
Coordinated Adaptation for Adaptive

Context-aware Applications

Christos Efstratiou

M.Sc. (Lancaster 1998)

Diploma (Patras, Greece 1996)

Computing Department

Lancaster University

United Kingdom

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

MAY 2004

Abstract

Coordinated Adaptation for Adaptive Context-aware

Applications

Christos Efstratiou

Computing Department

Lancaster University

Submitted for the degree of Doctor of Philosophy.

May 2004.

The ability to adapt to change is critical to both mobile and context-aware applica-

tions. This thesis argues that providing sufficient supportfor adaptive context-aware ap-

plications requires support forcoordinated adaptation. Specifically, the main argument

of this thesis is that coordinated adaptation requires applications to delegate adaptation

control to an entity that can receive state information frommultiple applications and

trigger adaptation in multiple applications. Furthermore, coordination requires support

for reconfiguration of the adaptive behaviour and user involvement. Failure to support

coordinated adaptation is shown to lead to poor system and application performance and

insufficient support for user requirements.

An investigation of the existing state-of-the-art in the areas of adaptive and context-

aware systems and an analysis of the limitations of existingsystems leads to the es-

tablishment of a set of design requirements for the support of coordinated adaptation.

Specifically, adaptation control should be decoupled from the mechanisms implement-

ing the adaptive behaviour of the applications, applications should externalise both state

i

information and the adaptive mechanisms they support and the adaptation control mech-

anism should allow modifications without the need for re-implementation of either the

application or the support platform.

This thesis presents the design of a platform derived from the aforementioned re-

quirements. This platform utilises a policy based mechanism for controlling adaptation.

Based on the particular requirements of adaptive context-aware applications a new pol-

icy language is defined derived from Kowalsky’s Event Calculus logic programming

formalism. This policy language allows the specification ofpolicy rules where condi-

tions are defined through the expression of temporal relationships between events and

entities that represent duration (i.e.fluents). A prototype implementation of this design

allowed the evaluation of the features offered by this platform. This evaluation reveals

that the platform can support coordinated adaptation with acceptable performance cost.

ii

Declaration

This thesis has been written by myself, and the work reportedherein

is my own. Many of the ideas in this thesis were the product of discus-

sions with my supervisors Prof. Nigel Davies and Dr. Adrian Friday.

The work reported in this thesis has not been previously submitted for

a degree in this, or any other form.

Christos Efstratiou

iii

Acknowledgements

My most sincere thanks are due to my first supervisor Prof. Nigel Davies. Throughout

my work his remarkable ability to see beyond the obvious and his insightful comments

helped me get passed some difficult obstacles in my research.I want to thank him for

his patient supervision and most importantly the dedicatedsupport he offered me during

the writing of this thesis. Moreover, I owe him thanks for theresearch opportunities he

offered me beyond the strict field of my Ph.D. I consider it an honour to have worked

with and known him.

I would like to express my deepest thanks to my second supervisor Dr. Adrian Fri-

day. His ability to boost my moral, his technical guidance and supportive supervision

were invaluable throughout my Ph.D. His technical knowledge and his ability to suggest

feasible solutions to complex problems helped me overcome difficult design and imple-

mentation issues. I owe him thanks for his enthusiasm and hisconstructive criticism

over the past few years.

Thank you to my colleagues in the Computing Department at Lancaster, for helping

to create a pleasant and friendly work environment. Particular thanks are due to Dr.

Keith Cheverst who guided me during the first years of my Ph.D. Iwant to thank him for

his guidance in research document writing and his valuable suggestions on my research.

I would also like to thank Prof. Gordon Blair and Dr. Lynn Blair for their interest in

my work over the past few years. Moreover, I would like to thank Dr. Keith Mitchell

and Dr. Matt Storey for their comments and discussions over research and non-research

related issues. Thanks to all the guys in the the Skylab that Iworked with: Maomao

Wu, Oliver Storz, Fahd Al-Bin-Ali, Prasad Boddupalli.

I would like to thank in particular my colleague and dear friend Dimitris Pezaros.

He has been both a person that I could chat with and complain about my work, but most

importantly he was the friend that I could share a beer with and enjoy listening to his

iv

guitar.

I would like to express my gratitude to all those beyond the department that made

my time at Lancaster so enjoyable, especially Dr. Antonis Sapountzis for the nights

we’ve spent chatting and drinking ouzo.

Special thanks are due to Vassia Markidou for her emotional and moral support

throughout most of my Ph.D. work. I owe her so much...

v

Contents

Abstract i

Declaration iii

Acknowledgements iv

Contents vi

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Adaptive and Context-Aware Applications 2

1.2 Motivation . 3

1.3 Road Map for the Thesis . 9

2 Adaptive and Context-aware Systems 12

2.1 Overview . 13

2.2 The Emergence of Adaptive Systems13

2.2.1 Adaptive Network Protocols 13

2.2.2 Distributed Multimedia . 14

2.2.3 Mobile Systems . 15

2.2.4 Context-aware systems . 16

2.2.5 Application Aware Adaptation 17

2.3 Overview of Existing Adaptive Systems 18

2.3.1 Abstracting Adaptation . 18

vi

2.3.2 Assessment Criteria . 20

2.3.2.1 Coordination . 21

2.3.2.2 Extensibility . 21

2.3.2.3 Reconfigurability 22

2.3.2.4 User Involvement 22

2.3.3 Independent Adaptive Applications23

2.3.4 Middleware-based Systems . 24

2.3.4.1 Coda . 24

2.3.4.2 Odyssey . 25

2.3.4.3 MOST . 27

2.3.4.4 Rover . 28

2.3.4.5 TACOMA/TACOMA Lite 29

2.3.4.6 Bayou . 30

2.3.4.7 Mobiware . 31

2.3.4.8 Puppeteer . 32

2.3.4.9 TAO . 33

2.3.4.10 Open-ORB . 34

2.3.4.11 OpenCORBA . 36

2.3.5 Context-aware Systems . 37

2.3.5.1 Guide . 37

2.3.5.2 Cyberguide . 38

2.3.5.3 PARC Tab . 38

2.3.5.4 Context toolkit . 39

2.3.5.5 Cooltown . 41

2.4 Discussion . 42

2.5 Summary . 44

3 Analysis 45

3.1 Overview . 46

3.2 Challenges in Adaptation . 46

3.2.1 Coordinated Adaptation . 46

3.2.1.1 Scenario . 46

3.2.1.2 Analysis . 47

vii

3.2.2 Conflicting Adaptation . 48

3.2.2.1 Scenario . 48

3.2.2.2 Analysis . 49

3.2.3 Extensibility . 49

3.2.3.1 Scenario . 49

3.2.3.2 Analysis . 50

3.2.4 User Involvement . 51

3.2.4.1 Scenario . 51

3.2.4.2 Analysis . 51

3.2.5 Conclusions . 52

3.3 Requirements . 53

3.3.1 RQ1. Decouple Adaptation Control and Adaptive Actions .. 54

3.3.2 RQ2. Export Application State 54

3.3.3 RQ3. Export Adaptive Mechanisms 55

3.3.4 RQ4. Enable Modification of Adaptive Behaviour 55

3.4 Summary . 56

4 Design 57

4.1 Overview . 58

4.2 Architectural Discussion .58

4.3 Architectural Overview . 63

4.4 Application Interface and Communication 65

4.4.1 Background . 65

4.4.1.1 Corba . 66

4.4.1.2 Java/RMI . 67

4.4.1.3 Web Services . 68

4.4.2 Application Interface Design 68

4.4.2.1 Service Interface Definition 70

4.4.3 Application Manager . 73

4.5 Internal Communication Layer . 75

4.5.1 Background . 75

4.5.1.1 Jini . 75

4.5.1.2 Elvin . 76

viii

4.5.1.3 Cambridge Event Architecture (CEA) 77

4.5.1.4 L2imbo . 77

4.5.1.5 Event Heap . 78

4.5.2 The Design of the Event Manager 79

4.6 System Manager Design . 81

4.6.1 Background . 81

4.6.1.1 Ponder . 82

4.6.1.2 PDL . 83

4.6.2 Policy Manager . 84

4.7 Policy Language . 85

4.7.1 Choosing a Policy Language 86

4.7.2 The Event Calculus . 87

4.7.3 The Event Calculus Policy Language 88

4.7.4 Examples . 95

4.8 Summary . 99

5 Implementation 100

5.1 Overview . 101

5.2 Platform Configuration . 101

5.2.1 Non Distributed with Local Applications 101

5.2.2 Non Distributed with Remote Applications102

5.2.3 Partially Distributed Platform103

5.2.4 Fully Distributed Platform . 103

5.3 Prototype . 104

5.3.1 Component Overview . 105

5.3.2 Application Registry . 107

5.3.3 Application Controller . 108

5.3.4 Event Dispatcher . 111

5.3.5 System Manager . 113

5.3.5.1 Evaluation of Policy Rules 114

5.3.5.2 Policy Evaluation Example 119

5.3.6 Application Stub . 121

5.3.6.1 Application API . 122

ix

5.4 Platform Operation . 125

5.4.1 Platform Initialisation . 125

5.4.2 Application Initialisation .126

5.4.3 State Change Notification . 126

5.4.4 Adaptation . 127

5.5 Summary . 127

6 Evaluation 128

6.1 Overview . 129

6.2 Qualitative Evaluation . 129

6.2.1 Applications and Monitoring Tools 130

6.2.1.1 Video Player . 130

6.2.1.2 Web Browser . 132

6.2.1.3 E-mail client . 134

6.2.1.4 Network Interface 136

6.2.1.5 Power Monitor . 137

6.2.1.6 Location Monitor 137

6.2.1.7 User Awareness Module 138

6.2.1.8 Applications Summary 139

6.2.2 Coordination . 139

6.2.3 Conflict Resolution . 143

6.2.4 Extensibility . 147

6.2.5 User Involvement . 150

6.2.6 Qualitative Evaluation Summary 152

6.3 Performance Evaluation . 153

6.3.1 Methodology . 154

6.3.2 Number of Applications . 155

6.3.3 Number of Rules . 156

6.3.4 Rule complexity . 157

6.3.5 Rules per event . 159

6.3.6 Performance Summary . 160

6.4 Summary . 160

x

7 Conclusions 162

7.1 Overview . 163

7.2 Contributions . 165

C1. The Problem of Uncoordinated Adaptation 165

C2. An Architecture for Supporting Coordinated Adaptation 166

C3. A Policy Language Supporting Temporal Relationships 167

C4. Feasibility of Coordinated Adaptation 169

7.3 Future Work . 170

7.3.1 Support Conflict Detection . 170

7.3.2 Policy Management . 171

7.3.3 Application to Ubiquitous Computing 172

7.4 Concluding Remarks . 173

References 174

xi

List of Tables

2.1 Current adaptive and context-aware systems 42

5.1 Finite State Automata representing Event Calculus Predicates 118

5.2 Evaluation walk through for a sample policy rule 120

6.1 Video Player: Adaptation Interface 131

6.2 Web Browser: Adaptation Interface133

6.3 E-mail: Adaptation Interface .. 135

6.4 Network Interface: Adaptation Interface 136

6.5 Power Monitor: Adaptation Interface 137

6.6 Location Monitor: Adaptation Interface 137

xii

List of Figures

1.1 Relationship of context-aware adaptive systems 5

2.1 Block diagram of a feedback control system 18

2.2 Basic adaptation cycle . 19

2.3 The Coda state transition diagram .24

2.4 The Odyssey system . 26

2.5 The Puppeteer system . 32

2.6 Supporting multiple triggers, coordination and reconfiguration. 43

4.1 Basic adaptation cycle . 59

4.2 Decouple adaptation control and adaptation action 60

4.3 Externalise application state .. . 61

4.4 Externalise application adaptive mechanisms 61

4.5 Architecture for supporting adaptive context-aware applications 64

4.6 A request passing from client to object implementation.. 67

4.7 Sample XML description of an adaptive web browser 72

4.8 Application Managers for multiple communication protocols. 74

4.9 A sample policy rule . 94

5.1 Platform configurations . 102

5.2 Platform component overview . 106

5.3 Application registration .. 107

5.4 Forwarding notification events trough the Event Manager. 112

5.5 Application stub . 121

5.6 Value Tree for variable notifications 122

5.7 Application stub API . 123

5.8 Sample code: using the application stub 124

5.9 Operation of the coordinated adaptation platform 126

6.1 System setup for the evaluation of the adaptation platform 130

6.2 Adaptive video player through an RTCP proxy 130

xiii

6.3 Adaptive web browser based on a pair of proxies 132

6.4 Notification message from the User Awareness Module 138

6.5 Overhead in relation to the number of applications 155

6.6 Overhead in relation to the number of rules 156

6.7 Overhead in relation to the complexity of the rules’ 158

6.8 Overhead in relation to the number of rules triggered by an event 159

xiv

CHAPTER I

Introduction

Contents
1.1 Adaptive and Context-Aware Applications 2

1.2 Motivation . 3

1.3 Road Map for the Thesis . 9

1

Introduction

1.1 Adaptive and Context-Aware Applications

During the last decade we have witnessed a significant shift of the computing industry’s

focus towards the mobile user. A range of handheld computerswith varying capabili-

ties are now widely available and technologies providing wireless communication are

offered in many forms (e.g. GSM [Adams95, Mouly92], IEEE 802.11 [IEEE97], Blue-

tooth [Bluetooth99a, Bluetooth99b]) as required by different application domains. This

increasing interest in mobile computing has highlighted the fact that the characteristics

of mobile environments have significant differences compared to those of traditional

desk-top computing. In particular, mobile environments are tightly coupled with the

notion of change[Davies98c]. Indeed, mobility is by definition related to changes in

users’ environments as they move. Moreover, the characteristics of mobile devices im-

ply changes related to the availability and quality of resources, such as power supply and

connectivity. These facts have been one of the main drives for research in the area of

mobile computing. From this broad area two dominant research themes have emerged of

interest to this thesis: the support formobile adaptive applicationsand the development

of context-aware systems/ applications.

Adaptation became an important research issue during the first half of the ’90s when

efficient support for streaming multimedia applications was one of the leading research

targets [Campbell94, Diot95]. Most of the knowledge acquired during this time was

transferred into the mobile world where the requirement foradaptation was further in-

tensified by the variation in resource availability such as network connectivity and power

supply. Indeed, in mobile environments adaptation has beenapplied not just for multi-

media applications, but rather for every system component.

The “birth” of context-aware applications was stimulated by Mark Weiser when his

vision of ubiquitous computing required context-aware functionality to be offered by

future mobile systems [Weiser93]. Following the increasing interest of the computing

industry in mobile computing, a range of new technologies (handheld computers, envi-

ronment sensing technologies, etc.) offered new possibilities for applications that can

monitor the user’s environment and modify their behaviour accordingly.

At a high level, these two trends may appear like two independent parallel paths

dealing with different aspects of mobility. The former, driven by the inherent restrictions

of mobile technologies (varying network quality, limited battery life, etc.) is focusing on

2

Introduction

the development of adaptive applications as a solution for offering the best utilisation of

resources. The latter, motivated by the availability of newenvironment monitoring tech-

nologies (location tracking, service discovery, etc.) is focusing on enriching the mobile

user’s experience through the development of applicationscapable of modifying their

behaviour according to the mobile user’s context without direct interaction. However,

in this thesis we identify that the underlying principles for both categories of systems is

the same:applications that modify their behaviour due to external changes1

Even though present researchers have tended to focus on one of these domains, it is

reasonable to conceive that future mobile systems will combine both of these charac-

teristics (adaptation triggered by changing network QoS, power availability, user con-

text, service availability, etc.). Therefore, each individual mobile application will allow

adaptation triggered by a variety of different system or contextual attributes. The con-

sideration of a system that supports such adaptive applications is the main target of this

thesis.

1.2 Motivation

The importance of adaptation in distributed systems, and inparticular mobile distributed

systems, has been identified by a number of researchers [Davies94b, Noble95, Katz94].

In [Badrinath00] a conceptual framework for network and client adaptation that fits

most currently available mobile adaptive systems is described. In this framework, adap-

tation is illustrated as a mechanism where application-specific adapters are triggered to

perform modifications on a network stream when certain changes are monitored in the

system’s environment or the availability of resources. This high level description of net-

work adaptation, where the behaviour of the system is modified according to changes in

the system’s environment bears many similarities with the behaviour of context-aware

systems.

Context-aware computing was first defined by Schilit and Theimer [Schilit94b] in

1994 to be software that “adapts according to its location ofuse, the collection of nearby

people and objects, as well as changes to those objects over time”. This early definition

was based on a quite limited notion of context (location and proximity). Dey offers a

1Here we don’t make any distinction between context related changes (e.g. location) and resource
related changes (e.g. power availability). Indeed for a single application both cases refer to changes that
are external to the application.

3

Introduction

broader definition of context :

Definition 1: Context is any information that can be used to characterise the situation

of an entity. An entity is a person, place, or object that is considered relevant to the

interaction between the user and the application, includingthe user and the applications

themselves.[Dey01]

This definition of context can practically include any kind of information that can

characterise the situation of a participant in an interaction, be that the availability of

resources or the quality of a network channel. In this sense,any application defined as

adaptive in traditional terms, is actually a context-awareapplication.

It may be quite clear that adaptive applications are actually a sub-set of context

aware applications, however not all context aware applications can fit in the conceptual

framework describing adaptive systems. Indeed, context-aware applications can support

features such as [Dey01]:

• presentation of information and services to a user.

• automatic execution of a service for a user.

• tagging of context to information for later retrieval.

This list includes possible ways that context can be used forthe development of

context-aware applications. The second feature identifiesthe way that applications can

respond to changes by modifying their behaviour. This is a functionality that has clear

similarities to the operation of an adaptive system: changes make an application modify

its behaviour.

In order to explicitly specify the target domain of this thesis and also, avoid conflicts

with terminology, it is necessary to define adaptive context-aware applications:

Definition 2: Adaptive context-aware applications are applications thatmodify their

behaviour (adapt) according to changes in the application’s context. The term con-

text is used in accordance with definition 1 being any information that can be used to

characterise the situation of an entity.

According to the above definition, the set of adaptive context-aware applications is a

subset of context-aware applications and a superset of traditional adaptive applications

(Fig 1.1). Following Dey’s definition of context, the application’s context can be any

4

Introduction

Context-aware systems

Adaptive context-aware
systems

Adaptive systems

Figure 1.1: Sub-set relationship of context-aware, adaptive context-aware and tradi-
tional adaptive systems

information that characterises the application’s situation. This can include the availabil-

ity of resources, the preferences of the user, or the existence of other applications in the

system that may interfere with the application.

An adaptive context-aware application should be expected to be able to adapt to

a variety of contextual triggers. However, adaptive applications typically consider a

particular resource that is the prime cause of adaptation (usually the quality of the net-

work connection), while context-aware applications consider the application’sexternal

context. Further more context-aware applications tend to have no consideration of co-

existing applications that they may share resources with.

The approach followed by existing researchers to isolate the domains of adaptation

and context-awareness raises questions about the possibleimplications for a system that

should be able to support both adaptive and context-aware applications. In particular,

it is not clear how a system should behave when applications are capable of adapting

to both contextual and resource related triggers. The interaction of multiple context-

aware adaptive applications adapting to a number of different but possibly inter-related

environmental triggers may cause instabilities and undesirable behaviour. Furthermore,

coordination between these applications will need to consider both the abilities of the

applications to adapt, as well as the multiple triggers thatmay require adaptation. The

problem of coordination and interdependent adaptation is further intensified by the fact

that applications are developed with no prior knowledge of other applications that may

coexist at runtime and the effects their predefined behaviour may have on the system or

the user expectations (this issue is discussed in detail in section 3). Considering these

observations it is possible to identify a number of potential shortcomings or problems

that may occur when adaptive context-aware applications are co-located within the same

system, in an ad-hoc approach:

5

Introduction

• Inefficient use of available resources:Consider a scenario where an applica-

tion that is power-aware may run on the same system with an application that is

network-aware (able to adapt in response to changes on the available bandwidth).

In a situation where the first application reduces the use of the network in re-

sponse to limited power supply, expecting power consumption to be reduced, the

second application may monitor the consequent increase in available bandwidth

and increase their network usage. As a result of these independent adaptations,

the power saving action taken by the first application would be negated by the

actions of the second.

• Conflicts: The previous scenario is actually a case of conflicting adaptive re-

actions of two applications. Given that both applications are developed inde-

pendently without awareness of co-existing applications with different adaptation

objectives, it is unreasonable to expect that the applications themselves will be

able to resolve such a conflict without help from a coordinator provided by the

system or the user.

• Disregard of user preferences:Most current adaptive or context-aware applica-

tions either ignore the user involvement in the specification of the application’s

behaviour, or restrict that involvement to the specific subset of context triggers

they are aware of. However, user requirements can have implications on the way

applications collaborate. In more detail, allowing the users to specify the be-

haviour of individual applications may not always provide satisfactory over-all

system behaviour. Indeed, user requirements may necessitate coordinated adapta-

tion of multiple applications. A possible scenario might include a video-streaming

player that will degrade the stream bandwidth when the user is in their car, in order

to allow timely delivery of traffic information for a co-running traffic monitoring

application. Such a configuration scheme would require a system-wide approach

to coordinated adaptation allowing combination of severaltriggering attributes

(location and network bandwidth in this scenario) and control over multiple ap-

plications.

• No extensibility: In the two scenarios presented above one solution is to allow

the system to make certain applications aware of more contextual triggers than

the ones they were designed for. These contextual triggers may relate to external

contextual information or the state of coexisting application. The first scenario,

6

Introduction

for example, could be resolved either by requiring the second application to in-

corporate power awareness in its behaviour or to be aware of the activities of

other applications in the system. The support for extensibility however, can not

be left to the application designers, most importantly because the specific exten-

sions that may be required depend on the configuration of the system and the user

preferences.

In order to understand the reasons that can lead to such undesirable behaviour taking

place, it is necessary to investigate the fundamental characteristics of adaptation. In

particular, adaptation can be defined as a combination of three conceptual entities:

• A monitoringentity to monitor a number of contextual attributes that maytrigger

the application to adapt. The monitoring entity can either be part of an application

or the system itself. The information monitored may be of interest to more than

one application.

• An adaptation policythat is responsible for deciding if and when the application

should adapt based on the information gathered by the monitoring entity. An ap-

plication is designed with a set of policies that implement the application’s default

behaviour. These default policies cannot perform special purpose coordinated de-

cisions, mainly because the application developer is not aware of the possible

configuration of the target system.

• The adaptivemechanismthat performs the necessary changes when triggered by

the adaptation policy. The adaptive mechanism is tightly coupled with the seman-

tics of the application.

Based on these definitions, this thesis claims that the main reasons for the shortcom-

ings of existing systems supporting adaptive context-aware applications relate to their

design approach. Specifically:

• Adaptive systems tend to couple adaptation policies and adaptation mechanisms.

In most cases these are both implemented as a single component that is bound to

the semantics of the actual application.

• The monitoring entities offering information about attributes that can cause adap-

tation typically do not allow sharing of that information with other applications

7

Introduction

in the system. Specifically, adaptation policies can not obtain information about

other monitoring entities related to either the state of other applications or new

contextual attributes.

• Adaptation policies are usually hard-coded either within the adaptive applications

or the system platform supporting coordination. This fact does not allow recon-

figuration of the system and moreover does not allow user involvement in order

to specify their requirements in relation to the behaviour of the system.

Following these observations this thesis claims that sufficient support for coordi-

nation, conflict resolution, extensibility and user involvement can be achieved through

the design of an adaptation support platform that satisfies the following design require-

ments:

1. Decoupling adaptation policies and adaptation mechanisms. Since adaptation

mechanisms are generally related to the semantics of applications it is necessary

for them to be part of an application’s implementation. However, adaptation poli-

cies that define when and how an application should adapt should be decoupled

from the application’s implementation.

2. Externalisation of application state. Monitoring entities that may be part of ap-

plications or system components monitoring the system’s environment (e.g. a lo-

cation monitoring module) should externalise that information. This would allow

the adaptation support platform to retrieve information across multiple applica-

tions and/or multiple system components.

3. Externalisation of applications’ adaptation mechanisms. With the decoupling of

adaptation policies and adaptation mechanisms, an adaptation support platform

can handle adaptation policies in a system-wide manner. This functionality re-

quires applications to allow the adaptation support platform to trigger adaptation

as defined by the adaptation policies. Thus the applicationsshould expose an

interface that allows the invocation of adaptation methodsby the platform.

4. Enable the modification of the adaptation policies. As stated earlier, one of the

reasons for insufficient support for multiple adaptive context-aware applications is

the fact that applications do not have any prior knowledge ofthe configuration of

the end-system and possible interdependencies between co-existing applications.

8

Introduction

Therefore, the adaptation support platform should allow the reconfiguration of

the system’s behaviour in order to achieve coordination andconflict resolution.

Moreover, the user should be able to express their requirements by modifying the

adaptation policies that govern existing applications.

In order to prove this claim this thesis presents the design of an adaptation support

platform that satisfies the aforementioned requirements. This platform uses a policy

based mechanism for specifying adaptation policies. This approach allows the modifi-

cation of the system’s behaviour without the need for a re-implementation of either the

applications or the platform. In the process of identifyinga policy language that satisfies

the requirements for adaptive context-aware applicationsa new language was defined

that was derived from the Event Calculus logic programming formalism [Kowalsky86].

The Event Calculus Policy Language allows the definition of adaptation policies that

can incorporate state information from multiple applications and system components,

invoke adaptation over multiple applications and allow theuser to modify existing adap-

tation policies or add new ones.

This thesis also presents a prototype implementation of this design and a thorough

evaluation of the features of this prototype. Specifically,the ability of the adaptation

platform to invoke adaptation actions in multiple applications is shown to allow the co-

ordinated adaptation of multiple applications. The incorporation of multiple triggering

information is shown to allow the extensibility of existingadaptive applications by al-

lowing the definition of policy rules that incorporate additional adaptation triggers from

the default triggers defined by the applications. Finally, the support for modification of

the adaptation policies allows the resolution of conflicts and the active involvement of

the user in the specification of the system’s behaviour.

1.3 Road Map for the Thesis

This thesis is established in the following steps:

• Chapter 2 presents an investigation of existing adaptive andcontext-aware sys-

tems. The chapter provides a brief historical overview on the advances in adap-

tation and context-aware computing. Following the historical overview, a critical

analysis of existing adaptation systems and context-awaresystems is presented.

9

Introduction

This critical analysis is driven by a set of criteria questioning the support of ex-

isting systems in terms of coordination, extensibility, reconfiguration and user

involvement. The chapter concludes with a summary of this critical analysis.

• Chapter 3 presents an analysis of the potential problems thatmay occur when

multiple adaptive context-aware applications are combined in an ad-hoc manner.

In particular, a set of theoretical scenarios are presentedand discussed. This anal-

ysis allows the identification of some general conclusions about the behaviour of

existing systems and the reasons that specific problems can occur when support-

ing multiple adaptive context-aware applications. The chapter concludes with a

set of design requirements that should be satisfied by a platform that supports

coordinated adaptation for multiple adaptive applications.

• Chapter 4 presents the design of a platform supporting coordinated adaptation

for multiple adaptive applications. The chapter includes adiscussion about how

the requirements defined in the previous chapter can be mapped onto a platform

that supports coordination, extensibility, reconfiguration and user involvement.

More specifically, the design of this platform requires applications to externalise

their adaptation interface specifying their adaptive mechanisms and a set of state

variables reporting their state. The platform uses those interfaces in order to re-

trieve state information from the applications and triggeradaptation as and when

needed. The adaptation control mechanism is realised through a policy based

mechanism. Specifically, the Event Calculus Policy Languageis defined as a pos-

sible language for defining adaptation policies.

• Chapter 5 presents the implementation of a prototype implementation of the archi-

tecture for supporting coordinated adaptation. The chapter identifies the possible

configurations for the implementation of this architecturewith respect to the level

of distribution of the platform’s components. The presentation of the prototype

supporting adaptation on a single host includes a detailed description of the pro-

totypes components and an analysis of the evaluation engineimplemented for the

processing of Event Calculus Policy rules.

• Chapter 6 presents an evaluation of the prototype platform. This evaluation in-

cludes a qualitative evaluation of the platform’s characteristics and a quantitative

evaluation of the platform’s performance. In more detail, the qualitative evalu-

ation examines the level of support offered by the prototypein terms of coordi-

10

Introduction

nation, conflict resolution, extensibility and user involvement. The performance

evaluation examines the behaviour of the platform against aset of scalability fac-

tors, including the number of applications in the system, the number of policy

rules, the complexity of the policy rules, etc.

• Chapter 7 summarises the work presented in this thesis. Special attention is drawn

to the main contributions of this work and further research issues that arise from

this work are discussed.

11

CHAPTER II

Adaptive and
Context-aware Systems

Contents
2.1 Overview . 13

2.2 The Emergence of Adaptive Systems 13

2.2.1 Adaptive Network Protocols 13

2.2.2 Distributed Multimedia . 14

2.2.3 Mobile Systems . 15

2.2.4 Context-aware systems . 16

2.2.5 Application Aware Adaptation 17

2.3 Overview of Existing Adaptive Systems 18

2.3.1 Abstracting Adaptation . 18

2.3.2 Assessment Criteria . 20

2.3.3 Independent Adaptive Applications 23

2.3.4 Middleware-based Systems 24

2.3.5 Context-aware Systems . 37

2.4 Discussion . 42

2.5 Summary . 44

12

Adaptive and Context-aware Systems

2.1 Overview

The objective of this chapter is to provide an overview of thestate of the art in the field

of adaptive systems and to examine current adaptive and context-aware systems against

a set of criteria that will be used as the basis for the analysis presented in chapter 3. The

first sections of this chapter provide a historical survey ofdevelopments in adaptation

and context-aware computing. Next a set of criteria are established for a critical analysis

of existing adaptive and context-aware systems. The criteria defined are: the level of

support of existing systems in terms of coordination, extensibility, reconfiguration and

user involvement. A detailed presentation of a range of adaptive and context-aware

systems is presented in the following sections. Finally this chapter concludes with a set

of general observations derived from the critical analysisof existing systems.

2.2 The Emergence of Adaptive Systems

Throughout the history of computer science, the termadaptationhas been used in a

variety of different contexts. While no uniform definition for adaptation has been iden-

tified, adaptation in the field of mobile systems is most commonly linked to resource

availability [Noble98] or network quality of service [Davies94a, Katz94]. As described

in chapter 1 the target domain of this thesis includes application adaptation triggered

by any type of context. Therefore this overview section willdescribe advances in both

adaptive and context-aware systems.

2.2.1 Adaptive Network Protocols

Since the Internet was first established the varying characteristics of the underlying

infrastructure and the “best effort” approach adopted by the Internet imposed a require-

ment for adaptive flow control. The transmission control protocol (TCP) used by the

Internet for reliable communication provides a minimum level of adaptive congestion

control [Jacobson88]. Specifically, in order to handle network congestion TCP uses a

congestion windowthat determines the amount of data allowed for transmissionin order

to avoid congestion. TCP increases or decreases the congestion window in response to

perceived network congestion (i.e. lost segments) in orderto achieve better utilisation

of the available bandwidth.

13

Adaptive and Context-aware Systems

Since congestion control was introduced in TCP in 1980 several other enhancements

have been proposed to provide more adaptive network behaviour including adaptive

queue management in routers and adaptive retransmission time-outs.

With the widespread deployment of wireless communication new requirements were

established for offering sufficient support for error pronecommunication. Early re-

search identified TCP’s adaptation strategy as inappropriate for wireless communication

[Caceres94]. Wireless networks are characterised by lossesdue to transmission errors

and handoffs. Caceres found that TCP interprets these losses as congestion and invokes

congestion control mechanisms and retransmission of the lost segments, degrading the

performance of the communication. To address such problemsa number of communi-

cation protocols have been developed in order to support theexplicit requirements of

wireless communication [Bakre95, Amir95].

2.2.2 Distributed Multimedia

With the emergence of the Web at the beginning of the ’90s, thefocus of the research

community was targeted on the efficient dissemination of multimedia content. The

prime aim of this effort was the efficient support for real-time video and audio com-

munication over the Internet.

One of the characteristics of multimedia is its high dependency on the timely trans-

mission of their data. Video and audio packets that do not reach the destination on time

for playback are considered useless packets. Thus protocols such as TCP are unsuitable

for multimedia traffic as they involve retransmission of lost packets, adding unnecessary

delays.

The Real Time Protocol (RTP) [Schulzrinne96] was introducedas a transport proto-

col suitable for realtime multimedia traffic. RTP uses UDP asthe underlying transport

protocol and time-stamping for controlling the sequence and flow of packets. Each RTP

packet is time-stamped at the source with the time the packetshould be played out at the

destination. The flow of multimedia traffic is controlled through the Real Time Control

Protocol (RTCP).

The introduction of the RTP/RTCP protocol allowed the development of simple

adaptive mechanisms in multimedia applications. Delay adaptation, for example, uses

buffering at the destination to allow adaptation to variance in packet delays (jitter). The

14

Adaptive and Context-aware Systems

well knownvat audio-tool [Jacobson94] maintains an estimate of the average and stan-

dard deviation of the transmission delay. Based on these parametersvat can compute

a correctly sized play out buffer eliminating any distortions caused by various packet

delays.

Another research trend that had great impact in the development of adaptive mul-

timedia applications was the introduction of a wide varietyof multimedia encoding

schemes. Such schemes include MPEG-1, MPEG-2, MPEG-4, Apple’s Quicktime,

H261, H320, etc. Each of these schemes has different characteristics in terms of re-

quired bandwidth, tolerance to packet loss, required CPU power, etc.

These transmission requirements expressed by the encodingprotocols introduced

the need for a mechanism that can allow applications to express these requirements

to the underlying network infrastructure and request guaranties that they can be satis-

fied. The notion of Quality of Service (QoS) refers to the capability of a network to

provide guaranties on the quality of service offered to a network application. Typical

QoS support includes an API that applications can use in order to express their resource

requirements (e.g. maximum delay, throughput, packet loss, jitter, etc.) and possibly

reserve these resources. When these requirements can not be satisfied by the underlying

network the application is notified in order to renegotiate their requirements.

The combination of QoS support and different multimedia encoding protocols al-

lowed the development of much more sophisticated adaptive multimedia applications.

Typical examples include video tools that can switch between different encoding mech-

anisms [Davies98a], dynamic fine tuning of encoding parameters of a single encoding

protocol [Yeadon96, Walpole97] (allows adaptation when video encoding schemes can-

not be changed through the dynamic introduction of filters).In multicast environments

like MBONE, tools like vic [McCanne95b] and vat use adaptive techniques to allow

media streaming over the multicast backbone of the Internet.

2.2.3 Mobile Systems

Early developments in mobile computing were mostly concerned with file system access

and the problems caused by disconnected operation. CODA [Kistler91] is a typical

example of a system dealing with disconnected file access. Similar problems but in a

more specific domain were also targeted by projects dealing with disconnected database

15

Adaptive and Context-aware Systems

access [Demers94].

The popularity of the Web in the Internet gave a push to an increasing effort to allow

wireless access to web content. In these efforts the actual aim shifted away from the

disconnected operation and moved to issues concerning reliable transmission of data

over low bandwidth links. The typical network infrastructure used by most systems was

based on a client-proxy-server scheme. A web client was allowed to access the content

of a web server through a proxy that was responsible for all necessary transformation-

s/adaptations before the data was transmitted over the wireless link. The techniques

used by these systems included re-encoding of images, text compression, data perfect-

ing, etc. The result of this effort was the specification of the WAP [WAP99] standard

for web access over GSM networks.

The second half of the ’90s shaw a shift of the research community, abandoning

special purpose mobile applications using ad-hoc development techniques and moving

towards the development of general purpose middleware for mobile environments. Here

the lessons learned by the support for adaptive distributedmultimedia were transferred

to the mobile environment.

The research in the area of middleware for mobile systems was(and still is) spread

over a wide range of different methodologies and research directions. A number of sys-

tems utilised the tuple space paradigm to allow communication decoupling across space

and time [Davies98c, Johanson02]. Other systems incorporated open/reflective archi-

tecture designs in order to allow flexible adaptation [Blair00]. Middleware supporting

mobile agents and code mobility was introduced in order to allow applications to split

their processing and network requirements between mobile and/or fixed nodes in the

network.

An additional research topic that gradually became important at the end of the ’90s

and beginning of ’00s, is the support for low power consumption applications and

power-aware adaptation [Flinn99, Havinga99].

2.2.4 Context-aware systems

The first generation of context-aware systems was mostly influenced by the visions

of Mark Weiser [Weiser93] and the work on the PARC Tab project at Xerox PARC

[Schilit94a]. One interesting characteristic of the first context-aware systems is that, in

16

Adaptive and Context-aware Systems

most cases, the only type of context considered was the physical location of the user and

the proximity of other users and services.[Long96, Brown95]

Following the PARC Tab experiment, new research projects extended the notion of

context beyond the physical location, including information such as the user prefer-

ences, the existence of other users in the surrounding environment, the quality of the

wireless network connectivity, etc. [Davies99]. However,even these systems followed

an ad-hoc approach to the development of context-aware applications.

The end of the ’90s and beginning of this millennium was a timewhere a lot of

research was focused on context representation and the development of middleware

platforms that could be used for the creation of context aware applications [Salber99,

Dey00]. However, even today the question “what is context” is still open for debate. To-

day, there are no standards concerning context representation and most research groups

follow their own proprietary designs.

2.2.5 Application Aware Adaptation

One of the aims of early research in mobile computing was the development of systems

that can provide transparent mobility support. The target of this approach was to push

all the functionality related to mobility into the system and allow applications to operate

as if they were operating in a fixed environment. The specific requirement for adaptation

was considered a feature that should be provided transparently without any involvement

of the application. Systems such as Coda [Kistler91], for example, offers application

transparent adaptation for file system access.

Research in the second half of the ’90s indicated that transparent adaptation has

certain limitations. In particular, it is not possible for general purpose adaptation plat-

form to provide sufficient adaptation support for the requirements of all applications.

