobile users who may berdiected from other
users as individuals or as a group. The emphasis of thismyisten supporting auto-
mated application specific conflict detection and resofuind on supporting applica-

tion controlled inconsistency.

In more detail, Bayou provides a replicated database sysipposting a variety of
non-realtime collaborative applications, such as shaaéehdars, e-mail and document
editing. Mobile clients can read and/or write to any servigheaut waiting for changes
to be propagated to all servers. Updates are exchangeddyesgevers periodically in

anti-entropysessions in order to achieve consistency between replicas.

However, conflicts in data updates may occur while the agpbio is not accessible.
Bayou supports automatic application-specific conflict ctede and resolution. Appli-
cations providedependency checksid merge procedurethat are used by the servers
in order to detect and automatically resolve conflicts. Eh@®cedures are executed in

each server allowing, eventually, the replicated datalmssach a consistent state.

Criteria based analysis:

e Coordination: No mechanism is provided to support coordination.

e Extensibility: Bayou is designed to support disconnected and loosely ctethec

operation. No other adaptation triggers are considered.

e Reconfiguration: Reconfiguration of the conflict detection mechanism can be
achieved by modifying dependency checks or merge proceduitout the need

for modification of the rest of the infrastructure.

e User involvement: Bayou provides user awareness but it does not offer any

means to modify the system’s behaviour.

30

Adaptive and Context-aware Systems

2.3.4.7 Mobiware

The Mobiware [Kounavis01] system developed at Columbia Ehsity is a middleware
toolkit that controls an open active programmable mobilevoeks [Tennenhouse97].
The termopenhere means network components (e.g. mobile devices, apoass
switches and routers) offer a well defined interface to alloevimplementation of new
signaling, transport and adaptive QoS management algwitin Mobiware these de-
vices are represented as distributed objects based on them@Qo@bject Request Bro-
ker Architecture (CORBA).

The Mobiware network comprises an ATM based programmalbgel firetwork with
wireless access points. Mobiware defines a set of programenadiects that abstract
over certain entities of the networkMobile device objects, access point objeatsl
switch server objectabstract mobile devices, access points and network swgitiehe
spectively. A set of objects that can be located anywher&enfixed network offer
adaptation services. In more detail, t3eS adaptation proxy (QAR)lows mobile de-
vices to probe and adapt to changing resource availabiiy the wireless link. The
mobile agent objectare responsible for managing hand-offs when triggered &yrtb-
bile device.

On top of this infrastructure, Mobiware offers a set of meutias for controlled
hand-offs and mobile soft-state. The controlled hand®t imechanism that permits
graceful hand-off of an active data flow from the network te thobile device with a
minimum hand-off dropping probability. During a hand-afitiated by the mobile de-
vice, a mobile agent triggers the network switches so tretitita flow is delivered to
the mobile device through both access points. Eventuadlynbbile device switches
completely to the new access point and the traffic througloltieccess point is can-
celed.

The mobile soft-state mechanism provides QoS adaptatippostito mobile de-
vices. Mobile soft-state results in the periodic negatiatdof bandwidth requirements
between the mobile device and QAP. A mobile device sendsgierrefresh messages
as part of the soft-state probing mechanism. During theesbfiphase mobile devices
respond to any changes in allocated bandwidth by adapting.

Criteria based analysis:

e Coordination: General adaptation in Mobiware is achieved through a dafes

31

Adaptive and Context-aware Systems

Client

Application

A
DMI Data
y Weak Strong
Link Link
Puppeteer U (O Puppeteer G Data
Proxy * > Server Server

Figure 2.5: The Puppeteer system

mechanism. The goal of this mechanism is to notify the maddgilelications and
allow them to adapt as needed. Therefore the actual adaptatperformed indi-

vidually not allowing any coordination among applications

e Extensibility: The Mobiware toolkit supports adaptation triggered by diag

network QoS only.

e Reconfiguration: The open architecture approach makes possible the reconfig-
uration of the system. In particular the adaptation denisreechanism can be
modified by replacing the mobile agent object with a new omesuch a case,

however, re-implementation of certain objects will be riegpL

e User involvement: No user involvement or awareness is supported.

2.3.4.8 Puppeteer

Puppeteer [deLara01] is a project that provides applinatjgecific adaptive behaviour
to component based applications. Puppeteer is not a fullewdare platform but rather
a methodology for offering adaptive behaviour to existipglacations without modify-
ing the actual application.

Puppeteer requires that an application exposes a run-titedace that allows the
system to view and modify the data it operates on (called thi@ Manipulation Inter-
face - DMI). Their prototype implementation is based on Mgoft's COM architecture
and uses COM and OLE interfaces to manipulate applicatiocts a8t PowerPoint and

Internet Explorer.

The adaptive mechanism comprises an application-specifip&eer client proxy

32

Adaptive and Context-aware Systems

and a corresponding server. The client proxy is responsiblé&iggering bandwidth
adaptation and resource management. It is also in chargebbding and monitoring
the application using the DMI interface. The Puppeteeresasvassumed to have a high
speed link to the data server. It is responsible for parsimguohents, exposing their

structure and fetching document components as requestibe lojient proxy.

When an application controlled by Puppeteer requests a daduorer the Internet
the corresponding Puppeteer client monitors the actua\hetr of the application and
fetches the document according to hard-coded policieseXxample, in the PowerPoint
scenario the client requests the active slide and presetdghe application while it
pre-fetches the following slides in the background, thuksioeng the delay experienced
by the user.

Criteria based analysis:

e Coordination: In Puppeteer each client proxy operates in isolation cdimgo

the corresponding application in an uncoordinated manner.

e Extensibility: The Puppeteer approach requires the development of dexmer
couples that are tightly bound to the actual structure oheadividual applica-
tion. Any possible change to incorporate new adaptatiaibates would require

re-implementation of the client-server couples.

e Reconfiguration: For the same reasons presented in the previous criterign, an
modifications of the behaviour of the system would requiremplementation of

the client-server modules.

¢ User involvement: Due to the requirement for transparency, no user involvémen

is supported.

2.3.49 TAO

TAO [Schmidt98] is a CORBA 2.0 compliant middleware framewthrétt allows clients
to invoke operations on distributed objects without conder object location, pro-
gramming language, OS platform, communication protocOlse of the main aims of
TAO is to provide high-performance, real-time communizatiwith full support for

end-to-end QoS guarantees.

33

Adaptive and Context-aware Systems

A key motivation for ORB middleware is to support reusable dfegvare compo-
nents that handle common tasks, such as interprocess caoation, that can be easily
integrated in an application. TAO aims to extend this fumaaility by allowing dy-
namic reconfiguration of the available ORB components dunstallation or during
run-time. This way an application developer can dynamyoadinfigure the underlying
middleware platform according to their needs. For exanmgolegapplication can config-
ure the middleware’s characteristics in order to take atdggnof the availability of a
high-speed ATM network.

In order for this level of flexibility to be possible TAO defa set opatternswhich
are actually predefined IDL definitions for certain types ofmponents. For example
thewrapper facadgattern encapsulates I/O communication mechanisms lékedbket
API, thereactorpattern encapsulates an event handling and dispatchingamism, etc.
As a result an application can communicate with a middlewareponent through the
pattern allowing the implementation of the component to banged or replaced as
needed.

There is also a version of TAO for handheld devices calledQRB [Roman00].
LegORB takes advantage of the configuration mechanismsdadwy TAO in order
to create a minimal ORB middleware with only the componentgiired to achieve
CORBA compliance.

Criteria based analysis:

Coordination: No support for coordination is provided.

Extensibility: TAO supports adaptation triggered by changing network Qu$ o

Reconfiguration: TAO allows run-time re-configuration of the system through

the modification of the existing components or their rephaeet with new ones.

User involvement: There is no mechanisms to allow user involvement in the

modification of the system behaviour.

2.3.4.10 Open-ORB

Open-ORB [Blair00] is a reflective middleware platform deyeld at Lancaster Uni-
versity. The platform follows a component model where congmts are described by

34

Adaptive and Context-aware Systems

a set of provided interfaces. There is also support forfiates supporting continuous
media interactions. Explicit binding is supported where tasult is a binding object
with an interface that can be used for QoS monitoring. Moeeogomponents have
a built-in event mechanism that can be used to register foficadions on changes of
QoS.

In more detail, every component in Open-ORB has an assoam#ta spacehat
can be used for inspection and adaptation of the underlyifngstructure of the compo-
nent. For example when dealing with a binding object the meddel expressed by the
component could represent an object graph including an M&&gpressor and decom-
pressor and an RTP protocol component. This structure sarbalexposed recursively,
for example the RTP component can expose the two peer comgzaftennected to the
MPEG compressor and decompressor) and a UDP/IP componediiritathe traffic

between the peer components.

The adaptation mechanism supported by Open-ORB consistsotieation of com-
ponents that can be inserted in a components object graph mdexled. More specif-
ically, a monitor component collects statistics on the lef&€oS archived by the run-
ning system and raises events when QoS violations occur.n&ater component is
responsible for implementing adaptation policies in reseao the events raised by the
monitor component. This component s in turn divided into temponents the strategy

selector and the strategy activator which together retis@daptation policy.

One of the important characteristics of Open-ORB is the fa@t tomponents can
be configured or even replaced at runtime. Therefore a péatiadaptation policy can

be replaced by a new one when needed.

Criteria based analysis:

e Coordination: In Open-ORB all network bindings offer an event interface tha
allows applications to register for changes in the QoS ofrtiquéar connection.
Therefore it is possible for multiple applications to regisfor the same events
and coordinate their adaptive reactions. However, aanjesoordination through
these notifications would be entirely the application’passibility and not part
of the functionality offered by the system.

e Extensibility: Open-ORB supports adaptation triggered by changing network
QoS only.

35

Adaptive and Context-aware Systems

e Reconfiguration: Open-ORB allows run-time re-configuration of the system
through the modification of the existing components or theplacement with

new ones.

e User involvement: There are no mechanisms to allow user involvement in the

modification of the system behaviour.

2.3.4.11 OpenCORBA

OpenCORBA [Leboux99] is a CORBA broker based on a reflective ambr.dts archi-
tecture enables the reification of its internal charadies$n order to allow applications

to modify and adapt them at run-time.

OpenCORBA follows a similar approach to Open-ORB (see abovejewach mid-
dleware class is associated withreeta clasghat can be used for introspection and
adaptation. OpenCORBA follows a more transparent approachrtonunication by
offering the meta class as the means for communication \Withatctual middleware
class not allowing direct access to the middleware clas.it3his approach is used
for dynamic adaptation of the underlying communication hagisms. Dynamic adap-
tation mechanisms supported by OpenCORBA include, diffevemmunication proto-
cols (Java RMI, future Corba DII), object migration, objegblreation, etc. All these
adaptive mechanisms can be invoked by the system withaeittaf§ the design of the

application.

Criteria based analysis:

e Coordination: The introspection mechanisms offered by OpenCORBA can be
used by multiple applications to identify the conditionste underlying network.
However, coordination relies on the applications themeselv

o Extensibility: OpenCORBA supports adaptation triggered by changing network
QoS only.

e Reconfiguration: OpenCORBA allows reconfiguration of the underlying net-

work mechanisms used by the platform.

e User involvement: There are no mechanisms to allow user involvement in the

modification of the system behaviour.

36

Adaptive and Context-aware Systems

2.3.5 Context-aware Systems

Many research project are concerned with the developmecbrtext aware systems.

The following sections present some representative ctaigare systems.

2.3.5.1 Guide

The GUIDE [Cheverst00] system has been developed to provgi®ns to the city
of Lancaster with information that is tailored to their cextt The types of context
supported by GUIDE include the physical location of the nebevice, the preferences
of the user, the weather conditions, etc.

The GUIDE system consists of a wireless cellular networkwinhall non-overlap-
ping cells, a set of cell servers associated with each cdlliserconnected through a
fixed network, and a number of mobile devices (such as taliletdhd PDAS). The lo-
cation of the device is determined by the specific cell thattiobile device is currently
in. The cell servers periodically beacon a location id. Tagation id is used by the
mobile device in order to give information to the user abbetlbcation they have just
visited. The user interface offered by the GUIDE system isaalifred web browser.
In particular the web browser tailors the information presd to the user according to
their preferences or attraction related attributes, ssahthe attraction is closed.

Criteria based analysis:

e Coordination: Not applicable. GUIDE is a single application system.

e Extensibility: In the GUIDE system the support for specific contextual &igg
is hard-coded within the application. Therefore extendhmysystem to support

new contextual or adaptation attributes would requirenmplementation.

e Reconfiguration: The behaviour of the GUIDE system in terms of adaptation or
user notification is hard-coded within the system. Theredisupport for recon-
figuration of that behaviour.

e User involvement: The user involvement is limited to the specification of derta
contextual attributes, such as their interests and pretese

37

Adaptive and Context-aware Systems

2.3.5.2 Cyberguide

Cyberguide [Long96] is a location based context-aware indoabile tour guide. Vis-
itors at the GVU Centre at Georgia Tech carrying Apple MesBagds retrieve infor-
mation according to their location and orientation. Theatamn tracking mechanism
used by the Cyberguide is based on information gathered freeni@s of ceiling based
infrared sensors. Each sensor sends a vertical infrarad begering a small cell. As
the user moves from one cell to the other the Cyberguide aijait can identify the

location and assume the orientation of the user.

In terms of architecture, Cyberguide follows a modular apphowhere the system
is composed of special purpose components such asathgator (positioning compo-
nent), thecartographer(map component), thigrarian (information component) and
themessengefcommunication component). Each of these components ceepleced

with a new implementation without affecting the rest of tigstem.

e Coordination: There is no system support that controls or coordinatesghk-a
cations’ behaviour.

e Extensibility: The modular approach used by the Cyberguide makes it possible
modify the existing functionality. For example there hastba prototype where
the location mechanism has been replaced with a GPS basetHonever, it is
not possible to add more contextual attributes without riyouj the rest of the

system.

e Reconfiguration: There is no support for reconfiguring the systems behaviour

without re-implementation.

e User involvement: The user cannot modify the system’s behaviour.

2.3.5.3 PARC Tab

The PARC Tab [Schilit94a] is a project developed at Xerox Raran attempt to realise
the vision of ubiquitous computing described by Weiser §#e93]. In the PARC Tab
project users carry small custom built hand-held devicasubke infrared as a commu-
nication and location tracking mechanism. The system igded for indoor operation

where each office acts both as a communication cell and aidocaentifier. One of

38

Adaptive and Context-aware Systems

the characteristics of PARC Tab is the sharing of contextfalmation among partic-
ipants. Therefore it is possible to extend the locationnmiation gathered with things

like proximity of other users or physical objects.

The underlying infrastructure of PARC Tab uses general me&ponfigurable mech-
anisms that describe how context should be used. In patjgchkautomatic contextual
reconfigurationallows the system to modify the information presented touber ac-
cording to the location of the user or the proximity of otheers. Thdocation based
commandsllows the execution of programs according to the physmedtion of the
user. Finally thecontext triggered commandse a simple event language where users

can defined notification messages when certain contextibadiarare fulfilled.

e Coordination: The PARC Tab does not offer any mechanism for coordinating

the execution of context triggered commands or programs.

e Extensibility: Even though the PARC Tab is based on a very flexible archi-
tecture, all the mechanisms provided are coupled with tbation information.
Therefore the incorporation of new types of adaptationkattes would require

re-implementation of the system.

e Reconfiguration: The PARC Tab system offers a wide range of configuration
mechanisms allowing the users to tailor the behaviour ofyfstem to their own

needs.

e User involvement: The user can actively specify or modify the behaviour of the

system.

2.3.5.4 Context toolkit

The Context toolkit [Salber99] is collection of tools thatetio provide reusable context-
sensing components that can by used for the developmenhtehd@aware applications.
The design of the Context toolkit is influenced by the desiggraphical user interface
toolkits. More specifically the Context toolkit is built anodi the notion of context
widgets: components that encapsulate the context adquisitechanism and provide a
well known interface. Examples of context widgets includeitientity presencevidget
that gives information about the presence of a person in e@fgpcation, theactivity

39

Adaptive and Context-aware Systems

widget that provides information about the level of activsiensed in a room or the
phone usevidget.

The design of the Context toolkit is based on the combinatiothiee types of
entities:

e Context Generator: A context generator is the componentit@iires raw data
from a sensor and provides it to a widget. A context generedoitd be, for

example, a GPS driver, an active badge reader, etc.

e Context Interpreter: A context widget should provide theformation in a given
format possibly different from the raw data received by aterhgenerator. A
context interpreter is the component that interprets twe data received by a
generator to the format that should be exposed by the widget.

e Context Server: A context server acts as an aggregation weogabining several
widgets in order to provide higher level contextual infotima. For example a
combination of the identity presence and the activity widgeuld be used to
create aneetingwidget.

The implementation of the context toolkit is based on theaiséML for describing
the attributes offered by a context widget. An applicatian cegister with a widget for
notifications describing conditions under which a notifimaishould be fired.

e Coordination: Not applicable. The prime target of Context toolkit is to pd®/
a flexible mechanism for an application to acquire contdxtifarmation. The
issue of coordination is the application’s responsihility

e Extensibility: The use of a general mechanism for the specification of new con
text widgets allows the easy incorporation of new adaptaitributes in the Con-
text toolkit. However an existing application would needtmodified before it

could take advantage of a new widget.

e Reconfiguration: Automatic reconfiguration of widgets can take place transpa
ently by switching between different context generatorsth& application level

it is the developers responsibility to provide such funadility.

e User involvement: The user can not actively modify the system’s behaviour.

40

Adaptive and Context-aware Systems

2.3.5.5 Cooltown

Cooltown is a project developed by HP Labs to support “webees” for people,
places and things [Kindberg01]. The main idea behind Coaitmthat every entity in
the real world (person, place or object) is given a globatljgue URL that provides
information about the particular entity. A roaming user ciscover the URL corre-

sponding to an entity and retrieve information related & #ntity.

In general the Cooltown project utilises the web paradigmrdento allow easily
configurable access to context related information. Speadlifj the user can retrieve

information about entities that close to their current tama

In terms of infrastructure, Cooltown assumes that roamimgulsave a mobile de-
vice that is connected to the World Wide Web (possibly thtoagvireless link). The
mobile device can discover or sense the URL locator that spords to a particular
entity. Cooltown supports three methods of acquiring the U&tated to real world en-
tities. Specificallydiscoveryincludes a protocol for service discovery where the user’s
device multicasts a request for all entities in their enwin@nt and receives their cor-
responding URLsDirect sensingncludes a mechanism where entities advertise their
web presence by sending a wireless signal in form of a bedduemobile device can
receive this beacon when it gets close to the related etitisythen possible to automat-
ically load the related URL to a web browser and see informadioout the entity. The
indirect sensingnechanism follows the same approach as the direct sensimgsbead
of using a mechanism to advertise the URL directly to the neotbdvice, other means
are used as a lookup key to discover the URL related to theyeRtt example, through
the reading of barcode keys the mobile device can requesiffiefor the entity that

corresponds to the particular barcode.

e Coordination: The Cooltown infrastructure does not include any supportéer

ordinating or controlling multiple entities in the userisvedonment.

e Extensibility: The model of automatic discovery and the use of a standard com
munication protocol (HTTP/HTML) allows the connection obhile devices to

any available entity in their environment.

e Reconfiguration: Considering that the Cooltown project does not concern the
adaptive behaviour of applications the requirement foomégurability of the

system’s behaviour is inapplicable.

41

Adaptive and Context-aware Systems

Project Coordination Extensibility Reconfiguration User Involvement
Stand alone No No No No
Coda No No No No
Odyssey Possible Possible No No
MOST Possible No No No
Rover No No No No
Tacoma Possible No No No
Bayou No No Yes No
Mobiware No No Yes No
Puppeteer No No No No
TAO Possible No Yes No
Open-ORB Possible No Yes No
OpenCORBA Possible No Yes No
Guide No No No No
Cyberguide No Yes No No
PARC Tab No No Yes Yes
Context Toolkit No Yes Yes No
Cooltown No Yes No No

Table 2.1: Current adaptive and context-aware systems: dsufiy non-transparent
adaptation, extended adaptive triggers, reconfiguratioiruger involvement.

e User involvement: The user is mainly a spectator that receives information.

2.4 Discussion

The review of existing systems presented brings out soreegsting characteristics (Ta-
ble 2.1). In particular it is possible to identify common ggscharacteristics followed

by certain groups of approach. In more detail:

e Stand alone adaptive applications appear to be quite ibfeexa terms of coor-
dination, extensibility and reconfiguration. This is quiasonable considering
that a stand alone application can only consider their owir@mment and serve

a specific purpose as expressed during the design of theatt.

e Mobile systems tend to target a limited range of contextttaibates that can
act as adaptation triggers. In most cases these attribrga®lated to the QoS
offered by the network. In some cases the design of the mejpdems offer the
mechanisms to share application state information. Howewerdination based

on that shared information is generally not supported.

42

Adaptive and Context-aware Systems

Mobile
Systems

Open
Architectures

Extensibility

Context-aware
Systems

Stand alone
applications

Reconfiguration

Figure 2.6: Supporting multiple triggers, coordinatiom aeconfiguration.

e Open architectures (such as TAO, Open-ORB and OpenCORBA) duffgxible
reconfiguration of the system’s infrastructure. The use reflactivedesign seen
in these systems, allows components within the system to dmified or even
replaced during run-time without affecting the operatibthe applications active

in the system.

e Many of the context-aware systems try to support an extensiiechanism for
accessing new contextual attributes that may be of intevesbbile applications.
However, in most context-aware systems the actual adapgkaviour (i.e. how
an application responds to context changes) remains p#reohdividual appli-

cation. As a result coordination between applications tgeasible to achieve.

A very interesting observation is apparent if we try to laysérg research efforts
in a three dimensional diagram wheggtensibility coordinationand reconfiguration
are the three axes (Figure 2.6). In this diagram it is cleat ¢élach individual research
domain is targeting one or in some cases two of these chasdicte However there has
been no effort to support all three characteristics in tmeesgystem. It should be noted
that the issue of user involvement is not represented indiaigram. As discussed in
chapter 3 user involvement is consider a cross-cuttingifedhat extends over all these
issues. In chapter 3 we provide an analysis of the implioatior systems that do not
take into account all these characteristics and highligatrequirements for a system

that overcome these problems.

43

Adaptive and Context-aware Systems

2.5 Summary

This chapter offered a review of existing research in thasof adaptation and context
awareness. In more detail, a brief overview of the emergeh@aptation is given
including references to distributed multimedia systemepihe systems and context-
aware systems. The chapter then provides an in-depth redi¢hhose adaptive and
context-aware systems relevant to this thesis. The rea®&ased on a set of assessment
criteria, namely:coordination extensibility reconfigurationanduser involvementFi-
nally, this review concludes that no existing systems mle\full support for all these

characteristics. An analysis of the importance of this figds given in chapter 3.

44

cHAPTER ||

Analysis

Contents

3.1 OvVerview e 46

3.2 Challengesin Adaptation 46
3.2.1 Coordinated Adaptation 46
3.2.2 Conflicting Adaptation 48
3.23 Extensibility o 49
3.24 Userlinvolvement 51
3.25 Conclusions. 52

3.3 Requirements 53
3.3.1 RQ1. Decouple Adaptation Control and Adaptive Actions . 54
3.3.2 RQ2. ExportApplicationState 54
3.3.3 RQ3. Export Adaptive Mechanisms 55
3.3.4 RQ4. Enable Modification of Adaptive Behaviour 55

34 SUMMAIY 56

45

Analysis
3.1 Overview

As presented in the previous chapter, existing adaptivecantext aware systems are
targeting specific areas within the domain of adaptive cdraware systems. This
chapter presents an analysis of the design principles thadrg existing approaches
and advocates the need for a new approach. In particulat, @ seenarios is pre-
sented that illustrate the limitations of existing systemsupporting multiple adaptive
context-aware applications within the same system. Eatesk scenarios is followed
by an analysis section that identifies the limitations ofdkeign approach followed by
existing systems and introduces a possible approach tecawerthem. Lastly, a set of
design requirements is presented for a system that canssfialie provide support for

multiple adaptive context-aware applications.

3.2 Challenges in Adaptation

This section illustrates possible limitations in existsygtems and gives a short analysis
on the reasons behind these limitations. The analysis dfefdbe issues presented will
use references to the theoretical model of the basic adaptatcle presented in section
2.3.1.

3.2.1 Coordinated Adaptation
3.2.1.1 Scenario

This scenario illustrates how the lack of coordination ewadaptive applications can
lead to inefficient power management on a mobile system. Qisérey approach for
handling power management, i.e. the ACPI [ACP99] model, isnimbe the operat-
ing system to switch hardware resources into low power moldenwnot in use, e.g.
spinning down the hard-disk. This approach requires thpliggiions leave hardware
resources in an idle state for sufficient periods of time t&ernthe transition between
idle and active states worthwhile. Although this approackuitable when only one
application is running on a mobile device, the approach cawepineffective when
multiple applications or system services are sharing harewesources. In more detail,

the lack of coordinated access to hardware resources aahiregoor utilisation of the

46

Analysis

shared resource and therefore sub-optimum power managefoe®xample, consider
the case of multiple applications that implement an aut@ $aature. In the absence of
any coordination between applications each applicatiop ch@ose to checkpoint its
state to the disk at an arbitrary time, without considerhgdtate of the disk (i.e. spin-
ning or sleeping). In contrast, if applications are abledordinate their access to the
hard-disk then access to the disk can be clustered, alloenger periods of inactivity.
It follows that the latter approach is more power efficierartithe situation in which
usage of the hard-disk is completely unregulated.

Further scenarios illustrate the benefits of coordinatidrenvtaking into account
the user experience. For example, a mobile device that isexted through a low
bandwidth wireless link would typically experience netlwaongestion: coordinating
network applications so that applications less importatié user suspend network ac-

tivity in favour of the more important ones could provide aahietter user experience.

3.2.1.2 Analysis

The termcoordinated adaptatiomefers to the ability of an adaptive system to invoke
adaptive reactions on multiple applications in a coordidahanner so as to achieve a
common goal. In the scenarios presented, coordinatedataaptvould be required in
order to overcome the power inefficiency and to satisfy tleesieequirement for a more
efficient utilisation of the limited network bandwidth.

As illustrated in chapter 2, existing systems offer limiggport for coordination.
In particular, most context-aware systems do not consltesupport for coordinated
adaptation between multiple applications. The designcjple behind these systems
that restricts their support for coordination is the faatthctuator components and
control mechanisms are usually hard-coded within the eggtins. Therefore its appli-

cation is only capable of triggering adaptation to itself.

In contrast, some mobile platforms are trying to offer a fasfncoordination in
terms of resource sharing. This limited support for coamtion is based on the fact
that adaptation support platforms can collect informattout the state of existing
applications and use that information in order to shareesysesources according to
the applications’ needs. However, this approach has itgaiions. In particular, the
adaptation support platform does not have any control dxeeatlaptation actions taken

by the applications. This is again related to the fact thapgation mechanism and

47

Analysis

adaptation control is encapsulated within the application

The design approach where application state informatiarbeaaccessible by exter-
nal entities and the fact that adaptation mechanisms artdotane encapsulated within
the application have influenced the proposition of requéeet® R1 and R2 (Section 3.3).

3.2.2 Conflicting Adaptation
3.2.2.1 Scenario

In this scenario, we illustrate the potential problems &t occur in a system that
utilises separate adaptation mechanisms for differenbates. We consider a hypo-
thetical mobile system that utilises two independent aatapt mechanisms, one for
managing power and the other for managing network bandwidik two mechanisms
can conflict with one another as the following example illatgs. If the system needs
to reduce power consumption, the power management meamaviis request those

applications that are utilising network bandwidth to posip their usage of the net-
work device in order to place the network device into sleep@@s a consequence of
applications postponing their use of the network, the ata network bandwidth in-

creases. However, the network adaptation mechanism wéttthis unused bandwidth
and notify applications to utilise the spare bandwidth.hiis tvay, the request to utilise

available bandwidth is in direct conflict with the requesptstpone network usage.

This example highlights the problem of relying on indeperidend uncoordinated
adaptation mechanisms. The reason behind conflicting casésas these is the fact
that adaptation control entities have no knowledge abausthte of other applications
in the system and the possible interdependencies of adapgations of multiple appli-
cations. A system supporting multiple adaptive applicaishould provide the mecha-
nisms to resolve potential conflicts. In particular, thdigbio reconfigure the adapta-
tion support system and/or the adaptation controllingnfithe applications is of great
importance. Indeed, a system that allows reconfiguratidhowt re-implementation of
the applications would allow the resolution of such corlict

48

Analysis

3.2.2.2 Analysis

In a system with multiple adaptive context-aware applaaticonflicts will inevitably
occur. The actual reason behind conflicts is the lack of avem® of the application
developer of the characteristics of the target system am@alsible interdependencies
between applications, or the possible side-effects ohoeddaptive reactions that may
affect co-existing applications in such environments.

In the scenario presented here the network triggered agaggaplication is unaware
of the importance of power consumption in the adaptaticetetsy employed by other
applications in the system. The solution in this scenarto imodify the control mech-
anism that triggers adaptation in this application so thatili take into account the
available power of the system. Generalising this approaxst conflicting situation
can be resolved by modifying the control mechanisms in tlaptdion cycles of the
involved applications.

Existing mobile and context-aware systems appear to bdeit@besolve such con-
flicting situations. Indeed, such systems keep the contechanism of adaptation hard-
coded within the system and therefore do not allow any madiba. In contrast, open
architectures allow for such modifications and as a consemuthese conflicts could
be resolved by modifying or replacing an existing controchnism with a new one.

These facts lead to the specification of requirements R1 aneg&etided in section 3.3.

3.2.3 Extensibility
3.2.3.1 Scenario

This scenario considers the extension of an existing agpdic with the inclusion of
additional contextual triggers. In this case, we consideommon MP3 player ap-
plication able to playback local audio files. Assuming timas$ application is used on
a mobile environment supporting location-awareness ailpigstesirable extension of
the application would be to allow the automatic control & filayer’'s volume based
on the user’s context. For example, an interesting featouéddnclude the automatic
turning down of the player’'s volume when the user is walkimgtgh a shared office

space or when they pass in frond of office doors.

This feature would require the incorporation of a new cotualattribute to the

49

Analysis

existing application. Assuming that the functionality fowering the volume down is
already implemented by the application, this scenario eas a mechanism where
this functionality can be triggered when the location of tiser changes. In practice it
requires the addition of a control mechanism that can retiiecation information from

the environment and trigger the particular function on the3\player.

3.2.3.2 Analysis

One of the characteristics of adaptive context-aware e@iphins is the fact that they
may be triggered to adapt to a variety of different contelxattributes, be that the
availability of a specific resource, or the user’s context.

The survey of existing systems presented in chapter 2 rede¢lat existing system
support a limited number of possible adaptive triggers.drtipular most of the mobile
middleware systems consider only the network QoS as a pedsidpger for adapta-
tion. Moreover they do not offer any mechanism to extend thigpport for adaptation
triggered by other environmental attributes. This featsreeflected in their design
approach by the tight coupling of their monitoring mechamand their control mecha-
nism. In more detail, mobile middleware systems, such as€aly Coda, Most, Mobi-
ware, etc. have the adaptation control mechanism as a bdetielement within their
middleware infrastructure. A similar approach is presery all application specific
systems, such as GUIDE, Puppeteer, etc. where the mogtamnithcontrol mechanisms

are hard-coded within the application.

A different approach is used by systems offering middlevsaneport for context-
aware systems, such as the Context-toolkit and Parc Tabese thystems the context
monitoring mechanism is decoupled from the actual contretimanism that triggers
adaptation. This allows the introduction of new contextuggers into the system with
minimal effort. Indeed, a system that decouples the mangoentity and the control
entity and uses a well defined method for connecting the atlaptcontroller with mon-
itoring entities would support extensibility. The obsdiva leads to the requirement R3

(Section 3.3) for the externalisation of application stafermation.