Noble in [Noble95] suggests the use of application-aware adaptation. In particular,

middleware platforms supporting adaptation should notifyapplications about possible

changes in the environment and allow them to adapt. This approach allows applications

to implement adaptive mechanisms that are more fitting to their requirements. Indeed,

application developers have better knowledge about the semantics of the applications.

Therefore adaptive applications can implement their own mechanisms for adaptation

and rely on the middleware platform for general purpose adaptation support. A number

17

Adaptive and Context-aware Systems

Actuator

Monitor

Controler

Comperator

Reference
Value System

Disturbance

Figure 2.1: Block diagram of a feedback control system

of middleware platforms follow this trend [Friday96, Blair00]. A particularly interest-

ing example is the work on Odyssey [Noble95] where the Code filesystem offering

transparent adaptation is modified in order to allow application-aware adaptation.

The work presented in this thesis follows an application-aware approach in support-

ing adaptation.

2.3 Overview of Existing Adaptive Systems

As highlighted in the previous section, the physical limitations of mobile environments

along with the increasing need for multimedia and context-aware services drove the

research community towards the adoption of adaptive approaches in the development of

such systems. The following sections offer a deeper investigation of current research in

these areas, revealing their possible limitations in supporting multiple adaptive context-

aware applications.

2.3.1 Abstracting Adaptation

In order to identify in more detail what are the actual limitation of current approaches,

it is first necessary to examine the fundamental mechanisms supporting adaptation.

The theoretical model that has been proposed for describingadaptive systems is

based on feedback control theory [Cen97, Meng00, Kokar99]. The feedback control

theory was initially used in engineering for developing hardware control systems. Fig-

ure 2.1 shows a typical feedback control system. Thecontroller helps the system main-

tain a reference value of a control variable, while reducingthe system’s sensitivity to

disturbance. The controller interacts with the system through monitorsandactuators.

A monitor measures the controlled variable, and is the source of the feedback. The

18

Adaptive and Context-aware Systems

Monitor Actuator

Control

Figure 2.2: Basic adaptation cycle

controller’s output causes the actuator to adapt the system’s behaviour in response to

disturbance, or changes in the system’s environment.

In the analysis presented here we propose a simplified closedloop system as the

basic abstraction of an adaptive system, borrowing from thedesign of the feedback

control systems. This abstraction includes three distinctfunctional elements (Figure

2.2):

• Monitor: The first element performs the monitoring of a specific source of infor-

mation that is ‘interesting’ for the adaptive mechanism. This information source

could be, for example, the availability of a specific resource such as power or a

contextual trigger such as the system’s physical location.

• Controller: The second element is the controlling mechanism that takesdecisions

concerning the adaptive reaction of the system. This decision is based on the

information received by the monitor. This controller could, for example, state

that when the power supply drops below a specific threshold then a reaction is

necessary.

• Actuator: The third element is the actual adaptation mechanism that performs the

specific adaptive action as directed by the controller. For example, an actuator

might reduce the network bandwidth consumed by an application. Note that this

reaction may in turn have an impact on the initial source of information, i.e. to

change the rate that the available power drops. This last link between the actuator

and the initial resource being monitored does not necessarily exist in all systems.

Most context-aware systems for example do not affect the initial resource that

triggered their change of behaviour.

19

Adaptive and Context-aware Systems

This theoretical model allows the description of abstract concepts such as “extensi-

bility”, “reconfigurability”, etc. as explicit design characteristics that adaptive systems

should satisfy. In the next section these abstract conceptsare used as the bases for estab-

lishing a set of criteria for the analysis of existing adaptive and context-aware systems.

These criteria are defined in relation to the abstract model of adaptation discussed.

2.3.2 Assessment Criteria

Before analysing the design characteristics of current adaptive and context-aware sys-

tems, it is necessary to establish a set of criteria that willguide this investigation. These

criteria will allow us to establish some general principlesabout how these systems op-

erate focusing on the issues that are of importance for this work. These principles will

be the basis for the analysis presented in chapter 3.

In this thesis we are concerned with supporting mobile systems that consist of a col-

lection of independently developed adaptive context-aware applications. As described

in Definition 2, adaptive context-aware applications are applications capable of adapting

to a variety of contextual triggers such as the availabilityof resources, the preferences

of the user, or the existence of other applications in the system that may interfere with

the application. Considering the focus of this thesis we can clearly identify a number of

key characteristics that are of importance for this work:

• Each adaptive application may require information about a wide variety of con-

textual attributes that may be used as triggers for adaptation.

• The target environment is a system where multiple adaptive applications will co-

exist and possibly interfere with each other.

• The application developer may not be aware of any possible interference or unde-

sirable side-effects between applications when designingtheir own application.

Based on these observations we define a set of criteria that will be used in the as-

sessment of the existing mobile adaptive and context-awaresystems.

20

Adaptive and Context-aware Systems

2.3.2.1 Coordination

In an environment with multiple coexisting adaptive context-aware applications it is

important to support coordinated adaptation (Chapter 3). Adaptive responses by indi-

vidual applications may have contradicting effects or cause instabilities [Efstratiou00].

Coordinated adaptation can overcome conflicting situationsand increase overall system

stability.

Mapping this statement to the theoretical framework of the basic adaptation cycle

(Section 2.3.1) by the termcoordinationwe specify the ability of a controller to trigger

actuators that relate to more than one application. In more detail, a coordinated adaptive

reaction involves multiple applications triggered to perform particular actions, in con-

trast to isolated adaptation where a controller triggers only one application. In practice,

this functionality requires adaptation controllers to be able to retrieve information from

multiple applications (i.e. have access to multiple monitoring entities) and be able to

trigger adaptation on multiple applications (i.e. be able to trigger multiple actuators).

2.3.2.2 Extensibility

As previously described (Chapter 1), the target of this thesis is to provide support for

adaptive applications able to adapt to an extensible set of contextual triggers. Current

research efforts have already identified certain contextual attributes that can become

triggers for adaptation. These include, among others, network QoS [Davies98c], power

supply [Flinn99] and physical location [Cheverst00]. However, the possible types of

contextual attributes that may trigger adaptive reactionsby applications can not be de-

fined as a static set of triggers, since future mobile systemsshould be able to incorporate

new adaptation triggers as and when they become regarded as important.

Mapping this statement to the theoretical framework of the basic adaptation cycle,

by the termextensibilitywe specify the ability of a controller to receive input by more

than one monitor. Moreover, we consider how possible it is for an existing controller

with a given set of monitors to be modified in order to receive input by more, possibly

newly created monitors. Most value is given to the ability ofsystem to allow existing

applications to extend their behaviour without the need forre-implementation.

21

Adaptive and Context-aware Systems

2.3.2.3 Reconfigurability

Independently developed adaptive applications are constructed under a set of assump-

tions that the developer had to make about the target operating environment. However,

in environments where multiple adaptive applications coexist in the same system, it is

expected that interdependencies between adaptive reactions of individual applications

will lead to undesirable behaviour or even conflicts (Chapter3 for a detailed discus-

sion).

In situations such as these, the ability of the mobile systemto allow reconfigura-

tion of their adaptive behaviour is vital: under certain conditions applications may be

required to modify the default adaptive strategies defined by the developer. Therefore

the system should provide the means for modifying the system’s adaptive behaviour.

Mapping this criterion into the theoretical framework, by the termreconfigurability

we specify the ability of a controller to allow modification of their behaviour. These

modifications may be considered as related to the previouslymentioned criteria. In par-

ticular, the incorporation of additional monitors and actuators into an existing adaptation

cycle may require modifications to the behaviour of the controller.

2.3.2.4 User Involvement

The importance of user involvement in the operation of adaptive systems has often been

neglected in current adaptive systems [Efstratiou01]. In asystem where adaptive be-

haviour may require to be modified, as described in the previous criterion, user involve-

ment can allow the user to specify the desirable modification.

According to our theoretical framework, we require the controller to allow the user to

inspect its behaviour and potentially modify it according to their requirements. In terms

of existing systems we investigate the ability of the systemto provide user awareness

about its adaptive behaviour and allow the user to modify that behaviour.

The following sections present a survey of existing system supporting adaptation

and context-awareness. In particular, this survey includes projects that support adapta-

tion following a wide range of design approaches such as, application aware adaptation

middleware, mobile agent based middleware, reflective middleware, etc. The context-

aware related section focuses on projects that are related to the reactive response of

22

Adaptive and Context-aware Systems

applications to contextual changes, e.g. location triggered, proximity triggered adapta-

tion.

2.3.3 Independent Adaptive Applications

Independent adaptive applications (also known as Laissez-Fair Adaptation [Noble98])

are applications that adapt independently without the needfor any system support. Ap-

plications in this category include commercial systems such as the Microsoft Windows

Media Player [Microsoft03] or the RealPlayer [Real03] and research tools, such as Vic

[McCanne95a] and Vat [Jacobson94]. In such systems, applications monitor the avail-

ability of resources and make their own adaptation decisions in isolation of other appli-

cations or the system.

The laissez-faire approach provides a substantial benefit.No system support is re-

quired, a feature that is essential for commercial systems where the operating system is

a fixed commodity.

However, the laissez-fair approach does not support application concurrency: appli-

cations, operate in isolation from the rest of the system, unaware of other applications

possibly sharing the same resources. Moreover, the monitoring information received by

an individual application may not always reflect the metricsthat can be achieved by a

system monitor that is aware of all involved parties.

Criteria based analysis:

• Coordination: Not possible. Applications act in isolation.

• Extensibility: Not possible. Applications have a fixed set of adaptive triggers

that they can react to.

• Reconfiguration: Depends on the application, but most available systems do not

provide any mechanisms for reconfiguration.

• User involvement: Depends on the application, but most available systems do

not allow the user to modify the application’s behaviour.

23

Adaptive and Context-aware Systems

Write
disconnected

Hoarding

Emulating

Figure 2.3: The Coda state transition diagram

2.3.4 Middleware-based Systems

2.3.4.1 Coda

The Coda filesystem [Satyanarayanan90] was developed in Carnegie Mellon University

as an extension to the work done on the Andrew File System [Satyanarayanan85]. Coda

is a highly available replicated file system offering disconnected operation for mobile

clients. In Coda file servers maintain a state transition mechanism consisting of three

states [Kistler91, Mummert95]:hoarding, emulatingandwrite disconnected(see figure

2.3).

In the hoarding state, a mobile client pre-fetches in the local cache the user’s set of

working files. The pre-fetching can be initiated periodically or at the user’s request. The

set of files to be cached is determined by the hoarding database that is constructed using

file access traces and can be modified by the user.

When the client looses connection with the file server, Coda moves into the emula-

tion state. In this state the file system allows modification of the cached files as if they

were still connected to the file server.

All file access operations performed in the emulation state are logged in order to

be replayed when the client re-connects to the file server. Replaying the logged actions

allows Coda to update the database with any changes took placewhen disconnected.

This update process is performed in the write disconnected state. After the logged ac-

tions have been replayed, the files in the file server are up-to-date with the files in the

client’s local cache. However, certain situations may require user intervention. In par-

24

Adaptive and Context-aware Systems

ticular, when the client is connected through a low speed connection, file updates may

take relatively long time. When the estimated time for a file update exceeds a certain

threshold (called thepatience threshold) user intervention is required to specify whether

updates should be postponed until a high speed connection isestablished. During the

update state, inconsistencies may be discovered. These inconsistencies can be resolved

by either application specific resolvers or by direct user intervention. At the end of the

write disconnected state, if the client is connected to the server through a high speed

link, the file system moves back to the hoarding state.

Criteria based analysis:

• Coordination: No mechanisms to support coordination are offered.

• Extensibility: Not applicable. Coda is a special purpose system targeting discon-

nected file access.

• Reconfiguration: Coda offers mechanisms to specify how conflicts should be

resolved. However, the general behaviour of the system is static and can not be

reconfigured.

• User involvement:User involvement is required as part of the resolution of con-

flicts in data updates.

2.3.4.2 Odyssey

The Odyssey system [Noble98] was created as a generalisation of the Coda system in

order to support media-specific adaptive communication formobile clients. As with

Coda, Odyssey works on the assumption that a mobile network consists of light weight

mobile clients connected over wireless links to fixed servers with high processing capa-

bilities and no power limitations.

The general model of operation is based on monitoring the levels of resources such

as network QoS, CPU and battery power and notifying adaptive applications when the

levels of these resources do not satisfy the applications’ requirements. When such noti-

fications reach an application, it is the application’s responsibility to perform the neces-

sary adaptations and renegotiate new resource levels with the platform.

The monitoring and negotiation of resources is performed bythe viceroy. The

viceroy is the common point where all applications express their requirements in terms

25

Adaptive and Context-aware Systems

Net BSD
Kernel

Odyssey
Application

Odyssey Lib

Upcall Lib

Video Warden

Web Warden V
ic

er
o

y

Upcalls

Interceptor

Figure 2.4: The Odyssey system

of resource windows (an application will be satisfied as longas the resource levels are

within the bounds of the resource windows). The viceroy is responsible for monitoring

the system’s available resources and sending notificationsto the applications when the

resource levels exceed the bounds of the resource windows.

The notifications sent to an application will in most cases require an adaptive re-

action from the application and a specification of a new resource window. Odyssey

offers a set of media specific agents that can perform modifications on the fidelity of

media transmitted over the network, in response to changingresource levels. Each of

these agents, called awarden, is specialised for a certain media type (video, audio, etc.)

and can offer media specific adaptation. For example a video warden can modify the

frame rate, encoding, dimensions, etc. of a video stream according to different levels of

required resources.

Criteria based analysis:

• Coordination: Odyssey considers coordination as a mechanism for sharing re-

sources between applications. In this sense Odyssey allowsthe coordinated shar-

ing of resources between multiple applications through theviceroy notifications.

The available system resources are handled by the Odyssey platform according to

the requirements of all applications in the system. Wheneveran adaptive action is

necessary Odyssey can trigger multiple applications as needed. However, this co-

ordination support does not fully satisfy the criterion specified in section 2.3.2.1

as no explicit coordination of actions is involved.

• Extensibility: In Odyssey it is possible to extend the existing system and support

a number of resource attributes that can trigger adaptation, including network

QoS, power, cost, etc. However, any such extension would require the implemen-

26

Adaptive and Context-aware Systems

tation of the necessary viceroys that would deal with the particular resource and

the re-implementation of applications that will use that viceroy. The prototype

implementation supports adaptation triggered by changingnetwork QoS only.

• Reconfiguration: The Odyssey platform does not offer any mechanisms for mod-

ifying the default adaptive behaviour of applications or the system itself.

• User involvement: There is no support for user involvement in modifying the

system’s adaptive behaviour.

2.3.4.3 MOST

The MOST system is a collection of tools supporting collaboration among field workers

in the power distribution industry [Friday96]. The underlying support for adaptation in

MOST is achieved through an application aware platform thatfacilitates the creation

of explicit binding objects that encapsulate network connections between two or more

applications. The explicit binding object allows queryingabout the connection’s QoS

attributes thus breaking the transparency between the connection’s characteristics and

the application. Therefore the applications are able to perform adaptation in response to

changing network QoS levels.

At the application level MOST supports user awareness. In particular, the MOST

interface offers indications about the quality of the communication links with other par-

ties. These indications however do not give an information about any possible adaptive

reactions that the application might have taken.

Criteria based analysis:

• Coordination: The open binding approach followed by MOST (and by a number

of middleware platforms discussed later) allows the sharing of information be-

tween applications. In particular each binding object allows monitoring of their

interface by multiple applications. This fact means that applications can poten-

tially adapt based on information related to other applications in the system. How-

ever, this cannot be considered as coordination as applications do not coordinate

the actions they take.

• Adaptation attributes: MOST supports adaptation triggered by changing net-

work QoS only.

27

Adaptive and Context-aware Systems

• Reconfiguration: There is no built-in support for modifying the system’s adap-

tive behaviour.

• User involvement: MOST supports user awareness of the attributes being mon-

itored but there are no mechanisms that allows the user to modify the adaptive

behaviour of the system.

2.3.4.4 Rover

Rover is a toolkit developed at MIT that “combines re-locatable dynamic objects and

queued remote procedure calls to provide unique services for “roving” mobile appli-

cations” [Joseph97]. The Rover toolkit offers applications a distributed object system

based on a client/server architecture. It supports mobile communication based on two

ideas: relocatable dynamic objects(RDOs) andqueued remote procedure calls(QR-

PCs)

An RDO is an object (code and data) that can be dynamically loaded to a server from

a client or vice versa. A mobile aware application includes RDOs for the data types

manipulated by the application and exchanged with the server. Moreover, it defines

portions of the application that run on the client and portions that run on the server.

By transferring part of the application’s functionality to the server, the application can

reduce the client-server communication requirements.

The communication between RDOs is performed through queued remote procedure

calls. QRPCs is a communication mechanism that allows applications to continue to

make non-blocking remote procedure calls even when a host isdisconnected. The

queued requests and responses are exchanged upon network reconnection. Conflict de-

tection and resolution is offered by the RDOs involved in a transaction.

Criteria based analysis:

• Coordination: In the Rover toolkit each client/server couple is isolated from

any other coexisting client/server applications. Therefore there is no exchange of

information between applications and there is no mechanismto support coordina-

tion.

• Extensibility: The Rover toolkit supports adaptation triggered by changingnet-

work QoS only.

28

Adaptive and Context-aware Systems

• Reconfiguration: There is no system support for reconfiguration.

• User involvement: There is no consideration for user involvement. Such func-

tionality is the application’s responsibility.

2.3.4.5 TACOMA/TACOMA Lite

The TACOMA project [Johansen97] developed at the Universityof Tromosø focuses on

the idea of code mobility and agent technology. The TACOMA project offers a full set

of tools for the development of mobile agents.

TACOMA offers support forweak mobility[Fuggetta98] where individual agents

are responsible for saving their execution state (and possibly filtering out unnecessary

state information) before migrating to a new host. This is incontrast tostrong mobility

[Fuggetta98] where the system forces the agent to move by saving the agent’s state and

restoring it after migration. Strong mobility is supportedby systems such as Telescript

[White94], Agent-Tcl [Gray96] and Ara [Peine97] while weak mobility is supported by

Aglets [Tai99] and Voyager [Glass99].

In order to make the state saving and restoring process easier for the developer,

TACOMA uses an abstraction of folders, briefcases and meeting operations. Agents

keep their data in folders that they can either carry with them or store in folder cabinets

on hosts. An agent can exchange data with a local or a remote agent using briefcases.

The meet operation is the abstraction of a remote procedure call between agents.

TACOMA Lite is an extension of the TACOMA project targeting light-weight hand

held devices. The main difference between TACOMA and TACOMA Lite is that the

latter provides support for disconnected operation: whenever agents need to migrate to

a disconnected host, they are queued and transferred upon reconnection.

Criteria based analysis:

• Coordination: TACOMA supports the exchange of information between appli-

cations. However, this feature alone is not sufficient enough to allow applications

to coordinate their actions.

• Extensibility: Not applicable.

• Reconfiguration: There is no system support for reconfiguration. The mobile

29

Adaptive and Context-aware Systems

application is responsible for providing the necessary mechanisms that will allow

different configurations.

• User involvement: There is no consideration for user involvement. Such func-

tionality is, again, the application’s responsibility.

2.3.4.6 Bayou

Bayou [Terry95, Demers94] is a weakly consistent replicateddatabase system that sup-

ports read or update operations by mobile users who may be disconnected from other

users as individuals or as a group. The emphasis of this system is on supporting auto-

mated application specific conflict detection and resolution and on supporting applica-

tion controlled inconsistency.

In more detail, Bayou provides a replicated database system supporting a variety of

non-realtime collaborative applications, such as shared calendars, e-mail and document

editing. Mobile clients can read and/or write to any server without waiting for changes

to be propagated to all servers. Updates are exchanged between servers periodically in

anti-entropysessions in order to achieve consistency between replicas.

However, conflicts in data updates may occur while the application is not accessible.

Bayou supports automatic application-specific conflict detection and resolution. Appli-

cations providedependency checksandmerge proceduresthat are used by the servers

in order to detect and automatically resolve conflicts. These procedures are executed in

each server allowing, eventually, the replicated databaseto reach a consistent state.

Criteria based analysis:

• Coordination: No mechanism is provided to support coordination.

• Extensibility: Bayou is designed to support disconnected and loosely connected

operation. No other adaptation triggers are considered.

• Reconfiguration: Reconfiguration of the conflict detection mechanism can be

achieved by modifying dependency checks or merge procedures, without the need

for modification of the rest of the infrastructure.

• User involvement: Bayou provides user awareness but it does not offer any

means to modify the system’s behaviour.

30

Adaptive and Context-aware Systems

2.3.4.7 Mobiware

The Mobiware [Kounavis01] system developed at Columbia University is a middleware

toolkit that controls an open active programmable mobile networks [Tennenhouse97].

The termopenhere means network components (e.g. mobile devices, accesspoint,

switches and routers) offer a well defined interface to allowthe implementation of new

signaling, transport and adaptive QoS management algorithms. In Mobiware these de-

vices are represented as distributed objects based on the Common Object Request Bro-

ker Architecture (CORBA).

The Mobiware network comprises an ATM based programmable fixed network with

wireless access points. Mobiware defines a set of programmable objects that abstract

over certain entities of the network.Mobile device objects, access point objectsand

switch server objectsabstract mobile devices, access points and network switches re-

spectively. A set of objects that can be located anywhere in the fixed network offer

adaptation services. In more detail, theQoS adaptation proxy (QAP)allows mobile de-

vices to probe and adapt to changing resource availability over the wireless link. The

mobile agent objectsare responsible for managing hand-offs when triggered by the mo-

bile device.

On top of this infrastructure, Mobiware offers a set of mechanisms for controlled

hand-offs and mobile soft-state. The controlled hand-off is a mechanism that permits

graceful hand-off of an active data flow from the network to the mobile device with a

minimum hand-off dropping probability. During a hand-off initiated by the mobile de-

vice, a mobile agent triggers the network switches so that the data flow is delivered to

the mobile device through both access points. Eventually the mobile device switches

completely to the new access point and the traffic through theold access point is can-

celed.

The mobile soft-state mechanism provides QoS adaptation support to mobile de-

vices. Mobile soft-state results in the periodic negotiation of bandwidth requirements

between the mobile device and QAP. A mobile device sends periodic refresh messages

as part of the soft-state probing mechanism. During the refresh phase mobile devices

respond to any changes in allocated bandwidth by adapting.

Criteria based analysis:

• Coordination: General adaptation in Mobiware is achieved through a soft-state

31

Adaptive and Context-aware Systems

Client

Application

Puppeteer
Proxy

Data DMI

Puppeteer
Server

Weak
Link

Data
Server

Strong
Link

Figure 2.5: The Puppeteer system

mechanism. The goal of this mechanism is to notify the mobileapplications and

allow them to adapt as needed. Therefore the actual adaptation is performed indi-

vidually not allowing any coordination among applications.

• Extensibility: The Mobiware toolkit supports adaptation triggered by changing

network QoS only.

• Reconfiguration: The open architecture approach makes possible the reconfig-

uration of the system. In particular the adaptation decision mechanism can be

modified by replacing the mobile agent object with a new one. In such a case,

however, re-implementation of certain objects will be required.

• User involvement:No user involvement or awareness is supported.

2.3.4.8 Puppeteer

Puppeteer [deLara01] is a project that provides application-specific adaptive behaviour

to component based applications. Puppeteer is not a full middleware platform but rather

a methodology for offering adaptive behaviour to existing applications without modify-

ing the actual application.

Puppeteer requires that an application exposes a run-time interface that allows the

system to view and modify the data it operates on (called the Data Manipulation Inter-

face - DMI). Their prototype implementation is based on Microsoft’s COM architecture

and uses COM and OLE interfaces to manipulate applications such as PowerPoint and

Internet Explorer.

The adaptive mechanism comprises an application-specific Puppeteer client proxy

32

Adaptive and Context-aware Systems

and a corresponding server. The client proxy is responsiblefor triggering bandwidth

adaptation and resource management. It is also in charge of controlling and monitoring

the application using the DMI interface. The Puppeteer server is assumed to have a high

speed link to the data server. It is responsible for parsing documents, exposing their

structure and fetching document components as requested bythe client proxy.

When an application controlled by Puppeteer requests a document over the Internet

the corresponding Puppeteer client monitors the actual behaviour of the application and

fetches the document according to hard-coded policies. Forexample, in the PowerPoint

scenario the client requests the active slide and presents it to the application while it

pre-fetches the following slides in the background, thus reducing the delay experienced

by the user.

Criteria based analysis:

• Coordination: In Puppeteer each client proxy operates in isolation controlling

the corresponding application in an uncoordinated manner.

• Extensibility: The Puppeteer approach requires the development of client-server

couples that are tightly bound to the actual structure of each individual applica-

tion. Any possible change to incorporate new adaptation attributes would require

re-implementation of the client-server couples.

• Reconfiguration: For the same reasons presented in the previous criterion, any

modifications of the behaviour of the system would require re-implementation of

the client-server modules.

• User involvement:Due to the requirement for transparency, no user involvement

is supported.

2.3.4.9 TAO

TAO [Schmidt98] is a CORBA 2.0 compliant middleware frameworkthat allows clients

to invoke operations on distributed objects without concern for object location, pro-

gramming language, OS platform, communication protocols.One of the main aims of

TAO is to provide high-performance, real-time communication, with full support for

end-to-end QoS guarantees.

33

Adaptive and Context-aware Systems

A key motivation for ORB middleware is to support reusable middleware compo-

nents that handle common tasks, such as interprocess communication, that can be easily

integrated in an application. TAO aims to extend this functionality by allowing dy-

namic reconfiguration of the available ORB components duringinstallation or during

run-time. This way an application developer can dynamically configure the underlying

middleware platform according to their needs. For example,an application can config-

ure the middleware’s characteristics in order to take advantage of the availability of a

high-speed ATM network.

In order for this level of flexibility to be possible TAO defines a set ofpatternswhich

are actually predefined IDL definitions for certain types of components. For example

thewrapper facadepattern encapsulates I/O communication mechanisms like the socket

API, thereactorpattern encapsulates an event handling and dispatching mechanism, etc.

As a result an application can communicate with a middlewarecomponent through the

pattern allowing the implementation of the component to be changed or replaced as

needed.

There is also a version of TAO for handheld devices called LegORB [Román00].

LegORB takes advantage of the configuration mechanisms provided by TAO in order

to create a minimal ORB middleware with only the components required to achieve

CORBA compliance.

Criteria based analysis:

• Coordination: No support for coordination is provided.

• Extensibility: TAO supports adaptation triggered by changing network QoS only.

• Reconfiguration: TAO allows run-time re-configuration of the system through

the modification of the existing components or their replacement with new ones.

• User involvement: There is no mechanisms to allow user involvement in the

modification of the system behaviour.

2.3.4.10 Open-ORB

Open-ORB [Blair00] is a reflective middleware platform developed at Lancaster Uni-

versity. The platform follows a component model where components are described by

34

Adaptive and Context-aware Systems

a set of provided interfaces. There is also support for interfaces supporting continuous

media interactions. Explicit binding is supported where the result is a binding object

with an interface that can be used for QoS monitoring. Moreover, components have

a built-in event mechanism that can be used to register for notifications on changes of

QoS.

In more detail, every component in Open-ORB has an associatedmeta spacethat

can be used for inspection and adaptation of the underlying infrastructure of the compo-

nent. For example when dealing with a binding object the metamodel expressed by the

component could represent an object graph including an MPEGcompressor and decom-

pressor and an RTP protocol component. This structure can also be exposed recursively,

for example the RTP component can expose the two peer components (connected to the

MPEG compressor and decompressor) and a UDP/IP component handling the traffic

between the peer components.

The adaptation mechanism supported by Open-ORB consists of acollection of com-

ponents that can be inserted in a components object graph when needed. More specif-

ically, a monitor component collects statistics on the level of QoS archived by the run-

ning system and raises events when QoS violations occur. A controller component is

responsible for implementing adaptation policies in response to the events raised by the

monitor component. This component is in turn divided into two components the strategy

selector and the strategy activator which together realisethe adaptation policy.

One of the important characteristics of Open-ORB is the fact that components can

be configured or even replaced at runtime. Therefore a particular adaptation policy can

be replaced by a new one when needed.

Criteria based analysis:

• Coordination: In Open-ORB all network bindings offer an event interface that

allows applications to register for changes in the QoS of a particular connection.

Therefore it is possible for multiple applications to register for the same events

and coordinate their adaptive reactions. However, achieving coordination through

these notifications would be entirely the application’s responsibility and not part

of the functionality offered by the system.

• Extensibility: Open-ORB supports adaptation triggered by changing network

QoS only.

35

Adaptive and Context-aware Systems

• Reconfiguration: Open-ORB allows run-time re-configuration of the system

through the modification of the existing components or theirreplacement with

new ones.

• User involvement: There are no mechanisms to allow user involvement in the

modification of the system behaviour.

2.3.4.11 OpenCORBA

OpenCORBA [Leboux99] is a CORBA broker based on a reflective approach. Its archi-

tecture enables the reification of its internal characteristics in order to allow applications

to modify and adapt them at run-time.

OpenCORBA follows a similar approach to Open-ORB (see above) where each mid-

dleware class is associated with ameta classthat can be used for introspection and

adaptation. OpenCORBA follows a more transparent approach tocommunication by

offering the meta class as the means for communication with the actual middleware

class not allowing direct access to the middleware class itself. This approach is used

for dynamic adaptation of the underlying communication mechanisms. Dynamic adap-

tation mechanisms supported by OpenCORBA include, differentcommunication proto-

cols (Java RMI, future Corba DII), object migration, object replication, etc. All these

adaptive mechanisms can be invoked by the system without affecting the design of the

application.

Criteria based analysis:

• Coordination: The introspection mechanisms offered by OpenCORBA can be

used by multiple applications to identify the conditions ofthe underlying network.

However, coordination relies on the applications themselves.

• Extensibility: OpenCORBA supports adaptation triggered by changing network

QoS only.

• Reconfiguration: OpenCORBA allows reconfiguration of the underlying net-

work mechanisms used by the platform.

• User involvement: There are no mechanisms to allow user involvement in the

modification of the system behaviour.

36

Adaptive and Context-aware Systems

2.3.5 Context-aware Systems

Many research project are concerned with the development ofcontext aware systems.

The following sections present some representative context-aware systems.

2.3.5.1 Guide

The GUIDE [Cheverst00] system has been developed to provide visitors to the city

of Lancaster with information that is tailored to their context. The types of context

supported by GUIDE include the physical location of the mobile device, the preferences

of the user, the weather conditions, etc.

The GUIDE system consists of a wireless cellular network with small non-overlap-

ping cells, a set of cell servers associated with each cell and interconnected through a

fixed network, and a number of mobile devices (such as tablet PCs and PDAs). The lo-

cation of the device is determined by the specific cell that the mobile device is currently

in. The cell servers periodically beacon a location id. Thislocation id is used by the

mobile device in order to give information to the user about the location they have just

visited. The user interface offered by the GUIDE system is a modified web browser.

In particular the web browser tailors the information presented to the user according to

their preferences or attraction related attributes, such as if the attraction is closed.

Criteria based analysis:

• Coordination: Not applicable. GUIDE is a single application system.

• Extensibility: In the GUIDE system the support for specific contextual triggers

is hard-coded within the application. Therefore extendingthe system to support

new contextual or adaptation attributes would require re-implementation.

• Reconfiguration: The behaviour of the GUIDE system in terms of adaptation or

user notification is hard-coded within the system. There is no support for recon-

figuration of that behaviour.

• User involvement:The user involvement is limited to the specification of certain

contextual attributes, such as their interests and preferences.

37

Adaptive and Context-aware Systems

2.3.5.2 Cyberguide

Cyberguide [Long96] is a location based context-aware indoor mobile tour guide. Vis-

itors at the GVU Centre at Georgia Tech carrying Apple MessagePads retrieve infor-

mation according to their location and orientation. The location tracking mechanism

used by the Cyberguide is based on information gathered from aseries of ceiling based

infrared sensors. Each sensor sends a vertical infrared beam covering a small cell. As

the user moves from one cell to the other the Cyberguide application can identify the

location and assume the orientation of the user.

In terms of architecture, Cyberguide follows a modular approach where the system

is composed of special purpose components such as thenavigator(positioning compo-

nent), thecartographer(map component), thelibrarian (information component) and

themessenger(communication component). Each of these components can bereplaced

with a new implementation without affecting the rest of the system.

• Coordination: There is no system support that controls or coordinates the appli-

cations’ behaviour.

• Extensibility: The modular approach used by the Cyberguide makes it possibleto

modify the existing functionality. For example there has been a prototype where

the location mechanism has been replaced with a GPS based one. However, it is

not possible to add more contextual attributes without modifying the rest of the

system.

• Reconfiguration: There is no support for reconfiguring the systems behaviour

without re-implementation.

• User involvement:The user cannot modify the system’s behaviour.

2.3.5.3 PARC Tab

The PARC Tab [Schilit94a] is a project developed at Xerox Parcas an attempt to realise

the vision of ubiquitous computing described by Weiser [Weiser93]. In the PARC Tab

project users carry small custom built hand-held devices that use infrared as a commu-

nication and location tracking mechanism. The system is designed for indoor operation

where each office acts both as a communication cell and a location identifier. One of

38

Adaptive and Context-aware Systems

the characteristics of PARC Tab is the sharing of contextual information among partic-

ipants. Therefore it is possible to extend the location information gathered with things

like proximity of other users or physical objects.

The underlying infrastructure of PARC Tab uses general purpose configurable mech-

anisms that describe how context should be used. In particular, theautomatic contextual

reconfigurationallows the system to modify the information presented to theuser ac-

cording to the location of the user or the proximity of other users. Thelocation based

commandsallows the execution of programs according to the physical location of the

user. Finally thecontext triggered commandsuse a simple event language where users

can defined notification messages when certain contextual criteria are fulfilled.

• Coordination: The PARC Tab does not offer any mechanism for coordinating

the execution of context triggered commands or programs.

• Extensibility: Even though the PARC Tab is based on a very flexible archi-

tecture, all the mechanisms provided are coupled with the location information.

Therefore the incorporation of new types of adaptation attributes would require

re-implementation of the system.

• Reconfiguration: The PARC Tab system offers a wide range of configuration

mechanisms allowing the users to tailor the behaviour of thesystem to their own

needs.

• User involvement: The user can actively specify or modify the behaviour of the

system.

2.3.5.4 Context toolkit

The Context toolkit [Salber99] is collection of tools that aim to provide reusable context-

sensing components that can by used for the development of context aware applications.

The design of the Context toolkit is influenced by the design ofgraphical user interface

toolkits. More specifically the Context toolkit is built around the notion of context

widgets: components that encapsulate the context acquisition mechanism and provide a

well known interface. Examples of context widgets include theidentity presencewidget

that gives information about the presence of a person in a specific location, theactivity

39

Adaptive and Context-aware Systems

widget that provides information about the level of activity sensed in a room or the

phone usewidget.

The design of the Context toolkit is based on the combination of three types of

entities:

• Context Generator: A context generator is the component thatacquires raw data

from a sensor and provides it to a widget. A context generatorcould be, for

example, a GPS driver, an active badge reader, etc.

• Context Interpreter: A context widget should provide their information in a given

format possibly different from the raw data received by a context generator. A

context interpreter is the component that interprets the raw data received by a

generator to the format that should be exposed by the widget.

• Context Server: A context server acts as an aggregation widget combining several

widgets in order to provide higher level contextual information. For example a

combination of the identity presence and the activity widget could be used to

create ameetingwidget.

The implementation of the context toolkit is based on the useof XML for describing

the attributes offered by a context widget. An application can register with a widget for

notifications describing conditions under which a notification should be fired.

• Coordination: Not applicable. The prime target of Context toolkit is to provide

a flexible mechanism for an application to acquire contextual information. The

issue of coordination is the application’s responsibility.

• Extensibility: The use of a general mechanism for the specification of new con-

text widgets allows the easy incorporation of new adaptation attributes in the Con-

text toolkit. However an existing application would need tobe modified before it

could take advantage of a new widget.

• Reconfiguration: Automatic reconfiguration of widgets can take place transpar-

ently by switching between different context generators. At the application level

it is the developers responsibility to provide such functionality.

• User involvement:The user can not actively modify the system’s behaviour.

40

Adaptive and Context-aware Systems

2.3.5.5 Cooltown

Cooltown is a project developed by HP Labs to support “web presence” for people,

places and things [Kindberg01]. The main idea behind Cooltown is that every entity in

the real world (person, place or object) is given a globally unique URL that provides

information about the particular entity. A roaming user candiscover the URL corre-

sponding to an entity and retrieve information related to that entity.

In general the Cooltown project utilises the web paradigm in order to allow easily

configurable access to context related information. Specifically, the user can retrieve

information about entities that close to their current location.

In terms of infrastructure, Cooltown assumes that roaming users have a mobile de-

vice that is connected to the World Wide Web (possibly through a wireless link). The

mobile device can discover or sense the URL locator that corresponds to a particular

entity. Cooltown supports three methods of acquiring the URL related to real world en-

tities. Specifically,discoveryincludes a protocol for service discovery where the user’s

device multicasts a request for all entities in their environment and receives their cor-

responding URLs.Direct sensingincludes a mechanism where entities advertise their

web presence by sending a wireless signal in form of a beacon.The mobile device can

receive this beacon when it gets close to the related entity.It is then possible to automat-

ically load the related URL to a web browser and see information about the entity. The

indirect sensingmechanism follows the same approach as the direct sensing but instead

of using a mechanism to advertise the URL directly to the mobile device, other means

are used as a lookup key to discover the URL related to the entity. For example, through

the reading of barcode keys the mobile device can request theURL for the entity that

corresponds to the particular barcode.

• Coordination: The Cooltown infrastructure does not include any support forco-

ordinating or controlling multiple entities in the user’s environment.

• Extensibility: The model of automatic discovery and the use of a standard com-

munication protocol (HTTP/HTML) allows the connection of mobile devices to

any available entity in their environment.

• Reconfiguration: Considering that the Cooltown project does not concern the

adaptive behaviour of applications the requirement for reconfigurability of the

system’s behaviour is inapplicable.