50

Analysis

3.2.4 User Involvement

3.2.4.1 Scenario

This scenario considers the case of two applications, goti@daveb browser and an ap-
plication for viewing a video stream, competing for the saesource, (network band-
width). In particular, following a drop in available bandith the two applications could

react using one of the following adaptive strategies:

1. The web browser could stop downloading in order to deditafportion of band-
width to the other application.

2. Both applications could adapt and share the availableviidttuequally.

3. The video viewer could adapt by reducing its bandwidtiumregnent, e.g. by
reducing its frame rate, in order to enable the web browseititise a greater

share of the available bandwidth, e.g. if an important doadlis taking place.

The reaction that would be most appropriate depends on #rsuequirements and
additional contextual information, such as the importamica particular download. In
order for the two applications to adapt differently unddfedent conditions there is a

clear need for reconfiguration of the adaptation policiedigsted by the user needs.

3.2.4.2 Analysis

The need for reconfiguration has been illustrated by almibstanarios presented in
section 3.2. In all presented cases an existing problemdnogilsolved by modifying

the way some particular adaptive decision is being takem stenario presented here
extends the notion of reconfiguration by introducing thelmement of the user on the

way the system should behave.

In the systems presented in chapter 2 it is clear that themdask of support for
reconfiguration in most system types. This inability to r#agure is directly related
to their design approaches. In more detail, both mobile tagapystems and context
aware systems typically have their decision mechanismgledwvith their monitoring
mechanisms or their adaptive mechanisms. Therefore, dtipossible to modify the

behaviour of the system without altering their overall destture.

51

Analysis

A different approach is used by the open architectures. Mpeifically, open
architectures follow a modular approach where all comptanare distinct entities with
predefined interfaces bound together. This approach atleevpossible replacement or
modification of a system module without affecting the reghefsystem. The Open-Orb

in particular allows such replacements to take place eveinglountime.

However, even in open architectures, the user involvenretite specification of
the system behaviour is neglected. Any modification or régaration that can be
done in these systems requires the re-implementation dfytsiem part that needs to
change. Therefore the possible reconfiguration choiceprascribed by the system
developer who has to include any alternative configuratmattsn the deployed system.
Moreover, any possible reconfiguration actions can onlydréopmed from within the
system which again leads to the system developer as the oskjlpe actor that can

specify the system’s behaviour.

The lack of a mechanism where the adaptation mechanism camtéied by the
end user implies a requirement for reconfiguration of theptda control mechanism

without the need for re-implementation (requirement R4).

3.2.5 Conclusions

Any simple adaptive system follows the basic adaptatiomecyresented earlier. How-
ever, in a system where several applications or multipig&ring attributes exist adap-
tive decisions and actions my depend on information thahss&veral applications
and information sources. Therefore, it is important for tinelerlying adaptation sup-
port mechanism to allow adaptive decisions to consult setsaof different adaptation

attributes and trigger adaptation on a number of coexistpications.

As illustrated in the previous sections, existing systetffisr dimited support for
these features. In more detail, most of the existing systelasv a design approach that
couples the decision mechanism with either the monitorieghmanism or the adaptive

action.

As seen in scenario 3.2.2, an adaptive mechanism that geted in order to re-
duce the level of power consumption may have a side effechenevel of available
network bandwidth of the system. These side effects are #ie cause of conflicts. In

a system with multiple adaptive applications it is reaste&bexpect that conflicts will

52

Analysis

happen. However, as these conflicts are highly dependeheasctual configuration of
the end system, it is not realistic to expect that the apiptinadeveloper would be able

to provide appropriate conflict resolution mechanisms arpri

As a solution to these problems the system should be ablectmfigure itself in
order to overcome these conflicts. In most cases the apptbathllows conflict res-
olution is to coordinate the applications’ adaptive bebaviin a suitable way. Coor-
dination can be considered as a desirable feature for theiggrdnot only in terms of
conflict resolution but also in significantly improving thear experience, as described
in scenario 3.2.4. In an abstract sense, the system shoubltk ac glue that will co-
ordinate applications and system components in order dwatem to collaborate in
harmony without conflicts or undesirable behaviour. In ofdethis functionality to be
achieved it is necessary for adaptive applications toolalesign where all three enti-
ties described in the adaptation cycle are decoupled aadyléentifiable. Moreover,
the system supporting adaptation should be in charge ofdh&atling entities of the
applications’ adaptation cycles. This way the adaptatigrpsrt system would be able

manage and allow reconfiguration of the adaptation behawitiine applications.

Another issue that is apparent from the scenarios is thardézss of whether co-
ordination, conflict resolution or user involvement is cemed, the participation of the
user in specifying the system’s behaviour is vital. Howgewemost current adaptive
applications the adaptation policies are not distinct elet® within the adaptive cy-
cle. Indeed, adaptation policies are typically hard-cod@tlin either the monitoring
process or the adaptive mechanism. To allow the necessaslydecontrol over the
behaviour of the system the adaptation policies must beugged from the adaptation
mechanisms themselves. Moreover, these policies showdfireed in a language flex-
ible enough to allow the specification of conditions that carhude multiple triggering
events that may be introduced in the system over time.

3.3 Requirements

The previous section has analysed the limitations of ctiapproaches for supporting
adaptive context-aware applications. In particular,ereggoroaches lack the appropriate
support for enabling applications to adapt to numerougfit attributes in a coordi-

nated and reconfigurable way. A new approach is therefonaireztjwhich provides

53

Analysis

support for coordinated, system-wide interaction betwasaptive applications and the

complete set of attributes that could be used to triggertatiap.

This section considers a set of requirements that could & tasdevelop an appro-
priate architecture for supporting adaptive mobile agions.

3.3.1 R1. Decouple Adaptation Control and Adaptive Actions

One of the issues described earlier is the lack of suppoddordination in existing sys-
tems. This is caused by the lack of awareness of applicagwaldpers of the possible
configuration of the target system and thus the applicatibaswill co-exist at run-
time. Therefore, in order to design a system where multipf@dieations can coordinate
their adaptive behaviour it is not feasible to rely on apgtliens to achieve coordina-
tion without external support. As described in section2Bthe ability of a system to
support coordination is expressed through the ability efpdation controllers to trigger
adaptation to actuators of multiple applications. Comlygrtime two observations it is
clear that supporting adaptation would require the colmigplentity to be handled by
the system so that adaptation triggering can be directedot@ than one application
at once. In order to achieve such a feature it is necessargdougle adaptation con-
trollers and the implementation of the adaptation mechmasid hrough this decoupling
we can construct a system component responsible for hgnttienadaptation control
mechanisms of all applications in a system, taking into antmterdependencies and

required coordinated operation.

3.3.2 R2. Export Application State

Supporting both extensibility and coordination requirasadaptation mechanism that
can take into account information about the state of matggplications and/or infor-
mation collected from context-monitoring entities. Foample, the fact that a video
player is actively streaming video over the network may bengfortance to other net-
work based applications when choosing to adapt. Theredmu@ications should exter-
nalise information about their state and allow adaptationtrollers to take that state
information into account. Moreover, system componentsriaitor contextual infor-
mation should externalise that information in order to\alladaptation controllers to

have access to that contextual information.

54

Analysis

3.3.3 R3. Export Adaptive Mechanisms

Following the requirement for decoupling adaptation coitnechanisms and adapta-
tion methods it is necessary to define the necessary regemtsrthat allow the adapta-
tion controllers to invoke adaptation methods. As discdssesection 2.3.2.1 adapta-
tion methods are in general bound to the semantics of thelagpplication. Indeed, the
adaptation methods that an application can support depairdlg on how the actual

application is implemented. It is the application develdapat implements an applica-

tion in a way that permits certain adaptive behaviour to bréopmed.

Following this observation, a system where adaptationrotiats and adaptation
mechanisms are decoupled should include a mechanism wHaptivee applications
can export their adaptation interface. In more detail, i@ppbns should allow adapta-
tion controllers to dynamically inspect the applicatioadaptation interface and invoke

adaptive mechanisms as and when needed.

3.3.4 R4. Enable Modification of Adaptive Behaviour

Adaptation support systems should provide a mechanismendqgplication adaptation
control can be reconfigured without the need for re-impldiaden of either the ap-
plication or the adaptation support platform. Moreoveg ttesign of the adaptation
controller should allow modifications by the end user thimnahg the user to explic-

itly specify how the system should behave.

This requirement for modification of the adaptation contn@chanism is perhaps
the core requirement for tackling the issues presentedctioge3.2. Overcoming con-
flicts in most cases would require modifications of the adaptacontrol mechanisms
of the conflicting applications. Improving the use of systesources may be achieved
by coordinating the adaptation on multiple application$isTcould be done by hav-
ing adaptation control mechanisms that can invoke adaptafi multiple applications.
User preferences could be expressed by modifying the belwawi existing control
mechanisms to better suit their needs. Extending the betiaef an existing applica-
tion, adding awareness of more contextual attributes doeilachieved by appropriately
modifying their control mechanisms so that they take intmaat monitoring informa-
tion offered by other entities in the system. This approamhld; for example, turn an
adaptive web browser into a location-aware web browser bgifying their adaptation

55

Analysis

control mechanism so that it will take into account locatimiormation provided by a
GPS device attached to the system. In this thesis we argusutia behaviour requires
a flexible policy based approach. This approach is discusséetail in the following
chapter.

3.4 Summary

This chapter illustrated the possible shortcomings oftexgsapplications when consid-
ered in an environment with multiple adaptive context-aagwplications. In particular,
the issues of coordination, adaptation conflicts, usendwavoent, etc. were highlighted
and analysed. Following the analysis of the reasons behesktshortcomings, a list
of design requirements was presented. The following chaptsents the design of

platform supporting adaptation based on the aforemerdioeguirements.

56

cHAPTER |V

Contents
4.1 OVEeIVIEW o e e e 58
4.2 Architectural Discussiono 58
4.3 Architectural Overview 63
4.4 Application Interface and Communication 65
44,1 Background 65
4.4.2 Application InterfaceDesign, 68
443 ApplicationManagero 73
4.5 Internal CommunicationLayer. 75
451 Background 75
45.2 The Design ofthe EventManager 79
4.6 SystemManagerDesign. 81
46.1 Background o 81
4.6.2 PolicyManager 0o 84
4.7 PolicylLanguage 85
4.7.1 ChoosingaPolicy Language 86
47.2 TheEventCalculus 87
4.7.3 The Event Calculus Policy Language 88
47.4 Examples 95
4.8 SUMMaAry o e e e e e 99

57

Design

4.1 Overview

In this chapter the design of a platform supporting coorngidadaptation for adaptive
context-aware applications is presented. The chaptenbsegih a discussion of the
requirements presented in chapter 3 and their implicafionge design of a support-
ing platform. Specifically, the discussion walks througé tequirements and presents
how coordination can be achieved through a platform thgpsrip these requirements.
Following this discussion an architecture for supportingrdinated adaptation is pre-
sented. This architecture uses a policy-based mechanisoomtrolling adaptation al-
lowing coordination and reconfiguration. The subsequestia®s then discuss in detalil
each component of the architecture including potentialgteapproaches for realis-
ing this architecture. The last section of this chapter dicked to the presentation
of the Event Calculus Policy Language, a language that wagrtss to satisfy the
requirements of a policy-based adaptation system supgostilaptive context-aware
applications. A prototype implementation of the platforesin is presented in chapter
5.

4.2 Architectural Discussion

In order to identify desirable features for a platform to poih coordinated adaptive
context-aware applications it is necessary to analyse uhdamental characteristics
of adaptation. As discussed in chapter 2, the operation afdaptive application is
similar to the operation of control systems. More specifycal simplified closed loop
system can be considered as an abstraction of an adaptiesns{Sigure 4.1). This
adaptation system includes three entities: the monitairigy feeding the system with
information that may cause adaptation, the control ertiy its responsible for deciding

when adaptation is required and the actuator that implesrieatadaptive mechanism.

In typical adaptive or context-aware applications all eemponents are part of the
application itself. This is principally a consequence a\pous research that has shown
[Noble97] that fully transparent adaptation platformsratrprovide sufficient support
for the requirements of all applications: current apprescim the design of adaptive
applications advocate the breaking of the transparencyrenshift of adaptation mech-

anisms away from the system and into the application it¢etfeed, it is normally the

58

Design

Application

Figure 4.1: Basic adaptation cycle

application developer that has a clear knowledge of thei@gin’s semantics and re-
quirements. Therefore, the developer can best implemenadaptation mechanism
required for a specific application. In typical examples dédyative applications the ap-
plication developer implements two of the three adaptatiatities: the actuator that is
directly related to the logic of the application and the cohngntity that is usually hard-
coded as a static component that decides when adaptatieqused. In these systems
the monitoring entity is offered by the system (e.g. a powenitoring tool). In certain
cases even the monitoring entity retrieving the specifiormfation that is necessary for
the operation of the adaptive application is implementedheyapplication developer
(e.g. in [Davies99, Microsoft03, Real03]). It is also quitamamon for such systems
to blur the boundaries between the three entities, somstimebining two or even all
three of them. In particular, it is quite common for adaptiystems to combine the con-
trol entity with the actuator [Kistler92, deLara01], whdentext-aware systems tend to
combine the monitoring entity with the control system [Chst@0, Schilit94a].

In chapter 3 the analysis section showed clearly why thiscstachitecture cannot
support systems with multiple adaptive context-aware iegpbns: lack of coordina-
tion can lead to conflicts and low performance while lack afrisvolvement can lead
to insufficient support for the user requirements. chapteorludes with a list of

requirements for a system that can overcome the aforenmexatiomitations.

The first requirement (R1) for supporting adaptive contexd@ applications is to
decouple the adaptation control and the actuator. Thignegent is based on the fact
that the mechanisms implementing adaptation actuatorsggntdy linked with the se-
mantics of the application and therefore should be part®fbplication’s implemen-

tation. In contrast, the adaptation controls are entitias play a more general role: the

59

Design

Figure 4.2: Decouple adaptation control and adaptatiaoract

Application

role of an adaptation controller is to receive input in telwhsalue changes and pro-
duce output in terms of invocations of adaptation mechasisrherefore, it is possible
to follow the same design guidelines for designing all adth controllers regardless
of the application being controlled. In addition to thistf#ite decoupling of adapta-
tion control and adaptation actions allows adaptationrobentities to be externalised
and become part of the system supporting adaptation. Thasmsnthat the application
developer is no longer responsible for implementing theotatebn control mechanism
but they can rely on the system support offering the contretmanism (Figure 4.2).
Finally, the need for decoupling adaptation control andogattéon actions is a prereq-
uisite for meeting the the requirements for externalisipgliaation state and adaptive

mechanisms, necessary to achieve coordinated adaptation.

The second requirement (R2) for supporting adaptive cotexre applications is
to externalise application state information. This reguient is based on the fact that
information collected by an application as part of their maning functionality may be
of importance for the adaptation controllers involved ia tdaptation cycles of other
applications in the system. Externalising informationuaek the need for replicat-
ing similar monitoring functionalities in many applicati® Moreover, the state of an
application running in a system can be an important factothe decision of other
applications about when and how to adapt. In terms of platfdesign this require-
ment suggests a system design where adaptation contri¢gictn receive monitoring
information from multiple applications (Figure 4.3). Inggtice this means that the
adaptation controller of a single application is not isethfrom the activities of other
applications active in the system. This externalisati@uies an open design approach
where applications can express their state through a speéaifierface definition lan-
guage. Moreover, since the actual state variables thakepated by applications are
not known in advance, the system supporting adaptation beugsble to dynamically

parse the interface exported by the application and cartstre appropriate components

60

Design

Application

Application

Figure 4.3: Externalise application state

that will collect application state information during time.

The third requirement (R3) for supporting adaptive contexére applications is
for applications to externalise their adaptive mechanis8etisfying this requirement
means that adaptation control entities do not have to be&eckta a single application.
As all adaptive applications in an adaptive system extesaaheir adaptation mecha-
nisms it is possible for adaptation controllers to invokedtion in multiple applica-
tions. This functionality allows the implementation of ecdmated adaptation: a single
adaptation controller responsible for implementing a Bfgeadaptation policy can trig-
ger multiple applications to perform coordinated actioegequired (Figure 4.4). In
terms of design, this requirement can be supported by esipgean application inter-
face as described in the previous paragraph. More spebjfita application interface
exported by applications should include the definitions ethnds corresponding to
adaptation actuators. These methods could then be callextégnal entities in order to
request that the application performs a specific adaptatition. As discussed above,
application interfaces should be dynamic, i.e. the exteznsty invoking actions on

applications should be able to dynamically marshall the datuired to perform the

Application
B Application

Monitor > Control

Application \

Figure 4.4: Externalise application adaptive mechanisms

61

Design

invocation as described by the application interface.

The final requirement for supporting adaptive context-anagplications is to sup-
port a mechanism that enables adaptation control to be raddiff the end user. This
means that the actual decision taking policies implemelyetie adaptation controllers
should not be hard coded by a developer but rather providadviely where the decision
logic can be inspected by the end user. Since applicatigusreedefault adaptation con-
trol functionality when they are installed it should be pbksfor the end user to have
access to this default adaptation control policy and to be @omodify it as they wish.
Apart from support for user involvement, this requiremeralso the basis for support-
ing extensibility and coordinated adaptation. Both of thiesgures include adaptation
controllers that either receive monitoring informatioarfr multiple applications or in-
voke actions on multiple applications. It is not realisticexpect such controllers to
be defined by an application developer as default adaptatatrol policies. Indeed,
application developers do not have any knowledge aboutxis¢eace of other appli-
cations in the end system and therefore cannot specify tfailtd@daptation control
policy so as to perform coordinated adaptation (invokingoas to other applications
in the system) or receive monitoring information from othpplications. However, the
end user does have knowledge about the configuration of #terayand they are capa-
ble of modifying the adaptation control policy so that it popts coordinated adaptation.
The design requirements derived from these observatiethat the adaptation control

mechanism should be based on a design where the end user can:

¢ Inspect the adaptation policies employed by existing adegpt controllers.

Modify the decision logic of existing adaptation controdle

Extend existing controllers with the inclusion of new monitg information.

Extend existing controllers with the inclusion of new tasy®r adaptive actions.

Add their own adaptation controllers with all the above teas (multiple moni-

tors, multiple actions).

Technologies that provide the aforementioned features already been used in
other domains of computer science. A particular approaahhihs been employed in
systems where reconfiguration without re-implementatsameieded is the use of policy

management systems. As E. Lupu and M. Sloman define in [Lypu99

62

Design

“A Policy is information which can be used to modify the beioav of a
system. Separating policies from the managers which irgethem per-
mits the modification of the policies to change the behavand strategy
of the management system without re-coding the managers.memage-
ment system can then adapt to changing requirements bylidigg@bolicies

or replacing old policies with new ones without shutting dae system."

The features of policy based systems described in this tefirappear to cover a
significant part of the requirements presented earlierdpperting coordinated adapta-
tion and in particular, the ability to adapt the behaviouaalystem without the need to
re-code the management system itself. The extent to whidlieygased system can
support all of the aforementioned requirements dependrtesextend on the specific

characteristics of the policy language used.

4.3 Architectural Overview

Based on the design features described in the previoussadtigh level architecture is
proposed for a platform for supporting coordinated adaptadf adaptive context-aware
applications (Figure 4.5). This architecture describes@aptation support platform
that cooperates with running adaptive applications in iotdgrovide re-configurable
coordinated adaptation. The main role of the platform isdivas the adaptation con-
trol entity for all adaptive applications running in the ®m. From an application’s
point of view the platform is the point where they report afaieges in their state or
environment monitoring information and from which they egprequests to perform
adaptation. Features described in section 4.2 such asicatot, extensibility and

user involvement are realised by the platform without anynmplementation of the ap-

plications.

The platform builds on the control of policies, realisinglartilising a policy based
management system for controlling adaptation. Adaptgaicies are described through
a human readable policy language specifying the conditioaiscan trigger adaptation
and the actions that need to be performed. The specificatitre@onditions that can
trigger adaptation are related to the information that moreed by applications. For
example, a web browser application may report that it isesuly downloading a large

file. The system manager component that is responsible &uaing the policy rules

63

Design

End User

T T I I
Psxggstoérlttion Application
Sbpart. Managers

Internal Communication Layer

i

System Manager

Applications

Policy
Repository

Figure 4.5: Architecture for supporting adaptive contaxiare applications

active in the platform may have a specific policy rule that taike this fact into account
and possibly request an adaptive response by one or moreatppis running in the
system. The adaptation actions that need to be performetlaargated into method
invocations on applications’ adaptation control integls.c These adaptation methods
represent the application’s implementation of an actudior example, a web browser
may have a method that can switch the downloading stream fesvmndata to com-
pressed data. A policy rule in the system manager may usertbtitod as part of a

request for adaptation.

In order for such interactions between the platform and theing applications
to be realised, applications need to define an interfacedisstribes the information
that they can export and the methods that can be called byldiferm. The platform
uses this interface specification in order to dynamicalBate an application manager
component. This component is responsible for handlinghédrmation exchange with
the application and all method invocations requested bgystem manager. Moreover,
the application managers act as caches for the informagjoorted by the applications.
Specifically, when the system manager requires the valuspéeaific variable reported
by an application, the application manager returns theulagate of that value.

As a glue between the application managers and the systeragaarthe internal
communication layer handles all communications betweenpthtform components.
The internal communication layer maintains an orderedvesfiof application infor-
mation to the system manager as well as invocation requeststhe system manager

to the application managers.

User involvement is achieved by allowing the user to acdesgblicy repository

64

Design

where adaptation policies are installed. The user can aigpel modify existing poli-
cies or add new ones. The policy repository is also availableew applications in-
stalled in the system. New applications need to install Wiefadaptation policies as
specified by the application developer. As discussed eattie policy rules that im-
plement the adaptation controller are affected by the mé&dion exposed by the ap-
plications and affect the activities of the applicationsityoking adaptation actions.
Therefore, to allow the user to understand properly theclogithe policy rules in the
policy repository it is necessary to offer the means for ap@hensive description of
the application interfaces involved. In more detail, foe #nd user to understand the
meaning of a policy rule that triggers a web browser to switehraw data downloading
stream to a compressed data stream it is necessary to peokigman readable descrip-
tion of the semantics of the action implemented by the appba. In practice, this
means that the application interface exposed by an apiplicahould include a human

readable description of its functionality comprehenstbléhe end user.

In the following section we discuss the critical aspecthaf tlesign in more detail.
In particular, the issues discussed include the applicatiterface and the mechanism
for application-platform communication, the design of #taptation manager compo-
nent, the design of the internal communication layer ands{fs#¢em manager compo-

nent.

4.4 Application Interface and Communication

Before looking into the design of a mechanism that suppontsnconication between
adaptive applications and the adaptation support platf@rtorief overview of exist-
ing technologies that can support such functionality igstigated. Following this, the
design of the adaptation interface is discussed and pess#sign approaches are pre-

sented.

4.4.1 Background

As discussed in section 4.3, the architecture for supgpduohaptive context-aware ap-
plications requires applications to export an interfacesgtihey specify the information

they can offer and the adaptation actions that can be invoKad interface can be used

65

Design

by the platform to invoke adaptation methods or monitor théesof the application.

The issue of application interface specification has alvimen an integral part of
the design of distributed middleware platforms, such as CORB#&a RMI and Web
Services. The following sections provide a descriptiorhef inechanisms provided by

these platforms.

4411 Corba

CORBA (Common Object Request Broker Architecture) is OX®pen specification
for supporting distributed object oriented applicatio@$[G01]. One of the character-
istics of CORBA is its support for interoperability acrossfeliént hardware platforms

and programming languages.

CORBA applications are composed of objects that may be locatedlnumber of
distributed hosts. In order for these objects to interath wach other, each one defines
an interface in OMG IDL (Interface Definition Language). TIbd specification de-
scribes the external boundary of the object through whiticheawork communication
is performed. Any client that wants to invoke an operatioraarobject must use this
IDL interface to specify the operation it wants to performg&o marshall the arguments
that it sends. When the invocation reaches the target olfergsame interface defini-
tion is used to un-marshall the arguments so that the obgtperform the requested
operation.

The IDL interface definition specifies the operation thatlsaperformed on a given
object, and all of the input and output parameters with ttygies. The actual interface
definition is independent of programming language. In thechl (static invocation)
scenario, the IDL definition is compiled through an IDL cofapin order to generate
the client’s stub code and the server’s skeleton code. Stutbskeletons serve as prox-
ies for clients and servers, respectively (Figure 4.6).sTihieraction method, called
static invocationrequires the IDL of the remote object to be known during tbeedt
opment of the client.

CORBA also supports dynamic invocatiomethod where a client can invoke oper-
ations on a remote object without compile time knowledgéhefremote object’s IDL.

In more detail, the IDL compiler generates type informafimmeach method in an inter-

1Object Management Group

66

Design

Client Object .
Implementation

v 4

IDL IDL
Stub Skeleton

—> Request —T

Object Request Broker

Figure 4.6: A request passing from client to object impletaton.

face and stores it in the Interface Repository (IR). A cliemt ttaus query the IR to get
run-time information about a particular interface and thea that information to create
and invoke operations on the remote CORBA object dynamicattyugh the Dynamic
Invocation Interface (DII). On the server side, the Dyna®ieleton Interface (DSI)
handles the dynamic client invocations.

In summary, the interface description mechanism provide@O®RBA uses a pro-
gramming language independent description language émifgpng the operations pro-
vided by a CORBA object. In the common scenario, this desonghould be available
to the client during compile time. However, CORBA offers a maukm for discover-
ing an object’s interface during run-time and dynamicatiyoking operations on this
interface.

4.4.1.2 Java/RMI

Java/RMI [Wollrath96] is the remote method invocation medsia for distributed Java
objects. Unlike CORBA, Java/RMI requires both client and setode implemented
in Java. Each Java/RMI Server object defines an interfacewdain be used to access
the server object from a remote client. A client can locateraate server object using

the RMIRegistry: a Java/RMI specific naming service.

Java/RMI uses Java language constructs to define a servet'sljgerface. In
particular, the interfaces arjava files that are compiled along with the object’s imple-
mentation. In a fashion similar to CORBA, the typical Java/RhtEraction requires

the interface of a java object to be available to the cliemirducompile time.

67

Design

Dynamic invocation of a remote java object without any pkoowledge of the
object’s interface is available through java’s Reflectiorchaism. In more detail, the
java.lang.reflect package, allows a client to discover at run-time the class mote
java object, examine the class to discover what methodsvaikakle and invoke these

methods with dynamically created arguments.

4.41.3 Web Services

Web services [W3CO01] were designed to offer interoperaliéiween different appli-
cations. The communication interfaces provided by the vegbises are language and
platform independent. In more detail, a web service offersngerface that describes
a collection of operations/methods that can be accessedghrthe web using XML
messages (SOAP protocol [W3C00]). This description hidegtipgementation details
of a web service but offers all the information necessarynteract with the service.
This implementation transparency allows the use of a weliceemdependent of the

platform or language used to develop the service.

The Web Service Description Language (WSDL) is the languagd tor describing
the interfaces of web services. The WSDL defines an XML graniorghe structured
description of the services and the operations they offdre XML document with
the description of a web service consists of all the inforomatequired to discover and
interact with a web service. In particular, the informatioa WSDL document includes
the name of the service, the operations that can be calleg¢lhasvthe location of the
service where operation invocations should be directedlightccan use this WSDL

document to discover the functionality of a service and hmadcess the service.

The main focus of Web Services is on dynamic discovery andotiservices. A
client can dynamically discover a web service (i.e. usimgatory services) and access
its methods.

4.4.2 Application Interface Design

The previous section gave an overview of the most prevalastireg technologies that
support application interface specification. From thisspreation it is clear that all
of the technologies discussed offer the means for disttbaipplications to describe

an interface (and in particular their adaptation interfabeough a predefined interface

68

Design

definition language. Moreover, all technologies suppatdiinamic inspection of this

interface and the dynamic invocation of methods exportealigh the interface.

As discussed in section 4.3, applications that communigdtethe adaptation sup-
port platform discussed here should also provide one additifeature through their
interface specification, i.e. an adaptation interface ifipation should include human
readable descriptions of the semantics of the interfacendre detail, an adaptation
interface should offer mechanisms to allow the retrievateatual descriptions of the
application itself, the functionality implemented by théapatation methods and the

meaning of state variables reported by the application.

As seen in section 4.4.1, none of the existing technologippart this functionality
by default. However, it is possible to use these technofotgiesupport such a feature.
In more detail, apart from the adaptation interface thatiegions expose, applications
could be required to implement a description interface. Agfae description interface
for adaptive application is shown bellow:

interface |Description

{

int GetAppDescription(out string sDescription);
int GetMethodDescription(in string sMethod,

out string sDescription);
int GetVarDescription(in string sVarName,

out string sDescription);

The methodGetAppDescription returns the description of the applicatiabetMethod-
Description returns the description of the requested method Gett¥arDescription re-
turn the description of a variable defined in the applicatiterface. This interface
could be queried by a user support module in order to give huesdable descriptions
of the application’s interface.

A possible alternative approach can be applied in the caae oML based inter-
faces specification language, such as the one used by the ¥veioes architecture.
One of the characteristics of XML is the fact that an existML language can be ex-
tended with additional tags without breaking backwards gatibility. In more detail, a

WSDL definition of a message sent to a web service has the folgpfermat:

<message name="SetBandwidth">
<part name="bandLimit" type="xsd:integer"/>
</message>

69

Design

Representing the invocation of the meth®etBandwidth(int bandLimit). Based on the
backwards compatibility feature of XML it is possible to ert this definition with an

additional tag without breaking the support for standar service clients:

<definitions xmins:ad="http://www.comp.lancs.ac.uk/wsdl—adapt—schema/" />

<message name="SetBandwidth">
<part name="bandLimit" type="xsd:integer"/>
<ad:description>
Sets the upper bandwidth limit for the network traffic ...
</ad:description>
</message>

With this definition the application can communicate witle glatform using the
standard Web Service infrastructure, while a user suppodute can query the appli-

cation interface and present it to the user (possibly pgssthrough an XSL filter).

Summarising the discussion on existing technologies, dtdar that existing tech-
nologies can support the requirements for interface difinfor adaptive context-aware
applications. In particular, the use of an XML based appnasems appealing as it al-
lows a more elegant incorporation of user readable degumptof the applications’

interfaces.

This design chapter does not make specific claims aboutthadogies that should
be used for the communication between adaptive applicatiostead, in the following
section we present a platform-independent interface ge®er language that can either
be used as it is or taken as a guideline for the implementatian custom interface
definition mechanism.

4421 Service Interface Definition

According to the discussion in section 4.3, the featurestti@interface specification

mechanism should have are:

¢ Allow dynamic inspection of the application’s interface.
e Allow dynamic invocation.

e Support human readable descriptions of the interface’ainéos.

70

Design

In this section we present an XML based interface descngdaguage that meets
these requirements. In particular the application expants<XML document that is
roughly divided into three parts (Figure 4.7)

The first part of the interface description includes appiacaspecific information.
In particular, the interface defines the name of the appdinatas well as a unique id
that allows the distinction between multiple instanceshefsame application. It is the
application’s responsibility to make sure the id is unigngag multiple instances of
the application. This can be achieved trivially by creatmgd using the current host’s

MAC address and the process id of the running application.

The second part of the application’s interface specificaitnvolves the identifica-
tion of all adaptation methods implemented by the applicatiThe identification of
the adaptation methods is indicated by a string repreggtiimname of the adaptation
method, and a set of parameters that can be passed as in ogooteats by the plat-
form. This information can be used to construct the invacagvent that will trigger
the application to execute the requested adaptation method

The third part of the application’s interface specificatiovolves the identification
of a set of state variables that represent the current staébe @pplication. These state
variables are identified by a name and a basic type such gemuiring, etc.

Each of these parts includesalescription> tag that provides a textual description
of the interface’s semantics. Moreover, the definition oldaptation method can in-
clude the indication of related state variables that aext#d by attributes passed by the
invocation. This indication of a related state variablewa8 the identification of pos-
sible dependencies between actions and state variabletriRgfeack to section 3.2.5,
this dependency is an indication of the possible relatignbbtween an actuator and
a monitoring entity. This related variable specification t&@ used by the end user to
help better understand the application’s behaviour andiépendencies of adaptation
actions and state variables.

The interface description presented is intended to allcaptide applications to ex-
port their adaptive interface and allow the platform to cohtheir adaptive behaviour.
However, in a typical adaptive system in addition to the éida@mpplications there are
system monitoring components responsible for retrievirfgrmation about the sys-
tem’s environment. For example, such monitoring compaeright include a network

interface monitoring tool, a power monitoring tool or a lboa monitoring tool. Ex-

71

Design

<?xml version ="1.0" encoding="1SO—8859—1"?>
<application>
<name>WebBrowser </name>
<uniqueld>1234</uniqueld>
<description>

</description>
<methodList>
<method>
<name>SetBandwidth </name>
<description>

</description>
< attributeList >
<attribute >
<name>bandLimit </name>
<type>Integer </type>
<relatedVariable>Bandwidth </relatedVariable>
</ attribute >
</ attributeList >
</method>
</methodList>
<stateVariableList>
<stateVariable>
<name>Bandwidth </name>
<type>Integer </type>
<description>

</description>
</stateVariable>
</ stateVariableList >
</application>

Figure 4.7: Sample XML description of an adaptive web brawse

isting platforms supporting adaptive applications tenéhttrporate such monitoring

functionality within the platform itself [Noble98, Frid@g]. In contrast, the platform

presented here follows a different approach. In order tpsuextensibility of the sys-

tem, monitoring components are treated as first class systemponents that collabo-

rate with the platform to support application adaptatiohe &pproach proposed by this

design is for the same application interface mechanism tesbd by both system mon-

itoring components and applications. Although conceptualbnitoring components

are only sources of information while adaptive applicagiane receivers of adaptation

triggering, the design of the adaptation platform does rattarany distinctions between

the two. The reason for such an approach is twofold:

72

Design

e Monitoring components usually correspond to a specificaewithin the sys-
tem. This means that they can support hardware specificadaptFor example
a component responsible for the wireless network card csetlthat card to sleep-

ing mode when triggered.

e Application state variables can be useful for the contnglladaptation in other
applications in the system. For example, the fact that aqodat application is
currently using the network may be an important factor fer akdaptation policy

of other applications in the system.

This design approach offers a greater level of flexibilitghe design of an adaptation
support platform. In particular, the platform can be exthavith the incorporation
of new monitoring tools as and when required. Moreover, tdmm policy rules can
include information about both applications running in $ggstem and monitoring tools
and can trigger adaptation not only to adaptive applicationt also to the system’s

devices.

Summarising, the application interface that was discuss#us section is used by
the platform for the registration of adaptive applicati@amsl system monitoring tools.
This interface describes the state information offerechieyatpplication and the adaptive
methods that can be invoked by the platform. Using this $igation the platform
constructs an application manager component that hanliliesnamunication with the

application.

4.4.3 Application Manager

The application manager is the component that is resp@&iblhandling communi-
cation between the platform and the applications. The giaifconsists of a number
of dynamically created application managers that comnateidirectly with individual
applications (one per application instance). The funetiiynthat the application man-
ager should provide is to retrieve application state infation and to invoke adaptation
methods. The design of the application state monitoringfalbow a passive approach
using an event based mechanism or an active approach wiearatmger polls the ap-
plication for updated state information. In the first casehhologies such as Jini and
Web Services offer the infrastructure for event registraind notification. In the latter

case, the application should provide a state query intetfzet the application manager

73

Design

Applications

@00

CORBA Web Serv. Proprietary Comm. Protocol

B — — — — —
’gg;gg’:lt'o" Application
Platform WEREEEE

Internal Communication Layer

System Manager

Figure 4.8: Application Managers for multiple communioatprotocols.

can use. However, since adaptation is based on the reaetipense of the system on
state changes, the event based approach has substangaisbeompared to a polling

approach. In more detail, as the application is the firsteitithe system to know that

something has changed its state, it should be the appliciiat initiates the state infor-

mation update for the application manager. Therefore antexaification mechanism

is much more fitting for allowing the application to notifyetiplatform about their state
changes.

Considering a design that is based on an event notificatioroaphp, the application
manager acts as a cache for the application state changetekpy application events.
In more detail, the application manager is a container hgldhe values of the last
updates of the applications’s variables. Thus the appdicahanager can report to the
rest of the platform what is the overall state of an applaratvithout re-querying the
application.

In terms of method invocation there are no special desiguiregents to satisfy:
any existing technologies supporting remote method invmeaan be used. As a re-
sult, the design of the platform can incorporate applicatianagers that are based on
alternative communication technologies (Figure 4.8)htgd be noted that in order to
avoid diverting the focus of this thesis it is assumed thatsystem operates in a secure
environment where no malicious applications are allowedgerate. Obviously in a
real world scenario proper security and monitoring medrasishould be employed
to ensure that the application behaviour is acceptablesiflesapproaches for imple-
menting such an environment could include the use of ceatifins as guarantees for

non-malicious applications.

74

Design
4.5 Internal Communication Layer

The previous sections presented the mechanisms that atlaptige applications to
communicate with the adaptation support platform. For tlafqrm this communi-
cation is handled by the application managers. Internalbglication managers are
required to notify the system manager about changes incgtigins’ state. Moreover,
the system manager is required to notify application marsagben an adaptive method
should be invoked. The internal communication layer is hregonent that lies between
the application managers and the system manager and haondi@sunication between
these components. In the following sections we investigaisting technologies that
can be used for realising the internal communication layallowing on from this,
we discuss the design issues related to the internal conaation layer and in partic-
ular we present the internal communication layer in the fofran event management
component.

4.5.1 Background

In the following sections an investigation of some existtaghnologies that support
event notification are presented. In particular, the disicusincludes examples of sys-
tems that follow two different communication paradigms: ubscription-notification
paradigm (Jini, Elvin, CEA) and a tuple space paradigfintbo, Event Heap).

4.5.1.1 Jini

Jini is a distributed system supporting service discoveny iateraction developed by
Sun Microsystems [Waldo99]. The Jini system extends tha agyplication develop-
ment environment offering tools for the implementation etwork services and the
applications that can discover and interact with thoseisesv The key features sup-
ported by Jini are:

Lookup Service The lookup service allows clients in a network to discovepacsic
service. The lookup service maps service interfaces réggids/ clients into
objects that implement those interfaces. In terms of impletation the lookup
service is based on IP multicast. The clients multicast gicetookup request

and lookup service responde with the matching services.

75

Design

Java Remote Method Invocation Jini uses the Java remote method invocation (RMI)
as the main mechanism for interacting with a remote seri®é#l.is the standard

remote procedure call mechanism used by Java (Sec 4.4.1.2).

Events A service can allow clients to register interest in its egerithe service then
sends notifications to the registered clients when thesetgvake place. The
basic protocol uses unicast notification messages to repents. However, there
are third party objects that support notification mutliphexto reduce the network
traffic.

4.5.1.2 Elvin

Elvin was firstintroduced as an event messaging servicawollg the publish-subscribe
notification approach [Fitzpatrick99]. One of the main dsevfor the development of
Elvin was the complete separation between the generatwith@rconsumption of noti-
fications. Specifically, Elvin allows the delivery ahaddressedotification messages.
This is achieved by using content based event delivery,ishatent consumers receive
event notifications based on the content of the notificatibomparticular, an event sub-
scription includes a set of named and typed data elementshialient is interested
in. The notification server evaluates incoming notificasi@gainst the client subscrip-
tions. If a subscription matches a notification the relatezhtreceives a copy of the

notification message.

In terms of design, Elvin uses a server acting as a notificabater between mul-
tiple connected clients. Clients can be both the sourceshansinks of event notifica-
tions. The notification router is responsible for routingifiwations from event sources
to the interested event sinks. Obviously the use of a cemdtification router limits the
scalability potentials. However, Elvin addresses thisesisy supporting the operation
of multiple notification servers in the form of faderation In more detail, multiple
notification servers can work together appearing to thetdias one single notification

server.

Elvin supports APIs for a variety of programming languageg.(C, C++, Java,
Python). A number of application have been developed usiwig Enostly related to

computer supported cooperative work (CSCW).

76

Design

4.5.1.3 Cambridge Event Architecture (CEA)

The Cambridge Event Architecture [Pietzuch04, Pietzuch®3 publish-subscribe
based event management platform. One of the important ciesistics of this work

is the special consideration for composite events. Manstiexj publish-subscribe sys-
tems restrict subscriptions to single events only, and tacik the ability to express
interest in the occurrence of patterns of events. The Cagifityent Architecture al-
lows the registration for event patterns that will resultinotification if the specified

pattern is met. Specifically, the event patterns supponyatidarchitecture are:

Atoms: individual events similar to the traditional single-eventification platforms.
Concatenation: detects the follow up of two events with possible overlagpin
Sequence:detects the occurrence of an event after another withoutagpmng.
Iteration: Detects any number of occurrences of event expressions.

Timing: Detects the occurrence of events within a specified timevate

Parallelisation: Detects two events in parallel and succeeds if both are tdetedNo

requirement for sequence or overlapping is expressed.

In terms of implementation the event architecture utiliBese state automata for
the monitoring of event expressions. The FSAs are driventbsia events and can
generate new events if the composite expression they nmasigatisfied. FSAs can
be cascaded using the generated events as input to higbeFs for the support of

complex event compositions.

In summary the design of the Campbridge Event Architectufer®fa powerful
mechanism for the monitoring of composite events. Considetie design of the pol-
icy language described in section 4.7.3 this platform cta@dtonsidered as a potential
candidate for an event management module. In particulacah®osite event expres-
sions can assist the evaluation of the Event Calculus paliegr

45.1.4 12imbo

L2imbo is a distributed platform developed at Lancaster Usitg[Davies98b]. Eimbo

does not follow the client-server paradigm, proposing daraative communication

77

Design

approach especially designed to address the requirementshole communication.
Specifically, 2imbo is based on the tuple space paradigm formerly used iallear
computing (e.g. Linda [Ahuja86]) and allows applicationscommunicate using the
tuple space API.

Tuples are data structures that consist of a collectionp#dydata fields. Tuples can
be dynamically inserted in and removed from a tuple spacelelTspaces are shared
between applications allowing access to the tuples cosdaithin the tuple spaces.
Considering this communication approach in a distributadrenment it is clear that
applications do not interact directly with each other. Eapplication interacts with the
tuple space only and inter-application communication lHe@d via the tuple space.
As tuple spaces contain persistent tuple objects commiimncdoes not break when
connection between applications is lost for a period of tiDisconnected applications

can continue to send tuples to the tuple spaces and retuplestafter reconnection.

In terms of implementation,2imbo is based on IP multicast where each tuple space
is modeled as a multicast group. Each host in the distribsystem maintains a local
replica of the tuple space. Whenever a new tuple is insertiituple space a multicast
message updates the local replicas of the tuple space véthetv tuple. If one of
the hosts looses connection with the rest of the grodpntio allows disconnected
communication. In more detail, applications can insertesifpo their local replica of
the tuple space and retrieve tuples from the local replicporireconnectiondimbo
updates local replicas with the changes that took placesvdigiconnected.

45.1.5 EventHeap

The Event Heap is a coordination platform developed at Stdrifiniversity and is also
based on the tuple space communication model [JohansoAlBi2pugh the Event Heap
uses the same communication model gmbo it differs in the level of specialisation
of its use. Bimbo is a general purpose platform for wireless commurocatvhile the
Event Heap aims at supporting the specific communicationireipents of interactive
workspaces.

In more detail, the Event Heap is designed to support a prodéanteractive work-
space called the iRoom. The iRoom is a ubiquitous computingr@mwent where
people can collaborate and interact with the devices in dinggeoom, such as touch

screens, bottom projected tables, etc. In addition, thenroas wireless LAN coverage

78

Design

which allows laptops or PDA's to communicate with the othexctmnes in the room.
The Event Heap is the communication platform that allowdiegfons running in dif-

ferent devices in the iRoom to coordinate their activitiesorider to support the specific
needs of iRoom, the Event Heap extends the tuple space matieddditional features

as required by the project.

Self-describing Tuples: The tuples in Event Heap consist of named typed fields instead
of typed fields. This means that every field in a tuple has a mgasi name and
thus it is possible for a user to browse the tuple space anerstachd the meaning
of the tuples.

Flexible Typing: The tuples in Event Heap do not require the fields to have afgpec
sequence or even specific number of fields. With named fielgécagons can

retrieve the fields irrespective of their order.

Tuple Sequencing: Event Heap ensures that on a ‘read’ or ‘in’ operation recsied
ways get the earliest matching tuple they haven’t seen yéh $&quencing ap-
plications that place requests that match multiple tuplésyet each tuple once,
and in source order.

Tuple Expiration: Tuples are given a ‘TimeToLive’ field that specifies how lohgyt

will persist in the tuple space before they are destroyed.

In terms of implementation the Event Heap is built on top opa&s from IBM
[Wyckoff98], a Java based tuple space system. The TSpastsys based on a client-
server architecture with the actual tuple space stored emvaismachine.

4.5.2 The Design of the Event Manager

The previous sections gave an overview of examples of agiséchnologies that sup-
port distributed communication and coordination. Techgs like ?imbo and the
Event Heap were especially designed to meet the needs ofarsysitems and ubig-
uitous computing respectively while Jini is targeted atdbenain of service discovery
and interaction and Elvin and CEA are general purpose evdiftcation platforms.
The main role of the adaptation platform’s internal comngation layer is to allow the
platform to receive notifications about changes in appboast state and to invoke adap-

tation actions. The requirement for a mechanism to suppate sariable notification

79

Design

messages advocates the need for an event-based platfosaeA# section 4.5.1 plat-
forms supporting event notifications can follow differelih@munication approaches.
In particular, Jini and CEA follow a directed subscriptiootification approach. Elvin,
though still following the subscription-notification dgsi is trying to break the directed
dissemination of events.2imbo and the Event Heap offer undirected communication

as this is a primary characteristic of tuple space baseddesi

Considering the design of the application manager desciibegction 4.4.3 we
can identify an interesting feature of the tuple space mashathat is appealing in
the design of the internal communication layer. In paracuthe application manager
is required to act as a cache for the application state uagabOne of the features
of the tuple space mechanism is the persistence of tuplescifi§ally, a tuple that is
put in the tuple space will remain there until it is expligitemove by an application.
Mapping this functionality to the application manager timeans that the application
state information received by the applications can be teddan the tuple space in the
form of tuples. Therefore, when the system manager reqtheesalue of a particular
state variable, this value can be retrieved from the tuptespvithout requesting the

application manager to fetch that information.

Following this discussion we propose as the mechanism &irternal communi-
cation layer an event dissemination mechanism (event nespéat will deliver no-
tification messages from the application managers to thersymanager and adapta-
tion triggering requests from the system manager to theiggijgn managers. As a
favourable approach the tuple space paradigm appearstcsofine benefits in terms of

communication and information persistence.

In terms of internal design the event manager is requireddmtain an ordered
delivery of notification messages to the system managercif8dly, in the process
of evaluating adaptation policies it is important that tipplacation state changes are
reported in chronological order — as it will be shown in secté.7.3 the sequence that
changes take place are of importance when adaptation diesiare taken. Considering
the design of existing technologies, the CEA offers a flexibéehanism for specifying
event notifications with respect to event ordering. Moreave mechanisms supported
by CEA allow the expression of specific relationships on theuaences of events.
Considering the design of the policy language describeddticse4.7.3 the CEA plat-
form could be considered as a possible event manager thatati@borate with the

80

Design

system manager in the evaluation of event-driven policgsuln particular, the com-
posite event expressions supported by CEA can be used fanghmart of the policy
evaluation process with the event management module. TaetEeap offers a tuple
sequencing feature allowing tuples to be retrieved on ecssorder basis. However,
full support for time-ordered delivery of events is a muchrencomplicated issue and
in particular, the problem of dealing with late notificatsoriFor example, how should a
system respond to a notification that reports that the useldfiathe building but was
delivered a day later? One approach (e.g. followed by th@Byveap) is to discard such
late messages. A different approach is to accept these gessaad using the times-
tamp that they took place evaluate them as if they were deliven time. The actual
choice of the most appropriate approach depends highly @syktem that is imple-
mented. In an active environment such as iRoom where thersysteracts with users
and therefore should respond fast to environmental chasgeh late notifications can
be discarded.

Summarising this discussion it is clear that each of thesmh@ntioned systems have
their own benefits. The requirements for the design of thatewanagement component
are modest and can be met by most of the existing systems. hidieecof the most

appropriate system is considered an issue related to thieysar implementation.

4.6 System Manager Design

The system manager is the component that decides when dagatetions should be
invoked according to the changes reported by the applicatianagers. As it was dis-
cussed in section 4.3, the system manager is based on a pwicggement system
where adaptation policies are expressed through a polryukge. In the following
sections an overview of prevalent policy specification leaggs is presented. Follow-
ing this background section, a discussion about the degigresystem manager as a

policy management component is given.

4.6.1 Background

Policy Management systems have been widely used in the efeaswork and system

management. In the following section two popular policygaages that were designed

81

Design

as general purpose policy language are presented.

46.1.1 Ponder

The Ponder policy language [Damianou01], developed at fimip€ollege London, is

a declarative, object-oriented language for specifyinguggy and management poli-
cies for distributed object systems. It defines a set poliagses with different charac-
teristics. Specifically Ponder providasthorisation delegation information filtering

refrain andobligationpolicies.

The general assumptions for all policies in Ponder is they til refer to objects
with interfaces defined in terms of methods using an intertifinition language. The
model assumed by Ponder includethjectobjects (users, principals or automated man-
ager components) that have management responsibilityeaget objects (resources or
service providers) that are accessed by the subjpaimainsprovide a means of group-
ing objects to which policies apply and can be used to pamtithe objects in a large
system according to geographical boundaries, object tgsponsibility and authority

or for the convenience of human managers.

Authorisation policies define what activities a subjecteabjcan perform on the set
of target objects. A positive authorisation policy defines actions that subjects are
permitted to perform on target objects. A negative autlatins policy specifies the

actions that subjects are forbidden to perform on targedaib)

Information filtering policies define the type of informatidransformations that
should be performed based on the characteristics of thedublpject. For example,
a location service might only permit access to detailedtlonanformation, such as
whether a person is in a specific room, to users within the riieeat.

Refrain policies define actions that subject objects musipedibrm on a subject
even if they are actually permitted to perform the actiors@abhon authorisation poli-
cies). The main difference between a refrain policy and amegauthorisation policy is
that the former are implemented by the subjects themsedtiesnthan a policy manage-
ment component. Refrain policies are used for situationgevhegative authorisation

policies are inappropriate because the targets are noedrts enforce the policies.

Delegation policies are used in order to support the termpdransfer of access

control rights from one object to another. These policiesraquired in order for this

82

Design

transfer of access rights to be managed by the policy maragesystem.

Obligation policies specify the actions that must be penkal by managers within
the system when certain events occur and provide the abalitgspond to changing
conditions. Obligation policies are event-triggered amdiree the activities subjects
must perform on objects in the target domain. Events canrbplsj i.e. an internal

timer event, or an external event notified by monitoring mercomponents.

In addition to this set of policies the Ponder policy langaagfines policy con-
straints: a set of conditions that specify which policies alid. These constraints can
either be basic policy constraints that apply to specificcpesd or meta-policies that

apply to a group of policies.

With this extensive set of policy types Ponder can supporidce wange of man-
agement and security systems. Concrete examples have lesmmigd for the use of
Ponder in distributed network management, storage systepmication and service

management and enterprise-wide security polices [Lupu99]

46.1.2 PDL

The PDL (Policy Description Language) is a domain indepahdeeclarative policy
language [Lob099, Chomicki00]. In PDL there are no assumptaibout the underlying
system that should be managed by the specified policies. Oley pules defined in
PDL follow the event-condition-action scheme:

eventcausesactionif condition

Intuitively a rule of this form says that if theventoccurs at a time when trendi-

tion is true theactionshould be performed.

PDL consists of three basic classes of symbols: primitivenesymbols, action
symbols and function symbols. The primitive event symbotdude system defined
event symbols and user defined event symbols. Action andifumsymbols are pre-
defined and are given to the user that defines the policies.

The aforementioned classes of symbols can be better deddrjbexample [Lobo99]:

consider the case of an Internet provider that has a pool ofems that accept dial-up

83

Design

connections. In this example the internet provider wantsa the number of simul-
taneous connections for a specific customer (i.e. with tlew@mumber 5559991) to
5 connections during the night. The event that should be toed for such a policy
is time. A symbol calledCoarseTimeEveris associated with this event. This partic-
ular symbol is defined to have an attribdiiene with the enumerated type “morning”,
“noon”, “evening”, “midnight”. The policy rule in PDL thatmplements such a policy
is:

CoarseTimeEvent

causesModemPoolAssignmgab59991, 5)

if (CoarseTimeEvent. Tinre“morning”)

PDL also defines how simple events can be combined througtelogxpressions
of the forme;&ex& ... &e, or e1]ey]. .. |e, to define composite events that should or
should not take place at the same time. PDL does not specifyevents or actions

should be defined. These are considered to be system depéatenes.

4.6.2 Policy Manager

As discussed in section 4.3 the system manager is the comipihia¢ evaluates adapta-
tion policies and triggers adaptation when required. Hgyel@y manager component,

realising the functionality of the system manager is presgn

The policy manager is the component responsible for degidinen adaptation is
required using a set of adaptation policy rules. In moreilét@ decision mechanism is
driven by a set of policy rules including the default polgiastalled by the applications
(possibly modified by the user) and any new policy rules ddflmethe user.

Specifically, when an application is installed on the systeset of default policies
are added to the policy repository. These policies are gdorge¢he policy manager and
are used for handling adaptation for the running applicatiorhe policy repository is
always available to the current user for modifications arditesh of new rules. This
way the active set of policy rules can be modified by the usenéet their personal

needs.

The evaluation of policy rules is driven by events delivebgdhe event manager.
Each of these events is related to the values of the stateblesiof the running appli-

cations (Section 4.7.3).

84

Design

In order to identify the policy language that best satisfiesequirements of this
platform it is necessary to further analyse the specifichisfglatform and identify the
features of the policy language that should be used. Spatifithe policy language
that will be used should satisfy the following requirements

1. The policy language should be able to operate in an ev@r@rdenvironment.
The input given to the system manager is the set of stateblasiaeported by
applications. As described in section 4.4.3, as the valtiédsese state variables
change, the corresponding applications fire events théyrbée platform about

their new values.

2. The platform is required to handle the conditions undeicwian adaptive reac-
tion should take place in a uniform manner, irrespectivéneftype of adaptation.
More specifically, the decision mechanism should be a géperpose mecha-
nism that will handle adaptation policies relating to a @griof adaptation types

such as network based adaptation or physical context dedataptation.

3. The specification of policy rules should be flexible enotmlallow the specifi-
cation of fine grained temporal relationships between evdntmost cases con-
flicts or instabilities in adaptive systems occur due to tdependencies between
changes that take place or the time between adaptive maschaibieing invoked.
The policy language should allow the fine tuning of adapiatitechanisms to

allow the resolution of such types of conflicts.
Section 4.7.1 discusses the applicability of existing golanguages with respect

to these requirements and section 4.7.3 proposes a newalgadpased on the Event

Calculus logic programming formalism.

4.7 Policy Language
This section provides a detailed description of the polayguage used in the proto-

type platform. This policy language is based on the evemubas logic programming

formalism.

85

Design

4.7.1 Choosing a Policy Language

Section 4.6.1 presented a brief overview of existing pdatyguages such as Ponder and
PDL. With the support of the refined set of requirements faolecyp language presented
in section 4.6.2 it is possible to identify the features thalicy language supporting
adaptation in adaptive context-aware applications shioane.

The event-condition-action pattern used by most policgleges, meets the needs
for an event-driven policy based system. However, the eventlition-action model is
not intended for supporting complex temporal relationsHiptween events. In particu-
lar, it does not allow the specification of conditions thaerrrelate multiple events that
may have fired at different time points. As a consequenceds ot allow expressions
that take into account time dependencies between multi#ats, e.g. the order in
which these events took place or the time distance betwesnteviFurthermore, most
of the existing policy specification languages do not supibha notion of situations that

have a certain duration.

The aforementioned limitations are quite important whamsadering a policy driven
system supporting adaptive context-aware applicationsidst cases conflicts or insta-
bilities in adaptive systems occur due to time depender@éseen changes that take
place or the time between adaptive mechanisms being invdkedhermore, context-
related conditions like “if | enter my office after leavingpfn John’s office” require
a language that would allow the expression of temporalioglatas in that particu-
lar example, the sequence of events. In adaptive systermgjitite common to have
conditions like “if the system is running on low power” tha¢arly indicate situations
(‘running on low power’) that have a certain duration ratttean momentarily events.
Therefore, a policy specification language that would suppe expression of tempo-
ral relations between events and support the definition tifienthat express duration

would certainly offer more flexibility for defining adaptati policies.

In order to meet the need for such a policy language the EveloculDa Policy
Language was defined. This language was derived from théfisptions of the Event
Calculus logic programming formalism. The following seatigives a brief overview
of the Event Calculus as described by Kowalski and Sergot f{sky86].

86

Design

4.7.2 The Event Calculus

The event calculus was introduced by Kowalski and Sergowigdsky86] as a logic

programming formalism for reasoning about events and ahafde work presented
here is based on a simplified version of the event calculuswha presented later by
Kowalski [Kowalsky92].

The event calculus provides a theoretical framework whieiepossible to reason
about events and their effects in an event-driven systemmolre detail, the event calcu-
lus is defined over a set of entities, namelentghat take place at specific time points
andfluentsthat represent the effects of the events. A fluent represesgscific situation
that has a timed duration, for example a state like “battetpw”. When the system
under consideration gets into that specific condition thernflus considered to be valid
(it is said tohold). The state of fluents is defined according to events thatroaate or

terminate them.

Along with the basic entities of events and fluents, the egaltulus defines a set of
predicates that allow the specification of propositionsualychen specific events take
place and what the state of fluents are. The basic predicafe®d in Event Calculus
are:

Initiateqe, f,t) : Fluentf is initiated by evene at timet.
Terminatege, f,t) : Fluentf is terminated by evergat timet.

Happenge,t) : Eventeoccurs at timé.

By using these predicates we can ask about the validity of daraets at particular
time points. The simplified event calculus defines the follmradditional predicates:

HoldsAt(f,t) < Jet1| Happengety) A
Initiatege, f,t1) A
—Clipped f,t1,t)] A t1<t
Clipped f,t1,t2) < Je t[Happensget) A
t1 <t<ty A Terminatege, f,t) |
Declipped f,t1,t2) < Je t[Happenset) A

Initiateq e, f,t) A t1 <t <ty

87

Design

TheHoldsAtrule states that a fluent is valid at a specific time point t iEa@nt e exists
that initiated this fluent at an earlier time and this fluerg hat been terminated during
this time. TheClippedandDeclippedrules state that a fluent has been terminated or
initiated respectively by an event that took place withimaetperiod.

Based on this small set of rules the event calculus allows dsfine an event based
system that changes as events take place. In addition, waseathe available rules
to ask about the validity of specific conditions of the systamd the times that these

conditions are valid.

4.7.3 The Event Calculus Policy Language

As discussed in section 4.6.2 the policy language used fodamated adaptation should
satisfy a set of design requirements. Specificaly, it shalllulv the specification of
event-driven policy rules, support the specification ofgenal relations and it should
be general enough to allow the specification of policy rutesafwide range of adaptive
applications. As seen from the previous section the Eventulied offers a basis for
designing a language that can support all these requiremémiparticular, the event
calculus by definition embodies the eventing mechanisminvitl specification, it is
general enough to allow specification of rules for any typeveint based system and one
of the fundamental elements of the event calculus is allgwihigh level of flexibility in
the specification of temporal relationships. It should beedahat apart from the Event
Calculus there are other calculi that satisfy the aforernaetl requirements (e.g. the
Situation Calculus [Turner97, Kowalski94]). This thesisdmot claim that the Event
Calculus is the only appropriate formalism to be used as aydtdinguage defining
adaptation policies. However, the expressiveness ansthprehensibility of the Event

Calculus’s predicates make it an appropriate choice for sgeh

Based on the specifications of the Event Calculus we define #rg e&lculus policy
language [Efstratiou02b] in which policy rules are formathas event-fluent-condition-

action sets, in a form similar to policies specified in PDL po89].

Specifically, each policy rule is comprised of a set of syssp@cific event defini-
tions, a set of fluents controlled by the events, a conditayltand an action body. The
basic operation of a rule is to perform the actions definetereiction part if the condi-

tion part evaluates to true. The condition part consistslofeal expression involving

88

Design

the occurrence of events or the current state of fluents. thaeht expresses a specific
situation that the rule is interested in. The situationsresged by fluents are directly

controlled by the defined events.

For example, let’'s consider a policy specifying that thevoek connection should

switch to GSM when the user is outdoors. An informal way tocdés this is:

Events LeftHome, LeftOffice, EnterHome, EnterOffice
Fluent Outdoors :
initiated by events: LeftHome, LeftOffice
terminated by events: EnterHome, EnterOffice
Condition :
Initiated(Outdoors)
Action:
Switch network to GSM

As described in this example the fluent outdoors is contldiethe events denoting
when the user leaves or enters areas that the network cammsbbuld not be GSM.
The condition part evaluates to true at the time the fluemtiigted and the action part

is executed.

In more detail, the policy language allows the user to deforeitions using Event
Calculus predicates (as in the previous exampidiates). The policy manager would
evaluate the policy rules based on the notifications reddiyehe application managers.
This evaluation procedure will try to determine the timemsifor which the events that
took place allowed the condition to be valid. In the examplke policy management
system would try to determine the time the flu€@utdoorswas initiated. When the

whole condition is found to be valid, the action is executed.

Formally speaking, we define an event calculus policy rulbd@n expression of

the form:

event definitiop

event definitiop

fluent definition

89

Design

fluent definition,
condition { condition}
action {

action

action

Definition 3: An event symbol e represents the occurrence of an event aslees

by the event definition. The event definition is an expresditme form:
evente :- |

where e is an event symbol and | is a system specific logicaéssion. The logical

expression is of the formyp, where

1. Bis a Boolean operator from the sedr{d, or} and p;, p, are logical expressions

as well, or

2. O is a relation operator from the set {=<>, <, <=, >, =>}, p1 is a system
specific attribute and pis a constant of the same type. It is assumed that the
user has access to the set of available system attributés#mabe used for the

definition of the logical expression.

As highlighted in definition 1, the user is assumed to havesgto the set of system
attributes that can be used for the definition of events. hrsgstem these attributes are
the application state variables reported by the adaptipécgtions running on the sys-
tem during registration with the platform (described ints®mt4.4.2). The specification

of such an attribute is represented by an expression of th& fo

av

wherea represents the application running on the systemaisdone of its state

variables. An event, for example, specified to mark the tingertetwork bandwidth is
between 19.2Kbps and 64Kbps is defined as:

eventnormBand:- (NetworklInterface.Bandwidth 19200)
and (Networkinterface.Bandwidth 64000)

90

Design

Definition4: The occurrence of an event is defined through the predicaipdrage, t)
— {true, false} where e is an event symbol and t is a time point. Predicate éappval-
uates to true iff t is the time point the logical expressiopédfied by the event definition
transits from false to true.