41

Adaptive and Context-aware Systems

Project Coordination Extensibility Reconfiguration User Involvement

Stand alone No No No No

Coda No No No No

Odyssey Possible Possible No No

MOST Possible No No No

Rover No No No No

Tacoma Possible No No No

Bayou No No Yes No

Mobiware No No Yes No

Puppeteer No No No No

TAO Possible No Yes No

Open-ORB Possible No Yes No

OpenCORBA Possible No Yes No

Guide No No No No

Cyberguide No Yes No No

PARC Tab No No Yes Yes

Context Toolkit No Yes Yes No

Cooltown No Yes No No

Table 2.1: Current adaptive and context-aware systems: Support for non-transparent
adaptation, extended adaptive triggers, reconfiguration and user involvement.

• User involvement:The user is mainly a spectator that receives information.

2.4 Discussion

The review of existing systems presented brings out some interesting characteristics (Ta-

ble 2.1). In particular it is possible to identify common design characteristics followed

by certain groups of approach. In more detail:

• Stand alone adaptive applications appear to be quite inflexible in terms of coor-

dination, extensibility and reconfiguration. This is quitereasonable considering

that a stand alone application can only consider their own environment and serve

a specific purpose as expressed during the design of the application.

• Mobile systems tend to target a limited range of contextual attributes that can

act as adaptation triggers. In most cases these attributes are related to the QoS

offered by the network. In some cases the design of the mobilesystems offer the

mechanisms to share application state information. However, coordination based

on that shared information is generally not supported.

42

Adaptive and Context-aware Systems

Mobile
Systems

Context-aware
Systems

Stand alone
applications

Open
Architectures

Figure 2.6: Supporting multiple triggers, coordination and reconfiguration.

• Open architectures (such as TAO, Open-ORB and OpenCORBA) support flexible

reconfiguration of the system’s infrastructure. The use of areflectivedesign seen

in these systems, allows components within the system to be modified or even

replaced during run-time without affecting the operation of the applications active

in the system.

• Many of the context-aware systems try to support an extensible mechanism for

accessing new contextual attributes that may be of interestto mobile applications.

However, in most context-aware systems the actual adaptivebehaviour (i.e. how

an application responds to context changes) remains part ofthe individual appli-

cation. As a result coordination between applications is not possible to achieve.

A very interesting observation is apparent if we try to lay existing research efforts

in a three dimensional diagram whereextensibility, coordinationand reconfiguration

are the three axes (Figure 2.6). In this diagram it is clear that each individual research

domain is targeting one or in some cases two of these characteristics. However there has

been no effort to support all three characteristics in the same system. It should be noted

that the issue of user involvement is not represented in thisdiagram. As discussed in

chapter 3 user involvement is consider a cross-cutting feature that extends over all these

issues. In chapter 3 we provide an analysis of the implications for systems that do not

take into account all these characteristics and highlight the requirements for a system

that overcome these problems.

43

Adaptive and Context-aware Systems

2.5 Summary

This chapter offered a review of existing research in the areas of adaptation and context

awareness. In more detail, a brief overview of the emergenceof adaptation is given

including references to distributed multimedia systems, mobile systems and context-

aware systems. The chapter then provides an in-depth reviewof those adaptive and

context-aware systems relevant to this thesis. The review is based on a set of assessment

criteria, namely:coordination, extensibility, reconfigurationanduser involvement. Fi-

nally, this review concludes that no existing systems provide full support for all these

characteristics. An analysis of the importance of this finding is given in chapter 3.

44

CHAPTER III

Analysis

Contents
3.1 Overview . 46

3.2 Challenges in Adaptation . 46

3.2.1 Coordinated Adaptation . 46

3.2.2 Conflicting Adaptation . 48

3.2.3 Extensibility . 49

3.2.4 User Involvement . 51

3.2.5 Conclusions . 52

3.3 Requirements . 53

3.3.1 RQ1. Decouple Adaptation Control and Adaptive Actions . 54

3.3.2 RQ2. Export Application State 54

3.3.3 RQ3. Export Adaptive Mechanisms 55

3.3.4 RQ4. Enable Modification of Adaptive Behaviour 55

3.4 Summary . 56

45

Analysis

3.1 Overview

As presented in the previous chapter, existing adaptive andcontext aware systems are

targeting specific areas within the domain of adaptive context-aware systems. This

chapter presents an analysis of the design principles that govern existing approaches

and advocates the need for a new approach. In particular, a set of scenarios is pre-

sented that illustrate the limitations of existing systemsin supporting multiple adaptive

context-aware applications within the same system. Each ofthese scenarios is followed

by an analysis section that identifies the limitations of thedesign approach followed by

existing systems and introduces a possible approach to overcome them. Lastly, a set of

design requirements is presented for a system that can successfully provide support for

multiple adaptive context-aware applications.

3.2 Challenges in Adaptation

This section illustrates possible limitations in existingsystems and gives a short analysis

on the reasons behind these limitations. The analysis of each of the issues presented will

use references to the theoretical model of the basic adaptation cycle presented in section

2.3.1.

3.2.1 Coordinated Adaptation

3.2.1.1 Scenario

This scenario illustrates how the lack of coordination between adaptive applications can

lead to inefficient power management on a mobile system. One existing approach for

handling power management, i.e. the ACPI [ACP99] model, is to enable the operat-

ing system to switch hardware resources into low power mode when not in use, e.g.

spinning down the hard-disk. This approach requires that applications leave hardware

resources in an idle state for sufficient periods of time to make the transition between

idle and active states worthwhile. Although this approach is suitable when only one

application is running on a mobile device, the approach can prove ineffective when

multiple applications or system services are sharing hardware resources. In more detail,

the lack of coordinated access to hardware resources can result in poor utilisation of the

46

Analysis

shared resource and therefore sub-optimum power management. For example, consider

the case of multiple applications that implement an auto-save feature. In the absence of

any coordination between applications each application may choose to checkpoint its

state to the disk at an arbitrary time, without considering the state of the disk (i.e. spin-

ning or sleeping). In contrast, if applications are able to coordinate their access to the

hard-disk then access to the disk can be clustered, allowinglonger periods of inactivity.

It follows that the latter approach is more power efficient than the situation in which

usage of the hard-disk is completely unregulated.

Further scenarios illustrate the benefits of coordination when taking into account

the user experience. For example, a mobile device that is connected through a low

bandwidth wireless link would typically experience network congestion: coordinating

network applications so that applications less important to the user suspend network ac-

tivity in favour of the more important ones could provide a much better user experience.

3.2.1.2 Analysis

The termcoordinated adaptationrefers to the ability of an adaptive system to invoke

adaptive reactions on multiple applications in a coordinated manner so as to achieve a

common goal. In the scenarios presented, coordinated adaptation would be required in

order to overcome the power inefficiency and to satisfy the users requirement for a more

efficient utilisation of the limited network bandwidth.

As illustrated in chapter 2, existing systems offer limitedsupport for coordination.

In particular, most context-aware systems do not consider the support for coordinated

adaptation between multiple applications. The design principle behind these systems

that restricts their support for coordination is the fact that actuator components and

control mechanisms are usually hard-coded within the applications. Therefore its appli-

cation is only capable of triggering adaptation to itself.

In contrast, some mobile platforms are trying to offer a formof coordination in

terms of resource sharing. This limited support for coordination is based on the fact

that adaptation support platforms can collect informationabout the state of existing

applications and use that information in order to share system resources according to

the applications’ needs. However, this approach has its limitations. In particular, the

adaptation support platform does not have any control over the adaptation actions taken

by the applications. This is again related to the fact that adaptation mechanism and

47

Analysis

adaptation control is encapsulated within the application.

The design approach where application state information can be accessible by exter-

nal entities and the fact that adaptation mechanisms and control are encapsulated within

the application have influenced the proposition of requirements R1 and R2 (Section 3.3).

3.2.2 Conflicting Adaptation

3.2.2.1 Scenario

In this scenario, we illustrate the potential problems thatcan occur in a system that

utilises separate adaptation mechanisms for different attributes. We consider a hypo-

thetical mobile system that utilises two independent adaptation mechanisms, one for

managing power and the other for managing network bandwidth. The two mechanisms

can conflict with one another as the following example illustrates. If the system needs

to reduce power consumption, the power management mechanism will request those

applications that are utilising network bandwidth to postpone their usage of the net-

work device in order to place the network device into sleep mode. As a consequence of

applications postponing their use of the network, the available network bandwidth in-

creases. However, the network adaptation mechanism will detect this unused bandwidth

and notify applications to utilise the spare bandwidth. In this way, the request to utilise

available bandwidth is in direct conflict with the request topostpone network usage.

This example highlights the problem of relying on independent and uncoordinated

adaptation mechanisms. The reason behind conflicting casessuch as these is the fact

that adaptation control entities have no knowledge about the state of other applications

in the system and the possible interdependencies of adaptation actions of multiple appli-

cations. A system supporting multiple adaptive applications should provide the mecha-

nisms to resolve potential conflicts. In particular, the ability to reconfigure the adapta-

tion support system and/or the adaptation controlling entity of the applications is of great

importance. Indeed, a system that allows reconfiguration without re-implementation of

the applications would allow the resolution of such conflicts.

48

Analysis

3.2.2.2 Analysis

In a system with multiple adaptive context-aware applications conflicts will inevitably

occur. The actual reason behind conflicts is the lack of awareness of the application

developer of the characteristics of the target system and the possible interdependencies

between applications, or the possible side-effects of certain adaptive reactions that may

affect co-existing applications in such environments.

In the scenario presented here the network triggered adaptive application is unaware

of the importance of power consumption in the adaptation strategy employed by other

applications in the system. The solution in this scenario isto modify the control mech-

anism that triggers adaptation in this application so that it will take into account the

available power of the system. Generalising this approach,most conflicting situation

can be resolved by modifying the control mechanisms in the adaptation cycles of the

involved applications.

Existing mobile and context-aware systems appear to be unable to resolve such con-

flicting situations. Indeed, such systems keep the control mechanism of adaptation hard-

coded within the system and therefore do not allow any modification. In contrast, open

architectures allow for such modifications and as a consequence these conflicts could

be resolved by modifying or replacing an existing control mechanism with a new one.

These facts lead to the specification of requirements R1 and R4 described in section 3.3.

3.2.3 Extensibility

3.2.3.1 Scenario

This scenario considers the extension of an existing application with the inclusion of

additional contextual triggers. In this case, we consider acommon MP3 player ap-

plication able to playback local audio files. Assuming that this application is used on

a mobile environment supporting location-awareness a possibly desirable extension of

the application would be to allow the automatic control of the player’s volume based

on the user’s context. For example, an interesting feature could include the automatic

turning down of the player’s volume when the user is walking through a shared office

space or when they pass in frond of office doors.

This feature would require the incorporation of a new contextual attribute to the

49

Analysis

existing application. Assuming that the functionality forlowering the volume down is

already implemented by the application, this scenario advocates a mechanism where

this functionality can be triggered when the location of theuser changes. In practice it

requires the addition of a control mechanism that can retrieve location information from

the environment and trigger the particular function on the MP3 player.

3.2.3.2 Analysis

One of the characteristics of adaptive context-aware applications is the fact that they

may be triggered to adapt to a variety of different contextual attributes, be that the

availability of a specific resource, or the user’s context.

The survey of existing systems presented in chapter 2 revealed that existing system

support a limited number of possible adaptive triggers. In particular most of the mobile

middleware systems consider only the network QoS as a possible trigger for adapta-

tion. Moreover they do not offer any mechanism to extend their support for adaptation

triggered by other environmental attributes. This featureis reflected in their design

approach by the tight coupling of their monitoring mechanism and their control mecha-

nism. In more detail, mobile middleware systems, such as Odyssey, Coda, Most, Mobi-

ware, etc. have the adaptation control mechanism as a hard-coded element within their

middleware infrastructure. A similar approach is presented by all application specific

systems, such as GUIDE, Puppeteer, etc. where the monitoring and control mechanisms

are hard-coded within the application.

A different approach is used by systems offering middlewaresupport for context-

aware systems, such as the Context-toolkit and Parc Tab. In these systems the context

monitoring mechanism is decoupled from the actual control mechanism that triggers

adaptation. This allows the introduction of new contextualtriggers into the system with

minimal effort. Indeed, a system that decouples the monitoring entity and the control

entity and uses a well defined method for connecting the adaptation controller with mon-

itoring entities would support extensibility. The observation leads to the requirement R3

(Section 3.3) for the externalisation of application stateinformation.

50

Analysis

3.2.4 User Involvement

3.2.4.1 Scenario

This scenario considers the case of two applications, an adaptive web browser and an ap-

plication for viewing a video stream, competing for the sameresource, (network band-

width). In particular, following a drop in available bandwidth the two applications could

react using one of the following adaptive strategies:

1. The web browser could stop downloading in order to dedicate its portion of band-

width to the other application.

2. Both applications could adapt and share the available bandwidth equally.

3. The video viewer could adapt by reducing its bandwidth requirement, e.g. by

reducing its frame rate, in order to enable the web browser toutilise a greater

share of the available bandwidth, e.g. if an important download is taking place.

The reaction that would be most appropriate depends on the user’s requirements and

additional contextual information, such as the importanceof a particular download. In

order for the two applications to adapt differently under different conditions there is a

clear need for reconfiguration of the adaptation policies asdirected by the user needs.

3.2.4.2 Analysis

The need for reconfiguration has been illustrated by almost all scenarios presented in

section 3.2. In all presented cases an existing problem would be solved by modifying

the way some particular adaptive decision is being taken. The scenario presented here

extends the notion of reconfiguration by introducing the involvement of the user on the

way the system should behave.

In the systems presented in chapter 2 it is clear that there isa lack of support for

reconfiguration in most system types. This inability to reconfigure is directly related

to their design approaches. In more detail, both mobile adaptive systems and context

aware systems typically have their decision mechanisms coupled with their monitoring

mechanisms or their adaptive mechanisms. Therefore, it is not possible to modify the

behaviour of the system without altering their overall architecture.

51

Analysis

A different approach is used by the open architectures. Morespecifically, open

architectures follow a modular approach where all components are distinct entities with

predefined interfaces bound together. This approach allowsthe possible replacement or

modification of a system module without affecting the rest ofthe system. The Open-Orb

in particular allows such replacements to take place even during runtime.

However, even in open architectures, the user involvement in the specification of

the system behaviour is neglected. Any modification or reconfiguration that can be

done in these systems requires the re-implementation of thesystem part that needs to

change. Therefore the possible reconfiguration choices areprescribed by the system

developer who has to include any alternative configurationswithin the deployed system.

Moreover, any possible reconfiguration actions can only be performed from within the

system which again leads to the system developer as the only possible actor that can

specify the system’s behaviour.

The lack of a mechanism where the adaptation mechanism can bemodified by the

end user implies a requirement for reconfiguration of the adaptive control mechanism

without the need for re-implementation (requirement R4).

3.2.5 Conclusions

Any simple adaptive system follows the basic adaptation cycle presented earlier. How-

ever, in a system where several applications or multiple triggering attributes exist adap-

tive decisions and actions my depend on information that spans several applications

and information sources. Therefore, it is important for theunderlying adaptation sup-

port mechanism to allow adaptive decisions to consult a variety of different adaptation

attributes and trigger adaptation on a number of coexistingapplications.

As illustrated in the previous sections, existing systems offer limited support for

these features. In more detail, most of the existing systemsfollow a design approach that

couples the decision mechanism with either the monitoring mechanism or the adaptive

action.

As seen in scenario 3.2.2, an adaptive mechanism that is triggered in order to re-

duce the level of power consumption may have a side effect on the level of available

network bandwidth of the system. These side effects are the main cause of conflicts. In

a system with multiple adaptive applications it is reasonable to expect that conflicts will

52

Analysis

happen. However, as these conflicts are highly dependent on the actual configuration of

the end system, it is not realistic to expect that the application developer would be able

to provide appropriate conflict resolution mechanisms a priori.

As a solution to these problems the system should be able to reconfigure itself in

order to overcome these conflicts. In most cases the approachthat allows conflict res-

olution is to coordinate the applications’ adaptive behaviour in a suitable way. Coor-

dination can be considered as a desirable feature for the enduser not only in terms of

conflict resolution but also in significantly improving the user experience, as described

in scenario 3.2.4. In an abstract sense, the system should act as a glue that will co-

ordinate applications and system components in order to allow them to collaborate in

harmony without conflicts or undesirable behaviour. In order for this functionality to be

achieved it is necessary for adaptive applications to follow a design where all three enti-

ties described in the adaptation cycle are decoupled and clearly identifiable. Moreover,

the system supporting adaptation should be in charge of the controlling entities of the

applications’ adaptation cycles. This way the adaptation support system would be able

manage and allow reconfiguration of the adaptation behaviour of the applications.

Another issue that is apparent from the scenarios is that regardless of whether co-

ordination, conflict resolution or user involvement is concerned, the participation of the

user in specifying the system’s behaviour is vital. However, in most current adaptive

applications the adaptation policies are not distinct elements within the adaptive cy-

cle. Indeed, adaptation policies are typically hard-codedwithin either the monitoring

process or the adaptive mechanism. To allow the necessary level of control over the

behaviour of the system the adaptation policies must be decoupled from the adaptation

mechanisms themselves. Moreover, these policies should bedefined in a language flex-

ible enough to allow the specification of conditions that caninclude multiple triggering

events that may be introduced in the system over time.

3.3 Requirements

The previous section has analysed the limitations of current approaches for supporting

adaptive context-aware applications. In particular, these approaches lack the appropriate

support for enabling applications to adapt to numerous different attributes in a coordi-

nated and reconfigurable way. A new approach is therefore required which provides

53

Analysis

support for coordinated, system-wide interaction betweenadaptive applications and the

complete set of attributes that could be used to trigger adaptation.

This section considers a set of requirements that could be used to develop an appro-

priate architecture for supporting adaptive mobile applications.

3.3.1 R1. Decouple Adaptation Control and Adaptive Actions

One of the issues described earlier is the lack of support forcoordination in existing sys-

tems. This is caused by the lack of awareness of application developers of the possible

configuration of the target system and thus the applicationsthat will co-exist at run-

time. Therefore, in order to design a system where multiple applications can coordinate

their adaptive behaviour it is not feasible to rely on applications to achieve coordina-

tion without external support. As described in section 2.3.2.1 the ability of a system to

support coordination is expressed through the ability of adaptation controllers to trigger

adaptation to actuators of multiple applications. Combining the two observations it is

clear that supporting adaptation would require the controlling entity to be handled by

the system so that adaptation triggering can be directed to more than one application

at once. In order to achieve such a feature it is necessary to decouple adaptation con-

trollers and the implementation of the adaptation mechanisms. Through this decoupling

we can construct a system component responsible for handling the adaptation control

mechanisms of all applications in a system, taking into account interdependencies and

required coordinated operation.

3.3.2 R2. Export Application State

Supporting both extensibility and coordination requires an adaptation mechanism that

can take into account information about the state of multiple applications and/or infor-

mation collected from context-monitoring entities. For example, the fact that a video

player is actively streaming video over the network may be ofimportance to other net-

work based applications when choosing to adapt. Therefore,applications should exter-

nalise information about their state and allow adaptation controllers to take that state

information into account. Moreover, system components that monitor contextual infor-

mation should externalise that information in order to allow adaptation controllers to

have access to that contextual information.

54

Analysis

3.3.3 R3. Export Adaptive Mechanisms

Following the requirement for decoupling adaptation control mechanisms and adapta-

tion methods it is necessary to define the necessary requirements that allow the adapta-

tion controllers to invoke adaptation methods. As discussed in section 2.3.2.1 adapta-

tion methods are in general bound to the semantics of the actual application. Indeed, the

adaptation methods that an application can support depend entirely on how the actual

application is implemented. It is the application developer that implements an applica-

tion in a way that permits certain adaptive behaviour to be performed.

Following this observation, a system where adaptation controllers and adaptation

mechanisms are decoupled should include a mechanism where adaptive applications

can export their adaptation interface. In more detail, applications should allow adapta-

tion controllers to dynamically inspect the applications’adaptation interface and invoke

adaptive mechanisms as and when needed.

3.3.4 R4. Enable Modification of Adaptive Behaviour

Adaptation support systems should provide a mechanism where application adaptation

control can be reconfigured without the need for re-implementation of either the ap-

plication or the adaptation support platform. Moreover, the design of the adaptation

controller should allow modifications by the end user thus allowing the user to explic-

itly specify how the system should behave.

This requirement for modification of the adaptation controlmechanism is perhaps

the core requirement for tackling the issues presented in section 3.2. Overcoming con-

flicts in most cases would require modifications of the adaptation control mechanisms

of the conflicting applications. Improving the use of systemresources may be achieved

by coordinating the adaptation on multiple applications. This could be done by hav-

ing adaptation control mechanisms that can invoke adaptation of multiple applications.

User preferences could be expressed by modifying the behaviour of existing control

mechanisms to better suit their needs. Extending the behaviour of an existing applica-

tion, adding awareness of more contextual attributes couldbe achieved by appropriately

modifying their control mechanisms so that they take into account monitoring informa-

tion offered by other entities in the system. This approach could, for example, turn an

adaptive web browser into a location-aware web browser by modifying their adaptation

55

Analysis

control mechanism so that it will take into account locationinformation provided by a

GPS device attached to the system. In this thesis we argue that such behaviour requires

a flexible policy based approach. This approach is discussedin detail in the following

chapter.

3.4 Summary

This chapter illustrated the possible shortcomings of existing applications when consid-

ered in an environment with multiple adaptive context-aware applications. In particular,

the issues of coordination, adaptation conflicts, user involvement, etc. were highlighted

and analysed. Following the analysis of the reasons behind these shortcomings, a list

of design requirements was presented. The following chapter presents the design of

platform supporting adaptation based on the aforementioned requirements.

56

CHAPTER IV

Design

Contents
4.1 Overview . 58

4.2 Architectural Discussion . 58

4.3 Architectural Overview . 63

4.4 Application Interface and Communication 65

4.4.1 Background . 65

4.4.2 Application Interface Design 68

4.4.3 Application Manager . 73

4.5 Internal Communication Layer . 75

4.5.1 Background . 75

4.5.2 The Design of the Event Manager 79

4.6 System Manager Design . 81

4.6.1 Background . 81

4.6.2 Policy Manager . 84

4.7 Policy Language . 85

4.7.1 Choosing a Policy Language 86

4.7.2 The Event Calculus . 87

4.7.3 The Event Calculus Policy Language 88

4.7.4 Examples . 95

4.8 Summary . 99

57

Design

4.1 Overview

In this chapter the design of a platform supporting coordinated adaptation for adaptive

context-aware applications is presented. The chapter begins with a discussion of the

requirements presented in chapter 3 and their implicationsfor the design of a support-

ing platform. Specifically, the discussion walks through the requirements and presents

how coordination can be achieved through a platform that supports these requirements.

Following this discussion an architecture for supporting coordinated adaptation is pre-

sented. This architecture uses a policy-based mechanism for controlling adaptation al-

lowing coordination and reconfiguration. The subsequent sections then discuss in detail

each component of the architecture including potential design approaches for realis-

ing this architecture. The last section of this chapter is dedicated to the presentation

of the Event Calculus Policy Language, a language that was designed to satisfy the

requirements of a policy-based adaptation system supporting adaptive context-aware

applications. A prototype implementation of the platform design is presented in chapter

5.

4.2 Architectural Discussion

In order to identify desirable features for a platform to support coordinated adaptive

context-aware applications it is necessary to analyse the fundamental characteristics

of adaptation. As discussed in chapter 2, the operation of anadaptive application is

similar to the operation of control systems. More specifically, a simplified closed loop

system can be considered as an abstraction of an adaptive system (Figure 4.1). This

adaptation system includes three entities: the monitoringentity feeding the system with

information that may cause adaptation, the control entity that is responsible for deciding

when adaptation is required and the actuator that implements the adaptive mechanism.

In typical adaptive or context-aware applications all three components are part of the

application itself. This is principally a consequence of previous research that has shown

[Noble97] that fully transparent adaptation platforms cannot provide sufficient support

for the requirements of all applications: current approaches in the design of adaptive

applications advocate the breaking of the transparency andthe shift of adaptation mech-

anisms away from the system and into the application itself.Indeed, it is normally the

58

Design

Application

Control

Actuator Monitor

Figure 4.1: Basic adaptation cycle

application developer that has a clear knowledge of the application’s semantics and re-

quirements. Therefore, the developer can best implement the adaptation mechanism

required for a specific application. In typical examples of adaptive applications the ap-

plication developer implements two of the three adaptationentities: the actuator that is

directly related to the logic of the application and the control entity that is usually hard-

coded as a static component that decides when adaptation is required. In these systems

the monitoring entity is offered by the system (e.g. a power monitoring tool). In certain

cases even the monitoring entity retrieving the specific information that is necessary for

the operation of the adaptive application is implemented bythe application developer

(e.g. in [Davies99, Microsoft03, Real03]). It is also quite common for such systems

to blur the boundaries between the three entities, sometimes combining two or even all

three of them. In particular, it is quite common for adaptivesystems to combine the con-

trol entity with the actuator [Kistler92, deLara01], whilecontext-aware systems tend to

combine the monitoring entity with the control system [Cheverst00, Schilit94a].

In chapter 3 the analysis section showed clearly why this static architecture cannot

support systems with multiple adaptive context-aware applications: lack of coordina-

tion can lead to conflicts and low performance while lack of user involvement can lead

to insufficient support for the user requirements. chapter 3concludes with a list of

requirements for a system that can overcome the aforementioned limitations.

The first requirement (R1) for supporting adaptive context-aware applications is to

decouple the adaptation control and the actuator. This requirement is based on the fact

that the mechanisms implementing adaptation actuators aretightly linked with the se-

mantics of the application and therefore should be part of the application’s implemen-

tation. In contrast, the adaptation controls are entities that play a more general role: the

59

Design

Application

Control

Actuator Monitor

Figure 4.2: Decouple adaptation control and adaptation action

role of an adaptation controller is to receive input in termsof value changes and pro-

duce output in terms of invocations of adaptation mechanisms. Therefore, it is possible

to follow the same design guidelines for designing all adaptation controllers regardless

of the application being controlled. In addition to this fact the decoupling of adapta-

tion control and adaptation actions allows adaptation control entities to be externalised

and become part of the system supporting adaptation. This means that the application

developer is no longer responsible for implementing the adaptation control mechanism

but they can rely on the system support offering the control mechanism (Figure 4.2).

Finally, the need for decoupling adaptation control and adaptation actions is a prereq-

uisite for meeting the the requirements for externalising application state and adaptive

mechanisms, necessary to achieve coordinated adaptation.

The second requirement (R2) for supporting adaptive context-aware applications is

to externalise application state information. This requirement is based on the fact that

information collected by an application as part of their monitoring functionality may be

of importance for the adaptation controllers involved in the adaptation cycles of other

applications in the system. Externalising information reduces the need for replicat-

ing similar monitoring functionalities in many applications. Moreover, the state of an

application running in a system can be an important factor for the decision of other

applications about when and how to adapt. In terms of platform design this require-

ment suggests a system design where adaptation control entities can receive monitoring

information from multiple applications (Figure 4.3). In practice this means that the

adaptation controller of a single application is not isolated from the activities of other

applications active in the system. This externalisation requires an open design approach

where applications can express their state through a specified interface definition lan-

guage. Moreover, since the actual state variables that are reported by applications are

not known in advance, the system supporting adaptation mustbe able to dynamically

parse the interface exported by the application and construct the appropriate components

60

Design

Application

Control

Actuator Monitor

Application

Monitor

Figure 4.3: Externalise application state

that will collect application state information during runtime.

The third requirement (R3) for supporting adaptive context-aware applications is

for applications to externalise their adaptive mechanisms. Satisfying this requirement

means that adaptation control entities do not have to be related to a single application.

As all adaptive applications in an adaptive system externalise their adaptation mecha-

nisms it is possible for adaptation controllers to invoke adaptation in multiple applica-

tions. This functionality allows the implementation of coordinated adaptation: a single

adaptation controller responsible for implementing a specific adaptation policy can trig-

ger multiple applications to perform coordinated actions as required (Figure 4.4). In

terms of design, this requirement can be supported by expressing an application inter-

face as described in the previous paragraph. More specifically, the application interface

exported by applications should include the definitions of methods corresponding to

adaptation actuators. These methods could then be called byexternal entities in order to

request that the application performs a specific adaptationaction. As discussed above,

application interfaces should be dynamic, i.e. the external entity invoking actions on

applications should be able to dynamically marshall the data required to perform the

Application

Control

Actuator Monitor

Application

Monitor

Application

Actuator

Monitor

Figure 4.4: Externalise application adaptive mechanisms

61

Design

invocation as described by the application interface.

The final requirement for supporting adaptive context-aware applications is to sup-

port a mechanism that enables adaptation control to be modified by the end user. This

means that the actual decision taking policies implementedby the adaptation controllers

should not be hard coded by a developer but rather provided ina way where the decision

logic can be inspected by the end user. Since applications require default adaptation con-

trol functionality when they are installed it should be possible for the end user to have

access to this default adaptation control policy and to be able to modify it as they wish.

Apart from support for user involvement, this requirement is also the basis for support-

ing extensibility and coordinated adaptation. Both of thesefeatures include adaptation

controllers that either receive monitoring information from multiple applications or in-

voke actions on multiple applications. It is not realistic to expect such controllers to

be defined by an application developer as default adaptationcontrol policies. Indeed,

application developers do not have any knowledge about the existence of other appli-

cations in the end system and therefore cannot specify the default adaptation control

policy so as to perform coordinated adaptation (invoking actions to other applications

in the system) or receive monitoring information from otherapplications. However, the

end user does have knowledge about the configuration of the system and they are capa-

ble of modifying the adaptation control policy so that it supports coordinated adaptation.

The design requirements derived from these observations are that the adaptation control

mechanism should be based on a design where the end user can:

• Inspect the adaptation policies employed by existing adaptation controllers.

• Modify the decision logic of existing adaptation controllers.

• Extend existing controllers with the inclusion of new monitoring information.

• Extend existing controllers with the inclusion of new targets for adaptive actions.

• Add their own adaptation controllers with all the above features (multiple moni-

tors, multiple actions).

Technologies that provide the aforementioned features have already been used in

other domains of computer science. A particular approach that has been employed in

systems where reconfiguration without re-implementation is needed is the use of policy

management systems. As E. Lupu and M. Sloman define in [Lupu99]:

62

Design

“A Policy is information which can be used to modify the behaviour of a

system. Separating policies from the managers which interpret them per-

mits the modification of the policies to change the behaviourand strategy

of the management system without re-coding the managers. The manage-

ment system can then adapt to changing requirements by disabling policies

or replacing old policies with new ones without shutting down the system."

The features of policy based systems described in this definition appear to cover a

significant part of the requirements presented earlier for supporting coordinated adapta-

tion and in particular, the ability to adapt the behaviour ofa system without the need to

re-code the management system itself. The extent to which a policy based system can

support all of the aforementioned requirements depend to some extend on the specific

characteristics of the policy language used.

4.3 Architectural Overview

Based on the design features described in the previous section a high level architecture is

proposed for a platform for supporting coordinated adaptation of adaptive context-aware

applications (Figure 4.5). This architecture describes anadaptation support platform

that cooperates with running adaptive applications in order to provide re-configurable

coordinated adaptation. The main role of the platform is to act as the adaptation con-

trol entity for all adaptive applications running in the system. From an application’s

point of view the platform is the point where they report any changes in their state or

environment monitoring information and from which they expect requests to perform

adaptation. Features described in section 4.2 such as coordination, extensibility and

user involvement are realised by the platform without any re-implementation of the ap-

plications.

The platform builds on the control of policies, realising and utilising a policy based

management system for controlling adaptation. Adaptationpolicies are described through

a human readable policy language specifying the conditionsthat can trigger adaptation

and the actions that need to be performed. The specification of the conditions that can

trigger adaptation are related to the information that is reported by applications. For

example, a web browser application may report that it is currently downloading a large

file. The system manager component that is responsible for evaluating the policy rules

63

Design

Applications

Application
Managers

Internal Communication Layer

System Manager

Adaptation
Support
Platform

Policy
Repository

End User

Figure 4.5: Architecture for supporting adaptive context-aware applications

active in the platform may have a specific policy rule that will take this fact into account

and possibly request an adaptive response by one or more applications running in the

system. The adaptation actions that need to be performed aretranslated into method

invocations on applications’ adaptation control interfaces. These adaptation methods

represent the application’s implementation of an actuator. For example, a web browser

may have a method that can switch the downloading stream fromraw data to com-

pressed data. A policy rule in the system manager may use thatmethod as part of a

request for adaptation.

In order for such interactions between the platform and the running applications

to be realised, applications need to define an interface thatdescribes the information

that they can export and the methods that can be called by the platform. The platform

uses this interface specification in order to dynamically create an application manager

component. This component is responsible for handling all information exchange with

the application and all method invocations requested by thesystem manager. Moreover,

the application managers act as caches for the information reported by the applications.

Specifically, when the system manager requires the value of aspecific variable reported

by an application, the application manager returns the lastupdate of that value.

As a glue between the application managers and the system manager, the internal

communication layer handles all communications between the platform components.

The internal communication layer maintains an ordered delivery of application infor-

mation to the system manager as well as invocation requests from the system manager

to the application managers.

User involvement is achieved by allowing the user to access the policy repository

64

Design

where adaptation policies are installed. The user can inspect and modify existing poli-

cies or add new ones. The policy repository is also availableto new applications in-

stalled in the system. New applications need to install default adaptation policies as

specified by the application developer. As discussed earlier, the policy rules that im-

plement the adaptation controller are affected by the information exposed by the ap-

plications and affect the activities of the applications byinvoking adaptation actions.

Therefore, to allow the user to understand properly the logic of the policy rules in the

policy repository it is necessary to offer the means for a comprehensive description of

the application interfaces involved. In more detail, for the end user to understand the

meaning of a policy rule that triggers a web browser to switchthe raw data downloading

stream to a compressed data stream it is necessary to providea human readable descrip-

tion of the semantics of the action implemented by the application. In practice, this

means that the application interface exposed by an application should include a human

readable description of its functionality comprehensibleto the end user.

In the following section we discuss the critical aspects of this design in more detail.

In particular, the issues discussed include the application interface and the mechanism

for application-platform communication, the design of theadaptation manager compo-

nent, the design of the internal communication layer and thesystem manager compo-

nent.

4.4 Application Interface and Communication

Before looking into the design of a mechanism that supports communication between

adaptive applications and the adaptation support platform, a brief overview of exist-

ing technologies that can support such functionality is investigated. Following this, the

design of the adaptation interface is discussed and possible design approaches are pre-

sented.

4.4.1 Background

As discussed in section 4.3, the architecture for supporting adaptive context-aware ap-

plications requires applications to export an interface where they specify the information

they can offer and the adaptation actions that can be invoked. This interface can be used

65

Design

by the platform to invoke adaptation methods or monitor the state of the application.

The issue of application interface specification has alwaysbeen an integral part of

the design of distributed middleware platforms, such as CORBA, Java RMI and Web

Services. The following sections provide a description of the mechanisms provided by

these platforms.

4.4.1.1 Corba

CORBA (Common Object Request Broker Architecture) is OMG1’s open specification

for supporting distributed object oriented applications [OMG01]. One of the character-

istics of CORBA is its support for interoperability across different hardware platforms

and programming languages.

CORBA applications are composed of objects that may be locatedon a number of

distributed hosts. In order for these objects to interact with each other, each one defines

an interface in OMG IDL (Interface Definition Language). TheIDL specification de-

scribes the external boundary of the object through whitch all network communication

is performed. Any client that wants to invoke an operation onan object must use this

IDL interface to specify the operation it wants to perform, and to marshall the arguments

that it sends. When the invocation reaches the target object,the same interface defini-

tion is used to un-marshall the arguments so that the object can perform the requested

operation.

The IDL interface definition specifies the operation that canbe performed on a given

object, and all of the input and output parameters with theirtypes. The actual interface

definition is independent of programming language. In the typical (static invocation)

scenario, the IDL definition is compiled through an IDL compiler in order to generate

the client’s stub code and the server’s skeleton code. Stubsand skeletons serve as prox-

ies for clients and servers, respectively (Figure 4.6). This interaction method, called

static invocation, requires the IDL of the remote object to be known during the devel-

opment of the client.

CORBA also supports adynamic invocationmethod where a client can invoke oper-

ations on a remote object without compile time knowledge of the remote object’s IDL.

In more detail, the IDL compiler generates type informationfor each method in an inter-

1Object Management Group

66

Design

Object Request Broker

IDL
Skeleton

IDL
Stub

Request

Client Object
Implementation

Figure 4.6: A request passing from client to object implementation.

face and stores it in the Interface Repository (IR). A client can thus query the IR to get

run-time information about a particular interface and thenuse that information to create

and invoke operations on the remote CORBA object dynamically through the Dynamic

Invocation Interface (DII). On the server side, the DynamicSkeleton Interface (DSI)

handles the dynamic client invocations.

In summary, the interface description mechanism provided by CORBA uses a pro-

gramming language independent description language for specifying the operations pro-

vided by a CORBA object. In the common scenario, this description should be available

to the client during compile time. However, CORBA offers a mechanism for discover-

ing an object’s interface during run-time and dynamically invoking operations on this

interface.

4.4.1.2 Java/RMI

Java/RMI [Wollrath96] is the remote method invocation mechanism for distributed Java

objects. Unlike CORBA, Java/RMI requires both client and server to be implemented

in Java. Each Java/RMI Server object defines an interface which can be used to access

the server object from a remote client. A client can locate a remote server object using

the RMIRegistry: a Java/RMI specific naming service.

Java/RMI uses Java language constructs to define a server object’s interface. In

particular, the interfaces are.java files that are compiled along with the object’s imple-

mentation. In a fashion similar to CORBA, the typical Java/RMI interaction requires

the interface of a java object to be available to the client during compile time.

67

Design

Dynamic invocation of a remote java object without any priorknowledge of the

object’s interface is available through java’s Reflection mechanism. In more detail, the

java.lang.reflect package, allows a client to discover at run-time the class ofa remote

java object, examine the class to discover what methods are available and invoke these

methods with dynamically created arguments.