The happengredicate should be interpreted as “the logical expressadimed for
evente has changed its value from false to true at time pbo#using the event to take

place”.
Definition5: Atime pointis a positive integer that represents a specdintan time.

In our system, time points are considered to represent tinseconds. However,
the granularity for the representation of time within a pglsystem is an issue that
depends on the requirements of each implementation. liglheunoted that within the
specification of a policy rule it is required to specify timaimts as symbols. The actual
values for these time points will be set by the policy evabraengine. In particular,
as events are delivered to the policy manager the time pgspasified in the policy rule
will receive their values according to the semantics of trezlgates they are members
of (Section 5.3.5.1).

Definition 6: A fluent symbol f represents the state of a fluent as descripeleb

fluent definition. The fluent definition is an expression ofdine:

fluent f {
inity
init,
term,
termm
}

where f is a fluent symbol and each jirg an expressions of the formitiates(e)
where e is an event symbol representing the event that mstidite specific fluent; and
each termis an expressions of the forterminates(e) where e is an event symbol
representing the event that terminates the specific fluent.

A fluent is considered to hold for the time period between itg@ation and termi-

nation including the initiation time and it does not hold fitre time period between

91

Design

termination and initiation including the termination time

A fluentin the policy language does not relate to any valubiwithe platform itself.
It is an abstract entity that can be defined according to thieypauthor’s requirements.
The purpose of a fluent is to represent entities that have dunation and their state
changes according to the occurrence of events. In pracficert usually represents a
real situation of the system’s behaviour (like for examgderating in a low bandwidth

state as shown in figure 4.9).

As Definition 4 describes, the state of a fluent is controliethie events that initiate

or terminate the fluent.

Definition 7: The condition is a logical expression of the form

1. pOp2 whereB is a Boolean operator from the sedr{d, or} and py, p are con-

dition expressions as well, or

2. a predicate proposition of initiates, terminates, haljshappens, clipped, de-

clipped and their negations, or

3. alogical expression of the fornpBt, where® is a relation operator from the set
{= <>, <, <=, >, =>}, t1is a time variable andjtis a time variable or an

expression representing a time point.

The body of a condition specifies the logical expressionghatuld be evaluated in
order for the action part to be executed. Within the conditiody a policy rule may

include combinations of predicate propositions and tinkaienships.

Definition 8: The initiates/terminates proposition is an expressiorhefform:
initiates(e, f,t) / terminates(e, f,t)

where e is an event symbol or the literal *’, f is a fluent symaotl t is a time vari-
able. If e is an event symbol then this proposition is truénitiates(e)/terminates(e)

is part of fluent’s f definitionhappenge,t) is true and the fluent does not hold/hold at
time t. In the case where e is the literal symbol *’ then thetlirualue of the propo-
sition is defined as follows: The proposition is true iff, tnés an event e for which

initiates(e, f,t)/terminates(e, f,t) is true.

These predicates allow the specification of queries iniogldb the initiation/ termi-

nation of fluent. They should be interpreted as “the ewdnttiated/ terminated fluent

92

Design

f at timet”. The special keyword “*” is used to denote the initiati@Tinination of a
fluent by any event that can initiate/terminate the fluent.HAke to make clear the dis-
tinction between the statemeritstiates(e) andterminates(e) defining a fluent from
the predicatesitiates(e, f,t) andterminates(e, f,t) evaluating if a fluent was initiat-

ed/terminated by an event at a given time.

Definition 9: Theholdsat proposition is an expression of the form:

holdsaf f,t)

where f is a fluent symbol and t is a time variable. This projpasiis true iff there is
an event e for whichinitiates(e, f,t1) is true and { <t and for every eventend time

point b, t1 <ty < t, terminates(ey, f,ty) is false.

The holdsatpredicate allows the specification of queries in relationht® actual
state of a fluent. The predicate should be interpreted asftfilubolds at time”.

Definition 10: The clipped/ declipped proposition is an expression of one f

clipped(f,t1,t2)/declipped(f,ty,t2)

where f is a fluent symbol angd t, are time points andit< to. This proposition is true
iff there is an event e for whidiappenge,t) is true and { <t <ty andterminates(e, f,t)

linitiates(e, f,t) is true.

The clipped/declippedoredicates are used for specifying queries about the 4nitia
tion or termination of a fluent within a specific time range.eTpredicates should be

interpreted as “fluent has been terminated/initiated sometime witttinty]”

Definition 11: An action is a statement of the form:

a(p1,.--,Pn)

where a is an action symbol with n arguments and eadb @ parameter of the appro-
priate type.

An action statementepresents a call to a specific adaptation method of an appli-
cation as defined by the applications by their registratidn. action call triggers an
application to adapt when the condition part of the policgleates to true. In the def-

inition of the Event Calculus Policy Language we assume thatcion that should be

93

Design

event lowBand :— Networkinterface.availableBandwidth < 19200
event normBand:— NetworklInterface.availableBandwidth >= 19200
fluent inLowBand {
initiates (lowBand)
terminates (normBand)
}
condition {
initiates (lowBand, inLowBand, t1) and
not clipped (t1, inLowBand, t2) and
t2>1t1+30
}
action {
WebBrowser.LowBand()

}

Figure 4.9: A sample policy rule

taken when a condition is true consists of a set of adaptatiethod calls to the ap-
plication interfaces. However, it is possible to expect encomplex action procedures
for certain cases. Therefore it should be noted that thisitiefn does not consider the
action body of a policy rule as a strict sequence of methold.c8lpecifically, certain

implementations may require a more powerful way to expresisrss that should be
invoked when a policy rule is true. Possible approachesdliseethis would be to use
a scripting language (e.g. JavaScript, Python) or a prepdethaction module as the
body of a policy rule.

Looking at the presented policy language definition in a miofermal way, each
rule of the policy language consists of two main parts: a @mmand an action. The
condition is a logical expression that can evaluate to trualse. When this condition

evaluates to true the action body is executed.

Each condition is further divided into two parts: the deateon part and the con-
dition body. The declaration part defines the events andtBubat participate within
the body of the condition. The body itself consists of a lagexpression combining

Boolean operations (and, or, not) and the predicates spkbyi¢he event calculus.

The declaration of an event specifies when an event is caeside have occurred
in relation to the values of specific application state J@da. As shown in figure 4.9 the
event lowBand is considered to have taken place when thevstasédble availableBand-
width of the application Networkinterface has taken a vddaw 19.6Kbps. A fluent
declaration is done by specifying all the events that camit@tied and terminated by.

94

Design

The condition body consists of a logical expression usimgetvent calculus pred-
icates. This logical expression can use predicates to &eathe time specific events
take place or whether a fluent holds or does not hold. Moretivercondition body can
include time relationships between time variables (elg< t2). This way the policy
author can specify not only the events and fluents that wdbénthe condition to be
true, but also the time relationships between these predicAs presented in figure 4.9
the body of that condition specifies that it will evaluaterieetonly if the fluent inLow-
Band has been initiated at a timyeand has remained valid until timig > t; +30. In
essence, this rule specifies that it evaluates to true ifytbes’ available bandwidth

has remained below 19.6Kbps for more than 30 seconds.

The last part of a policy rule is the list of actions. Withirtst of actions the policy
author has to specify a sequence of adaptation methodshibalidsbe invoked by the

platform when the condition of the rule evaluates to true.

4.7.4 Examples

In order to better illustrate how the Event Calculus Policpgaage can be used in prac-
tice, this section presents a list of examples where adaptiat adaptive context-aware
applications is handled by Event Calculus policy rules. $dawote that in the following
examples the application interfaces are purely theoletMareover, the interfaces are
simplified in order to give more emphasis to the policy rulRsal world examples will

require more complex interfaces (Chapter 6).

In the first scenario we are considering a mobile device gepdpwvith a network
interface capable of switching between GSM connection amelégs LAN connec-
tion. Moreover, the device has a location monitoring modiuég can report the current

location in terms of labels, such as “Home", “Office”, etc.

The first adaptation rule specifies that the network interfawuld switch to a GSM
connection when the user leaves their home. First the apptegvents and fluents are
defined:

event LeftHome :— Location.label<>"Home"
event EnterHome :— Location.label="Home"
fluent Outdoors {

initiates (LeftHome)

terminates (EnterHome)

95

Design

Here the fluenDutdoors is initiated when the user leaves their home and is termi-
nated when they enter their home. For the condition defmifi@ only check is to see

when the fluent is initiated and trigger the appropriateoactin the network interface:

condition {
initiates (*, Outdoors, t1)

}

action {
NetworkInterface.UseGSM()

}

A similar rule is used for switching the network interfaceckavhen the fluent is
terminated.

condition {
terminates (x, Outdoors, t1)

}
action {
Networkinterface.UseWLan()

}

An interesting observation here is that this rule can belyeagiended by simply
modifying the definition of the fluent. For example, if the saraaction is needed when

the user enters and leaves their office the fluent definitiarbeamodified as follows:

event LeftHome :— Location.label<>"Home"
event EnterHome :— Location.label="Home"
event LeftOffice :— Location.label<>"Office"
event EnterOffice :— Location.label="0Office"
fluent Outdoors {

initiates (LeftHome)

initiates (LeftOffice)

terminates (EnterHome)

terminates (EnterOffice)

No modifications are required for the condition and actiodies.

Next we assume that the location monitoring module is capabkwitching be-
tween alternative location mechanism. In more detail, veeiia® that that the location
can either use the GPS device, built in the mobile deviceseiGSM positioning. Con-
sidering that the GPS module consumes extra power, in tirheathe GSM connection
is active and power saving is required, it is preferred fergiastem to switch into GSM
positioning and turn off the GPS device.

96

Design

In order to define the rules that implement this adaptatidicypowve first have to
define the events and fluents involved. Specifically, we neetitine two fluents, one
expressing the situation “running with GSM connection” dne other expressing the

situation “running in low power”:

event powerLow :— Power.percent < 10

event powerNorm :— Power.percent>= 10

event gsmActive :— Networkinterface.CurrentMode = "GSM*"
event gsminactive :— Networkinterface.CurrentMode <> "GSM"

fluent inLowPower {
initiates (powerLow)
terminates (powerNorm)

fluent iNnGSM {
initiates (gsmActive)
terminates (gsminactive)

The condition that will trigger the adaptive reaction wilye to match the overlap-
ping of the two situations. In particular, the condition slibbe triggered when one

situation is initiated while the other is active:

condition {
(initiates (x, INnGSM, t1) and
holdsat (x, inLowPower, t1)) or
(initiates (x, inLowPower, t1) and
holdsat (x, INnGSM, t1))

}

action {
Location.DisableGPSPositioning()
Location.EnableGSMPositioning()

}

An additional rule to switch the location module back to GPSitoning is:

condition {
terminates (x, iNGSM, t1)

}

action {
Location.DisableGSMPositioning()
Location.EnableGPSPositioning()

In the next scenario we assume an office environment whergygtem can control

the room lighting. The rule that is presented is controlling automatic switching off

97

Design

of the room lights. The condition that we are trying to acbkievto turn the lights off

only if:

¢ the lights were switched on after the user entered the rodheif@ise this is a

room that lights usually stay on).
e the user left the room and the lights were left on.

¢ 15mins have passed after the user left the room and he/shi tedsrned.

First we define the appropriate events and fluents to speedsituations: ‘user in

the office’ and ‘room lights are on’:

event LeftOffice :— Location.label<>"Office"
event EnterOffice :— Location.label="0Office"
event SwitchOnLights :— RoomLights.State = "On"
event SwitchOffLights:— RoomLights.State = "Off"
fluent inOffice {

initiates (EnterOffice)

terminates (LeftOffice)
}
fluent RoomLightsOn {

initiates (SwitchOnLights)

terminates (SwitchOffLights)

Next we define the condition:

condition {
initiates (x, inOffice, t1) and
initiates (*, RoomLightsOn, t2) and
t2>t1 and
terminates (x, inOffice, t3) and
not clipped (inOffice, t1, t3) and
t3>12 and
not clipped (RoomLightsOn, t2, t4) and
t4 = t3 + 900 and
not declipped (inOffice, t3, t4)

The first line of this condition checks if the user enteredrtem. The second and third
lines check if the room lights were turned on after the uségred the room. The next
three lines check if the user left the room sometime aftemitigrthe lights on. The final

three lines ensures that the lights are still on 15mins #feeuser left the room and that

98

Design

the user has not returned within these 15mins. Finally wendefie action body which
is a simple:

action {
RoomLights.Off()

}

The scenarios presented here illustrate the expresswehtge Event Calculus Pol-
icy Language but are not intended as real world examples. t€h&provides specific
real world examples that were implemented as part of theuatiah of the adaptation

support platform.

4.8 Summary

This chapter presented the design of a platform to suppardawated adaptation for
adaptive context-aware applications. Specifically, thehitecture presented ensures
that the requirements for decoupling of adaptation pdieied mechanisms, applica-
tions externalising their state, applications extermadisadaptation mechanisms and
support for modification of adaptation policies are all Sfa#d. Moreover, existing
technologies for interface specification, event managéaah policy management are
investigated and appropriate solutions are proposed.l¥sitlee chapter presented the
Event Calculus Policy Language that was designed in ordeett the explicit require-
ments of a policy language supporting adaptive context@wpplications. The next

chapter describes a prototype implementation of this desig

99

CHAPTER V

| mplementation

Contents

51 Overview e e 101

5.2 Platform Configuration 101
5.2.1 Non Distributed with Local Applications 101
5.2.2 Non Distributed with Remote Applications 102
5.2.3 Partially Distributed Platform 103
5.2.4 Fully Distributed Platform 103

5.3 Prototype 104
5.3.1 ComponentOverview 105
5.3.2 ApplicationRegistry oL 107
5.3.3 ApplicationController 108
5.3.4 EventDispatcher 111
535 SystemManager 0. 113
5.3.6 ApplicatonStub 121

5.4 Platform Operation 125
5.4.1 Platform Initialisation 125
5.4.2 Application Initialisation 126
5.4.3 State Change Notification 126
5.4.4 Adaptation 127

55 Summary e e e e 127

100

Implementation
5.1 Overview

This chapter presents a prototype implementation of thateture described in chap-
ter 4. The first sections of this chapter offer a discussiauapossible configurations
for the implementation of the architecture. Following tHiscussion the prototype im-
plementation is presented as a system application supgadiordinated adaptation for
the applications running on a single host. Each of the pyp&$ components are pre-
sented in detail, followed by the presentation of the podngine for the evaluation of

Event Calculus policy rules.

5.2 Platform Configuration

The high level architecture presented in chapter 4 does akerany statements about
the location of each individual component of the platfornowtéver, the level of distri-
bution chosen for the system has implications for the imeletation of the platform. In
this section we examine the possible configurations for gasldmentation of a platform
supporting adaptive context-aware applications.

The platform configurations presented here follow an ingirgnlevel of distribu-
tion. Specifically, the discussion begins with the configjoraof a system where all
applications and the platform are located in the same hakfimishes with a configura-

tion where applications and platform components are Bigteid across multiple hosts.

5.2.1 Non Distributed with Local Applications

The single host configuration assumes a system where albtatomponents and
applications are located on the same host. (Figure 5.1T&)$. configuration has min-
imal requirements in terms of communication. Specificalgre is no need for a net-
work protocol to be used between the applications and thigopta or between the
platform components. In particular, both, communicatietween applications and ap-
plication managers and the internal communication layar,lie implemented using an
inter-process communication mechanism such as shared imeMoreover, the time-
ordered delivery of events from the application manageithéosystem manager will
not face the delay issues experienced by a distributed coafign.

101

Implementation

Host 2 Applications Host 3

5= 0
O

Host 1

c
.

- Host 1 -
Application Application
Managers Managers
Internal Communication Layer Internal Communication Layer

System Manager System Manager

(a) Non distributed with local applica- (b) Non distributed with remote appli-
tions cations

Host 2 Host 3 Host 2 Host 3

Q Q e Q Q
Application System Application
Managers Manager 1 Managers
| |

Applications

Internal Communication Layer Internal Communication Layer
Host 1 System Manager Host 1 System Manager 2
(c) Partially distributed platform (d) Fully distributed platform

Figure 5.1: Platform configurations
5.2.2 Non Distributed with Remote Applications

The second configuration assumes a system where applisatiorbe distributed across
different hosts while the platform is located on a singletiipgyure 5.1(b)). This config-
uration implies a requirement for the use of a network proltéar the communication
between applications and application controllers. In nd&#il, this configuration re-
quires the employment of a technology for remote procesxamon and event dissem-
ination. Technologies like Corba, Java/RMI and Web ServiSestjon 4.4.1) would be
appropriate candidates for an implementation of this systi terms of the internal
communication, both the application managers and the mmystanager are located in
the same host. Therefore the communication between thesparents can be based
on inter-process communication as described in the prepatagraph. However, since
there are delays between the time state variables changbatithe these changes are

reported to the platform, an appropriate mechanism to ensuely delivery of these

102

Implementation

notifications should be implemented.

5.2.3 Partially Distributed Platform

The third configuration assumes a system where both applsatnd application con-
trollers can be distributed across different hosts (Figui€c)). In this case the burden
of network communication is pushed away from the applicatimnagers and into the
internal communication layer. Specifically, applicatiommagers can be located on
the same hosts as the remote applications. Thus the netvadfik toncerns the com-
munication between the application manager and the systenager. This particular
configuration would require the employment of a middlewdagfprm handling the ex-
change of notification events from the application managd@etforms such as?imbo,
the Event Heap and CEA are examples of plausible choicesi¢8etb.1).

5.2.4 Fully Distributed Platform

In a system where applications are distributed across pheiltiosts, having a single
central system manager can significantly reduce the resgoess of the system, es-
pecially where high latency or low bandwidth networks aredusHaving system man-
agers located on the same hosts as the applications canvieni® responsiveness of
the system. The fourth configuration is where the system gearia distributed across
different hosts. (Figure 5.1(d)). In more detail, adaptafpolices that are related to a
particular application can be located on a system manageiirg on the same host.
Thus, the adaptation reaction related to that particulaliegtion should have faster
responses as compared to a remote system manager. Thisicatidig requires the im-
plementation of a policy management system that allowsi#talmlition of policy rules
across different system managers. As presented in secfiod, 4he Event Calculus
Policy Language allows the specification of policy ruled @ complete and have no
requirements regarding the co-existence of other polilgstun particular, each policy
rule contains the definitions of all entities required far @valuation (events, fluents).
Therefore, it is possible to distribute policy rules acrbssts allowing their manage-

ment by distributed policy managers.

However, such a configuration imposes additional requirgsnen the implemen-

tation of the internal communication layer. In particulstate variable changes must

103

Implementation

be delivered to all system managers that are handling palies related to the state
variables in question. The use of a tuple space mechanigrsdfsignificant benefit.
As state variable notifications are shared among all compene the system, system
managers can retrieve the notifications they require fostieset of policy rules they
are handling. Therefore, there is no need for the internadnsonication layer to em-
ploy mechanisms to maintain the delivery of the notificaditmthe appropriate system
managers. Moreover, the approach of a replicated tupleeqjsach as the one used by
L%imbo, section 4.5.1.4) can reduce the delay overhead foretipgests of application
state information. In particular system managers caresadrinformation about the state
of distributed application controllers using their locaplica of the tuple space. Consid-
ering the fact that the implementation of the replicatedtgpace is based on multicast,
this means that the total network traffic would be consideramaller, compared to a
mechanism based on point-to-point communication wherk sgstem manager would

retrieve information from each distributed applicatiomtoller.

5.3 Prototype

In the previous section a list of possible configurationstfa@ implementation of the
adaptation support platform were presented. Here we cengii@ most appropriate
configuration for a prototype implementation of such a platf. In particular, the aim

of this prototype implementation is to:

¢ lllustrate that the design presented in chapter 4 descalfeasible system that

can be implemented.

e Evaluate whether the design presented in chapter 4 all@visrgplementation of
a system that supports coordinated adaptation for adaggiviext-aware applica-

tions.

e Investigate possible strengths and/or weaknesses in hgnderesented in chap-
ter4

The requirements for the design of this platform as preskintehapter 3 are:

1. To decouple the adaptation control mechanism and thécatiph’s implementa-

tion

104

Implementation

2. To externalise application state
3. To make applications’ adaptation interfaces accestibi¢her components

4. To allow the modification of the adaptation control measiam

The design of the platform presented in chapter 4 was dyrdetlived from this set
of requirements. Itis evident that the design featuresatetlirectly related to the target
of this thesis are actually unrelated to the level of disitiitn of the platform’s compo-
nents. All of the features described in the design chaptebeallustrated through any
of the aforementioned configurations. Specifically, irezgwe of the level of distribu-
tion, the issues of policy and method decoupling, applcainterface externalisation

and modification of the controlling mechanism follow the sagesign guidelines.

In order to achieve the implementation goals stated abdwe,chapter presents
the implementation of a prototype that is based on the nstmidlited configuration
discussed in section 5.2.1. The implementation of thisqtype allows the experi-
mentation with and evaluation of the design charactessifdhis platform without the
overhead of distribution related issues that are unrelatéide main aims of this thesis
and that might make the identification of the platform’s eféeless clear and harder to
evaluate.

This prototype is intended to support adaptation on a makeldce, controlling
adaptation for the applications running on the same devite. prototype was devel-
oped using Microsoft Visual C++ (approximately 8,000 linésade for the platform
and 1,300 lines of code for the application stub) and was denhfior the operating
system Microsoft Windows. The prototype operates as a Wisdapplication using a
text-based interface and communicates with running agipdios through shared mem-
ory. In the next sections we present in detail the comportbatsomprise the prototype
implementation of the platform.

5.3.1 Component Overview

The implemented prototype reflects the design guidelinesgmted in chapter 4. The
overall operation of the prototype is illustrated in figur€.5 The prototype consists
of a set of components that are bundled in to a single systgpest application. The

components that comprise the adaptation support platfoem a

105

Implementation

Application Register Register Application
XML XML
Interface Interface
Platform API Platform API

Install Var . .
Default Change Trigger Trigger
Policies

Application Create Application Create - Application

Controller e Registry - Controller

A A
Var Change Var Change ;
Trigger - . Trigger
<

A . Y
] Event Dispatcher

v Event
LN Parse
System Manager

Policy
Repository

Figure 5.2: Platform component overview

Application Registry: The application registry accepts registration informafiom
adaptive applications running in the system. Using thisnmfation it creates appli-
cation controllers that handle all communication betwdenglatform and individual

applications.

Application Controllers: Each application controller handles the communication be-
tween the platform and a specific application running in ty&em. The application
controller forwards application notifications to the evdispatcher and receives adap-

tation requests from the policy manager.

Event Dispatcher: The event dispatcher implements the internal communicédiger
for the adaptation platform. It receives state change natibns from the application

controllers and delivers them to the system manager.

System Manager: The system manager component decides when adaptation reac-
tions are required by specific applications. These de@sioa based on a set of policy
rules specified by the user and/or the applications. Whewydicg to the policy rules,
adaptation is required a request for adaptation is forwhtdéhe corresponding appli-

cation controller.

106

Implementation

Application Registry
=
o
§

o | S Registration
XML Register = S —
®
<
2
Application Tabe
Application .

A

Créate

Application
Controler

Shared Memory

Figure 5.3: Application registration

The following sections provide a detailed description @& components.

5.3.2 Application Registry

The Application Registry is the first contact point for evepphcation that uses the
system. Applications are required to connect to the AppboaRegistry and submit a
registration document that describes their adaptivefater The prototype implemen-
tation uses the XML-based interface specification langtiaaevas described in section
4.4.2.1. In terms of communication, there is no requireni@n& network-based com-
munication protocol to be used. Applications communicath the application registry

through shared memory (Figure 5.3). In more detail, wheragh@ication registry is

initiated it creates a named shared memory space along wéhat global semaphores
to control access to the shared memory. The name of thisdhaeenory space and
the global semaphores are predefined and they are known enalihg applications.

When a running application is initiated it opens a handle & s#hared memory space

and communicates with the platform by passing raw data girdlie memory space.

All communication through the shared memory is handled byRégistration Server
sub-component. When the Registration Server receives an Xdglistration document
from an application it parses it and uses the Document Objectel (DOM) tree to
extract the registration information. In particular, th©M tree contains details about

the application, the list of adaptation methods that camisekied as well as the state

107

Implementation

variables that the application externalises. The AppbcaRegistry uses that informa-
tion to create and initialise an Application Controller campnt that will handle all

communication with the specific application.

In addition to handling registration requests the ApplamatRegistry component
holds pointers to all Application Controllers active in thestem. In more detail, the
Application Registry maintains a list of pointers of all the@ication Controllers that
it creates. Moreover it maintains two hashing indices usetbtcating application con-
trollers based on the application name and the applicatioue id respectively. This
way the Application Registry can locate an Application Coltgércand return a pointer
to that controller when requested by other components ipltéorm. This functional-
ity is primarily used by the Policy Manager. Specificallypmdicy rules contain actions
that are related to specific applications, when such actiees to be invoked, the Pol-
icy Manager locates the corresponding Application Corgrdtrough the Application

Registry and forwards the invocation request to the comroll

5.3.3 Application Controller

The application controller is the component that handlésgplication communica-
tion after the application has registered with the systemtetms of communication,
Application Controllers communicate with applicationsaibhgh shared memory. When
an Application Controller is initialised it creates a sharedmory space that is used
only by the corresponding application. This space reptesededicated point-to-point
communication channel between the Application Controliet &s corresponding ap-
plication. After the creation of the shared memory spacectrresponding application
receives a pointer to the newly created shared memory thrtheggRegistration Server.

After creation the Application Controller is initialised thithe registration informa-
tion submitted by the application. Specifically, the DOMetrge. the parsed XML
document submitted by the application) that was generateéldebApplication Registry
is used by the Application Controller to create the table @fpddtion methods and the
table of state variables exported by the application. Thietaf adaptation methods is
used for generating adaptation trigger messages that thkcApon Controller passes
to the corresponding application. The table of state véghcts as a cache for ap-
plication state variables. When a state variable value afstige application controller
stores the new value in its local variable table. This looglycof the state variable value
is returned to the rest of the platform component when itgsiested.

108

Implementation

The design of the architecture presented in chapter 4 ddegvweoany details about
when an application should send notifications to the apjdicacontroller. It is consid-
ered an implementation issue to specify whether an apitahould report all state
changes to the platform or not. Considering the differentiigoration options pre-
sented in section 5.2, it is clear that these decisions deperihe actual nature of the
underlying system. A distributed system would require almecsm where changes in
state would only be reported if they have some significancé®system manager. In
contrast, a single host implementation would not requihsumechanism. However,
in order to improve the performance of this prototype andsticaunnecessary commu-
nication through the shared memory a mechanism that miasnise number of state

notifications was implemented.

In order gain a better understanding of the internals oftieshanism we need to
revisit the design of the policy rules as presented in secti@.3. The definition of a

policy event is related to the values of state variablesutinca logical expression:

event lowBand :— Networkinterface.availableBandwidth < 19200
event highBand :— NetworkInterface.availableBandwidth >= 512000
event powerNorm :— Power.percent>= 10

When the policy rules are parsed all the expressions relatadstate variable are
combined into a set ahteresting changesThis set consists of a list of boolean ex-
pressions relating the value of a state variable to constdoes in accordance to the
policy rules’ definitions. This list ointeresting changeis sent to the application after it
connects to the Application Controller. The message seme@pplication is an XML
document of the form:

<?xml version ="1.0" encoding="ISO—8859—1"?>
<varNotifications >
<stateVariable>availableBandwidth </stateVariable>
<conditionList>
<condition>
<value>19200</value>
<operation>LT</operation>
</condition>
<condition>
<value>512000</value>
<operation>GE</operation>
</condition>
</conditionList>
</ varNoaotifications >

109

Implementation

WhereLT corresponds téess thanand GE corresponds tgreater or equalother
keywords used are EQ: equal, LE: less or equal, NEQ: not eqt@). The message
includes the name of the state variable along with a list pfessions that the platform
is interested in. The application is responsible for natdythe Application Controller
when any of these expressions changes truth value. Spégiftoaapplication should
sent a notification every time one of these expressions eiao true to false and vice
versa. The description of the application stub componeatt ithplements this func-
tionality (Section 5.3.6) includes a discussion about tlag whis message specifying
interesting values for a state variable can be used to efflgidiscover when notifica-
tions are required. In certain cases the platform can reédbhesapplication to report
all changes related to a state variable. This approach msssacy if the definition of a
policy event includes multiple state variables. In thisec#ss not possible to specify
constant boundaries that the platform is interested in.ekample, an event definition

of the form:

event lowBand :— WebBrowser.bandwidth < VideoPlayer.bandwidth

is one such case where the platform cannot specify constamtdaries for the notifi-
cation of changes. The applications should therefore tegachanges related to these

variables.

After the initialisation phase is complete the Applicat@ontroller enters a commu-
nication loop where it receives notification messages fioerefpplication and forwards
adaptation requests to the application as requested bylitg manager. The messages
exchanged between the Application Controller and the agipdic are XML documents.
Specifically, a message that is sent by the application tynmabout a change of value

for a state variable has the form:

<?xml version ="1.0" encoding="ISO—8859—1"?>
<varChange>
<name>bandwidthinUse </name>
<value>1024</value>
</varChange>

The message includes the name of the variable and the new. v#lumessage
sent from the Application Controller to the application teoke a particular adapta-

tion method has the form:

110

Implementation

<?xml version ="1.0" encoding="1SO—8859—1"?>
<invokeMethod>
<name>SetBandwidth </name>
< attributeList >
<attribute >
<name>bandLimit </name>
<value>1024</value>
</ attribute >
</ attributeList >
</invokeMethod>

In terms of communication with the rest of the platform an Agadion Controller

supports the following interactions:

e An outbound call to the methoBostEvent offered by the Event Dispatcher in
order to notify the event dispatcher that the value of a statiable has changed.

This method is called as part of the controller's commumiceloop.

¢ Aninbound call to the methottigger offered by the Application Controller. This

method is called by the System Manager when applicationtatiap is required.

5.3.4 Event Dispatcher

The Event Dispatcher is the component that interconnecystara’s application con-

trollers and the system manager. The main aims of the Evespiaiiher are:

e Fast propagation of state variable changes to the apptemuadicy rules.
e Ensure that state variable changes are processefirgt-aome-first-serverder.

e Ensure that only one state variable change is processelsystem manager at

any time.

The first issue is mainly a performance requirement. Spadifjacconsidering that
in an adaptive system with a large number of applicationstimaber of policy rules
controlling the application can be very large. Therefohe, platform should be able
to forward event changes to the appropriate rules with mininperformance overhead
despite the possibly large number of policy rules.

The second issue is a translation of the requirement forreddeelivery of events

to the system manager in the context of a non distributedamphtation. In more

111

Implementation

Mutually Exclusive Access

Application Event System
Controller Dispatcher Manager

State Variable

> L Policy Rule
\ >

Application ~ Policy Rule
Controller

State Variable / > Policy Rule

Figure 5.4: Forwarding notification events trough the Exanhager

detail, in a system where all platform components are lacate a single host there
are no communication delays in the propagation of statabkrichanges. Therefore,
the actual state change propagation mechanism is onlyregbia ensure &rst-come-
first-servepolicy for the variable change notifications. Moreover, rder to maintain
a deterministic behaviour of the system manager no statabkarchanges should be

forwarded to the system manager before the previous chageden fully processed.

Fast propagation of state variable changes is achievechkingj each state vari-
able to a list of policy rules that are affected by this valealtSpecifically, each event
definition in the Event Calculus Policy Language contains @nmore state variables
as part of a boolean expression (Section 4.7.3). Using #agionship between state
variables and policy rules a list of pointers to policy ruiegonstructed for each state
variable. When a state variable change is reported by theiégtign Controller, the
corresponding list of policy rules is used to forward theiafale change notification.
The notification forwarding does not include any searchesutgih the table of policy
rules and therefore is not affected by its size. Indeed ap@oach eliminates the neg-
ative effect that a large number of policy rules might havetlen performance of the
platform.

In order to ensure that only one state variable is procesgeldebsystem manager
at any time, the Event Dispatcher ensures a mutually exelusicess to itBostEvent
method forwarding a state variable change to the System gganBlowever, as the Ap-
plication Managers report state variable changes as p#rewfcommunication loop, it
is not acceptable to block the Application Manager on a magRraphore awaiting to

gain access to the Event Dispatcher. In order to avoid subhvibaur, the Event Dis-

112

Implementation

patcher handles each state variable notification on a deghraad, detached from the
Application Manager. In more detail, when the Applicatioandger calls thBostEvent
method in order to report changes of one of its state vaigatile Event Dispatcher starts
a new thread that handles the variable change and the mettuwwds immediately. This
behaviour allows the Application Managers to continuertitemmunication with the
application without any delays. The new thread is then gd@uerder to gain exclusive

access to the method forwarding events to the system manager

In terms of communication with the rest of the platform theeBvDispatcher sup-

ports the following interactions:

¢ An inbound call to the methoBostEvent called as part of the application con-

trollers’ communication loop in order to report a variablenge.

e An outbound call to the methoghrChange offered by a Policy rule. This method
call allows the System Manager to process the variable éhand potentially

trigger an adaptation action.

5.3.5 System Manager

The System Manager is the component responsible for tak&agsions on whether
adaptation is required by the applications registered Wiéhplatform. The decision
taking mechanism is handled by a set of Event Calculus Pdliesr In this prototype
the policy repository is implemented as a text file. The taktescription of the policy
rules can be modified by the user through a common text editpan the platform’s
start up the System Manager reads the policy file and parsgmtity rules. The policy
rule parser has been implemented using the Parser GenfBa&0d0], a port of the
YACC/LEX tools for the Windows platform. The policy parser stmucts a parse tree
of the policy code specified in the policy file. This parse tssen used to construct the
necessary structures that are used for the evaluation pbiley rules (Section 5.3.5.1).

In terms of communication with the rest of the platform, thest®m Manager does
not have a single entry point for the delivery of notificatievents coming from the
Event Dispatcher. Instead the communication with the resiteoplatform is delegated
to the individual policy rules handled by the system mana&mecifically, each pol-
icy rule is represented by an individuaRule object. EachCRule object includes the

constructs and functionality for the evaluation of a singbdicy rule. As described in

113

Implementation

section 5.3.4 each state variable is related to a list otpoliles that are affected by the
changes of the particular variable. When an event is dispdtbii the Event Dispatcher
this event is delivered to the appropria@®&ule object through a call to the object’'s
CheckEvent method. Within the body o€heckEvent the specific event notification is
processed. At some point after the delivery of a number ofitsyehe condition body
of a policy rule may become true. Then t@Rule object processes the action body of
the policy rule and triggers the adaptation methods spdcifiéhe triggering process
involves calls to the methottigger of the corresponding Application Controllers.

The following section presents a detailed description efalyorithm implemented

for the evaluation of the policy rule conditions.

5.3.5.1 Evaluation of Policy Rules

A characteristic of the policy language presented in secti@.3 is that the condition
body of a policy rule describes a pattern of events that shtake place in order for
the rule to be considered as true. Therefore the evaluatiarpolicy rule requires the
occurrence of a number of events that may take place at eliffearme points. This
characteristic implies that the evaluation of policy ridésuld take place progressively
as the values of state variables change over time and trigtgted events. One rea-
son for such an approach is that there is no easy way to disedwen all necessary
information is available in order to evaluate a rule in orepstRather, the evaluation
of a rule must take place incrementally as information alioeistate variables become
available. More specifically, as events take place, somdigates within the body of a
policy rule condition may evaluate to true, whilst others false, awaiting future events
that may change their value. Even while all predicates may leaaluated to true at
specific time points, the time relationships between the fiwints the events occurred,
may still not be satisfied. Therefore, the policy evaluatisechanism should progress
over time as events take place and allow the execution ofdtr@nebody only when the

whole condition body has been satisfied.

Before describing how the policy evaluation engine works iécessary to see in
abstract terms what an evaluation mechanism for theseshtadd produce. As seen in
section 4.7.3 one characteristic of this policy languagbas each policy rule includes
a set of time variables that represent certain time poiritde® to the occurrence of

events (e.g.initiateg(e, f,t), the time point is related to the occurrence of eveat

114

Implementation

From the policy author’s point of view these time variablesribt have any specific
value but represent the time that these events take plagaratice, these time vari-
ables receive specific values through the evaluation pso¢&s example, the predicate
initiates(e, f,t) will allow the time variablé to receive a specific value when the event
e takes place and the flueritis initiated. Based on this observation, we define the

evaluation engine as:

A mechanism that is able to find a solution for the conditiodybgiven a set of
events that take place during run-time. The solution inetuthe values for the time
variables involved in the condition body that allow the cibiod body to be true. This

solution should be the latest solution relative to the cottame.

This last statement is necessary in order to ensure thavéheagion engine will re-
evaluate a condition even after it has already been found taie before, thus allowing

the continuous re-evaluation of the rules throughout ttstesy’s life-time

In order to identify the mechanism that can find a solutiorafgiven condition body
it is necessary to look in more detail at how time variableree their values from
the predicates they are members of. One particularly imapofieature of the policy
language is the fact that not all Event Calculus predicatesvahe specification of a
single value for the time variables involved. For example, predicatéoldsaf f,t)
does not indicate a single specific time point foin practice, this predicate requires:
a<t < bwhereais the time fluenff was initiated andb the timef was terminated. This
implies that the evaluation of a predicate does not resutiénspecification of single
values for a time point but rather the specification of cartainstraints for the value of
the time points involved in that predicate. To explain thysexample, the predicates
happensinitates terminatesset constraints for their related time variables in the form
t = a (a is the time point the related event took place), while thedjmaesholdsat
clipped declippedset constraints of the fortn> a ort < a (a is the time point the

related fluent is initiated or terminated).

Another observation that is derived from the specificatibthe policy language is
the fact that time variables can be attributes to more thaypoadicate. For example, a

condition of the form:

initiates (eventl,fluentl,t) and
holdsat (fluent2, t)

115

Implementation

implies that the time variabkeshould satisfy the constraints imposed by both predicates:

t=te N t>t5 A <t

wherete is the time the evengventl took place,ts; is the time point the fluent
fluent2 was initiated andys; is the time point the fluent was terminated. However, this
fact implies that it is possible to have conflicts within tlenstraints imposed by a time
variable. In the previous example, if the evemtntl takes place before the initiation of

fluentl then the constraints are:

t=te N t2>ti A <ty = t<tyi A t>t5

In such cases of conflicts in the constraints it is necessarthé evaluation engine
to resolve and discard the constraints that are irrelewathiet evaluation of the full con-
dition body. Following the example at hand, the event ingdlin theinitiates predicate
that took place before the initiation ient2 cannot be part of the condition’s solution.
Specifically, as this event took place in the past and thisiweace did not satisfy the
other constraints imposed later by tigdsat predicate, then this event is not part of the
condition’s solution and can be safely discarded.

In order to define the mechanism for resolving such confationstraints we should
consider the general case where a time varidideelated to two time pointa, b. As-
suming that < b, all the possible relationships betweesnd the two time points (e.g.

taetc.) areillustrated in the following diagram:

® ®—

D_n,_,

where the two arrows represent time and the relative postfdhe variables rep-
resent relationships of the fortn< a, t = a, etc. Through this illustration it is obvious

that the following conflicting situations cannot be sati$fie
t<ant>bnra<b

t<ant>bna<b

t<ant<baa<hb

116

Implementation

The way to resolve these conflict is to discard the relatigns#ated to time point
a (wherea < b). The rationale behind this approach is the following: Tékationship
betweert anda can either be part of a solution for the condition defined ol rule
or not. If the relationship is not part of a solution, disaagdthe related constraint is
valid. If the relationship is part of a solution, considegyihat it conflicts with time point
b that is later in time, then this relationship was part of asjnasly evaluated solution
that has already been handled. Therefore, in both casesdiisg the constraint related
to ais acceptable for the evaluation of the most recent solufibis mechanism implies
that the evaluation engine is a progressive procedure vaaiaes conditions as events
take place. This evaluation includes the discarding of raimgs that have been part of

a previous solution or that do not match with the latest eszent

Based on these observations the implementation of the déwaiuangine consists
of a mechanism that receives event notifications in termstopke (e,t) — wheree is
the event symbol andis the time the event took place — and discovers the set of con-
straints for the time variables involved in a condition talkbws the condition body to
be true. The processing of the events in the evaluation engahudes the specification
of constraints according to the semantics of the relatedipaites. The constraints are
checked for possible conflicts and based on the approachlgesabove, the appropri-

ate constraints are discarded.

In more detail, the actual implementation of the evaluagagine uses finite state
automata to represent the state of each predicate. Withxttepeon of thehappens
predicate, all other predicates are related to a single tflu€herefore the FSAs that
represent these predicates consist of two states cormisigoto theholding and not
holding states of the fluent. The FSAs transit from one state to theratiinen the
events that initiate or terminate the related fluent takeegpl@he transition of the FSAs
between states triggers the specification of constrainthein related time variables.
The specific constraints imposed by the FSAs depend on thieydar predicate they
represent. For example theldsaf f,t) predicate will impose the constraibt> a
when the fluentf is initiated at time poinf. The same predicate will later impose
the constraint < b when the fluentf is terminated at time poirlh. The predicate
clipped f,ty,ty) will impose the constrainty < b andt, > b when the predicate is
terminated. For the evaluation of the policy rules FSAs atned for all the Event
Calculus predicates as well as their negations fiot.happensnot initated etc.). The
defined FSAs can be seen in Table 5.1 along with the constrianposed when there is

117

Predicate

Implementation

Affirmation FSA Negation FSA

happenget)

initiates(e, f,t)

terminatese, f,t)

holdsat f,t)

clipped(f,ty,t2)

declipped f,tj,t2)

any init event -

any term event -

any term event

any init event any init event
1,<b b t,>b / b
1>bh any term event ,2;4, any term event
"2
tl<a ti>a

eV' 12>a / 12>a }
S =

any term event

any term event

Table 5.1: Finite State automata representing Event Calqredicates. The first col-
umn specifies the FSAs for the predicates in their affirmdtve and the second col-
umn in their negated form (e.g. not happens, not initiates).

a transition between the states.

When the policy evaluation engine is initiated for a specifitiqy rule, a set of

FSAs is created that correspond to the predicates speaifibe icondition body of the

rule. In addition to the FSAs, a table of all the time variagldpecified in the condition

is constructed. For each time variable a list of constrasmtseated that will receive

a value from the predicates. Each of these constraints hioédt/pe of the constraint

(e.g.t > value and is marked as invalid until it is given a value by the rdgpredicate.

118

Implementation

As discussed earlier each time variable may participate anenthan one predicate.
Therefore the list of constraints may contain constraihtg are related to multiple
predicates.

Once the operation of the system is started and events stiaih@ the evaluation
engine passes these events to the corresponding FSAsglihwese to transit from one
state to the next. During these transitions, the FSAs assilyres to the specified time
variable constraints. Whenever a new value is assigned noeavriable constraint, the
engine checks this new value against all previously vaddaionstraints. During this
check some of the constraints that do not validate agaickt@her are discarded based

on the approach described earlier.

With this procedure the evaluation engine processes aihtwening events and sets
the required constraints until a solution for the conditimay is found. This solution
consists of a set of constraints for all the time variabldsdd in the condition, where
these constraints allow all the predicates to be satisfietich a situation can be found,
the condition is considered to be true. In essence this miwnsa combination of
events has taken place at the specific time points that mlagchituation described in
the condition body.

5.3.5.2 Policy Evaluation Example

Consider the policy rule presented in section 4.7.3:

event lowBand :— Networklinterface.availableBandwidth < 19200
event normBand:— NetworklInterface.availableBandwidth >= 19200
fluent inLowBand {
initiates (lowBand)
terminates (normBand)
}
condition {
initiates (lowBand, inLowBand, t1) and
not clipped (t1, inLowBand, t2) and
t2=11+30
}
action {
WebBrowser.LowBand()

}

In this policy rule there are two time variables: andt2. When the rule is initi-

ated no constraints are expressed for the time variablealatite predicates are false.

119

Implementation

Event Fluent Constraints Resolved

lowBand, 1 inLowBand : holds t1=1 t1=1
t1=1

normBand, 15 inLowBand : not holds t1>15 t1>15
t2>15 t2>15
t1=20 t1=20

lowBand, 20 inLowBand : holds t1>15 t1>15
t2>15 t2>15
t1=20 t1=20

, . t1>15 t1>15

timerEvent, 45 inLowBand : holds t2=45 t2=45
t2>15 t2>15

Table 5.2: Evaluation walk through for a sample policy rule

Assume that the evemdwBand is fired at time 1. The fluenhLowBand moves into
holdingstate (Figure 5.1). Based on the definition of the FSA fotihiates predicate,
the time variablael gets a constraintl=1 (Table 5.2). At the same time a timer event
is scheduled to be fired at timie-30 = 31. This timer event will be used to evaluate
the expressiore = t1 + 30. The transition of thexot clipped FSA does not impose any

constraints on the time variables.

Assume that the evembrmBand is fired at time 15. The predicateitiates’ FSA
transits tonot holdsbut it does not impose any constraints. The transition omtite
clipped FSA imposes constraints for both variablgs:15 andt2>15. The constraint for
t1 conflicts with the previously set constraint=1 andt1>15. In order for this conflict
to be resolved the constraitit=1 should be discarded. This means that from that point
on in order for the predicate to be true, the time variablshould have a value larger
than 15. This change also causes the predicaiges not to be true any more, since
the value forl does not satisfy the predicate. Moreover, the timer evdrgcided for
time 31 is canceled as it was initiated when the variabteok the value 1.

Next assume anothéswBand event at time 20. This event imposes the constraint
t1=20. This constraint does not conflict with the previous constra>15 and therefore
no additional actions are necessary. A timer event is aleedided for15+30=45.
Assume that no other application events are fired for the 3@sdeconds. This means
that the next event would be the timer event fired at time 45s Titmer event would
impose the constraing=45 which complies with the previously set constraipt15.
At that point all time variables have received a valid setafstraints that satisfy all

predicates in the condition body. As a result the policy ng@n@onsiders the condition

120

Implementation

to be true and executes the action body of the rule.

5.3.6 Application Stub

In order to assist the creation of adaptive context-awapécgtions that will collaborate
with the adaptation support platform, a platform stub liprnaas developed. This library
supports the application side operations that are relatdbtplatform. In particular, the
library supports registration and communication with tlafprm, notifications for state

variable changes and callback functionality for the intmceaof adaptation methods.

The stub was developed as a C++ object-oriented library #rabe statically linked
with an application. In order to allow developers to implentheir own application
stub (if, for example, support for other programming largpsis required) a detailed
description of the stub’s functionality is presented. Inrendetail, the operation of the
stub can be divided into two sections, the registrationi@eand the communication
loop (Fig 5.7). During the registration phase the stub cotsn® the shared memory
space handled by the Registration Server and sends out the dédtription of the
application’s interface. Next it awaits for a response ia trm of the name of the
shared memory space that was created by the Application @lentr The graph of
interesting valuess received after the stub has connected to the applicatiotraller.
This step completes the registration phase. The commumidabp consists of a thread

handling adaptation requests sent by the application alkertrand another thread that

Start i ‘
‘ Start
Spawn Reading | Thread

Thread |

Connect to

Platform
+«—5x—NO !
riggered to YES
¢ Adapt? j
Var change?
YES

[——No
Send Call Adaptation
Registration NO NO Callback
‘ NO

Receive Name of atches

AppManager Notification
Shared Memory Graph?

YES
Connect to ‘
AppManager send YES YES

Var change
¢ Notification
Receive
Value Graph
for Notifications
Stop
Stop Thread

Figure 5.5: Application stub

121

Implementation

Figure 5.6: Value Tree used for matching variable valuesnagéhe interesting values
reported by the platform

forwards variable change notifications to the platform.

Handling variable change notifications involves the usefifeaing mechanism that
checks whether the value change reported by the applicstiomd be forwarded to the
platform. As discussed in section 5.3.3 the Application @algr sends out an XML
description of the values that are considered interestinghfe adaptation platform.
This description is parsed by the Application Stub in oradecdnstruct a tree of value
change borders that when passed a notification event sheusert to the platform.
For example, a description of the values the platform isr@stied in for the variable

availableBandwidth may contain the following conditions:

availableBandwidth <19200
availableBandwidth = 24300
availableBandwidth > 128000
availableBandwidth >= 512000

Using these conditions a binary tree is constructed thatvalfast searching of val-
ues (Figure 5.6). In particular, for every variable chargmorted by the application the
stub stores its position in the value tree. If the next vdeiahange has a value that
results at a different position in the value tree then thengfe should be reported to the

platform.

5.3.6.1 Application API

For the purpose of simplifying the development of adaptppligations that can col-
laborate with the platform, the developers can use the tbjgented application pro-
gramming interface (Figure 5.7). The API consists of a abite of classes that take

care of all communication with the platform. The main clasdefined by the API are:

122

Implementation

/l---- dient side support for adaptation ---
class AD _Client {
public:
AD_Client();
virtual ~AD Client();
voi d VarChange(LPCTSTR varName, void* varValue);
void Stop();
void Start (AD_Applicationlinfo *p_Application);
prot ect ed:
void Communi cationLoop();

h

/l--- Application information container ---
class AD_Applicationlnfo {

public:

AD_Applicationlnfo(LPCTSTR pAppName, LPCTSTR pAppld);
virtual ~AD_Applicationlnfo();

bool AddNewMet hod(AD_Met hodl nfo *newMet hod);

bool AddNewVari abl e(AD_Variablelnfo *newvar);

voi d CreateXM.(char* out);

voi d SetDescription(const char* sDescription);
AD_Variablelnfo * GetStateVariable(const char* pVarName);

CString m sAppName;
CString m_sAppld;
prot ect ed:
SVarlList *m.|stStateVariables;
SMet hodLi st *m_| st Met hods;

H
//--- Method information container ---
class AD_Met hodlnfo {
public:
AD_Met hodl nfo(const char* pName, AD_Attribute* attribList,
int (__cdecl *p_TriggerCallback)(void*));
~AD_Met hodl nfo(voi d);
void CreateXM.(char* out);
voi d SetDescription(const char* sDescription);
CString m sName;
AD_Attribute *IstAattributes;
AD_Applicationlnfo *m pParentApplication;
b
//--- State variable information container ---
class AD_Variablelnfo {
public:
AD _Vari abl el nfo(const char* vName, AD VarType vType);
voi d SetDescription(const char* sDescription);
b
//--- Attribute information container ---
class AD_Attribute {
public:
AD_Attribute(const char* vName, AD_VarType,
AD_Variablelnfo *relVar = NULL);
h

Figure 5.7: Application stub API

123

Implementation

/1l Create the Applicationlnfo object
AD_Applicationlnfo *application =
new AD_Applicationlinfo("Test","10001");

/1 Add a state variable
AD Variablelnfo *var = new AD_Variablelnfo("bandwi dth", vinteger);
application->AddNewVari abl e(var);

/1 Add an adaptive nethod

var = application->Cet StateVariable("bandwi dth");

AD Attribute * attrib = new

AD_Attribute("newBand", vlnteger, var);

AD_Met hodI nfo * method = new

AD_Met hodl nfo(" Set Bandwi dth", attrib, CallbackFunc);
application->AddNewMet hod(met hod);

/1 Create the adaptdient object
AD Client adaptClient();
adaptClient. Start(application);

/1 Notify about the value change of a state variable
int nBandValue = 52030;
adapt Cl i ent . Var Change(" bandwi dth", (voi d*)&nBandVal ue);

Figure 5.8: Sample code: using the application stub

class AD_Client The main component responsible for all interactions with pat-
form. It constructs the XML definition of the applicationisterface and passes it to the
platform during registration. This action is performedatlgh theSt art (appl nf o)
method call. The/ar Change(var Nane, varVal ue) method call is used to notify the
AD Cient object that a state variable value has changed. This ndidiicanay be

passed to the platform, if required.

class AD_Applicationinfo Holds all information about the application. It is a con-
tainer for all definitions of state variables and methodsefgdd by the method calls
AddNewivet hod(et hodl nf) andAddNewVar i abl e(vari abl el nf 0) respectively.

class AD_MethodInfo Holds information about the definition of an application’esm
thod. Apart from the details required for the applicatiogisération (i.e. method name,
list of attributes, etc.) the specification of an AD_Methaigl object includes the defi-
nition of a callback function that will be invoked whenevieat method is triggered by

the platform.

124

Implementation

class AD_Variablelnfo Holds information about the definition of an application’s

state variable.

In order to illustrate how this API can be used by an appliatfigure 5.8 shows
a simple example of its use. Specifically, the applicaticgsubeAD_Applicationinfo to
construct a container that holds the application spedifioatThis container is loaded
with AD_VariableInf objects representing the application’s state variabled an
AD_MethodInfo objects representing the application’s adaptation methdkhe Start
method call performs the application registration andates the communication loop.
Whenever an adaptation request is sent from the ApplicationrGliter, a callback func-
tion is called containing the name of the method and a ligtfAttribute objects with

the attribute values.

5.4 Platform Operation

Based on the descriptions of the platform components predetitis section offers a

description of the actions taken by each component duriegation.

5.4.1 Platform Initialisation

During initialisation, the policy manager loads the set oligy rules from the policy
repository. The actual policy repository is a file contagnthe active policy rules. If
new policy rules have been installed, the policy manageigasethe existing policy
rules with the newly installed set. The set of policy rulestthre loaded include both
the policy rules that are inserted by the applications dutireir installation and the

policy rules added by the user.

Using the event specifications defined in the policy rules,gblicy manager con-
structs a relationship table linking the application stagables with the policy rules
that are affected by their change. This relationship tabfpeassed to the event manager.
The event manager uses this table for directing eventsdaeggstate variable changes

to the specific rules affected by these changes.

125

Implementation

Registry
Create
-t

Application
Controller

Application

Var. Change # ? Update

Event Adapt
Dispatcher

Var. Change #

System
Manager

Figure 5.9: Operation of the coordinated adaptation platfo
5.4.2 Application Initialisation

When an application is initiated it connects to the adaptagitatform using a well
known communication point (a named shared memory buffef)e application can
then send out the XML document with the description of thepatson interface it im-
plements. The Application Registry component parses the Xgltument and creates

an Application Controller component dedicated to that paldr application.

5.4.3 State Change Notification

When a value of a state variable changes, the applicatiorspnsible for notifying

the platform about the new value. This notification is senth&® Application Con-

troller. The Application Controller requests access to thierft Manager. If another
Application Controller is reporting a notification, it is putto a FIFO queue. When
the Application Controller is granted access to the Eventdden the Event Manager
signals the Application Controller to update the value ofdpplication’s state variable
with the new value. This late update of the Application Colférs values is necessary
in order to make sure that the values of state variables aftateg in the right order and
a previous evaluation of a policy rule will not use newerestatriable values. Next the
Event Manager forwards the notification message to the yPM@anager. The Policy
Manager uses the notification message to partially evathatpolicy rules affected by

the value change.

126

Implementation

5.4.4 Adaptation

As the variable change notifications reach the Policy Man#dgeevaluation of some
rules will result into a sequence of adaptation actions tieatd to be performed. The
policy manager sends the action messages specified in tlyedbadlde policy rules to
the corresponding application controllers. The applasatontrollers marshal the adap-
tation triggering message and send the message to theatppiic

5.5 Summary

This chapter presented the implementation of a prototyp#gsm supporting adap-

tive context-aware applications. The particular protetyp based on a “single host”
configuration where both the platform and the adaptive apptins are located on the
same host. The discussion focused on particular aspectedmplementation that

have significant impact on the efficiency of the platform. &rtgular, the mechanism

for filtering notification messages, the implementatiorhefévent manager and the im-
plementation of the policy evaluation mechanism were aitecreating an efficient

platform that imposes minimal overhead to the operationdajpéive applications run-

ning in the system. The efficiency of this prototype is inigeged in chapter 6.

127

cHAPTER VI

Evaluation

Contents

6.1 Overview 129

6.2 Qualitative Evaluation. 129
6.2.1 Applications and Monitoring Tools 130
6.2.2 Coordination 139
6.2.3 ConflictResolution 143
6.2.4 Extensibility 147
6.25 Userinvolvement 150
6.2.6 Qualitative Evaluation Summary 152

6.3 Performance Evaluation., 153
6.3.1 Methodology, 154
6.3.2 Number of Applications 155
6.3.3 NumberofRules 156
6.3.4 Rulecomplexity 157
6.3.5 Rulesperevent 159
6.3.6 Performance Summary 160

6.4 SUMMANY e e e e e e 160

128

Evaluation
6.1 Overview

The previous two chapters presented the design and imptatienof a prototype plat-

form that was developed following the requirements preseim chapter 3. This chapter
presents an evaluation of the developed platform. Thegulatévaluation has two parts:
a qualitative evaluation that investigates the charasttesi of the platform (and in par-
ticular the platform’s support in relation to the criterista&lished in chapter 2), and
a quantitative evaluation that measures the performandes@adability characteristics
of this platform. The aim of the performance evaluation i$¢oable to draw general
conclusions beyond the scope of this prototype implemiemaabout the design of a

platform that supports coordinated adaptation.

6.2 Qualitative Evaluation

In this section we evaluate the features offered by the guiatfthat, as discussed in
chapter 3, are considered important for the support of agapontext-aware applica-
tions. In particular, in this section we investigate thedabur of the platform in terms

of support for coordination, conflict resolution, exterilgiypand user involvement.

For this qualitative evaluation a set of test applicatioreyavdeveloped to allow
experimentation with the platform. The applications depeld were a video stream-
ing player, a web browser and an e-mail client. The actu&csien of the particular
applications was based firstly on popularity (applicatithreg are commonly used on a
computer system) and secondly on their diversity in ternfardtionality. In particular,
the video player uses a data streaming communication giéoel has high resource
requirements in terms of CPU and power; the web browser'draflows a pattern
where bursts of data downloads are followed by periods aftvm#y and, as an inter-
active application, requires fast responses to user r&xjubs e-mail client is, most of
the time, working in the background, its network demandsparéodic and may occa-
sionally require the download of large amounts of data @-eails with attachments).
These diverse characteristics allow the evaluation of thd#qum’s ability to support

different applications and to allow effective collaboostibetween diverse applications.

In addition to these applications a set of system monitocimgponents were also

implemented. Specifically, a network interface module thanitors and controls the

129

Evaluation

Video Web E-mail
Player Browser Client

User Awareness Location Monitor

Adaptation Support Platform

Power Monitor Network Interface

Operating System

Figure 6.1: System setup for the evaluation of the adaptatiatform

network interface, a power monitoring module that repdrésstate of the battery power
and a simulated location module that reports the curreratiome of the device. The

following sections present these applications and systamponents in more detalil.

6.2.1 Applications and Monitoring Tools
6.2.1.1 Video Player

The adaptive video player is based on the Real Player vidgep]Real03]. The Real
Player is an RTP/RTCP compliant video player that supporéptadion based on the
qguality of the network connection. More specifically, the Reayer can switch be-
tween different versions of streaming video and/or audi torrespond to varying lev-
els of quality, in response to the changing quality of thevoek connection. In order to
make the Real Player compliant with the adaptation suppattqsm, we developed an
RTCP proxy that can filter the RTCP messages sent to and frorertiate video server.
Moreover, the RTCP proxy can inject RTCP commands to the efienter channel in
order to cause adaptation on demand. This configuratiowsltbe RTCP proxy to

instruct the video server to start or stop the video stregraimd switch to alternative

Video Server

Video Player | 4—— —RTP
y
RTCP

RTCP
RTCP

e

Adaptation Support Platform

Figure 6.2: Adaptive video player through an RTCP proxy

130

Video Player State Variables

Evaluation

string state

int streamBandwidth

int videoBandwidth
int audioBandwidth

int highVideoBandwidth
int highAudioBandwidth

int lowVideoBandwidth
int lowAudioBandwidth

Video Player Methods

Reports the current state of the video player. Possible values:
‘idle’, ‘playing’,‘paused’, ‘congested’, ‘buffering’

Bitrate of the current stream in bps.
Bitrate of the current video/audio stream in bps.

The next higher video/audio bitrate from the alternative streams
that the player can switch to.

The next lower video/audio bitrate from the alternative streams
that the player can switch to.

Start()
Stop()

StartVideo()

Starting, stopping the video and audio play-out.

Starting, stopping the video or the audio play-out.

StartAudio()
StopVideo()
StopAudio()

VideoBandUp()
VideoBandDown()

AudioBandUp()
AudioBandDown()

Switch to a video stream with higher/lower bitrate.

Switch to an audio stream with higher/lower bitrate.

Table 6.1: Video Player: Adaptation Interface

video or audio streams.

Collaboration of the video server with the adaptation platfas achieved through
the RTCP proxy. In particular, the RTCP proxy, representirgg\uideo player appli-
cation, registers with the platform . The interface expdsgdhe proxy includes state
variables reporting the current state of the player, infitran about the current video
stream and information about alternative video streamsadka. The RTCP proxy re-
trieves that information from the RTCP messages exchangeekebr the player and
the server. In particular, the initialisation messagetarged when the player con-
nects to the server contains details about the alternatie®and audio streams and the

consecutive messages include details about the curréatotdne video stream.

The application interface that is used by the RTCP proxy tmeotito the adaptation
platform also includes a set of methods that allow the piatfto start or stop the video
streaming and request the player to switch into an altematideo or audio stream.

Details of the video player’s interface are presented iHeTall.

The default policies that were implemented for the adaptideo player allow
the switching between higher/lower bandwidth streams gpoase to network QoS

131

Evaluation

changes. In particular, the default policies use the Néimterface monitoring module
to determine the available bandwidth on the local netwomneation and, if enough,
switch into a higher video stream. Moreover, the lack of iadé bandwidth would
require the video player to switch to a lower quality vide@am. A sample rule that
handles the switching of the video stream is:

event videoBandAvail :— Networkinterface.availableBandwidth >
VideoPlayer.highVideoBandwidth — VideoPlayer.streamBandwidth
event noVideoBandAvail :(— NetworklInterface.availableBandwidth =<
VideoPlayer.highVideoBandwidth — VideoPlayer.streamBandwidth
fluent availVideoBand {
initiates (videoBandAvail)
terminates (noVideoBandAvail)

}

condition {
initiates (videoBandAvail, availVideoBand, t1) and
not clipped (availVideoBand, t1, t2) and
t2=11+10

}

action {
VideoPlayer.VideoBandUp()

}

This rule instructs the video player to switch to a higherdté/higher quality stream
when the available network bandwidth is enough to handleévevideo stream. The
video player will switch to the new video stream if that cdrat stays valid for more
than 10 seconds. Similar rules are used for reducing tharstlet rate of either video
or audio stream.

6.2.1.2 \Web Browser

The adaptive web browser was based on a traditional noniadapéb browser (e.g.
Internet Explorer) with the support of a web proxy pair impenting the necessary
adaptive behaviour (Figure 6.3). Specifically, two proxaes responsible for handling

Control
Weak Link /\ Strong Link
Web Browser eD e < Web Server
Proxy \pry‘

e —

Adaptation Support Platform

Figure 6.3: Adaptive web browser based on a pair of proxies

132

Web Browser State Variables

Evaluation

string state

string requestURL
int bandwidth

int setBandwidth
bool compressed
bool imageBW

bool imageNo

Web Browser Methods

Reports the current state of the web browser. Possible values:
(i.e. ‘idle’, ‘downloading’)

The url that was requested.