4.4.1.3 Web Services

Web services [W3C01] were designed to offer interoperabilitybetween different appli-

cations. The communication interfaces provided by the web services are language and

platform independent. In more detail, a web service offers an interface that describes

a collection of operations/methods that can be accessed through the web using XML

messages (SOAP protocol [W3C00]). This description hides theimplementation details

of a web service but offers all the information necessary to interact with the service.

This implementation transparency allows the use of a web service independent of the

platform or language used to develop the service.

The Web Service Description Language (WSDL) is the language used for describing

the interfaces of web services. The WSDL defines an XML grammarfor the structured

description of the services and the operations they offer. The XML document with

the description of a web service consists of all the information required to discover and

interact with a web service. In particular, the informationin a WSDL document includes

the name of the service, the operations that can be called as well as the location of the

service where operation invocations should be directed. A client can use this WSDL

document to discover the functionality of a service and how to access the service.

The main focus of Web Services is on dynamic discovery and useof services. A

client can dynamically discover a web service (i.e. using directory services) and access

its methods.

4.4.2 Application Interface Design

The previous section gave an overview of the most prevalent existing technologies that

support application interface specification. From this presentation it is clear that all

of the technologies discussed offer the means for distributed applications to describe

an interface (and in particular their adaptation interface) through a predefined interface

68

Design

definition language. Moreover, all technologies support the dynamic inspection of this

interface and the dynamic invocation of methods exported through the interface.

As discussed in section 4.3, applications that communicatewith the adaptation sup-

port platform discussed here should also provide one additional feature through their

interface specification, i.e. an adaptation interface specification should include human

readable descriptions of the semantics of the interface. Inmore detail, an adaptation

interface should offer mechanisms to allow the retrieval oftextual descriptions of the

application itself, the functionality implemented by the adaptation methods and the

meaning of state variables reported by the application.

As seen in section 4.4.1, none of the existing technologies support this functionality

by default. However, it is possible to use these technologies to support such a feature.

In more detail, apart from the adaptation interface that applications expose, applications

could be required to implement a description interface. A possible description interface

for adaptive application is shown bellow:

interface IDescription
{

int GetAppDescription(out string sDescription);
int GetMethodDescription(in string sMethod ,

out string sDescription);
int GetVarDescription(in string sVarName ,

out string sDescription);
}

The methodGetAppDescription returns the description of the application,GetMethod-

Description returns the description of the requested method andGetVarDescription re-

turn the description of a variable defined in the applicationinterface. This interface

could be queried by a user support module in order to give human readable descriptions

of the application’s interface.

A possible alternative approach can be applied in the case ofan XML based inter-

faces specification language, such as the one used by the Web Services architecture.

One of the characteristics of XML is the fact that an existingXML language can be ex-

tended with additional tags without breaking backwards compatibility. In more detail, a

WSDL definition of a message sent to a web service has the following format:

<message name="SetBandwidth">
<part name="bandLimit" type="xsd:integer"/>

</message>

69

Design

Representing the invocation of the methodSetBandwidth(int bandLimit). Based on the

backwards compatibility feature of XML it is possible to extend this definition with an

additional tag without breaking the support for standard web service clients:

< definitions xmlns:ad="http: //www.comp.lancs.ac.uk/wsdl−adapt−schema/" />
....

<message name="SetBandwidth">
<part name="bandLimit" type="xsd:integer"/>
<ad:description>

Sets the upper bandwidth limit for the network traffic
</ad:description>

</message>

With this definition the application can communicate with the platform using the

standard Web Service infrastructure, while a user support module can query the appli-

cation interface and present it to the user (possibly passing it through an XSL filter).

Summarising the discussion on existing technologies, it isclear that existing tech-

nologies can support the requirements for interface definition for adaptive context-aware

applications. In particular, the use of an XML based approach seems appealing as it al-

lows a more elegant incorporation of user readable descriptions of the applications’

interfaces.

This design chapter does not make specific claims about the technologies that should

be used for the communication between adaptive applications. Instead, in the following

section we present a platform-independent interface description language that can either

be used as it is or taken as a guideline for the implementationof a custom interface

definition mechanism.

4.4.2.1 Service Interface Definition

According to the discussion in section 4.3, the features that the interface specification

mechanism should have are:

• Allow dynamic inspection of the application’s interface.

• Allow dynamic invocation.

• Support human readable descriptions of the interface’s semantics.

70

Design

In this section we present an XML based interface description language that meets

these requirements. In particular the application exportsan XML document that is

roughly divided into three parts (Figure 4.7)

The first part of the interface description includes application specific information.

In particular, the interface defines the name of the applications as well as a unique id

that allows the distinction between multiple instances of the same application. It is the

application’s responsibility to make sure the id is unique among multiple instances of

the application. This can be achieved trivially by creatingan id using the current host’s

MAC address and the process id of the running application.

The second part of the application’s interface specification involves the identifica-

tion of all adaptation methods implemented by the application. The identification of

the adaptation methods is indicated by a string representing the name of the adaptation

method, and a set of parameters that can be passed as in or out arguments by the plat-

form. This information can be used to construct the invocation event that will trigger

the application to execute the requested adaptation method.

The third part of the application’s interface specificationinvolves the identification

of a set of state variables that represent the current state of the application. These state

variables are identified by a name and a basic type such as integer, string, etc.

Each of these parts includes a<description> tag that provides a textual description

of the interface’s semantics. Moreover, the definition of anadaptation method can in-

clude the indication of related state variables that are affected by attributes passed by the

invocation. This indication of a related state variable allows the identification of pos-

sible dependencies between actions and state variable. Referring back to section 3.2.5,

this dependency is an indication of the possible relationship between an actuator and

a monitoring entity. This related variable specification can be used by the end user to

help better understand the application’s behaviour and thedependencies of adaptation

actions and state variables.

The interface description presented is intended to allow adaptive applications to ex-

port their adaptive interface and allow the platform to control their adaptive behaviour.

However, in a typical adaptive system in addition to the adaptive applications there are

system monitoring components responsible for retrieving information about the sys-

tem’s environment. For example, such monitoring components might include a network

interface monitoring tool, a power monitoring tool or a location monitoring tool. Ex-

71

Design

<?xml version ="1.0" encoding="ISO−8859−1"?>
<application>

<name>WebBrowser </name>
<uniqueId>1234</uniqueId>
<description>

...
</description>
<methodList>

<method>
<name>SetBandwidth </name>
<description>

...
</description>
< attributeList >

< attribute >
<name>bandLimit </name>
<type>Integer </type>
<relatedVariable>Bandwidth </relatedVariable>

</ attribute >
</ attributeList >

</method>
</methodList>
<stateVariableList>

<stateVariable>
<name>Bandwidth </name>
<type>Integer </type>
<description>

...
</description>

</stateVariable>
</ stateVariableList >

</application>

Figure 4.7: Sample XML description of an adaptive web browser

isting platforms supporting adaptive applications tend toincorporate such monitoring

functionality within the platform itself [Noble98, Friday96]. In contrast, the platform

presented here follows a different approach. In order to support extensibility of the sys-

tem, monitoring components are treated as first class systemcomponents that collabo-

rate with the platform to support application adaptation. The approach proposed by this

design is for the same application interface mechanism to beused by both system mon-

itoring components and applications. Although conceptually monitoring components

are only sources of information while adaptive applications are receivers of adaptation

triggering, the design of the adaptation platform does not make any distinctions between

the two. The reason for such an approach is twofold:

72

Design

• Monitoring components usually correspond to a specific device within the sys-

tem. This means that they can support hardware specific adaptation. For example

a component responsible for the wireless network card couldset that card to sleep-

ing mode when triggered.

• Application state variables can be useful for the controlling adaptation in other

applications in the system. For example, the fact that a particular application is

currently using the network may be an important factor for the adaptation policy

of other applications in the system.

This design approach offers a greater level of flexibility inthe design of an adaptation

support platform. In particular, the platform can be extended with the incorporation

of new monitoring tools as and when required. Moreover, adaptation policy rules can

include information about both applications running in thesystem and monitoring tools

and can trigger adaptation not only to adaptive applications but also to the system’s

devices.

Summarising, the application interface that was discussedin this section is used by

the platform for the registration of adaptive applicationsand system monitoring tools.

This interface describes the state information offered by the application and the adaptive

methods that can be invoked by the platform. Using this specification the platform

constructs an application manager component that handles all communication with the

application.

4.4.3 Application Manager

The application manager is the component that is responsible for handling communi-

cation between the platform and the applications. The platform consists of a number

of dynamically created application managers that communicate directly with individual

applications (one per application instance). The functionality that the application man-

ager should provide is to retrieve application state information and to invoke adaptation

methods. The design of the application state monitoring canfollow a passive approach

using an event based mechanism or an active approach where the manager polls the ap-

plication for updated state information. In the first case, technologies such as Jini and

Web Services offer the infrastructure for event registration and notification. In the latter

case, the application should provide a state query interface that the application manager

73

Design

Applications

Application
Managers

Internal Communication Layer

System Manager

Adaptation
Support
Platform

CORBA Web Serv. Proprietary Comm. Protocol

Figure 4.8: Application Managers for multiple communication protocols.

can use. However, since adaptation is based on the reactive response of the system on

state changes, the event based approach has substantial benefits compared to a polling

approach. In more detail, as the application is the first entity in the system to know that

something has changed its state, it should be the application that initiates the state infor-

mation update for the application manager. Therefore an event notification mechanism

is much more fitting for allowing the application to notify the platform about their state

changes.

Considering a design that is based on an event notification approach, the application

manager acts as a cache for the application state changes reported by application events.

In more detail, the application manager is a container holding the values of the last

updates of the applications’s variables. Thus the application manager can report to the

rest of the platform what is the overall state of an application without re-querying the

application.

In terms of method invocation there are no special design requirements to satisfy:

any existing technologies supporting remote method invocation can be used. As a re-

sult, the design of the platform can incorporate application managers that are based on

alternative communication technologies (Figure 4.8). It should be noted that in order to

avoid diverting the focus of this thesis it is assumed that the system operates in a secure

environment where no malicious applications are allowed tooperate. Obviously in a

real world scenario proper security and monitoring mechanisms should be employed

to ensure that the application behaviour is acceptable. Possible approaches for imple-

menting such an environment could include the use of certifications as guarantees for

non-malicious applications.

74

Design

4.5 Internal Communication Layer

The previous sections presented the mechanisms that allow adaptive applications to

communicate with the adaptation support platform. For the platform this communi-

cation is handled by the application managers. Internally,application managers are

required to notify the system manager about changes in applications’ state. Moreover,

the system manager is required to notify application managers when an adaptive method

should be invoked. The internal communication layer is the component that lies between

the application managers and the system manager and handlescommunication between

these components. In the following sections we investigateexisting technologies that

can be used for realising the internal communication layer.Following on from this,

we discuss the design issues related to the internal communication layer and in partic-

ular we present the internal communication layer in the formof an event management

component.

4.5.1 Background

In the following sections an investigation of some existingtechnologies that support

event notification are presented. In particular, the discussion includes examples of sys-

tems that follow two different communication paradigms: a subscription-notification

paradigm (Jini, Elvin, CEA) and a tuple space paradigm (L2imbo, Event Heap).

4.5.1.1 Jini

Jini is a distributed system supporting service discovery and interaction developed by

Sun Microsystems [Waldo99]. The Jini system extends the Java application develop-

ment environment offering tools for the implementation of network services and the

applications that can discover and interact with those services. The key features sup-

ported by Jini are:

Lookup Service The lookup service allows clients in a network to discover a specific

service. The lookup service maps service interfaces requested by clients into

objects that implement those interfaces. In terms of implementation the lookup

service is based on IP multicast. The clients multicast a service lookup request

and lookup service responde with the matching services.

75

Design

Java Remote Method Invocation Jini uses the Java remote method invocation (RMI)

as the main mechanism for interacting with a remote service.RMI is the standard

remote procedure call mechanism used by Java (Sec 4.4.1.2).

Events A service can allow clients to register interest in its events. The service then

sends notifications to the registered clients when these events take place. The

basic protocol uses unicast notification messages to reportevents. However, there

are third party objects that support notification mutliplexing to reduce the network

traffic.

4.5.1.2 Elvin

Elvin was first introduced as an event messaging service following the publish-subscribe

notification approach [Fitzpatrick99]. One of the main drives for the development of

Elvin was the complete separation between the generation and the consumption of noti-

fications. Specifically, Elvin allows the delivery ofunaddressednotification messages.

This is achieved by using content based event delivery, thatis event consumers receive

event notifications based on the content of the notifications. In particular, an event sub-

scription includes a set of named and typed data elements that the client is interested

in. The notification server evaluates incoming notifications against the client subscrip-

tions. If a subscription matches a notification the related client receives a copy of the

notification message.

In terms of design, Elvin uses a server acting as a notification router between mul-

tiple connected clients. Clients can be both the sources and the sinks of event notifica-

tions. The notification router is responsible for routing notifications from event sources

to the interested event sinks. Obviously the use of a centralnotification router limits the

scalability potentials. However, Elvin addresses this issue by supporting the operation

of multiple notification servers in the form of afederation. In more detail, multiple

notification servers can work together appearing to the clients as one single notification

server.

Elvin supports APIs for a variety of programming languages (e.g. C, C++, Java,

Python). A number of application have been developed using Elvin, mostly related to

computer supported cooperative work (CSCW).

76

Design

4.5.1.3 Cambridge Event Architecture (CEA)

The Cambridge Event Architecture [Pietzuch04, Pietzuch03]is a publish-subscribe

based event management platform. One of the important characteristics of this work

is the special consideration for composite events. Many existing publish-subscribe sys-

tems restrict subscriptions to single events only, and thuslack the ability to express

interest in the occurrence of patterns of events. The Cambridge Event Architecture al-

lows the registration for event patterns that will result ina notification if the specified

pattern is met. Specifically, the event patterns supported by the architecture are:

Atoms: individual events similar to the traditional single-eventnotification platforms.

Concatenation: detects the follow up of two events with possible overlapping.

Sequence:detects the occurrence of an event after another without overlapping.

Iteration: Detects any number of occurrences of event expressions.

Timing: Detects the occurrence of events within a specified time interval.

Parallelisation: Detects two events in parallel and succeeds if both are detected. No

requirement for sequence or overlapping is expressed.

In terms of implementation the event architecture utilisesfinite state automata for

the monitoring of event expressions. The FSAs are driven by atomic events and can

generate new events if the composite expression they monitor is satisfied. FSAs can

be cascaded using the generated events as input to higher level FSAs for the support of

complex event compositions.

In summary the design of the Campbridge Event Architecture offers a powerful

mechanism for the monitoring of composite events. Considering the design of the pol-

icy language described in section 4.7.3 this platform couldbe considered as a potential

candidate for an event management module. In particular thecomposite event expres-

sions can assist the evaluation of the Event Calculus policy rules.

4.5.1.4 L2imbo

L2imbo is a distributed platform developed at Lancaster University [Davies98b]. L2imbo

does not follow the client-server paradigm, proposing an alternative communication

77

Design

approach especially designed to address the requirements of mobile communication.

Specifically, L2imbo is based on the tuple space paradigm formerly used in parallel

computing (e.g. Linda [Ahuja86]) and allows applications to communicate using the

tuple space API.

Tuples are data structures that consist of a collection of typed data fields. Tuples can

be dynamically inserted in and removed from a tuple space. Tuple spaces are shared

between applications allowing access to the tuples contained within the tuple spaces.

Considering this communication approach in a distributed environment it is clear that

applications do not interact directly with each other. Eachapplication interacts with the

tuple space only and inter-application communication is achieved via the tuple space.

As tuple spaces contain persistent tuple objects communication does not break when

connection between applications is lost for a period of time. Disconnected applications

can continue to send tuples to the tuple spaces and retrieve tuples after reconnection.

In terms of implementation, L2imbo is based on IP multicast where each tuple space

is modeled as a multicast group. Each host in the distributedsystem maintains a local

replica of the tuple space. Whenever a new tuple is inserted inthe tuple space a multicast

message updates the local replicas of the tuple space with the new tuple. If one of

the hosts looses connection with the rest of the group, L2imbo allows disconnected

communication. In more detail, applications can insert tuples to their local replica of

the tuple space and retrieve tuples from the local replica. Upon reconnection L2imbo

updates local replicas with the changes that took place while disconnected.

4.5.1.5 Event Heap

The Event Heap is a coordination platform developed at Stanford University and is also

based on the tuple space communication model [Johanson02].Although the Event Heap

uses the same communication model as L2imbo it differs in the level of specialisation

of its use. L2imbo is a general purpose platform for wireless communication while the

Event Heap aims at supporting the specific communication requirements of interactive

workspaces.

In more detail, the Event Heap is designed to support a prototype interactive work-

space called the iRoom. The iRoom is a ubiquitous computing environment where

people can collaborate and interact with the devices in a meeting room, such as touch

screens, bottom projected tables, etc. In addition, the room has wireless LAN coverage

78

Design

which allows laptops or PDA’s to communicate with the other machines in the room.

The Event Heap is the communication platform that allows applications running in dif-

ferent devices in the iRoom to coordinate their activities. In order to support the specific

needs of iRoom, the Event Heap extends the tuple space model with additional features

as required by the project.

Self-describing Tuples: The tuples in Event Heap consist of named typed fields instead

of typed fields. This means that every field in a tuple has a meaningful name and

thus it is possible for a user to browse the tuple space and understand the meaning

of the tuples.

Flexible Typing: The tuples in Event Heap do not require the fields to have a specific

sequence or even specific number of fields. With named fields applications can

retrieve the fields irrespective of their order.

Tuple Sequencing: Event Heap ensures that on a ‘read’ or ‘in’ operation receivers al-

ways get the earliest matching tuple they haven’t seen yet. With sequencing ap-

plications that place requests that match multiple tuples will get each tuple once,

and in source order.

Tuple Expiration: Tuples are given a ‘TimeToLive’ field that specifies how long they

will persist in the tuple space before they are destroyed.

In terms of implementation the Event Heap is built on top of TSpaces from IBM

[Wyckoff98], a Java based tuple space system. The TSpaces system is based on a client-

server architecture with the actual tuple space stored on a server machine.

4.5.2 The Design of the Event Manager

The previous sections gave an overview of examples of existing technologies that sup-

port distributed communication and coordination. Technologies like L2imbo and the

Event Heap were especially designed to meet the needs of mobile systems and ubiq-

uitous computing respectively while Jini is targeted at thedomain of service discovery

and interaction and Elvin and CEA are general purpose event notification platforms.

The main role of the adaptation platform’s internal communication layer is to allow the

platform to receive notifications about changes in applications’ state and to invoke adap-

tation actions. The requirement for a mechanism to support state variable notification

79

Design

messages advocates the need for an event-based platform. Asseen in section 4.5.1 plat-

forms supporting event notifications can follow different communication approaches.

In particular, Jini and CEA follow a directed subscription-notification approach. Elvin,

though still following the subscription-notification design, is trying to break the directed

dissemination of events. L2imbo and the Event Heap offer undirected communication

as this is a primary characteristic of tuple space based design.

Considering the design of the application manager describedin section 4.4.3 we

can identify an interesting feature of the tuple space mechanism that is appealing in

the design of the internal communication layer. In particular, the application manager

is required to act as a cache for the application state variables. One of the features

of the tuple space mechanism is the persistence of tuples. Specifically, a tuple that is

put in the tuple space will remain there until it is explicitly remove by an application.

Mapping this functionality to the application manager thismeans that the application

state information received by the applications can be inserted in the tuple space in the

form of tuples. Therefore, when the system manager requiresthe value of a particular

state variable, this value can be retrieved from the tuple space without requesting the

application manager to fetch that information.

Following this discussion we propose as the mechanism for the internal communi-

cation layer an event dissemination mechanism (event manager) that will deliver no-

tification messages from the application managers to the system manager and adapta-

tion triggering requests from the system manager to the application managers. As a

favourable approach the tuple space paradigm appears to offer some benefits in terms of

communication and information persistence.

In terms of internal design the event manager is required to maintain an ordered

delivery of notification messages to the system manager. Specifically, in the process

of evaluating adaptation policies it is important that the application state changes are

reported in chronological order — as it will be shown in section 4.7.3 the sequence that

changes take place are of importance when adaptation decisions are taken. Considering

the design of existing technologies, the CEA offers a flexiblemechanism for specifying

event notifications with respect to event ordering. Moreover, the mechanisms supported

by CEA allow the expression of specific relationships on the occurrences of events.

Considering the design of the policy language described in section 4.7.3 the CEA plat-

form could be considered as a possible event manager that cancollaborate with the

80

Design

system manager in the evaluation of event-driven policy rules. In particular, the com-

posite event expressions supported by CEA can be used for sharing part of the policy

evaluation process with the event management module. The Event Heap offers a tuple

sequencing feature allowing tuples to be retrieved on e source-order basis. However,

full support for time-ordered delivery of events is a much more complicated issue and

in particular, the problem of dealing with late notifications. For example, how should a

system respond to a notification that reports that the user has left the building but was

delivered a day later? One approach (e.g. followed by the Event Heap) is to discard such

late messages. A different approach is to accept these messages and using the times-

tamp that they took place evaluate them as if they were delivered on time. The actual

choice of the most appropriate approach depends highly on the system that is imple-

mented. In an active environment such as iRoom where the system interacts with users

and therefore should respond fast to environmental changes, such late notifications can

be discarded.

Summarising this discussion it is clear that each of the aforementioned systems have

their own benefits. The requirements for the design of the event management component

are modest and can be met by most of the existing systems. The choice of the most

appropriate system is considered an issue related to the particular implementation.

4.6 System Manager Design

The system manager is the component that decides when adaptation actions should be

invoked according to the changes reported by the application managers. As it was dis-

cussed in section 4.3, the system manager is based on a policymanagement system

where adaptation policies are expressed through a policy language. In the following

sections an overview of prevalent policy specification languages is presented. Follow-

ing this background section, a discussion about the design of the system manager as a

policy management component is given.

4.6.1 Background

Policy Management systems have been widely used in the areasof network and system

management. In the following section two popular policy languages that were designed

81

Design

as general purpose policy language are presented.

4.6.1.1 Ponder

The Ponder policy language [Damianou01], developed at Imperial College London, is

a declarative, object-oriented language for specifying security and management poli-

cies for distributed object systems. It defines a set policy classes with different charac-

teristics. Specifically Ponder providesauthorisation, delegation, information filtering,

refrain andobligationpolicies.

The general assumptions for all policies in Ponder is that they all refer to objects

with interfaces defined in terms of methods using an interface definition language. The

model assumed by Ponder includessubjectobjects (users, principals or automated man-

ager components) that have management responsibility andtargetobjects (resources or

service providers) that are accessed by the subjects.Domainsprovide a means of group-

ing objects to which policies apply and can be used to partition the objects in a large

system according to geographical boundaries, object type,responsibility and authority

or for the convenience of human managers.

Authorisation policies define what activities a subject object can perform on the set

of target objects. A positive authorisation policy defines the actions that subjects are

permitted to perform on target objects. A negative authorisation policy specifies the

actions that subjects are forbidden to perform on target objects.

Information filtering policies define the type of information transformations that

should be performed based on the characteristics of the subject object. For example,

a location service might only permit access to detailed location information, such as

whether a person is in a specific room, to users within the department.

Refrain policies define actions that subject objects must notperform on a subject

even if they are actually permitted to perform the action (based on authorisation poli-

cies). The main difference between a refrain policy and a negative authorisation policy is

that the former are implemented by the subjects themselves rather than a policy manage-

ment component. Refrain policies are used for situations where negative authorisation

policies are inappropriate because the targets are not trusted to enforce the policies.

Delegation policies are used in order to support the temporary transfer of access

control rights from one object to another. These policies are required in order for this

82

Design

transfer of access rights to be managed by the policy management system.

Obligation policies specify the actions that must be performed by managers within

the system when certain events occur and provide the abilityto respond to changing

conditions. Obligation policies are event-triggered and define the activities subjects

must perform on objects in the target domain. Events can be simple, i.e. an internal

timer event, or an external event notified by monitoring service components.

In addition to this set of policies the Ponder policy language defines policy con-

straints: a set of conditions that specify which policies are valid. These constraints can

either be basic policy constraints that apply to specific policies or meta-policies that

apply to a group of policies.

With this extensive set of policy types Ponder can support a wide range of man-

agement and security systems. Concrete examples have been presented for the use of

Ponder in distributed network management, storage systems, application and service

management and enterprise-wide security polices [Lupu99].

4.6.1.2 PDL

The PDL (Policy Description Language) is a domain independent declarative policy

language [Lobo99, Chomicki00]. In PDL there are no assumptions about the underlying

system that should be managed by the specified policies. The policy rules defined in

PDL follow the event-condition-action scheme:

eventcausesactionif condition

Intuitively a rule of this form says that if theeventoccurs at a time when thecondi-

tion is true theactionshould be performed.

PDL consists of three basic classes of symbols: primitive event symbols, action

symbols and function symbols. The primitive event symbols include system defined

event symbols and user defined event symbols. Action and function symbols are pre-

defined and are given to the user that defines the policies.

The aforementioned classes of symbols can be better described by example [Lobo99]:

consider the case of an Internet provider that has a pool of modems that accept dial-up

83

Design

connections. In this example the internet provider wants tolimit the number of simul-

taneous connections for a specific customer (i.e. with the phone number 5559991) to

5 connections during the night. The event that should be monitored for such a policy

is time. A symbol calledCoarseTimeEventis associated with this event. This partic-

ular symbol is defined to have an attributeTimewith the enumerated type “morning”,

“noon”, “evening”, “midnight”. The policy rule in PDL that implements such a policy

is:

CoarseTimeEvent

causesModemPoolAssignment(5559991, 5)

if (CoarseTimeEvent.Time= “morning”)

PDL also defines how simple events can be combined through logical expressions

of the forme1&e2& . . .&en or e1|e2| . . . |en to define composite events that should or

should not take place at the same time. PDL does not specify how events or actions

should be defined. These are considered to be system dependent features.

4.6.2 Policy Manager

As discussed in section 4.3 the system manager is the component that evaluates adapta-

tion policies and triggers adaptation when required. Here apolicy manager component,

realising the functionality of the system manager is presented.

The policy manager is the component responsible for deciding when adaptation is

required using a set of adaptation policy rules. In more detail, the decision mechanism is

driven by a set of policy rules including the default policies installed by the applications

(possibly modified by the user) and any new policy rules defined by the user.

Specifically, when an application is installed on the systema set of default policies

are added to the policy repository. These policies are parsed by the policy manager and

are used for handling adaptation for the running applications. The policy repository is

always available to the current user for modifications and addition of new rules. This

way the active set of policy rules can be modified by the user tomeet their personal

needs.

The evaluation of policy rules is driven by events deliveredby the event manager.

Each of these events is related to the values of the state variables of the running appli-

cations (Section 4.7.3).

84

Design

In order to identify the policy language that best satisfies the requirements of this

platform it is necessary to further analyse the specifics of this platform and identify the

features of the policy language that should be used. Specifically, the policy language

that will be used should satisfy the following requirements:

1. The policy language should be able to operate in an event-driven environment.

The input given to the system manager is the set of state variables reported by

applications. As described in section 4.4.3, as the values of these state variables

change, the corresponding applications fire events that notify the platform about

their new values.

2. The platform is required to handle the conditions under which an adaptive reac-

tion should take place in a uniform manner, irrespective of the type of adaptation.

More specifically, the decision mechanism should be a general purpose mecha-

nism that will handle adaptation policies relating to a variety of adaptation types

such as network based adaptation or physical context related adaptation.

3. The specification of policy rules should be flexible enoughto allow the specifi-

cation of fine grained temporal relationships between events. In most cases con-

flicts or instabilities in adaptive systems occur due to timedependencies between

changes that take place or the time between adaptive mechanisms being invoked.

The policy language should allow the fine tuning of adaptation mechanisms to

allow the resolution of such types of conflicts.

Section 4.7.1 discusses the applicability of existing policy languages with respect

to these requirements and section 4.7.3 proposes a new language based on the Event

Calculus logic programming formalism.

4.7 Policy Language

This section provides a detailed description of the policy language used in the proto-

type platform. This policy language is based on the event calculus logic programming

formalism.

85

Design

4.7.1 Choosing a Policy Language

Section 4.6.1 presented a brief overview of existing policylanguages such as Ponder and

PDL. With the support of the refined set of requirements for a policy language presented

in section 4.6.2 it is possible to identify the features thata policy language supporting

adaptation in adaptive context-aware applications shouldhave.

The event-condition-action pattern used by most policy languages, meets the needs

for an event-driven policy based system. However, the event-condition-action model is

not intended for supporting complex temporal relationships between events. In particu-

lar, it does not allow the specification of conditions that inter-relate multiple events that

may have fired at different time points. As a consequence it does not allow expressions

that take into account time dependencies between multiple events, e.g. the order in

which these events took place or the time distance between events. Furthermore, most

of the existing policy specification languages do not support the notion of situations that

have a certain duration.

The aforementioned limitations are quite important when considering a policy driven

system supporting adaptive context-aware applications. In most cases conflicts or insta-

bilities in adaptive systems occur due to time dependenciesbetween changes that take

place or the time between adaptive mechanisms being invoked. Furthermore, context-

related conditions like “if I enter my office after leaving from John’s office” require

a language that would allow the expression of temporal relations as in that particu-

lar example, the sequence of events. In adaptive systems it is quite common to have

conditions like “if the system is running on low power” that clearly indicate situations

(‘running on low power’) that have a certain duration ratherthan momentarily events.

Therefore, a policy specification language that would support the expression of tempo-

ral relations between events and support the definition of entities that express duration

would certainly offer more flexibility for defining adaptation policies.

In order to meet the need for such a policy language the Event Calculus Policy

Language was defined. This language was derived from the specifications of the Event

Calculus logic programming formalism. The following section gives a brief overview

of the Event Calculus as described by Kowalski and Sergot [Kowalsky86].

86

Design

4.7.2 The Event Calculus

The event calculus was introduced by Kowalski and Sergot [Kowalsky86] as a logic

programming formalism for reasoning about events and change. The work presented

here is based on a simplified version of the event calculus that was presented later by

Kowalski [Kowalsky92].

The event calculus provides a theoretical framework where it is possible to reason

about events and their effects in an event-driven system. Inmore detail, the event calcu-

lus is defined over a set of entities, namelyeventsthat take place at specific time points

andfluentsthat represent the effects of the events. A fluent representsa specific situation

that has a timed duration, for example a state like “battery is low”. When the system

under consideration gets into that specific condition the fluent is considered to be valid

(it is said tohold). The state of fluents is defined according to events that can initiate or

terminate them.

Along with the basic entities of events and fluents, the eventcalculus defines a set of

predicates that allow the specification of propositions about when specific events take

place and what the state of fluents are. The basic predicates defined in Event Calculus

are:

Initiates(e, f , t) : Fluent f is initiated by eventeat timet.

Terminates(e, f , t) : Fluent f is terminated by eventeat timet.

Happens(e, t) : Eventeoccurs at timet.

By using these predicates we can ask about the validity of somefluents at particular

time points. The simplified event calculus defines the following additional predicates:

HoldsAt(f , t)⇐∃e, t1[Happens(e, t1) ∧

Initiates(e, f , t1) ∧

¬Clipped(f , t1, t)] ∧ t16 t

Clipped(f , t1, t2)⇐∃e, t[Happens(e, t) ∧

t1< t 6 t2 ∧ Terminates(e, f , t)]

Declipped(f , t1, t2)⇐∃e, t[Happens(e, t) ∧

Initiates(e, f , t) ∧ t16 t < t2]

87

Design

TheHoldsAtrule states that a fluent is valid at a specific time point t if anevent e exists

that initiated this fluent at an earlier time and this fluent has not been terminated during

this time. TheClippedandDeclippedrules state that a fluent has been terminated or

initiated respectively by an event that took place within a time period.

Based on this small set of rules the event calculus allows us todefine an event based

system that changes as events take place. In addition, we canuse the available rules

to ask about the validity of specific conditions of the systemand the times that these

conditions are valid.

4.7.3 The Event Calculus Policy Language

As discussed in section 4.6.2 the policy language used for coordinated adaptation should

satisfy a set of design requirements. Specificaly, it shouldallow the specification of

event-driven policy rules, support the specification of temporal relations and it should

be general enough to allow the specification of policy rules for a wide range of adaptive

applications. As seen from the previous section the Event Calculus offers a basis for

designing a language that can support all these requirements. In particular, the event

calculus by definition embodies the eventing mechanism within its specification, it is

general enough to allow specification of rules for any type ofevent based system and one

of the fundamental elements of the event calculus is allowing a high level of flexibility in

the specification of temporal relationships. It should be noted that apart from the Event

Calculus there are other calculi that satisfy the aforementioned requirements (e.g. the

Situation Calculus [Turner97, Kowalski94]). This thesis does not claim that the Event

Calculus is the only appropriate formalism to be used as a policy language defining

adaptation policies. However, the expressiveness and the comprehensibility of the Event

Calculus’s predicates make it an appropriate choice for suchuse.

Based on the specifications of the Event Calculus we define the event calculus policy

language [Efstratiou02b] in which policy rules are formulated as event-fluent-condition-

action sets, in a form similar to policies specified in PDL [Lobo99].

Specifically, each policy rule is comprised of a set of systemspecific event defini-

tions, a set of fluents controlled by the events, a condition body and an action body. The

basic operation of a rule is to perform the actions defined in the action part if the condi-

tion part evaluates to true. The condition part consists of alogical expression involving

88

Design

the occurrence of events or the current state of fluents. Eachfluent expresses a specific

situation that the rule is interested in. The situations expressed by fluents are directly

controlled by the defined events.

For example, let’s consider a policy specifying that the network connection should

switch to GSM when the user is outdoors. An informal way to describe this is:

Events LeftHome, LeftOffice, EnterHome, EnterOffice

Fluent Outdoors :

initiated by events: LeftHome, LeftOffice

terminated by events: EnterHome, EnterOffice

Condition :

Initiated(Outdoors)

Action:

Switch network to GSM

As described in this example the fluent outdoors is controlled by the events denoting

when the user leaves or enters areas that the network connection should not be GSM.

The condition part evaluates to true at the time the fluent is initiated and the action part

is executed.

In more detail, the policy language allows the user to define conditions using Event

Calculus predicates (as in the previous example:Initiates). The policy manager would

evaluate the policy rules based on the notifications received by the application managers.

This evaluation procedure will try to determine the time points for which the events that

took place allowed the condition to be valid. In the example the policy management

system would try to determine the time the fluentOutdoorswas initiated. When the

whole condition is found to be valid, the action is executed.

Formally speaking, we define an event calculus policy rule tobe an expression of

the form:

event de f inition1

. . .

event de f initionn

f luent de f inition1

. . .

89

Design

f luent de f initionm

condition { condition}

action {

action1

. . .

actionk

}

Definition 3: An event symbol e represents the occurrence of an event as described

by the event definition. The event definition is an expressionof the form:

evente :- l

where e is an event symbol and l is a system specific logical expression. The logical

expression is of the form p1θp2 where

1. θ is a Boolean operator from the set {and, or} and p1, p2 are logical expressions

as well, or

2. θ is a relation operator from the set {=,<>, <, <=, >, =>}, p1 is a system

specific attribute and p2 is a constant of the same type. It is assumed that the

user has access to the set of available system attributes that can be used for the

definition of the logical expression.

As highlighted in definition 1, the user is assumed to have access to the set of system

attributes that can be used for the definition of events. In our system these attributes are

the application state variables reported by the adaptive applications running on the sys-

tem during registration with the platform (described in section 4.4.2). The specification

of such an attribute is represented by an expression of the form:

a.v

wherea represents the application running on the system andv is one of its state

variables. An event, for example, specified to mark the time the network bandwidth is

between 19.2Kbps and 64Kbps is defined as:

eventnormBand:- (NetworkInterface.Bandwidth> 19200)

and (NetworkInterface.Bandwidth< 64000)

90

Design

Definition 4: The occurrence of an event is defined through the predicate happens(e, t)

→ {true, false} where e is an event symbol and t is a time point. Predicate happens eval-

uates to true iff t is the time point the logical expression l specified by the event definition

transits from false to true.

Thehappenspredicate should be interpreted as “the logical expressiondefined for

evente has changed its value from false to true at time pointt causing the event to take

place”.

Definition 5: A time point is a positive integer that represents a specific point in time.

In our system, time points are considered to represent time in seconds. However,

the granularity for the representation of time within a policy system is an issue that

depends on the requirements of each implementation. It should be noted that within the

specification of a policy rule it is required to specify time points as symbols. The actual

values for these time points will be set by the policy evaluation engine. In particular,

as events are delivered to the policy manager the time pointsspecified in the policy rule

will receive their values according to the semantics of the predicates they are members

of (Section 5.3.5.1).

Definition 6: A fluent symbol f represents the state of a fluent as described by the

fluent definition. The fluent definition is an expression of theform:

fluent f {

init1

. . .

initn

term1

. . .

termm

}

where f is a fluent symbol and each initi is an expressions of the forminitiates(e)

where e is an event symbol representing the event that initiates the specific fluent; and

each termi is an expressions of the formterminates(e) where e is an event symbol

representing the event that terminates the specific fluent.

A fluent is considered to hold for the time period between its initiation and termi-

nation including the initiation time and it does not hold forthe time period between

91

Design

termination and initiation including the termination time.

A fluent in the policy language does not relate to any value within the platform itself.

It is an abstract entity that can be defined according to the policy author’s requirements.

The purpose of a fluent is to represent entities that have timeduration and their state

changes according to the occurrence of events. In practice afluent usually represents a

real situation of the system’s behaviour (like for example operating in a low bandwidth

state as shown in figure 4.9).

As Definition 4 describes, the state of a fluent is controlled by the events that initiate

or terminate the fluent.

Definition 7: The condition is a logical expression of the form

1. p1θp2 whereθ is a Boolean operator from the set {and, or} and p1, p2 are con-

dition expressions as well, or

2. a predicate proposition of initiates, terminates, holdsat, happens, clipped, de-

clipped and their negations, or

3. a logical expression of the form t1θt2 whereθ is a relation operator from the set

{=, <>, <, <=, >, =>}, t1 is a time variable and t2 is a time variable or an

expression representing a time point.