The bitrate that the data stream is delivered.

The set bitrate that the data stream should delivered.

Boolean variable to specify if the text compression is applied.

Boolean variable reporting if the images are converted to black
and white.

Boolean variable reporting if the images are filtered out of the
delivered data.

Fetch(url)
SetBandwidth(band)
SetimageBW ool Var)
SetlmageNobool Var)
SetProxy(p, port)

Fetches the specified url.

Sets the bitrate that the data should be delivered.
Toggles the black-and-white image filtering.
Toggles the no-image filtering.

Sets the address of the corresponding proxy pair.

Table 6.2: Web Browser: Adaptation Interface

the web traffic over a weak link (e.g. a wireless link). Thetfiveb proxy is located on
the same host as the web browser and the second proxy on aerkasttthat is part of
the fixed network and has a high speed connection with the ameIs The two proxies
communicate in order to collaborate and perform the necgsskaptive functionality.
In particular, adaptive behaviour supported by the proxy ipalude: specification of
the bitrate that data should be delivered to the web broamapression of text/html

data, image conversion to black-and-white and removal afes from a web page.

In terms of communication with the adaptation support platf, the local proxy
represents the web browser as an adaptive web browser. Eaissthat all adaptation
requests are from the platform to the local proxy and thellpaay collaborates with
the remote proxy to implement them. In terms of state vaemldhe web proxy exports
state information such as the url being fetched, the bititzé the current stream is
being downloaded at, and the use of a specific image filteecignique, etc. One inter-
esting aspect of the behaviour of the web proxy is that whemtdb browser requests
the retrieval of a specific url, the proxy submits that infatian to the platform as a
requested URIland awaits for an invocation of tHeetchmethod in order to carry out
the request. This feature allows the platform to performessary adaptation actions
before a specific url is retrieved. Details of the web brovgdaterface are presented in
Table 6.2.

133

Evaluation

The default policies of the adaptive web browser handle comuarl requests and
network related adaptation For the adaptive web browsemthia policy that handles
all web requests is the following:

event :— WebBrowser.requestURL <> ™

condition {
happens (requestURL)

}

action {
WebBrowser.Fetch(WebBrowser.requestURL)

}

This rule lets the web browser fetch the url that was reqddsyethe user. This is
an unconditional fetching rule that can be modified by the ts@erform any custom
adaptations required when a specific url is requested.

One of the policy rules that handles the behaviour of the welwv&er under low

bandwidth conditions is:

event lowBand :— Networkinterface.availableBandwidth > 19200
event highBand :— Networklnterface.avilableBandwidth <= 19200
fluent inLowBand {

initiates (lowBand)

terminates (highBand)

}
condition {
initiates (lowBand, inLowBand, t1) and
not clipped (inLowBand, t1, t2) and
t2=11+30
}
action {
WebBrowser.SetBand(0.9 x NetworklInterface.availableBandwidth)
WebBrowser.SetlmageBW(true)
}

This rule is triggered by the low available bandwidth. Whealtw bandwidth state
is active for more than 30 seconds the platform will requiestdair of web proxies to

convert all delivered images to smaller black-and-whitages.

6.2.1.3 E-mail client

The E-mail client is an application that was developed frenateh in order to allow a
high level of external control of its behaviour. The cliemtuising the Post Office Proto-

col [J.Myers96] and the Simple Mail Transfer Protocol [fi82] to communicate with

134

Evaluation

the e-mail server. The application is registered with the@&mail. The registration

information includes state variables like: the state ofdpelication and information
related to the current email being send or retrieved. Thé&rabmethods supported by
the e-mail client include methods for checking for new elmdetching e-mails and

controlling the network usage of the client (Table 6.3).

For the e-mail client the default policy rules handle theigumic checking for new

e-mails and the fetching of e-mails:

event echeck :(— Email.state = "emailChecking"
event necheck:— Email.state <> "emailChecking"
fluent noEmailCheck {

initiates (necheck)

terminates (echeck)

}
condition {
initiates (noEmailCheck, necheck, t1) and
not clipped (noEmailCheck, t1, t2) and
t2 = t1+300
}
action {
Email.CheckMail()
}

This rule triggers the Email client to check for new e-maifsigs after the last

check.

event fetchEmail :— Email.state = "fetchReq"

E-mail State Variables

string state Reports the current state of the e-mail client. Possible val-
ues: (i.e. ‘idle’, ‘emailChecking’, ‘emailFetching’, ‘emailSend-
ing’, ‘fetchReq’, ‘sendReq’)

int currentEmailSize State variables related to the current e-mail either the one being

string currentEmailFrom fetched or the one being sent.

string currentEmailTo

string currentEmalSubject

E-mail Methods

Check() Retrieves the headers of the new e-mails from the server.
FetchEmail() Retrieves the current email from the server.

SuspendNet() Suspends all network activity.

ResumeNet() Resumes network activity continuing the operation that was

stopped by the SuspendNet call.

Table 6.3: E-mail: Adaptation Interface

135

Evaluation

Network Interface State Variables

string state String variable that report the current state of the network inter-
face (i.e. ‘idle’,'sleeping’,'suspended’).

int netBandwidth The bandwidth of the network connection.

int availableBandwidth The presently available bandwidth.

Network InterfaceMethods

Sleep() Set the network interface into sleep mode.
Suspend() Set the network interface into suspended mode.
Wake() Resumes from sleep or suspended mode.

Table 6.4: Network Interface: Adaptation Interface

condition {
happens (fetchEmail)

}
action {
Email.FetchEmail()

}

This rule lets the e-mail client fetch the body of the reqeest-mail. This is an
unconditional fetching rule that can be modified by the usepdrform any custom

adaptations when fetching an e-mail.

6.2.1.4 Network Interface

The network interface module is a system application thadnts and controls the state
of the local network connection. This module registers with platform as d\et-
workinterfaceapplication. The network interface module reports bitrHtthe existing
network connection and an estimation of the available badttiwFor the estimation of
the available bandwidth the network interface module pkcally retrieves the number
of bytes received and transmitted by the network interfdde estimation of the used
bandwidth is based on the calculation of the weighted awetmsgge of the network

card.
n

Z(Ai—kbi

avBang = ——— Vi,j i1>]=A>A

T ;{Ai—k

wheren is the total number of sampldsis the oldest sample used for the calculation

of the weighted averagéy (i =0,...,n—K) is the weight used for the calculation of

136

Evaluation

Power Monitor State Variables

string state String variable that report the current state of the Power Monitor
(i.e. 'charging’,’battery’).

int percent The battery status in terms of percentage being full.

Table 6.5: Power Monitor: Adaptation Interface

the average; is the sampled traffic in bytes afidis the time period between samples.
The weightsAg... A, _k follow a linear increase of values. This is a very simple way
to estimate the average bandwidth usage on the network daisl.not intended for
general use and it is here only as a simple mechanism thauggoi network related
adaptation in the context of this evaluation.

6.2.1.5 Power Monitor

The power monitor is a system application that reports thie gif the battery power in
the system. The interface of the power monitor includes i@ stariable reporting the
percentage that the battery is full and the current stateeopbwer source (i.e. running
on batteries or charging).

6.2.1.6 Location Monitor

The location monitor module is an application that simwdatéocation tracking service.
The design of the location module is influenced by locatinar@ systems based on
location advertising beacons (e.g. [Cheverst00]) mostyus cellular networks where
location is identified by a network cell id. Specifically tleeation module returns the
current location of the system in terms of a string label.s®iring label contains the

tag of the current location, such as ‘home’, ‘office’, ‘calar’, etc.

Location Monitor State Variables

string state String variable that report the current state of the Location Mon-
itor (i.e. 'active’,'stopped’).

string locationLabel String variable that returns the label of the current location(i.e.
‘office’, ‘home’).

Table 6.6: Location Monitor: Adaptation Interface

137

Evaluation

A E-miail Tool =] S
i

Dutput window

Start

Stop:

Subject: P Manway awards four UMTS licenses
From: Migel Davies <nigel{@comp.lancs. ac.uks
T <mpo@cormplancs. ac.uks

Meszage-D: <BEACTIE 3133 % nigel@comp. lancs. ac.uk:> - 7
In-Reply-To: <03fe85039051eb0EBC_WER_03@eboweb03 tatalkele. comy Get emall |
Mime-version: 1.0 ‘

Check now

Content-type: text/plain; charset="U5-45CI"
Content-transfer-encoding: 7hit

Sender. dmg-request

Content-Length: 352

Statuz RO T] s |
atus: rea [REalPlEyERE] = sl 3
Filz Wiew Play Channels Radio Favorkes Help

Far thoze who may have missed il JJ @ @ Q a am | . @ @ C’ Q -
J g@| Location: |rlsp./!\ucalhusl.1554.-’uni.rm j

Technology boss Cochrane joins

2| @ Coral platform
Widen player reduced its quality

sl P [FOBESBLQHLY ws

'Raa...l e‘o‘Plat,..| W"._c:x...| 0ch...| ||a‘ddress IE'l,'l,tina

Figure 6.4: Notification message from the User Awarenessuéod
6.2.1.7 User Awareness Module

The user awareness module is a simple application thatesotife user about adaptation
actions that the platform is performing. The module workshie background and can
present notification messages to the user in the form of dralfmp-up messages or
modal dialog boxes. The user is able to set the level of idrufor the notification
messages. In more detail, on the lowest level of intrusidtingethe user awareness
module will not show any messages to the user and simply logsiessages for later
review. Medium level of intrusion allows the awareness nedo show balloon pop-up
message over the system task bar. High level of intrusianvalthe awareness module
to notify the user through modal dialog boxes. The interfaicéhe awareness module
includes a simple methomotify that an adaptation policy rule can call in order for a
particular message to be presented:

condition {

action {

138

Evaluation

Awareness.Notify("Video player reduced the quality of the video”)

6.2.1.8 Applications Summary

The previous sections presented the set of adaptive applisaghat were developed as
part of this evaluation procedure. In particular, existapplications were modified in
order to collaborate with the prototype adaptation platfas well as new applications
and monitoring components that were implemented to work wie platform. The
following section presents the qualitative evaluationhs# adaptation platform. This
gualitative evaluation includes the use of the present@ticgtions and the definition
of adaptation policies that perform coordinated adaptatonflict resolution or extend

the triggers that applications can respond to.

6.2.2 Coordination

One of the main subjects of criticism for existing adaptasapport platforms presented
in chapter 2 is the lack of efficient coordination betweenliappons. Specifically, many
adaptation systems (e.g. Puppeteer, Laissez-Fair appfisatend to treat applications
in isolation from the rest of the system. System’s based @n@vchitectures break
this isolation but rely on the application developer to ugermation about other ap-
plications and achieve coordinated adaptation. Therelatiopms that were developed
in order to support coordination. However, these platfaendtto look at coordination
from a limited point of view. For example, coordination soppplatforms such as the
Event Heap considers the support for the the exchange dicaditon messages between
applications. Such approach relies on the applicationaskéses to use these notifica-
tions and coordinate their activities. Middleware platfisrconsider coordination as a
mechanism to achieve balanced resource sharing betweéoagipps. In Odyssey in
particular, allowing applications to specify their reganrents in terms of resources and
maintaining resource sharing according to these requimesms considered a form of

coordination.

In this thesis we consider coordination as the ability ofgistem to coordinate the
actions taken by adaptive applications based on a set oifiggleiles. The aforemen-

tioned approaches are either special cases of this app(eaghresource sharing) or

139

Evaluation

supporting technologies (e.g. event exchange mechanisms)

In order to look at the support for coordination offered bg ptatform presented in
this thesis, a simple coordination scenario was implengerikais scenario shows how
two applications (a Web browser and an E-mail client) carrdioate the use of the
network in order to improve the delivery time of web contelmt.particular, using the
adaptation interfaces described in section 6.2.1 a setlaypwles were defined that
control the two application to trigger the e-mail client tespend the use of the network
when a web page is downloaded. This can be a required behdwioa system con-
nected over a weak link. In particular, as the web browsen isgeractive application,
disrupting the loading of a page in order to check for new dsweould be undesirable
for the user. In order to achieve this effect two additiondgs were added to coordinate

the e-mail client with the web browser:

event webDownload :— WebBrowser.state = "downloading"
condition {
happens (webDownload)
}
action {
Email. SuspendNet()

}

This rule causes the e-mail client to suspend all network/igctvhen the web
browser starts to download a page. An additional rule isifpdahat will trigger the

email client to resume the network usage when the page hasdogaloaded.

event webDownload :— WebBrowser.state = "downloading”
event webNotDownload :— WebBrowser.state <> "downloading"
fluent webNotDownloading {
initiates (webNotDownload)
terminates (webDownload)
}
condition {
initiates (webNotDownloading, webNotDownload, t1) and
not clipped (webNotDownloading, t1, t2) and
t2 =t1+10
}
action {
Email.ResumeNet()

}

This rule triggers the e-mail client to resume network atwhen the web browser

has stopped downloading pages for more than 10 seconds.

140

Evaluation

As we can see from this example the actual approach that ¢shuyséne platform
presented in this thesis is quite different from the adagptapproach used by existing
middleware applications. In more detail, existing systeatire the applications to
specify their resource requirements and possible codidma performed implicitly
by allowing sharing of the resources. However, here the tatiap rules control the
actual actions that the applications are required to takemdre detail, the notion of

coordination as it is approached by this work relates tovéiets and resources used.

An implication that is derived from this approach is that #uaptation mechanism
is not related to a specific resource. In more detail, coatduhactions can be specified
for applications regardless of the involvement of resowsttaring or not. Indeed, in
a context-aware environment coordination exceeds thedauies of resource sharing.
Applications may require to coordinate their actions syripbcause that is what the
user wants. These coordinated actions may be related toarces(as presented in the
previous scenario) or it can be a requirement of the usere¥ample, one scenario that
falls in this category is to coordinate applications in tiela to the location of the user.
Specifically, a rule that can switch off the audio from theeadplayer when the user

enters the corridor of the building is the following:

event corridorin :— Location.locationLabel = "corridor"
event corridorOut :— Location.locationLabel <> "corridor"
fluent inCorridor {
initiates (corridorin)
terminates (corridorOut)
}
condition {
initiates (inCorridor, corridorin, t1)
}
action {
VideoPlayer.StopAudio()

}

By extending the rule body this rule can be used to coordintiter applications

that should be triggered when the user enters the corridor:

action {
VideoPlayer.StopAudio()
WebBrowser.SetProxy(10.10.10.1, 8080)

As discussed in the previous paragraphs, an existing agpipfoaesource manage-

ment is to allow applications to specify resource requinetm@nd rely on the system

141

Evaluation

to satisfy their requirements. Although the design of tHetfprm does not rely on
resource reservation mechanisms to control resourcenghdhe actual design of the
platform does not prevent this. In more detail, the adamtatiterfaces of the applica-
tion can include state variables that express the resoeiqeerements of the application.
One such example is the video player. The state variablesgepting the existing bit
rate of the video stream along with the bit rates of lower aigthdr bit rate streams
are actually indications of resource windows that the vidao switch to. The default
policy rules that were described in section 6.2.1.1 cortowt the application can adapt
if the network resources are either enough to support a higinaity video stream or
not enough for the current stream and the player should swat@a lower quality one.
Nevertheless even in this case the policy rules that costicth an application are based
on actions that should be taken instead of an explicitlyussorelated adaptation ap-
proach. Specifically, the rules include the actions thatapelication should take in
order to adapt or collaborate in a coordinated adaptatibrs dharacteristic allows the

platform to offer a general purpose coordination mechanism

One observation that is derived from the video example aadcctiordination sce-
nario presented earlier is that there is a clear relatigniseiween the adaptation inter-
faces exposed by the applications and the degree to whicHiocation can be achieved.
In more detail, in the web browser-email client coordinatszenario the fact that the
e-mail client implements an adaptation interface with tleghud callsSuspendNet and
ResumeNet is vital to achieve the specific coordinated action. Geisrgj this obser-
vation it is clear that the level of flexibility offered by thplatform is directly linked to
the level of control applications offer to the platform. Colesing a system where appli-
cations follow an open approach (i.e. a Reflective approactmeir design might allow

the platform to have a greater degree of control over thersf the applications.

Summarising the discussion on coordination, the adaptatigpport platform dis-
cussed here follows an approach where adaptation is ndédeta resource sharing
between applications according to the requirements egedelsy applications. Rather
the approach followed is related to the actual actions ti@applications are required
to take in order to achieve resource related coordinaticangrother type of coordina-
tion. Specifically, this approach is general enough to atoardination for any context
related information that applications should respond 1g. (l®cation). One observation
that is derived from this investigation is that the degre#ieibility in achieving coor-

dination between applications is directly related to thapation interfaces exposed by

142

Evaluation

the applications. In particular the more control applizasi offer to the platform, the

more flexibility is possible to coordinate adaptive appimas.

6.2.3 Conflict Resolution

Before we investigate the features of the adaptation platitiscussed here in relation
to conflict resolution it is first necessary to define whabaflictis. Let's consider an
obvious case of a conflict. Consider the following adaptagiolicies defined for the
email client:

event officeEvent :— Location.locationLabel = "office"

condition {
happens (officeEvent, t1)

}

action {
Email.SuspendNet()

}

event officeEvent:— Location.locationLabel = "office"
condition {
happens (officeEvent, t1)

}

action {
Email.ResumeNet()

}

It is clear that the two rules are identical with the only @rénce in their action body.
Specifically, both rules are triggered when the user entersaffice and the one triggers
the e-mail client to suspend all network activity while thiher triggers the client to
resume network activity. Obviously this is a conflictingusition. When these rules are
used the actual result depends on the sequence that thearalesaluated. Both are
activated but the outcome after their execution is the onsexh by the rule executed

last. Now, if we modify the first rule as follows:

event officeEvent :— Location.locationLabel = "office"
condition {
happens (officeEvent, t1)

}

action {
Email.Check()

}

143

Evaluation

This rule triggers the email client to check for new e-mailsew the user enters
their office. This new rule does not conflict with the seconé described previously.
Indeed, the result is that the e-mail client resumes netaotikity when the user enters

their office and checks for new e-mails.

The examples presented here offer an interesting obsemva®ne factor that is
directly related to conflict detection is the actual senwntf the actions that are ex-
ecuted when an application is triggered to adapt. In pdaicthe diference between
the conflicting rules and the non confliction rules is thatabgonSuspendNet andRe-
sumeNet can not take place at the same time, while the actiessimeNet andCheck
can. Therefore, the actual reason for this conflict is theeddpncy between the two
actions and in particular the fact that they both affect taevork connectivity of the

application in contradicting ways.

Moving one step on, consider the two conflicting rules presstaarlier and consider

the case where the first rule has the following form:

event officeEvent :— Location.locationLabel = "office"
condition {

happens (officeEvent, t1) and

t2 =tl+1

}

action {
Email.SuspendNet()

}

This rule is similar to the one presented with the only défeze that it is activated
one second after the user enters the office. With this rula¢heal sequence of actions
is now predictable and moreover, in strict terms this is noaaflict since the two rules
are triggered by different conditions. However, in praetibe user experience is the
same as before. In particular, from the user’s point of view tiwo rules should not
coexist since they don’t make any practical sense.

Generalising the aforementioned observations in a coat@are environment where
the primary aim for the system is to enhance the user experj¢he concept of a con-
flict is best described as an “undesirable behaviour”. Iddbe previous example is
not a conflict in strict terms but it is an undesirable behawiof the system. Another
similar example is the case of the web browser and the vidaegepbescribed in section
6.2.1 using their default policies. When the two applicadicum together an interesting

behaviour is observed: when the available network bandwgltow the web browser

144

Evaluation

tends to reduce its demand for network in favour of the videgey.

The reason for that behaviour lays in the set of default peslicAs seen earlier the
video player is constantly trying to deliver the best pdesibdeo quality that can be
supported by the available network bandwidth. If the webnger stays inactive for
more than 10 seconds (something that quite often happens)dbo player takes over
the available bandwidth in order to improve the deliveradbal After that, the browser
can never recover. According to the policy rules, the browsk maintain its delivery
bitrate within the limits of the new available bandwidth.

This behaviour can be considered a conflict or not, depenalintpe requirements
of the user. In particular, if the user requires the web besvis have fast responses
regardless of any video player active in the system therctss is certainly a conflict.
However, if the user requires the video player to use the \idsb quality possible,
then this behaviour is not a conflict. Refereing back to the éxample discussed the
actual cause of this, possibly, undesirable behaviouragafe dependency of the two
applications on the network interface and the fact that ttiemas taken by the applica-
tions affect the available bandwidth. Moreover, this cleafjavailable bandwidth has
an impact on the policy rules that check the available badthin order to take their

decisions.

Summarising this discussion the following observations loa made: in order to
identify clear and undisputed cases of conflicts (e.g. tis¢ firesented example) it is
necessary for the system to have an understanding of theniemaf the actions that
applications can perform and in particular the dependenoetween the actions. It
should be noted that the semantic understanding of applichehaviour is beyond the

scope of this thesis.

Apart from these cases, in a context-aware environment cassts that can be con-
sidered conflicts depend highly on the user requirementgatticular, certain situa-
tions such as the example of a conflict between the web braavekthe video player
can be considered as undesirable or conflicting for somes aset a desirable system
behaviour for others. The author supports the notion thett perceptual conflicts are

best detected and resolved by the user themselves.

One approach used by this platform is to rely on the user tatiiyethe dependen-
cies between adaptation actions and possible conflictsmlgtoccur. In particular,

the descriptions of the application interfaces along whii &access to the set of policy

145

Evaluation

rules active in the system allow the user to investigate #tebiour of the system and

discover the reasons that a certain undesirable behagidaking place.

One important feature of this platform is that when conflistsundesirable be-
haviours are identified the user has the ability to modifysixstem in order to resolve
such cases. This power is derived from the fact that the atiaptdecisions are based
on modifiable policy rules. Therefore the user has the powerddify the policy rules
that cause conflicts and resolve such cases. For example cibmsider the video player
and the web browser running in the system using their defalities a user may re-
quire for the web browser not to reduce its network usagevoueof the video player.
In order to resolve such a situation the default policy rulese modified. The aim of

this change was to achieve coordination between the twacappins.

The first step in specifying the policy rules for resolvingstbonflict is to define a

fluent that will monitor the existence of the web browser ia system:

event webBrowserOn :— isRunning(WebBrowser) = true
event webBrowserOff :— isRunning(WebBrowser) = false
fluent webBrowserRunning {

initiates (webBrowserOn)

terminates (webBrowserOff)

Next the default policy rules of the video player are modisedthat the they will

only be used if the web browser is not running in the system:

condition {
not holds(webBrowserRunning, t1) and
initiates (videoBandAvalil, availVideoBand, t1) and
not clipped (availVideoBand, t1, t2) and
t2=11+10

Finally a set of new rule is defined to specify the behaviouthef video player
when the web browser is running. The actual body of the paoliby depends on the
preferences of the user. A possible approach could be tgetrithe video player to
pause the video streaming (without changing the qualityhefdtream) when a web

page is requested, so that the web page can be uploaded faster

condition {
happens (requestURL, t1)

}

action {

146

Evaluation

VideoPlayer.Pause()

A similar condition can be used to start the video streamihgmthe page upload
is finished. Looking at this example closely it is clear tHa tnitial reason for this
conflict is the fact that the default policy rules implemehby the developer were not
aware of other applications and other adaptation polidias thay cause this effect.
Indeed, developers can not be expected to know the confignirait the target system
and thus undesirable or conflicting situations like thisasgble to occur. Moreover, in
order for this conflict to be resolved there were two main neguoents. First, that the
decision logic must be able to be modified after the appbeativere installed in the end
system and, second, that the decision logic can have acc@#®tmation about both
conflicting applications. Thus, resolving such a conflicjuiees the user to modify the
decisions that lead to the conflict. Moreover, when more tdraapplication is involved
the modification may include information from all relatecpligations. As presented in

this example, the platform described in this thesis meetsaltwo requirements.

Summarising this discussion, the aim of the platform disedsere is not to provide
mechanisms for conflict detection. The approach followedhiy prototype is to rely
on the user in order to discover possible conflicts or undbkrbehaviour. This is
based on the fact that automated conflict discovery wouldire@ctive participation of
the application developer in order to allow the platform talerstand the applications’
semantics and identify possible dependencies betweeitafphs. Moreover, a wide
range of possibly conflicting situations are actually reditio the user requirements and
therefore should include the user in the process of confisdtodery. When conflicts
or undesirable behaviour is identified, the user can resbkse conflicts by modifying
the adaptation policy rules that cause the conflicts. As seeme of the examples,
in certain cases the solution to conflicts between multiplglieations running in the
system is to coordinate the adaptive actions so that theiciocdh be overcome.

6.2.4 Extensibility

The concept of extensibility in the context of a platform gaging adaptive context-
aware applications is related to the degree to which théogphatallows the incorpora-
tion of adaptation triggers that the applications were nibially designed to support. In

more detail, an application developer typically makes eggtions about the configura-

147

Evaluation

tion of the end system. For example, the developer of a welsd@oassumes that the
end system has a network connection that the web browsersearHowever, these as-
sumptions should be kept to the minimum in order to achiegatgr level of portability.

Therefore, it is possible that an application will not w&#ispecial purpose monitoring
components that are not expected for common computer systemparticular, a com-

ponent that reports the location of a mobile device is notroomy expected to exist on
all end systems. Moreover, as certain context-aware sgsteay rely on technologies
that are tightly coupled with the actual working/living émnment of the user. For ex-
ample, the location component that was developed as parisoévaluation reports the
location of the mobile device in the form of labels that regaret certain locations. Such

a component cannot be expected to be utilised by an applichyi default.

These observations support the conclusion that in adaptimeext-aware systems
certain applications will not be able to utilise all aval@bmonitoring components.
However, from the end-user’s point of view the coordinatadrthe running applica-
tions in relation to all monitoring technologies availalidedefinitely desirable. For
example, let's consider the case of the web browser destiibgsection 6.2.1.2. This
web browser uses a pair of web proxies that control the degarstover a wireless link.
Considering that the end device is a mobile device, it is awithat using a staticaly
configured remote proxy can degrade the performance of timencmication. Specifi-
cally, as the end device moves in different locations thé patween the server-remote
proxy-local proxy will not always be the optimal path for falivery of data. There-
fore a desirable feature for the operation of the web browsernd be to dynamically
switch to alternative remote proxies when the location efénd system changes. In
essence this means that the web browser should betmraton aware In order to

achieve this a set of new rules were added to the system:

event inOffice :— Location.label = "offlce”
condition {
happens (inOffice)
}
action {
WebBrowser.SetProxy('10.2.3.4", 5123)

}

event inHome :— Location.label = "home"
condition {
happens (inHome)

}

action {

148

Evaluation

WebBrowser.SetProxy("10.3.2.1", 5123)

This rule is triggered when the mobile device enters the'sisdfice. The action
includes the specification of a new proxy that is assumed toldser than the one

previously used.

It is simple to consider similar examples where applicatioan become location-
aware. One example described in section 6.2.2 is the swdaiff of the video player’s
audio stream when the user is walking down a corridor of thiglimg. The main idea
behind this adaptation policy is to turn off the audio so it user will not disturb

other people working in their offices as he/she passes bydber.

When considering such policy rules an interesting obsemadithat the policy rules
can be easily enhanced in order to include much more preoms#tons. Specifically, it
is possible to define rules such as “trigger an action thatisked when the user enters

their office after passing from the kitchen”:

event kitchenln :— Location.label = "kitchen"
event kitchenOut :— Location.label <> "kitchen"
event officeln :— Location.label = "office"
event officeOut :— Location.label <> "office"
fluent inKitchen {
initiates (kitchenln)
terminates (kitchenOut)
}
fluent inOffice {
initiates (officeln)
terminates (officeOut)
}
condition {
initiates (inOffice, officeln, t1) and
holdsat (inKitchen, t2) and
t2<tl
}

action {

}

This rule is activated if the fluenbKitchenwas active before the fluemOfficeis
initiated. A practical example would probably have timeitilmetween the two situa-

tions e.g.2 < t1 and t2 > t1 + 600.

Considering the aforementioned examples it is clear thatlifigy of the platform to

149

Evaluation

extend existing applications, adding awareness for additicontext triggers is based
on the fact that the adaptation control mechanism is comlyletecoupled from the
applications’ adaptation actions. In more detail, thecantithat the platform triggers can
be based on any possible adaptation rules, including irdbom from any application
or monitoring module available to the system. Moreovers thiechanism is further
enhanced by the fact that the platform itself does not makeaasumptions about the
types of monitoring modules installed in the system or thaliegtions running. This
means that the adaptation control mechanism — based orypales — is a general
purpose controlling mechanism that can be extended to wdigaahl information as

and when needed.

6.2.5 User Involvement

As presented in the previous scenarios most of the featupggmosted by the platform
under consideration require the active involvement of ther.uln particular, coordina-
tion, conflict resolution and extensibility require the usemodify or insert additional
policy rules that can realise these operations. As disdusseéetail, this user involve-
ment is mainly a requirement for these features becausbesktthree characteristics
are related to the configuration of the end system that th&capipn developers can
not be assumed to have any knowledge about. However, assdestun chapter 3
the involvement of the user is also an important requirenf@ngystems working in a
context-aware environment. Indeed, a user working/living context aware environ-
ment should be able to specify how their computer systemldtaperate in relation to

their context.

Most of the scenarios presented in the previous paragraphmsainly user focused.
Specifically, the implementation of coordinated behavi@onflict resolution and ex-
tendability are all related to the actual requirements eféhd user. Considering this
user focused approach it should be noted that a possiblddckvof this approach is the
fact that the user needs to be able to understand both theppdigations work in the
system and how their behaviour can be modified through thefuse Event Calculus
Policy Language. For most users we accept that this will bgeaialist skill (e.g. the

role of an administrator).

The issue user understanding of the system'’s behaviouvéseo to some extent by

requiring applications to expose a comprehensive degmmipf the semantics of their

150

Evaluation

adaptation interfaces. This description is offered as gkmMmechanism that can as-
sist the user in order to understand the functionality iTq@eted by the applications.
Moreover, the support of theevareness modulean allow the user to understand how the
platform is behaving and if certain situations cause adapésponses by the platform.
However, as adaptation interfaces can occasionally becamplex additional mecha-
nisms should be provided for the end user in order to allowrthestigation in a more
user friendly and comprehensive way. A subject of futurekw@hapter 7) is to inves-
tigate possible mechanisms that will assist the end usendenstanding the behaviour
of an adaptive system. Moreover, the possible specificati@application interdepen-
dencies discussed in section 7.3.1 could be used in ordeptesent graphically how
the actions of one application affect the behaviour of aggtbffering a starting point

for this work.

In terms of the user, the Event Calculus Policy Language ®fiecomprehensible
vocabulary for specifying situations that adaptation gureed. In particular, the fact
that Event Calculus fluents can be specified to represent @dd wituations, such as
“system in low battery”, “user in the office”, “low availaliy in network bandwidth”
can offer substantial support in allowing the user to unideisexisting policy rules and
modify or add new ones. However, the user involvement in geeigication of policy
rules can be greatly improved with the support of a user tooktie specification of
policy rules. It is the authors belief that the characterssdf the Event Calculus Policy
Language are well suited for the design of such a user iterfén more detail, the
graphical representation of fluents and event can allowsketo see how an adaptation
condition is related to possible overlapping of fluents mreiperiod durations between

to occurrence of events.

One final observation deriving from the aforementioned eamis the fact that
certain policy rules are specified in order to satisfy sgemaaes for the operation of
the system while other policy rules are considered to suphergeneral behaviour of
the system. One such example is the conflict resolution letwiee video player and
the web browser. In a real world situation the end user waedgdiire automatic switch-
ing between predefined policy rules according to envirortaleshanges or their own
requirements. This observation advocates the implementat a full policy manage-
ment system on top of the Event Calculus Policy Language. Irerdetail, a policy
management system should include mechanisms where poles/are grouped in pol-

icy sets that should be activated under certain conditibh& requirement is discussed

151

Evaluation

further in chapter 7.

6.2.6 Qualitative Evaluation Summary

Section 6.2 presented a qualitative evaluation of the prpeadaptation support plat-
form discussed in chapter 5 was discussed in the previod®isedn particular, set
of adaptation applications was implemented to illustraie pplications can work in
collaboration with the platform. Subsequent sectionsuised in detail the issues of
coordination, conflict resolution, extensibility and ugarolvement as these were the
main drives that motivated this work. The findings of thislea#ion can be summarised

as follows:

e Coordination support is directly related to the approaclofztd by this platform
in supporting adaptation. In particular, adaptation isretdted to resource shar-
ing but to the specific actions that applications are requicetake. This fact
allows the specification of policy rules that can coordiratgons regardless of

any resources involved in the decisions.

e Conflict resolution is related to the involvement of the usemiodifying the be-
haviour of the system through the modification of the adaptaiolicies. In more
detail, conflicting situations are in general related toabwial user requirements
where certain users may consider a situation as a conflié¢\®hother may con-
sider as an acceptable situation. This platform offers &yptlased mechanism
where the user can actively modify the system’s behaviodrauercome possi-
ble undesirable behaviour. Coordination of multiple aggdl@n is, in most cases,

required in order to resolve a conflicting situation.

e Extensibility is related to the ability of the platform tocorporate information
from any application or system monitoring component in darm way. In more
detail, the adaptation control mechanism is general entwugliow the specifi-
cation of policy rules that can include additional inforioatsources. As a result

applications can become aware of additional adaptatioomegt triggers.

e User involvement is related to the provision of user comensible descriptions
of the adaptation interfaces provided by the applicatiorsthe use of a policy

language that they can use to specify how the system shobkl/ee It is noted

152

Evaluation

that user involvement should be enhanced with the use of@higpa user inter-
face that will support the user in understanding how theesydtehaves and the
implementation of a policy management system that willvaltbe grouping of

policy rules into replaceable policy sets.

6.3 Performance Evaluation

In a system where the adaptive behaviour of applicationemsrolled or assisted by
an adaptation support platform both the applications aagthtform affect the perfor-
mance of the system. The performance of platform compomevdb/ed in the adapta-
tion mechanism are of particular interest as they affecb#teaviour of all applications
in the system. A performance evaluation of the platform &dfore necessary in order
to identify its behaviour both under normal conditions aadle number and character-

istics of the applications involved increase.

The primary functionality of the presented platform inwedwthe handling of state
variable changes reported by running applications, thieiatian of defined policy rules
and the possible triggering of applications to perform aaydisle action as specified by
the policy rules. In the measurements presented here weyarg to identify the per-
formance overhead imposed by this chain of actions whersestate variable change is
reported by an application. In addition, a series of measants have been conducted
in order to identify the scalability factors that have a #igant impact on the perfor-
mance of the platform. For this scalability evaluation wéirdea set of variables that

may affect the performance of the platform:

e Number of adaptive applications registered with the pratfo
e Number of policy rules loaded in the platform’s rule table.
e Number of rules affected by a single variable change reddayethe application.

e Complexity of the policy rules defined.

For each of these variables a series of measurements waspedto identify their
significance.

153

Evaluation

6.3.1 Methodology

All experiments used the same hardware and software coafigar a single 730 MHz

Pentium Il workstation with 640MB of memory running Micrafs Windows XP (SP1).

The performance measurements where taken using Intel's\&Rerformance Ana-
lyzer' [Int03]. For each of the experiments the reported resulttude the average
time spent by the platform to process a reported variablegdand the break-down
of this time to individual platform components, namely: the spent by the Applica-
tion Controller receiving the application message, the spent by the Policy Manager
evaluating the related policy rule(s) and the time spenthgyApplication Controller

triggering an adaptive reaction. All tests were conducteidgia test application that
was developed for the needs of this analysis. The test apiplic allows the user to
specify the state variables and methods reported to théoptat execute a series of
variable changes according to a given script and reportdbptation triggers received
by the platform.

In order to specify a baseline reference point we measumglttform’s perfor-
mance under optimum conditions. These conditions refen en@ironment where only
one application is registered with the platform, only onéqyarule is defined and this
policy rule has a very simple condition body. The particulale used has a single

“happens” predicate checking for the occupance of an event:

event testEvent :— Test.testVar = "fired"
condition {
happens (testEvent, t1)

}

action {
Test.Adapt()

}

Using this setup we performed an initial set of experimemidéntify the minimum
overhead imposed by the platform:

Minimum overhead per event

Policy Manager 2.05 milliseconds

Var Change Message 0.56 milliseconds

Adapt Trigger 0.27 milliseconds
Other 0.07 milliseconds
Total time spent 2,97 milliseconds

1The particular technique used was fall Graph This technique reports, among others, the time
spent for the execution of each function and the number addigach function has been called.

154

Evaluation

This measurement served as a reference point for all theequbsat experiments
performed. For comparative reasons, in all the graphs ptredéere this measurement

appears as the first test column.

6.3.2 Number of Applications

This section presents the measurements that investigaggdtforms behaviour in re-
lation to the number of adaptive applications. A series @legiknents was conducted
with increasing number of applications registered withgtegform. All other parame-
ters (number of rules, rules’ complexity) where kept to tmeinimum. The results of
these measurements showed that the number of applicagohsdsignificant impact

on the performance (Figure 6.5).

This is a reasonable result considering the design of théopta. Each application
communicates with the platform through a dedicated AppbcaController. During
the parsing of policy rules the platform constructs a tableles affected by each state
variable and attaches it to the definition of that particskate variable. Therefore, a
state variable change reported by an application leadsthljin® the evaluation of the

corresponding policy rule without being affected by the bemof applications reg-

4000
—a— Total
---A---- Policy Manager
----®--- Application Controler-Var Change
3500 - ... & Application Controler-Trigger
—-06-—- Other
3000 F a4 4 —a
2500
2]
e}
5
_______________________ A A A
8 2000 | “°
o
S
=
1500
1000
5O | W B W =
E| .. E| .. B .. E
0 Q- Q- Q- Y
1 Application 10 Applications 20 Applications 30 Applications

Number of registered applications

Figure 6.5: Platform overhead in relation to the number gistered applications.

155

Evaluation

istered with the platform. During the evaluation of a policye the Policy Manager
is required to search through the registered applicatidmsnvthere are references to
other state variables or when an adaptive triggering isiredu However, this search
is performed through a hash table which has a constant averhhe case of a more
complex policy rule with references to variables of sevamlications is discussed in

section 6.3.4.

6.3.3 Number of Rules

In order to identify the platform’s behaviour in relationttee number of policy rules, a
series of experiments was performed with an increasing euamibpolicy rules loaded
in the platform’s rule table. All other parameters (numbkaplications, rules’ com-
plexity) were kept to their minimum. The results of these sueaments showed that the
number of rules within the platform had no impact on the penfance of the platform
(Figure 6.6).

As described in the previous paragraph, during parsingeptilicy rules the plat-
form constructs a table of rules affected by each state blariand attaches it to the

4000
—— Total
---&--- Policy Manager
----®--- Application Controler-Var Change
3500 -g-- Application Controler-Trigger
—-—-—- Other
3000 |- a A A A
2500
n
©
c
S - S A
e 0 i
(]
S
=
1500
1000
500 M B R EEEEEEEEEEEEEEEEE]
[J-eemmmmmmmmmrmmm e g e] R RS ELL T TTT ORI, Im|
0 Q e @ {P 7777777777777777777777777777 {P
1 Rule 100 Rules 200 Rules 300 Rules

Number of rules in the rule table

Figure 6.6: Platform overhead in relation to the number t#gun the platform’s rule
table.

156

Evaluation
definition of that particular state variable. As a resulttibtal size of the rule table has

no impact on the time spent processing a single state varai@nge. The particular

case of a state variable affecting more than one rule is sisstlin 6.3.5.

6.3.4 Rule complexity

The termrule complexityused here has a vague meaning that can not be mapped directly

into a quantitative attribute. In order to specify a way toasige the complexity of a
policy rule we will refer to the evaluation mechanism ddsed in section 5.3.5.1. As
described there, all predicates are mapped into two stads.FBhe evaluation proce-
dure involves the feeding of these FSAs with the correspanevents allowing them to
move from one state to the next. This similarity among pra@ievaluation allow us to
consider the overhead to be the same no matter which panrtipredicate is evaluated.
Therefore for this particular set of experiments we will sioler the complexity of a rule
as the number of individual predicates specified in the ratewlition no matter what

types of predicates are defined.

However, even though the actual type of the predicatesvedbin the evaluation
of a rule may not have any significance we did make sure thatiatyaf predicate
were involved in the construction of the policy rules usethiese experiments. In more
detail, the rules were constructed using a pattern of casgdldients encapsulating a
single event. The starting condition had a body of the form:

initiates (eventA, fluentA, t1) and
not clipped (fluentA, t1, t2) and
holdsat (fluentA, t2) and
happens (testEvent, t2)

Testing that the evemgstEvent took place while the fluerfluentA was holding dur-
ing the period 1,t2). Using this body as a starting point the condition was éwic
with additional fluents that were required to hold duringtvent:

initiates (eventA, fluentA, t2) and
not clipped (fluentA, t2, t1) and
holdsat (fluentA, t1) and
happens (testEvent, t1) and
initiates (eventB, fluentB, t3) and
not clipped (fluentB, t3, t1) and
holdsat (fluentB, t1) and

initiates (eventC, fluentC, t4) and

157

Evaluation

Using this pattern we conducted a series of experiments mlts of increasing
complexity. The results of these experiments showed tleatdimplexity of the policy

rules had no impact on the performance of the platform (legur).

This result is a direct consequence of the semantics of tiemtEvalculus Policy
Language. As described in section 4.7.3 the Event CalcullisyR@nguage describes
rules that correspond to a sequence of events that take alatiferent time points.
As a result each event leads to the evaluation of only thécpéat predicates that it is
involved with. Therefore the total overhead of a evaluatimgwhole condition body is
spread over all the individual events that need to take pglaceder for the condition
to become true. Thus the size (complexity) of the conditiodybhas no impact on the
average overhead per event. Referring back to the issue dplaudpplications it is
clear that even in the case of a condition body where sevppdications are referred,
each of these references can only relate to one event. Dherife evaluation of the
predicates related to that event will include only one dedhcough the application
registry. So the average cost per event is again not relatind thumber of applications

referred in the condition body.

4000
—a—— Total
---&---- Policy Manager
----&--- Application Controler-Var Change
3500 |~m-- Application Controler-Trigger
—-—©-—- Other
3000 |- a A o
2500
[2]
=]
g A
____________________ e
8 2000 |47 =
o
8
=
1500
1000
500 W L R R b W L
O e R L TT OO =]
0 Q e Do -
1 Predicate 20 Predicates 30 Predicates 40 Predicates

Number of predicates on a rule’s body

Figure 6.7: Overhead in relation to the complexity of theesuldefinitions. The com-
plexity is measured according to the number of predicatpsaing in a rule’s body.

158

Evaluation

6.3.5 Rules per event

The final set of measurements conducted was related to thberwhrules in the rule
table that are triggered by a state variable change. Foséhisf tests the platform was
loaded with 100 simple rules (similar to the one presenté3ril). For each individual
set a number of these rules were modified so that they weneted by the same event.
The results of these experiments showed a linear increade gflatform’s overhead
(Figure 6.8).

The linear increase of processing time is justified by thé tfzet more policy rules
are required to be processed for each state variable chAngeteresting result of this
measurement is that the average time cost per policy rulensiderably smaller com-
pared to the cost of a single rule being triggered by a singteakile change. In other
words the total time cost for the processing of a single palide triggered by one state
variable change includes intra-platform function callsl @valuation of event expres-
sions that impose additional possessing time while the tonthe actual evaluation of
the rule is relatively small. Therefore, in this set of measwents the additional time
cost is limited (one state variable change) and, spreadawemmber of policy rules,
leads to a smaller average time per policy rule.

—a—— Total

8000 = ---a--- Policy Manager

----m---- Application Controler-Var Change
——————— & Application Controler-Trigger

7000

6000

5000

4000

Microseconds

3000

2000

1000

0
1 Triggered 10 Triggered 20 Triggered 30 Triggered 40 Triggered

Number of rules triggered by a single event

Figure 6.8: Platform overhead in relation to the number &éguriggered by a single
event.

159

Evaluation

This particular observation allows the specification of gaie methodology for
defining policy rules that can increase the overall perfarcesof the system. Consid-
ering cases where state variables with high granularity. (@.variable that reports the
available bandwidth of the network connection) there isgh fprobability that a num-
ber of applications may define rules that refer to the sanmagaécally) events but with
different triggering values. For example, a web browser mafine a rule where the
state of low bandwidth is triggered by an event when the albkel bandwidth drops
below 24Kbps while an e-mail client may have a similar evéat is triggered when
the bandwidth drops bellow 20Kbps. In that case modifyireséhrules so that they are
triggered by the same conditions (e.g. when the bandwidipsdbellow 22Kbps) can
improve the overall performance of the system. Howeveh sumodification can only
be performed by the end user and therefore this is an additease were allowing the

user to modify the systems behaviour can improve the systemcttionality.

6.3.6 Performance Summary

Most of the performance benefits derive from the semantitisegpolicy language used.
The rules specified with the Event Calculus Policy Languagetify the sequence of
events that will lead to an adaptive response. This allowsd#sign of a policy eval-
uation engine that can evaluate policy rules progressiaslyhese events take place.
Therefore the overhead of evaluating a policy rule is spovad the events taking place.
As a result the average overhead per event remains con3taistfact means that the
whole platform can offer predictable response time thatoisaffected by scalability
factors such as the number of applications, the number esrahd the complexity of
the rules.

6.4 Summary

The evaluation of the prototype adaptation support platfmas presented in this chap-
ter. The qualitative evaluation investigated the behavauhe platform in terms of

support for coordination, conflict resolution, extensipind user involvement. Specif-
ically, the platform offers the necessary functionalitythieve all four of the aforemen-
tioned features. Specific limitations concerning the patér prototype implementation
include the limited support for proper tools to assist therus understanding the be-

haviour of the adaptive applications. 160

Evaluation

The performance evaluation measured the performance gil#tierm against a
set of scalability factors. In particular, the performanddhe platform was tested in
response to an increasing number of applications, numberled, rules’ complexity
and rules triggered by a single event. The performance measmts showed that the

platform can offer predictable response time that is nacéd by the aforementioned
scalability factors.

161

cHAPTER VII

Conclusions

Contents

7.1 OVEIVIEW . . . o e 163

7.2 Contributions 165
C1. The Problem of Uncoordinated Adaptation 165
C2. An Architecture for Supporting Coordinated Adaptation 166
C3. A Policy Language Supporting Temporal Relationships 167
C4. Feasibility of Coordinated Adaptation 169

7.3 FutureWork 170
7.3.1 Support Conflict Detection 170
7.3.2 PolicyManagement 171
7.3.3 Application to Ubiquitous Computing 172

7.4 ConcludingRemarks, 173

162

Conclusions

7.1 Overview

This thesis presented an investigation of the issues coimgesupporting for coordi-
nated adaptation for context-aware adaptive applicatidree particular problems of
conflict resolution, reconfiguration and user involvemeptevthe main motivation for
coordinated adaptation. This thesis shows that exististesys fail to provide recon-
figurable coordinated adaptation supporting user invoesmtmit argues that support for
coordination requires applications to delegate their tademm control mechanism to an
entity that can retrieve state information from multipleobgations and invoke adap-
tation actions on multiple applications. Moreover, themdaon control mechanism
should allow modifications by the end user. The design of ahitcture and the im-
plementation of a prototype illustrate that the aforenwr@d requirements can actually

support coordinated adaptation.

The first chapter of this thesis establishes the target doofahis work. The iden-
tification of common characteristics of traditional adeptapplications and context-
aware systems concludes with the proposition that a commproach for supporting
adaptation is possible for both of these classes of apitat The chapter defines the
target of this thesis as the provision of adaptation supfportontext-aware adaptive
applications. Moreover, the issue of dependencies betagaptive behaviour of mul-
tiple applications is highlighted and the need for coortiorais presented as a prime

requirement for supporting multiple co-existing contamtare adaptive applications.

The second chapter consists of an investigation of exisiohptive and context-
aware systems. This investigation is focused on the levelipport provided by exist-
ing systems for coordination, reconfiguration, extengjpdnd user involvement. The
results of this investigation indicate that existing systeoffer limited support for co-
ordination and furthermore none of the examined systenesofupport for all of the

targeted characteristics.

The third chapter of this thesis presents an analysis of tissiple limitations of
current approaches for supporting adaptation. Throughaf sieeoretical scenarios the
shortcomings of existing designs are highlighted. In patér, the approach of coupling
adaptation mechanisms and adaptation control and the fackn@chanism for recon-
figuration of the systems behaviour through the involveneérihe user are considered

as the main reasons for the limited support for coordinatiaptation. The chapter

163

Conclusions

concludes with a set of design requirements for supportoaydinated adaptation for

context-aware adaptive applications. These requirenazatto:

Decouple adaptation policies and adaptation mechanisms.

Require applications to externalise their adaptation mashss.

Require applications to externalise information aboutrtbiite or environmental

attributes they monitor.

Provide a mechanism where adaptation control entities eamddified without

the need for re-implementation of the applications or tretesy.

Based on these requirements, the fourth chapter of thisstpessents the design of
an architecture for the support of coordinated adaptafidre discussion that leads to
this design illustrates how the aforementioned requirgmare sufficient for achieving
coordinated adaptation. Specifically, coordination issidered the ability of an adap-
tation support system to retrieve information from mukippplications and monitoring
components and trigger adaptation to multiple applicatidrne first three of the design
requirements allow the design of such a system. Furtherntioeeconsideration that
applications should not be expected to have any knowledgetdbe characteristics of
co-existing applications leads to the conclusion that dimation is not a feature that
applications can provide by default. Thus the requirementdconfiguration and the
involvement of the user allows the design of a platform whemerdinated behaviour
can be specified based on the configuration of the end systeenddsign of the plat-
form presented in chapter 4 consists of a policy based atlaptaontrol mechanism. In
order to satisfy the adaptive requirements of context-avadaptive applications a new
policy language is defined derived from the Event Calculuglpgogramming formal-
ism. The main feature of the Event Calculus Policy Languaglegsupport for policy
rules where the condition body can include temporal refstiips between events and

fluents (i.e. entities that express duration).

Following the design of the platform a prototype impleménotais presented in
chapter 5. The prototype is a Microsoft Windows applicatiwett can control the adap-
tive behaviour of applications running on the same host.chagter includes the imple-
mentation details of the prototype as well as a detailedudsion about the evaluation
engine for the Event Calculus Policy Language.

164

Conclusions

The sixth chapter of this thesis presents an evaluationegbtbtotype. A qualitative
evaluation considers the level of support for features ssatoordination, conflict reso-
lution, extensibility and user involvement. The evaluatemncludes that this prototype
does offer support for all these characteristics. Possitvligations of the prototype
are identified (i.e. limited support for user-friendly irdetion with the platform, re-
guirement for a high level policy management mechanism)dvewthese limitation are
related to the particular implementation. The performas@duation considers the per-
formance characteristics of the particular prototype tatagm support platform. The
performance measurements conducted reveal that the ule pfdtotype for control-
ling adaptation on a single host imposes limited perforreacmst and the prototype
scales well in terms of number of applications controlleagimber of policy rules and

complexity of policy rules.

7.2 Contributions

This section reviews the main contributions of the work diésd in this thesis. The se-
guence in which the following sections are presented istbas¢he order they appeared

in this thesis and it does not imply any ranking of importance

Cl. The Problem of Uncoordinated Adaptation

Contribution C1: Identification of the limitations of existing systems in@uping
coordinated adaptation, reconfiguration and user involeemn Identification of the
design characteristics of these systems that lead to thes&tions: coupling of

adaptation control with either the adaptive method or the itorimg entity.

This thesis examined the design characteristics of egisantaptive and context-
aware applications with respect to the level of support tmrdinated adaptation. This
investigation was conducted by:

1. A criteria-based survey of existing adaptive and cortexdre application.

2. An analysis by example of issues concerning coordinationflict resolution and

user involvement in the specification of the system’s behavi

165

Conclusions

3. An analysis of the design approach followed by existingliaptions and the po-

tential problems imposed by their design approach.
Based on this investigation this thesis provided the follayiesults:

R1 Showed that existing systems perform poorly in terms of eudpr coordinated

adaptation, conflict resolution and user involvement (Cérapiand 3).

R2 Identified key architectural properties of existing systehat lead to limited sup-
port for coordination. In particular, the coupling of adan policies with either
the adaptation mechanisms or the monitoring entities doeallow coordination
and extensibility. Moreover, acknowledging that appimatdevelopers cannot
have knowledge about the configuration of the end systemmdowiion can only
be performed by allowing the reconfiguration of the adapbebaviour with the
involvement of the end user. Finally this thesis identifies kack of consider-
ation for the user requirements by existing systems witpeetsto the adaptive
behaviour of the applications (Chapter 3).

R3 Identified the common characteristics between traditiomslource-driven adap-
tation and a class of context-aware applications concemittdadaptation trig-
gered by changing context. This thesis argued that a comuhaptation support
approach can be used for both classes of applications (GHBpte

R4 Identified the importance of interdependencies betweeptageaapplications and
in particular their adaptive actions. This thesis desctitiat lack of consider-
ation for such interdependencies can lead to certain uradésieffects such as
conflicts, instabilities, etc.

The aforementioned results concerning the shortcomingsisting systems have
been published in [Efstratiou00]. These results have bé&ed by a number of re-
searchers [Loke02, Blair01].

C2. An Architecture for Supporting Coordinated Adaptation

Contribution C2: Specification of design requirements for supporting cowtid
adaptation for adaptive context-aware applications: dgaog adaptation control

166

Conclusions

and implementation, externalisation of applications’ ptition interface and modi-
fication of the adaptation control mechanism. Presentadicam overall architecture

for coordinated adaptation based on these design requingsne

This thesis presented a set of design requirement for fytlatdorms supporting
context-aware adaptive applications. Moreover, thisifi®sed an overall architecture
supporting coordinated adaptation derived from the pteserequirements. In more
detail, the results concerning this architecture are:

R5 This thesis presented a set of design requirements for stippaoordinated
adaptation based on the analysis of the limitations of exjstystems. In par-
ticular, future system designs should be based on the dioguyd adaptation
policies and adaptation mechanisms and the externalisafithe application’s
adaptation interfaces. This particular requirement has lpgoposed in the past
in the context of distributed computing (e.g. [Marzullop1This thesis transfers
this design requirement to the domain of adaptive and cotiateare systems.
Moreover, the requirement for modification of the adaptationtrol entity with-
out the need for re-implementation allows the design ofesystwhere the user

can actively specify how applications should behave (Chi&jte

R6 This thesis presented the design of an overall architeébuame platform that sup-
ports coordinated adaptation. The design is derived fra@ratbrementioned set
of requirements. This design does not make any assumptiomgd ¢he level of
distribution of the system (Chapter 4).

R7 This thesis explored the issues of distribution in the desiga platform support-
ing coordinated adaptation. Possible technologies fdrsieg both distributed

and non-distributed configurations of the platform weresprgéed (Chapter 5).

The set of requirements and the design of this platform has lprblished in
[Efstratiou01, Efstratiou02a]. These publications havituenced to some extent the
work of a number of researchers in the wider area of mobile adhptive systems
[Indulska03, Popovici02, Rakotonirainy01, Yuan04, RivaD8sta03]

167

Conclusions

C3. A Policy Language Supporting Temporal Relationships

Contribution C3: Specification of a new policy language derived from the Event
Calculus logic programming formalism. This new languageali the specification
of policies based on temporal relationships between everi®atities that express

duration.

This thesis presented the definition of a policy languagewaa designed in order

to support the specification of policy rules where tempagktronships between events

are considered important. The Event Calculus Policy Langweas derived from the

semantics of the Event Calculus logic programming formali$ime policy rules spec-

ified in this language include conditions where the occureenf events and the state

of fluents is expressed through Event Calculus predicates.d€htailed results of this

thesis concerning the Event Calculus policy language are:

R8

R9

This thesis identified the limitations of existing policynguages that follow the
event-condition-action model for the support of conditiomhere the temporal
relationships between multiple events is considered itapor Specifically, this
thesis acknowledges that the particular policy specificatnodel is not intended
for the expression of policy rules with temporal relatiopshbetween events.
This thesis identifies as a limitation of this model the laEkwapport for entities
that express duration. Such entities are considered igpirt a context-aware
environment where situations like “user in their office” amtities that express
duration (Chapter 4).

This thesis identified the Event Calculus as a candidatersgigrbint for a policy
language that allows the specification of temporal relatgps between events.
Specifically, this thesis considered the use of a programrfammalism for the
description of event-based systems as a candidate stading for the defini-
tion of a policy language that supports the specificatiorenfgdoral relationships
between events. The Event Calculus was chosen as one famthbs satisfies
these requirements and offers a comprehensive vocabulaitysf specification of

event-based conditions (Chapter 4).

R10 This thesis demonstrated the expressiveness of this lgedaaspecifying a wide

range of adaptation policies. This demonstration incluaest of examples of

adaptation policy rules for adaptive and context-awardiegamons (Chapter 4).

168

Conclusions

R11 This thesis identified this policy language as a possiblelicate control mecha-
nism that can be applied to the wider area of ubiquitous cdimgpuThe demon-
stration of this policy language revealed, in a certain mxtat this language is
flexible enough to be applied to other domains of ubiquitaasguting, such as

home automation, intelligent environments, etc.(Secti@?3).

The specification of the Event Calculus Policy Language hah fpiblished in
[Efstratiou02b] and cited in, for example, [Bandara03, Reifirganiec04].

C4. Feasibility of Coordinated Adaptation

Contribution C4: A prototype implementation of the architecture supportiogrdi-
nated adaptation. Demonstration of the porototype’s &bib support coordination,

reconfiguration, conflict resolution and user involvement.

This thesis demonstrated the feasibility of coordinateapgation in a non-distributed
adaptive system. This demonstration consisted of theioreahd evaluation of a pro-
totype based an the architectural design for supportingduoated adaptation. The
detailed results concerning the feasibility of coordideaeaptation are:

R12 This thesis presented a prototype implementation of thieiteture for support-
ing coordinated adaptation. This prototype was implentefaea non-distributed
configuration where multiple applications running on thesdost are controlled
by a centralised platform (Chapter 5).

R13 The thesis demonstrated by example that application coatidn can be achieved
with the support of the prototype platform. This demonstratevealed that co-
ordinated adaptation can improve the support for user ndedsrelate to the
behaviour of multiple applications and the coordinationhair actions (Chapter
6).

R14 The performance evaluation of this prototype showed thatutie of a platform
controlling adaptation based of adaptation policies cderdhe benefits of co-
ordinated adaptation with relatively small overhead. Mwog, this thesis has
demonstrated that the performance of this prototype doedegrade when the
number of applications, the number of policy rules and thregexity of the rules

increase (Chapter 6).

169

Conclusions

R15 As part of the evaluation process this thesis demonstrageeasibility for aug-
menting common applications with an API for coordinatedpaon. Although
this thesis does not specify a uniform approach for augmegrxisting applica-
tion it does present example applications that have beemétl in order to allow
coordinated adaptation (Chapter 6).

The results of the evaluation of this prototype implemeatahave been submitted

for publication.

7.3 Future Work

There are a number of issues related to this work that camiedioe basis for further

research. Some of the most significant elements are coadidethe following sections.

7.3.1 Support Conflict Detection

Dealing with conflicts in adaptive systems is a two-step pssc conflict detection and
conflict resolution. This thesis demonstrates that sugporeconfigurable coordinated
adaptation can offer the mechanisms for conflict resolutiimough beyond the main
focus of this thesis, chapter 6 offered a discussion of tbelpm of conflict detection.
In particular, the fact that adaptive methods can have aifiets or depend on other
applications in the system is highlighted as one of the ma@sons of conflicts. The
dependencies between applications’ actions are geneetdigd to the semantics of the
applications and in particular the adaptive methods thgyement. One particularly
interesting aspect of conflict detection is the issue of psegeption in the identification
of conflicts as discussed in this thesis (Section 6.2.3).

Considering these observations, future research in thechreanflict detection in
adaptive systems should consider both the inter-depereteat multiple applications
and the involvement of the user in the identification of catdli In more detail, con-
flict detection should combine both a mechanism for idemgyotentialconflicts and
a mechanism where the user can identify the reasons thersgsteibits certain un-
desirable behaviour. Both of these mechanisms should iaedle identification of

dependencies between applications and their adaptiveviogina

170

Conclusions

A possible approach for supporting conflict detection iseiguire the assistance of
the application in the identification of dependencies. 8igadly, applications should
be able to express their dependencies, either in abstrats {e.g. in terms of resources
or types of services) or explicit dependencies on certantiegtions and functionality.
With the use of these dependency declarations a platformostipg conflict detection
should be able to construct a dependency graph that iltestteow adaptation actions
performed by one application can have side-effects or dkpeither actions and/or ap-
plications. This approach for identifying dependencietsveen applications can allow
the investigation of mechanisms for the detection of pdssibnflicts and potentially
suggest solutions for overcoming these conflicts. Furtbesmthe dependency graph
can be a useful tool for the user to comprehend how diffenepli@ations interact with
each other and what policy modifications are necessary iardadachieve a specific
user goal.

7.3.2 Policy Management

The design of the platform presented in this thesis idestifi® use of policy based
mechanisms for the specification of adaptive behaviour. #quaarly interesting re-
search issue is the design of a policy management systenp o tioe existing platform
that can allow flexible management of policies.

Existing policy management system [Damianou01] definedhfiit classes of policy
rules (e.g. obligation, authorisation). The Event Calcioticy Language allows the
specification of obligation policy rules only as required tloe specification of adapta-
tion actions. An extension of this language with the ina@asaf more policy rule classes
(e.g. authorisation policies) would allow the constructxd a much more flexible policy
management system and provide mechanisms for avoidingatenlithin the specifi-
cation of the policy rules. Furthermore, an interestingueathat a policy management
system could provide is the introductionrmogta policies Using the syntax of the Event
Calculus Policy Language, a certain class of policy rulesccbe defined that will al-
low the dynamic management of existing policy rules. Thes¢anpolicies could be
used to enable or disable particular sets of rules basedtloer ystem conditions or
user preferences. An example use of meta policies would Bgrtamically modify the

active policy rules when the system gets into low power mode.

171

Conclusions

7.3.3 Application to Ubiquitous Computing

The Event Calculus Policy Language was defined in order tefgatie requirements
of context-aware adaptive applications. However, theiqddr characteristics of this
language in terms of support for temporal relationshipg/beh events can be applicable
to other application domains. Specifically, environmerttiere coordination of multiple
entities is of importance can be considered possible cateldbmains for the use of the

Event Calculus Policy Language.

A particular domain that the author considers as a possibdet for the use of this
policy language is the area of active environments. Activ@renments require the
coordination of multiple applications and devices in regmto changes in the environ-
ment. Current work in the domain of active environments camfoemally classified
in the following categories:

1. Systems that provide support for the exchange of infdondietween applica-
tions/devices but rely on the applications themselves todinate their actions
(e.g. [Johanson02, Brumitt00, Kindberg01]).

2. Systems that use computer learning in order to make thiemmysnderstand the
requirements of the users and coordinate the applicatienigkes in an active en-

vironment accordingly (e.g. [Mozer98]).

3. Systems that use a rule based mechanism allowing the aispetify how the

active environment should behave (e.g. [Roman03]).