The body of a condition specifies the logical expression thatshould be evaluated in

order for the action part to be executed. Within the condition body a policy rule may

include combinations of predicate propositions and time relationships.

Definition 8: The initiates/terminates proposition is an expression of the form:

initiates(e, f , t) / terminates(e, f , t)

where e is an event symbol or the literal ‘*’, f is a fluent symboland t is a time vari-

able. If e is an event symbol then this proposition is true iffinitiates(e)/ terminates(e)

is part of fluent’s f definition,happens(e, t) is true and the fluent does not hold/hold at

time t. In the case where e is the literal symbol ‘*’ then the truth value of the propo-

sition is defined as follows: The proposition is true iff, there is an event e for which

initiates(e, f , t)/ terminates(e, f , t) is true.

These predicates allow the specification of queries in relation to the initiation/ termi-

nation of fluent. They should be interpreted as “the evente initiated/ terminated fluent

92

Design

f at timet”. The special keyword “*” is used to denote the initiation/termination of a

fluent by any event that can initiate/terminate the fluent. Wehave to make clear the dis-

tinction between the statementsinitiates(e) and terminates(e) defining a fluent from

the predicatesinitiates(e, f , t) andterminates(e, f , t) evaluating if a fluent was initiat-

ed/terminated by an event at a given time.

Definition 9: Theholdsatproposition is an expression of the form:

holdsat(f , t)

where f is a fluent symbol and t is a time variable. This proposition is true iff there is

an event e1 for which initiates(e, f , t1) is true and t1 6 t and for every event e2 and time

point t2, t1 6 t2 < t, terminates(e2, f , t2) is false.

The holdsatpredicate allows the specification of queries in relation tothe actual

state of a fluent. The predicate should be interpreted as “fluent f holds at timet”.

Definition 10: The clipped/ declipped proposition is an expression of the form:

clipped(f , t1, t2)/declipped(f , t1, t2)

where f is a fluent symbol and t1, t2 are time points and t1 < t2. This proposition is true

iff there is an event e for whichhappens(e, t) is true and t1 < t 6 t2 andterminates(e, f , t)

/initiates(e, f , t) is true.

The clipped/declippedpredicates are used for specifying queries about the initia-

tion or termination of a fluent within a specific time range. The predicates should be

interpreted as “fluentf has been terminated/initiated sometime within(t1, t2]”

Definition 11: An action is a statement of the form:

a(p1, . . . , pn)

where a is an action symbol with n arguments and each pi is a parameter of the appro-

priate type.

An action statementrepresents a call to a specific adaptation method of an appli-

cation as defined by the applications by their registration.An action call triggers an

application to adapt when the condition part of the policy evaluates to true. In the def-

inition of the Event Calculus Policy Language we assume that an action that should be

93

Design

event lowBand :− NetworkInterface.availableBandwidth < 19200
event normBand:− NetworkInterface.availableBandwidth >= 19200
fluent inLowBand {

initiates (lowBand)
terminates (normBand)

}
condition {

initiates (lowBand, inLowBand, t1) and
not clipped (t1, inLowBand, t2) and
t2 > t1 + 30

}
action {

WebBrowser.LowBand()
}

Figure 4.9: A sample policy rule

taken when a condition is true consists of a set of adaptationmethod calls to the ap-

plication interfaces. However, it is possible to expect more complex action procedures

for certain cases. Therefore it should be noted that this definition does not consider the

action body of a policy rule as a strict sequence of method calls. Specifically, certain

implementations may require a more powerful way to express actions that should be

invoked when a policy rule is true. Possible approaches to realise this would be to use

a scripting language (e.g. JavaScript, Python) or a pre-compiled action module as the

body of a policy rule.

Looking at the presented policy language definition in a moreinformal way, each

rule of the policy language consists of two main parts: a condition and an action. The

condition is a logical expression that can evaluate to true or false. When this condition

evaluates to true the action body is executed.

Each condition is further divided into two parts: the declaration part and the con-

dition body. The declaration part defines the events and fluents that participate within

the body of the condition. The body itself consists of a logical expression combining

Boolean operations (and, or, not) and the predicates specified by the event calculus.

The declaration of an event specifies when an event is considered to have occurred

in relation to the values of specific application state variables. As shown in figure 4.9 the

event lowBand is considered to have taken place when the statevariable availableBand-

width of the application NetworkInterface has taken a valuebelow 19.6Kbps. A fluent

declaration is done by specifying all the events that can be initiated and terminated by.

94

Design

The condition body consists of a logical expression using the event calculus pred-

icates. This logical expression can use predicates to evaluate the time specific events

take place or whether a fluent holds or does not hold. Moreover, the condition body can

include time relationships between time variables (e.g.t1 < t2). This way the policy

author can specify not only the events and fluents that will enable the condition to be

true, but also the time relationships between these predicates. As presented in figure 4.9

the body of that condition specifies that it will evaluate to true only if the fluent inLow-

Band has been initiated at a timet1 and has remained valid until timet2 > t1 + 30. In

essence, this rule specifies that it evaluates to true if the systems’ available bandwidth

has remained below 19.6Kbps for more than 30 seconds.

The last part of a policy rule is the list of actions. Within the list of actions the policy

author has to specify a sequence of adaptation methods that should be invoked by the

platform when the condition of the rule evaluates to true.

4.7.4 Examples

In order to better illustrate how the Event Calculus Policy Language can be used in prac-

tice, this section presents a list of examples where adaptation in adaptive context-aware

applications is handled by Event Calculus policy rules. Please note that in the following

examples the application interfaces are purely theoretical. Moreover, the interfaces are

simplified in order to give more emphasis to the policy rules.Real world examples will

require more complex interfaces (Chapter 6).

In the first scenario we are considering a mobile device equipped with a network

interface capable of switching between GSM connection and Wireless LAN connec-

tion. Moreover, the device has a location monitoring modulethat can report the current

location in terms of labels, such as “Home”, “Office”, etc.

The first adaptation rule specifies that the network interface should switch to a GSM

connection when the user leaves their home. First the appropriate events and fluents are

defined:

event LeftHome :− Location.label<>"Home"
event EnterHome :− Location.label="Home"
fluent Outdoors {

initiates (LeftHome)
terminates (EnterHome)

}

95

Design

Here the fluentOutdoors is initiated when the user leaves their home and is termi-

nated when they enter their home. For the condition definition the only check is to see

when the fluent is initiated and trigger the appropriate action on the network interface:

condition {
initiates (∗, Outdoors, t1)

}
action {

NetworkInterface.UseGSM()
}

A similar rule is used for switching the network interface back when the fluent is

terminated.

condition {
terminates (∗, Outdoors, t1)

}
action {

NetworkInterface.UseWLan()
}

An interesting observation here is that this rule can be easily extended by simply

modifying the definition of the fluent. For example, if the same reaction is needed when

the user enters and leaves their office the fluent definition can be modified as follows:

event LeftHome :− Location.label<>"Home"
event EnterHome :− Location.label="Home"
event LeftOffice :− Location.label<>"Office"
event EnterOffice :− Location.label="Office"
fluent Outdoors {

initiates (LeftHome)
initiates (LeftOffice)
terminates (EnterHome)
terminates (EnterOffice)

}

No modifications are required for the condition and action bodies.

Next we assume that the location monitoring module is capable of switching be-

tween alternative location mechanism. In more detail, we assume that that the location

can either use the GPS device, built in the mobile device, or use GSM positioning. Con-

sidering that the GPS module consumes extra power, in times when the GSM connection

is active and power saving is required, it is preferred for the system to switch into GSM

positioning and turn off the GPS device.

96

Design

In order to define the rules that implement this adaptation policy, we first have to

define the events and fluents involved. Specifically, we need to define two fluents, one

expressing the situation “running with GSM connection” andthe other expressing the

situation “running in low power”:

event powerLow :− Power.percent < 10
event powerNorm :− Power.percent>= 10
event gsmActive :− NetworkInterface.CurrentMode = "GSM"
event gsmInactive :− NetworkInterface.CurrentMode <> "GSM"

fluent inLowPower {
initiates (powerLow)
terminates (powerNorm)

}

fluent inGSM {
initiates (gsmActive)
terminates (gsmInactive)

}

The condition that will trigger the adaptive reaction will have to match the overlap-

ping of the two situations. In particular, the condition should be triggered when one

situation is initiated while the other is active:

condition {
(initiates (∗, inGSM, t1) and
holdsat (∗, inLowPower, t1)) or

(initiates (∗, inLowPower, t1) and
holdsat (∗, inGSM, t1))

}
action {

Location.DisableGPSPositioning()
Location.EnableGSMPositioning()

}

An additional rule to switch the location module back to GPS positioning is:

condition {
terminates (∗, inGSM, t1)

}
action {

Location.DisableGSMPositioning()
Location.EnableGPSPositioning()

}

In the next scenario we assume an office environment where thesystem can control

the room lighting. The rule that is presented is controllingthe automatic switching off

97

Design

of the room lights. The condition that we are trying to achieve is to turn the lights off

only if:

• the lights were switched on after the user entered the room (otherwise this is a

room that lights usually stay on).

• the user left the room and the lights were left on.

• 15mins have passed after the user left the room and he/she hasn’t returned.

First we define the appropriate events and fluents to specify two situations: ‘user in

the office’ and ‘room lights are on’:

event LeftOffice :− Location.label<>"Office"
event EnterOffice :− Location.label="Office"
event SwitchOnLights :− RoomLights.State = "On"
event SwitchOffLights:− RoomLights.State = "Off"
fluent inOffice {

initiates (EnterOffice)
terminates (LeftOffice)

}
fluent RoomLightsOn {

initiates (SwitchOnLights)
terminates (SwitchOffLights)

}

Next we define the condition:

condition {
initiates (∗, inOffice, t1) and
initiates (∗, RoomLightsOn, t2) and
t2>t1 and
terminates (∗, inOffice, t3) and
not clipped (inOffice, t1, t3) and
t3 > t2 and
not clipped (RoomLightsOn, t2, t4) and
t4 = t3 + 900 and
not declipped (inOffice, t3, t4)

}

The first line of this condition checks if the user entered theroom. The second and third

lines check if the room lights were turned on after the user entered the room. The next

three lines check if the user left the room sometime after turning the lights on. The final

three lines ensures that the lights are still on 15mins afterthe user left the room and that

98

Design

the user has not returned within these 15mins. Finally we define the action body which

is a simple:

action {
RoomLights.Off()

}

The scenarios presented here illustrate the expressiveness of the Event Calculus Pol-

icy Language but are not intended as real world examples. Chapter 6 provides specific

real world examples that were implemented as part of the evaluation of the adaptation

support platform.

4.8 Summary

This chapter presented the design of a platform to support coordinated adaptation for

adaptive context-aware applications. Specifically, the architecture presented ensures

that the requirements for decoupling of adaptation policies and mechanisms, applica-

tions externalising their state, applications externalising adaptation mechanisms and

support for modification of adaptation policies are all satisfied. Moreover, existing

technologies for interface specification, event management and policy management are

investigated and appropriate solutions are proposed. Finally, the chapter presented the

Event Calculus Policy Language that was designed in order to meet the explicit require-

ments of a policy language supporting adaptive context-aware applications. The next

chapter describes a prototype implementation of this design.

99

CHAPTER V

Implementation

Contents
5.1 Overview . 101

5.2 Platform Configuration . 101

5.2.1 Non Distributed with Local Applications 101

5.2.2 Non Distributed with Remote Applications 102

5.2.3 Partially Distributed Platform 103

5.2.4 Fully Distributed Platform 103

5.3 Prototype . 104

5.3.1 Component Overview . 105

5.3.2 Application Registry . 107

5.3.3 Application Controller . 108

5.3.4 Event Dispatcher . 111

5.3.5 System Manager . 113

5.3.6 Application Stub . 121

5.4 Platform Operation . 125

5.4.1 Platform Initialisation . 125

5.4.2 Application Initialisation . 126

5.4.3 State Change Notification 126

5.4.4 Adaptation . 127

5.5 Summary . 127

100

Implementation

5.1 Overview

This chapter presents a prototype implementation of the architecture described in chap-

ter 4. The first sections of this chapter offer a discussion about possible configurations

for the implementation of the architecture. Following thisdiscussion the prototype im-

plementation is presented as a system application supporting coordinated adaptation for

the applications running on a single host. Each of the prototype’s components are pre-

sented in detail, followed by the presentation of the policyengine for the evaluation of

Event Calculus policy rules.

5.2 Platform Configuration

The high level architecture presented in chapter 4 does not make any statements about

the location of each individual component of the platform. However, the level of distri-

bution chosen for the system has implications for the implementation of the platform. In

this section we examine the possible configurations for an implementation of a platform

supporting adaptive context-aware applications.

The platform configurations presented here follow an increasing level of distribu-

tion. Specifically, the discussion begins with the configuration of a system where all

applications and the platform are located in the same host and finishes with a configura-

tion where applications and platform components are distributed across multiple hosts.

5.2.1 Non Distributed with Local Applications

The single host configuration assumes a system where all platform components and

applications are located on the same host. (Figure 5.1(a)).This configuration has min-

imal requirements in terms of communication. Specifically,there is no need for a net-

work protocol to be used between the applications and the platform or between the

platform components. In particular, both, communication between applications and ap-

plication managers and the internal communication layer, can be implemented using an

inter-process communication mechanism such as shared memory. Moreover, the time-

ordered delivery of events from the application managers tothe system manager will

not face the delay issues experienced by a distributed configuration.

101

Implementation

Host 1

Internal Communication Layer

System Manager

Applications

Application
Managers

(a) Non distributed with local applica-
tions

Host 3 Host 2

Host 1

Internal Communication Layer

System Manager

Applications

Application
Managers

(b) Non distributed with remote appli-
cations

Host 3 Host 2

Host 1

Internal Communication Layer

System Manager

Applications

Application
Managers

(c) Partially distributed platform

Host 3 Host 2

Host 1

Internal Communication Layer

System Manager 2

Applications

Application
Managers

System
Manager 1

(d) Fully distributed platform

Figure 5.1: Platform configurations

5.2.2 Non Distributed with Remote Applications

The second configuration assumes a system where applications can be distributed across

different hosts while the platform is located on a single host (Figure 5.1(b)). This config-

uration implies a requirement for the use of a network protocol for the communication

between applications and application controllers. In moredetail, this configuration re-

quires the employment of a technology for remote process invocation and event dissem-

ination. Technologies like Corba, Java/RMI and Web Services (Section 4.4.1) would be

appropriate candidates for an implementation of this system. In terms of the internal

communication, both the application managers and the system manager are located in

the same host. Therefore the communication between these components can be based

on inter-process communication as described in the previous paragraph. However, since

there are delays between the time state variables change andthe time these changes are

reported to the platform, an appropriate mechanism to ensure timely delivery of these

102

Implementation

notifications should be implemented.

5.2.3 Partially Distributed Platform

The third configuration assumes a system where both applications and application con-

trollers can be distributed across different hosts (Figure5.1(c)). In this case the burden

of network communication is pushed away from the application managers and into the

internal communication layer. Specifically, application managers can be located on

the same hosts as the remote applications. Thus the network traffic concerns the com-

munication between the application manager and the system manager. This particular

configuration would require the employment of a middleware platform handling the ex-

change of notification events from the application managers. Platforms such as L2imbo,

the Event Heap and CEA are examples of plausible choices (Section 4.5.1).

5.2.4 Fully Distributed Platform

In a system where applications are distributed across multiple hosts, having a single

central system manager can significantly reduce the responsiveness of the system, es-

pecially where high latency or low bandwidth networks are used. Having system man-

agers located on the same hosts as the applications can improve the responsiveness of

the system. The fourth configuration is where the system manager is distributed across

different hosts. (Figure 5.1(d)). In more detail, adaptation polices that are related to a

particular application can be located on a system manager running on the same host.

Thus, the adaptation reaction related to that particular application should have faster

responses as compared to a remote system manager. This configuration requires the im-

plementation of a policy management system that allows the distribution of policy rules

across different system managers. As presented in section 4.7.3, the Event Calculus

Policy Language allows the specification of policy rules that are complete and have no

requirements regarding the co-existence of other policy rules. In particular, each policy

rule contains the definitions of all entities required for its evaluation (events, fluents).

Therefore, it is possible to distribute policy rules acrosshosts allowing their manage-

ment by distributed policy managers.

However, such a configuration imposes additional requirements on the implemen-

tation of the internal communication layer. In particular,state variable changes must

103

Implementation

be delivered to all system managers that are handling policyrules related to the state

variables in question. The use of a tuple space mechanism offers a significant benefit.

As state variable notifications are shared among all components in the system, system

managers can retrieve the notifications they require for thesub-set of policy rules they

are handling. Therefore, there is no need for the internal communication layer to em-

ploy mechanisms to maintain the delivery of the notifications to the appropriate system

managers. Moreover, the approach of a replicated tuple space (such as the one used by

L2imbo, section 4.5.1.4) can reduce the delay overhead for therequests of application

state information. In particular system managers can retrieve information about the state

of distributed application controllers using their local replica of the tuple space. Consid-

ering the fact that the implementation of the replicated tuple-space is based on multicast,

this means that the total network traffic would be considerable smaller, compared to a

mechanism based on point-to-point communication where each system manager would

retrieve information from each distributed application controller.

5.3 Prototype

In the previous section a list of possible configurations forthe implementation of the

adaptation support platform were presented. Here we consider the most appropriate

configuration for a prototype implementation of such a platform. In particular, the aim

of this prototype implementation is to:

• Illustrate that the design presented in chapter 4 describesa feasible system that

can be implemented.

• Evaluate whether the design presented in chapter 4 allows the implementation of

a system that supports coordinated adaptation for adaptivecontext-aware applica-

tions.

• Investigate possible strengths and/or weaknesses in the design presented in chap-

ter 4

The requirements for the design of this platform as presented in chapter 3 are:

1. To decouple the adaptation control mechanism and the application’s implementa-

tion

104

Implementation

2. To externalise application state

3. To make applications’ adaptation interfaces accessibleto other components

4. To allow the modification of the adaptation control mechanism.

The design of the platform presented in chapter 4 was directly derived from this set

of requirements. It is evident that the design features thatare directly related to the target

of this thesis are actually unrelated to the level of distribution of the platform’s compo-

nents. All of the features described in the design chapter can be illustrated through any

of the aforementioned configurations. Specifically, irrespective of the level of distribu-

tion, the issues of policy and method decoupling, application interface externalisation

and modification of the controlling mechanism follow the same design guidelines.

In order to achieve the implementation goals stated above, this chapter presents

the implementation of a prototype that is based on the non-distributed configuration

discussed in section 5.2.1. The implementation of this prototype allows the experi-

mentation with and evaluation of the design characteristics of this platform without the

overhead of distribution related issues that are unrelatedto the main aims of this thesis

and that might make the identification of the platform’s effects less clear and harder to

evaluate.

This prototype is intended to support adaptation on a mobiledevice, controlling

adaptation for the applications running on the same device.The prototype was devel-

oped using Microsoft Visual C++ (approximately 8,000 lines of code for the platform

and 1,300 lines of code for the application stub) and was compiled for the operating

system Microsoft Windows. The prototype operates as a Windows application using a

text-based interface and communicates with running applications through shared mem-

ory. In the next sections we present in detail the componentsthat comprise the prototype

implementation of the platform.

5.3.1 Component Overview

The implemented prototype reflects the design guidelines presented in chapter 4. The

overall operation of the prototype is illustrated in figure 5.2. The prototype consists

of a set of components that are bundled in to a single system-support application. The

components that comprise the adaptation support platform are:

105

Implementation

System Manager

Registry
Application
Controller

Application
Controller

Trigger

Parse

Var Change

Create Create

Var Change Trigger

Event

Policy
Repository

Application

Platform APIPlatform API

Application

Event Dispatcher

Application

Register
XML

Interface

Var
Change

Install
Change

Var

Register

Interface

Default
Policies

Trigger Trigger

XML

Figure 5.2: Platform component overview

Application Registry: The application registry accepts registration information from

adaptive applications running in the system. Using this information it creates appli-

cation controllers that handle all communication between the platform and individual

applications.

Application Controllers: Each application controller handles the communication be-

tween the platform and a specific application running in the system. The application

controller forwards application notifications to the eventdispatcher and receives adap-

tation requests from the policy manager.

Event Dispatcher: The event dispatcher implements the internal communication layer

for the adaptation platform. It receives state change notifications from the application

controllers and delivers them to the system manager.

System Manager: The system manager component decides when adaptation reac-

tions are required by specific applications. These decisions are based on a set of policy

rules specified by the user and/or the applications. When, according to the policy rules,

adaptation is required a request for adaptation is forwarded to the corresponding appli-

cation controller.

106

Implementation

Application Registry

Application Tabe

Application
Controler

Create

Registration
ServerXML

Application

Register

Sh
are

d M
em

ory
Sh

are
d M

em
ory

Figure 5.3: Application registration

The following sections provide a detailed description of these components.

5.3.2 Application Registry

The Application Registry is the first contact point for every application that uses the

system. Applications are required to connect to the Application Registry and submit a

registration document that describes their adaptive interface. The prototype implemen-

tation uses the XML-based interface specification languagethat was described in section

4.4.2.1. In terms of communication, there is no requirementfor a network-based com-

munication protocol to be used. Applications communicate with the application registry

through shared memory (Figure 5.3). In more detail, when theapplication registry is

initiated it creates a named shared memory space along with aset of global semaphores

to control access to the shared memory. The name of this shared memory space and

the global semaphores are predefined and they are known to allrunning applications.

When a running application is initiated it opens a handle to that shared memory space

and communicates with the platform by passing raw data through the memory space.

All communication through the shared memory is handled by the Registration Server

sub-component. When the Registration Server receives an XML registration document

from an application it parses it and uses the Document ObjectModel (DOM) tree to

extract the registration information. In particular, the DOM tree contains details about

the application, the list of adaptation methods that can be invoked as well as the state

107

Implementation

variables that the application externalises. The Application Registry uses that informa-

tion to create and initialise an Application Controller component that will handle all

communication with the specific application.

In addition to handling registration requests the Application Registry component

holds pointers to all Application Controllers active in the system. In more detail, the

Application Registry maintains a list of pointers of all the Application Controllers that

it creates. Moreover it maintains two hashing indices used for locating application con-

trollers based on the application name and the application unique id respectively. This

way the Application Registry can locate an Application Controller and return a pointer

to that controller when requested by other components in theplatform. This functional-

ity is primarily used by the Policy Manager. Specifically, aspolicy rules contain actions

that are related to specific applications, when such actionsneed to be invoked, the Pol-

icy Manager locates the corresponding Application Controller through the Application

Registry and forwards the invocation request to the controller.

5.3.3 Application Controller

The application controller is the component that handles all application communica-

tion after the application has registered with the system. In terms of communication,

Application Controllers communicate with applications through shared memory. When

an Application Controller is initialised it creates a sharedmemory space that is used

only by the corresponding application. This space represents a dedicated point-to-point

communication channel between the Application Controller and its corresponding ap-

plication. After the creation of the shared memory space, the corresponding application

receives a pointer to the newly created shared memory through the Registration Server.

After creation the Application Controller is initialised with the registration informa-

tion submitted by the application. Specifically, the DOM tree (i.e. the parsed XML

document submitted by the application) that was generated by the Application Registry

is used by the Application Controller to create the table of adaptation methods and the

table of state variables exported by the application. The table of adaptation methods is

used for generating adaptation trigger messages that the Application Controller passes

to the corresponding application. The table of state variables acts as a cache for ap-

plication state variables. When a state variable value changes the application controller

stores the new value in its local variable table. This local copy of the state variable value

is returned to the rest of the platform component when it is requested.

108

Implementation

The design of the architecture presented in chapter 4 does not give any details about

when an application should send notifications to the application controller. It is consid-

ered an implementation issue to specify whether an application should report all state

changes to the platform or not. Considering the different configuration options pre-

sented in section 5.2, it is clear that these decisions depend on the actual nature of the

underlying system. A distributed system would require a mechanism where changes in

state would only be reported if they have some significance for the system manager. In

contrast, a single host implementation would not require such a mechanism. However,

in order to improve the performance of this prototype and to avoid unnecessary commu-

nication through the shared memory a mechanism that minimises the number of state

notifications was implemented.

In order gain a better understanding of the internals of thismechanism we need to

revisit the design of the policy rules as presented in section 4.7.3. The definition of a

policy event is related to the values of state variables through a logical expression:

event lowBand :− NetworkInterface.availableBandwidth < 19200
event highBand :− NetworkInterface.availableBandwidth >= 512000
event powerNorm :− Power.percent>= 10

When the policy rules are parsed all the expressions related to a state variable are

combined into a set ofinteresting changes. This set consists of a list of boolean ex-

pressions relating the value of a state variable to constantvalues in accordance to the

policy rules’ definitions. This list ofinteresting changesis sent to the application after it

connects to the Application Controller. The message sent to the application is an XML

document of the form:

<?xml version ="1.0" encoding="ISO−8859−1"?>
<varNotifications>

<stateVariable>availableBandwidth </stateVariable>
<conditionList>

<condition>
<value>19200</value>
<operation>LT</operation>

</condition>
<condition>

<value>512000</value>
<operation>GE</operation>

</condition>
</ conditionList >

</ varNotifications >

109

Implementation

WhereLT corresponds toless thanandGE corresponds togreater or equal(other

keywords used are EQ: equal, LE: less or equal, NEQ: not equal, etc.). The message

includes the name of the state variable along with a list of expressions that the platform

is interested in. The application is responsible for notifying the Application Controller

when any of these expressions changes truth value. Specifically the application should

sent a notification every time one of these expressions change from true to false and vice

versa. The description of the application stub component that implements this func-

tionality (Section 5.3.6) includes a discussion about the way this message specifying

interesting values for a state variable can be used to efficiently discover when notifica-

tions are required. In certain cases the platform can request the application to report

all changes related to a state variable. This approach is necessary if the definition of a

policy event includes multiple state variables. In this case it is not possible to specify

constant boundaries that the platform is interested in. Forexample, an event definition

of the form:

event lowBand :− WebBrowser.bandwidth < VideoPlayer.bandwidth

is one such case where the platform cannot specify constant boundaries for the notifi-

cation of changes. The applications should therefore report all changes related to these

variables.

After the initialisation phase is complete the ApplicationController enters a commu-

nication loop where it receives notification messages from the application and forwards

adaptation requests to the application as requested by the policy manager. The messages

exchanged between the Application Controller and the application are XML documents.

Specifically, a message that is sent by the application to inform about a change of value

for a state variable has the form:

<?xml version ="1.0" encoding="ISO−8859−1"?>
<varChange>

<name>bandwidthInUse </name>
<value>1024</value>

</varChange>

The message includes the name of the variable and the new value. A message

sent from the Application Controller to the application to invoke a particular adapta-

tion method has the form:

110

Implementation

<?xml version ="1.0" encoding="ISO−8859−1"?>
<invokeMethod>

<name>SetBandwidth </name>
< attributeList >

< attribute >
<name>bandLimit </name>
<value>1024</value>

</ attribute >
</ attributeList >

</invokeMethod>

In terms of communication with the rest of the platform an Application Controller

supports the following interactions:

• An outbound call to the methodPostEvent offered by the Event Dispatcher in

order to notify the event dispatcher that the value of a statevariable has changed.

This method is called as part of the controller’s communication loop.

• An inbound call to the methodTrigger offered by the Application Controller. This

method is called by the System Manager when application adaptation is required.

5.3.4 Event Dispatcher

The Event Dispatcher is the component that interconnects a system’s application con-

trollers and the system manager. The main aims of the Event Dispatcher are:

• Fast propagation of state variable changes to the appropriate policy rules.

• Ensure that state variable changes are processed in afirst-come-first-serveorder.

• Ensure that only one state variable change is processed by the system manager at

any time.

The first issue is mainly a performance requirement. Specifically, considering that

in an adaptive system with a large number of applications thenumber of policy rules

controlling the application can be very large. Therefore, the platform should be able

to forward event changes to the appropriate rules with minimum performance overhead

despite the possibly large number of policy rules.

The second issue is a translation of the requirement for ordered delivery of events

to the system manager in the context of a non distributed implementation. In more

111

Implementation

System
Manager

Event
DispatcherApplication

Controller

State Variable

Application
Controller

State Variable Policy Rule

Policy Rule

Policy Rule

Mutually Exclusive Access

Figure 5.4: Forwarding notification events trough the EventManager

detail, in a system where all platform components are located on a single host there

are no communication delays in the propagation of state variable changes. Therefore,

the actual state change propagation mechanism is only required to ensure afirst-come-

first-servepolicy for the variable change notifications. Moreover, in order to maintain

a deterministic behaviour of the system manager no state variable changes should be

forwarded to the system manager before the previous change has been fully processed.

Fast propagation of state variable changes is achieved by linking each state vari-

able to a list of policy rules that are affected by this variable. Specifically, each event

definition in the Event Calculus Policy Language contains oneor more state variables

as part of a boolean expression (Section 4.7.3). Using this relationship between state

variables and policy rules a list of pointers to policy rulesis constructed for each state

variable. When a state variable change is reported by the Application Controller, the

corresponding list of policy rules is used to forward the variable change notification.

The notification forwarding does not include any searches through the table of policy

rules and therefore is not affected by its size. Indeed, thisapproach eliminates the neg-

ative effect that a large number of policy rules might have onthe performance of the

platform.

In order to ensure that only one state variable is processed by the system manager

at any time, the Event Dispatcher ensures a mutually exclusive access to itsPostEvent

method forwarding a state variable change to the System Manager. However, as the Ap-

plication Managers report state variable changes as part oftheir communication loop, it

is not acceptable to block the Application Manager on a mutexsemaphore awaiting to

gain access to the Event Dispatcher. In order to avoid such behaviour, the Event Dis-

112

Implementation

patcher handles each state variable notification on a separate thread, detached from the

Application Manager. In more detail, when the Application Manager calls thePostEvent

method in order to report changes of one of its state variables, the Event Dispatcher starts

a new thread that handles the variable change and the method returns immediately. This

behaviour allows the Application Managers to continue their communication with the

application without any delays. The new thread is then queued in order to gain exclusive

access to the method forwarding events to the system manager.

In terms of communication with the rest of the platform the Event Dispatcher sup-

ports the following interactions:

• An inbound call to the methodPostEvent called as part of the application con-

trollers’ communication loop in order to report a variable change.

• An outbound call to the methodVarChange offered by a Policy rule. This method

call allows the System Manager to process the variable change and potentially

trigger an adaptation action.

5.3.5 System Manager

The System Manager is the component responsible for taking decisions on whether

adaptation is required by the applications registered withthe platform. The decision

taking mechanism is handled by a set of Event Calculus Policy rules. In this prototype

the policy repository is implemented as a text file. The textual description of the policy

rules can be modified by the user through a common text editor.Upon the platform’s

start up the System Manager reads the policy file and parses the policy rules. The policy

rule parser has been implemented using the Parser Generator[Bee00], a port of the

YACC/LEX tools for the Windows platform. The policy parser constructs a parse tree

of the policy code specified in the policy file. This parse treeis then used to construct the

necessary structures that are used for the evaluation of thepolicy rules (Section 5.3.5.1).

In terms of communication with the rest of the platform, the System Manager does

not have a single entry point for the delivery of notificationevents coming from the

Event Dispatcher. Instead the communication with the rest of the platform is delegated

to the individual policy rules handled by the system manager. Specifically, each pol-

icy rule is represented by an individualCRule object. EachCRule object includes the

constructs and functionality for the evaluation of a singlepolicy rule. As described in

113

Implementation

section 5.3.4 each state variable is related to a list of policy rules that are affected by the

changes of the particular variable. When an event is dispatched by the Event Dispatcher

this event is delivered to the appropriateCRule object through a call to the object’s

CheckEvent method. Within the body ofCheckEvent the specific event notification is

processed. At some point after the delivery of a number of events, the condition body

of a policy rule may become true. Then theCRule object processes the action body of

the policy rule and triggers the adaptation methods specified. The triggering process

involves calls to the methodTrigger of the corresponding Application Controllers.

The following section presents a detailed description of the algorithm implemented

for the evaluation of the policy rule conditions.

5.3.5.1 Evaluation of Policy Rules

A characteristic of the policy language presented in section 4.7.3 is that the condition

body of a policy rule describes a pattern of events that should take place in order for

the rule to be considered as true. Therefore the evaluation of a policy rule requires the

occurrence of a number of events that may take place at different time points. This

characteristic implies that the evaluation of policy rulesshould take place progressively

as the values of state variables change over time and triggerrelated events. One rea-

son for such an approach is that there is no easy way to discover when all necessary

information is available in order to evaluate a rule in one step. Rather, the evaluation

of a rule must take place incrementally as information aboutthe state variables become

available. More specifically, as events take place, some predicates within the body of a

policy rule condition may evaluate to true, whilst others are false, awaiting future events

that may change their value. Even while all predicates may have evaluated to true at

specific time points, the time relationships between the time points the events occurred,

may still not be satisfied. Therefore, the policy evaluationmechanism should progress

over time as events take place and allow the execution of the action body only when the

whole condition body has been satisfied.

Before describing how the policy evaluation engine works it is necessary to see in

abstract terms what an evaluation mechanism for these rulesshould produce. As seen in

section 4.7.3 one characteristic of this policy language isthat each policy rule includes

a set of time variables that represent certain time points related to the occurrence of

events (e.g.initiates(e, f , t), the time pointt is related to the occurrence of evente).

114

Implementation

From the policy author’s point of view these time variables do not have any specific

value but represent the time that these events take place. Inpractice, these time vari-

ables receive specific values through the evaluation process. For example, the predicate

initiates(e, f , t) will allow the time variablet to receive a specific value when the event

e takes place and the fluentf is initiated. Based on this observation, we define the

evaluation engine as:

A mechanism that is able to find a solution for the condition body given a set of

events that take place during run-time. The solution includes the values for the time

variables involved in the condition body that allow the condition body to be true. This

solution should be the latest solution relative to the current time.

This last statement is necessary in order to ensure that the evaluation engine will re-

evaluate a condition even after it has already been found to be true before, thus allowing

the continuous re-evaluation of the rules throughout the system’s life-time

In order to identify the mechanism that can find a solution fora given condition body

it is necessary to look in more detail at how time variables receive their values from

the predicates they are members of. One particularly important feature of the policy

language is the fact that not all Event Calculus predicates allow the specification of a

single value for the time variables involved. For example, the predicateholdsat(f , t)

does not indicate a single specific time point fort. In practice, this predicate requires:

a≤ t < b wherea is the time fluentf was initiated andb the timef was terminated. This

implies that the evaluation of a predicate does not result inthe specification of single

values for a time point but rather the specification of certain constraints for the value of

the time points involved in that predicate. To explain this by example, the predicates

happens, initates, terminatesset constraints for their related time variables in the form:

t = a (a is the time point the related event took place), while the predicatesholdsat,

clipped, declippedset constraints of the formt > a or t < a (a is the time point the

related fluent is initiated or terminated).

Another observation that is derived from the specification of the policy language is

the fact that time variables can be attributes to more than one predicate. For example, a

condition of the form:

initiates (event1,fluent1,t) and
holdsat (fluent2, t)

115

Implementation

implies that the time variablet should satisfy the constraints imposed by both predicates:

t = te ∧ t ≥ t f i ∧ t < t f t

where te is the time the eventevent1 took place,t f i is the time point the fluent

fluent2 was initiated andt f t is the time point the fluent was terminated. However, this

fact implies that it is possible to have conflicts within the constraints imposed by a time

variable. In the previous example, if the eventevent1 takes place before the initiation of

fluent1 then the constraints are:

t = te ∧ t ≥ t f i ∧ te < t f i =⇒ t < t f i ∧ t ≥ t f i

In such cases of conflicts in the constraints it is necessary for the evaluation engine

to resolve and discard the constraints that are irrelevant to the evaluation of the full con-

dition body. Following the example at hand, the event involved in theinitiates predicate

that took place before the initiation offluent2 cannot be part of the condition’s solution.

Specifically, as this event took place in the past and this occurrence did not satisfy the

other constraints imposed later by theholdsat predicate, then this event is not part of the

condition’s solution and can be safely discarded.

In order to define the mechanism for resolving such conflicting constraints we should

consider the general case where a time variablet is related to two time pointsa,b. As-

suming thata≤ b, all the possible relationships betweent and the two time points (e.g.

t < a, t = a, t > a etc.) are illustrated in the following diagram:

t t t
-

a
r

t t t
-

b
r

where the two arrows represent time and the relative position of the variables rep-

resent relationships of the formt < a, t = a, etc. Through this illustration it is obvious

that the following conflicting situations cannot be satisfied:

t ≤ a∧ t ≥ b∧a < b

t < a∧ t ≥ b∧a≤ b

t ≤ a∧ t < b∧a≤ b

116

Implementation

The way to resolve these conflict is to discard the relationship related to time point

a (wherea≤ b). The rationale behind this approach is the following: The relationship

betweent anda can either be part of a solution for the condition defined in a policy rule

or not. If the relationship is not part of a solution, discarding the related constraint is

valid. If the relationship is part of a solution, considering that it conflicts with time point

b that is later in time, then this relationship was part of a previously evaluated solution

that has already been handled. Therefore, in both cases discarding the constraint related

to a is acceptable for the evaluation of the most recent solution. This mechanism implies

that the evaluation engine is a progressive procedure that evaluates conditions as events

take place. This evaluation includes the discarding of constraints that have been part of

a previous solution or that do not match with the latest events.

Based on these observations the implementation of the evaluation engine consists

of a mechanism that receives event notifications in terms of atuple(e, t) — wheree is

the event symbol andt is the time the event took place — and discovers the set of con-

straints for the time variables involved in a condition thatallows the condition body to

be true. The processing of the events in the evaluation engine includes the specification

of constraints according to the semantics of the related predicates. The constraints are

checked for possible conflicts and based on the approach described above, the appropri-

ate constraints are discarded.

In more detail, the actual implementation of the evaluationengine uses finite state

automata to represent the state of each predicate. With the exception of thehappens

predicate, all other predicates are related to a single fluent. Therefore the FSAs that

represent these predicates consist of two states corresponding to theholding andnot

holding states of the fluent. The FSAs transit from one state to the other when the

events that initiate or terminate the related fluent take place. The transition of the FSAs

between states triggers the specification of constraints ontheir related time variables.