The architecture presented in this thesis and the Event Dal&olicy Language
can be considered as potential candidates for a systemgfaiito the third category
of active environments. The use of the Event Calculus Poliogliage for the speci-
fication of temporal relationships between events and tkeeigation of entities with
duration (i.e. fluents) can be a significant tool in an enviment where applications
and devices should be coordinated according to user a@mhsocial situations. Such
policy rules can allow the user to express abstract sitnasoich as “having a meeting”
through environmental state variables such as “number @blpen a room”, “volume
of the speaker’s voice”, etc. A clear benefit that arises ftbis approach is that the
user has a clear understanding of the conditions that trifpgesystem’s behaviour and
therefore can intervene to modify the system’s behavioitrigf not according to their

requirements.

172

Conclusions
7.4 Concluding Remarks

Mobile environments are tightly coupled with the notioncbinge Change can occur
in the level of resources, such as quality of the network ectian, or the external
context of the mobile system or the user, such as the physication. Future mobile
systems are expected to consist of a collection of appdicatihat demonstrate adaptive
behaviour in response to both of these types of changes.

The work in this thesis investigates the adaptation sudporpplications capable
of adapting to both resource and context changes. In pkatjccoordination of the
adaptive behaviour of applications is considered an ingmbifieature for a system that
can support the user requirements and overcome conflictss thésis identifies the
limitations of existing approaches in adaptation and psega set of requirements for
supporting coordinated adaptation. Furthermore, an dwdaign for a platform sup-
porting adaptation is presented utilising a policy basedimarism for controlling adap-
tation. As a proposed policy language that meets the regeinés for context-aware
adaptive applications the Event Calculus Policy Languagefised. The evaluation of

a prototype implementation reveals the feasibility of thpraach.

The author hopes that this work will influence the design tdifiet mobile adaptive
systems and allow the design of adaptation support systetinsnaproved support for

coordination and consideration of the user needs.

173

References

[ACP99] Advanced Configuration and Power Interface Specificationjdten 1.0. In-
tel/Microsoft/Toshiba http://www.acpi.info/. 1999.

[Adams95] Adams, P. and Wall, N. Global System for Mobile Communicatiohhe
Development of the GSM StandardBritish Telecommunications Engineering
14(1):pp. 38-45. 1995.

[Ahuja86] Ahuja, S., Carriero, N. and Gelernter, D. Linda and FriendEE Com-
puter, 19(8):pp. 26—34. 1986.

[Amir95] Amir, E., Balakrishnan, H., Seshan, S. and Katz, R. Efficient TUér
Networks with Wireless Links. IfProceedings of the 5th IEEE Workshop on
Hot Topics in Operating Systems (HotOS{)). 35-40. IEEE Computer Society
Press, Rosario Resort, Orcas Island, Washington, U.S. 1995.

[BadrinathO0] Badrinath, B., Fox, A., Kleinrock, L., Popek, G., Reiher, P. &adya-
narayanan, M. A Conceptual Framework for Network and Clienagtdtion.
IEEE Mobile Networks and Applications(4):pp. 221-231. 2000.

[Bakre95] Bakre, A. and Badrinath, B. I-TCP: Indirect TCP for Mobile Hosts |
Proceedings of the 15th International Conference on Disteld Computing Sys-
tems (ICDCS)pp. 136-143. IEEE Computer Society Press, Vancouver, Britis
Columbia. 1995.

[Bandara03] Bandara, A. K., Lupu, E. C. and Russo, A. Using Event Calculus to
Formalise Policy Specification and Analysis.Rroceedings 4th IEEE Workshop
on Policies for Distributed Systems and Networks (Policy 2008 26—45. Lake
Como, Italy. 2003.

[Bee00] Bumble-Bee Software. Parser Generator. 2000.

http://www.bumblebeesoftware.com/.

174

References

[Blair0O0] Blair, G. S., Coulson, G., Andersen, A., Blair, L., Clarke, M., @Gog$-. M.,
Duran, H. A., Parlavantzas, N. and Saikoski, K. B. A Prinaipdg@proach to Sup-
porting Adaptation in Distributed Mobile Environments. Proceedings of Inter-
national Symposium on Software Engineering for Parallel &nstributed Sys-
tems (PDSE 2000pp. 3—12. IEEE Computer Society, Limerick, Ireland. 2000.

[Blair01] Blair, L., Blair, G., Pang, J. and Efstratiou, C. 'Feature’ haitions outside
a Telecom Domain. IWorkshop on Feature Interactions in Composed Systems,
ECOOP2001Budapest. 2001.

[Bluetooth99a] Bluetooth. Specification of the Bluetooth System: Volume 1chre-
cal report version 1.0 b, Bluetooth Consortium. 1999.

[Bluetooth99b] Bluetooth. Specification of the Bluetooth System: Volume Xhre-

cal report version 1.0 b, Bluetooth Consortium. 1999.

[Brown95] Brown, P. J. The Stick-e Document: A Framework for Creating Exiat
aware Applications Electronic Publishing Origination, Dissemination, and De
sign, 8(2/3):pp. 259-272. 1995.

[BrumittO0] Brumitt, B., Meyers, B., Krumm, J., Kern, A. and Shafer, S. A. Ha%
ing: Technologies for Intelligent Environments. Pnoceedings of Handheld and
Ubiquitous Computing, Second International Symposium,GH000) Lecture

Notes in Computer Science, pp. 12—-29. Springer. 2000.

[Caceres94] Caceres, R. and Iftode, L. The effects of mobility on relialbénsport
protocols. InProceedings of the 14th Intl. Conf. on Distributed Computigg-S
tems pp. 12—-20. IEEE Press, Poznan, Poland. 1994.

[Campbell94] Campbell, A. and Coulson, G. A Quality of Service Architectus€M
Computer Communications Reviexd(2):pp. 6—-27. 1994.

[Cen97] Cen, S.A software feedback toolkit and its applications in adaptiwdtime-
dia systemsPh.D. thesis, Oregon Graduate Institute of Science ankntéogy.
1997.

[Cheverst00] Cheverst, K., Davies, N., Mitchell, K. and Friday, A. Expewes of
Developing and Deploying a Context-Aware Tourist Guide: GWDE. In Pro-
ceedings of the!8 ACM International Conference on Mobile Computing (MOBI-
COM) 200Q pp. 20-31. ACM Press, Boston. 2000.

175

References

[ChomickiO0] Chomicki, J., Lobo, J. and Nagvi, S. A Logic Programming Agmio
to Conflict Resolution in Policy Management. lImternational Conference on
Principles of Knowledge Representation and Reasqrppg 121-132. Brechen-
ridge, Corolado. 2000.

[Costa03] Costa, P. D., Filho, J. G. P. and van Sinderen, M. ArchiteCReguirements
for Building Context-Aware Services Platforms. 9th Open European Summer
School IFIP Workshop on Next Genneration Networks (EUNICE2093)gary.
2003.

[Damianou01] Damianou, N., Dulay, N., Lupu, E. and Sloman, M. The Pondéic{?o
Specification Language. IRroceedings of Policy Workshppecture Notes in

Computer Science, pp. 18—-38. Springer, Bristol, UK. 2001.

[Davies94a] Davies, N., Pink, S. and Blair, G. Services to Support Disted Applica-
tions in a Mobile Environment. IRroceedings of theSiinternational Workshop
on Services in Distributed and Networked Environments (SDNE[$p. 84-89.
Prague, Czech Republic. 1994.

[Davies94b] Davies, N., Wade, S. P. and Blair, G. S. Services to SuppottiDised
Applications in Mobile Environments. [Rroceedings of the 1st International
Workshop on Services in Distributed and Networked Environsn@GDNE ‘94)
pp. 84—89. Praguw, Czech Republic. 1994.

[Davies98a] Davies, N., Finney, J., Friday, A. and Scott, A. Supportingaptive
Video Applications in Mobile EnvironmentdEEE Communications Magazine
36(6):pp. 138-143. 1998.

[Davies98b] Davies, N., Friday, A., Wade, S. and Blair, G.%ilnbo: A distributed
systems platform for mobile computingACM Mobile Networks and Applica-
tions (MONET) Special Issue on Protocols and Software Paradigf Mobile
Networks 3(2):pp. 143-156. 1998.

[Davies98c] Davies, N., Wade, S., Friday, A. and Blair, G3ilnbo: a tuple space based
platform for adaptive mobile application®&CM Mobile Networks and Applica-
tions (MONET): Special Issue on Protocols and Software Paragi of Mobile
Networks 3(2):pp. 143-156. 1998.

176

References

[Davies99] Davies, N., Cheverst, K., Mitchell, K. and Friday, A. Cachegha Air:
Disseminating Information in the Guide System.Amceedings of the™ IEEE
Workshop on Mobile Computing Systems and Applications (WMESBA pp.
11-19. IEEE Computer Society Press, New Orleans, Louiskg80.

[deLaraOl] de Lara, E., Wallach, D. S. and Zwaenepoel, W. Puppeteer: Goemngt-
based Adaptation for Mobile Computing. Proceedings of the'® USENIX
Symbosium on Internet Technologies and Systpmsl59-170. USENIX Press,
San Francisco, California. 2001.

[Demers94] Demers, A., Petersen, K., Spreitzer, M., Terry, D., Thejikiand Welch,
B. The Bayou Architecture: Support for Data Sharing among Mobsers. In
Proceedings of IEEE Workshop on Mobile Computing System#pplications
pp. 2—7. IEEE Computer Society Press, Santa Cruz, Califorai.1

[Dey00] Dey, A., Abowd, G. and Salber, D. A Context-Based Infrastrietor Smart
Environments. IProceedings of the 2000 Conference on Human Factors in Com-
puting Systemsp. 114-128. 2000.

[Dey01] Dey, A. K. Understanding and using contelersonal and Ubiquitous Com-
puting, 5(1):pp. 4-7. 2001.

[Diot95] Diot, C., Huitema, C. and Turletti, T. Multimedia Applicatiorshould be
Adaptive. InProceedings of the'® IEEE Workshop on the Architecture and
Implementation of High Performance Communication Subsys{&lPCS’9) pp.
23-25. Mystic, Connecticut. 1995.

[Efstratiou00] Efstratiou, C., Cheverst, K., Davies, N. and Friday, A. Arebitral
Requirements for the Effective Support of Adaptive MobilepApations. Work
in progress paper presented in Middleware2000, (USA:Nevt)Y2000.

[Efstratiou01] Efstratiou, C., Cheverst, K., Davies, N. and Friday, A. An Aretture
for the Effective Support of Adaptive Context-Aware Apphlicas. InProceed-
ings of 2nd International Conference in Mobile Data Managetm@®IDM‘01),
vol. 1987 ofLecture Notes in Computer Scienpp. 15-26. Springer, Hong Kong.
2001.

[Efstratiou02a] Efstratiou, C., Friday, A., Davies, N. and Cheverst, K. A Riati
Supporting Coordinated Adaptation in Mobile SystemsPlaceedings of the 4th

177

References

IEEE Workshop on Mobile Computing Systems and ApplicattdfdCSA’'02)
pp. 128-137. IEEE Computer Society, Callicoon, New York, 2(82.

[Efstratiou02b] Efstratiou, C., Friday, A., Davies, N. and Cheverst, K. Uiilgthe
Event Calculus for Policy Driven Adaptation in Mobile Systemin Lobo, J.,
Michael, B. J. and Duray, N. (edsRroceedings of the 3rd International Work-
shop on Policies for Distributed Systems and Networks (POLI@2Rpp. 13—
24. |IEEE Computer Society, Monterey, Ca., U.S. 2002.

[Fitzpatrick99] Fitzpatrick, G., Mansfield, T., Kaplan, S., Arnold, D., P&l T. and
Segall, B. Instrumenting the Workaday World with Elvin. Pmoceedings EC-
SCW’'99 pp. 431-451. Kluwer Academic Publishers, Copenhagen, Rdam
1999.

[FIinn99] Flinn, J. and Satyanarayanan, M. PowerScope: A Tool for Ifgfthe
Energy Usage of Mobile Applications. Proc. of the Second IEEE Workshop on
Mobile Computing Systems and Applicatiomg. 23—30. IEEE Computer Society,

New Orleans, Louisiana. 1999.

[Friday96] Friday, A., Davies, N., Blair, G. and Cheverst, K. Developindaftive
Applications: The MOST ExperienceJournal of Integrated Computer-Aided
Engineering 6(2):pp. 143-157. 1996.

[Fuggetta98] Fuggetta, A. and G. P. Picco, a. G. V. Understanding Code Kinbil
IEEE Transactions on Software Engineer,i2g(5):pp. 342-361. 1998.

[Glass99] Glass, G. Overview of Voyager: ObjectSpace’s Product Rafoil State-of-
the-Art Distributed Computing. Tech. rep., ObjectSpac®919

[Gray96] Gray, R. S. Agent Tcl: A flexible and secure mobile-agent systeln
Diekhans, M. and Roseman, M. (edspurth Annual Tcl/Tk Workshop (TCL
96), pp. 9-23. Monterey, CA. 1996.

[Havinga99] Havinga, P. J. M. and Smit, G. J. M. Octopus: Ebracing the @gner
Efficiency of Handheld Multimedia Computers. Rroceedings of the Fifth An-
nyal (ACM/IEEE) International Conference on Mobile Computamgl Network-
ing (MOBICOM99) pp. 77-87. ACM Press, N.Y. 1999.

178

References

[[EEE97] IEEE. Local and Metropolitan Area Network Standards ConeritiVire-
less LAN Medium Access Control (MAC) and Physical Layer (PHYeSifica-
tions. IEEE std 802.11-1997, The Institute of Electricadl &lectronics Engi-
neers, New York, New York. 1997.

[Indulska03] Indulska, J., Robinson, R., Rakotonirainy, A. and Henrick$en EXx-
periences in Using CC/PP in Context-Aware Systems.InlfProceedings 4th
International Conference on Mobile Data Management, MDM'08l. 2515 of

Lecture Notes in Computer Scienpg. 247-261. Springer, Melbourne. 2003.

[Int03] VTune Performance Analyzer, Version07 http://www.intel.com/software
/products/vtune/vpa/. 2003.

[Jacobson88] Jacobson, V. Congestion Avoidance and ControlPioceedings of the
ACM Symposium on Communications Architectures and Protd&i@s<OMM
'88, pp. 314-329. ACM Press, Stanford, CA. 1988.

[Jacobson94] Jacobson, V. and McCanne, S. Visual Audio Tool. Available lom t
Internet at http://www-nrg.ee.Ibl.gov/vat/. 1994.

[J.Myers96] J.Myers and Rose, M. Post Office Protocol - Version 3. InteRfeC
1932. 1996.

[Johansen97] Johansen, D., Sudmann, N. P. and van Renesse, R. Performance
Issues in TACOMA. In3Y Workshop on Mobile Object Systems, 11th
European Conference on Object-Oriented Programmidgvaskylda, Finland.

http://www.tacoma.cs.uit.no/ papers/ECOOP.tacoma$¥/.1

[Johanson02] Johanson, B. and Fox, A. The Event Heap: A Coordination Infnast
ture for Interactive Workspaces. W" IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA 204%). 83—-93. IEEE Computer Society,
Callicoon, NY, USA. 2002.

[Joseph97] Joseph, A., Tauber, J. and Kaashoek, F. Mobile ComputingtivgliRover
Toolkit. IEEE Transactions on Computers: Special issue on Mobile Ctingyu
46(3):pp. 337-352. 1997.

[Katz94] Katz, R. Adaptation and Mobility in Wireless Information $s. IEEE
Personal Communicationd(1):pp. 6-17. 1994.

179

References

[Kindberg01] Kindberg, T. and Barton, J. A Web-based nomadic computintesys
Computer Networks (Amsterdam, Netherlan88)4):pp. 443-456. 2001.

[Kistler91] Kistler, J. and Satyanarayanan, M. Disconnected Operatidine Coda
File System. InProceedings of the 13th ACM Symposium on Operating Systems
Principles (SOSR)vol. 25, pp. 213-225. ACM Press, Asilomar Conference Cen-
ter, Pacific Grove, U.S. 1991.

[Kistler92] Kistler, J. and Satyanarayanan, M. Disconnected Operatidne Coda
File System ACM Transactions on Computer Systed®(1):pp. 3—25. 1992.

[Kokar99] Kokar, M., Baslawski, K. and Eracar, Y. Control Theory-Basedriation
of Self-Controlling SoftwarelEEE Intelligent Systemgp. 37—45. 1999.

[KounavisO1] Kounavis, M. E., Campbell, A. T., Ito, G. and Bianchi, G. Desilgnple-
mentation and Evaluation of Programmable Handoff in MoNigworks.Mobile
Networks and Application®(5):pp. 443-461. 2001.

[Kowalski94] Kowalski, R. and Sadri, F. The situation calculus and eveldutas
compared. Inn Proceedings of International Logic Programming Symposi
(ILPS 94) pp. 539-553. MIT Press, Ithaca, NY. 1994.

[Kowalsky86] Kowalsky, R. A Logic-Based Calculus of Event\lew Generation
Computing 4:pp. 67-95. 1986.

[Kowalsky92] Kowalsky, R. Database Updates in Event Calculdsurnal of Logic
Programming 12:pp. 121-146. 1992.

[Leboux99] Leboux, T. OpenCORBA: A Reflective Open Broker. Proceedings of
Reflection '99 vol. 1616 ofLecture Notes in Computer Sciengs. 197-214.
Springer-Verlag, St. Malo, France. 1999.

[Lob099] Lobo, J., Bhatia, R. and Naqvi, S. A Policy Description Langualn Pro-
ceedings of Innovative Applications of Artificial Intetigce (IAAI '99) pp. 291—
298. MIT Press, Orlando, FL. 1999.

[Loke02] Loke, S. W. Modelling Service-Providing Location-Based d&rnunities
and the Impact of User Mobility. Iistributed Communities on the Web, 4th
International Workshop, DCW 2002, Sydney, Australia, Ap#d, 2002, Revised

180

References

Papers vol. 2468 ofLecture Notes in Computer Scieng®. 266—277. Springer.
2002.

[Long96] Long, S., Kooper, R., Abowd, G. and Atkenson, C. Rapid Prototypif Mo-
bile Context-Aware Applications: The Cyberguide Case Stualf2rbceedings of
the 2nd ACM International Conference on Mobile Computing (MQBM), pp.
97-107. ACM Press, Rye, New York. 1996.

[Lupu99] Lupu, E. C. and Sloman, M. Conflicts in Policy-Based Distribusggdtems
Management.|IEEE Transactions on Software Engineer,ir&p(6):pp. 852—869.
1999.

[Marzullo91] Marzullo, K., Cooper, R., Wood, M. and Birman, K. Tools for Dis-
tributed Application ManagementEEE Computer24(8):pp. 42-51. 1991.

[McCanne95a] McCanne, S. and Jacobson, V. vic : A Flexible Framework fokBtac
Video. INACM Multimediag pp. 511-522. ACM Press. 1995.

[McCanne95b] McCanne, S. and Jacobson, V. vic: A Flexible Framework fokBac
Video. InProceedings of ACM Multimedia ‘9pp. 511-522. San Francisco, CA.
1995.

[Meng00] Meng, A. On Evaluation Self-Adaptive Software. Rroceedings of the
First International Workshop on Self-Adaptive Software $WE200Q)pp. 65—
74. Springer, Oxford, UK. 2000.

[Microsoft03] Microsoft. Windows Media Player. Available on the Interret

http://www.microsoft.com/mediaplayer/. 2003.

[Mouly92] Mouly, M. and Pautet, M. BThe GSM System for Mobile Communications
Published by the authors, 4 rue Elisée Reclus, F-91120 Palaisrance. 1992.

[Mozer98] Mozer, M. C. The neural network house: An environment thaptslto
its inhabitants. IrProceedings of the American Association for Artificial Ihte
gence Spring Symposium on Intelligent Environmeas110-114. AAAI Press,
Menlo, Park, CA. 1998.

[Mummert95] Mummert, L., Ebling, M. and Satyanarayanan, M. Exploitingalk
Connectivity for Mobile File Access. IRroceedings of the 15th ACM Sympo-
sium on Operating Systems Principles (SQ$BI) 29, pp. 143-155. ACM Press,
Copper Mountain Resort, Colorado, U.S. 1995.

181

References

[Noble95] Noble, B., Satyanarayanan, M. and Price, M. A Programmingriate
for Application-Aware Adaptation in Mobile Computing. FProceedings of the
second USENIX Symposium on Mobile and Location-Indeper@emputing:
April 10-11, 1995, Ann Arbor, Michigan, USAp. 57-66. USENIX, Berkeley,
CA, USA. 1995.

[Noble97] Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J-En, J. and
Walker, K. R. Agile Application-Aware Adaptation for Mohtii. In Sixteen ACM
Symposium on Operating Systems Principfgs 276—287. Saint Malo, France.
1997.

[Noble98] Noble, B. Mobile Data AccessPh.D. thesis, School of Computer Science,
Carnagie Mellon University, Pittsburgh. 1998.

[OMGO01] OMG. The Common Object Request Broker: Architecture and Spatidn
revision 2.5. OMG Document formal/01-09-01. 2001.

[Peine97] Peine, H. and Stolpmann, T. The Architecture of the Ara Bitatffor Mobile
Agents. InProceedings of the First International Workshop on MobilgeAts
MA’97, no. 1219 in Lecture Notes in Computer Science, pp. 50-6lin&gar
Verlag. 1997.

[Pietzuch03] Pietzuch, P. R., Shand, B. and Bacon, J. A Framework for Event Gomp
sition in Distributed Systems. In Endler, M. and Schmidt(&ds.),Proc. of the
4th ACM/IFIP/USENIX Int. Conf. on Middleware (Middleware 'Q®p. 62—82.
Springer, Rio de Janeiro, Brazil. 2003. Best paper award.

[Pietzuch04] Pietzuch, P. R., Shand, B. and Bacon, J. Composite Event Detedia
Generic Middleware ExtensiohEEE Network 18(1):pp. 44-55. 2004.

[Popovici02] Popovici, A. and Alonso, G. Ad-Hoc Transactions for Mobilerdces.
In Technologies for E-Services, Third International WorkshBES 2002, Hong
Kong, China, August 23-24, 2002, Proceedingsl. 2444 ofLecture Notes in
Computer Scien¢@p. 118-130. Springer. 2002.

[Postel82] Postel, J. B. Simple Mail Transfer Protocol. Internet RFC 82B2.
[Rakotonirainy01] Rakotonirainy, A., Indulska, J., Loke, S. W. and Zaslavsky, A

Middleware for Reactive Components: An Integrated Use of Conkoles, and

182

References

Event Based Coordinatiorecture Notes in Computer Scien@218:pp. 77-86.
2001.

[Real03] Real. Real Player. Available on the Internet at http://wwal.com/. 2003.

[Reiff-Marganiec04] Reiff-Marganiec, S. and Turner, K. J. Feature Interactidoh-

cies. Submitted for publication in Elsevier Computer Netwgaiournal. 2004.

[Riva03] Riva, O. Middleware for Context-Aware Applications. SemipnarResearch
Themes in Context-Aware Computing. Department of Computereei, Univer-
sity of Helsinki. 2003.

[Roman00] Roman, M., Mickunas, D., Kon, F. and Campbell, R. H. LegORB and
Ubiquitous CORBA.. InProceedings of the IFIP/ACM Middleware’2000 Work-
shop on Reflective Middlewanep. 1-2. ACM/IFIP, Palisades, NY. 2000.

[Roman03] Roman, M. and Campbell, R. H. A Middleware-Based Applicatiomiga
work for Active Space Applications. IRroceedings of ACM/IFIP/USENIX Inter-
national Middleware Conference (Middleware 200@)1. 2672 ofLecture Notes
in Computer Scien¢®p. 433-454. Springer, Rio de Janeiro, Brazil. 2003.

[Salber99] Salber, D., Dey, A. K. and Abowd, G. D. The Context Toolkit: Aid
the Development of Context-Enabled Applications. In Witi M. G., Altom,
M. W., Ehrlich, K. and Newman, W. (eds.Proceedings of the Conference on
Human Factors in Computing Systems (CHI-99). 434-441. ACM Press, New
York. 1999.

[Satyanarayanan85] Satyanarayanan, M., Howard, J., Nichols, D., Sidebotham, R.
Spector, A. and West, M. The ITC Distributed File Systemn&iples and De-
sign. InProceedings of the 10th ACM Symposium on Operating Systams-Pr
ples (SOSRB)p. 35-50. ACM Press, Orcas Island, Washington, U.S. 1985.

[Satyanarayanan90] Satyanarayanan, M., Kistler, J., Kumar, P., Okasaki, Megé&l,
E. and Steere, D. Coda: A Highly Available File System for atiibsited Work-
station EnvironmentEEE Transactions on Computef39(4):pp. 447-459. 1990.

[Schilit94a] Schilit, B., Adams, N. and Want, R. Context-Aware Computing Agp!
tions. InProceedings of the Workshop on Mobile Computing Systems apid A
cations pp. 85-90. IEEE Computer Society, Santa Cruz, CA. 1994.

183

References

[Schilit94b] Schilit, B. and Theimer, M. Disseminating Active Map Infortioa to
Mobile Hosts.IEEE Network 8(5):pp. 22-32. 1994.

[Schmidt98] Schmidt, D. C., Levine, D. L. and Mungee, S. The design of th©®TA
real-time object request broke€omputer Communication21(4):pp. 294-324.
1998.

[Schulzrinne96] Schulzrinne, H., Casner, S., Frederick, R. and Jacobson, ¥: RT
Transport Protocol for Real-Time Applications. Network Wiog Group RFC
1889. 1996.

[Tai99] Tai, H. and Kosaka, K. The Aglets proje€@ommunications of ACMI2(3):pp.
100-101. 1999.

[Tennenhouse97]Tennenhouse, D. L., Smith, J. M., Sincoskie, W. D., WethgalJ.
and Minden, G. J. A Survey of Active Network ResearltflEE Communications
Magazing 35(1):pp. 80—86. 1997.

[Terry95] Terry, D., Theimer, M., Petersen, K. and Demers, A. J. Mamagipdate
Conflicts in Bayou, a Weakly Connected Replicated Storage BydteProceed-
ings of the 1% ACM Symposium on Operating System Princippes 172—-183.
ACM, Copper Mountain Resort, Colorado. 1995.

[Turner97] Turner, H. Representing Actions in Logic Programs and DéfEutories:
A Situation Calculus Approaclournal of Logic Programming31(1-3):pp. 245—
298. 1997.

[W3CO00] Simple Object Access Protocol (SOAP) 1.1. W3C note,
http://lwww.w3.0rg/TR/SOAP. 2000.

[W3C01] Web Services Description Language (WSDL) 1.1.
http://www.w3.org/tr/wsdl. 2001.

[Waldo99] Waldo, J. The Jini Architecture for Network-centric Compagti Commu-
nications of the ACM42(7):pp. 76—82. 1999.

[Walpole97] Walpole, J., Koster, R., Cen, S., Cowan, C., Maier, D., McNamee? D,
C., Steere, D. and Yu, L. A Player for Adaptive MPEG Video Stneey Over
The Internet. InProceedings of Applied Imagery Pattern Recognition AIFR-9
SPIE pp. 249-258. Washington DC. 1997.

184

References

[WAP99] WAP. Wireless Application Protocol - White Paper. Wireles®tnet Today.
1999.

[Weiser93] Weiser, M. Some Computer Science Issues in Ubiquitous Congpulti
Communications of the ACN6(7):pp. 75-84. 1993.

[White94] White, J. E. Telescript technology: The foundation for thecgionic mar-
ketplace. Tech. rep., General Magic Inc., CA. 1994.

[Wollrath96] Wollrath, A., Riggs, R. and Waldo, J. A distributed object miokbe
the Java System. Ind Conference on Object-Oriented Technologies & Systems
(COQTS) pp. 219-232. USENIX Association. 1996.

[Wyckoff98] Wyckoff, P., McLaughry, S., Lehman, T. and Ford, D. T SpackVi
Systems JournaB7(3):pp. 454—-474. 1998.

[Yeadon96] Yeadon, N. QoS Filtering for Multipeer Communication?h.D. thesis,
Computing Department, Lancaster University, LancasteitgddrKingdom. 1996.

[Yuan04] Yuan, W. and Nahrstedt, K. Process group management in-lapssadap-
tation. In Proceedings of SPIE/ACM Multimedia Computing and Networking
Conference (MMCN’04)vol. 5305, pp. 55-68. Santa Clara, CA. 2004.

185

	Abstract
	Declaration
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Adaptive and Context-Aware Applications
	Motivation
	Road Map for the Thesis

	Adaptive and Context-aware Systems
	Overview
	The Emergence of Adaptive Systems
	Adaptive Network Protocols
	Distributed Multimedia
	Mobile Systems
	Context-aware systems
	Application Aware Adaptation

	Overview of Existing Adaptive Systems
	Abstracting Adaptation
	Assessment Criteria
	Coordination
	Extensibility
	Reconfigurability
	User Involvement

	Independent Adaptive Applications
	Middleware-based Systems
	Coda
	Odyssey
	MOST
	Rover
	TACOMA/TACOMA Lite
	Bayou
	Mobiware
	Puppeteer
	TAO
	Open-ORB
	OpenCORBA

	Context-aware Systems
	Guide
	Cyberguide
	PARC Tab
	Context toolkit
	Cooltown

	Discussion
	Summary

	Analysis
	Overview
	Challenges in Adaptation
	Coordinated Adaptation
	Scenario
	Analysis

	Conflicting Adaptation
	Scenario
	Analysis

	Extensibility
	Scenario
	Analysis

	User Involvement
	Scenario
	Analysis

	Conclusions

	Requirements
	RQ1. Decouple Adaptation Control and Adaptive Actions
	RQ2. Export Application State
	RQ3. Export Adaptive Mechanisms
	RQ4. Enable Modification of Adaptive Behaviour

	Summary

	Design
	Overview
	Architectural Discussion
	Architectural Overview
	Application Interface and Communication
	Background
	Corba
	Java/RMI
	Web Services

	Application Interface Design
	Service Interface Definition

	Application Manager

	Internal Communication Layer
	Background
	Jini
	Elvin
	Cambridge Event Architecture (CEA)
	L-2imbo
	Event Heap

	The Design of the Event Manager

	System Manager Design
	Background
	Ponder
	PDL

	Policy Manager

	Policy Language
	Choosing a Policy Language
	The Event Calculus
	The Event Calculus Policy Language
	Examples

	Summary

	Implementation
	Overview
	Platform Configuration
	Non Distributed with Local Applications
	Non Distributed with Remote Applications
	Partially Distributed Platform
	Fully Distributed Platform

	Prototype
	Component Overview
	Application Registry
	Application Controller
	Event Dispatcher
	System Manager
	Evaluation of Policy Rules
	Policy Evaluation Example

	Application Stub
	Application API

	Platform Operation
	Platform Initialisation
	Application Initialisation
	State Change Notification
	Adaptation

	Summary

	Evaluation
	Overview
	Qualitative Evaluation
	Applications and Monitoring Tools
	Video Player
	Web Browser
	E-mail client
	Network Interface
	Power Monitor
	Location Monitor
	User Awareness Module
	Applications Summary

	Coordination
	Conflict Resolution
	Extensibility
	User Involvement
	Qualitative Evaluation Summary

	Performance Evaluation
	Methodology
	Number of Applications
	Number of Rules
	Rule complexity
	Rules per event
	Performance Summary

	Summary

	Conclusions
	Overview
	Contributions
	C1. The Problem of Uncoordinated Adaptation
	C2. An Architecture for Supporting Coordinated Adaptation
	C3. A Policy Language Supporting Temporal Relationships
	C4. Feasibility of Coordinated Adaptation

	Future Work
	Support Conflict Detection
	Policy Management
	Application to Ubiquitous Computing

	Concluding Remarks

	References