The specific constraints imposed by the FSAs depend on the particular predicate they

represent. For example theholdsat(f , t) predicate will impose the constraintt > a

when the fluentf is initiated at time pointa. The same predicate will later impose

the constraintt < b when the fluentf is terminated at time pointb. The predicate

clipped(f , t1, t2) will impose the constraintst1 < b and t2 > b when the predicate is

terminated. For the evaluation of the policy rules FSAs are defined for all the Event

Calculus predicates as well as their negations (i.e.not happens, not initated, etc.). The

defined FSAs can be seen in Table 5.1 along with the constraints imposed when there is

117

Implementation

Predicate Affirmation FSA Negation FSA

happens(e, t)
true

t=ae,a

true

t<>ae,a

initiates(e, f , t) not
holds holds

t=a

any other init event

any term event

e,a

not
holds holds

t<>a

any other init event

any term event

e,a

terminates(e, f , t) not
holds holds

t=b

any other term event

any init event

e,b

not
holds holds

t<>b

any other term event

any init event

e,b

holdsat(f , t)
not

holds holds

t<b

any init event

e,b

t>ae,a

any term event

not
holds holds

t>b

any init event

e,b

t<ae,a

any term event

clipped(f , t1, t2)
not

holds holds

t1<bt2>b any term event

any init event

e,b

not
holds holds

t1>b
t2>b any term event

any init event

e,b

declipped(f , t1, t2) not
holds holds

t1<a
t2>a

any term event

e,a

not
holds holds

t1>a
t2>a

any term event

e,a

Table 5.1: Finite State automata representing Event Calculus predicates. The first col-
umn specifies the FSAs for the predicates in their affirmativeform and the second col-
umn in their negated form (e.g. not happens, not initiates).

a transition between the states.

When the policy evaluation engine is initiated for a specific policy rule, a set of

FSAs is created that correspond to the predicates specified in the condition body of the

rule. In addition to the FSAs, a table of all the time variables specified in the condition

is constructed. For each time variable a list of constraintsis created that will receive

a value from the predicates. Each of these constraints holdsthe type of the constraint

(e.g.t > value) and is marked as invalid until it is given a value by the related predicate.

118

Implementation

As discussed earlier each time variable may participate in more than one predicate.

Therefore the list of constraints may contain constraints that are related to multiple

predicates.

Once the operation of the system is started and events start arriving the evaluation

engine passes these events to the corresponding FSAs, allowing these to transit from one

state to the next. During these transitions, the FSAs assignvalues to the specified time

variable constraints. Whenever a new value is assigned to a time variable constraint, the

engine checks this new value against all previously validated constraints. During this

check some of the constraints that do not validate against each other are discarded based

on the approach described earlier.

With this procedure the evaluation engine processes all theincoming events and sets

the required constraints until a solution for the conditionbody is found. This solution

consists of a set of constraints for all the time variables defined in the condition, where

these constraints allow all the predicates to be satisfied. If such a situation can be found,

the condition is considered to be true. In essence this meansthat a combination of

events has taken place at the specific time points that match the situation described in

the condition body.

5.3.5.2 Policy Evaluation Example

Consider the policy rule presented in section 4.7.3:

event lowBand :− NetworkInterface.availableBandwidth < 19200
event normBand:− NetworkInterface.availableBandwidth >= 19200
fluent inLowBand {

initiates (lowBand)
terminates (normBand)

}
condition {

initiates (lowBand, inLowBand, t1) and
not clipped (t1, inLowBand, t2) and
t2 = t1 + 30

}
action {

WebBrowser.LowBand()
}

In this policy rule there are two time variables:t1 and t2. When the rule is initi-

ated no constraints are expressed for the time variables andall the predicates are false.

119

Implementation

Event Fluent Constraints Resolved

lowBand, 1 inLowBand : holds t1=1 t1=1

normBand, 15 inLowBand : not holds

t1=1
t1>15
t2>15

t1>15
t2>15

lowBand, 20 inLowBand : holds

t1=20
t1>15
t2>15

t1=20
t1>15
t2>15

timerEvent, 45 inLowBand : holds

t1=20
t1>15
t2=45
t2>15

t1=20
t1>15
t2=45
t2>15

Table 5.2: Evaluation walk through for a sample policy rule

Assume that the eventlowBand is fired at time 1. The fluentinLowBand moves into

holdingstate (Figure 5.1). Based on the definition of the FSA for theinitiates predicate,

the time variablet1 gets a constraint:t1=1 (Table 5.2). At the same time a timer event

is scheduled to be fired at time1+30 = 31. This timer event will be used to evaluate

the expressiont2 = t1 + 30. The transition of thenot clipped FSA does not impose any

constraints on the time variables.

Assume that the eventnormBand is fired at time 15. The predicateinitiates’ FSA

transits tonot holdsbut it does not impose any constraints. The transition of thenot

clipped FSA imposes constraints for both variables:t1>15 andt2>15. The constraint for

t1 conflicts with the previously set constraint:t1=1 andt1>15. In order for this conflict

to be resolved the constraintt1=1 should be discarded. This means that from that point

on in order for the predicate to be true, the time variablet1 should have a value larger

than 15. This change also causes the predicateinitiates not to be true any more, since

the value fort1 does not satisfy the predicate. Moreover, the timer event scheduled for

time 31 is canceled as it was initiated when the variablet1 took the value 1.

Next assume anotherlowBand event at time 20. This event imposes the constraint

t1=20. This constraint does not conflict with the previous constraint t1>15 and therefore

no additional actions are necessary. A timer event is also scheduled for15+30=45.

Assume that no other application events are fired for the next30 seconds. This means

that the next event would be the timer event fired at time 45. This timer event would

impose the constraintt2=45 which complies with the previously set constraintt2>15.

At that point all time variables have received a valid set of constraints that satisfy all

predicates in the condition body. As a result the policy manager considers the condition

120

Implementation

to be true and executes the action body of the rule.

5.3.6 Application Stub

In order to assist the creation of adaptive context-aware applications that will collaborate

with the adaptation support platform, a platform stub library was developed. This library

supports the application side operations that are related to the platform. In particular, the

library supports registration and communication with the platform, notifications for state

variable changes and callback functionality for the invocation of adaptation methods.

The stub was developed as a C++ object-oriented library that can be statically linked

with an application. In order to allow developers to implement their own application

stub (if, for example, support for other programming languages is required) a detailed

description of the stub’s functionality is presented. In more detail, the operation of the

stub can be divided into two sections, the registration section and the communication

loop (Fig 5.7). During the registration phase the stub connects to the shared memory

space handled by the Registration Server and sends out the XMLdescription of the

application’s interface. Next it awaits for a response in the form of the name of the

shared memory space that was created by the Application Controller. The graph of

interesting valuesis received after the stub has connected to the application controller.

This step completes the registration phase. The communication loop consists of a thread

handling adaptation requests sent by the application controller and another thread that

Start

Connect to
Platform

Send
Registration

Receive Name of
AppManager

Shared Memory

Connect to
AppManager

Receive
Value Graph

for Notifications

Spawn Reading
Thread

Start
Thread

Create Thread

Triggered to
Adapt?

Call Adaptation
Callback

YES

Terminate?

Stop
Thread

NO

YES

NO
Var change?

Matches
Notification
Graph?

YES

YES

Send
Var change
Notification

NO
Terminate?

Stop

YES

NO

NO

Figure 5.5: Application stub

121

Implementation

512000

24300 512000

24300 128000 51200019200

< >=

< >=

>=<

Figure 5.6: Value Tree used for matching variable values against the interesting values
reported by the platform

forwards variable change notifications to the platform.

Handling variable change notifications involves the use of afiltering mechanism that

checks whether the value change reported by the applicationshould be forwarded to the

platform. As discussed in section 5.3.3 the Application Controller sends out an XML

description of the values that are considered interesting for the adaptation platform.

This description is parsed by the Application Stub in order to construct a tree of value

change borders that when passed a notification event should be sent to the platform.

For example, a description of the values the platform is interested in for the variable

availableBandwidth may contain the following conditions:

availableBandwidth <19200
availableBandwidth = 24300
availableBandwidth > 128000
availableBandwidth >= 512000

Using these conditions a binary tree is constructed that allows fast searching of val-

ues (Figure 5.6). In particular, for every variable change reported by the application the

stub stores its position in the value tree. If the next variable change has a value that

results at a different position in the value tree then this change should be reported to the

platform.

5.3.6.1 Application API

For the purpose of simplifying the development of adaptive applications that can col-

laborate with the platform, the developers can use the object-oriented application pro-

gramming interface (Figure 5.7). The API consists of a collection of classes that take

care of all communication with the platform. The main classes defined by the API are:

122

Implementation

//---- Client side support for adaptation ---
class AD_Client {
public:

AD_Client();
virtual ~AD_Client();
void VarChange(LPCTSTR varName , void* varValue);
void Stop();
void Start(AD_ApplicationInfo *p_Application);

protected:
void CommunicationLoop();

};

//--- Application information container ---
class AD_ApplicationInfo {
public:

AD_ApplicationInfo(LPCTSTR pAppName , LPCTSTR pAppId);
virtual ~AD_ApplicationInfo();
bool AddNewMethod(AD_MethodInfo *newMethod);
bool AddNewVariable(AD_VariableInfo *newVar);
void CreateXML(char* out);
void SetDescription(const char* sDescription);
AD_VariableInfo * GetStateVariable(const char* pVarName);

CString m_sAppName;
CString m_sAppId;

protected:
SVarList *m_lstStateVariables;
SMethodList *m_lstMethods;

};

//--- Method information container ---
class AD_MethodInfo {
public:

AD_MethodInfo(const char* pName , AD_Attribute* attribList ,
int (__cdecl *p_TriggerCallback)(void*));

~AD_MethodInfo(void);
void CreateXML(char* out);
void SetDescription(const char* sDescription);

CString m_sName;
AD_Attribute *lstAattributes;
AD_ApplicationInfo *m_pParentApplication;

};

//--- State variable information container ---
class AD_VariableInfo {
public:

AD_VariableInfo(const char* vName , AD_VarType vType);
void SetDescription(const char* sDescription);

};

//--- Attribute information container ---
class AD_Attribute {
public:

AD_Attribute(const char* vName , AD_VarType ,
AD_VariableInfo *relVar = NULL);

};

Figure 5.7: Application stub API

123

Implementation

// Create the ApplicationInfo object
AD_ApplicationInfo *application =

new AD_ApplicationInfo("Test","10001");

// Add a state variable
AD_VariableInfo *var = new AD_VariableInfo("bandwidth", vInteger);
application ->AddNewVariable(var);

// Add an adaptive method
var = application ->GetStateVariable("bandwidth");
AD_Attribute * attrib = new
AD_Attribute("newBand", vInteger , var);
AD_MethodInfo * method = new
AD_MethodInfo("SetBandwidth", attrib , CallbackFunc);
application ->AddNewMethod(method);

// Create the adaptClient object
AD_Client adaptClient();
adaptClient.Start(application);

// Notify about the value change of a state variable
int nBandValue = 52030;
adaptClient.VarChange("bandwidth", (void*)&nBandValue);

Figure 5.8: Sample code: using the application stub

class AD_Client The main component responsible for all interactions with the plat-

form. It constructs the XML definition of the application’s interface and passes it to the

platform during registration. This action is performed through theStart(appInfo)

method call. TheVarChange(varName, varValue) method call is used to notify the

AD_Client object that a state variable value has changed. This notification may be

passed to the platform, if required.

class AD_ApplicationInfo Holds all information about the application. It is a con-

tainer for all definitions of state variables and methods as defined by the method calls

AddNewMethod(methodInf) andAddNewVariable(variableInfo) respectively.

class AD_MethodInfo Holds information about the definition of an application’s me-

thod. Apart from the details required for the application registration (i.e. method name,

list of attributes, etc.) the specification of an AD_MethodInfo object includes the defi-

nition of a callback function that will be invoked whenever that method is triggered by

the platform.

124

Implementation

class AD_VariableInfo Holds information about the definition of an application’s

state variable.

In order to illustrate how this API can be used by an application, figure 5.8 shows

a simple example of its use. Specifically, the application uses theAD_ApplicationInfo to

construct a container that holds the application specification. This container is loaded

with AD_VariableInf objects representing the application’s state variables and

AD_MethodInfo objects representing the application’s adaptation methods. TheStart

method call performs the application registration and initiates the communication loop.

Whenever an adaptation request is sent from the Application Controller, a callback func-

tion is called containing the name of the method and a list ofAD_Attribute objects with

the attribute values.

5.4 Platform Operation

Based on the descriptions of the platform components presented, this section offers a

description of the actions taken by each component during operation.

5.4.1 Platform Initialisation

During initialisation, the policy manager loads the set of policy rules from the policy

repository. The actual policy repository is a file containing the active policy rules. If

new policy rules have been installed, the policy manager merges the existing policy

rules with the newly installed set. The set of policy rules that are loaded include both

the policy rules that are inserted by the applications during their installation and the

policy rules added by the user.

Using the event specifications defined in the policy rules, the policy manager con-

structs a relationship table linking the application statevariables with the policy rules

that are affected by their change. This relationship table is passed to the event manager.

The event manager uses this table for directing events regarding state variable changes

to the specific rules affected by these changes.

125

Implementation

Application Application
Controller

Event
Dispatcher

System
Manager

Registry

Create

Update

Var. Change

Var. Change

Adapt

Figure 5.9: Operation of the coordinated adaptation platform

5.4.2 Application Initialisation

When an application is initiated it connects to the adaptation platform using a well

known communication point (a named shared memory buffer). The application can

then send out the XML document with the description of the adaptation interface it im-

plements. The Application Registry component parses the XMLdocument and creates

an Application Controller component dedicated to that particular application.

5.4.3 State Change Notification

When a value of a state variable changes, the application is responsible for notifying

the platform about the new value. This notification is sent tothe Application Con-

troller. The Application Controller requests access to the Event Manager. If another

Application Controller is reporting a notification, it is putinto a FIFO queue. When

the Application Controller is granted access to the Event Manager, the Event Manager

signals the Application Controller to update the value of theapplication’s state variable

with the new value. This late update of the Application Controller’s values is necessary

in order to make sure that the values of state variables are updated in the right order and

a previous evaluation of a policy rule will not use newer state variable values. Next the

Event Manager forwards the notification message to the Policy Manager. The Policy

Manager uses the notification message to partially evaluatethe policy rules affected by

the value change.

126

Implementation

5.4.4 Adaptation

As the variable change notifications reach the Policy Manager the evaluation of some

rules will result into a sequence of adaptation actions thatneed to be performed. The

policy manager sends the action messages specified in the body of the policy rules to

the corresponding application controllers. The application controllers marshal the adap-

tation triggering message and send the message to the application.

5.5 Summary

This chapter presented the implementation of a prototype platform supporting adap-

tive context-aware applications. The particular prototype is based on a “single host”

configuration where both the platform and the adaptive applications are located on the

same host. The discussion focused on particular aspects of the implementation that

have significant impact on the efficiency of the platform. In particular, the mechanism

for filtering notification messages, the implementation of the event manager and the im-

plementation of the policy evaluation mechanism were aimedat creating an efficient

platform that imposes minimal overhead to the operation of adaptive applications run-

ning in the system. The efficiency of this prototype is investigated in chapter 6.

127

CHAPTER VI

Evaluation

Contents
6.1 Overview . 129

6.2 Qualitative Evaluation . 129

6.2.1 Applications and Monitoring Tools 130

6.2.2 Coordination . 139

6.2.3 Conflict Resolution . 143

6.2.4 Extensibility . 147

6.2.5 User Involvement . 150

6.2.6 Qualitative Evaluation Summary 152

6.3 Performance Evaluation . 153

6.3.1 Methodology . 154

6.3.2 Number of Applications . 155

6.3.3 Number of Rules . 156

6.3.4 Rule complexity . 157

6.3.5 Rules per event . 159

6.3.6 Performance Summary . 160

6.4 Summary . 160

128

Evaluation

6.1 Overview

The previous two chapters presented the design and implementation of a prototype plat-

form that was developed following the requirements presented in chapter 3. This chapter

presents an evaluation of the developed platform. The platform evaluation has two parts:

a qualitative evaluation that investigates the characteristics of the platform (and in par-

ticular the platform’s support in relation to the criteria established in chapter 2), and

a quantitative evaluation that measures the performance and scalability characteristics

of this platform. The aim of the performance evaluation is tobe able to draw general

conclusions beyond the scope of this prototype implementation, about the design of a

platform that supports coordinated adaptation.

6.2 Qualitative Evaluation

In this section we evaluate the features offered by the platform that, as discussed in

chapter 3, are considered important for the support of adaptive context-aware applica-

tions. In particular, in this section we investigate the behaviour of the platform in terms

of support for coordination, conflict resolution, extensibility and user involvement.

For this qualitative evaluation a set of test applications were developed to allow

experimentation with the platform. The applications developed were a video stream-

ing player, a web browser and an e-mail client. The actual selection of the particular

applications was based firstly on popularity (applicationsthat are commonly used on a

computer system) and secondly on their diversity in terms offunctionality. In particular,

the video player uses a data streaming communication protocol and has high resource

requirements in terms of CPU and power; the web browser’s traffic follows a pattern

where bursts of data downloads are followed by periods of inactivity and, as an inter-

active application, requires fast responses to user requests; the e-mail client is, most of

the time, working in the background, its network demands areperiodic and may occa-

sionally require the download of large amounts of data (i.e.e-mails with attachments).

These diverse characteristics allow the evaluation of the platform’s ability to support

different applications and to allow effective collaboration between diverse applications.

In addition to these applications a set of system monitoringcomponents were also

implemented. Specifically, a network interface module thatmonitors and controls the

129

Evaluation

Adaptation Support Platform
Network Interface

Location Monitor

Video
Player

Web
Browser

E-mail
Client

Operating System

Power Monitor

User Awareness

Figure 6.1: System setup for the evaluation of the adaptation platform

network interface, a power monitoring module that reports the state of the battery power

and a simulated location module that reports the current location of the device. The

following sections present these applications and system components in more detail.

6.2.1 Applications and Monitoring Tools

6.2.1.1 Video Player

The adaptive video player is based on the Real Player video player [Real03]. The Real

Player is an RTP/RTCP compliant video player that supports adaptation based on the

quality of the network connection. More specifically, the Real Player can switch be-

tween different versions of streaming video and/or audio that correspond to varying lev-

els of quality, in response to the changing quality of the network connection. In order to

make the Real Player compliant with the adaptation support platform, we developed an

RTCP proxy that can filter the RTCP messages sent to and from the remote video server.

Moreover, the RTCP proxy can inject RTCP commands to the client-server channel in

order to cause adaptation on demand. This configuration allows the RTCP proxy to

instruct the video server to start or stop the video streaming and switch to alternative

Video Player Video Server

RTCP
Proxy

RTCP

RTP

RTCP

Adaptation Support Platform

Figure 6.2: Adaptive video player through an RTCP proxy

130

Evaluation

Video Player State Variables

string state Reports the current state of the video player. Possible values:
‘idle’, ‘playing’,‘paused’, ‘congested’, ‘buffering’

int streamBandwidth Bitrate of the current stream in bps.

int videoBandwidth
int audioBandwidth

Bitrate of the current video/audio stream in bps.

int highVideoBandwidth
int highAudioBandwidth

The next higher video/audio bitrate from the alternative streams
that the player can switch to.

int lowVideoBandwidth
int lowAudioBandwidth

The next lower video/audio bitrate from the alternative streams
that the player can switch to.

Video Player Methods

Start()
Stop()

Starting, stopping the video and audio play-out.

StartVideo()
StartAudio()
StopVideo()
StopAudio()

Starting, stopping the video or the audio play-out.

VideoBandUp()
VideoBandDown()

Switch to a video stream with higher/lower bitrate.

AudioBandUp()
AudioBandDown()

Switch to an audio stream with higher/lower bitrate.

Table 6.1: Video Player: Adaptation Interface

video or audio streams.

Collaboration of the video server with the adaptation platform is achieved through

the RTCP proxy. In particular, the RTCP proxy, representing the video player appli-

cation, registers with the platform . The interface exposedby the proxy includes state

variables reporting the current state of the player, information about the current video

stream and information about alternative video streams available. The RTCP proxy re-

trieves that information from the RTCP messages exchanged between the player and

the server. In particular, the initialisation messages exchanged when the player con-

nects to the server contains details about the alternative video and audio streams and the

consecutive messages include details about the current state of the video stream.

The application interface that is used by the RTCP proxy to connect to the adaptation

platform also includes a set of methods that allow the platform to start or stop the video

streaming and request the player to switch into an alternative video or audio stream.

Details of the video player’s interface are presented in Table 6.1.

The default policies that were implemented for the adaptivevideo player allow

the switching between higher/lower bandwidth streams in response to network QoS

131

Evaluation

changes. In particular, the default policies use the NetworkInterface monitoring module

to determine the available bandwidth on the local network connection and, if enough,

switch into a higher video stream. Moreover, the lack of available bandwidth would

require the video player to switch to a lower quality video stream. A sample rule that

handles the switching of the video stream is:

event videoBandAvail :− NetworkInterface.availableBandwidth >
VideoPlayer.highVideoBandwidth − VideoPlayer.streamBandwidth

event noVideoBandAvail :− NetworkInterface.availableBandwidth =<
VideoPlayer.highVideoBandwidth − VideoPlayer.streamBandwidth

fluent availVideoBand {
initiates (videoBandAvail)
terminates (noVideoBandAvail)

}
condition {

initiates (videoBandAvail, availVideoBand, t1) and
not clipped (availVideoBand, t1, t2) and
t2 = t1 + 10

}
action {

VideoPlayer.VideoBandUp()
}

This rule instructs the video player to switch to a higher bitrate/higher quality stream

when the available network bandwidth is enough to handle thenew video stream. The

video player will switch to the new video stream if that condition stays valid for more

than 10 seconds. Similar rules are used for reducing the stream bit rate of either video

or audio stream.

6.2.1.2 Web Browser

The adaptive web browser was based on a traditional non adaptive web browser (e.g.

Internet Explorer) with the support of a web proxy pair implementing the necessary

adaptive behaviour (Figure 6.3). Specifically, two proxiesare responsible for handling

Web Browser Web ServerWeb
Proxy

Adaptation Support Platform

Web
Proxy

Weak Link Strong Link

Control

Figure 6.3: Adaptive web browser based on a pair of proxies

132

Evaluation

Web Browser State Variables

string state Reports the current state of the web browser. Possible values:
(i.e. ‘idle’, ‘downloading’)

string requestURL The url that was requested.

int bandwidth The bitrate that the data stream is delivered.

int setBandwidth The set bitrate that the data stream should delivered.

bool compressed Boolean variable to specify if the text compression is applied.

bool imageBW Boolean variable reporting if the images are converted to black
and white.

bool imageNo Boolean variable reporting if the images are filtered out of the
delivered data.

Web Browser Methods

Fetch(url) Fetches the specified url.

SetBandwidth(band) Sets the bitrate that the data should be delivered.

SetImageBW(boolVar) Toggles the black-and-white image filtering.

SetImageNo(boolVar) Toggles the no-image filtering.

SetProxy(ip, port) Sets the address of the corresponding proxy pair.

Table 6.2: Web Browser: Adaptation Interface

the web traffic over a weak link (e.g. a wireless link). The first web proxy is located on

the same host as the web browser and the second proxy on a remote host that is part of

the fixed network and has a high speed connection with the web server. The two proxies

communicate in order to collaborate and perform the necessary adaptive functionality.

In particular, adaptive behaviour supported by the proxy pair include: specification of

the bitrate that data should be delivered to the web browser,compression of text/html

data, image conversion to black-and-white and removal of images from a web page.

In terms of communication with the adaptation support platform, the local proxy

represents the web browser as an adaptive web browser. This means that all adaptation

requests are from the platform to the local proxy and the local proxy collaborates with

the remote proxy to implement them. In terms of state variables, the web proxy exports

state information such as the url being fetched, the bitratethat the current stream is

being downloaded at, and the use of a specific image filtering technique, etc. One inter-

esting aspect of the behaviour of the web proxy is that when the web browser requests

the retrieval of a specific url, the proxy submits that information to the platform as a

requested URLand awaits for an invocation of theFetchmethod in order to carry out

the request. This feature allows the platform to perform necessary adaptation actions

before a specific url is retrieved. Details of the web browser’s interface are presented in

Table 6.2.

133

Evaluation

The default policies of the adaptive web browser handle common url requests and

network related adaptation For the adaptive web browser themain policy that handles

all web requests is the following:

event :− WebBrowser.requestURL <> ""
condition {

happens (requestURL)
}
action {

WebBrowser.Fetch(WebBrowser.requestURL)
}

This rule lets the web browser fetch the url that was requested by the user. This is

an unconditional fetching rule that can be modified by the user to perform any custom

adaptations required when a specific url is requested.

One of the policy rules that handles the behaviour of the web browser under low

bandwidth conditions is:

event lowBand :− NetworkInterface.availableBandwidth > 19200
event highBand :− NetworkInterface.avilableBandwidth <= 19200
fluent inLowBand {

initiates (lowBand)
terminates (highBand)

}
condition {

initiates (lowBand, inLowBand, t1) and
not clipped (inLowBand, t1, t2) and
t2 = t1 + 30

}
action {

WebBrowser.SetBand(0.9 ∗ NetworkInterface.availableBandwidth)
WebBrowser.SetImageBW(true)

}

This rule is triggered by the low available bandwidth. When the low bandwidth state

is active for more than 30 seconds the platform will request the pair of web proxies to

convert all delivered images to smaller black-and-white images.

6.2.1.3 E-mail client

The E-mail client is an application that was developed from scratch in order to allow a

high level of external control of its behaviour. The client is using the Post Office Proto-

col [J.Myers96] and the Simple Mail Transfer Protocol [Postel82] to communicate with

134

Evaluation

the e-mail server. The application is registered with the nameEmail. The registration

information includes state variables like: the state of theapplication and information

related to the current email being send or retrieved. The control methods supported by

the e-mail client include methods for checking for new e-mails, fetching e-mails and

controlling the network usage of the client (Table 6.3).

For the e-mail client the default policy rules handle the periodic checking for new

e-mails and the fetching of e-mails:

event echeck :− Email.state = "emailChecking"
event necheck:− Email.state <> "emailChecking"
fluent noEmailCheck {

initiates (necheck)
terminates (echeck)

}
condition {

initiates (noEmailCheck, necheck, t1) and
not clipped (noEmailCheck, t1, t2) and
t2 = t1+300

}
action {

Email.CheckMail()
}

This rule triggers the Email client to check for new e-mails 5mins after the last

check.

event fetchEmail :− Email.state = "fetchReq"

E-mail State Variables

string state Reports the current state of the e-mail client. Possible val-
ues: (i.e. ‘idle’, ‘emailChecking’, ‘emailFetching’, ‘emailSend-
ing’, ‘fetchReq’, ‘sendReq’)

int currentEmailSize
string currentEmailFrom
string currentEmailTo
string currentEmalSubject

State variables related to the current e-mail either the one being
fetched or the one being sent.

E-mail Methods

Check() Retrieves the headers of the new e-mails from the server.

FetchEmail() Retrieves the current email from the server.

SuspendNet() Suspends all network activity.

ResumeNet() Resumes network activity continuing the operation that was
stopped by the SuspendNet call.

Table 6.3: E-mail: Adaptation Interface

135

Evaluation

Network Interface State Variables

string state String variable that report the current state of the network inter-
face (i.e. ‘idle’,‘sleeping’,‘suspended’).

int netBandwidth The bandwidth of the network connection.

int availableBandwidth The presently available bandwidth.

Network InterfaceMethods

Sleep() Set the network interface into sleep mode.

Suspend() Set the network interface into suspended mode.

Wake() Resumes from sleep or suspended mode.

Table 6.4: Network Interface: Adaptation Interface

condition {
happens (fetchEmail)

}
action {

Email.FetchEmail()
}

This rule lets the e-mail client fetch the body of the requested e-mail. This is an

unconditional fetching rule that can be modified by the user to perform any custom

adaptations when fetching an e-mail.

6.2.1.4 Network Interface

The network interface module is a system application that reports and controls the state

of the local network connection. This module registers withthe platform as aNet-

workInterfaceapplication. The network interface module reports bitrateof the existing

network connection and an estimation of the available bandwidth. For the estimation of

the available bandwidth the network interface module periodically retrieves the number

of bytes received and transmitted by the network interface.The estimation of the used

bandwidth is based on the calculation of the weighted average usage of the network

card.

avBandk =

n

∑
i=k

Ai−kbi

T
n

∑
i=k

Ai−k

∀i, j i > j ⇒ Ai > A j

wheren is the total number of samples,k is the oldest sample used for the calculation

of the weighted average,Ai (i = 0, . . . ,n− k) is the weight used for the calculation of

136

Evaluation

Power Monitor State Variables

string state String variable that report the current state of the Power Monitor
(i.e. ’charging’,’battery’).

int percent The battery status in terms of percentage being full.

Table 6.5: Power Monitor: Adaptation Interface

the average,bi is the sampled traffic in bytes andT is the time period between samples.

The weightsA0 . . .An−k follow a linear increase of values. This is a very simple way

to estimate the average bandwidth usage on the network card.It is not intended for

general use and it is here only as a simple mechanism that can support network related

adaptation in the context of this evaluation.

6.2.1.5 Power Monitor

The power monitor is a system application that reports the state of the battery power in

the system. The interface of the power monitor includes a state variable reporting the

percentage that the battery is full and the current state of the power source (i.e. running

on batteries or charging).

6.2.1.6 Location Monitor

The location monitor module is an application that simulates a location tracking service.

The design of the location module is influenced by location-aware systems based on

location advertising beacons (e.g. [Cheverst00]) mostly used in cellular networks where

location is identified by a network cell id. Specifically the location module returns the

current location of the system in terms of a string label. This string label contains the

tag of the current location, such as ‘home’, ‘office’, ‘corridor’, etc.

Location Monitor State Variables

string state String variable that report the current state of the Location Mon-
itor (i.e. ’active’,’stopped’).

string locationLabel String variable that returns the label of the current location(i.e.
‘office’, ‘home’).

Table 6.6: Location Monitor: Adaptation Interface

137

Evaluation

Figure 6.4: Notification message from the User Awareness Module

6.2.1.7 User Awareness Module

The user awareness module is a simple application that notifies the user about adaptation

actions that the platform is performing. The module works inthe background and can

present notification messages to the user in the form of balloon pop-up messages or

modal dialog boxes. The user is able to set the level of intrusion for the notification

messages. In more detail, on the lowest level of intrusion setting the user awareness

module will not show any messages to the user and simply logs the messages for later

review. Medium level of intrusion allows the awareness module to show balloon pop-up

message over the system task bar. High level of intrusion allows the awareness module

to notify the user through modal dialog boxes. The interfaceof the awareness module

includes a simple methodNotify that an adaptation policy rule can call in order for a

particular message to be presented:

condition {
......

}
action {

138

Evaluation

......
Awareness.Notify("Video player reduced the quality of the video")

}

6.2.1.8 Applications Summary

The previous sections presented the set of adaptive applications that were developed as

part of this evaluation procedure. In particular, existingapplications were modified in

order to collaborate with the prototype adaptation platform as well as new applications

and monitoring components that were implemented to work with the platform. The

following section presents the qualitative evaluation of the adaptation platform. This

qualitative evaluation includes the use of the presented applications and the definition

of adaptation policies that perform coordinated adaptation, conflict resolution or extend

the triggers that applications can respond to.

6.2.2 Coordination

One of the main subjects of criticism for existing adaptation support platforms presented

in chapter 2 is the lack of efficient coordination between applications. Specifically, many

adaptation systems (e.g. Puppeteer, Laissez-Fair applications) tend to treat applications

in isolation from the rest of the system. System’s based on open architectures break

this isolation but rely on the application developer to use information about other ap-

plications and achieve coordinated adaptation. There are platforms that were developed

in order to support coordination. However, these platform tend to look at coordination

from a limited point of view. For example, coordination support platforms such as the

Event Heap considers the support for the the exchange of notification messages between

applications. Such approach relies on the applications themselves to use these notifica-

tions and coordinate their activities. Middleware platforms consider coordination as a

mechanism to achieve balanced resource sharing between applications. In Odyssey in

particular, allowing applications to specify their requirements in terms of resources and

maintaining resource sharing according to these requirements is considered a form of

coordination.

In this thesis we consider coordination as the ability of thesystem to coordinate the

actions taken by adaptive applications based on a set of specified rules. The aforemen-

tioned approaches are either special cases of this approach(e.g. resource sharing) or

139

Evaluation

supporting technologies (e.g. event exchange mechanisms).

In order to look at the support for coordination offered by the platform presented in

this thesis, a simple coordination scenario was implemented. This scenario shows how

two applications (a Web browser and an E-mail client) can coordinate the use of the

network in order to improve the delivery time of web content.In particular, using the

adaptation interfaces described in section 6.2.1 a set of policy rules were defined that

control the two application to trigger the e-mail client to suspend the use of the network

when a web page is downloaded. This can be a required behaviour for a system con-

nected over a weak link. In particular, as the web browser is an interactive application,

disrupting the loading of a page in order to check for new e-mails would be undesirable

for the user. In order to achieve this effect two additional rules were added to coordinate

the e-mail client with the web browser:

event webDownload :− WebBrowser.state = "downloading"
condition {

happens (webDownload)
}
action {

Email.SuspendNet()
}

This rule causes the e-mail client to suspend all network activity when the web

browser starts to download a page. An additional rule is specified that will trigger the

email client to resume the network usage when the page has been downloaded.

event webDownload :− WebBrowser.state = "downloading"
event webNotDownload :− WebBrowser.state <> "downloading"
fluent webNotDownloading {

initiates (webNotDownload)
terminates (webDownload)

}
condition {

initiates (webNotDownloading, webNotDownload, t1) and
not clipped (webNotDownloading, t1, t2) and
t2 = t1+10

}
action {

Email.ResumeNet()
}

This rule triggers the e-mail client to resume network activity when the web browser

has stopped downloading pages for more than 10 seconds.

140

Evaluation

As we can see from this example the actual approach that is used by the platform

presented in this thesis is quite different from the adaptation approach used by existing

middleware applications. In more detail, existing systemsrequire the applications to

specify their resource requirements and possible coordination is performed implicitly

by allowing sharing of the resources. However, here the adaptation rules control the

actual actions that the applications are required to take. In more detail, the notion of

coordination as it is approached by this work relates to activities and resources used.

An implication that is derived from this approach is that theadaptation mechanism

is not related to a specific resource. In more detail, coordinated actions can be specified

for applications regardless of the involvement of resourcesharing or not. Indeed, in

a context-aware environment coordination exceeds the boundaries of resource sharing.

Applications may require to coordinate their actions simply because that is what the

user wants. These coordinated actions may be related to a resource (as presented in the

previous scenario) or it can be a requirement of the user. Forexample, one scenario that

falls in this category is to coordinate applications in relation to the location of the user.

Specifically, a rule that can switch off the audio from the video player when the user

enters the corridor of the building is the following:

event corridorIn :− Location.locationLabel = "corridor"
event corridorOut :− Location.locationLabel <> "corridor"
fluent inCorridor {

initiates (corridorIn)
terminates (corridorOut)

}
condition {

initiates (inCorridor, corridorIn, t1)
}
action {

VideoPlayer.StopAudio()
}

By extending the rule body this rule can be used to coordinate other applications

that should be triggered when the user enters the corridor:

action {
VideoPlayer.StopAudio()
WebBrowser.SetProxy(10.10.10.1, 8080)

}

As discussed in the previous paragraphs, an existing approach in resource manage-

ment is to allow applications to specify resource requirements and rely on the system

141

Evaluation

to satisfy their requirements. Although the design of this platform does not rely on

resource reservation mechanisms to control resource sharing, the actual design of the

platform does not prevent this. In more detail, the adaptation interfaces of the applica-

tion can include state variables that express the resource requirements of the application.

One such example is the video player. The state variables representing the existing bit

rate of the video stream along with the bit rates of lower and higher bit rate streams

are actually indications of resource windows that the videocan switch to. The default

policy rules that were described in section 6.2.1.1 controlhow the application can adapt

if the network resources are either enough to support a higher quality video stream or

not enough for the current stream and the player should switch to a lower quality one.

Nevertheless even in this case the policy rules that controlsuch an application are based

on actions that should be taken instead of an explicitly resource related adaptation ap-

proach. Specifically, the rules include the actions that theapplication should take in

order to adapt or collaborate in a coordinated adaptation. This characteristic allows the

platform to offer a general purpose coordination mechanism.

One observation that is derived from the video example and the coordination sce-

nario presented earlier is that there is a clear relationship between the adaptation inter-

faces exposed by the applications and the degree to which coordination can be achieved.

In more detail, in the web browser-email client coordination scenario the fact that the

e-mail client implements an adaptation interface with the method callsSuspendNet and

ResumeNet is vital to achieve the specific coordinated action. Generalising this obser-

vation it is clear that the level of flexibility offered by this platform is directly linked to

the level of control applications offer to the platform. Considering a system where appli-

cations follow an open approach (i.e. a Reflective approach) in their design might allow

the platform to have a greater degree of control over the actions of the applications.

Summarising the discussion on coordination, the adaptation support platform dis-

cussed here follows an approach where adaptation is not related to resource sharing

between applications according to the requirements expressed by applications. Rather

the approach followed is related to the actual actions that the applications are required

to take in order to achieve resource related coordination orany other type of coordina-

tion. Specifically, this approach is general enough to allowcoordination for any context

related information that applications should respond to (e.g. location). One observation

that is derived from this investigation is that the degree offlexibility in achieving coor-

dination between applications is directly related to the adaptation interfaces exposed by

142

Evaluation

the applications. In particular the more control applications offer to the platform, the

more flexibility is possible to coordinate adaptive applications.

6.2.3 Conflict Resolution

Before we investigate the features of the adaptation platform discussed here in relation

to conflict resolution it is first necessary to define what aconflict is. Let’s consider an

obvious case of a conflict. Consider the following adaptationpolicies defined for the

email client:

event officeEvent :− Location.locationLabel = "office"
condition {

happens (officeEvent, t1)
}
action {

Email.SuspendNet()
}

event officeEvent:− Location.locationLabel = "office"
condition {

happens (officeEvent, t1)
}
action {

Email.ResumeNet()
}

It is clear that the two rules are identical with the only difference in their action body.

Specifically, both rules are triggered when the user enters their office and the one triggers

the e-mail client to suspend all network activity while the other triggers the client to

resume network activity. Obviously this is a conflicting situation. When these rules are

used the actual result depends on the sequence that the rulesare evaluated. Both are

activated but the outcome after their execution is the one caused by the rule executed

last. Now, if we modify the first rule as follows:

event officeEvent :− Location.locationLabel = "office"
condition {

happens (officeEvent, t1)
}
action {

Email.Check()
}

143

Evaluation

This rule triggers the email client to check for new e-mails when the user enters

their office. This new rule does not conflict with the second rule described previously.

Indeed, the result is that the e-mail client resumes networkactivity when the user enters

their office and checks for new e-mails.

The examples presented here offer an interesting observation. One factor that is

directly related to conflict detection is the actual semantics of the actions that are ex-

ecuted when an application is triggered to adapt. In particular, the diference between

the conflicting rules and the non confliction rules is that theactionSuspendNet andRe-

sumeNet can not take place at the same time, while the actionsResumeNet andCheck

can. Therefore, the actual reason for this conflict is the dependency between the two

actions and in particular the fact that they both affect the network connectivity of the

application in contradicting ways.

Moving one step on, consider the two conflicting rules presented earlier and consider

the case where the first rule has the following form:

event officeEvent :− Location.locationLabel = "office"
condition {

happens (officeEvent, t1) and
t2 = t1+1

}
action {

Email.SuspendNet()
}

This rule is similar to the one presented with the only difference that it is activated

one second after the user enters the office. With this rule theactual sequence of actions

is now predictable and moreover, in strict terms this is not aconflict since the two rules

are triggered by different conditions. However, in practice the user experience is the

same as before. In particular, from the user’s point of view the two rules should not

coexist since they don’t make any practical sense.

Generalising the aforementioned observations in a context-aware environment where

the primary aim for the system is to enhance the user experience, the concept of a con-

flict is best described as an “undesirable behaviour”. Indeed the previous example is

not a conflict in strict terms but it is an undesirable behaviour of the system. Another

similar example is the case of the web browser and the video player described in section

6.2.1 using their default policies. When the two applications run together an interesting

behaviour is observed: when the available network bandwidth is low the web browser

144

Evaluation

tends to reduce its demand for network in favour of the video player.

The reason for that behaviour lays in the set of default policies. As seen earlier the

video player is constantly trying to deliver the best possible video quality that can be

supported by the available network bandwidth. If the web browser stays inactive for

more than 10 seconds (something that quite often happens) the video player takes over

the available bandwidth in order to improve the delivered video. After that, the browser

can never recover. According to the policy rules, the browser will maintain its delivery

bitrate within the limits of the new available bandwidth.

This behaviour can be considered a conflict or not, dependingon the requirements

of the user. In particular, if the user requires the web browser to have fast responses

regardless of any video player active in the system then thiscase is certainly a conflict.

However, if the user requires the video player to use the bestvideo quality possible,

then this behaviour is not a conflict. Refereing back to the first example discussed the

actual cause of this, possibly, undesirable behaviour is again the dependency of the two

applications on the network interface and the fact that the actions taken by the applica-

tions affect the available bandwidth. Moreover, this change of available bandwidth has

an impact on the policy rules that check the available bandwidth in order to take their

decisions.

Summarising this discussion the following observations can be made: in order to

identify clear and undisputed cases of conflicts (e.g. the first presented example) it is

necessary for the system to have an understanding of the semantics of the actions that

applications can perform and in particular the dependencies between the actions. It

should be noted that the semantic understanding of application behaviour is beyond the

scope of this thesis.

Apart from these cases, in a context-aware environment mostcases that can be con-

sidered conflicts depend highly on the user requirements. Inparticular, certain situa-

tions such as the example of a conflict between the web browserand the video player

can be considered as undesirable or conflicting for some users and a desirable system

behaviour for others. The author supports the notion that such perceptual conflicts are

best detected and resolved by the user themselves.

One approach used by this platform is to rely on the user to identify the dependen-

cies between adaptation actions and possible conflicts thatmay occur. In particular,

the descriptions of the application interfaces along with the access to the set of policy

145

Evaluation

rules active in the system allow the user to investigate the behaviour of the system and

discover the reasons that a certain undesirable behaviour is taking place.

One important feature of this platform is that when conflictsor undesirable be-

haviours are identified the user has the ability to modify thesystem in order to resolve

such cases. This power is derived from the fact that the adaptation decisions are based

on modifiable policy rules. Therefore the user has the power to modify the policy rules

that cause conflicts and resolve such cases. For example, if we consider the video player

and the web browser running in the system using their defaultpolicies a user may re-

quire for the web browser not to reduce its network usage in favour of the video player.

In order to resolve such a situation the default policy ruleswere modified. The aim of

this change was to achieve coordination between the two applications.

The first step in specifying the policy rules for resolving this conflict is to define a

fluent that will monitor the existence of the web browser in the system:

event webBrowserOn :− isRunning(WebBrowser) = true
event webBrowserOff :− isRunning(WebBrowser) = false
fluent webBrowserRunning {

initiates (webBrowserOn)
terminates (webBrowserOff)

}

Next the default policy rules of the video player are modifiedso that the they will

only be used if the web browser is not running in the system:

condition {
not holds(webBrowserRunning, t1) and
initiates (videoBandAvail, availVideoBand, t1) and
not clipped (availVideoBand, t1, t2) and
t2 = t1 + 10

}

Finally a set of new rule is defined to specify the behaviour ofthe video player

when the web browser is running. The actual body of the policyrule depends on the

preferences of the user. A possible approach could be to trigger the video player to

pause the video streaming (without changing the quality of the stream) when a web

page is requested, so that the web page can be uploaded faster.

condition {
happens (requestURL, t1)

}
action {

146

Evaluation

VideoPlayer.Pause()
}

A similar condition can be used to start the video streaming when the page upload

is finished. Looking at this example closely it is clear that the initial reason for this

conflict is the fact that the default policy rules implemented by the developer were not

aware of other applications and other adaptation policies that may cause this effect.

Indeed, developers can not be expected to know the configuration of the target system

and thus undesirable or conflicting situations like this is possible to occur. Moreover, in

order for this conflict to be resolved there were two main requirements. First, that the

decision logic must be able to be modified after the applications were installed in the end

system and, second, that the decision logic can have access to information about both

conflicting applications. Thus, resolving such a conflict requires the user to modify the

decisions that lead to the conflict. Moreover, when more thanone application is involved

the modification may include information from all related applications. As presented in

this example, the platform described in this thesis meets these two requirements.

Summarising this discussion, the aim of the platform discussed here is not to provide

mechanisms for conflict detection. The approach followed bythis prototype is to rely

on the user in order to discover possible conflicts or undesirable behaviour. This is

based on the fact that automated conflict discovery would require active participation of

the application developer in order to allow the platform to understand the applications’

semantics and identify possible dependencies between applications. Moreover, a wide

range of possibly conflicting situations are actually related to the user requirements and

therefore should include the user in the process of conflict discovery. When conflicts

or undesirable behaviour is identified, the user can resolvethese conflicts by modifying

the adaptation policy rules that cause the conflicts. As seenin one of the examples,

in certain cases the solution to conflicts between multiple applications running in the

system is to coordinate the adaptive actions so that the conflict can be overcome.

6.2.4 Extensibility

The concept of extensibility in the context of a platform supporting adaptive context-

aware applications is related to the degree to which the platform allows the incorpora-

tion of adaptation triggers that the applications were not initially designed to support. In

more detail, an application developer typically makes assumptions about the configura-

147

Evaluation

tion of the end system. For example, the developer of a web browser assumes that the

end system has a network connection that the web browser can use. However, these as-

sumptions should be kept to the minimum in order to achieve greater level of portability.

Therefore, it is possible that an application will not utilise special purpose monitoring

components that are not expected for common computer systems. In particular, a com-

ponent that reports the location of a mobile device is not commonly expected to exist on

all end systems. Moreover, as certain context-aware systems may rely on technologies

that are tightly coupled with the actual working/living environment of the user. For ex-

ample, the location component that was developed as part of this evaluation reports the

location of the mobile device in the form of labels that represent certain locations. Such

a component cannot be expected to be utilised by an application by default.

These observations support the conclusion that in adaptivecontext-aware systems

certain applications will not be able to utilise all available monitoring components.

However, from the end-user’s point of view the coordinationof the running applica-

tions in relation to all monitoring technologies availableis definitely desirable. For

example, let’s consider the case of the web browser described in section 6.2.1.2. This

web browser uses a pair of web proxies that control the data stream over a wireless link.

Considering that the end device is a mobile device, it is obvious that using a staticaly

configured remote proxy can degrade the performance of the communication. Specifi-

cally, as the end device moves in different locations the path between the server-remote

proxy-local proxy will not always be the optimal path for fast delivery of data. There-

fore a desirable feature for the operation of the web browserwould be to dynamically

switch to alternative remote proxies when the location of the end system changes. In

essence this means that the web browser should becomelocation aware. In order to

achieve this a set of new rules were added to the system:

event inOffice :− Location.label = "offlce"
condition {

happens (inOffice)
}
action {

WebBrowser.SetProxy("10.2.3.4", 5123)
}

event inHome :− Location.label = "home"
condition {

happens (inHome)
}
action {

148

Evaluation

WebBrowser.SetProxy("10.3.2.1", 5123)
}

This rule is triggered when the mobile device enters the user’s office. The action

includes the specification of a new proxy that is assumed to becloser than the one

previously used.

It is simple to consider similar examples where applications can become location-

aware. One example described in section 6.2.2 is the switching off of the video player’s

audio stream when the user is walking down a corridor of the building. The main idea

behind this adaptation policy is to turn off the audio so thatthe user will not disturb

other people working in their offices as he/she passes by their door.

When considering such policy rules an interesting observation is that the policy rules

can be easily enhanced in order to include much more precise conditions. Specifically, it

is possible to define rules such as “trigger an action that is invoked when the user enters

their office after passing from the kitchen”:

event kitchenIn :− Location.label = "kitchen"
event kitchenOut :− Location.label <> "kitchen"
event officeIn :− Location.label = "office"
event officeOut :− Location.label <> "office"
fluent inKitchen {

initiates (kitchenIn)
terminates (kitchenOut)

}
fluent inOffice {

initiates (officeIn)
terminates (officeOut)

}
condition {

initiates (inOffice, officeIn, t1) and
holdsat (inKitchen, t2) and
t2 < t1

}
action {

...
}

This rule is activated if the fluentinKitchenwas active before the fluentinOffice is

initiated. A practical example would probably have time limit between the two situa-

tions e.g.t2 < t1 and t2 > t1 + 600.

Considering the aforementioned examples it is clear that theability of the platform to

149

Evaluation

extend existing applications, adding awareness for additional context triggers is based

on the fact that the adaptation control mechanism is completely decoupled from the

applications’ adaptation actions. In more detail, the actions that the platform triggers can

be based on any possible adaptation rules, including information from any application

or monitoring module available to the system. Moreover, this mechanism is further

enhanced by the fact that the platform itself does not make any assumptions about the

types of monitoring modules installed in the system or the applications running. This

means that the adaptation control mechanism — based on policy rules — is a general

purpose controlling mechanism that can be extended to use additional information as

and when needed.

6.2.5 User Involvement

As presented in the previous scenarios most of the features supported by the platform

under consideration require the active involvement of the user. In particular, coordina-

tion, conflict resolution and extensibility require the user to modify or insert additional

policy rules that can realise these operations. As discussed in detail, this user involve-

ment is mainly a requirement for these features because all these three characteristics

are related to the configuration of the end system that the application developers can

not be assumed to have any knowledge about. However, as discussed in chapter 3

the involvement of the user is also an important requirementfor systems working in a

context-aware environment. Indeed, a user working/livingin a context aware environ-

ment should be able to specify how their computer system should operate in relation to

their context.

Most of the scenarios presented in the previous paragraphs are mainly user focused.

Specifically, the implementation of coordinated behaviour, conflict resolution and ex-

tendability are all related to the actual requirements of the end user. Considering this

user focused approach it should be noted that a possible drawback of this approach is the

fact that the user needs to be able to understand both the way applications work in the

system and how their behaviour can be modified through the useof the Event Calculus

Policy Language. For most users we accept that this will be a specialist skill (e.g. the

role of an administrator).

The issue user understanding of the system’s behaviour is covered to some extent by

requiring applications to expose a comprehensive description of the semantics of their

150

Evaluation

adaptation interfaces. This description is offered as a simple mechanism that can as-

sist the user in order to understand the functionality implemented by the applications.

Moreover, the support of theawareness modulecan allow the user to understand how the

platform is behaving and if certain situations cause adaptive responses by the platform.

However, as adaptation interfaces can occasionally be verycomplex additional mecha-

nisms should be provided for the end user in order to allow theinvestigation in a more

user friendly and comprehensive way. A subject of future work (Chapter 7) is to inves-

tigate possible mechanisms that will assist the end user in understanding the behaviour

of an adaptive system. Moreover, the possible specificationof application interdepen-

dencies discussed in section 7.3.1 could be used in order to represent graphically how

the actions of one application affect the behaviour of another, offering a starting point

for this work.

In terms of the user, the Event Calculus Policy Language offers a comprehensible

vocabulary for specifying situations that adaptation is required. In particular, the fact

that Event Calculus fluents can be specified to represent real world situations, such as

“system in low battery”, “user in the office”, “low availability in network bandwidth”

can offer substantial support in allowing the user to understand existing policy rules and

modify or add new ones. However, the user involvement in the specification of policy

rules can be greatly improved with the support of a user tool for the specification of

policy rules. It is the authors belief that the characteristics of the Event Calculus Policy

Language are well suited for the design of such a user interface. In more detail, the

graphical representation of fluents and event can allow the user to see how an adaptation

condition is related to possible overlapping of fluents or time period durations between

to occurrence of events.

One final observation deriving from the aforementioned examples is the fact that

certain policy rules are specified in order to satisfy special cases for the operation of

the system while other policy rules are considered to support the general behaviour of

the system. One such example is the conflict resolution between the video player and

the web browser. In a real world situation the end user would require automatic switch-

ing between predefined policy rules according to environmental changes or their own

requirements. This observation advocates the implementation of a full policy manage-

ment system on top of the Event Calculus Policy Language. In more detail, a policy

management system should include mechanisms where policy rules are grouped in pol-

icy sets that should be activated under certain conditions.This requirement is discussed

151

Evaluation

further in chapter 7.

6.2.6 Qualitative Evaluation Summary

Section 6.2 presented a qualitative evaluation of the prototype adaptation support plat-

form discussed in chapter 5 was discussed in the previous section. In particular, set

of adaptation applications was implemented to illustrate how applications can work in

collaboration with the platform. Subsequent sections discussed in detail the issues of

coordination, conflict resolution, extensibility and userinvolvement as these were the

main drives that motivated this work. The findings of this evaluation can be summarised

as follows:

• Coordination support is directly related to the approach followed by this platform

in supporting adaptation. In particular, adaptation is notrelated to resource shar-

ing but to the specific actions that applications are required to take. This fact

allows the specification of policy rules that can coordinateactions regardless of

any resources involved in the decisions.

• Conflict resolution is related to the involvement of the user in modifying the be-

haviour of the system through the modification of the adaptation policies. In more

detail, conflicting situations are in general related to theactual user requirements

where certain users may consider a situation as a conflict while another may con-

sider as an acceptable situation. This platform offers a policy based mechanism

where the user can actively modify the system’s behaviour and overcome possi-

ble undesirable behaviour. Coordination of multiple application is, in most cases,

required in order to resolve a conflicting situation.

• Extensibility is related to the ability of the platform to incorporate information

from any application or system monitoring component in a uniform way. In more

detail, the adaptation control mechanism is general enoughto allow the specifi-

cation of policy rules that can include additional information sources. As a result

applications can become aware of additional adaptation or context triggers.

• User involvement is related to the provision of user comprehensible descriptions

of the adaptation interfaces provided by the applications and the use of a policy

language that they can use to specify how the system should behave. It is noted

152

Evaluation

that user involvement should be enhanced with the use of a graphical user inter-

face that will support the user in understanding how the system behaves and the

implementation of a policy management system that will allow the grouping of

policy rules into replaceable policy sets.

6.3 Performance Evaluation

In a system where the adaptive behaviour of applications is controlled or assisted by

an adaptation support platform both the applications and the platform affect the perfor-

mance of the system. The performance of platform componentsinvolved in the adapta-

tion mechanism are of particular interest as they affect thebehaviour of all applications

in the system. A performance evaluation of the platform is therefore necessary in order

to identify its behaviour both under normal conditions and as the number and character-

istics of the applications involved increase.

The primary functionality of the presented platform involves the handling of state

variable changes reported by running applications, the evaluation of defined policy rules

and the possible triggering of applications to perform an adaptive action as specified by

the policy rules. In the measurements presented here we are trying to identify the per-

formance overhead imposed by this chain of actions whenevera state variable change is

reported by an application. In addition, a series of measurements have been conducted

in order to identify the scalability factors that have a significant impact on the perfor-

mance of the platform. For this scalability evaluation we define a set of variables that

may affect the performance of the platform:

• Number of adaptive applications registered with the platform.

• Number of policy rules loaded in the platform’s rule table.

• Number of rules affected by a single variable change reported by the application.

• Complexity of the policy rules defined.

For each of these variables a series of measurements was performed to identify their

significance.

153

Evaluation

6.3.1 Methodology

All experiments used the same hardware and software configuration: a single 730 MHz

Pentium III workstation with 640MB of memory running Microsoft Windows XP (SP1).

The performance measurements where taken using Intel’s VTune Performance Ana-

lyzer1 [Int03]. For each of the experiments the reported results include the average

time spent by the platform to process a reported variable change and the break-down

of this time to individual platform components, namely: thetime spent by the Applica-

tion Controller receiving the application message, the timespent by the Policy Manager

evaluating the related policy rule(s) and the time spent by the Application Controller

triggering an adaptive reaction. All tests were conducted using a test application that

was developed for the needs of this analysis. The test application allows the user to

specify the state variables and methods reported to the platform, execute a series of

variable changes according to a given script and report the adaptation triggers received

by the platform.

In order to specify a baseline reference point we measured the platform’s perfor-

mance under optimum conditions. These conditions refer to an environment where only

one application is registered with the platform, only one policy rule is defined and this

policy rule has a very simple condition body. The particularrule used has a single

“happens” predicate checking for the occupance of an event:

event testEvent :− Test.testVar = "fired"
condition {

happens (testEvent, t1)
}
action {

Test.Adapt()
}

Using this setup we performed an initial set of experiments to identify the minimum

overhead imposed by the platform:

Minimum overhead per event

Policy Manager 2.05 milliseconds

Var Change Message 0.56 milliseconds

Adapt Trigger 0.27 milliseconds

Other 0.07 milliseconds

Total time spent 2,97 milliseconds

1The particular technique used was theCall Graph. This technique reports, among others, the time
spent for the execution of each function and the number of times each function has been called.

154

Evaluation

This measurement served as a reference point for all the subsequent experiments

performed. For comparative reasons, in all the graphs presented here this measurement

appears as the first test column.

6.3.2 Number of Applications

This section presents the measurements that investigate the platforms behaviour in re-

lation to the number of adaptive applications. A series of experiments was conducted

with increasing number of applications registered with theplatform. All other parame-

ters (number of rules, rules’ complexity) where kept to their minimum. The results of

these measurements showed that the number of applications had no significant impact

on the performance (Figure 6.5).

This is a reasonable result considering the design of the platform. Each application

communicates with the platform through a dedicated Application Controller. During

the parsing of policy rules the platform constructs a table of rules affected by each state

variable and attaches it to the definition of that particularstate variable. Therefore, a

state variable change reported by an application leads directly to the evaluation of the

corresponding policy rule without being affected by the number of applications reg-

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 Application 10 Applications 20 Applications 30 Applications

M
ic

ro
se

co
nd

s

Number of registered applications

Total
Policy Manager
Application Controler-Var Change
Application Controler-Trigger
Other

Figure 6.5: Platform overhead in relation to the number of registered applications.

155

Evaluation

istered with the platform. During the evaluation of a policyrule the Policy Manager

is required to search through the registered applications when there are references to

other state variables or when an adaptive triggering is required. However, this search

is performed through a hash table which has a constant overhead. The case of a more

complex policy rule with references to variables of severalapplications is discussed in

section 6.3.4.

6.3.3 Number of Rules

In order to identify the platform’s behaviour in relation tothe number of policy rules, a

series of experiments was performed with an increasing number of policy rules loaded

in the platform’s rule table. All other parameters (number of applications, rules’ com-

plexity) were kept to their minimum. The results of these measurements showed that the

number of rules within the platform had no impact on the performance of the platform

(Figure 6.6).

As described in the previous paragraph, during parsing of the policy rules the plat-

form constructs a table of rules affected by each state variable and attaches it to the

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 Rule 100 Rules 200 Rules 300 Rules

M
ic

ro
se

co
nd

s

Number of rules in the rule table

Total
Policy Manager
Application Controler-Var Change
Application Controler-Trigger
Other

Figure 6.6: Platform overhead in relation to the number of rules in the platform’s rule
table.

156

Evaluation

definition of that particular state variable. As a result thetotal size of the rule table has

no impact on the time spent processing a single state variable change. The particular

case of a state variable affecting more than one rule is discussed in 6.3.5.

6.3.4 Rule complexity

The termrule complexityused here has a vague meaning that can not be mapped directly

into a quantitative attribute. In order to specify a way to measure the complexity of a

policy rule we will refer to the evaluation mechanism described in section 5.3.5.1. As

described there, all predicates are mapped into two state FSAs. The evaluation proce-

dure involves the feeding of these FSAs with the corresponding events allowing them to

move from one state to the next. This similarity among predicate evaluation allow us to

consider the overhead to be the same no matter which particular predicate is evaluated.

Therefore for this particular set of experiments we will consider the complexity of a rule

as the number of individual predicates specified in the rulescondition no matter what

types of predicates are defined.

However, even though the actual type of the predicates involved in the evaluation

of a rule may not have any significance we did make sure that a variety of predicate

were involved in the construction of the policy rules used inthese experiments. In more

detail, the rules were constructed using a pattern of cascading fluents encapsulating a

single event. The starting condition had a body of the form:

initiates (eventA, fluentA, t1) and
not clipped (fluentA, t1, t2) and
holdsat (fluentA, t2) and
happens (testEvent, t2)

Testing that the eventtestEvent took place while the fluentfluentA was holding dur-

ing the period (t1,t2). Using this body as a starting point the condition was enriched

with additional fluents that were required to hold during this event:

initiates (eventA, fluentA, t2) and
not clipped (fluentA, t2, t1) and
holdsat (fluentA, t1) and
happens (testEvent, t1) and
initiates (eventB, fluentB, t3) and
not clipped (fluentB, t3, t1) and
holdsat (fluentB, t1) and
initiates (eventC, fluentC, t4) and

157

Evaluation

...

Using this pattern we conducted a series of experiments withrules of increasing

complexity. The results of these experiments showed that the complexity of the policy

rules had no impact on the performance of the platform (Figure 6.7).

This result is a direct consequence of the semantics of the Event Calculus Policy

Language. As described in section 4.7.3 the Event Calculus Policy Language describes

rules that correspond to a sequence of events that take placeat different time points.

As a result each event leads to the evaluation of only the particular predicates that it is

involved with. Therefore the total overhead of a evaluatingthe whole condition body is

spread over all the individual events that need to take placein order for the condition

to become true. Thus the size (complexity) of the condition body has no impact on the

average overhead per event. Referring back to the issue of multiple applications it is

clear that even in the case of a condition body where several applications are referred,

each of these references can only relate to one event. Therefore the evaluation of the

predicates related to that event will include only one search through the application

registry. So the average cost per event is again not related to the number of applications

referred in the condition body.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 Predicate 20 Predicates 30 Predicates 40 Predicates

M
ic

ro
se

co
nd

s

Number of predicates on a rule’s body

Total
Policy Manager
Application Controler-Var Change
Application Controler-Trigger
Other

Figure 6.7: Overhead in relation to the complexity of the rules’ definitions. The com-
plexity is measured according to the number of predicates appearing in a rule’s body.

158

Evaluation

6.3.5 Rules per event

The final set of measurements conducted was related to the number of rules in the rule

table that are triggered by a state variable change. For thisset of tests the platform was

loaded with 100 simple rules (similar to the one presented in6.3.1). For each individual

set a number of these rules were modified so that they were triggered by the same event.

The results of these experiments showed a linear increase ofthe platform’s overhead

(Figure 6.8).

The linear increase of processing time is justified by the fact that more policy rules

are required to be processed for each state variable change.An interesting result of this

measurement is that the average time cost per policy rule is considerably smaller com-

pared to the cost of a single rule being triggered by a single variable change. In other

words the total time cost for the processing of a single policy rule triggered by one state

variable change includes intra-platform function calls and evaluation of event expres-

sions that impose additional possessing time while the timefor the actual evaluation of

the rule is relatively small. Therefore, in this set of measurements the additional time

cost is limited (one state variable change) and, spread overa number of policy rules,

leads to a smaller average time per policy rule.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 Triggered 10 Triggered 20 Triggered 30 Triggered 40 Triggered

M
ic

ro
se

co
nd

s

Number of rules triggered by a single event

Total
Policy Manager
Application Controler-Var Change
Application Controler-Trigger
Other

Figure 6.8: Platform overhead in relation to the number of rules triggered by a single
event.

159

Evaluation

This particular observation allows the specification of a certain methodology for

defining policy rules that can increase the overall performance of the system. Consid-

ering cases where state variables with high granularity (e.g. a variable that reports the

available bandwidth of the network connection) there is a high probability that a num-

ber of applications may define rules that refer to the same (semantically) events but with

different triggering values. For example, a web browser maydefine a rule where the

state of low bandwidth is triggered by an event when the available bandwidth drops

below 24Kbps while an e-mail client may have a similar event that is triggered when

the bandwidth drops bellow 20Kbps. In that case modifying these rules so that they are

triggered by the same conditions (e.g. when the bandwidth drops bellow 22Kbps) can

improve the overall performance of the system. However, such a modification can only

be performed by the end user and therefore this is an additional case were allowing the

user to modify the systems behaviour can improve the system’s functionality.

6.3.6 Performance Summary

Most of the performance benefits derive from the semantics ofthe policy language used.

The rules specified with the Event Calculus Policy Language identify the sequence of

events that will lead to an adaptive response. This allows the design of a policy eval-

uation engine that can evaluate policy rules progressivelyas these events take place.

Therefore the overhead of evaluating a policy rule is spreadover the events taking place.

As a result the average overhead per event remains constant.This fact means that the

whole platform can offer predictable response time that is not affected by scalability

factors such as the number of applications, the number of rules and the complexity of

the rules.

6.4 Summary

The evaluation of the prototype adaptation support platform was presented in this chap-

ter. The qualitative evaluation investigated the behaviour of the platform in terms of

support for coordination, conflict resolution, extensibility and user involvement. Specif-

ically, the platform offers the necessary functionality toachieve all four of the aforemen-

tioned features. Specific limitations concerning the particular prototype implementation

include the limited support for proper tools to assist the user in understanding the be-

haviour of the adaptive applications.
160

Evaluation

The performance evaluation measured the performance of theplatform against a

set of scalability factors. In particular, the performanceof the platform was tested in

response to an increasing number of applications, number ofrules, rules’ complexity

and rules triggered by a single event. The performance measurements showed that the

platform can offer predictable response time that is not affected by the aforementioned

scalability factors.

161

CHAPTER VII

Conclusions

Contents
7.1 Overview . 163

7.2 Contributions . 165

C1. The Problem of Uncoordinated Adaptation 165

C2. An Architecture for Supporting Coordinated Adaptation 166

C3. A Policy Language Supporting Temporal Relationships 167

C4. Feasibility of Coordinated Adaptation 169

7.3 Future Work . 170

7.3.1 Support Conflict Detection 170

7.3.2 Policy Management . 171

7.3.3 Application to Ubiquitous Computing 172

7.4 Concluding Remarks . 173

162

Conclusions

7.1 Overview

This thesis presented an investigation of the issues concerning supporting for coordi-

nated adaptation for context-aware adaptive applications. The particular problems of

conflict resolution, reconfiguration and user involvement were the main motivation for

coordinated adaptation. This thesis shows that existing systems fail to provide recon-

figurable coordinated adaptation supporting user involvement. It argues that support for

coordination requires applications to delegate their adaptation control mechanism to an

entity that can retrieve state information from multiple applications and invoke adap-

tation actions on multiple applications. Moreover, the adaptation control mechanism

should allow modifications by the end user. The design of an architecture and the im-

plementation of a prototype illustrate that the aforementioned requirements can actually

support coordinated adaptation.

The first chapter of this thesis establishes the target domain of this work. The iden-

tification of common characteristics of traditional adaptive applications and context-

aware systems concludes with the proposition that a common approach for supporting

adaptation is possible for both of these classes of applications. The chapter defines the

target of this thesis as the provision of adaptation supportfor context-aware adaptive

applications. Moreover, the issue of dependencies betweenadaptive behaviour of mul-

tiple applications is highlighted and the need for coordination is presented as a prime

requirement for supporting multiple co-existing context-aware adaptive applications.

The second chapter consists of an investigation of existingadaptive and context-

aware systems. This investigation is focused on the level ofsupport provided by exist-

ing systems for coordination, reconfiguration, extensibility and user involvement. The

results of this investigation indicate that existing systems offer limited support for co-

ordination and furthermore none of the examined systems offers support for all of the

targeted characteristics.

The third chapter of this thesis presents an analysis of the possible limitations of

current approaches for supporting adaptation. Through a set of theoretical scenarios the

shortcomings of existing designs are highlighted. In particular, the approach of coupling

adaptation mechanisms and adaptation control and the lack of a mechanism for recon-

figuration of the systems behaviour through the involvementof the user are considered

as the main reasons for the limited support for coordinated adaptation. The chapter

163

Conclusions

concludes with a set of design requirements for supporting coordinated adaptation for

context-aware adaptive applications. These requirementsare to:

• Decouple adaptation policies and adaptation mechanisms.

• Require applications to externalise their adaptation mechanisms.

• Require applications to externalise information about their state or environmental

attributes they monitor.

• Provide a mechanism where adaptation control entities can be modified without

the need for re-implementation of the applications or the system.

Based on these requirements, the fourth chapter of this thesis presents the design of

an architecture for the support of coordinated adaptation.The discussion that leads to

this design illustrates how the aforementioned requirements are sufficient for achieving

coordinated adaptation. Specifically, coordination is considered the ability of an adap-

tation support system to retrieve information from multiple applications and monitoring

components and trigger adaptation to multiple applications. The first three of the design

requirements allow the design of such a system. Furthermore, the consideration that

applications should not be expected to have any knowledge about the characteristics of

co-existing applications leads to the conclusion that coordination is not a feature that

applications can provide by default. Thus the requirement for reconfiguration and the

involvement of the user allows the design of a platform wherecoordinated behaviour

can be specified based on the configuration of the end system. The design of the plat-

form presented in chapter 4 consists of a policy based adaptation control mechanism. In

order to satisfy the adaptive requirements of context-aware adaptive applications a new

policy language is defined derived from the Event Calculus logic programming formal-

ism. The main feature of the Event Calculus Policy Language isthe support for policy

rules where the condition body can include temporal relationships between events and

fluents (i.e. entities that express duration).

Following the design of the platform a prototype implementation is presented in

chapter 5. The prototype is a Microsoft Windows applicationthat can control the adap-

tive behaviour of applications running on the same host. Thechapter includes the imple-

mentation details of the prototype as well as a detailed discussion about the evaluation

engine for the Event Calculus Policy Language.

164

Conclusions

The sixth chapter of this thesis presents an evaluation of the prototype. A qualitative

evaluation considers the level of support for features suchas coordination, conflict reso-

lution, extensibility and user involvement. The evaluation concludes that this prototype

does offer support for all these characteristics. Possiblelimitations of the prototype

are identified (i.e. limited support for user-friendly interaction with the platform, re-

quirement for a high level policy management mechanism) however these limitation are

related to the particular implementation. The performanceevaluation considers the per-

formance characteristics of the particular prototype adaptation support platform. The

performance measurements conducted reveal that the use of the prototype for control-

ling adaptation on a single host imposes limited performance cost and the prototype

scales well in terms of number of applications controlled, number of policy rules and

complexity of policy rules.

7.2 Contributions

This section reviews the main contributions of the work described in this thesis. The se-

quence in which the following sections are presented is based on the order they appeared

in this thesis and it does not imply any ranking of importance.

C1. The Problem of Uncoordinated Adaptation

Contribution C1: Identification of the limitations of existing systems in supporting

coordinated adaptation, reconfiguration and user involvement. Identification of the

design characteristics of these systems that lead to these limitations: coupling of

adaptation control with either the adaptive method or the monitoring entity.

This thesis examined the design characteristics of existing adaptive and context-

aware applications with respect to the level of support for coordinated adaptation. This

investigation was conducted by:

1. A criteria-based survey of existing adaptive and context-aware application.

2. An analysis by example of issues concerning coordination, conflict resolution and

user involvement in the specification of the system’s behaviour.

165

Conclusions

3. An analysis of the design approach followed by existing applications and the po-

tential problems imposed by their design approach.

Based on this investigation this thesis provided the following results:

R1 Showed that existing systems perform poorly in terms of support for coordinated

adaptation, conflict resolution and user involvement (Chapter 2 and 3).

R2 Identified key architectural properties of existing systems that lead to limited sup-

port for coordination. In particular, the coupling of adaptation policies with either

the adaptation mechanisms or the monitoring entities does not allow coordination

and extensibility. Moreover, acknowledging that application developers cannot

have knowledge about the configuration of the end system, coordination can only

be performed by allowing the reconfiguration of the adaptivebehaviour with the

involvement of the end user. Finally this thesis identifies the lack of consider-

ation for the user requirements by existing systems with respect to the adaptive

behaviour of the applications (Chapter 3).

R3 Identified the common characteristics between traditional, resource-driven adap-

tation and a class of context-aware applications concernedwith adaptation trig-

gered by changing context. This thesis argued that a common adaptation support

approach can be used for both classes of applications (Chapter 1).

R4 Identified the importance of interdependencies between adaptive applications and

in particular their adaptive actions. This thesis described that lack of consider-

ation for such interdependencies can lead to certain undesirable effects such as

conflicts, instabilities, etc.

The aforementioned results concerning the shortcomings ofexisting systems have

been published in [Efstratiou00]. These results have been cited by a number of re-

searchers [Loke02, Blair01].

C2. An Architecture for Supporting Coordinated Adaptation

Contribution C2: Specification of design requirements for supporting coordinated

adaptation for adaptive context-aware applications: decoupling adaptation control

166

Conclusions

and implementation, externalisation of applications’ adaptation interface and modi-

fication of the adaptation control mechanism. Presentationof an overall architecture

for coordinated adaptation based on these design requirements.

This thesis presented a set of design requirement for futureplatforms supporting

context-aware adaptive applications. Moreover, this thesis prosed an overall architecture

supporting coordinated adaptation derived from the presented requirements. In more

detail, the results concerning this architecture are:

R5 This thesis presented a set of design requirements for supporting coordinated

adaptation based on the analysis of the limitations of existing systems. In par-

ticular, future system designs should be based on the decoupling of adaptation

policies and adaptation mechanisms and the externalisation of the application’s

adaptation interfaces. This particular requirement has been proposed in the past

in the context of distributed computing (e.g. [Marzullo91]). This thesis transfers

this design requirement to the domain of adaptive and context-aware systems.

Moreover, the requirement for modification of the adaptation control entity with-

out the need for re-implementation allows the design of systems where the user

can actively specify how applications should behave (Chapter 3).

R6 This thesis presented the design of an overall architecturefor a platform that sup-

ports coordinated adaptation. The design is derived from the aforementioned set

of requirements. This design does not make any assumptions about the level of

distribution of the system (Chapter 4).

R7 This thesis explored the issues of distribution in the design of a platform support-

ing coordinated adaptation. Possible technologies for realising both distributed

and non-distributed configurations of the platform were presented (Chapter 5).

The set of requirements and the design of this platform has been published in

[Efstratiou01, Efstratiou02a]. These publications have influenced to some extent the

work of a number of researchers in the wider area of mobile andadaptive systems

[Indulska03, Popovici02, Rakotonirainy01, Yuan04, Riva03,Costa03]

167

Conclusions

C3. A Policy Language Supporting Temporal Relationships

Contribution C3: Specification of a new policy language derived from the Event

Calculus logic programming formalism. This new language allows the specification

of policies based on temporal relationships between events and entities that express

duration.

This thesis presented the definition of a policy language that was designed in order

to support the specification of policy rules where temporal relationships between events

are considered important. The Event Calculus Policy Language was derived from the

semantics of the Event Calculus logic programming formalism. The policy rules spec-

ified in this language include conditions where the occurrence of events and the state

of fluents is expressed through Event Calculus predicates. The detailed results of this

thesis concerning the Event Calculus policy language are:

R8 This thesis identified the limitations of existing policy languages that follow the

event-condition-action model for the support of conditions where the temporal

relationships between multiple events is considered important. Specifically, this

thesis acknowledges that the particular policy specification model is not intended

for the expression of policy rules with temporal relationships between events.

This thesis identifies as a limitation of this model the lack of support for entities

that express duration. Such entities are considered important in a context-aware

environment where situations like “user in their office” areentities that express

duration (Chapter 4).

R9 This thesis identified the Event Calculus as a candidate starting point for a policy

language that allows the specification of temporal relationships between events.

Specifically, this thesis considered the use of a programming formalism for the

description of event-based systems as a candidate startingpoint for the defini-

tion of a policy language that supports the specification of temporal relationships

between events. The Event Calculus was chosen as one formalism that satisfies

these requirements and offers a comprehensive vocabulary for the specification of

event-based conditions (Chapter 4).

R10 This thesis demonstrated the expressiveness of this language for specifying a wide

range of adaptation policies. This demonstration includeda set of examples of

adaptation policy rules for adaptive and context-aware applications (Chapter 4).

168

Conclusions

R11 This thesis identified this policy language as a possible candidate control mecha-

nism that can be applied to the wider area of ubiquitous computing. The demon-

stration of this policy language revealed, in a certain extent, that this language is

flexible enough to be applied to other domains of ubiquitous computing, such as

home automation, intelligent environments, etc.(Section7.3.3).

The specification of the Event Calculus Policy Language has been published in

[Efstratiou02b] and cited in, for example, [Bandara03, Reiff-Marganiec04].

C4. Feasibility of Coordinated Adaptation

Contribution C4: A prototype implementation of the architecture supportingcoordi-

nated adaptation. Demonstration of the porototype’s ability to support coordination,

reconfiguration, conflict resolution and user involvement.

This thesis demonstrated the feasibility of coordinated adaptation in a non-distributed

adaptive system. This demonstration consisted of the creation and evaluation of a pro-

totype based an the architectural design for supporting coordinated adaptation. The

detailed results concerning the feasibility of coordinated adaptation are:

R12 This thesis presented a prototype implementation of the architecture for support-

ing coordinated adaptation. This prototype was implemented for a non-distributed

configuration where multiple applications running on the same host are controlled

by a centralised platform (Chapter 5).

R13 The thesis demonstrated by example that application coordination can be achieved

with the support of the prototype platform. This demonstration revealed that co-

ordinated adaptation can improve the support for user needsthat relate to the

behaviour of multiple applications and the coordination oftheir actions (Chapter

6).

R14 The performance evaluation of this prototype showed that the use of a platform

controlling adaptation based of adaptation policies can offer the benefits of co-

ordinated adaptation with relatively small overhead. Moreover, this thesis has

demonstrated that the performance of this prototype does not degrade when the

number of applications, the number of policy rules and the complexity of the rules

increase (Chapter 6).

169

Conclusions

R15 As part of the evaluation process this thesis demonstrated the feasibility for aug-

menting common applications with an API for coordinated adaptation. Although

this thesis does not specify a uniform approach for augmenting existing applica-

tion it does present example applications that have been extended in order to allow

coordinated adaptation (Chapter 6).

The results of the evaluation of this prototype implementation have been submitted

for publication.

7.3 Future Work

There are a number of issues related to this work that can become the basis for further

research. Some of the most significant elements are considered in the following sections.

7.3.1 Support Conflict Detection

Dealing with conflicts in adaptive systems is a two-step process: conflict detection and

conflict resolution. This thesis demonstrates that supportfor reconfigurable coordinated

adaptation can offer the mechanisms for conflict resolution. Though beyond the main

focus of this thesis, chapter 6 offered a discussion of the problem of conflict detection.

In particular, the fact that adaptive methods can have side-effects or depend on other

applications in the system is highlighted as one of the main reasons of conflicts. The

dependencies between applications’ actions are generallyrelated to the semantics of the

applications and in particular the adaptive methods they implement. One particularly

interesting aspect of conflict detection is the issue of userperception in the identification

of conflicts as discussed in this thesis (Section 6.2.3).

Considering these observations, future research in the areaof conflict detection in

adaptive systems should consider both the inter-dependencies of multiple applications

and the involvement of the user in the identification of conflicts. In more detail, con-

flict detection should combine both a mechanism for identifying potentialconflicts and

a mechanism where the user can identify the reasons the system exhibits certain un-

desirable behaviour. Both of these mechanisms should include the identification of

dependencies between applications and their adaptive behaviour.

170

Conclusions

A possible approach for supporting conflict detection is to require the assistance of

the application in the identification of dependencies. Specifically, applications should

be able to express their dependencies, either in abstract terms (e.g. in terms of resources

or types of services) or explicit dependencies on certain applications and functionality.

With the use of these dependency declarations a platform supporting conflict detection

should be able to construct a dependency graph that illustrates how adaptation actions

performed by one application can have side-effects or depend on other actions and/or ap-

plications. This approach for identifying dependencies between applications can allow

the investigation of mechanisms for the detection of possible conflicts and potentially

suggest solutions for overcoming these conflicts. Furthermore, the dependency graph

can be a useful tool for the user to comprehend how different applications interact with

each other and what policy modifications are necessary in order to achieve a specific

user goal.

7.3.2 Policy Management

The design of the platform presented in this thesis identifies the use of policy based

mechanisms for the specification of adaptive behaviour. A particularly interesting re-

search issue is the design of a policy management system on top of the existing platform

that can allow flexible management of policies.

Existing policy management system [Damianou01] define different classes of policy

rules (e.g. obligation, authorisation). The Event CalculusPolicy Language allows the

specification of obligation policy rules only as required for the specification of adapta-

tion actions. An extension of this language with the inclusion of more policy rule classes

(e.g. authorisation policies) would allow the construction of a much more flexible policy

management system and provide mechanisms for avoiding conflicts within the specifi-

cation of the policy rules. Furthermore, an interesting feature that a policy management

system could provide is the introduction ofmeta policies. Using the syntax of the Event

Calculus Policy Language, a certain class of policy rules could be defined that will al-

low the dynamic management of existing policy rules. These meta policies could be

used to enable or disable particular sets of rules based on either system conditions or

user preferences. An example use of meta policies would be todynamically modify the

active policy rules when the system gets into low power mode.

171

Conclusions

7.3.3 Application to Ubiquitous Computing

The Event Calculus Policy Language was defined in order to satisfy the requirements

of context-aware adaptive applications. However, the particular characteristics of this

language in terms of support for temporal relationships between events can be applicable

to other application domains. Specifically, environments where coordination of multiple

entities is of importance can be considered possible candidate domains for the use of the

Event Calculus Policy Language.

A particular domain that the author considers as a possible target for the use of this

policy language is the area of active environments. Active environments require the

coordination of multiple applications and devices in response to changes in the environ-

ment. Current work in the domain of active environments can beinformally classified

in the following categories:

1. Systems that provide support for the exchange of information between applica-

tions/devices but rely on the applications themselves to coordinate their actions

(e.g. [Johanson02, Brumitt00, Kindberg01]).

2. Systems that use computer learning in order to make the system understand the

requirements of the users and coordinate the applications/devices in an active en-

vironment accordingly (e.g. [Mozer98]).

3. Systems that use a rule based mechanism allowing the user to specify how the

active environment should behave (e.g. [Román03]).

The architecture presented in this thesis and the Event Calculus Policy Language

can be considered as potential candidates for a system falling into the third category

of active environments. The use of the Event Calculus Policy language for the speci-

fication of temporal relationships between events and the specification of entities with

duration (i.e. fluents) can be a significant tool in an environment where applications

and devices should be coordinated according to user actionsand social situations. Such

policy rules can allow the user to express abstract situations such as “having a meeting”

through environmental state variables such as “number of people in a room”, “volume

of the speaker’s voice”, etc. A clear benefit that arises fromthis approach is that the

user has a clear understanding of the conditions that trigger the system’s behaviour and

therefore can intervene to modify the system’s behaviour ifit is not according to their

requirements.

172

Conclusions

7.4 Concluding Remarks

Mobile environments are tightly coupled with the notion ofchange. Change can occur

in the level of resources, such as quality of the network connection, or the external

context of the mobile system or the user, such as the physicallocation. Future mobile

systems are expected to consist of a collection of applications that demonstrate adaptive

behaviour in response to both of these types of changes.

The work in this thesis investigates the adaptation supportfor applications capable

of adapting to both resource and context changes. In particular, coordination of the

adaptive behaviour of applications is considered an important feature for a system that

can support the user requirements and overcome conflicts. This thesis identifies the

limitations of existing approaches in adaptation and proposes a set of requirements for

supporting coordinated adaptation. Furthermore, an overall design for a platform sup-

porting adaptation is presented utilising a policy based mechanism for controlling adap-

tation. As a proposed policy language that meets the requirements for context-aware

adaptive applications the Event Calculus Policy Language isdefined. The evaluation of

a prototype implementation reveals the feasibility of the approach.

The author hopes that this work will influence the design of future mobile adaptive

systems and allow the design of adaptation support systems with improved support for

coordination and consideration of the user needs.

173

References

[ACP99] Advanced Configuration and Power Interface Specification, Revision 1.0. In-

tel/Microsoft/Toshiba http://www.acpi.info/. 1999.

[Adams95] Adams, P. and Wall, N. Global System for Mobile Communications: The

Development of the GSM Standard.British Telecommunications Engineering,

14(1):pp. 38–45. 1995.

[Ahuja86] Ahuja, S., Carriero, N. and Gelernter, D. Linda and Friends.IEEE Com-

puter, 19(8):pp. 26–34. 1986.

[Amir95] Amir, E., Balakrishnan, H., Seshan, S. and Katz, R. Efficient TCPover

Networks with Wireless Links. InProceedings of the 5th IEEE Workshop on

Hot Topics in Operating Systems (HotOS-V), pp. 35–40. IEEE Computer Society

Press, Rosario Resort, Orcas Island, Washington, U.S. 1995.

[Badrinath00] Badrinath, B., Fox, A., Kleinrock, L., Popek, G., Reiher, P. andSatya-

narayanan, M. A Conceptual Framework for Network and Client Adaptation.

IEEE Mobile Networks and Applications, 5(4):pp. 221–231. 2000.

[Bakre95] Bakre, A. and Badrinath, B. I-TCP: Indirect TCP for Mobile Hosts. In

Proceedings of the 15th International Conference on Distributed Computing Sys-

tems (ICDCS), pp. 136–143. IEEE Computer Society Press, Vancouver, British

Columbia. 1995.

[Bandara03] Bandara, A. K., Lupu, E. C. and Russo, A. Using Event Calculus to

Formalise Policy Specification and Analysis. InProceedings 4th IEEE Workshop

on Policies for Distributed Systems and Networks (Policy 2003), pp. 26–45. Lake

Como, Italy. 2003.

[Bee00] Bumble-Bee Software. Parser Generator. 2000.

http://www.bumblebeesoftware.com/.

174

References

[Blair00] Blair, G. S., Coulson, G., Andersen, A., Blair, L., Clarke, M., Costa, F. M.,

Duran, H. A., Parlavantzas, N. and Saikoski, K. B. A Principled Approach to Sup-

porting Adaptation in Distributed Mobile Environments. InProceedings of Inter-

national Symposium on Software Engineering for Parallel andDistributed Sys-

tems (PDSE 2000), pp. 3–12. IEEE Computer Society, Limerick, Ireland. 2000.

[Blair01] Blair, L., Blair, G., Pang, J. and Efstratiou, C. ’Feature’ Interactions outside

a Telecom Domain. InWorkshop on Feature Interactions in Composed Systems,

ECOOP2001. Budapest. 2001.

[Bluetooth99a] Bluetooth. Specification of the Bluetooth System: Volume 1. Techni-

cal report version 1.0 b, Bluetooth Consortium. 1999.

[Bluetooth99b] Bluetooth. Specification of the Bluetooth System: Volume 2. Techni-

cal report version 1.0 b, Bluetooth Consortium. 1999.

[Brown95] Brown, P. J. The Stick-e Document: A Framework for Creating Context-

aware Applications.Electronic Publishing Origination, Dissemination, and De-

sign, 8(2/3):pp. 259–272. 1995.

[Brumitt00] Brumitt, B., Meyers, B., Krumm, J., Kern, A. and Shafer, S. A. EasyLiv-

ing: Technologies for Intelligent Environments. InProceedings of Handheld and

Ubiquitous Computing, Second International Symposium, (HUC 2000), Lecture

Notes in Computer Science, pp. 12–29. Springer. 2000.

[Caceres94] Caceres, R. and Iftode, L. The effects of mobility on reliable transport

protocols. InProceedings of the 14th Intl. Conf. on Distributed Computing Sys-

tems, pp. 12–20. IEEE Press, Poznan, Poland. 1994.

[Campbell94] Campbell, A. and Coulson, G. A Quality of Service Architecture. ACM

Computer Communications Review, 24(2):pp. 6–27. 1994.

[Cen97] Cen, S.A software feedback toolkit and its applications in adaptivemultime-

dia systems. Ph.D. thesis, Oregon Graduate Institute of Science and Technology.

1997.

[Cheverst00] Cheverst, K., Davies, N., Mitchell, K. and Friday, A. Experiences of

Developing and Deploying a Context-Aware Tourist Guide: TheGUIDE. In Pro-

ceedings of the 6th ACM International Conference on Mobile Computing (MOBI-

COM) 2000, pp. 20–31. ACM Press, Boston. 2000.

175

References

[Chomicki00] Chomicki, J., Lobo, J. and Naqvi, S. A Logic Programming Approach

to Conflict Resolution in Policy Management. InInternational Conference on

Principles of Knowledge Representation and Reasoning, pp. 121–132. Brechen-

ridge, Corolado. 2000.

[Costa03] Costa, P. D., Filho, J. G. P. and van Sinderen, M. Architectural Requirements

for Building Context-Aware Services Platforms. In9th Open European Summer

School IFIP Workshop on Next Genneration Networks (EUNICE2003). Hungary.

2003.

[Damianou01] Damianou, N., Dulay, N., Lupu, E. and Sloman, M. The Ponder Policy

Specification Language. InProceedings of Policy Workshop, Lecture Notes in

Computer Science, pp. 18–38. Springer, Bristol, UK. 2001.

[Davies94a] Davies, N., Pink, S. and Blair, G. Services to Support Distributed Applica-

tions in a Mobile Environment. InProceedings of the 1st International Workshop

on Services in Distributed and Networked Environments (SDNE’94), pp. 84–89.

Prague, Czech Republic. 1994.

[Davies94b] Davies, N., Wade, S. P. and Blair, G. S. Services to Support Distributed

Applications in Mobile Environments. InProceedings of the 1st International

Workshop on Services in Distributed and Networked Environments (SDNE ‘94),

pp. 84–89. Praguw, Czech Republic. 1994.

[Davies98a] Davies, N., Finney, J., Friday, A. and Scott, A. Supporting Adaptive

Video Applications in Mobile Environments.IEEE Communications Magazine,

36(6):pp. 138–143. 1998.

[Davies98b] Davies, N., Friday, A., Wade, S. and Blair, G. L2imbo: A distributed

systems platform for mobile computing.ACM Mobile Networks and Applica-

tions (MONET) Special Issue on Protocols and Software Paradigms of Mobile

Networks, 3(2):pp. 143–156. 1998.

[Davies98c] Davies, N., Wade, S., Friday, A. and Blair, G. L2imbo: a tuple space based

platform for adaptive mobile applications.ACM Mobile Networks and Applica-

tions (MONET): Special Issue on Protocols and Software Paradigms of Mobile

Networks, 3(2):pp. 143–156. 1998.

176

References

[Davies99] Davies, N., Cheverst, K., Mitchell, K. and Friday, A. Caches inthe Air:

Disseminating Information in the Guide System. InProceedings of the 2nd IEEE

Workshop on Mobile Computing Systems and Applications (WMCSA‘99), pp.

11–19. IEEE Computer Society Press, New Orleans, Louisiana.1999.

[deLara01] de Lara, E., Wallach, D. S. and Zwaenepoel, W. Puppeteer: Component-

based Adaptation for Mobile Computing. InProceedings of the 3rd USENIX

Symbosium on Internet Technologies and Systems, pp. 159–170. USENIX Press,

San Francisco, California. 2001.

[Demers94] Demers, A., Petersen, K., Spreitzer, M., Terry, D., Theimer, M. and Welch,

B. The Bayou Architecture: Support for Data Sharing among Mobile Users. In

Proceedings of IEEE Workshop on Mobile Computing Systems andApplications,

pp. 2–7. IEEE Computer Society Press, Santa Cruz, California. 1994.

[Dey00] Dey, A., Abowd, G. and Salber, D. A Context-Based Infrastructure for Smart

Environments. InProceedings of the 2000 Conference on Human Factors in Com-

puting Systems, pp. 114–128. 2000.

[Dey01] Dey, A. K. Understanding and using context.Personal and Ubiquitous Com-

puting, 5(1):pp. 4–7. 2001.

[Diot95] Diot, C., Huitema, C. and Turletti, T. Multimedia Applications should be

Adaptive. In Proceedings of the 3rd IEEE Workshop on the Architecture and

Implementation of High Performance Communication Subsystems (HPCS’9), pp.

23–25. Mystic, Connecticut. 1995.

[Efstratiou00] Efstratiou, C., Cheverst, K., Davies, N. and Friday, A. Architectural

Requirements for the Effective Support of Adaptive Mobile Applications. Work

in progress paper presented in Middleware2000, (USA:New Yort). 2000.

[Efstratiou01] Efstratiou, C., Cheverst, K., Davies, N. and Friday, A. An Architecture

for the Effective Support of Adaptive Context-Aware Applications. InProceed-

ings of 2nd International Conference in Mobile Data Management (MDM‘01),

vol. 1987 ofLecture Notes in Computer Science, pp. 15–26. Springer, Hong Kong.

2001.

[Efstratiou02a] Efstratiou, C., Friday, A., Davies, N. and Cheverst, K. A Platform

Supporting Coordinated Adaptation in Mobile Systems. InProceedings of the 4th

177

References

IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’02),

pp. 128–137. IEEE Computer Society, Callicoon, New York, U.S.2002.

[Efstratiou02b] Efstratiou, C., Friday, A., Davies, N. and Cheverst, K. Utilising the

Event Calculus for Policy Driven Adaptation in Mobile Systems. In Lobo, J.,

Michael, B. J. and Duray, N. (eds.),Proceedings of the 3rd International Work-

shop on Policies for Distributed Systems and Networks (POLICY 2002), pp. 13–

24. IEEE Computer Society, Monterey, Ca., U.S. 2002.

[Fitzpatrick99] Fitzpatrick, G., Mansfield, T., Kaplan, S., Arnold, D., Phelps, T. and

Segall, B. Instrumenting the Workaday World with Elvin. InProceedings EC-

SCW’99, pp. 431–451. Kluwer Academic Publishers, Copenhagen, Denmark.

1999.

[Flinn99] Flinn, J. and Satyanarayanan, M. PowerScope: A Tool for Profiling the

Energy Usage of Mobile Applications. InProc. of the Second IEEE Workshop on

Mobile Computing Systems and Applications, pp. 23–30. IEEE Computer Society,

New Orleans, Louisiana. 1999.

[Friday96] Friday, A., Davies, N., Blair, G. and Cheverst, K. Developing Adaptive

Applications: The MOST Experience.Journal of Integrated Computer-Aided

Engineering, 6(2):pp. 143–157. 1996.

[Fuggetta98] Fuggetta, A. and G. P. Picco, a. G. V. Understanding Code Mobility.

IEEE Transactions on Software Engineering, 24(5):pp. 342–361. 1998.

[Glass99] Glass, G. Overview of Voyager: ObjectSpace’s Product Family for State-of-

the-Art Distributed Computing. Tech. rep., ObjectSpace. 1999.

[Gray96] Gray, R. S. Agent Tcl: A flexible and secure mobile-agent system. In

Diekhans, M. and Roseman, M. (eds.),Fourth Annual Tcl/Tk Workshop (TCL

96), pp. 9–23. Monterey, CA. 1996.

[Havinga99] Havinga, P. J. M. and Smit, G. J. M. Octopus: Ebracing the Energy

Efficiency of Handheld Multimedia Computers. InProceedings of the Fifth An-

nyal (ACM/IEEE) International Conference on Mobile Computingand Network-

ing (MOBICOM‘99), pp. 77–87. ACM Press, N.Y. 1999.

178

References

[IEEE97] IEEE. Local and Metropolitan Area Network Standards Committee. Wire-

less LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifica-

tions. IEEE std 802.11-1997, The Institute of Electrical and Electronics Engi-

neers, New York, New York. 1997.

[Indulska03] Indulska, J., Robinson, R., Rakotonirainy, A. and Henricksen,K. Ex-

periences in Using CC/PP in Context-Aware Systems. InIn Proceedings 4th

International Conference on Mobile Data Management, MDM’03, vol. 2515 of

Lecture Notes in Computer Science, pp. 247–261. Springer, Melbourne. 2003.

[Int03] VTune Performance Analyzer, Version 7.0. http://www.intel.com/software

/products/vtune/vpa/. 2003.

[Jacobson88] Jacobson, V. Congestion Avoidance and Control. InProceedings of the

ACM Symposium on Communications Architectures and ProtocolsSIGCOMM

’88, pp. 314–329. ACM Press, Stanford, CA. 1988.

[Jacobson94] Jacobson, V. and McCanne, S. Visual Audio Tool. Available on the

Internet at http://www-nrg.ee.lbl.gov/vat/. 1994.

[J.Myers96] J.Myers and Rose, M. Post Office Protocol - Version 3. InternetRFC

1932. 1996.

[Johansen97] Johansen, D., Sudmann, N. P. and van Renesse, R. Performance

Issues in TACOMA. In 3rd Workshop on Mobile Object Systems, 11th

European Conference on Object-Oriented Programming. Jyväskylä, Finland.

http://www.tacoma.cs.uit.no/ papers/ECOOP.tacoma.ps. 1997.

[Johanson02] Johanson, B. and Fox, A. The Event Heap: A Coordination Infrastruc-

ture for Interactive Workspaces. In4th IEEE Workshop on Mobile Computing

Systems and Applications (WMCSA 2002), pp. 83–93. IEEE Computer Society,

Callicoon, NY, USA. 2002.

[Joseph97] Joseph, A., Tauber, J. and Kaashoek, F. Mobile Computing withthe Rover

Toolkit. IEEE Transactions on Computers: Special issue on Mobile Computing,

46(3):pp. 337–352. 1997.

[Katz94] Katz, R. Adaptation and Mobility in Wireless Information Systems. IEEE

Personal Communications, 1(1):pp. 6–17. 1994.

179

References

[Kindberg01] Kindberg, T. and Barton, J. A Web-based nomadic computing system.

Computer Networks (Amsterdam, Netherlands), 35(4):pp. 443–456. 2001.

[Kistler91] Kistler, J. and Satyanarayanan, M. Disconnected Operationin the Coda

File System. InProceedings of the 13th ACM Symposium on Operating Systems

Principles (SOSP), vol. 25, pp. 213–225. ACM Press, Asilomar Conference Cen-

ter, Pacific Grove, U.S. 1991.

[Kistler92] Kistler, J. and Satyanarayanan, M. Disconnected Operationin the Coda

File System.ACM Transactions on Computer Systems, 10(1):pp. 3–25. 1992.

[Kokar99] Kokar, M., Baslawski, K. and Eracar, Y. Control Theory-Based Foundation

of Self-Controlling Software.IEEE Intelligent Systems, pp. 37–45. 1999.

[Kounavis01] Kounavis, M. E., Campbell, A. T., Ito, G. and Bianchi, G. Design, Imple-

mentation and Evaluation of Programmable Handoff in MobileNetworks.Mobile

Networks and Applications, 6(5):pp. 443–461. 2001.

[Kowalski94] Kowalski, R. and Sadri, F. The situation calculus and event calculus

compared. InIn Proceedings of International Logic Programming Symposium

(ILPS 94), pp. 539–553. MIT Press, Ithaca, NY. 1994.

[Kowalsky86] Kowalsky, R. A Logic-Based Calculus of Events.New Generation

Computing, 4:pp. 67–95. 1986.

[Kowalsky92] Kowalsky, R. Database Updates in Event Calculus.Journal of Logic

Programming, 12:pp. 121–146. 1992.

[Leboux99] Leboux, T. OpenCORBA: A Reflective Open Broker. InProceedings of

Reflection ’99, vol. 1616 ofLecture Notes in Computer Science, pp. 197–214.

Springer-Verlag, St. Malo, France. 1999.

[Lobo99] Lobo, J., Bhatia, R. and Naqvi, S. A Policy Description Language. In Pro-

ceedings of Innovative Applications of Artificial Intelligence (IAAI ’99), pp. 291–

298. MIT Press, Orlando, FL. 1999.

[Loke02] Loke, S. W. Modelling Service-Providing Location-Based E-communities

and the Impact of User Mobility. InDistributed Communities on the Web, 4th

International Workshop, DCW 2002, Sydney, Australia, April3-5, 2002, Revised

180

References

Papers, vol. 2468 ofLecture Notes in Computer Science, pp. 266–277. Springer.

2002.

[Long96] Long, S., Kooper, R., Abowd, G. and Atkenson, C. Rapid Prototyping of Mo-

bile Context-Aware Applications: The Cyberguide Case Study. In Proceedings of

the 2nd ACM International Conference on Mobile Computing (MOBICOM), pp.

97–107. ACM Press, Rye, New York. 1996.

[Lupu99] Lupu, E. C. and Sloman, M. Conflicts in Policy-Based DistributedSystems

Management.IEEE Transactions on Software Engineering, 25(6):pp. 852–869.

1999.

[Marzullo91] Marzullo, K., Cooper, R., Wood, M. and Birman, K. Tools for Dis-

tributed Application Management.IEEE Computer, 24(8):pp. 42–51. 1991.

[McCanne95a] McCanne, S. and Jacobson, V. vic : A Flexible Framework for Packet

Video. InACM Multimedia, pp. 511–522. ACM Press. 1995.

[McCanne95b] McCanne, S. and Jacobson, V. vic: A Flexible Framework for Packet

Video. InProceedings of ACM Multimedia ‘95, pp. 511–522. San Francisco, CA.

1995.

[Meng00] Meng, A. On Evaluation Self-Adaptive Software. InProceedings of the

First International Workshop on Self-Adaptive Software (IWSAS2000), pp. 65–

74. Springer, Oxford, UK. 2000.

[Microsoft03] Microsoft. Windows Media Player. Available on the Internetat

http://www.microsoft.com/mediaplayer/. 2003.

[Mouly92] Mouly, M. and Pautet, M. B.The GSM System for Mobile Communications.

Published by the authors, 4 rue Elisée Reclus, F-91120 Palaiseau, France. 1992.

[Mozer98] Mozer, M. C. The neural network house: An environment that adapts to

its inhabitants. InProceedings of the American Association for Artificial Intelli-

gence Spring Symposium on Intelligent Environments, pp. 110–114. AAAI Press,

Menlo, Park, CA. 1998.

[Mummert95] Mummert, L., Ebling, M. and Satyanarayanan, M. Exploiting Weak

Connectivity for Mobile File Access. InProceedings of the 15th ACM Sympo-

sium on Operating Systems Principles (SOSP), vol. 29, pp. 143–155. ACM Press,

Copper Mountain Resort, Colorado, U.S. 1995.

181

References

[Noble95] Noble, B., Satyanarayanan, M. and Price, M. A Programming Interface

for Application-Aware Adaptation in Mobile Computing. InProceedings of the

second USENIX Symposium on Mobile and Location-IndependentComputing:

April 10–11, 1995, Ann Arbor, Michigan, USA, pp. 57–66. USENIX, Berkeley,

CA, USA. 1995.

[Noble97] Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J. E., Flinn, J. and

Walker, K. R. Agile Application-Aware Adaptation for Mobility. In Sixteen ACM

Symposium on Operating Systems Principles, pp. 276–287. Saint Malo, France.

1997.

[Noble98] Noble, B. Mobile Data Access. Ph.D. thesis, School of Computer Science,

Carnagie Mellon University, Pittsburgh. 1998.

[OMG01] OMG. The Common Object Request Broker: Architecture and Specification

revision 2.5. OMG Document formal/01-09-01. 2001.

[Peine97] Peine, H. and Stolpmann, T. The Architecture of the Ara Platform for Mobile

Agents. InProceedings of the First International Workshop on Mobile Agents

MA’97, no. 1219 in Lecture Notes in Computer Science, pp. 50–61. Springer

Verlag. 1997.

[Pietzuch03] Pietzuch, P. R., Shand, B. and Bacon, J. A Framework for Event Compo-

sition in Distributed Systems. In Endler, M. and Schmidt, D.(eds.),Proc. of the

4th ACM/IFIP/USENIX Int. Conf. on Middleware (Middleware ’03), pp. 62–82.

Springer, Rio de Janeiro, Brazil. 2003. Best paper award.

[Pietzuch04] Pietzuch, P. R., Shand, B. and Bacon, J. Composite Event Detection as a

Generic Middleware Extension.IEEE Network, 18(1):pp. 44–55. 2004.

[Popovici02] Popovici, A. and Alonso, G. Ad-Hoc Transactions for Mobile Services.

In Technologies for E-Services, Third International Workshop, TES 2002, Hong

Kong, China, August 23-24, 2002, Proceedings, vol. 2444 ofLecture Notes in

Computer Science, pp. 118–130. Springer. 2002.

[Postel82] Postel, J. B. Simple Mail Transfer Protocol. Internet RFC 821.1982.

[Rakotonirainy01] Rakotonirainy, A., Indulska, J., Loke, S. W. and Zaslavsky, A.

Middleware for Reactive Components: An Integrated Use of Context, Roles, and

182

References

Event Based Coordination.Lecture Notes in Computer Science, 2218:pp. 77–86.

2001.

[Real03] Real. Real Player. Available on the Internet at http://www.real.com/. 2003.

[Reiff-Marganiec04] Reiff-Marganiec, S. and Turner, K. J. Feature Interaction inPoli-

cies. Submitted for publication in Elsevier Computer Networks Journal. 2004.

[Riva03] Riva, O. Middleware for Context-Aware Applications. Seminaron Research

Themes in Context-Aware Computing. Department of Computer Science, Univer-

sity of Helsinki. 2003.

[Román00] Román, M., Mickunas, D., Kon, F. and Campbell, R. H. LegORB and

Ubiquitous CORBA. InProceedings of the IFIP/ACM Middleware’2000 Work-

shop on Reflective Middleware, pp. 1–2. ACM/IFIP, Palisades, NY. 2000.

[Román03] Román, M. and Campbell, R. H. A Middleware-Based Application Frame-

work for Active Space Applications. InProceedings of ACM/IFIP/USENIX Inter-

national Middleware Conference (Middleware 2003), vol. 2672 ofLecture Notes

in Computer Science, pp. 433–454. Springer, Rio de Janeiro, Brazil. 2003.

[Salber99] Salber, D., Dey, A. K. and Abowd, G. D. The Context Toolkit: Aiding

the Development of Context-Enabled Applications. In Williams, M. G., Altom,

M. W., Ehrlich, K. and Newman, W. (eds.),Proceedings of the Conference on

Human Factors in Computing Systems (CHI-99), pp. 434–441. ACM Press, New

York. 1999.

[Satyanarayanan85] Satyanarayanan, M., Howard, J., Nichols, D., Sidebotham, R.,

Spector, A. and West, M. The ITC Distributed File System: Principles and De-

sign. InProceedings of the 10th ACM Symposium on Operating Systems Princi-

ples (SOSP), pp. 35–50. ACM Press, Orcas Island, Washington, U.S. 1985.

[Satyanarayanan90] Satyanarayanan, M., Kistler, J., Kumar, P., Okasaki, M., Siegel,

E. and Steere, D. Coda: A Highly Available File System for a Distributed Work-

station Environment.IEEE Transactions on Computers, 39(4):pp. 447–459. 1990.

[Schilit94a] Schilit, B., Adams, N. and Want, R. Context-Aware Computing Applica-

tions. InProceedings of the Workshop on Mobile Computing Systems and Appli-

cations, pp. 85–90. IEEE Computer Society, Santa Cruz, CA. 1994.

183

References

[Schilit94b] Schilit, B. and Theimer, M. Disseminating Active Map Information to

Mobile Hosts.IEEE Network, 8(5):pp. 22–32. 1994.

[Schmidt98] Schmidt, D. C., Levine, D. L. and Mungee, S. The design of the TAO

real-time object request broker.Computer Communications, 21(4):pp. 294–324.

1998.

[Schulzrinne96] Schulzrinne, H., Casner, S., Frederick, R. and Jacobson, V. RTP: A

Transport Protocol for Real-Time Applications. Network Working Group RFC

1889. 1996.

[Tai99] Tai, H. and Kosaka, K. The Aglets project.Communications of ACM, 42(3):pp.

100–101. 1999.

[Tennenhouse97]Tennenhouse, D. L., Smith, J. M., Sincoskie, W. D., Wetherall, D. J.

and Minden, G. J. A Survey of Active Network Research.IEEE Communications

Magazine, 35(1):pp. 80–86. 1997.

[Terry95] Terry, D., Theimer, M., Petersen, K. and Demers, A. J. Managing Update

Conflicts in Bayou, a Weakly Connected Replicated Storage System. In Proceed-

ings of the 15th ACM Symposium on Operating System Principles, pp. 172–183.

ACM, Copper Mountain Resort, Colorado. 1995.

[Turner97] Turner, H. Representing Actions in Logic Programs and Default Theories:

A Situation Calculus Approach.Journal of Logic Programming, 31(1–3):pp. 245–

298. 1997.

[W3C00] Simple Object Access Protocol (SOAP) 1.1. W3C note,

http://www.w3.org/TR/SOAP. 2000.

[W3C01] Web Services Description Language (WSDL) 1.1.

http://www.w3.org/tr/wsdl. 2001.

[Waldo99] Waldo, J. The Jini Architecture for Network-centric Computing. Commu-

nications of the ACM, 42(7):pp. 76–82. 1999.

[Walpole97] Walpole, J., Koster, R., Cen, S., Cowan, C., Maier, D., McNamee, D., Pu,

C., Steere, D. and Yu, L. A Player for Adaptive MPEG Video Streaming Over

The Internet. InProceedings of Applied Imagery Pattern Recognition AIPR-97,

SPIE, pp. 249–258. Washington DC. 1997.

184

References

[WAP99] WAP. Wireless Application Protocol - White Paper. Wireless Internet Today.

1999.

[Weiser93] Weiser, M. Some Computer Science Issues in Ubiquitous Computing.

Communications of the ACM, 6(7):pp. 75–84. 1993.

[White94] White, J. E. Telescript technology: The foundation for the electronic mar-

ketplace. Tech. rep., General Magic Inc., CA. 1994.

[Wollrath96] Wollrath, A., Riggs, R. and Waldo, J. A distributed object model for

the Java System. In2nd Conference on Object-Oriented Technologies & Systems

(COOTS), pp. 219–232. USENIX Association. 1996.

[Wyckoff98] Wyckoff, P., McLaughry, S., Lehman, T. and Ford, D. T Spaces.IBM

Systems Journal, 37(3):pp. 454–474. 1998.

[Yeadon96] Yeadon, N. QoS Filtering for Multipeer Communications. Ph.D. thesis,

Computing Department, Lancaster University, Lancaster, United Kingdom. 1996.

[Yuan04] Yuan, W. and Nahrstedt, K. Process group management in cross-layer adap-

tation. In Proceedings of SPIE/ACM Multimedia Computing and Networking

Conference (MMCN’04), vol. 5305, pp. 55–68. Santa Clara, CA. 2004.

185

	Abstract
	Declaration
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Adaptive and Context-Aware Applications
	Motivation
	Road Map for the Thesis

	Adaptive and Context-aware Systems
	Overview
	The Emergence of Adaptive Systems
	Adaptive Network Protocols
	Distributed Multimedia
	Mobile Systems
	Context-aware systems
	Application Aware Adaptation

	Overview of Existing Adaptive Systems
	Abstracting Adaptation
	Assessment Criteria
	Coordination
	Extensibility
	Reconfigurability
	User Involvement

	Independent Adaptive Applications
	Middleware-based Systems
	Coda
	Odyssey
	MOST
	Rover
	TACOMA/TACOMA Lite
	Bayou
	Mobiware
	Puppeteer
	TAO
	Open-ORB
	OpenCORBA

	Context-aware Systems
	Guide
	Cyberguide
	PARC Tab
	Context toolkit
	Cooltown

	Discussion
	Summary

	Analysis
	Overview
	Challenges in Adaptation
	Coordinated Adaptation
	Scenario
	Analysis

	Conflicting Adaptation
	Scenario
	Analysis

	Extensibility
	Scenario
	Analysis

	User Involvement
	Scenario
	Analysis

	Conclusions

	Requirements
	RQ1. Decouple Adaptation Control and Adaptive Actions
	RQ2. Export Application State
	RQ3. Export Adaptive Mechanisms
	RQ4. Enable Modification of Adaptive Behaviour

	Summary

	Design
	Overview
	Architectural Discussion
	Architectural Overview
	Application Interface and Communication
	Background
	Corba
	Java/RMI
	Web Services

	Application Interface Design
	Service Interface Definition

	Application Manager

	Internal Communication Layer
	Background
	Jini
	Elvin
	Cambridge Event Architecture (CEA)
	L-2imbo
	Event Heap

	The Design of the Event Manager

	System Manager Design
	Background
	Ponder
	PDL

	Policy Manager

	Policy Language
	Choosing a Policy Language
	The Event Calculus
	The Event Calculus Policy Language
	Examples

	Summary

	Implementation
	Overview
	Platform Configuration
	Non Distributed with Local Applications
	Non Distributed with Remote Applications
	Partially Distributed Platform
	Fully Distributed Platform

	Prototype
	Component Overview
	Application Registry
	Application Controller
	Event Dispatcher
	System Manager
	Evaluation of Policy Rules
	Policy Evaluation Example

	Application Stub
	Application API

	Platform Operation
	Platform Initialisation
	Application Initialisation
	State Change Notification
	Adaptation

	Summary

	Evaluation
	Overview
	Qualitative Evaluation
	Applications and Monitoring Tools
	Video Player
	Web Browser
	E-mail client
	Network Interface
	Power Monitor
	Location Monitor
	User Awareness Module
	Applications Summary

	Coordination
	Conflict Resolution
	Extensibility
	User Involvement
	Qualitative Evaluation Summary

	Performance Evaluation
	Methodology
	Number of Applications
	Number of Rules
	Rule complexity
	Rules per event
	Performance Summary

	Summary

	Conclusions
	Overview
	Contributions
	C1. The Problem of Uncoordinated Adaptation
	C2. An Architecture for Supporting Coordinated Adaptation
	C3. A Policy Language Supporting Temporal Relationships
	C4. Feasibility of Coordinated Adaptation

	Future Work
	Support Conflict Detection
	Policy Management
	Application to Ubiquitous Computing

	Concluding Remarks

	References

